
ABSTRACTIVE TEXT SUMMARIZATION ON WIKIHOW DATASET USING
SENTENCE EMBEDDINGS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BAHATTIN TOZYILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2019





Approval of the thesis:

ABSTRACTIVE TEXT SUMMARIZATION ON WIKIHOW DATASET
USING SENTENCE EMBEDDINGS

submitted by BAHATTIN TOZYILMAZ in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department, Mid-
dle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

ABSTRACTIVE TEXT SUMMARIZATION ON WIKIHOW DATASET
USING SENTENCE EMBEDDINGS

Tozyılmaz, Bahattin

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Hande Alemdar

September 2019, 45 pages

Summarization is a well known natural language processing task that is used in our

day-to-day lives. The field saw recent research using neural networks and word em-

beddings. We use WikiHow dataset and show that we can match performance of a

similar model using sentence embeddings, and using abstractive summarization. We

show that we can use sentence embeddings and lower input data size without impact-

ing performance too much.

Keywords: automatic summarization, artificial neural networks, sentence embed-

ding, task embedding
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ÖZ

WİKİHOW VERİ SETİ ÜZERİNDE CÜMLE GÖMMELERİ İLE
SOYUTLAMALI ÖZETLEME

Tozyılmaz, Bahattin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Hande Alemdar

Eylül 2019 , 45 sayfa

Özetleme günlük hayatta karşımıza çıkan, iyi bilinen bir doğal dil işleme görevidir.

Yakın zamanda bu alanda yapay sinir ağları ve kelime gömmeleri kullanan çalışmalar

yapılmıştır. Bu çalışmamızda, cümle gömmeleri ve soyutlamalı özetleme yaparak,

WikiHow veri seti üzerinde benzer diğer çalışmaların performansını yakalayan bir

özetleme sistemi geliştirdik. Bu çalışmamız ile, performansı aşırı düşürmeden cümle

gömmeleri kullanıp girdi veri boyutunu düşürebileceğimizi gösterdik.

Anahtar Kelimeler: otomatik özetleme, yapay sinir ağları, cümle gömme, görev

gömme
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Text summarization is an established field in natural language processing. Text sum-

marization can produce summaries for both sentences and longer documents. Sum-

marization has practical uses in our everyday life. The title for the news article you

read may have been produced by a summarization system. The twitter post you saw

for a news article was probably written by a summarizer and edited by a human. We

see text written by machines all the time. Automatic summarization helps us glance

at some text and get the gist of it.

There are two main types of summarization methods. First type is extractive sum-

marization. In this type of summarization, summary words or sentences are selected

from source text. The other type is abstractive summarization. This type of summa-

rization constructs its own sentences by using information from input sentences. For

most time, hand tuned algorithms and feature engineered solutions domineered text

summarization field. Up until recently, extracrtive summarization was getting state-

of-art results in this field. Recently, there has been research using neural networks and

these research started giving fruits in both extractive and abstractive summarization

tasks.

In this thesis, we focus on document summarization using abstractive sentence gen-

eration. Unlike previous research (detailed in chapter two), we use sentence em-

beddings for our inputs. We apply our solution to a comparatively new dataset and

compare our results with previous solutions.
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1.2 Contributions

In this thesis, we use sentence embeddings to create summaries. Sentence embed-

dings are not used widely in abstractive summarization systems. Also, there is no

other previous research done using sentence embeddings with WikiHow dataset. Our

system greatly reduces input sequence length, thus lowers time and other resources

needed to train a summarization system. Use of pretrained word embeddings boosted

many NLP task results compared to embeddings learned during training in dataset.

We hope that by using external sentence embeddings, we can also use embeddings

trained on billions of sentences and leverage other research. Also, we try to show that

by getting similar performance using sentence embeddings, sentence embeddings are

a viable option to word embeddings.

We also propose a new task for wikihow dataset. We dub this new task "task to title".

Task to title tries to regenerate titles from task description. It produces a very high

level summary of task at hand. By doing this, we are trying to generate embeddings

that can encode the whole task description.

1.3 Outline

This thesis is divided into seven chapters. In introduction chapter, we list our mo-

tivations for selecting this subject and contributions to the research field. Related

work chapter follow introduction with some information on sentence embeddings,

text summarization and some previous work related with our research. After this, in

artificial neural networks chapter, we give a primer on neural networks and embed-

dings. We follow that with a chapter to explore our dataset and give examples and

metrocs about it. In sentence vector approach chapter, we explain our approach, our

network architecture and inputs-outputs. After this, we present our results and ex-

ample predictions in experiments and results chapter. We follow this with conclusion

and future work chapter, which we provide a conclusion and potential future work.
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CHAPTER 2

RELATED WORK

We build our solution on already existing ones. We use encoder-decoder, networks,

pretrained sentence embeddings and a readymade dataset. We apply our solution to

the well known summarization problem and we explore a new viewpoint.

Our code is built using PyTorch [5]. We use PyTorch’s builtin neural network con-

structs with minimal additions.

2.1 Sentence Embeddings

Words and sentences are basic building blocks of human languages. In natural lan-

guage processing tasks, we usually need to process words and sentences. Words are

usually converted to tokens for NLP tasks, where a word or a symbol is converted

to an integer. Using these tokens as they are introduces complexity to network, so

they are usually embedded, i.e. converted to a vector of numbers. These embed-

ding are learned along with task at hand. There are also word embeddings that are

unsupervised and generic. Examples being word2vec, GLoVe and fastText.

Sentences are the main building blocks of meaning and sentiment. Most NLP tasks

require researchers to work on sentences. Creating a token for each and every possi-

ble sentence would be impractical. Thus, sentences are either treated as a sequence

of word or converted to an embedding in NLP tasks. Sentence embeddings build on

word embeddings. There are several methods of building sentence embeddings. The

simplest baseline can be defined as the average of word embeddings for the words

constituting the sentence. There are other methods of using the words in the sen-

3



tence in a sequence to sequence network or treating the sentence as the context for its

constituting words. There has been an interest in building sentence (and document)

embeddings lately, so there are recent research in the area. Examples for sentence

embeddings would be skip-thought vectors, sent2vec, inferSent, universal-sentence-

encoder.

One of the well known and earlier unsupervised sentence embedding solutions is

skip-thought vectors [6]. Given a document collection, skip-thought vectors train a

neural network to generate previous and next sentences using current sentence. Sys-

tem is modelled as three recurrent neural networks. An encoder that reads current

sentence one by one using word embeddings and two decoders each generating pre-

vious and next sentences in the document. Since sentence order is kept, the system

also learns temporal relations. One major drawback of this system is training time.

Since the system is actually a recurrent neural network, it is computationally expen-

sive to train. InferSent [7] is another sentence embedding solution based on neural

networks. This solution builds a sentence embedding using a natural language inter-

ference dataset, and then uses these embeddings for other NLP tasks. This solution

uses a supervised learning algorithm and performs better than skip-thoughts. Due

to the way this network is trained, it is suitable for transfer learning. Universal-

sentence-encoder [8] is another sentence embedding solution that is also suitable for

transfer learning between different tasks. It is also trained on a natural language inter-

ference task. It uses a deep averaging network in encoder stage. After then, learned

embeddings can be used in different NLP tasks.

2.1.1 sent2vec

Sent2vec [9] was developed by EPFML and is defined as an extension of fastText

[10] and continuous bag of words (CBOW) [11] model for sentences. This is an

unsupervised method that tries to minimize recreation error for a word in a given sen-

tence. This model also works on character level, so it can also generate embeddings

for sentences that include words it hasn’t seen before. This model combines speed

with accuracy, so we have selected this model in our research.
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2.2 Sequence to Sequence Systems

Sequence to sequence [12], also known as encoder-decoder, is a neural network archi-

tecture that models both inputs and outputs as sequences. This architecture is devel-

oped first to be used in a translation task. While it did not beat the state-of-art system

for the task it was developed, it beat any other pure neural network approaches. This

architecture is robust enough that it has been used from 3D pose estimation [13] to

stock prediction tasks successfully.

2.3 Summarization Systems

Text summarization is an NLP task that has a long history. These systems strive to

keep key aspects of some text while limiting length. Some systems also strive to keep

content interesting. Summarization is an area that has every day usage. Nowadays,

most news sites show a small summary when linking to actual article page. When

using social media, news outlets use a summary to catch attention and link to actual

article. These summaries are already or can be written using a summarization system.

Dataset in this area also follow this trend and are based on news articles or some

meeting notes.

Summarization systems usually take one of two approaches. First approach is extrac-

tive. Extractive approach uses the exact sentence in source text and tries to select the

subset of sentences that best cover the information in source text. Second approach

is the abstractive one. That approach tries to generate sentences that cover the infor-

mation in source text. With the rise of deep learning, summarization tasks are also

seeing more research using neural networks. There are research in both extractive and

abstractive neural network solutions to summarization task.

2.4 Text Similarity Metrics

There are a few established metrics for text similarity. Summarization tasks also

use text similarity. In such tasks, there are usually several human written summaries

5



for each sample. Human written summaries are called references while summary

produced by the system is called hypothesis or candidate.

2.4.1 BLEU

Bilingual evaluation understudy (BLEU) [14] is a widely used metric for text simi-

larity. Despite being originally developed for machine translation tasks, BLEU is an

established metric for text summarization. BLEU score as shown in Equation 21 is

calculated using a modified n-gram precision and a brevity penalty, which is in turn

calculated using candidate and reference lengths.

BLEU(x) = BP · exp(
N∑

n=1

(wn · log(pn))) (21)

where

BP =

1 r < c

e(1− r/c) r ≥ c
(22)

Take "deal with people talking about you behind your back" as reference and "deal

with people who always complain" as candidate for N = 1 case. The n-gram pre-

cision, shown as pn in Equation 21, works out to be 3/6 since only "deal", "with",

"people" from candidate occur in reference. Following the calculation from Equa-

tion 22, brevity penalty is e(1 − 9/6), which is 0.6065. BLEU score for these two

sentences which only the verb part is related, is 0.3033.

In the example where reference is "plant an herb pot" and the candidate is "grow

herbs in containers", we see a different case. N-gram precision is 0, since there are

no common words in reference and candidate. Thus, for these two sentences which

contain very similar meanings, BLEU score is 0.
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2.4.2 ROGUE

Recall-oriented understudy for gisting evaluation (ROUGE) [15] is another text sim-

ilarity metric widely used for summarization. ROGUE was specially developed with

text summarization in mind. It has a few versions. ROGUE-n versions are based on n-

gram cooccurence. ROGUE-L is based in longest common subsequence. ROUGE-N

is defined as:

ROUGE-N =

∑
S∈ReferenceSummaries

∑
gramn∈S(countmatch(gramn))∑

S∈ReferenceSummaries

∑
gramn∈S(count(gramn))

(23)

Take "deal with people talking about you behind your back" as reference and "deal

with people who always complain" as candidate for N = 1 case. ROUGE-1 is then

1/3, when we follow Equation 23, since only "deal", "with", "people" from reference

occur in candidate. In the example where reference is "plant an herb pot" and the

candidate is "grow herbs in containers", we see a different case. ROGUE-1 is 0, since

there are no common words in reference and candidate. Thus, for these two sentences

which contain very similar meanings, ROGUE-1 score is 0.

2.5 Related Works

Since we are implementing a neural network based solution, we will be looking into

such other solutions here. There has been several solutions using neural networks in

summarization.

In 2004, Kaikhah [16] proposed a system to extractively summarize text. This system

generates seven features for each sentence in the document. First four features repre-

sent placement of the sentence in the document. These feature encode if the sentence

or paragraph is the first one, and its relative position. Rest of the features express

sentence length and its content with respect to most used words in the document and

the title. After these features are generated, a neural network is trained to classify the

sentence that should appear in the summary. Then the system is modified to general-

ize and filter the sentences that belong to the summary. This approach mixes feature

engineering with machine learning.

7



Rush et al [17] in 2015 proposed a neural network based system for abstractive sen-

tence summarization with attention. Paraphrasing their abstract, they built a simple

system that can scale with data and train end to end that showed significant per-

formance gains. This system has a neural network to score next word given previous

words as the generation step and has another encoder for information encoding. These

two models are trained jointly and then beam searching is used to generate the final

summary.

In 2016, Building on research from Rush et al, Chopra et al [18] built a system for

abstractive sentence summarization with attention using recurrent neural networks.

This system improves on Rush [2015] research. Main contribution of this model

on top of Rush et al research is its use of a convolutional attention based recurrent

encoder.

Also in 2016, Nallapati et al [19] proposed a system for document level abstractive

summarization using a seq2seq network. This system outperformed previous state-

of-art systems in datasets it was applied to.

Later on in 2017, Nallapati et al [20] released another system that improved on 2016

research. This newer system could be trained both extractively and abstractively.

While abstractive system outperformed current state-of-art, extractive systems per-

formance was better.

We use the research done by Koupaee et al [21] as our dataset and baselines. This

research collected the wikihow dataset and applied several document summarization

solutions to it.

8



CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

Neural networks are mathematical constructs that solves many problems by approx-

imations. The concept was coined by McCulloch and Pitts in 1943 [22]. The idea

stems from emulating biological brain, thus named artificial neural networks. Since

their inception, they were used for multiple classification and regression tasks.

A neural network poses a supervised or unsupervised learning problem as an opti-

mization problem.This way, numerical optimization techniques can also be used in

neural networks, greatly accelerating training speed.

3.1 Artificial Neuron

Neural constructs, such as a brain, a spinal cord or a ganglion consist of neuron con-

nected to each other. Artificial neural networks also consist of artificial neurons,

shown in Figure 3.2, connected to each other in some configurations. Some network

types constrict how these connections are made and some network types have special

connections.

These artificial neurons act on a set of inputs and produce an output. Generally,

these inputs and outputs are real valued scalars, but there has been work on binary

or complex values too. Artificial neurons take a weighted sum of their inputs and

generate a single scalar value. As such, a neuron is modelled as

output = factivation( ˆinput · ŵ + bias) (31)

where input is a vector of inputs, output is the output value, w is the weighting

vector parameter, bias is the biasing parameter and factivation is the activation function

9



that defines how our neuron behaves. There are plenty of activation functions, each

working better on some specific problems. Parameters w and bias need to be adjusted

if we want our network to perform well. Otherwise, the neuron would spit out random

values. We call this adjusting of parameter training. There are numerous ways to

train a neural network.

Artificial neurons and artificial neural networks are generally divided into layers.

These layers are made of similar neurons that act the same way, but on different

inputs and weights. Using this knowledge, we can merge multiple neurons calcula-

tions defined in (31) into a single calculation. Thus, a layer of artificial neurons are

modelled as

ˆoutput = factivation( ˆinput ∗W + ˆbias) (32)

where input is a vector of inputs, output is the output vector, W is the weighting

matrix parameter, bias is the biasing vector parameter and factivation is the activa-

tion function that defines how our layer behaves. This way, we substitute multiple

vector calculations with a single matrix calculation, which speeds up calculations on

physical devices.

All artificial neurons follow this pattern, but they perform differently depending on

their activation function. Most common activation functions being linear, sigmoid

and tanh; there are numerous functions. We graph some of those activation functions

in Figure 3.1.

This gives a simple summary of how artificial neurons work. We use these basic

neurons and layers as building blocks and construct network that can accomplish

complex tasks. We call these artificial neural network. A simple neural network

consists of a layer of neurons connected to a result layer. This is a directed connection

and data flows from input to result layer, which is also called a feed-forward neural

network.

3.2 Artificial Neural Network

Artificial neural networks build on artificial neurons. In an artificial neural network,

artificial neurons become inputs of other artificial neurons. As such, neurons are
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Figure 3.3: Simple neural network

grouped in layers in the network. So, first layer gets inputs from actual inputs and

creates its output. This first layers output then becomes second layers input and so

forth. This continues until the final output is calculated. The layers apart from the

actual output layer are called hidden layers. When we connect inputs, hidden layers

and outputs as seen in Figure 3.3, we get an artificial neural network.

When used with a linear activation function, any number of layers can be reduced

into a two-layer network. To overcome this limitation, we use non-linear activation

functions. When used with non linear activation functions, multilayer neural networks

with arbitrary number of layers are universal function estimators. In other words,

there is a neural network for each and every function imaginable.

We can’t use simple linear regression to train an artificial neural network. It becomes

problematic to transfer errors on the current layer to previous layers. We need a way

to propagate errors back to earlier layers. We do this with back propagation and

gradient descent.

3.3 Gradient Descent and Back Propagation

To train neural networks more complex than simple perceptrons, we need a more

powerful algorithm. The perceptron algorithm we used does not work with activation

functions other than step functions. If we used the −H function as our activation

12



function, then perceptron algorithm would give totally wrong results. Furthermore, it

does not work with more than two layers, there is no way to transfer the error on the

result layer to previous layers. We need an algorithm to handle all kinds of activation

functions and a way to propagate errors back to previous layers and use that errors

on current layer to update weights. Lets first start with the optimization algorithm we

are going to use.

The algorithm we are going to use is the gradient descent algorithm. Gradient descent

is an algorithm to find local minima of a function. It uses gradient of the function in

question to move closer to minima. Since gradient of a function gives us how much

it changes in a given dimension, if we move our point by a negative amount of that

gradient like Figure 3.4, we would arrive at a point of local minima.

Figure 3.4: An example of gradient descent steps

By taking steps on the gradient, we do arrive at a local minima.

This version, Algorithm 1, being the simplest one, there are more advanced versions

like momentum usage or adaptive versions. However, gist of the algorithm, usage of

gradients to reduce error stays the same. One catch of using gradient descent is, you

are guaranteed to reach "a" minima, but it is not guaranteed to be the global one.
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Algorithm 1 Gradient descent algorithm
Require: F a function with a gradient

X ← 0

repeat

X ← X − α · ∇F (X) {move X towards minima by a small amount α}

until satisfied

Gradient descent itself works well for finding error and then updating final layer of

a neural network. To train deeper networks, we need a method to propagate errors

in the final layer back to previous layers. This is where back propagation comes into

play.

In neural network design, we model the loss function between our predictions and

ground truth. This functions result is called error. Using this error, we convert our

learning task to an optimization task that targets to lower the error. However, error

is only defined at output layer. We then take partial derivatives for each layer and

parameter of our network with respect to this error. Using gradient descent, then we

update weights of our network to minimize error.

Applying gradient descent and backpropagation to output layer is fairly easy. To

backpropagate the error to earlier layer, we use chain rule. We apply chain rule to our

error so we find out the partial derivative of the error with respect to the parameter we

want to update. Then we update that parameter just like in regular gradient descent.

3.4 Deep Neural Networks

We call any neural network with more than two layers a deep neural network. Deep

neural networks can learn very complex non linear functions. As of this writing, most

of the state of the art solutions in image processing, image classification and natural

language processing use deep neural networks.

Deep neural networks are powerful tools that can learn very complex and layered

relationships. However, they are not without drawbacks. One drawback is, they need

more data and time to train.
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Figure 3.5: A fully recurrenct network unfolded in time [1]

Figure 3.6: An LSTM network [2]

3.5 Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of deep neural networks. They are used

for modeling temporal sequences. In a simple recurrent neural network, the same

layer is unfolded in time and applied to the input sequence. Figure 3.5 shows an

unfolded RNN applied to an input. These are also called fully recurrent networks.

Fully recurrent networks do not fare well in propagating errors that happen latter

steps to earlier steps. As a result, the network shows a bias towards learning using its

later inputs and makes it harder to learn long term dependencies. This is caused by

something known as vanishing or exploding gradient problem.

Hochreiter et al [23] introduced Long Short Term Memory (LSTM) to solve vanishing

gradient problem. LSTM solves this problem by allowing the error gradient to be

propagated back to earlier steps without changing. An LSTM unit consists of a cell

and three gates named input, output and forget. Cell is used for keeping an internal

state and gates control when and how information moves from or into cell. Figure 3.6

shows LSTM cell and its workings.
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Figure 3.7: A GRU network [3]

Cho et al [24] proposed another unit with gates that is named Gated Recurrent Unit

(GRU). GRU’s are similar to LSTM but has fewer parameters to train. A GRU does

not have a cell and only has update and reset gates. Performance can be compared

to LSTM in many tasks. GRU’s offer a good trade-off between ease and speed of

training and performance when compared to LSTM’s. Inner workings of a GRU cell

is shown in Figure 3.7.

3.6 Embeddings

Embedding is a mathematical method of mapping an object in one domain to another

object in another domain. Embedding is widely used as a tool in NLP tasks. There

are supervised and unsupervised ways to generate embeddings. In this thesis, we are

more interested in unsupervised embeddings. Unsupervised embeddings tend to be

more generic and have a wider range of uses.

3.6.1 Word Embeddings

Word embeddings map a word to a multidimensional vector. Most of these mapping

methods build upon vector space model, saying an object can be described by its

relations to other objects. Word embeddings have been in use since 60s. However,

they became popular with word2vec paper by Mikolov et al [25]. Word2vec allowed

researchers to use huge datasets to train word embeddings in a short time.

The driving idea behind word embeddings is, words can be encoded using other words

they are used together. Word2vec uses two methods for such use: first is CBOW

[11], and the second is skip grams [25]. In CBOW method, current word is predicted

16



using neighboring words. In skipgram method, neighboring words are predicted using

current word.

In 2017, Bojanowski et al released a word embedding solution named fasttext [10].

Fasttext introduced sub word embeddings that enabled it to generate an embedding

even when it did not see that word before.

3.6.2 Sentence Embeddings

Sentence embeddings turn a sentence into a vector. They are useful in comparing

sentences to each other, classifying sentiment or answering questions. These embed-

dings can be built upon words or characters[26]. Sentence embeddings can be built

upon word embeddings, or they can be generated using source document and words

in the sentence. Sentence embeddings provide a middle ground between abstraction

of the sentence and the performance.

There are some advantages of using sentence embeddings over word embeddings.

First, sentence embeddings can deal with polysemy better than word embeddings. A

word embedding solution does not have access to information needed to distinguish

between different meanings of a word, but sentence embeddings can use the whole

sentence to figure out which meaning or use was intended. Second advantage is,

when using word embeddings, word order has to be processed by our solution. When

using sentence embeddings, word order is processed by sentence embedding solution.

Most word embedding solutions use CBOW or skip grams and these methods do not

capture word order at all. Furthermore, sentence embeddings can be trained on very

large corpora. This way, sentence embeddings can learn relationships that are not

easily seen in our documents. These relationships can help in our final task.

One can use a variety of ways to generate sentence embeddings. The most basic way

of creating sentence embeddings involves using a vector space model. We can model

each sentence using the words it has. Then, we can assign each word an index and

set those indices to one when that particular word is used in the sentence. Number of

different words possible poses a challenge, but we can just limit the number of words

we include in our dictionary. For example, if we choose our dictionary as <study,
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Figure 3.8: Skip-thought vectors training [4]

medicine, engineering>, "He choose to study engineering" becomes <1, 0, 1>, and,

"She feared if she didn’t score well on tests, she would have to study medicine" be-

comes <1, 1, 0>. This simple method does not always catch sentence meaning, but it

is adequate for simple use cases.

Another way of obtaining sentence embeddings is combining word embeddings lin-

early. Most common is to use average pooling, i.e. taking the centroid of word

embeddings. This actually generates a good baseline for several NLP tasks, how-

ever does not fare well in others, like sentiment analysis. There are several tricks to

employ when doing this. One can remove stop words from corpora, combine word

embeddings using weights, or use the sentences parse tree order to combine word

embeddings [27].

The methods we discussed so far only use the sentence itself to generate sentence

embeddings. There is another way to generate sentence embeddings that involve ad-

jacent sentences. Skip-thought vectors [6] use this approach to generate sentence

embeddings. This system takes words in current sentence and feeds them to an en-

coding RNN. Then, two other RNNs are run to recreate the previous and the next

sentences using information from encoding RNN. This forces the network to learn

ordering information between sentences and creates an information bottleneck that

produces sentence embeddings. Sent2vec [9] also uses this approach. This system

uses the vector space model and tries to recreate the context of the surrounding sen-

tences. This makes the system more performant since there are no RNNs to run.
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CHAPTER 4

DATASET

We use human description of tasks and summarize these. Using human descriptions

poses a problem: it is very hard to parse descriptions into a standard format. More-

over, different people have different writing styles and use different words. To circum-

vent these, we use WikiHow that is community governed, and has a certain format

every article follows.

4.1 WikiHow

WikiHow is a community governed wiki that has human readable instructions for

tasks. Tasks range from very basic ones like "How to make peanut butter and jelly

sandwich" to ambiguous, open ended ones like "how to trust yourself" to technical

ones like "How to Connect Excel to an Oracle Database". WikiHow is governed by

a community, so every instruction is refined by users multiple times. WikiHow also

has guidelines that instructions follow. With these, WikiHow has a fairly consistent

writing style with a defined instruction structure.

A WikiHow article consists of three parts:

• Title: A short description of task at hand.

• Steps: A list of text that, if followed in given order, should accomplish the task

at hand.

• Bolds: These are a part of steps. Each bold summarizes a single step.

Unfortunately, WikiHow does not provide exports of their content. There exists some
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Figure 4.1: Screenshot of a WikiHow article. "How to get a Master’s Degree" is

the title. "Map out your career goals" is the first element in bolds and rest of that

paragraph is the first element of steps.
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dumps of WikiHow content in different formats. But when we started this research,

most of them were old content since WikiHow is always in constant change. Thus, we

started collecting instructions from WikiHow ourselves. While doing our research,

we found another team [21] created a new dataset and produced some baselines, so

we used that in our final solution.

Before we started using this dataset, we generated our own dataset. That was because

when we started this research, there were no recent datasets on WikiHow. We used

Python to crawl through top 100000 articles on WikiHow. Some articles actually

contained more than one way to achieve the goal, so we futher divided these articles

into seperate samples. Then we assigned Globally Unique Identifiers (GUIDs) to

each sample and run our algorithms on that.

4.2 Dataset Details and Examples

Our dataset comes from research done by Koupaee et al [21]. This dataset comes in

the comma seperated values (CSV) format. This file contains titles, instructions and

summaries of instructions. We present some statistics about dataset in Table 4.1

Title is a short description of the task at hand. It is seen as the link text that points to

actual article page and the header at article page. Title can also be seen as a high level

summary since it encapsulates all task description. Bolds, or summary, is the next

largest data. They provide a summary while not being detailed as instructions, also

includes more information than title. Bolds can be found at the beginning of every

step. Instructions make the bulk of article text. They provide detailed instructions to

complete the task at hand. They are pulled from each step of the task description. We

list some samples from WikiHow dataset in Table 4.2
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Table 4.1: Dataset metrics

Part Num sentences Average words per sentence Num unique words

Title 214293 8.09 41000

Summary 1552195 9.58 148430

Instructions 5142664 20.97 625181

Table 4.2: WikiHow sample examples

Title Instructions Summary (Ground truth)

How to Order

Decimals from

Least to Great-

est1

The quickest way to determine

the least or greatest number is

to compare their whole num-

bers. If one number has a

larger whole number than the

others, it is automatically the

greatest number. If one num-

ber has a smaller whole num-

ber than the others, it is auto-

matically the least number.

For example, ...

Convert both percentages to

decimal., Multiply the deci-

mals., Multiply the product by

100 to get a percent., Add

a percent (%) sign so others

know that the number is being

compared to 100.

, Rewrite both percentages as

fractions with a denominator

of 100., Multiply the fractions.,

...

How to Ad-

minister a Flu

Shot

The term "pre-filled vaccine

syringes", in this case, is

not referring to influenza vac-

cine syringes specifically man-

ufactured as individual doses

by the vaccine manufacturer,

and, instead, refers to multi-

ple, individual dose syringes

filled from either single-dose

or multi-dose ...

Check your medicine., Prepare

the powder medicine (skip

this step if you have liquid

medicine)., Get the vial ready.,

Get the syringe ready., Insert

the syringe into the vial., Take

the medicine from the vial.,

Remove air bubbles., Remove

the syringe from the vial., Lo-

cate an area for injection., ...
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CHAPTER 5

SENTENCE VECTOR APPROACH

In this thesis, we summarize instructions for tasks. Our inputs are instructions content

and our output is its summary. Since both are a sequence of tokens (i.e. words), we

are converting a sequence into another sequence. This type of problems include ma-

chine translation, speech to text and text generation [28]. These are well researched

areas and there exist several great solutions to the problem. One of these solutions is

Seq2Seq networks.

5.1 Seq2Seq Networks

We convert instructions content to summaries with a Seq2Seq [12] network. Seq2Seq

metworks are also called encoder-decoder networks. A Seq2seq network consists of

two networks working together to turn a sequence into another sequence. Encoder

network works on input and turns it into a lower dimensional data that we will call

state. Then, decoder part of the system uses that state to construct another sequence,

sometimes with some additional inputs.

An encoder-decoder network creates an information bottleneck by limiting the num-

ber of parameters that can pass between two networks, i.e. the size of state variable.

Seq2Seq architecture aim to encode input data to encoder network with as little di-

mensions as possible such that decoder network can still perform well with given

state.

While we create an information bottleneck, this may cause problems in some cases.

For example, in machine translation, transferred data alone may not be enough to
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actually select the correct word in a given sentence. In that case, we insert another

information channel named attention. Attention lets some internal state from encoder

to be passed to decoder stage. This improves decoder performance by a large margin.

5.2 Data Preparation

We do not do much preprocessing to our dataset. The few preprocessing steps we

apply are:

• removing unnecessary whitespace,

• standardizing quotes and symbols (numbers are left as is),

• turning everything lowercase.

We use NLTK [29]1’s word tokenizer to do most of these. Then we turn these words

into tokens and use them.

We can get by doing very small preprocessing because of our selection of input trans-

formation! In a typical implementation of Seq2Seq network, the input for our network

would be tokenized words or characters. While we use tokenized words for decoder

input, we use a sentence embeddings for encoder stage input. This lets us gain some

advantages.

5.3 Sentence Embeddings as Input

A regular application of seq2seq architecture would use word tokens for both en-

coder and decoder stage. Then these tokens would run through an embedding layer

to become a vector and get processed.

Instead of doing this, we decided to leverage one of the general purpose sentence

embedding solutions. These solutions are generated using much more computation

and data we can hope to use, they are multi-purpose and generally fare well in other
1 https://nltk.org/
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benchmarks. If we used word tokens (and word embeddings like word2vec), our

system would have to learn to distinguish between different meanings of the same

word.

By using a sentence embedding, we are also showing that it is not necessary to know

the exact words used to create a summary of a text. A sentence embedding that

captures the generic context of a text is also enough to create an adequate summary.

5.4 Our Architecture

Our architecture is a standard seq2seq architecture. We run our encoder network

as a GRU and then use its outputs and final hidden state as inputs to decoder stage.

Decoder stage outputs tokens which is then converted to words. We concatenate these

word and use that as our final results.

5.4.1 Inputs and Outputs

By definition of the problem, our inputs are task definition and our outputs are sum-

mary text. These correspond with steps as input and bolds as output. Our system

parses inputs as sentences and outputs as words, then feeds these to our neural net-

work. We show inputs, outputs and how they are connected in Figure 5.1, with some

examples.

With sentence vector approach, our inputs differ from a standard seq2seq network.

A vanilla seq2seq network would take words as input. Then, using an embedding

layer, these words would be converted to a multidimensional vector. However, some

implementations move this embedding layer out of training phase and use a standard

word embedding system like word2vec or GloVe. This gives implementations a boost

since embeddings start with meaningful initials instead of random values.

We take this approach one step further and feed sentence vectors directly. Our inputs

are vectors of sentence embeddings and our outputs are one hot encoded word tokens.

For decoder stage embedding, we also get our weights from our sent2vec solution.

This way, we completely externalize input transformations. Our encoder solely works

25



on sentence embeddings. Decoder part utilizes word embeddings that are derivated

from sentence embeddings.

5.4.2 Data Preparation

We first apply sentence tokenization on input and word tokenization on output. Input

sentences are then converted to sentence vectors using EPFMLs sent2vec solution.

Outputs, i.e. words are then counted to find most common ones. Then we select most

common 25000 words and assign then ids. We have three special tokens/ids; a start

of sentence token, an end of sentence token and a placeholder "unknown" token. The

unknown token replaces all other words that did not make it into the top 10000 words.

We convert output sequence to numbers using ids assigned to words. The words

that are not assigned an id are converted to "unknown" token. Output sequence is

then prepended with a start of sentence and appended an end of sentence token. We

also take advantage of our embeddings and set decoder input embeddings to sent2vec

results of those single words.

5.4.3 Network Architecture

In this research, we used a simple architecture. This architecture is a modified seq2seq

network. While it is a simple architecture, it is fairly powerful. The architecture seen

in Figure 5.2 is the actual architecture used in our experiments.

Our network is composed of two sub networks: an encoder and a decoder. Decoder

is a two layer RNN network with ReLU nonlinearity after each layer. Note that we

do not need an embedding layer since our encoder inputs are already sentence vectors

of . This network has two outputs. One is last state of RNN after all inputs. We call

this a task vector. The other one is the results produced by encoder while processing

the input sequence. While this is not nearly as important, using the output history as

attention input increases performance. We pass both of these to our decoder network.

The decoder network consists of an attention layer, an embedding layer and an RNN,

followed by a linear layer and a ReLU unit. We use attention model proposed by
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Figure 5.1: Seq2seq network and its inputs outputs
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Luong et al[30] in our decoder. This network starts with final output and output

history from encoder network. Final output is set at starting hidden state of RNN and

output history is fed to attention network. This networks input is a series of word

tokens and its out is a new word token. We start by feeding start of sentence token

and get first word of the sentence. Then, keeping internal state of RNN, we feed

the first result and generate second word of our output and so forth. This way, we

generate new words until we see an end of sentence token of we exhaust a set number

of words.

5.4.4 Training Tricks

We employ a few training tricks to keep our network from overfitting. We apply

gradient clipping and batching to keep our network from overfitting.

During our experiments, we found out that gradient clipping had an important effect

on final error rates. Gradient clipping is achieved by limiting the final gradient of the

network to a set value. If magnitude of the output layer exceeds this set value, then

the gradient is scaled so its magnitude is equal to that set value. We show the effects

of gradient clipping in Figure 5.3. When applied, gradient clipping keeps network

from performing sudden big jumps. This in turn keeps hystherisis to a minimum.

Batching is also applied when possible. Batching in our case does not have a very

significant effect like gradient clipping. However, it increases performance. PyTorch

supports batching in its core, so the workload needed on our side to support batch-

ing is pretty low. We only handle batching in training sample creation and masked

negative log likelihood (NLL) loss calculation.

5.5 Task to Title Network

Before we found our current dataset, we also tried to summarize the steps down to

article title. This is a very high level summary and decoder part has less things to

learn.

This version of the network is virtually identical to version for long summaries (bolds).
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(a) Without gradient clipping (b) With gradient clipping

Figure 5.3: Effect of gradient clipping

Only hyperparameters are changed. Number of output words are changed to acommo-

date lower number of total different words and learning rate parameters are adjusted.

In fact, all network code is reused without any changes.

Output processing was changed to acommodate multiple sentences being generated.

We remove any word received after an end of sentence token was generated. Title

network is run without that, since we only create a single sentence.
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CHAPTER 6

EXPERIMENTS AND RESULTS

In our research, we aimed to use sentence embeddings instead of word vectors. There

are other research that successfully uses word embedding word summarization. By

using sentence vectors, we both hide actual word information and lessen the RNN

sequential data.

We did two experiments, one being a standard summarization task, which tries to

summarize the instruction down to bolds and the other one trying to summarize in-

structions dows to title. The last task does not fare well in many standard metrics used

in text summarization since these metrics are based on exact or near exact matches

while our system sometimes produces summaries with.

6.1 Summarization Task

Text summarization is a popular task in natural language processing. This is a well

researched task with several great solutions over the years. With developments in

deep learning, this field also saw a renewed interest, especially with usage of RNN’s

and embeddings. Summarization is fairly standard and well defined task. The task is

generally performed on a dataset consisting of news articles. We report our results in

BLEU [14] and ROGUE [15] metrics when available.

Our task uses wikihow dataset [21] and trains a summarizer to produce bolds from

steps. Since this is not a popular dataset yet, there is not much other research we can

directly compare to. We use baselines from Koupaee et al. [21]. We train our network

to summarize the dataset.
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Figure 6.1: Summarization task ROUGE scores

Table 6.1: Comparison with other solutions(scores are f-scores)

Solution ROUGE-1 ROUGE-2 ROUGE-L

Our solution (Seq2Seq with sent. emb.) 19.53 4.13 21.74

Seq2Seq with attention 22.04 6.27 20.87

TextRank 27.53 7.4 20.00

Pointer generator+coverage 28.53 9.23 26.54

Lead-3 baseline 26.00 7.24 24.25

We train our network with EPFMLs sent2vec 600 dimensional sentence vectors. Both

encoder and decoder uses two layer GRU’s with 0.4 dropout. We use PyTorch’s Adam

optimizer with a learning rate of 0.001 and betas of 0.9 and 0.999. We clip gradients

to a length of 10.

Network is trained for 10 epochs and then results are reported. Figure 6.1 has a graph

of several training and evaluation metrics by training batch.

We demonstrate our results in Table 6.1. Our solution shows a similar result with

regular seq2seq solution using word embeddings. We are able to produce similar

results using less information and using an abstractive neural network.

Some examples of ground truth and our summaries are presented in Table 6.2.
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Table 6.2: Example results

1 list the author ’s name . state

the title of the book . add pub-

lication details . cite an e-

book from a library database

. cite a book you found on the

web .

start with the author ’s name .

add the title of the book . add

the edition of the book . add

the edition of the book . add

the edition . add the edition .

2 market yourself and your tal-

ent . be persistent in your

marketing . be highly orga-

nized . connect with people

. negotiate contracts that ben-

efit all parties .

find a talent . sell your work

. sell your work . sell your

work . sell your work . sell

your work .

3 learn a few at a time . prac-

tice switching between these

chords . get a teacher . print

out chord diagrams . learn

simple songs .

learn the basics of the song .

practice the piano . practice

the chord . try to find out what

you are going to do .

4 remove debris from the drain

weekly . use a <unk> drain

cleaner monthly . clean

monthly with household

products .

clean your shower curtain

. use a plunger to remove

buildup . use a plunger to re-

move buildup .

From these results, it can be seen that we indeed can learn to summarize an article

without actually knowing which words were used. Some examples also show that

our system uses synonyms and rewords some summaries while keeping the meaning

same.
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6.2 Title Summarization Task

This task is also a summarization task but there is no other directly comparable re-

search done on the same dataset. Instead of trying to summarize to bolds, we try to

summarize steps to titles in this task. This is a very high level summary and does

not capture the details in steps. In fact, since there is more than one way to reach

the same result, and for some titles there is more than one way in WikiHow, this task

poses a different challenge.

We train our network with EPFML’s 600 dimensional sentence vectors. Our network

uses two-layer GRU’s for both encoder and decoder with 0.4 dropout. We limit our

vocabulary to 8000 words and max title word length to 15 words. We again use

PyTorch’s Adam optimizer with a learning rate of 0.001 and betas of 0.9 and 0.999.

We clip gradients to a length of 10. Unlike our normal summarization task, we use

our own dataset we scraped from wikihow.

When preparing test and training batches for this task, we used two different ap-

proaches. One is, we randomly divide test and training batches. The second approach

is, we make sure every title that appears in test set also appears in training set, albeit

with a different steps list. We show results from first approach in Table 6.3 and results

from second approach in Table 6.4.

Network is trained for 40 epochs and results are reported. A plot of evaluation metrics

can be seen in Figure 6.2 for first approach and Figure 6.3 for second approach. From

these grahps, we see that both systems manage to achieve similar performance for

BLEU scores. However, when checking their output, the system with modified splits

produces better results albeit marginally.

Table 6.3: Example results with regular strategy

# Ground truth Our result

1 soothe your legs after stress or

long walk <eos>

get rid of leg pain <eos>

2 skip a class in middle school

<eos>

skip a class in high school <eos>
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Table 6.3: Example results with regular strategy (continued)

3 stay organized <eos> organize your day <eos>

4 start a pet shop <eos> choose a country <unk> <eos>

5 study for a science exam <eos> pass the bar exam <eos>

6 tell if your guinea pig is pregnant

<eos>

tell if your guinea pig is pregnant

<eos>

7 teach your child to read <eos> teach reading <eos>

8 talk your boyfriend out of break-

ing up with you <eos>

break up with your boyfriend

<eos>

9 tie a headscarf <eos> tie a cute girl <eos>

10 tell if a boy loves you <eos> determine if a person is inter-

ested in you

11 tell the difference between plan-

ets and stars <eos>

find planets in the night sky

<eos>

12 treat tick bites <eos> remove a tick <eos>

13 treat a caterpillar sting <eos> remove a tick <eos>

14 use lemon juice to lessen acne

and heal acne scars <eos>

use a lemon to lighten acne

<eos>

15 use the internet to promote your

business <eos>

make money online <eos>

16 write your first program in java

<eos>

open a php database <eos>

17 write a comedy sketch <eos> make a joke <eos>

18 be healthy <eos> lose belly fat <eos>

19 change your start page on

mozilla firefox <eos>

change your home page on safari

<eos>

20 get california unemployment

benefits <eos>

apply for unemployment com-

pensation benefits <eos>

21 get pen stains out of clothing

<eos>

remove pen ink from clothes

<eos>

22 install a bathtub <eos> replace a bathtub in dishwasher
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Table 6.3: Example results with regular strategy (continued)

23 prevent emotional abuse <eos> recognize an abusive relation-

ship <eos>

24 start a conversation with a

stranger <eos>

make friends at a new school

<eos>

Table 6.4: Example results with duplicates strategy

# Ground truth Our result

1 make a personal minecraft server

<eos>

make a personal minecraft server

<eos>

2 increase estrogen <eos> increase testosterone levels

<eos>

3 break into a car <eos> open a locked door <eos>

4 deal with people talking about

you behind your back <eos>

deal with people who always

complain <eos>

5 copy favorites <eos> download bookmarks <eos>

6 come up with a nickname <eos> name a main character <eos>

7 deal with religious people if you

are an atheist <eos>

deal with someone who is al-

ways right <eos>

8 apply for food stamps in the us

<eos>

apply for welfare <eos>

9 plant an herb pot <eos> grow herbs in containers <eos>

10 write a graduation thank you

speech <eos>

write a graduation speech <eos>

11 use linkedin <eos> create an online linkedin

12 tile a bathroom floor <eos> install a brick floor <eos>

13 convert inches to feet <eos> calculate your feet by hand

<eos>

14 get permanent marker stain out

of hardwood flooring <eos>

remove floor stains <eos>

36



Table 6.4: Example results with duplicates strategy (continued)

15 make a storm <unk> helmet

from a milk jug <eos>

make a storm ’s <unk> costume

<eos>

16 get rid of rats without harming

the environment <eos>

get rid of rats <eos>

17 calculate the circumference of a

circle <eos>

calculate the volume of a <unk>

prism <eos>

18 sharpen a knife <eos> sharpen a kitchen knife <eos>

19 use a coffee maker <eos> make coffee with a coffee maker

20 block and unblock internet sites

( on a mac ) <eos>

block unwanted site from your

computer <eos>

21 get dogs to gain a healthy weight

<eos>

increase appetite in dogs <eos>

22 make your hamster trust you

<eos>

hold a hamster <eos>

23 replace a ceiling fan pull chain

switch <eos>

replace a tail light in a kitchen

sink <eos>

25 get a newborn to sleep through

the night <eos>

stop breastfeeding at night

<eos>

26 relieve itchy hands and feet at

night <eos>

treat an eczema flare up <eos>

From these results, it can be seen that we indeed can learn to summarize an article

without actually knowing which words were used. Some examples also show that

our system uses synonyms and rewords some summaries while keeping the meaning

same.

6.3 Discussion

We present many examples in each task. There are many interesting and uninteresting

examples, but we can classify them in four categories. Namely, good summaries with
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Figure 6.2: BLEU scores for normal split
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Figure 6.3: BLEU scores for modified split
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good scores, bad summaries with bad scores, good summaries with bad scores and

bad summaries with good scores.

Good summaries with good scores and bad summaries with bad scores are easiest ex-

amples to explain. Take "make a personal minecraft server" as an example, where we

manage to completely recreate the ground truth. Another example would be "write a

graduation thank you speech" vs. "write a graduation speech". These are good sum-

maries with good BLEU and ROUGE scores. They capture the original meaning well

and also match the words used. On the other hand, take "start a pet shop" and "choose

a country <unk>", or "copy favorites" vs. "download bookmarks". These have bad

summaries with low BLEU and ROUGE scores. They do not capture the original

meaning and do not reuse the same words with ground truth. In these examples, we

can say that our model could or could not learn the underlying information.

Then there are bad summaries with good scores. Examples would be "tie a headscarf"

vs. "tie a cute girl", or, "increase estrogen" vs. "increase testosterone levels". While

these match many of the words used, the meaning is irrelevant or even completely

opposite as can be seen in the latter example. These examples show that our model

was not able to extract the underlying information.

The most interesting case is good summaries with bad scores. In these cases, our

system generates summaries with a very similar meaning to ground truth. An example

would be "plant an herb pot" vs. "grow herbs in containers". These two sentences

have very similar meanings while managing to get 0 scores from both BLEU and

ROUGE. Another example is "stay organized" vs. "organize your day". This example

also manages to get 0 scores, while correctly summarizing the source document.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we focused on generating task summaries from WikiHow dataset. We

opted to perform abstractive summarization using sentence embeddings. While there

are several previous research done using word embeddings to perform abstractive

summarization using neural network, there is none that used sentence embeddings.

In our standard summarization task, we show that sentence embeddings are viable

alternatives to word embeddings for abstractive summarization. Our ROGUE scores

are lower than corresponding seq2seq model with attention using word embeddings,

however, using sentence embeddings instead of word embeddings, we are able to

reduce input size by near an order of magnitude. This order of magnitude processings

gain can instead be used to process a bigger dataset. It is also worthwhile to note that

this system uses beam search which has better performance than the straightforward

greedy search our work uses. We believe with a beam searching decoder, our systems

performance would rise.

Our task to title task results show that while we have low BLEU scores, we still

are able to generate summaries that has the same or a similar meaning. We have

two possible explanations for this behaviour. First one is the case that our decoder

memorizes some common phrases that are likely to occur, or even complete titles, and

acts as a classifier that outputs the memorized sequence based on input from encoder.

Seeing that network performance does not differ greatly between our two different

splitting strategies, we believe this explanation is not the case. The other explanation

is that our system is actually capable of encoding task information a vector and then

recreate the titles from that vector.
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For future work, one of the low hanging fruits is changing our sentence embeddings.

The embeddings we use are trained on wikipedia unigrams. Pagliardini et al shows

in their paper [9] that there are other models that perform better. One alternative is

using the same embedding solution with another model, for example bigrams trained

on twitter data. Another alternative would be completely changing the embedding

solution we use.

As the next step, we think jointly training regular summarization task with task to

title task might yield interesting results. For this network, we could share the encoder

and have seperate decoder stages for title and regular summarization tasks. WikiHow

somehow has multiple articles for the same title. They explain different ways to reach

the same results. A joint trained network would learn to generalize the task at hand

while also encoding nuances of different ways of doing the same thing.

Another future work would be improving underlying architecture. For starters, we

can implement a beam searching decoder. It is important to state that all other models

that we compare our research to use a beam searching decoder. As a bigger change,

we can start using some newer architectures like self attentive networks. If we can use

a better architecture and sentence embeddings, we can lower the amount of recurrent

cycles we need and use these cycle gains to process a bigger dataset.
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