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ABSTRACT

NOVEL STRATEGIES FOR SECOND-KIND INTEGRAL EQUATIONS TO
ANALYZE PERFECT ELECTRIC CONDUCTORS

Güler, Sadrı̇
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Özgür Ergül

September 2019, 62 pages

In this thesis, the magnetic-field integral equation (MFIE) for three-dimensional per-

fectly conducting objects is studied with a particular focus on the solutions of the for-

mulation with the method of moments employing low-order discretization elements.

Possible discretization functions and their applications in the testing of MFIE while

considering different numbers of testing points are analyzed for accurate and efficient

solutions. Successful results are obtained by using rotational Buffa-Christiansen test-

ing functions when the electric current density is expanded with Rao-Wilton-Glisson

functions. The same mixed discretization scheme is also employed in the context of

the combined-field integral equation (CFIE). In order to successfully handle internal

resonances in the mixed-discretized CFIE, projection of testing spaces of EFIE and

MFIE via Gram matrices is required. Inversion of Gram matrices is discussed in terms

of computational requirements in the context of large-scale problems analyzed with

the multilevel fast multipole algorithm (MLFMA). Finally, a novel MFIE implemen-

tation with double-layer modeling is presented to mitigate internal resonances without

resorting to CFIE. Accuracy of the proposed formulation is improved via inner-layer
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selection, post-processing, and accurate discretization techniques. All discussions are

presented and supported via numerical results involving canonical objects.

Keywords: Surface Integral Equations, Magnetic-Field Integral Equation, Discretiza-

tion of Integral Equations, Matrix Decomposition Methods, Gram Matrix, Internal

Resonance Problem
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ÖZ

MÜKEMMEL İLETKENLERİN ANALİZLERİNDE İKİNCİ TÜRDEN
İNTEGRAL DENKLEMLERİ İÇİN YENİLİKÇİ STRATEJİLER

Güler, Sadrı̇
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Özgür Ergül

Eylül 2019, 62 sayfa

Bu çalışmada, üç boyutlu mükemmel iletken cisimler için manyetik alan integral

denklemi (MAİD), bu formülasyonun düşük dereceli ayrıklaştırma elemanlarının kul-

lanıldığı momentler metoduyla çözümlerine yoğunlaşılarak ele alınmıştır. Muhtemel

ayrıklaştırma fonksiyonları ve bu fonksiyonların MAİD’nin test edilmesinde kullanıl-

ması, çeşitli sayılardaki test noktalarının da göz önüne alınmasıyla doğruluk ve verim-

lilik açısından analiz edilmiştir. Elektrik akımının Rao-Wilton-Glisson fonksiyonla-

rıyla açıldığı durumlarda, döngü Buffa-Christiansen test fonksiyonlarının kullanılma-

sıyla başarılı sonuçlar elde edilmiştir. Geliştirilen karışık ayrıklaştırma yöntemi, bir-

leşik alan integral denklemi (BAİD) için de kullanılmıştır. Karışık ayrıklaştırma yön-

temini BAİD üzerinde kullanırken iç rezonans problemlerinden başarıyla kaçınmak

için test uzaylarının Gram matrisleri vasıtasıyla yansıtılması gerekmektedir. Büyük

ölçekli problemlerin çok seviyeli hızlı çokkutup yöntemiyle analizleri kapsamında,

Gram matrislerinin terslerinin alınması sayısal hesaplama gereksinimleri bakımından

incelenmiştir. Son olarak, yeni bir çift katmanlı MAİD yaklaşımı mükemmel iletken

cisimlerin analizlerinde iç rezonans problemlerini BAİD’ye ihtiyaç duymadan orta-
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dan kaldırmak için önerilmiştir. Önerilen bu formülasyonun doğruluğu, iç katman se-

çimi, art işleme, ve uygun ayrıklaştırma teknikleri ile iyileştirilmiştir. Tüm tartışmalar

kanonik cisimler üzerinde sayısal sonuçlarla desteklenmiştir.

Anahtar Kelimeler: Yüzey İntegral Denklemleri, Manyetik Alan İntegral Denklemi,

İntegral Denklemlerinin Ayrıklaştırılması, Matris Ayrıştırma Yöntemleri, Gram Mat-

risi, İç Rezonans Problemi
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CHAPTER 1

INTRODUCTION

Full-wave methods in computational electromagnetics can generally be categorized

into two groups, i.e., methods based on differential equations and those based on inte-

gral equations. The method of moments is particularly used to solve electromagnetic

problems formulated with integral equations. For the analysis of perfect electric con-

ductors (PECs), the electric-field integral equation (EFIE) and the magnetic-field in-

tegral equation (MFIE) are two commonly used surface integral equations. For closed

conductors, a linear combination of these integral equations, namely, the combined-

field integral equation (CFIE), is preferred to avoid internal resonances.

The main focus of this thesis is MFIE, particularly considering its accuracy and iter-

ative solutions, for three-dimensional PECs. We start with a topic that has recently

attracted great interest, i.e., correct testing of MFIE. We present a mixed discretiza-

tion of MFIE, which involves the use of different sets of basis and testing functions

to reach accurate solutions. The mixed discretization is also extended to CFIE, while

projection of subspaces is needed to properly combine MFIE and EFIE. The thesis

also includes a novel double-layer modeling, which enables resonance-free formula-

tions only with MFIE.

Before starting the main content of the thesis, we introduce some fundamental infor-

mation on Maxwell’s equations, surface integral equations (SIEs), and the method of

moments, as follows.
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1.1 Surface Integral Equations

In electromagnetics, at any point in the space represented by r and at any time t,

Faraday’s law is written as

∇×E(r, t) = −∂B(r, t)

∂t
, (1.1)

where E(r, t) represents the electric field intensity and B(r, t) represents the mag-

netic flux density. Similarly, Ampere’s law is written as

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t), (1.2)

where H(r, t) represents the magnetic field intensity, D(r, t) represents the electric

flux density, and J(r, t) represents the electric current density. Gauss’s law defines

the relationship between the electric flux density (D(r, t)) and the electric charge

density (ρe(r, t)) as

∇ ·D(r, t) = ρe(r, t). (1.3)

Similarly, in the absence of magnetic sources, the divergence of the magnetic flux

density can be written as

∇ ·B(r, t) = 0. (1.4)

Equations (1.1), (1.2), (1.3), and (1.4) given above form Maxwell’s equations in time

domain. The continuity equation can be obtained by taking the divergence of (1.2),

and then using with (1.3). Thus, it defines the relationship between the electric current

and charge densities as

∇ · J(r, t) = −∂ρe(r, t)
∂t

. (1.5)

For a linear and isotropic medium, constitutive relations, which represent the depen-

dencies between the flux densities and field intensities for electric and magnetic fields

can be written as

D(r, t) = εE(r, t) (1.6a)

B(r, t) = µH(r, t). (1.6b)
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By substituting the constitutive relations, Maxwell’s equations can be expressed only

in terms of the electric and magnetic field intensity, which can be written as

∇×E(r, t) = −µ∂H(r, t)

∂t
(1.7a)

∇×H(r, t) = ε
∂E(r, t)

∂t
+ J(r, t) (1.7b)

∇ ·E(r, t) =
1

ε
ρe(r, t) (1.7c)

∇ ·H(r, t) = 0. (1.7d)

Time-harmonic electromagnetic waves and their derivatives can be expressed in sim-

plified forms, while transformations for any wave function f(r, t) can be defined as

f(r, t) = Re{f(r)e−iωt} (1.8a)

∂f(r, t)

∂t
= −iωRe{f(r)e−iωt}, (1.8b)

where f(r) is the phasor representation of f(r, t). By using (1.8a) and (1.8b), Maxwell’s

equations can be written in phasor domain as

∇×E(r) = iωµH(r) (1.9a)

∇×H(r) = −iωεE(r) + J(r) (1.9b)

∇ ·E(r) =
1

ε
ρe(r) (1.9c)

∇ ·H(r) = 0 (1.9d)

∇ · J(r) = iωρe(r) (1.9e)

using phasor representation of all quantities. Due to the solenoidal nature of the

magnetic flux density in (1.4), it can be written as

B(r) = ∇×A(r), (1.10)

where A(r) is the magnetic vector potential. Substituting the constitutive relation

(1.6b) into (1.10), the magnetic field intensity is represented in terms of the magnetic

vector potential as

H(r) =
1

µ
∇×A(r). (1.11)

Substituting (1.11) into (1.9a), the electric field intensity can be represented in terms

of the electric scalar potential and the magnetic vector potential as

E(r) = −∇V (r) + iωA(r). (1.12)
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Then, substituting (1.12) and (1.11) into (1.9b), we derive

∇×
( 1

µ
∇×A(r)

)
= −iωε(−∇V (r) + iωA(r)) + J(r) (1.13a)

∇×∇×A(r) = iωεµ∇V (r) + ω2εµA(r) + µJ(r) (1.13b)

∇(∇ ·A(r))−∇2A(r) = iωεµ∇V (r) + ω2εµA(r) + µJ(r) (1.13c)

∇(∇ ·A(r))− iωεµ∇V (r) = ∇2A(r) + ω2εµA(r) + µJ(r). (1.13d)

In order to express (1.13d) only in terms of A(r), Lorentz’s gauge can be used to

write

∇ ·A(r) = iωεµV (r). (1.14)

Then, the Helmholtz equation for the magnetic vector potential can be written as

∇2A(r) + k2A(r) = −µJ(r), (1.15)

where k = ω
√
εµ = 2π/λ is the wavenumber and λ is the wavelength. The point-

source solution of the scalar Helmholtz equation for an isotropic, linear, and homo-

geneous media is

g(r, r′) =
eik|r−r

′|

4π|r − r′|
, (1.16)

which is known as the three-dimensional Green’s function. Then, the magnetic vector

potential caused by an electric current density distribution can be written as

A(r) = µ

∫
g(r, r′)J(r′)dr′. (1.17)

Similarly, the electric scalar potential caused by an electric charge density distribution

can be written as

V (r) =
1

ε

∫
g(r, r′)ρe(r

′)dr′. (1.18)

Substituting (1.17) and (1.18) into (1.12), the electric field intensity can also be writ-

ten as

E(r) = −∇
(1

ε

∫
g(r, r′)ρe(r

′)dr′
)

+ iωµ

∫
g(r, r′)J(r′)dr′. (1.19)

Applying the continuity equation and rearranging the terms in (1.19), the electric field

intensity can be written as

E(r) =
i

ωε

∫
∇g(r, r′)∇′ · J(r′)dr′ + iωµ

∫
g(r, r′)J(r′)dr′ (1.20)
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or

E(r) = ikη

∫ [
J(r′) +

1

k2
∇′ · J(r′)∇

]
g(r, r′)dr′, (1.21)

where η =
√
µ/ε represents the intrinsic impedance. Similarly, the magnetic field

intensity can be written in terms of the current density and the Green’s function as

H(r) =

∫
∇g(r, r′)× J(r′)dr′. (1.22)

Defining the integro-differential operators as

T {X}(r) = ik

∫ [
X(r′) +

1

k2
∇′ ·X(r′)∇

]
g(r, r′)dr′ (1.23a)

K{X}(r) =

∫
∇g(r, r′)×X(r′)dr′, (1.23b)

the electric and magnetic field intensities can be written shortly as

E(r) = ηT {J}(r) (1.24a)

H(r) = K{J}(r). (1.24b)

The equivalence principle states that an electromagnetic problem can be converted

into equivalent problems by defining equivalent surface currents (J(r)) on the sur-

faces. Although the hypothetical surfaces can be defined anywhere, they are practi-

cally chosen to coincide with actual surfaces to apply physical boundary conditions.

Consider a PEC placed in a homogeneous medium with permittivity ε and permeabil-

ity µ. Boundary conditions state that tangential electric fields are continuous, and for

a PEC object, this can be written as

0 = n̂× n̂×Einc(r) + n̂× n̂×Esec(r) (1.25)

considering that fields do not penetrate into the object. In the above, Einc is incident

electric field intensity, Esec(r) is the secondary electric field intensity due to the

equivalence currents, and n̂ is unit normal vector on the surface. Modifying (1.25)

and writing Esec(r) in terms of equivalent currents, tangential electric-field integral

equation (T-EFIE) can be written as

−ηn̂× n̂× T {J}(r) = n̂× n̂×Einc(r). (1.26)

Similarly, by sampling the rotated version of the tangential magnetic field intensity,

and using the related boundary condition, the normal magnetic-field integral equation

(N-MFIE) for a PEC object can be written as

−J(r) + n̂×K{J}(r) = −n̂×H inc(r). (1.27)
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1.2 Method of Moments

Surface integral equations can be considered in a general form as

L{J}(r) = g(r), (1.28)

where L is a linear operator applied on the current density J(r) to obtain known

vector function g(r). To obtain matrix equations, J(r) is expanded as a linear com-

bination of a set of spatial basis functions bn(r) as

J(r) ≈
N∑

n=1

anbn(r), (1.29)

where N is the number of discretization functions and an represents the unknown

coefficient of each function to expand the current density. Substituting (1.29) into

(1.28), we obtain
N∑

n=1

anL{bn(r)} = g(r). (1.30)

Equation (1.30) involves N unknowns within a single equation. By taking the inner

product of (1.30) with linearly independent testing functions tm(r), we obtain the

required number of equations to solve coefficients an as∫
drtm(r) ·

N∑
n=1

anL{bn(r)} =

∫
drtm(r) · g(r)dr (1.31)

form = 1, 2, ..., N . The formulation given above can be further expressed as a matrix

equation, i.e.,

Z̄ · x = w, (1.32)

where

Z̄[m,n] =

∫
drtm(r) ·L{bn(r)} (1.33a)

x[n] = an (1.33b)

w[m] =

∫
drtm(r) · g(r)dr. (1.33c)

1.3 On the Accuracy of Numerical Solutions of Surface Integral Equations

SIEs are often classified as first-kind and second-kind Fredholm integral equations.

For the analysis of PEC objects, EFIE is known as a first-kind integral equation, while

6



MFIE is known as a second-kind integral equation. Using a Galerkin discretization

scheme by employing low-order discretization elements, first-kind integral equations

generally provide accurate results with large numbers of iterations, while second-kind

integral equations provide very good convergence rates but less accurate results. In

last 30 years, researchers in this area have studied EFIE to accelerate its iterative

solutions and MFIE to improve its accuracy.

Both EFIE and MFIE suffer from internal resonances which lead to significantly in-

accurate solutions and/or large numbers of iterations at resonance frequencies. It

is known that resonance currents of EFIE do not radiate to far zone, so it still sat-

isfies accurate far-field scattering results provided that iterations converge. On the

other hand, MFIE gives inaccurate results both in the near zone and in the far zone.

Rate of occurrence of internal resonances increases at higher frequencies, while the

effects of internal resonances spread around resonance frequencies. These make it

impossible to use MFIE for electrically large objects. One well-known solution to the

internal resonance problem is using CFIE, which is a linear combination of EFIE and

MFIE. However, as discussed later, CFIE tends to possess the disadvantages of both

EFIE and MFIE. Therefore, deriving a formulation that is only based on MFIE, while

avoiding internal resonances and other disadvantages of this formulation, is always

an attractive choice, as practiced in Chapter 4.
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CHAPTER 2

ACCURATE TESTING OF THE MAGNETIC-FIELD INTEGRAL

EQUATION

In this chapter, inaccuracy issues of MFIE are investigated with a particular focus on

the selection of discretization functions. Possible discretization functions and their

usage in the testing of MFIE are discussed. Then, the number of testing points is

analyzed for the best accuracy and efficiency performance with MFIE. As shown via

numerical examples, accuracy of MFIE can significantly be improved by a correct

testing.

Applying Cauchy principal value integration, MFIE can be written as

n̂×KPV {J}(r) +
(Ω0 − 4π

4π

)
J(r) = −n̂×H inc(r), (2.1)

where Ω0 is the external solid angle at the observation point r. By expanding the

integro-differential operator, we can obtain

n̂×
∫

PV
dr′J(r′)×∇′g(r, r′) +

(Ω0 − 4π

4π

)
J(r) = −n̂×H inc(r), (2.2)

where g(r, r′) is the free-space Green’s function.

2.1 Error Sources in MFIE

It is known that, despite MFIE provides well-conditioned matrix equations and very

fast iterative convergence rates, it leads to inaccurate results with the traditional dis-

cretization schemes. This inaccuracy further contaminates CFIE and leads to inac-

curate results also with this popular formulation. Hence, several attempts have been

conducted to obtain fast and accurate results with MFIE.
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One of the early attempts to improve the accuracy of MFIE was on the efficient and

reliable numerical calculation of the MFIE integrals by taking into account the 1/R2

singularity of the derivative of the Green’s function in the integro-differential oper-

ator [1]. However, it was shown that, even if these integrals are handled carefully,

MFIE is far worse than EFIE in terms of solution accuracy. Ubeda and Rius claimed

that the inaccuracy of MFIE can be related to the selection of the solid angle factor

and proposed an approximate formula for its correct estimation at the edges of trian-

gulated geometries [2]. In 2004, Davis and Warnick applied a regularization to the

identity operator to improve the accuracy of MFIE for the analysis of 2D objects [3].

They showed that the identity operator is the source of inaccurate results in spite of

its trivial discretization and computation. However, the regularization of the iden-

tity operator could not be expanded easily for 3D objects and the inaccuracy due to

the identity operator remained an unsolved issue. In the same year, Ergül and Gürel

emphasized that the inaccuracy of MFIE is not related to the solid angle factor [4].

Studies by these authors and Ubeda et al. proposed careful selections of basis func-

tions for better accuracy with MFIE [5, 6]. Ergül and Gürel further investigated the

solid angle factor of MFIE [7] and showed that there is no need to estimate the solid

angle and, using triangulated objects, it is sufficient to select the solid angle as 2π [7],

which leads to the common form of MFIE as

n̂×KPV {J}(r)− 1

2
J(r) = −n̂×H inc(r) (2.3a)

n̂×
∫

PV
dr′J(r′)×∇′g(r, r′)− 1

2
J(r) = −n̂×H inc(r). (2.3b)

In 2005, Ergül and Gürel discussed the singularity of MFIE in detail along with var-

ious MFIE formulations and proposed a new singularity-extraction technique that

provides accurate and efficient computation of the MFIE interactions [8]. Still, the

accuracy of MFIE was not at the level of EFIE, after the improvements on singularity

extraction techniques and proper selection of the solid angle factor [9]. Therefore,

discussions regarding the accuracy improvement of MFIE continued on the selection

of testing and basis functions [10–15].

10



2.2 Selection of Discretization Functions

By applying the method of moments on (2.3) using N basis and N testing functions

(bn(r) and tm(r)), the discretized form of the operators can be written as

K̄[m,n] =

∫
Sm

drtm(r) · n̂×
∫

PV,Sn

dr′bn(r′)×∇′g(r, r′) (2.4a)

Ī[m,n] =

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r′)δ(r − r′). (2.4b)

Matrix elements of MFIE can be then expressed in terms of the discretized operators

as

Z̄[m,n] = K̄[m,n]− 1

2
Ī[m,n]. (2.5)

The right-hand side of the formulation is obtained as

w[m] = −
∫
Sm

drtm(r) · n̂×H inc(r). (2.6)

In computational electromagnetics, basis functions used to expand the electric current

density are often classified as divergence-conforming and curl-conforming functions.

Divergence-conforming basis functions ensure the continuity of the normal compo-

nent of the current density across the edges of triangles, while curl-conforming basis

functions ensure the continuity of the tangential component.

A well-known discretization function set, Rao-Wilton-Glisson (RWG) functions [16]

can be written as

bRWG
n (r) =



ln
2An1

(r − rn1), r ∈ Sn1

ln
2An2

(rn2 − r), r ∈ Sn2

0, r /∈ Sn,

(2.7)

where ln represents the length of the main edge, on which the function is defined, and

An1 and An2 are respectively the areas of the first (Sn1) and second (Sn2) triangles

associated with the edge. As a selected set, rotated RWG (rot-RWG) functions are

obtained by simply rotating RWG functions using the triangle normals. It is well

known that RWG functions are divergence conforming, while rot-RWG functions are
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curl conforming. For example, the divergence of an RWG function can be written as

∇ · bRWG
n (r) =



ln
An1

, r ∈ Sn1

− ln
An2

, r ∈ Sn2

0, r /∈ Sn.

(2.8)

Figure 2.1: A Buffa-Christiansen function as a linear combination of the RWG func-

tions defined on the barycentric mesh refinement.

Recently, Buffa-Christiansen (BC) functions [17] were introduced as a new set of

divergence-conforming functions. BC functions, like RWG functions, are defined on

the main edges of the triangulated geometries. For a selected edge, the BC function

is a linear combination of the RWG functions defined on the barycentrically refined

mesh around the edge (see Figure 2.1). For the sake of simplicity, RWG functions

used to define BC functions are named as sub-RWG functions. The definition of a

sub-RWG function is the same as the definition of an RWG function given in (2.7).

In Figure 2.1, the main mesh of the geometry is shown with black lines, while

barycentrically refined mesh is shown with yellow lines. To define a BC function

on the purple edge, the nodes of the edge are taken into account. The BC function

is a linear combination of all sub-RWG functions, shown with red arrows, connected

to these nodes besides the ones on the main edge. Moreover, rotated BC (rot-BC)

functions are defined by rotating each sub-RWG function using the normal vectors of

their triangles.

12



In order to discretize MFIE, studies in the literature mainly focus on the Galerkin

discretization scheme based on using the same discretization elements for both basis

and testing functions. In addition to RWG and BC functions, linear-linear basis func-

tions are also used to discretize MFIE, as well as CFIE [15]. Also, mono-polar RWG

functions that use different expansion coefficients for half RWG functions can be

employed to discretize MFIE [11]. The improved accuracy obtained with the mono-

polar functions clearly demonstrate that the standard RWG functions are insufficient

for MFIE especially for objects with sharp edges. Ergül and Gürel showed that using

rot-RWG functions as basis functions leads to better accuracy for MFIE [12], which

is later extended to linear-linear functions for significantly accurate results [13, 15].

However, it has been shown that the inaccuracy is related to the inaccurate testing

of MFIE, and Galerkin discretization scheme is simply not suitable for this integral

equation [18–22].

2.3 Testing of Identity Operator

Although it is a trivial operator to calculate numerically, the identity operator is the

main source of the inaccuracy in the conventional discretizations of MFIE [23], and

this is mainly related to the testing of this integral equation. To understand this, we

first note that the divergence and curl operators can be seen as dual of each other.

Therefore, function spaces of divergence-conforming and curl-conforming functions

can be considered to be dual spaces. Furthermore, using integral equations, an opera-

tor needs to be tested in the dual space of its range [18]. In this context, we may focus

on four different types of functions, namely RWG, rot-RWG, BC, and rot-BC func-

tions. Among these, RWG and BC functions constitute divergence-conforming func-

tion spaces, while rot-RWG and rot-BC functions constitute curl-conforming func-

tion spaces. The spaces of RWG (or BC) and rot-RWG (or rot-BC) functions are dual

spaces of each other.

The identity operator dominates MFIE, so it can be taken into account when we con-

sider the range space of MFIE. When the identity operator is applied on the func-

tions, the ranges for RWG and BC basis functions are divergence-conforming func-

tion spaces, while they are curl-conforming function spaces for rot-RWG and rot-BC
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functions. Then, by the principle of testing with the dual space of the range, it is

required to test the operator with curl-conforming functions when the current density

is expanded with divergence-conforming functions, and vice versa.

If the current density is expanded with RWG basis functions there are two possibilities

to test the identity operator, i.e. testing with rot-RWG or rot-BC functions, consider-

ing correct spaces. However, if RWG basis functions are tested with rot-RWG testing

functions, the diagonal elements are tested weakly as

Ī[m,m] =

∫
Sm

dr(n̂× fRWG
m (r)) · fRWG

m (r) = 0 (2.9)

due to the orthogonality of RWG and rot-RWG functions. Consequently, when the

electric current density is expanded with RWG functions, the best set to test the iden-

tity operator is rot-BC functions since these functions are pseudo divergence conform-

ing and they lead to well-tested identity operator. This is called a mixed discretization

scheme [18, 19].

As numerical examples, a sphere with a radius of 0.3 m is analyzed by applying

Galerkin and mixed discretization schemes to MFIE. For the Galerkin discretization,

RWG functions are selected as discretization (both testing and basis) functions. On

the other hand, RWG functions are selected as basis functions and rot-BC functions

are selected as testing functions for the mixed discretization scheme. Therefore, only

the testing scheme (but not the expansion of the current density) is tested. Numerical

computations of the test integrals are performed via single-point testing. Generalized

minimal residual method (GMRES) is used as the iterative solver of the constructed

matrix equations, while matrix-vector multiplications are accelerated by using the

multilevel fast multipole algorithm (MLFMA) [24]. The sphere, which is discretized

with 20 mm triangles, is investigated in a frequency range between 0.5 GHz and 1.2

GHz with a step size of 10 MHz. The excitation is a linearly polarized plane wave

with +z propagation and +x polarization.

In Figure 2.2, normalized backscattered RCS values (RCS/πa2, where a is the radius

of the sphere) are plotted in the selected frequency range. In addition to numerical

results obtained by using RWG and rot-BC testing functions, analytical Mie-series

results are plotted (black line) as reference values. In all simulations, the relative
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Figure 2.2: Normalized backscattered RCS of a sphere with a = 0.3 m radius from

0.5 GHz to 1.2 GHz. The numerical results are obtained by using MFIE discretized

with RWG and rot-BC testing functions.

error is defined as

Relative Error =
||E∞c −E∞a ||2
||E∞a ||2

, (2.10)

where E∞a and E∞c correspond to the analytically and computationally computed

far-zone electric field intensity vectors, respectively, on the E-plane with 360 sam-

ple points. The relative errors in numerically computed electric field intensity values

in the far-zone E-plane are also computed (with respect to the analytical solutions)

and shown in Figure 2.3. The internal resonance problem of MFIE can be identi-

fied at around 0.8 GHz, 0.95 GHz, and 1.15 GHz. Specifically, at these resonance

frequencies, the numerical field values diverge from the analytical solutions and the

error increases dramatically as observed in Figure 2.3. In Figure 2.4, the required

numbers of iterations are plotted with respect to frequency. It can be observed that

the number of iterations tends to increase at resonance frequencies for both RWG

and rot-BC testing. In general, using rot-BC functions does not eliminate the internal

resonances of MFIE. But, these functions clearly improve the accuracy considering

the solutions between the resonances. It is remarkable that rot-BC functions lead to

better-conditioned matrix equations, while this is mostly related to the overall number
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Figure 2.3: The relative error in the far-zone electric field intensity with respect to

Mie-series solutions of a sphere with 0.3 m radius from 0.5 GHz to 1.2 GHz. The nu-

merical results are obtained by using MFIE discretized with RWG and rot-BC testing

functions.

Figure 2.4: Numbers of iterations required for the analysis of a sphere with 0.3 m

radius from 0.5 GHz to 1.2 GHz. The numerical results are obtained by using MFIE

discretized with RWG and rot-BC testing functions.
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of testing points, as shown in the next section.

2.4 Number of Testing Points

The number of quadrature points used to evaluate testing integrals directly affects

the accuracy of MFIE. Two types of possible functions that can be used to expand

the current density are RWG and BC functions. Both of these functions are first-

order polynomial vector functions. When these functions are used for the identity

operator, the term inside the interaction integral is a second-order polynomial. Then,

the numerical computation of the identity operator using the three-point Gaussian

quadrature rule can be as accurate as its analytical calculation.

Figure 2.5: Three-point testing locations (shown with red dots) for sub-triangles

(shown with orange lines) of a barycentrically refined triangle (the black line).

Another consideration about testing points is the increased numbers of samples when

using rot-BC functions for MFIE. As shown in Figure 2.5, a triangle is divided into

six sub-triangles when a barycentric mesh refinement is applied. Then, a total of

eighteen points are effectively used for the master triangle when each sub-triangle is

sampled at three points. Therefore, testing with rot-BC functions with the three-point

Gaussian quadrature is equivalent to testing with RWG functions with eighteen points

per triangle.

In order to demonstrate the effect of the number of testing points on the accuracy

and conditioning of MFIE, analysis of a sphere with 0.3 m radius is considered with

increasing numbers of testing points. Testing at a single point, as well as at three
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Figure 2.6: Normalized backscattered RCS of a sphere with a = 0.3 m radius from

0.5 GHz to 1.2 GHz. The results are obtained with different numbers of testing points

for RWG and rot-BC testing functions.

Figure 2.7: The relative error in the far-zone electric field intensity with respect to

Mie-series solutions of a sphere with 0.3 m radius from 0.5 GHz to 1.2 GHz. The

results are obtained with different numbers of testing points for RWG and rot-BC

testing functions.
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Figure 2.8: Numbers of iterations required for the analysis of a sphere with 0.3 m

radius from 0.5 GHz to 1.2 GHz.

and sixteen points per triangle are considered for the Galerkin discretization scheme

(RWG testing functions), while testing at a single point and at three points are consid-

ered for the mixed discretization scheme (rot-BC testing functions). The normalized

backscattered RCS, the relative error in the far-zone scattered field, and the number of

iterations are depicted in Figures 2.6, 2.7, and 2.8, respectively, in the frequency range

between 0.5 GHz and 1.5 GHz with a step size of 10 MHz. In Figures 2.6 and 2.7, it

can be observed that accuracy of MFIE dramatically improves with increasing num-

bers of test points for both discretization schemes. Obviously, increasing the number

of testing points does not solve the internal-resonance problem although it increases

the quality factors of the resonances. The latter is due to the fact that the nature of the

internal-resonance problem is based on the formulation and not on the discretization

scheme. More importantly, testing with rot-BC functions gives better accuracy than

testing with RWG functions regardless of the number of test points. For example,

better accuracy is obtained by testing with rot-BC functions using three points (per

sub-triangle) rather than testing with RWG functions using sixteen points (per trian-

gle). This means that the accuracy improvement is related to the correct selection of

the test functions rather than the number of sampling points. In Figure 2.8, it can be
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observed that testing by using three points per master triangle (i.e., results other than

single-point testing with RWG functions) leads to fast convergence for both RWG

and rot-BC testing functions. Overall, it can be said that the best results in terms of

accuracy and iterative convergence are obtained by testing with rot-BC functions and

three points per sub-triangle when expanding the electric current density with RWG

functions. Although not shown, further increasing the number of samples for rot-

BC functions does not significantly improve the accuracy and conditioning, while it

increases the processing time.

2.5 Concluding Remarks

MFIE provides well-conditioned matrix equations and very fast iterative convergence

rates, but it leads to inaccurate results with the traditional discretization schemes. The

accuracy of MFIE does not reach the accuracy of EFIE, after many improvements

on singularity extraction techniques and proper selection of the solid angle factor. In

addition, it was shown that the identity operator is the main source of the inaccuracy of

MFIE, although it is a trivial operator to calculate numerically. Therefore, discussions

in the literature on the accuracy of MFIE have focused on the selection of testing

and basis functions, particularly on the correct testing of the identity operator (hence

MFIE).

As discussed in this chapter, the inaccuracy of MFIE is related to the inaccurate test-

ing of this formulation, and Galerkin discretization scheme is simply not suitable for

MFIE. By the principle of testing with the dual space of the range, it is required to

test the identity operator with curl-conforming functions when the current density

is expanded with divergence-conforming functions, and vice versa. Consequently,

when the electric current density is expanded with RWG functions, an ideal set to

test the identity operator is rot-BC functions since these functions are not only curl

conforming but also pseudo divergence conforming, leading to well-tested identity

operator. This is called a mixed discretization scheme in the literature. Using rot-BC

functions does not eliminate internal resonances of MFIE, but they clearly improve

the accuracy considering the solutions between resonances.
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Finally, as also shown in numerical examples, the accuracy improvement provided

by rot-BC functions is related to the correct selection of the testing function space

rather than the increased number of sampling points. The results show that the best

results in terms of accuracy and iterative convergence are obtained by testing with rot-

BC functions and three points per sub-triangle when expanding the electric current

density with RWG functions.
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CHAPTER 3

MIXED DISCRETIZATION OF THE COMBINED-FIELD INTEGRAL

EQUATION

The inaccuracy of MFIE at non-resonant frequencies can be mitigated by using a

correct testing with a mixed discretization scheme employing RWG functions as basis

and rot-BC functions for testing, as described in Chapter 2. Since the inaccuracy of

MFIE contaminates CFIE [25], the same mixed discretization scheme can be used

to improve the accuracy of CFIE. On the other hand, when extending the use of

BC functions to CFIE, i.e., using BC functions for testing MFIE and using RWG

functions for testing EFIE, a direct convex combination does not eliminate internal

resonances. To solve this problem, projection of testing spaces onto each other is

required, which can be achieved via Gram matrices involving the inner products of

RWG and BC functions.

In this chapter, discretization of CFIE is firstly discussed. Requirement of projection

of testing spaces for the mixed discretization scheme is shown with numerical exam-

ples. The effect of the CFIE factor on the solution accuracy and convergence rate is

also shown. Finally, inversion of gram matrices in mixed CFIE is discussed in the

context of MLFMA.

3.1 Discretization of CFIE

N ×N matrix equations obtained by the application of the method of moments via a

set of basis and testing functions can be written in the form of

Z̄ · a = w. (3.1)
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Using RWG basis functions, the matrix elements for EFIE can be written as

Z̄
EFIE

[m,n] = iωµ

∫
Sm

drtm(r) ·
∫
Sn

dr′fRWG
n (r′)g(r, r′)

+
1

iωε

∫
Sm

dr∇ · tm(r)

∫
Sn

dr′g(r, r′)∇′ · fRWG
n (r′), (3.2)

while the matrix elements for MFIE can be written as

Z̄
MFIE

[m,n] = −1

2

∫
Sm

drtm(r) · fRWG
n (r)

+

∫
Sm

drtm(r) · n̂×
∫

PV,Sn

dr′fRWG
n (r′)×∇′g(r, r′). (3.3)

Also, the right-hand-side elements for EFIE can be written as

wEFIE[m] = −
∫
Sm

drtm(r) ·Einc(r), (3.4)

while they can be written as

wMFIE[m] = −
∫
Sm

drtm(r) · n̂×H inc(r) (3.5)

for MFIE. In the given equations, fRWG
n represents RWG functions defined for n =

1, 2, ..., N , while tm represents the testing functions for m = 1, 2, ..., N . In this

work, RWG functions and rot-BC functions are used as testing functions for EFIE

and MFIE, respectively.

In general, CFIE is linear convex combination of MFIE and EFIE. The matrix ele-

ments for CFIE can be written as

Z̄
CFIE

= αZ̄
EFIE

+ (1− α)ηZ̄
MFIE

, (3.6)

while the corresponding right-hand-side vector can be written as

wCFIE = αwEFIE + (1− α)ηwMFIE. (3.7)

In (3.6) and (3.7), α represents the combination ratio of EFIE and MFIE, while η rep-

resents the free-space intrinsic impedance. α is selected as 0.5 for all CFIE variations

in this work.

As a numerical example, a sphere with a radius of 0.3 m is analyzed iteratively using

GMRES. The solutions are obtained for a frequency range between 0.5 GHz and 1.2

GHz with a step size of 10 MHz. For the solution with CFIE, RWG functions are
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Figure 3.1: Normalized backscattered RCS with respect to Mie-series solutions of

a sphere with 0.3 m radius from 0.5 GHz to 1.2 GHz. The results are obtained with

CFIE with mixed discretizations when EFIE and MFIE are combined directly (convex

combination).

Figure 3.2: Numbers of iterations for the analysis of a sphere with 0.3 m radius from

0.5 GHz to 1.2 GHz. The results are obtained with CFIE with mixed discretizations

when EFIE and MFIE are combined directly (convex combination).
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used as basis functions. As testing functions, rot-BC functions are used for the MFIE

part while RWG functions are used for the EFIE part. As it is well-known in the

literature, EFIE is well-tested when the Galerkin scheme is used; therefore, its dis-

cretization functions are selected as RWG functions. The normalized backscattered

RCS values and the corresponding numbers of iterations are given in Figures 3.1 and

3.2, respectively. In Figure 3.1, it can be observed that there are inaccuracy problems

at the resonance frequencies of MFIE, even though CFIE is used. Moreover, Figure

3.2 shows that the number of iterations is not stable as one would expect from CFIE.

These results show that the well-known CFIE formulation given in (3.6) and (3.7) is

not suitable to be solved via the mixed discretization scheme (with direct combination

of EFIE and MFIE) that is essential for accurate results with MFIE.

In order to mitigate the internal resonance problem using CFIE, both EFIE and MFIE

are required to be tested with the functions in the same testing space. When MFIE is

tested with rot-BC functions and EFIE is tested with RWG functions, the reflection

of testing spaces onto each other is required [26]. In this case, CFIE can be written as

Z̄
CFIE

= αZ̄
EFIE

+ (1− α)ηḠRWG,RWG · [Ḡn×BC,RWG]−1 · Z̄MFIE (3.8)

or

Z̄
CFIE

= αḠn×BC,RWG · [ḠRWG,RWG]−1 · Z̄EFIE
+ (1− α)ηZ̄

MFIE, (3.9)

where Ḡn×BC,RWG represents the Gram matrix that includes the inner products of

RWG and rot-BC functions, while ḠRWG,RWG represents the Gram matrix that con-

tains inner products of RWG functions. In addition, the corresponding right-hand-

side vectors can be written as

wCFIE = αwEFIE + (1− α)ηḠRWG,RWG · [Ḡn×BC,RWG]−1 ·wMFIE (3.10)

and

wCFIE = αḠn×BC,RWG · [ḠRWG,RWG]−1 ·wEFIE + (1− α)ηwMFIE, (3.11)

respectively. In this work, (3.9) is used together with (3.11) to obtain the numerical

results. In order to demonstrate the developed CFIE based on (3.9) and (3.11), the

previous sphere problems are analyzed again. In Figure 3.3, it can be observed that

the results obtained with the mixed CFIE using the reflection of testing spaces closely
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Figure 3.3: Normalized backscattered RCS with respect to Mie-series solutions of a

sphere with a radius of 0.3 m from 0.5 GHz to 1.2 GHz. The results are obtained by

using CFIE with mixed discretizations when EFIE and MFIE are combined directly

(convex combination) and via reflection of testing spaces.

Figure 3.4: Numbers of iterations for the analysis of a sphere with 0.3 m radius

from 0.5 GHz to 1.2 GHz. The results are obtained by using CFIE with mixed dis-

cretizations when EFIE and MFIE are combined directly (convex combination) and

via reflection of testing spaces.
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follows the Mie series solutions of the sphere. In addition, as shown in Figure 3.4,

the number of iterations is steady as expected for a CFIE formulation. These results

clearly show that the reflection of testing spaces with Gram matrices is essential when

a mixed discretization is used for CFIE.

3.2 Effect of Mixed Discretization on the CFIE Factor

CFIE factor (α) is a parameter that defines the weights of EFIE and MFIE in the

combined formulation. As α goes to one (zero), CFIE converges into EFIE (MFIE).

As it is well-known that EFIE gives accurate results with large numbers of iterations

while MFIE gives relatively inaccurate results with small numbers of iterations, we

need to select α carefully with the consideration of the trade-off between the number

of iterations and accuracy. For the classic implementation of CFIE with a Galerkin

discretization scheme, a suitable value of α is considered to be 0.2. However, the

optimal value naturally changes depending on the discretization strategy. In this work,

the optimal CFIE factor in the context of its mixed discretization is investigated.

As an example, a sphere with a radius of 0.3 m is analyzed at 1.05 GHz. The sphere

is discretized with 20 mm triangles that leads to 9414 unknowns. The value of α

is swept from 0 to 1 for both Galerkin and mixed discretization schemes. Testing

integrals are computed by using three points per triangle as suggested in Chapter 2.

In Figures 3.5 and 3.6, the far-field error in the E-plane with respect to the analytical

Mie-series solutions and the corresponding numbers of iterations can be observed

for different values of α. In these figures, it is observed that the CFIE with the mixed

discretization provides better accuracy and iterative convergence than the one with the

Galerkin discretization scheme. In the case of the analysis of a sphere, 0.35 can be

selected for the best convergence rate and good accuracy. It is interesting to observe

that α values around 0.1 provides solutions with extremely small errors.
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Figure 3.5: Relative error in the far-zone electric field intensity obtained in the anal-

ysis of a sphere with 0.3 m radius at 1.05 GHz. Solutions are obtained by using CFIE

discretized with Galerkin and mixed discretization schemes and the numerical values

are compared against Mie-series solutions.

Figure 3.6: Numbers of iterations required for the analysis of a sphere with 0.3 m

radius at 1.05 GHz. Solutions are obtained by using CFIE discretized with Galerkin

and mixed discretization schemes.
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3.3 Mixed CFIE for Large Problems

In the analysis of electrically large problems, MLFMA can be used as an accelerator

for the matrix-vector multiplications required by the iterative solvers. It is well-known

that MLFMA operates with O(N logN) complexity. However, inversions of Gram

matrices are required in the proposed formulations in (3.8) and (3.9), which generally

require O(N3) processing times. Therefore, it is required to accelerate the inversions

of Gram matrices to use the mixed CFIE formulation for electrically large objects.

In this work, matrix inversion techniques are compared in terms of accuracy and

efficiency in the context of inversion of Gram matrices. The first of them is the LU

factorization that can be written as P̄ · [R̄−1 · Ā] · Q̄ = L̄ · Ū , where P̄ and Q̄

represent permutation matrices, R̄ represents diagonal scaling matrix, L̄ represents

lower triangular matrix, and Ū represents upper triangular matrix for a given system

matrix Ā. Using the LU factorization, the inverse of matrix Ā can be written as

Ā
−1

= Q̄ ·
[
Ū
−1 · [L̄−1 · (P̄ · R̄−1)]

]
. (3.12)

The second one is LDLT factorization that can be written as P̄
H · S̄ · Ā · S̄ · P̄ =

L̄ ·D̄ ·L̄H, where L̄ represents lower triangular matrix, D̄ represents diagonal matrix,

P̄ represents permutation matrix, and S̄ represents scaling matrix for a given matrix

Ā. Then, the inverse of matrix Ā can be written as

Ā
−1

= S̄ · P̄ ·
[
(L̄

H
)−1 ·

[
D̄
−1 ·

(
L̄
−1 · (P̄ H · S̄)

)]]
. (3.13)

In the above, superscript H represents the Hermitian operator. The third one is

Cholesky factorization that can be written as L̄ ·L̄H
= P̄

H ·Ā ·P̄ , where L̄ represents

lower triangular matrix and P̄ represents permutation matrix. Using this factoriza-

tion, the inverse of matrix Ā can be written as

Ā
−1

= P̄ ·
[
(L̄

H
)−1 · (L̄−1 · P̄ H

)
]
. (3.14)

Besides the factorization techniques, iterative solvers can be used to compute inverse

matrix-vector multiplication for a known matrix. Specifically, to perform multiplica-

tion Ā
−1 · x, equation Ā · u = x can be solved iteratively to obtain u as the result.

In the following, a sphere with a radius of 0.3 m is used to compare the described

methods. The mesh size is selected with the rule of thumb as λ/10, while the number
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Figure 3.7: Processing time required for the factorization of the Gram matrices by

using LU, LDLT, and Cholesky factorization techniques with respect to the number

of unknowns.

Figure 3.8: Required memory for the factorization of Gram matrices when using

LU, LDLT, and Cholesky factorization techniques with respect to the number of un-

knowns.
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Figure 3.9: Mean inversion time when LU, LDLT, and Cholesky factorization tech-

niques are used for the Gram matrices with respect to the number of unknowns.

Figure 3.10: Mean inversion time when the iterative solver technique is used for the

Gram matrices with respect to the number of unknowns.
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of unknowns ranges from 1000 to 512,000 depending on the frequency. Compar-

isons of the factorization techniques are given in Figures 3.7, 3.8, and 3.9. Figure

3.7 shows the time to apply a factorization technique to the Gram matrices, Figure

3.8 shows the required memory to hold all matrices for the factorization, and Figure

3.9 shows the mean time for a multiplication with the inverse Gram matrix using the

selected factorization technique. In addition, the mean time for an inversion by the it-

erative method is given in Figure 3.10. In these figures, mean time values are obtained

by computing the mean of the processing times for 100 operations (multiplication or

inversion). These figures show that the inversion of a Gram matrix can be obtained by

using factorization techniques with O(N logN) complexity. However, application of

a factorization technique requires huge memory, which easily reaches gigabytes for

problems involving more than one million unknowns. Hence, using a factorization

method, inversion of Gram matrices become a bottleneck when the mixed CFIE is

employed for large-scale simulations [27]. On the other hand, handling the inversion

of Gram matrices iteratively does not bring any additional memory requirement, mak-

ing this strategy suitable when the problem size is large. We note that Gram matrices

are extremely well-conditioned and their iterative solutions can be performed in few

iterations.

3.4 Concluding Remarks

Since the inaccuracy of MFIE contaminates CFIE, the same mixed discretization

scheme can be used to improve the accuracy of CFIE. On the other hand, when ex-

tending the use of rot-BC functions to CFIE, i.e., using rot-BC functions for testing

MFIE and using RWG functions for testing EFIE, a direct convex combination does

not eliminate internal resonances. To solve this problem, projection of testing spaces

onto each other is required, which can be achieved via Gram matrices involving the

inner products of RWG and rot-BC functions.

The optimal CFIE factor naturally depends on the discretization scheme. Therefore,

the optimal CFIE factor in the context of its mixed discretization is investigated. In

the case of the analysis of a sphere, 0.35 can be selected for the best convergence

rate and accuracy for the mixed CFIE, whereas 0.2 was proposed for the classical
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Galerkin discretization of CFIE. It is also observed that α values around 0.1 provides

solutions with very small errors, which need further investigation.

While using MLFMA as an accelerator for the matrix-vector multiplications in the

analysis of electrically large problems, inversion of Gram matrices should be handled

carefully. This is investigated considering different factorization techniques and itera-

tive solutions in the context of efficiency. The results show that an iterative technique

should be preferred to avoid extra memory requirements that become bottlenecks

when the factorization methods are used as the problem size grows.
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CHAPTER 4

MAGNETIC-FIELD INTEGRAL EQUATION WITH DOUBLE LAYER

MODELING

In this chapter, the internal resonance problem of MFIE is discussed in detail. Instead

of using a CFIE implementation, a novel formulation that is only based on MFIE with

double-layer modeling is proposed to mitigate internal resonances. Discretization of

the proposed formulation is further discussed considering that it is purely based on

MFIE. Also, in the context of the double-layer modeling, selection of inner layers,

post-processing, and parameters, such as gap size between layers, are discussed in

detail.

4.1 Internal Resonance Problem

Theoretically, electromagnetic fields do not penetrate into PEC objects. However, if

such an object is analyzed with EFIE or MFIE, non-zero inner fields can be observed

at some resonance frequencies. This phenomenon is known as the internal resonance

problem. From the perspective of numerical solutions via the method of moments, we

can consider a matrix equation as a result of the discretization. This matrix equation

for EFIE or MFIE, in the most general form, can be written as

Z̄ · a = w. (4.1)

Ideally, a unique solution of the equation given above is

a = Z̄
−1 ·w. (4.2)

However, using EFIE or MFIE, the matrix equation in (4.1) also satisfies

Z̄ · aIRP = 0 (4.3)
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at a resonance frequency, where aIRP is a non-zero solution that contaminates the

solution. Therefore, (4.1) can be rewritten as

Z̄ · (a + aIRP) = w (4.4)

at resonance frequencies. If the considered electromagnetic problem is formulated

via EFIE, the internal resonance problem leads to increased numbers of iterations.

However, resonance currents of EFIE do not radiate to far zone; thus EFIE can be

used for the analysis of scattering problems that require correct far-zone field distri-

butions, provided that ill-conditioning does not ruin the accuracy of solutions. In the

case of MFIE, however, both near-zone and far-zone field distributions are inaccurate.

All these resonances, which are characteristic properties of the geometry under inves-

tigation, become more significant as the size of the object becomes electrically large.

In addition, although resonances are theoretically at discrete frequencies, destructive

effects are observed to spread around resonance frequencies due to discretizations.

Hence, MFIE is mostly impractical for electrically large problems.

As an example to demonstrate the internal resonance problem, a sphere centered at

the origin with a radius of 300 mm is considered. The problem is analyzed via MFIE

discretized with RWG functions on 20 mm triangles for a frequency range from 0.5

GHz to 1.5 GHz with 10 MHz steps. Electric and magnetic field intensity distributions

are sampled on a plane, which divides the sphere into two equal pieces, as shown in

Figure 4.1 and Figure 4.2, respectively. In both Figure 4.1 and Figure 4.2, resonant

frequencies can easily be recognized since the inner fields are not zero as they should

be for a PEC object. Spread of resonance effects at around resonance frequencies can

also be observed in these results.

As another example, a sphere with a radius of 250 mm is considered and analyzed

via MFIE (again discretized with RWG functions) on 20 mm triangles in the same

frequency range. Electric and magnetic field intensity distributions in the near-zone

region are computed and shown in Figure 4.3 and Figure 4.4, respectively. When

electric and magnetic field intensity distributions of spheres with different sizes are

compared, it can be observed that resonance frequencies shift (depending on the elec-

trical size of the object), while the field patterns not only depend on the electrical size

but also the discretization itself.
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Figure 4.1: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE.

Figure 4.2: Near-zone magnetic field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE.
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Figure 4.3: Near-zone electric field intensity at around a PEC sphere with 250 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE.

Figure 4.4: Near-zone magnetic field intensity at around a PEC sphere with 250 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE.
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4.2 MFIE with Double-Layer Modeling

One well-known method to overcome the internal resonance problem in the literature

is to use CFIE, which is a linear combination of EFIE and MFIE. However, CFIE in-

herits the drawbacks of EFIE and MFIE. As discussed in Chapters 2 and 3, MFIE has

inaccuracy issues, while EFIE is often ill-conditioned and its solutions require large

numbers of iterations. Considering that the accuracy of MFIE can be improved via

mixed discretization schemes, it becomes attractive to develop a formulation based

on only MFIE that can provide high iterative convergence rates and easy hybridiza-

tion with asymptotic techniques. In this thesis, we propose a novel MFIE formulation

based on a double-layer modeling, which is free of internal resonances without using

EFIE [28, 29].

Figure 4.5: A double-layer modeling of the proposed formulation in order to eliminate

internal resonances in MFIE.

In order to explain the idea behind the proposed formulation, we may consider a PEC

object placed in free space as given in Figure 4.5. A hypothetical surface (named

as “Inner Surface” in the figure) is placed inside the original surface of the object in

order to mitigate internal resonances. The electric current density is expanded on both

surfaces by using the RWG functions as basis functions. Boundary conditions are

also applied on the inner surface to enforce the hypothetical currents to zero. When

the actual surface is enumerated as the first surface and the hypothetical surface is

enumerated as the second surface, the matrix equation, which defines the interactions

of the discretization functions, can be written as
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Z̄11 Z̄12

Z̄21 Ī/2

 ·
 a

b

 =

 w1

w2

 . (4.5)

In this equation, matrix elements Z̄kl defines the relationships between the surfaces

for k = 1, 2 and l = 1, 2. Specifically, Z̄11 is the impedance matrix corresponding

to MFIE for the original geometry, while Z̄12 and Z̄21 represent magnetic-field in-

teractions between the actual and hypothetical surfaces. For Z̄22, only Gram-matrix

calculations are performed between the discretization elements of the hypothetical

surface. The right-hand side vectors are obtained as in the conventional MFIE. The

new formulation is named MFIE-DL. Although there have been studies that inves-

tigate the use of dual surfaces [30, 31] for integral equations, they propose simply

increasing the number of testing points without defining and using control currents

on hypothetical surfaces. Therefore, the double-layer modeling proposed in this work

is a completely novel strategy to mitigate internal resonances in MFIE without resort-

ing to CFIE.

In the double-layer modeling, the constructed matrix equation is satisfied only if the

electric current density on the inner (hypothetical) surface is zero. This means that the

inner tangential magnetic field intensity is enforced to zero. As a result, the unique

solution of (4.5) occurs as a = Z̄
−1
11 ·w1 and b = 0, provided that the inner surface

and its location are selected carefully.

Figure 4.6: Double-layer modeling of a sphere (300 mm radius) using an inner hypo-

thetical surface (sphere with 250 mm radius).

In order to demonstrate the proposed approach, analysis of a PEC sphere with 300 mm

radius is considered, while another sphere with 250 mm radius is placed inside as the

hypothetical surface for the double-layer modeling as shown in Figure 4.6. RWG

functions are used as both testing and basis functions. Analysis of the double-layer
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Figure 4.7: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE-DL, which employs a sphere with 250 mm radius as the hypo-

thetical inner surface.

Figure 4.8: Near-zone magnetic field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using MFIE-DL, which employs a sphere with 250 mm radius as the hypo-

thetical inner surface.
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model is performed in a frequency range from 0.5 GHz to 1.5 GHz with a step size

of 10 MHz. The entire model is discretized with 20 mm triangles, which results in

6196 triangles on the outer surface and 4298 triangles on the inner surface. The near-

zone electric and magnetic field intensity distributions are given in Figures 4.7 and

4.8, respectively. In these figures, it can be observed that resonance fields are mostly

suppressed, leading to vanishingly small values inside the sphere. However, there are

still remaining inner fields at some frequencies, e.g., at 0.81 GHz. In addition, new

nonzero field distributions, which are not visible in the direct analyses of spheres with

300 mm and 250 mm radii, are observed at 1.43 and 1.48 GHz. These results show

that, while the double-layer modeling operates as desired, it should be investigated

further to reach an implementation that is completely free of internal resonances.

4.3 Accurate Testing of MFIE-DL

MFIE-DL is purely based on MFIE formulation, thus it holds all the numerical draw-

backs of MFIE. Testing of MFIE-DL should be handled carefully, not only because

of Z̄11, but also due to Z̄22 that is purely the Gram matrix. As shown in Chapter 2,

when the currents are expanded in terms of RWG functions, testing should be per-

formed with rot-BC functions for accurate results with MFIE. Based on this finding,

the mixed discretization scheme is also applied to MFIE-DL.

The near-zone electric and magnetic field intensity distributions obtained by using

MFIE-DL with rot-BC testing functions are shown in Figure 4.9 and Figure 4.10, re-

spectively. Similar to the previous set shown in Figures 4.7 and 4.8, we consider again

a PEC sphere with 300 mm radius together with a hypothetical surface in the shape

of a sphere of radius 250 mm. In these figures, it is observed that better suppression

of inner fields is obtained by using rot-BC testing functions instead of RWG testing

functions. However, there are still remarkable inner fields at 1.19 GHz, 1.43 GHz,

and 1.48 GHz. These remaining internal fields are due to the fact that rot-BC testing

functions improve the overall accuracy and make resonances sharper, while they do

not eliminate the internal resonance problem.
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Figure 4.9: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained by using mixed-discretized MFIE-DL, which employs a sphere with 250 mm

radius as the hypothetical inner surface.

Figure 4.10: Near-zone magnetic field intensity at around a PEC sphere with 300

mm radius, which is excited by plane waves at different frequencies. The results are

obtained by using mixed-discretized MFIE-DL, which employs a sphere with 250

mm radius as the hypothetical inner surface.
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4.4 Selective Radiation

Until now, in double-layer modeling, the electric and magnetic field intensity distribu-

tions are computed by using the current distributions on both (actual and hypothetical)

surfaces. However, for a given double-layer model, the expected solution of MFIE-

DL is a = Z̄
−1
11 · w1 and b = 0, which states that the expansion coefficients of the

inner surface must be zero. In order to verify this for the problem discussed so far,

norms of current coefficients of each surface are plotted with respect to frequency

in Figure 4.11. In this figure, it is observed that outer coefficients are consistent,

while inner coefficients depend on the used testing functions. Also, it is observed that

testing with rot-BC functions provides smaller inner coefficient values, verifying the

better accuracy provided by correct testing. It is also remarkable that when we com-

pare this figure with the corresponding near-zone field distributions, it is observed

that the problematic frequencies, at which remaining inner fields exist, correspond to

those with increased inner coefficients for both RWG and rot-BC testing functions.

Considering that inner currents should ideally be zero, a post-processing is proposed

Figure 4.11: Norm of current coefficients in the solutions of a PEC sphere with 300

mm radius. The results are obtained by using MFIE-DL, which uses a sphere with

250 mm radius as the hypothetical surface. The plots are obtained when RWG and

rot-BC functions are used as testing functions.
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Figure 4.12: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained via selective radiation in MFIE-DL, which employs a sphere with 250 mm

radius as the hypothetical inner surface.

Figure 4.13: Near-zone magnetic field intensity at around a PEC sphere with 300

mm radius, which is excited by plane waves at different frequencies. The results are

obtained via selective radiation in MFIE-DL, which employs a sphere with 250 mm

radius as the hypothetical inner surface.
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to select the current coefficients only on the actual surfaces to radiate. Specifically, the

near-zone electric and magnetic field intensity values are computed with the radiation

of only outer surface currents and this process is named “selective radiation”. For the

sphere problem discussed so far, the near-zone electric and magnetic field intensity

distributions are given for the case of testing with RWG functions in Figures 4.12 and

4.13. In these figures, it is observed that inner fields are significantly suppressed at all

frequencies, except some minor fields at 1.19 GHz, 1.43 GHz, and 1.48 GHz, even

with RWG testing functions. Hence, selective radiation is an essential operation for

MFIE-DL to obtain accurate results. But, as shown below, further improvements are

possible by carefully selecting inner surfaces, particularly via adaptive gaps.

4.5 On the Selection of Inner Layers

As shown above, most of the internal resonances can be eliminated by using MFIE-

DL and applying selective radiation. Also, it has been shown that the accuracy of

MFIE-DL can be improved significantly by using rot-BC testing functions. On the

other hand, there can be remaining resonance frequencies, depending on the selec-

tion of inner surfaces. For example, using an inner sphere of radius 250 mm for a

PEC sphere of radius 300 mm is a suitable choice found after many trials. In order

to demonstrate the importance of the selection of the inner surface, two more cases

are investigated for the same scattering problem. The first model (Figure 4.14a) is

obtained by creating a triple layer model with the addition of another inner sphere of

(a) Triple-layer modeling of a sphere with two

inner spheres of radii 0.25 m and 0.2 m.

(b) Double-layer modeling of a sphere with an

inner sphere of radius 0.2 m.

Figure 4.14: Alternative models for multilayer modeling.
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Figure 4.15: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained via selective radiation in a triple-layer modeling.

Figure 4.16: Near-zone magnetic field intensity at around a PEC sphere with 300

mm radius, which is excited by plane waves at different frequencies. The results are

obtained via selective radiation in a triple-layer modeling.
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Figure 4.17: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained via selective radiation in MFIE-DL, which employs a sphere with 200 mm

radius as the hypothetical inner surface.

Figure 4.18: Near-zone magnetic field intensity at around a PEC sphere with 300

mm radius, which is excited by plane waves at different frequencies. The results are

obtained via selective radiation in MFIE-DL, which employs a sphere with 200 mm

radius as the hypothetical inner surface.
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radius 200 mm to the existing double-layer model. The second model (Figure 4.14b)

is obtained by decreasing the radius of the inner sphere to 200 mm. Both models

are discretized with 20 mm triangles, leading to 13, 292 triangles for the triple-layer

model and 10, 494 triangles for the double-layer model (with smaller inner sphere).

Simulations are carried out in the same frequency range from 0.5 GHz to 1.5 GHz

with a step size of 10 MHz. Near-zone field intensity distributions are computed with

the selective radiation as described above. The electric and magnetic field intensity

distributions for the triple-layer model are given in Figures 4.15 and 4.16, respec-

tively. In these figures, it can be observed that the triple-layer model mitigates the

resonances of MFIE-DL at higher frequencies, while it leads to new issues at lower

frequencies, e.g., at 0.6 GHz. Therefore, increasing the number of layers does not

provide better results. The electric and magnetic field intensity distributions for the

double layer modeling using a smaller inner sphere of radius 200 mm are given in

Figures 4.17 and 4.18, respectively. In these figures, it is observed that MFIE-DL

mitigates the internal resonances at many frequencies, while there are frequencies, at

which nonzero inner fields exist. These problematic frequencies are different from

those when using MFIE-DL with the inner surface of radius 250 mm. For example

at 0.92 GHz, powerful inner fields, which do not exist in the earlier set, can be ob-

served. This new resonance seems to be introduced due to the increasing gap between

the outer and inner layers.

4.6 Adaptive Gap

Investigation of alternative scenarios, some of which are shown above, leads to two

important results. First, the distance between the actual and hypothetical surfaces

should not be too large to avoid internal fields between them. Second, depending

on the distance between the surfaces, some inner fields may still occur at certain fre-

quencies. These remaining issues can be mitigated by using adaptive gaps that change

with respect to frequency. Based on the experience on the earlier simulations, a λ/10

adaptive gap is investigated to obtain a better performance with MFIE-DL. When this

kind of a gap selection is applied, the distance between the surfaces changes with

respect to frequency so that inner fields can effectively be suppressed.
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Figure 4.19: Near-zone electric field intensity at around a PEC sphere with 300 mm

radius, which is excited by plane waves at different frequencies. The results are ob-

tained via selective radiation in MFIE-DL with an adaptive gap between surfaces.

Figure 4.20: Near-zone magnetic field intensity at around a PEC sphere with 300

mm radius, which is excited by plane waves at different frequencies. The results are

obtained via selective radiation in MFIE-DL with an adaptive gap between surfaces.
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Figure 4.21: Repetition of the results in Figure 4.19 with the change of color range to

observe very small internal fields.

Figure 4.22: Repetition of the results in Figure 4.20 with the change of color range to

observe very small internal fields.
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Figure 4.23: Near-zone electric field intensity at around a PEC sphere with 300 mm,

which is excited by plane waves at different frequencies. The results are obtained

via selective radiation in MFIE-DL with an adaptive gap between surfaces and by

employing rot-BC functions for testing.

Figure 4.24: Near-zone magnetic field intensity at around a PEC sphere with 300 mm,

which is excited by plane waves at different frequencies. The results are obtained

via selective radiation in MFIE-DL with an adaptive gap between surfaces and by

employing rot-BC functions for testing.
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In order to investigate the effect of the λ/10 adaptive gap, double-layer models of the

PEC sphere with 300 mm radius are considered. In this case, the radius of the inner

sphere at a frequency f can be written as

rinner = 0.3− λ/10, (4.6)

where λ is the wavelength corresponding to the frequency f . MFIE-DL with adaptive

gap is investigated in the same frequency range, while selective radiation is applied

to obtain field distributions in the near zone. Galerkin scheme with RWG functions

is used for the discretization. The electric and magnetic field intensity distributions

are given in Figures 4.19 and 4.20, respectively. In these figures, it is easily noticed

that all resonances are successfully mitigated. In order to observe very weak inner

fields, the color ranges of the plots in Figures 4.19 and 4.20 are changed from 30

dB to 60 dB, leading to the plots 4.21 and 4.22, respectively. While the results are

already successful, testing with rot-BC functions is further applied to MFIE-DL with

selective radiation and adaptive gap for the same set of problems. The electric and

magnetic field intensity distributions for this case are shown with a color range of 60

dB in Figures 4.23 and 4.24, respectively. In these figures, it can be observed that a

superior inner-field suppression is obtained.

4.7 Analysis of Numerical Results

The inner fields related to the internal resonance problem are successfully suppressed

by using MFIE-DL with adaptive gap and selective radiation. The suppression of

inner fields are discussed, considering near-zone field distributions until now. After

the successful suppression of inner fields, it is expected to obtain accurate far-zone

scattering computations with MFIE-DL. To verify this, the normalized backscattered

RCS of the sphere with 0.3 m radius is shown in Figure 4.25. This sphere is analyzed

with the classical discretizations of EFIE, MFIE, and CFIE in addition to MFIE-

DL with the help of adaptive gap and selective radiation. In Figure 4.25, it can be

observed that the results obtained with MFIE-DL follow Mie-series solutions and

the internal resonances are successfully suppressed. In addition, accuracy of MFIE-

DL can significantly be improved with the mixed discretization scheme. Figure 4.26

shows the corresponding numbers of GMRES iterations. It is observed that MFIE-DL
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Figure 4.25: Normalized backscattered RCS with respect to the Mie-series solutions

of a sphere with 0.3 m radius from 0.5 GHz to 1.5 GHz. The results are obtained with

the classical discretizations of EFIE, CFIE, MFIE, and MFIE-DL, as well as with the

mixed discretization of MFIE-DL.

Figure 4.26: Numbers of iterations required for the analysis of a sphere with 0.3 m

radius from 0.5 GHz to 1.5 GHz. The results are obtained with the classical discretiza-

tions of EFIE, CFIE, MFIE, and MFIE-DL, as well as with the mixed discretization

of MFIE-DL.
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implementations require smaller numbers of iterations than EFIE, whereas they have

slower convergence rates in comparison to the conventional MFIE and CFIE. Spikes

in the numbers of iterations for EFIE show the sensitivity of this formulation due to

internal resonances. In the context of MFIE-DL, it can also be observed that iteration

counts can be decreased at all frequencies by using the mixed discretization scheme.

4.8 Concluding Remarks

Due to the internal resonance problem, both near-zone and far-zone field intensity

distributions obtained with MFIE are inaccurate, while the required numbers of it-

erations for solutions tend to increase at resonance frequencies. As an alternative to

the well-known CFIE, which inherits the drawbacks of both EFIE and MFIE, a novel

double-layer formulation that is purely based on MFIE is proposed and implemented.

Using the developed implementation, suppression of inner fields due to internal reso-

nances is clearly shown with numerical results.

Despite it is free of internal resonances, MFIE-DL still has accuracy issues encoun-

tered in MFIE. Therefore, testing with rot-BC functions is considered to obtain better

accuracy with MFIE-DL. The unique solution of MFIE-DL is a = Z̄
−1 · w1 and

b = 0, which states that expansion coefficients for the hypothetical inner surfaces

must be zero. Since numerical solutions may lead residual currents on inner surfaces,

more accurate results can be obtained with the radiation of only actual currents. It is

shown via numerical examples that selective radiation should be an essential compo-

nent of MFIE-DL to obtain accurate results.

Numerical results show that inner surfaces must be carefully selected for satisfactory

suppression of internal fields in double-layer modeling. Considering that the distance

between the surfaces strongly affects the suppression of fields, the use of adaptive

gaps is proposed for better performances with MFIE-DL.

The final implementation of mixed-discretized MFIE-DL provides excellent results in

terms of both accuracy and efficiency when it is used with adaptive gaps and selective

radiation.
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CHAPTER 5

CONCLUSIONS

In this work, MFIE for numerical solutions of electromagnetic problems involving

three-dimensional PEC objects is studied in terms of accuracy and efficiency. Con-

sidering the state-of-the-art on this topic, a particular focus of this study is the selec-

tion of basis and testing functions in MFIE. It is shown that a mixed discretization

scheme using RWG basis functions and rot-BC testing functions is very suitable for

MFIE to obtain accurate results and well-conditioned matrix equations. Moreover,

it is demonstrated that using three-point Gaussian quadrature rule to compute test

integrals is essential for accuracy and fast iterative solutions.

Mixed discretization scheme of MFIE is extended to obtain better accuracy with

CFIE. However, a direct convex combination of the classical Galerkin discretiza-

tion of EFIE and the mixed discretization of MFIE does not eliminate internal reso-

nances. Therefore, reflecting discretization spaces onto each other via Gram matrices

is essential for the implementation of CFIE using mixed discretizations. The mixed

discretization of CFIE is also investigated in the context of electrically large prob-

lems solved with MLFMA. The inversion of Gram matrices via iterative solvers is

proposed considering computational complexity and memory requirements.

Finally, a novel double-layer formulation (MFIE-DL) is proposed as an alternative

to mitigate the internal resonance problem without resorting to CFIE. Since the for-

mulation is purely based on MFIE, the mixed discretization scheme is also proposed

for MFIE-DL for better accuracy and iterative convergence rates. In the context of

the double-layer modeling, selection of the hypothetical (inner) surface is discussed

and the strategy of adaptive gap is proposed for the best results. Moreover, selective

radiation of outer currents is proposed as the new formulation is based on suppressing
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hypothetical inner currents. Numerical results shows that resonance-free results with

high accuracy can be obtained with a mixed-discretized MFIE-DL when it is used

together with the adaptive-gap strategy and selective radiation.
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