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ABSTRACT

GENERALIZED RESOURCE MANAGEMENT FOR HETEROGENEOUS
CLOUD DATA CENTERS

Erol, Ahmet
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Şenan Ece Güran Schmidt

September 2019, 66 pages

OpenStack is a widely used management tool for cloud computing which is designed

to work on servers and allocate standard computing resources such as CPU, memory

or disk. The current trend for integrating different hardware accelerators such as

FPGAs and GPUs in the cloud requires managing these heterogeneous resources. In

this thesis, we propose a generalization for OpenStack Nova project which extends the

relevant data structures to include these new resources. More importantly, we present

a new lightweight Nova Compute module that we call Nova-G Compute. Nova-G

Compute is suitable to work with different hardware platforms and can communicate

with the rest of the OpenStack Projects. We implement a hypervisor-like software to

enable Nova-G Compute accessing the FPGA resources. We perform experimental

evaluation of Nova-G Compute using the known and used OpenStack benchmarking

tool Rally. Our results show that Nova-G Compute works as desired without any

reduced performance compared to standard Nova.
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ÖZ

HETEROJEN BULUT VERİ MERKEZLERİ İÇİN GENELLEŞTİRİLMİŞ
KAYNAK YÖNETİMİ

Erol, Ahmet
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Şenan Ece Güran Schmidt

Eylül 2019 , 66 sayfa

OpenStack bulut hesaplama için yaygınca kullanılan bir yönetim aracıdır. CPU, bel-

lek ve disk gibi standart hesaplama kaynaklarının yönetimi için kullanılmaktadır. Bu-

lut bilişimde FPGA ve GPU benzeri donanım hızlandırıcıların kullanılması trend ol-

muştur. Bu şekildeki heterojen kaynakların yönetilmesine ihtiyaç duyulmaktadır. Bu

çalışmada, OpenStack Nova projesinin bu yeni kaynak tiplerini de kapsayacak şe-

kilde genelleştirilmesini sunmaktayız. Daha da önemlisi, yeni az kaynak tüketen bir

Nova Compute modülü geliştirdik. Nova-G Compute ismini verdiğimiz modül çeşitli

donanımlar üzerinde çalışabilmekte ve diğer OpenStack projeleri ile sorunsuz şekilde

haberleşebilmektedir. Hypervisor benzeri bir yazılım ile Nova-G Compute modülü-

nün FPGA kaynaklarına erişimine olanak sağladık. Openstack test aracı olan Rally’yi

kullanarak deneysel testler gerçekleştirdik. Yapılan testlerin sonucu Nova-G Compute

beklendiği gibi çalıştığını ve orijinal Nova’ya göre herhangi bir performans düşümü

olmadığını göstermiştir.
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CHAPTER 1

INTRODUCTION

Cloud computing has become a popular computing model in the recent years as it ex-

ploits the economies of scale for efficient use of computing resources. The data cen-

ters of today are mostly cloud based with virtualized servers to provide on-demand

scalability and flexibility of the available resources such as CPU, memory, data stor-

age and network bandwidth. A cloud data center provider may offer Infrastructure

as a Service (IaaS), where the user gets a virtual machine (VM) with processing,

memory, storage and networking resources, which can be installed with any desired

operating system and software. Differently, Platform as a Service (PaaS) commonly

provides a ready environment with operating system, programming language execu-

tion environment, database and web server for developers to test and deploy their

programs and applications. Finally in Software as a Service (SaaS), the user only

accesses the provided application for example via a web browser without any control

of the underlying infrastructure.

OpenStack is an open source software that is preferred by many large cloud providers

[3] to assign physical resources to users in the form of Virtual Machines (VM) in

cloud computing systems. OpenStack is composed of a number of projects with dif-

ferent functionalities such as authentication, network management and image ser-

vices. The actual managing of resources by means of virtualization is carried out by

the OpenStack Nova project. Nova has two components called Nova Conductor and

Nova Compute. A controller node in the managed cloud runs Nova Conductor and

each server that is provisioned for VMs runs Nova Compute.

The slowdown of Moore’s law and the increased data and problem sizes together

with the development of high performance programmable hardware platforms such as

1



FPGAs increase the popularity of hardware accelerators. Hardware accelerators can

provide better performance and less energy consumption depending on the problem

properties and size [4]. On one hand, these different hardware platforms may not be

compatible with the operating system and hypervisor software used on standard cloud

servers. Furthermore, their processing capabilities may be more limited and they

might not be able to run OpenStack in a scalable and high performance manner. On

the other hand, integrating hardware resources in the cloud based data center should

be seamless, together with virtualization and dynamic resource allocation capabilities.

OpenStack is designed to work in cloud data centers with conventional servers. To

this end, the current Nova implementation is limited to traditional computing re-

sources such as CPU, memory and disk. Furthermore, Nova is only compatible with

certain operating systems and hypervisor software.

This focus of this thesis is extension of OpenStack Nova project to support cloud data

centers with heterogeneous resources.

The first contribution of this thesis a new lightweight project that we call Nova-G

Compute which is designed to replace the standard Nova Compute for such heteroge-

neous hardware platforms. Nova-G Compute can work with the standard OpenStack

projects by sending and receiving messages in the correct format. The implementa-

tion of Nova-G is in Python language and is independent of the operating system. In

this way, different hardware platforms can be supported. The second contribution is

extending the data structures of Nova Controller with the generalized resource types

to work with Nova-G Compute. Different than the previous work, new resource types

are defined at the same level with conventional server resources which enables using

the standard Nova Schedulers to allocate the available resources to the VM requests.

Nova-G Compute includes a generalized hypervisor driver to access the available re-

sources on the respective hardware similar to standard Nova Compute. To this end,

we implement an emulation for the FPGAvisor software that functions similar to a hy-

pervisor for FPGA as an example for allocation of non-standard hardware resources.

We demonstrate the functionality and performance of Nova-G Compute with a num-

ber of experiments including tests with Rally Tool which is the OpenStack framework

for performance analysis and benchmarking. Our results show that Nova-G Compute

2



can work seamlessly with OpenStack and can boot VMs as desired without any per-

formance decrease compared to Nova Compute.

The remainder of this thesis is organized as follows. In Chapter 2 we introduce Open-

Stack components and the relevant issues in heterogeneous computing. Chapter 3

presents our workflow in installing and modifying OpenStack and the Rally test envi-

ronment. Chapter 4 presents the main contribution of the thesis which is the general-

ized OpenStack Nova Project that we call Nova-G. Chapter 5 presents the evaluation

methodology and the results for Nova-G. Chapter 6 states our conclusions and future

work.

3
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CHAPTER 2

OPENSTACK AND HETEROGENEOUS CLOUD COMPUTING

OpenStack is an open source cloud platform that controls large groups of resources

that can be categorized as compute, network and storage. It gives administrative

control over cloud hardware by provisioning virtual machines (VM) [5]. OpenStack

software has flexible architecture that enables customization of platform according to

business needs. OpenStack is a very popular cloud resource management tool with

yearly increasing revenue in the market [6].

OpenStack is a set of open source software projects for managing and orchestrating

various cloud resources. Each OpenStack project has specific duty for achieving com-

pletely managed cloud structure. In this chapter, general structure and operation of

OpenStack software is discussed by giving details of each OpenStack project.

2.1 OpenStack Components

Figure 2.1: OpenStack Components Groups [1]
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OpenStack components can be mainly grouped into four different categories namely

compute, networking, storage and shared services as shown in Figure 2.1. All these

services run on a controller node. The VMs created and managed by OpenStack run

on the compute nodes.

Nova is OpenStack compute service that provides access to compute resources by

means of virtual machines. To this end, each compute node runs a Nova compo-

nent that enables OpenStack to control the node. Neutron is focused on networking-

as-services (NaaS) in cloud environment. To provide storage services, Swift (Ob-

ject Storage) and Cinder (Block Storage) are deployed in OpenStack clouds. Some

OpenStack services are shared with different OpenStack projects. The shared ser-

vices enable other services communicate with each other. Keystone is shared service

that provides necessary API client for authentication of users and applications. VM

images are managed and stored by OpenStack service named as Glance. Each Open-

Stack project has its own database which consists of many tables with the information

for each project.

There are more OpenStack projects available but only required ones to have fully

functional OpenStack cloud are discussed here.

2.1.1 Keystone

Keystone project consists of multiple services that are used together for proper Key-

stone operation. Keystone runs on the controller node of the data center. Identity

service provides user/project credential validation with user name and passwords.

When valid user name and password are supplied with authentication request, Token

service replies this request with newly created valid token. Tokens are used by other

users or applications to use APIs of OpenStack projects [7].

Just like all other OpenStack projects Keystone provides very well documented and

rich API. Some provided API operations can be summarized as follows [8].

• Authentication and token management

• Creation and management of domains
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• Group management

• Project and Projects Tags

• Service and Endpoint Managements

To be able to use an OpenStack cloud, users or applications should authenticate them-

selves through Keystone API. User should provide a valid user name and password

with scope of authentication. Users can request access to project, domain or a sys-

tem. Identity service reply user request with a token if user name and password is

valid for requested scope. An HTTP request with POST method should be made to

controller node API address. Keystone services use port number 5000 to serve its rest

API functions in default settings. Example URL for making post request are shown

in Listing 2.1. controller is host name of controller node. It can be replaced with IP

addresses of controller node. /v3/auth/tokens is the required URL for authentication

process.

Code Listing 2.1: Example API request URL of authentication process

h t t p : / / c o n t r o l l e r : 5 0 0 0 / v3 / a u t h / t o k e n s

HTTP POST request should be made for URL given in Listing 2.1 with request body

containing information in Listing 2.2. Message body is formatted in JSON language

for all OpenStack API requests. After validation of user name and password Keystone

will reply the request with valid token which is in header of reply message. Reply

message body also has lots of information like issue time and expiration time about

token. In the reply header x-subject-token variable holds the created token ID. This

token ID can be used for future API requests of all OpenStack projects as longs as it

is valid.

Code Listing 2.2: POST request body for project scoped authentication

1 {

2 "auth": {

3 "identity": {

4 "methods": [

5 "password"

6 ],

7 "password": {

7



8 "user": {

9 "name": "admin",

10 "domain": {

11 "name": "Default"

12 },

13 "password": "ADMIN_PASS"

14 }

15 }

16 },

17 "scope": {

18 "project": {

19 "id": "561d55f847114a05b7fb74a933ba26e9"

20 }

21 }

22 }

23 }

Code Listing 2.3: Reply Message Header containing Token ID

1 date: Sat, 06 Jul 2019 10:43:32 GMT

2 server: Apache/2.4.18 (Ubuntu)

3 x-subject-token: gAAAAABdIHtZ_FJECqOD_ORdxzDdm1eag48eW8NytUNiZ3YG4nlh02vB-

avlSIQeNslQKq_wMw9Mz56l0t5MpxpELUFD0liSPMuzEUyWbzGX_oTW-6

jZ9BgXrZcU8Wq9J9IZRCqt48Uy4AklV2AJ0nzyKpkxd1JMjPxj5JLGwCg9zKG7t9VxVgo

4 vary: X-Auth-Token

5 x-distribution: Ubuntu

6 x-openstack-request-id: req-06ea9ad7-ae6b-48c8-b729-e5fb06289212

7 content-length: 3290

8 content-type: application/json

2.1.2 Nova

Nova is the OpenStack project that enables provisioning of compute nodes by pro-

viding virtual compute instances on compute nodes. It uses various virtualization

techniques to create a pool of compute resources to be used in compute instances.

Nova supports different types of hypervisors for virtualization [9].

Nova project consists of different components some of which run on the controller
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Figure 2.2: OpenStack Nova Block Diagram

node while others run on the compute nodes. Nova components and their communi-

cations with each other are shown in Figure 2.2.

Nova-API is the Nova component which enables the users or applications to access

and control Nova services. Using Nova API, one can control the whole OpenStack

cloud by creating or deleting compute instances, managing hypervisors and control-

ling the compute instance images. Nova-API runs on controller node. Users or third

party applications do not have direct access to compute nodes. All the information

about compute nodes should be accessed from controller node through Nova-API.

Database (DB) stores all the information about resources and their allocations which

are defined by API models. Nova project stores the information about compute nodes

and their resources in the database table called compute_nodes. The cloud ser-

vices user requests a VM that is configured according to one of the pre-defined flavors.

The available flavors are stored in the Nova-API database in flavors table.

Nova-API is responsible for delivering third party applications’ requests to the Nova-

Conductor which is the core component of the Nova project. Nova Conductor runs

on the controller node and has full control over other Nova components and database.

Other Nova components do not have direct connection to the database. They use

Nova-Conductor services to access database [10]. Moreover, Nova-Conductor will

use Oslo Messaging services whose details will be given in OpenStack operation

section to communicate with other modules.
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Nova-Scheduler is used to determine how to dispatch compute request. When a com-

pute instance is requested, one compute node should be chosen to run requested com-

pute instance. Nova-Conductor will request Nova-Scheduler to choose best compute

host according to compute instance specification by using compute filters. Nova-

Scheduler collects all information about available compute hosts in cloud. It will

filter available hosts by request specifications and cloud owner defined rules. Com-

pute hosts that are able to pass filtering step are evaluated by weighting them with

predefined rules [11]. Compute node with the highest score will be chosen and result

will be returned to Nova-Conductor.

All compute nodes are managed by Nova-Compute module. Nova-Compute at cho-

sen node will be informed by Nova-Conductor. Nova-Compute is responsible for

building disk image, resource allocation, instantiating compute instance and termi-

nating it via underlying hypervisor driver. It also needs to update compute node

and compute instance status by periodically reporting information. Nova-Compute

will instantiate requested compute instance and returned its information to Nova-

Conductor.

The focus of this thesis is the Nova project. Hence, we provide further details about

Nova in Chapter 4.

2.1.3 Glance

Glance project provides image service where users can upload and manage compute

instance images that are meant to be used by Nova when creating compute instances.

Glance also provides API that enables creation, deleting and management of images.

Moreover, using API third party applications can download full image data when

they are authorized by Keystone [12]. Nova requires glance to operate because it uses

glance to store compute node instance images.
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2.1.4 Neutron

Network connectivity of compute instances is provided by Neutron project. Neutron

maintains network connectivity service between virtual NIC of compute instances

and it managed by Nova project. Neutron provides API to control all network con-

nectivity. Using provided Neutron API, third party applications are able to create and

manage virtual networks, create/delete ports and manage L3 services [13]. Nova uses

also Neutron API to manage network.

2.1.5 Horizon

Horizon is OpenStack project that provides web based user interface for OpenStack

services. OpenStack projects including Nova, Glance, Neutron etc. can be managed

via Horizon with a web browser. It can be used to monitor OpenStack cloud and

create new compute instances.

2.2 OpenStack Operation

In this section, OpenStack operation is discussed in detail. Complete flow of creation

of a compute instance from beginning to end is explained. To be understood by one

who is new to OpenStack, some OpenStack terms are explained before OpenStack

operation.

Compute Instance: Virtual machine created by Nova-Compute via hypervisor on

compute node.

Service: For each OpenStack component a service is created to manage software.

Services of OpenStack can be stopped or restarted by command line interface. There

is a table in the database that holds information about service. Each compute node

has different service that manages the Nova-Compute.

Flavor: In OpenStack, a flavor defines compute, memory, and storage properties of

VM instances. Users can create many flavors with different properties. Each compute

instance is instantiated by predefined flavors. Compute instance properties defined in
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flavors effect compute nodes selection process.

Oslo Messaging: It is a python library that supports RPC and notifications over a dif-

ferent messaging protocols. OpenStack uses Oslo messaging library for all commu-

nication between projects and modules. RabbitMQ driver used in default OpenStack

deployment and verification.

Rabbit Message Queue: OpenStack uses RabbitMQ message broker system at de-

fault settings. It provides messaging system between applications. Simply, it consists

of producer which means applications that try to send data and consumer that is ap-

plication waiting for new messages. RabbitMQ provides queue between producer

and consumer. Producers put messages into queue while consumers reads messages

from queue. If sender application waits for response after sending messages, that is

technically RPC, consumer responds the producer message by sending another mes-

sage for reply queue. Producer takes responses from reply queue. RabbitMQ has two

different modules. One of them is the server, where all messages are processed and

stored. Producers and consumers are the clients of the server.

OpenStack is a cloud operating system that manages the resources of the cloud by

fulfilling user requests in the best way. In this section, OpenStack operation flow will

be discussed by giving an example of requesting a compute instance and fulfilling

this request. Complete operation is summarized in Figure 2.3 and the details of each

step will be discussed.

(1) User or 3rd party applications request a compute instance with predefined proper-

ties in flavor by using API or Horizon web interface. This application or user should

get authentication token from Keystone beforehand to be used in its API request. If

request is made by using Horizon tool, then Horizon makes the necessary API Re-

quest.

(2) After receiving API request, Nova-API should authenticate the user with provided

token. Not only the user but also the scope of authentication is checked by Keystone.

User may be valid but user may not have access to create compute instance in given

project. If the request is valid, Keystone authenticates the request and gives response

to Nova-API.
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(3) Nova-API makes sure that given request is valid. Afterwards, it sends the re-

quest with Oslo Messaging using RabbitMQ. Each OpenStack component has a queue

named with component name in RabbitMQ. The message is sent to message queue of

Nova-Conductor.

(4) Nova-Conductor receives the message from its message queue and decodes the

message. After successfully decoding message, a decision should be made for finding

which compute node should host new compute instance. Nova-Conductor makes

an RPC request to Nova-Scheduler with its message queue for decision to choose a

compute node.

(5) Nova-Scheduler collects all information like CPU, RAM and Disc usage about

compute nodes. It has a job to select the best candidate of compute nodes depending

on the flavor of compute instance. It filters compute nodes that are capable of hosting

the compute instance with given flavor. Selected compute nodes are evaluated based

on predefined weighting rules and the best candidate is selected. Selected compute

host name is returned to Nova-Conductor with related RPC request.

(6) After receiving response to RPC call that is asking for the best compute node to

host new compute instance, Nova-Conductor is responsible for delivering compute

instance request to related compute node. At this point, it is guaranteed that selected

compute node is capable of hosting compute instance with given flavor and image.

A message that contains all required information about the new compute instance is

sent to selected compute node message queue for processing.

(7) Selected compute node’s Nova-Compute software receives the message of cre-

ation of new compute instance. Nova-Compute needs to collect all the data that is

required to instantiate compute instance. Nova-Compute asks Neutron using its API

to make the necessary arrangement in the network and respond with new compute

instance IP address. At the same time, it requests the compute instance image data

from Glance. New compute instance will be created using this image data.

(8) Nova-Compute waits for the image data and IP address from the related Open-

Stack projects. It allocates hardware resources required to host given compute in-

stance. Nova-Compute uses Neutron and Glance API to communicate with them.
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Once all the required information is collected, Nova-Compute is ready to boot com-

pute instance.

(9) Hypervisors at compute nodes are used to create compute instances. Nova-Compute

uses various hypervisors through its hypervisor drivers. It passes all the information

to the hypervisor so that it can create a new compute instance. Hypervisor creates

a virtual machine with the given flavor. It boots the instance with the given image

and initializes all its network interface with the given IP address. When a compute

instance is created, hypervisor returns status information to Nova-Compute. When

compute instance successfully created, user or 3rd party application is informed, and

they can start using the compute instance.

2.3 Heterogeneous Cloud Computing and OpenStack Support

Employing different hardware platforms in the cloud is a popular topic both academ-

ically and commercially. To this end, cloud computing systems are integrated with

hardware accelerators realized on FPGA platforms [14], GPU (Graphics Processing

Unit)[15] , TPU (Tensor Processing Unit)[16] and IoT Hardware[17]. [18] is a pi-

oneering work that proposes a cloud-based data center architecture accelerated with

reconfigurable FPGA for use in Microsoft data centers. In this study, an Altera Stratix

V-based hardware accelerator card was added to each compute node which can accel-

erate an application running on the machine on which it is connected or can be used

as a network appliance without putting a load on the CPU. Regarding the manage-

ment of the FPGA resources [19] proposes assigning FPGA reconfigurable regions

in the scope of IaaS/HaaS (Hardware as a Service) by using OpenStack. However,

it does not describe how FPGA resources are defined and assigned using Nova. In

the follow-up work [20], virtualization of hardware accelerators is discussed without

giving details on what should be changed in OpenStack and how it should be imple-

mented. Here it is important to note that FPGA SoC platforms come with a processor

[21] which enables the cloud service provider to employ stand alone FPGA cards

without a server for implementing energy efficient accelerators.

The sub-field extra_spec of Nova data structure is used to integrate GPUs into
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OpenStack platform in the paper [22]. As this field is a sub-field of existing standard

resource types, it cannot be used by the standard Nova Schedulers. In [23], network

is accelerated by transferring OpenStack network services to switch hardware and

allowing Nova to access them. In [24], a new component named IoTronic is added to

OpenStack as Sensing as a Service for IoT systems. OpenStack has a recent project

called Cyborg [25] which is proposed as a service for managing accelerators such as

FPGAs, GPUs etc. Cyborg is designed to work with Nova Compute as an agent and

cannot work stand alone. Hence, it does not support heterogeneous cloud hardware

that is not connected to a CPU via PCI. Moreover, effective scheduling of accelerators

are not possible because it uses extra_spec field to define the different types of

resources similar to [22].

16



CHAPTER 3

OPENSTACK INSTALLATION, MODIFICATION AND TEST

ENVIRONMENT

This chapter presents the detailed workflow for installing and modification of Open-

Stack and the relevant software components. Furthermore, we present the installation

of the Rally test tool and the procedures that we follow to run the tests.

3.1 Installing OpenStack on Single Physical Machine

In this section, OpenStack installation on single physical machine is explained. Open-

Stack components are installed on virtual machines. Three different virtual machines

are created to simulate a controller node and two compute nodes. OpenStack can

work without any problem with one controller node and one compute node. On con-

troller node, Keystone, Nova, Glance, Neutron and Horizon OpenStack projects are

installed. Only Nova-Compute is installed for compute nodes. The physical machine

has Intel Core i7-7500U CPU at 2.7 GHz and 16 GB of RAM. It has Windows 10

operating system. For virtualization product, Oracle VM VirtualBox version 5.2.8 is

used.

Firstly, VirtualBox software is downloaded and installed on operating system [26].

For communication between controller node and compute nodes virtual NAT net-

work is created as shown in the Figure 3.1. The virtual machines that are simulating

controller and compute nodes are added to the created virtual NAT network. Reader

of this document should have information about general overview of OpenStack in-

stallation process. OpenStack installation overview and components are explained in

[27].
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Figure 3.1: VirtualBox NAT Network Settings

In test setup, OpenStack host networking layout is used. In this layout, controller

node and compute nodes have two different network interfaces. For management

network, created virtual NAT network is used. VirtualBox bridged network is used

to simulate “Provider Network” in Figure 3.2. Extra network interface is added for

controller node for debugging purposes.

Using VirtualBox tool, new VM is created to host Ubuntu 16.04 operating system.

For controller node, VM should have at least 4 GB RAM. The network adapters of

controller node are configured as shown in the Figure 3.3.

Two VMs are created for compute nodes. Compute nodes should have at least 2 GB

RAM. Network configuration of compute nodes are given in Figure 3.4.

Ubuntu 16.04 operating system should be installed on all of created VMs. After

Ubuntu installation is finished, network interface of each node is configured. For

controller node, management interface IP address and name resolution file (/etc/hosts)

is configured as described in [28]. For debugging purposes, physical windows ma-

chine hosts file ("c:/Windows/System32/Drivers/etc/hosts") is modified. IP address

of second bridged network is added to the hosts files with name "controller". Similar
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Figure 3.2: OpenStack Network Layout [2]

configuration is done for compute nodes as well. Compute nodes modifications are

given in [29].

Connectivity of controller and compute nodes is checked before continuing the instal-

lation of OpenStack. Verification of connectivity is described in [30]. At this point,

test setup is verified and OpenStack components can be installed on VMs.

OpenStack version Pike is used in this setup. OpenStack Pike for Ubuntu 16.04 LTS

is installed for all nodes. OpenStack package installation steps are explained in [31].

Using these steps, OpenStack package is installed on both controller node and com-

pute nodes. Following applications are installed on Controller Node. Configuration

and installation steps of each software are given in OpenStack documents. Following

applications are installed in given order.

• SQL Database : [32]

• RabbitMQ : [33]

• Memcached : [34]

• ETCD : [35]
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Figure 3.3: Controller Node Network Configuration

Figure 3.4: Compute Node Network Configuration

When all of these programs are installed, actual OpenStack projects should be in-

stalled. OpenStack projects given below are installed in given order using OpenStack

documents web pages. They are installed on controller node.

• Keystone is installed using [36]. Given steps are followed and keystone instal-

lation is verified like in the "Verify operation" section of OpenStack Docs.

• Glance installation steps are given in [37]. Glance operation is verified using

steps in "Verify operation" section of OpenStack Docs.

• Nova installation and configuration are done as discussed in [38]. Nova service
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operation is verified after nova is installed on compute nodes.

• Horizon dashboard is installed using [39]. It should be configured to accept all

hosts for easy debugging. Horizon operation can be verified by visiting web

page http://controller/horizon.

When accessing the Horizon web page, it may give error message of "Gateway

Timeout error". To overcome this problem, "etc/apache2/conf-available/openstack-

dashboard.conf" file is opened and following line is added.

WSGIAppl icat ionGroup %{GLOBAL}

Horizon service is restarted using following command. Then, it should start

working properly.

s e r v i c e apache2 r e l o a d

• Neutron installation steps are given in [40]. Neutron installation provides op-

tions to choose networking architecture. Our setup is configured to use "Net-

working Option 1: Provider networks". Therefore, installation steps of option

1 given in [41] should be followed.

All required OpenStack projects are installed on Controller node. Some projects

should also be installed on compute nodes. Nova installation on compute node is

given in [42]. After installing, complete Nova operation can be verified with the steps

given in "Verify operation" section of OpenStack Docs.

When all installations are finished, one can create a compute instance using Horizon

dashboard and can test operation of OpenStack on test setup.

3.2 Making OpenStack Modification

Original OpenStack software is modified to support generalized resources. Moreover,

OpenStack database tables are also modified. In this section, how these changes

are made is discussed. For database modifications, phpMyAdmin software is used.

phpMyAdmin is included in Ubuntu repository. It can be installed on controller node

using command below.
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1 sudo apt-get update

2 sudo apt-get install phpmyadmin php-mbstring php-gettext

Installer asks few questions to complete installation. Choose apache by pressing

space button and continue the installations. When it prompts to whether to use

dbconfig-common, yes is selected. After executing following commands, phpMyAd-

min applications is ready to use.

1 sudo phpenmod mcrypt

2 sudo phpenmod mbstring

3 sudo systemctl restart apache2

phpMyAdmin application can be reached using URL below.

http://controller/phpmyadmin/

After logging with admin user name and password, the screen shown in Figure 3.5.

At the left bar, all created databases for OpenStack are listed. Each database contains

multiple tables for storing data. The changes discussed in Section 4.1, are made using

phpMyAdmin tool web interface.

Figure 3.5: phpMyAdmin Default Screen

To modify OpenStack source code, Python IDE PyCharm is used on controller node.

PyCharm can be downloaded from [43]. PyCharm should be started with sudo priv-
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ileges to have access to modify all files. It can be started using command below on

controller node.

1 sudo ./pycharm-community-2017.3.3/bin/pycharm.sh

Figure 3.6: PyCharm IDE Default Screen

PyCharm lists all installed python libraries including OpenStack projects under "dist-

packages" folder shown in Figure 3.6.

Any file from OpenStack projects can be accessed from navigation bar. In this sec-

tion, we listed modified files by giving file location address and explained why these

changes are made. Flavor class is defined in the file flavor.py. Modified file is shown

in Listing 3.1.

/usr/lib/python2.7/dist-packages/nova/objects/flavor.py

Code Listing 3.1: Flavor class after modifications

1 class Flavor(base.NovaPersistentObject, base.NovaObject,

2 VERSION = ’1.1’

3

4 fields = {

5 ’id’: fields.IntegerField(),

6 ’name’: fields.StringField(nullable=True),

7 ’memory_mb’: fields.IntegerField(),

8 ’vcpus’: fields.IntegerField(),
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9 ’resource_g1’: fields.IntegerField(),

10 ’resource_g2’: fields.IntegerField(),

11 ’root_gb’: fields.IntegerField(),

12 ’ephemeral_gb’: fields.IntegerField(),

13 ’flavorid’: fields.StringField(),

14 ’swap’: fields.IntegerField(),

15 ’rxtx_factor’: fields.FloatField(nullable=True, default=1.0),

16 ’vcpu_weight’: fields.IntegerField(nullable=True),

17 ’disabled’: fields.BooleanField(),

18 ’is_public’: fields.BooleanField(),

19 ’extra_specs’: fields.DictOfStringsField(),

20 ’projects’: fields.ListOfStringsField(),

21 }

Flavor sqlalchemy api model is also modified and details are given in Listing 4.2. File

location is given below.

/usr/lib/python2.7/dist-packages/nova/db/sqlalchemy/

api_models.py

Flavor related functions are also modified so that creating new flavors is possible.

Some part of modified files are shown in Listing 3.2. Moreover, the files where are

this function is called are also modified accordingly.

/usr/lib/python2.7/dist-packages/nova/compute/flavors.py

Code Listing 3.2: Flavor create function after modifications

1 def create(name, memory, vcpus, resource_g1, resource_g2, root_gb,

ephemeral_gb=0, flavorid=None,

2 swap=0, rxtx_factor=1.0, is_public=True):

3 kwargs = {

4 ’memory_mb’: memory,

5 ’vcpus’: vcpus,

6 ’resource_g1’: resource_g1,

7 ’resource_g2’: resource_g2,

8 ’root_gb’: root_gb,

9 ’ephemeral_gb’: ephemeral_gb,

10 ’swap’: swap,

11 ’rxtx_factor’: rxtx_factor,

12 }
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13

14 flavor_attributes = {

15 ’memory_mb’: (’ram’, 1),

16 ’vcpus’: (’vcpus’, 1),

17 ’resource_g1’: (’resource_g1’, 1),

18 ’resource_g2’: (’resource_g2’, 1),

19 ’root_gb’: (’disk’, 0),

20 ’ephemeral_gb’: (’ephemeral’, 0),

21 ’swap’: (’swap’, 0)

22 }

/usr/lib/python2.7/dist-packages/nova/api/openstack/

compute/flavor_manage.py

Code Listing 3.3: Flavor create function after modifications

1 def _create(self, req, body):

2 vals = body[’flavor’]

3

4 name = vals[’name’]

5 flavorid = vals.get(’id’)

6 memory = vals[’ram’]

7 vcpus = vals[’vcpus’]

8 resource_g1 = vals[’resource_g1’]

9 resource_g2 = vals[’resource_g2’]

10 root_gb = vals[’disk’]

11 ephemeral_gb = vals.get(’OS-FLV-EXT-DATA:ephemeral’, 0)

12 swap = vals.get(’swap’, 0)

13 rxtx_factor = vals.get(’rxtx_factor’, 1.0)

14 is_public = vals.get(’os-flavor-access:is_public’, True)

15

16 try:

17 flavor = flavors.create(name, memory, vcpus, resource_g1,

resource_g2, root_gb,

18 ephemeral_gb=ephemeral_gb,

19 flavorid=flavorid, swap=swap,

20 rxtx_factor=rxtx_factor,

21 is_public=is_public)

/usr/lib/python2.7/dist-packages/nova/api/openstack/
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compute/schemas/flavor_manage.py

Code Listing 3.4: Flavor create function after modifications

1 create = {

2 ’type’: ’object’,

3 ’properties’: {

4 ’flavor’: {

5 ’type’: ’object’,

6 ’properties’: {

7 ’name’: parameter_types.name,

8 ’id’: {

9 ’type’: [’string’, ’number’, ’null’],

10 ’minLength’: 1, ’maxLength’: 255,

11 ’pattern’: ’^(?! )[a-zA-Z0-9. _-]+(?<! )$’

12 },

13 ’ram’: parameter_types.flavor_param_positive,

14 ’resource_g1’: parameter_types.flavor_param_positive,

15 ’resource_g2’: parameter_types.flavor_param_positive,

16 ’fpga’: parameter_types.flavor_param_positive,

17 ’disk’: parameter_types.flavor_param_non_negative,

18 ’OS-FLV-EXT-DATA:ephemeral’:

19 parameter_types.flavor_param_non_negative,

20 ’swap’: parameter_types.flavor_param_non_negative,

21 # positive ( > 0) float

22 ’rxtx_factor’: {

23 ’type’: [’number’, ’string’],

24 ’pattern’: ’^[0-9]+(\.[0-9]+)?$’,

25 ’minimum’: 0, ’exclusiveMinimum’: True,

26 ’maximum’: db.SQL_SP_FLOAT_MAX

27 },

28 ’os-flavor-access:is_public’: parameter_types.boolean,

29 },

30 ’required’: [’name’, ’ram’, ’vcpus’, ’disk’],

31 ’additionalProperties’: False,

32 },

33 },

34 ’required’: [’flavor’],

35 ’additionalProperties’: False,

36 }

26



/usr/lib/python2.7/dist-packages/nova/api/openstack/

compute/views/flavors.py

Code Listing 3.5: Flavor show function after modifications

1 def show(self, request, flavor):

2 flavor_dict = {

3 "flavor": {

4 "id": flavor["flavorid"],

5 "name": flavor["name"],

6 "ram": flavor["memory_mb"],

7 "disk": flavor["root_gb"],

8 "swap": flavor["swap"] or "",

9 "OS-FLV-EXT-DATA:ephemeral": flavor["ephemeral_gb"],

10 "OS-FLV-DISABLED:disabled": flavor["disabled"],

11 "vcpus": flavor["vcpus"],

12 "resource_g1": flavor["resource_g1"],

13 "resource_g2": flavor["resource_g2"],

14 "links": self._get_links(request,

15 flavor["flavorid"],

16 self._collection_name),

17 },

18 }

3.3 Installing Rally and Running Tests

Rally is an OpenStack bench-marking tool. In this section, Rally installation on

Ubuntu is explained. Firstly, new virtual machine is created using VirtualBox with

Ubuntu operating system. Rally software is downloaded and installed with below

commands.

1 wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/

install_rally.sh

2 sudo ./install_rally.sh

3 pip install rally-openstack

Rally software uses API to test OpenStack. Therefore, we need to provide Rally with

existing OpenStack deployment information. For easy debug, hosts file should be
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modified with controller node IP address. Rally configuration is provided with JSON

file given below. JSON file is named as existing.json

1 {

2 "openstack": {

3 "auth_url": "http://controller:5000/v3/",

4 "region_name": "RegionOne",

5 "endpoint_type": "public",

6 "admin": {

7 "username": "admin",

8 "password": "ADMIN_PASS",

9 "tenant_name": "admin"

10 },

11 "https_insecure": false,

12 "https_cacert": ""

13 }

14 }

Rally deployment is created command below with given settings.

1 rally deployment create --file=existing.json --name=existing

After Rally is successfully configured, it can be started with existing sample tests with

command below.

1 rally task start samples/tasks/scenarios/nova/boot-and-delete.json

Rally is able to create HTML report of executed tasks. HTML report is created using

command below when Rally finishes its operation.

1 rally task report --out=report1.html --open

Example test scenario and content of boot-and-delete.json file is given below.

1 {

2 "NovaServers.boot_and_delete_server": [

3 {

4 "args": {

5 "flavor": {

6 "name": "mini"

7 },
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8 "image": {

9 "name": "cirros"

10 },

11 "force_delete": false

12 },

13 "runner": {

14 "type": "constant",

15 "times": 100,

16 "concurrency": 9

17 },

18 "context": {

19 "users": {

20 "tenants": 3,

21 "users_per_tenant": 2

22 }

23 }

24 }

25 ]

26 }
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CHAPTER 4

GENERALIZATION OF OPENSTACK NOVA

OpenStack is developed to manage a large group of resources in the cloud. However,

current OpenStack implementation includes management of conventional compute

resources such as CPU, RAM and disk. Moreover, compute nodes are restricted to

standard server hardware and few operating systems. We extend OpenStack resource

data structures to support generalized resource types [44]. Furthermore, we develop

a new lightweight Nova-Compute that we name Nova-G(eneralized) Compute to en-

able the management of other resource types. Nova-G Compute does not have any

hardware restrictions therefore it can run on any OS and hardware platform. Nova-

G compute provides compatible messaging interfaces and seamlessly integrates with

the rest of the OpenStack components.

4.1 Nova Data Structure Extensions and Modifications to Support Generalized

Resources

We introduce Nova Database in Chapter 2. Most of the OpenStack services use

SQL database and different types of SQL databases are supported such as MariaDB,

MySQL and PortgeSQL. In this thesis work, MySQL is used as OpenStack database

application. All the modification details are given in Section .

4.1.1 Nova compute_nodes Database Table Extensions

Nova project stores the information about compute nodes in the database table called

compute_nodes. Compute nodes’ id, available resources, status information about
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compute nodes are stored in this table.The content of original database table shown

in Table B.1 in Appendix B. In this database table, the main resources of compute

nodes which are virtual cpu, memory and disk are explicitly stored. Nova stores the

total capacity of each resource. Moreover, it stores the amount of used resources in

a different field of the table. The main resource types are very limited because of the

data storage structure of Nova. The resource types of compute nodes that do not exist

in the table data structure by default must be given in extra_resources field.

This field is a sub-field of existing standard resource types and it cannot be used by

the standard Nova Schedulers. That restricts the independent usage of other resources

from main resources.

Table 4.1: Extended Compute Node Resource Database Structure

Field Type Field Type

id Integer service_id Integer

vcpus Integer vcpus_used Integer

memory_mb Integer memory_mb_used Integer

local_gb Integer local_gb_used Integer

hypervisor_type Text hypervisor_version Text

cpu_info Text

resource_g1 Integer resource_g1_used Integer

resource_g2 Integer resource_g2_used Integer

To this end, we extend the database table by adding new resource types and their usage

values maintaining the original data structure. Table 4.1 shows a partial example

with the current resource types and two new added fields. Here, resource_g1

can represent fpga resources whereas resource_g2 can represent gpus. The

usage of these resources in the related compute node is represented as an Integer

type. These database modifications are made using phpmyadmin tool. New fields are

added to database without interrupting operation of OpenStack. More resource types

can be added to the database in the same manner. Since original data structure is

preserved, each new resource type can be chosen independently in a flavor to create

new compute instance configurations. Generalized resources do not have to be on

the same compute node with vcpus or memory. With the help of this flexibility, one

can create a compute instance without any cpu or memory that is only including
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generalized resources. Nova-G Compute module will instantiate resource_g type

resources defined in flavor. For example if the compute node is a standalone FPGA

accelerator card, a VM without vCPU and with a fpga can be instantiated.

4.1.2 Nova-API flavors Database Table Extensions

The original structure of the flavors table of Nova-API database is shown in Table

B.2. To this end, we update flavors table of Nova-API database to include the new

resource types in the offered flavors. Some part of the modified flavor table structure

is shown in Table 4.2 with the new fields of resource_g1 and resource_g2

fields. Each field in the flavor table can be specified independently by user.

Table 4.2: Extended Nova_API flavors Database Structure

Field Type Field Type

id Integer name text

vcpus Integer memory_mb Integer

swap Integer root_gb Integer

resource_g1 Integer resource_g2 Integer

4.1.3 Nova SQLAlchemy Database Model Modifications

In OpenStack, software access to database tables are defined by SQLAlchemy model

files. For each table, a model is defined so that the software trying to access database is

able to use the database structure. Since we modify the table structure in the database,

we also modify SQLAlchemy model classes of each table and add the new general-

ized resource types. Modified ComputeNode classes are shown in Listing 4.1.

Code Listing 4.1: Part of extended Compute Nodes sqlalchemy model after modifi-

cations

1 class ComputeNode(BASE, NovaBase, models.SoftDeleteMixin):

2 __tablename__ = ’compute_nodes’

3 id = Column(Integer, primary_key=True)

4 service_id = Column(Integer, nullable=True)

5 host = Column(String(255), nullable=True)

6 uuid = Column(String(36), nullable=True)
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7 vcpus = Column(Integer, nullable=False)

8 resource_g1 = Column(Integer, nullable=False)

9 resource_g2 = Column(Integer, nullable=False)

10 memory_mb = Column(Integer, nullable=False)

11 local_gb = Column(Integer, nullable=False)

12 vcpus_used = Column(Integer, nullable=False)

13 resource_g1_used = Column(Integer, nullable=False)

14 resource_g2_used = Column(Integer, nullable=False)

15 memory_mb_used = Column(Integer, nullable=False)

16 local_gb_used = Column(Integer, nullable=False)

17 hypervisor_type = Column(MediumText(), nullable=False)

18 hypervisor_version = Column(Integer, nullable=False)

19 hypervisor_hostname = Column(String(255))

Similar modifications are done for Flavors classes model shown in the Listing 4.2.

Code Listing 4.2: Part of extended Flavors sqlalchemy model after modifications

1 class Flavors(API_BASE):

2 __tablename__ = ’flavors’

3 id = Column(Integer, primary_key=True)

4 name = Column(String(255), nullable=False)

5 memory_mb = Column(Integer, nullable=False)

6 vcpus = Column(Integer, nullable=False)

7 resource_g1 = Column(Integer, nullable=False)

8 resource_g2 = Column(Integer, nullable=False)

9 root_gb = Column(Integer)

10 ephemeral_gb = Column(Integer)

11 flavorid = Column(String(255), nullable=False)

12 swap = Column(Integer, nullable=False, default=0)

13 rxtx_factor = Column(Float, default=1)

14 vcpu_weight = Column(Integer)

15 disabled = Column(Boolean, default=False)

16 is_public = Column(Boolean, default=True)

4.1.4 Nova Scheduler Operation with Resource Extensions

Nova scheduler uses these extended flavors to choose suitable compute nodes for the

new compute instances that are requested. Therefore, adding resource_g fields at
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the same level as the conventional resources such as vcpus makes these resources

usable by the scheduling algorithms. All of existing filtering and weighting algo-

rithms of Nova Scheduler can be extended to include resource_g or new filtering

algorithms can be added to leverage efficiency of scheduling algorithms.

4.2 Nova-G Compute

OpenStack provides virtualized compute resources by Nova-Compute which works

on compute nodes with the help of hypervisors. Original Nova-Compute software is

developed to work on cloud servers and has many complex sub-systems. Therefore,

it cannot be scaled down to run physical machine that has limited processing power.

Nova-G Compute can be used to manage FPGA with processors like ZYNQ. The

CPU on the FPGA has very limited processing power. Thus, we develop Nova-G

Compute so that it can run on such a machine. Moreover, Nova-Compute has lots of

software dependencies which restrict operating system. Nova-G Compute is designed

to replace Nova-Compute and work on standalone FPGA SoCs with CPU or any other

customized hardware accelerators in the cloud such as the architecture proposed in

[45]. To this end, we develop a lightweight Nova-G Compute that seamlessly works

with other OpenStack projects by correctly generating messages as well as correctly

parsing the received messages and taking the necessary actions. Nova-G Compute

does not have any external software dependencies therefore it is meant to work on

any operating system. Nova-G Compute is developed from scratch in Python 2.7

language in a similar structure to Nova-Compute as seen in the block diagram that is

shown in the Figure 4.1. To this end, all functions that we describe in this Chapter are

developed in the scope of this thesis work.

OpenStack operation requires two main communication channels that are Oslo Mes-

saging and HTTP API requests. We develop Nova-G such that it is capable of using

these two different channels by creating Rabbit-MQ Controller and API Controller.

We also develop a general hypervisor driver to support different types of generalized

resources.
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Figure 4.1: Nova-G Compute Block Diagram

4.2.1 OpenStack API Controller

OpenStack projects provide APIs for other applications to use it. We develop an

API Controller to communicate with Keystone, Neutron and Glance. Other Nova-

G components use API controller to perform their tasks. OpenStack API controller

has three main functions namely get_token, get_image_file and create_-

port.

get_token function uses Keystone API to authenticate Nova-G Compute module.

Prior to starting any operation Nova-G Compute requests a token using this function.

The acquired token is used in all future API requests in Nova-G Compute.

get_image_file retrieves compute instance image that is chosen by the user us-

ing Glance API. Retrieved compute instance image MD5 checksum is calculated to

ensure that correct data is received. It stores image data to be used by hypervisor

driver when it boots compute instance. create_port method is used to adjust net-

work connectivity of compute instance with help of Neutron API. It returns an IP and
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MAC address to be used in the compute instance. The hypervisor boots the compute

instance with these parameters.

4.2.2 RabbitMQ Controller

Nova components communicate with each other using Oslo Messaging provided by

RabbitMQ. Compute nodes directly communicate with Nova-Conductor in the con-

troller node as shown in Figure 2.2. Similar to the standard Nova-Compute, Nova-G

Compute should have also direct communication with Nova-Conductor to continue

its operation. Nova-G Compute listens to its message queue continuously to serve

Nova-Conductor requests. Moreover, it is capable of sending messages and RPC re-

quests to Nova-Conductor and receiving the results of RPC requests. All of these

functions are provided by the four basic methods of developed RabbitMQ Controller.

These methods are explained below.

start_consume_queue method is used to start listening the message queue of

the related compute node. It continuously monitors the message queue. When a

message is received, it calls the consume_callback method to respond to this

message. consume_callback function checks the integrity of the message. con-

sume_callback uses Message Decoder block to understand the received message.

Depending on message contents, it starts required actions by using Nova-G Core.

Nova-G Compute sends message and makes RPC requests to Nova-Conductor by

using send_message_nova_conductor method. It sends encoded messages

in string format to the Nova-Conductor message queue. Messages can include RPC

requests. Nova-Conductor sends the responses of RPC requests to the reply queue.

When the reply message is received, result_callback method is called by pass-

ing the reply message content. Depending on the message content required actions

are taken.
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4.2.3 Message Decoder

Message Decoder module decodes messages received by RabbitMQ Controller mod-

ule. Message Decoder’s functions are called when a message received. Messages

from RabbitMQ are in JSON string format. Messages are converted into Python

dictionaries by using convert_str_to_dict method. After converting into dic-

tionary, message type is determined by determine_message_type. Depending

on message type different decoder functions are called to get the required information

from message. Some messages can be discarded because of unknown message types.

Two main message decoder functions are explained below.

decode_build_and_run_instance method is called when Nova-Conductor

sends a message to Nova-G Compute for creating a new compute instance. This

function returns instance_uuid of the new compute instance, network_id of

Neutron network which new instance will be connected to and image_id of the

compute instance image.

decode_terminate_instance is used when terminating compute instances.

Nova-Conductor sends a message to Nova-G Compute for terminating specific com-

pute instance. This function decodes the messages and returns instance_uuid

and instance_id of the compute instance that is to be terminated.

4.2.4 Message Encoder

Message Encoder module is used when sending message to Nova-Conductor. These

messages are compatible with the messages that are sent by the standard Nova Com-

pute. This module creates string messages that are ready to be sent by RabbitMQ.

The messages are created in the Oslo Messaging format. Depending on the message

type to be sent different encoder methods are used. After the message is encoded,

it is converted to a string by method convert_dict_to_str. The string mes-

sages are encapsulated in Oslo messaging format using serialize_msg function.

This function’s output is directly sent to RabbitMQ. We develop different encoding

functions for different operations. Each function is explained in below.
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encode_destroy_instance is used to create a message when terminating com-

pute instance. When Nova-G Compute is freshly started, it receives its service infor-

mation by sending message. The message is created by encode_get_service_-

by_uuid. Nova-G Compute update status of compute instance continuously by help

of encode_update_instance_status. State Reporter updates status of com-

pute node using encode_update_report_count. Network details of instance

is updated using the message created by encode_update_instance_info_-

cache.

4.2.5 Nova-G Core

All actions of Nova-G Compute are managed by Core module. This module uses

other modules methods to perform its tasks. Nova-G Core has three main functions

that are; creating compute instances, terminating compute instances and reporting the

current state of the compute node. Each Nova-Compute software on compute nodes

are named a service in OpenStack. Information about the compute nodes is stored in

the database by these defined services. Nova-G Core creates a service entity for Nova-

G compute module by retrieving data from the database. Then created service entity

is given to State Reporter Module for updating status. get_service_by_uuid

method is used to get information from database and create a service entity.

When Nova-G Compute module is requested to create compute instance, build_-

and_run_instance method of Nova-G Core is called. Nova-G Core decodes the

message by using Message Decoder related function and gets instance_uuid,

network_id and image_id of requested compute instance. Furthermore, it gets

IP and MAC addresses for the compute instance with given network_id by using

API Controller. It gets the boot image data of the compute instance with the given

image_id. Once all required information is collected, Core module calls hypervisor

driver’s build_and_run_instance method to create the instance. After the

hypervisor completes its operation, it returns its response about compute instance

creation. If compute instance is successfully created, Nova-G Core sends a message

to Nova-Conductor for updating status of compute instance.

Nova-Conductor may also request to terminate the created compute instances. Nova-
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G Core terminate_instance method is responsible for terminating instances.

Nova-Conductor sends a message to terminate an instance. Firstly, the message de-

coded using Message Decoder related function. Then, the hypervisor is requested to

terminate the instance. When hypervisor successfully terminates the instance, Nova-

G Core releases all the resources of the terminated instance and updates its status by

sending a different message that is created by Message Encoder to Nova-Conductor.

4.2.6 Hypervisor Driver

Compute Instances are created by hypervisors using virtualized resources of compute

nodes in OpenStack. We design Nova-G so that it can keep same architecture with

the original Nova. Nova-G is designed to support different resources than the con-

ventional computing resources where each new resource is expected to have its own

hypervisor. To this end, Hypervisor Driver is developed by defining general meth-

ods of driver to support such different hypervisors. Two main functions are defined

for the hypervisor driver. build_and_run_instance is used to create compute

instances while terminate_instance method is used for terminating instances.

Nova-G core uses these functions regardless of resource type. The hypervisor driver

takes the necessary actions depending on the resource type. It can use hypervisor

utilities to create compute instances.

4.2.7 State Reporter

Each compute node has its own service entity in the database. OpenStack creates

services for each Nova-Compute in the cloud system. Similarly, Nova-G Compute

has service entities managed by Nova-G Core. State Reporter module uses service the

entity to update the status of service in database. Other OpenStack components use

this status information to know that compute nodes are alive and working properly.

For example, Nova-Scheduler chooses the compute nodes depending on their status

information. If the service of given node is not alive, that compute node is filtered

out and not selected for hosting a compute instance. State Reporter functions are

periodically called to update status information using RabbitMQ Controller.
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Figure 4.2: Nova-G Compute Flow Chart

In this section, complete operation flow of Nova-G Compute is discussed. Firstly,

Nova-G Compute software starts its all modules. If all modules are successfully ini-

tialized, it gets a token to use in future API Calls. Then RabbitMQ Controller starts

listening message queue. Operation flow of Nova-G Compute from this point onward

is shown in the Figure 4.2.
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Nova-Conductor sends a message to Nova-G Compute module. After message recep-

tion, Message Decoder determines message type. If message type cannot be deter-

mined, messages are discarded. Determined valid message types can be starting com-

pute instance and terminating existing compute instance. If Nova-Conductor requests

to start a new compute instance, message is decoded with respective method. Net-

work id and boot image id of compute instance are extracted from message by using

Message Decoder. API Controller asks Neutron to give IP and MAC addresses from

given network. At the same time, boot image of compute instance is requested from

Neutron. Once IP and MAC addresses are given and image data is received, Nova-G

Core passes all collected information to Hypervisor Driver. Hypervisor Driver in-

stantiates compute instance by using Hypervisor utilities. Result of creating compute

instance returned to Nova-G Core. If it is success, Nova-G Core updates the instance

status in database by sending a message to Nova-Conductor.

Nova-G Compute is requested to terminate instance by sending terminate instance

message. Message is decoded by related Message Decoder function to get instance

info. Nova-G Core calls terminate instance method of Hypervisor Driver. Hypervisor

Driver terminates the running instance by help of Hypervisor. After successful termi-

nation of the compute instance, Nova-G Core deletes all allocated resources for the

instance. The compute instance is removed from database by sending a message to

Nova-Conductor.

4.4 Capabilities of Nova-G Compute

Nova-G Compute takes advantage of the current OpenStack structure and supports

heterogeneous hardware resources. Nova-G Compute provides most of the capabil-

ities of Nova Compute without needs for changing general OpenStack implementa-

tion. It works flawlessly with other OpenStack projects. Capabilities of the Nova-G

Compute are summarized below.

• Compute node status in database is updated periodically by State Reporter mod-

ule.

• Different types of resources require different Hypervisors. Nova-G Compute
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provides Hypervisor Driver to support different resource types.

• Nova-G is capable of using Oslo Messaging. It can make and respond to RPC

requests in the same way OpenStack does.

• Compute instances are successfully created with given boot images.

• Neutron provides full control over network of compute instances. Nova-G

Compute takes advantages of Neutron to have full control and management

of IP and MAC addresses.

• Status of compute instances are reported continuously even in booting phase.

• Nova-G Compute software does not have any software dependencies rather than

RabbitMQ.

• Nova-Compute is not required by Nova-G Compute when using non-standard

resources.

• Nova-G has lightweight implementation that results in low RAM usage.
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CHAPTER 5

EVALUATION AND RESULTS

The developed Nova-G Compute together with the extensions to support different

resource types is tested on a test setup. The test setup includes OpenStack projects

such as Horizon, Nova, Neutron and Glance. All these installed projects are fully

functional. After verification of OpenStack projects functionality, Nova-G Compute

compatibility is tested with OpenStack projects. We test performance of Nova-G

Compute and compare scalability of Nova-G Compute with existing Nova-Compute.

5.1 Test Setup

Controller Node

(Ubuntu 16.04)

vNIC

Compute Node

(Ubuntu 16.04)

Compute Node

(Ubuntu 16.04)

Keystone, Nova,

Neutron, Glance
Nova Nova-G

vNIC vNIC vNIC vNIC vNIC

Phys�cal Network Interface

V�rtual NAT Network

Oracle V�rtual Box

Br�dged Network

Phys�cal Mach�ne

V�rtual Mach�nes

OpenStack Projects

Figure 5.1: Test Setup Block Diagram

Nova-G Compute is tested on a single physical computer. The physical computer

has Intel Core i7-7500U CPU, 16 GB of RAM and Windows 10 64 bit operating

system. We create three virtual machines to simulate the controller node and two

compute nodes. One compute node hosts original Nova-Compute while other node

hosts Nova-G Compute. The complete block diagram of test setup is show in the
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Figure 5.1. The virtualization software to create the nodes is selected as Oracle VM

VirtualBox. VirtualBox provides flexibility with VM management, has user-friendly

interface and more importantly supports creating virtual NAT network for VMs. All

of the steps of creating test setup and installing OpenStack components are explained

in Section 3.1.

We install Ubuntu 16.04 LTS operating system to all nodes because OpenStack re-

quires Ubuntu 16.04 or later versions. Each virtual machine has two virtual network

interfaces. The first interface is used as management network for OpenStack with

predefined virtual NAT network. This network uses custom IP domain 10.0.1.1.

The other interfaces are used to connect to The Internet with a network bridge inter-

face. Each node can communicate with the other nodes over the virtual NAT network

with a minimum delay.

On the controller node, Keystone, Nova, Neutron and Glance OpenStack projects are

installed and configured properly to work on given setup. Moreover, modifications

of Nova data structures given in Section 4.1 are also applied to show that it does not

affect operation of original OpenStack software. Standard Nova Compute is installed

on the first node where Nova-G Compute is installed on the second node. Nova-G

only depends on the RabbitMQ therefore RabbitMQ is also installed separately on

this node. This set-up does not include any real heterogeneous hardware and is ded-

icated only for the performance evaluation of the extensions for the generalizations

and Nova-G Compute. We added simple dummy hypervisor to test the functionality

of Hypervisor Driver. The simple hypervisor gives response to create and terminate

instance request with success. With such a basic hypervisor, Nova-G can continue its

operation without any problem.

5.2 Basic Functional Tests

Before making any complex functional tests, basic tests are performed on the test

setup. With help of these basic tests, we are able to detect problems beforehand.

Moreover, these results create the base criteria to compare results within complex

system.
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5.2.1 Network Interface Verification

In test setup, there are two different networks. Virtual NAT network is used to com-

municate between controller node and compute nodes. OpenStack projects use NAT

network for Oslo Messaging and API requests. Network interfaces are tested by basic

ping command shown in the Figure 5.2. Command is issued at controller node to

ping compute node. Mean RTT is measured as 0.304 ms. This RTT value is used as

reference for other time measurements. With this test, we verify that created virtual

NAT network working properly and OpenStack projects can communicate with each

other.

Figure 5.2: RTT measurements in virtual NAT network

5.2.2 OpenStack Operation Tests

After test setup connectivity is verified, OpenStack projects are installed to controller

and compute nodes. OpenStack installation progress is explained in Section 3.1. Af-

ter successful installation, basic OpenStack operation is tested. We use OpenStack

command line interface (cli) to run commands. Before using cli, some global vari-

ables should be defined for easy authentication. Required global variables are defined

in file named as variables. We include these variables into Ubuntu command line

with source ./variables command. We listed all installed OpenStack services

in controller node as shown in Figure 5.3.
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Code Listing 5.1: Defined variables to use OpenStack command line interface

1 export OS_USERNAME=admin

2 export OS_PASSWORD=ADMIN_PASS

3 export OS_PROJECT_NAME=admin

4 export OS_USER_DOMAIN_NAME=Default

5 export OS_PROJECT_DOMAIN_NAME=Default

6 export OS_AUTH_URL=http://controller:35357/v3

7 export OS_IDENTITY_API_VERSION=3

Figure 5.3: OpenStack Service List

5.2.3 Verification of Nova-G Compute Compatibility

The connectivity between OpenStack services and their operation are tested. The

OpenStack project, Horizon is used in this test. With the help of the Horizon Mod-

ule, the state of services in OpenStack is viewed and tracked as shown in the Figure

5.4. Nova-G Compute is working on the compute node named as compute1. The

original Nova Compute is active on the compute node called compute2. Both Nova

Compute versions are identified by OpenStack system in the same manner named

nova-compute.

Horizon shows both compute1 and compute2 nodes in Up state. Furthermore,

these states are continuously updated as Up. This test verifies that Nova-G Compute

properly operates and it is compatible with the standard OpenStack implementation.
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Figure 5.4: Testing of OpenStack services with Horizon.

5.2.4 Verification of Nova-G Compute VM Instantiation

In this test, Nova-G Compute instantiates a VM while standard Nova Compute in-

stantiates another VM. To this end, the FPGAvisor communicates with the hypervisor

driver in Nova-G . Consequently, as seen in Figure 5.5, OpenStack Horizon shows that

VM_Nova-G VM is working on node compute1 which runs Nova-G Compute. In

addition, VM_Test_1 is working on node compute2 that runs the standard Nova

Compute. Hence, it is verified that Nova-G module is capable of correctly getting

VM requests of the users and instantiating the VMs.

Figure 5.5: VM instantiation by Nova-G.
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5.2.5 Nova-G Compute communication latency

Every 100 ms, compute nodes update their status by sending a message to the con-

troller node. We measure an average latency of 0.5 ms over 100 measurements be-

tween compute1 and the controller node when Nova-G Compute updates the status.

Since the mean RTT between nodes is 0.355 ms as measured in Test 1, we conclude

that Nova-G Compute works with a minumum overhead.

Nova-G Compute module uses get_by_uuid method of Service objects on

Nova Conductor to make RPC requests. We measure the mean RPC request response

time of Nova-G Compute over a total of 100 different RPC requests made in a time

interval of 100ms. The results of measurements are summarized in Table 5.1.

Table 5.1: Nova-G Compute communication latency.

Status Updates Time (ms)

Minimum Latency 0.4

Maximum Latency 1.2

Average Latency 0.5

RPC Requests Time (ms)

Minimum Delay 9

Maximum Delay 30

Mean Delay 14

During these tests, the memory usage of Nova-G module is measured during normal

operation by Python psutil library. Module has an average memory usage around

33.4 MB.

5.3 Functional Test Using Rally

After verifying the basic functionality of Nova-G Compute, we conduct performance

tests using the benchmarking tool Rally [46] to test the overall operation of Nova-G

Compute and compare its scalability with the standard Nova Compute [47]. Rally

is an external tool that uses OpenStack services to test cloud infrastructure with a
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standard testing environment. Rally is used by many companies including Intel, IBM,

Huawei and Cisco to test the performance and scalability of their clouds [48]. Here

we note that, our capability of using Rally for Nova-G Compute tests is an important

indicator to show that Nova-G Compute is well integrated to OpenStack.

Our test set-up is on a single physical machine, hence, we test Nova Compute and

Nova-G independently so that they do not affect the performance of each other. Ac-

cordingly, in each test one compute node is used either with Nova Compute or Nova-G

Compute. The corresponding test case block diagrams are shown in Figure 5.6.
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Figure 5.6: Test setup used by Rally.

5.3.1 Nova-G VM instantiate latency for single requests

We test the performance of Nova-G Compute in the complete operation cycle of stan-

dard VM creation, booting and deletions. To this end, Rally sends a VM creation

request with a determined flavor and a VM image to the OpenStack cloud which is

represented by our test set-up. Afterwards, Rally observes the state of the VM using

OpenStack API. When the compute node finishes instantiating of a VM, Rally sends a

delete request to the controller node to terminate the VM. Then it starts making a new

VM request to the cloud. This process continues over a defined number of iterations.

Figure 5.7 shows the booting and deletion of server times for Nova-G Compute for

50 iterations.
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Figure 5.7: Nova-G Compute performance over 50 VM boot and delete iterations

with Rally.

5.3.2 Scalability of VM instantiate latency comparison

Rally is configured to make VM instantiation request to OpenStack system in these

tests. Rally has a configuration parameter for stating the number of concurrent VM

requests. For example, if the concurrent VM request parameter is set to 2, Rally

keeps track of VMs on compute nodes and maintains 2 VMs on the compute node for

testing period. For this experiment, we run 5 tests where we change the concurrent

VM request number from 1 to 5 in each test. A total of 50 VM requests are handled

in each test. All tests are conducted both for original Nova Compute and Nova-G.

Comparison between Nova Compute and Nova-G average VM instantiation time is

shown in Figure 5.8. Here we note that FPGAvisor of Nova-G Compute does not

execute the actual boot up actions. To this end, the hypervisor boot time of standard

Nova Compute is subtracted from the total VM boot time for fair comparison. We

observe that the boot time of Nova-G Compute is less than standard Nova Compute

because of its lightweight implementation with essential components only.

We present the mean time figures normalized with the VM instantiation time of a

single request for Nova-G Compute and standard Nova Compute respectively in Fig-
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Figure 5.8: Nova Compute and Nova-G Compute VM boot times.

ure 5.9 for better demonstration of the Nova-G Compute scalability. Here we see

that the VM booting time grows linearly with the number of concurrent VM requests.

Hence, Nova-G Compute performs as goods as the original Nova Compute in terms

of scalability.

Scalability of Nova-G is measured with respect to increasing concurrent VM count.

Total execution time of 50 VM request is compared with original nova. The result is

shown in Figure 5.10. Total execution time of 50 VM request slightly reduces when

concurrent VM count increases in original Nova. However, it saturates after a certain

point. When concurrent VM count is small, increasing VM count reduces total execu-

tion time. Because, software does not need to wait for new request. If concurrent VM

count is more than one, Nova-Compute immediately starts processing other requests.

Therefore, total execution time reduces. However, increasing concurrent VM count

furthermore does not reduce total execution time. Because, software starts to run at

full performance without waiting any new request. The important point is that our

developed Nova-G shows similar behavior with original Nova.
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CHAPTER 6

CONCLUSION

In this thesis, we propose a generalization for OpenStack resource allocation project

Nova to accommodate the new types of resources in hardware accelerated clouds.

To this end, we extend the database structures of OpenStack by the new types of

resources such as FPGA or GPU. This extension is at the same level with the stan-

dard resources of OpenStack database which enables standard Nova Scheduler algo-

rithms to work with these new resource types. More importantly we develop a new

lightweight Nova Compute module that we call Nova-G Compute that works seam-

lessly with the standard OpenStack services and can work on any hardware platform

that supports Rabbit MQ thanks to its implementation that does not have OS depen-

dencies. We further develop an FPGAvisor that gives access to FPGA resources to

Nova-G Compute through its generalized hypervisor driver.

Our experimental evaluations with the standard OpenStack benchmarking tool Rally

show that Nova-G correctly communicates with other OpenStack components and

can boot VMs on generalized resources without any performance degradation with

respect to standard Nova Compute. In this thesis, Nova-G Compute performance and

functionality is evaluated on a test setup with virtual machines.

Our future work includes implementing Nova-G Compute for managing a real accel-

erated cloud system in a laboratory environment where the FPGA accelerators are

implemented on Zynq SoC platform.
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APPENDIX A

RABBITMQ DEBUGGING

RabbitMQ server is installed on controller node. OpenStack projects use it for com-

munication. In this section, RabbitMQ debugging tools are explained. It can be used

to debug OpenStack messages. RabbitMQ provides a plugin to trace messages. It can

be activated command below on controller node [49].

1 rabbitmq-plugins enable rabbitmq_tracing

RabbitMQ Management web interface can be reached with URL below.

http://controller:15672

RabbitMQ can be configured to all messages using tracing functionality of Rab-

bitMQ. This configuration is shown in Figure A.1

Figure A.1: RabbitMQ Tracing Configuration
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APPENDIX B

OPENSTACK DATABASE TABLES

Table B.1: Nova compute_nodes Original Database Table
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Table B.2: Nova-API flavors Original Database Table
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