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ABSTRACT 

 

METAHEURISTIC BASED SOIL PARAMETER IDENTIFICATION IN 

DEEP EXCAVATIONS 

 

Akgül, Abdülsamed 

Master of Science, Civil Engineering 

Supervisor: Assist. Prof. Dr. Onur Pekcan 

 

 

September 2019, 123 pages 

 

Attaining accurate ground parameters in the design of cost- efficient underground 

structures is essential due to the level of complexity and uncertainty in soil- structure 

interactions and ground conditions. Backcalculation methods have an increasing 

popularity in the field of geotechnical engineering due to the fact that these methods 

rely on laboratory and field tests in addition to field monitoring and field information 

which delivers genuine structure conditions. Therefore, the use of this method 

provides much more accurate geomechanical parameters of materials in deep 

excavations when compared to conventional methods. Moreover, acquiring these 

parameters in a faster method aids in the calibration of the parameters during fast track 

construction projects. In this study, a finite element based backcalculation is 

developed through the use of Particle Swarm Optimization algorithm (PSO). The PSO 

algorithm, which is embedded in the back-analysis platform, acts as an intelligent 

parameter selection process which provides data for the finite element method. The 

reaction of the deep excavation structure is attained through two-dimensional finite 

element analyses. This developed back analysis framework is then tested using the 

ground deformation data obtained from the deep excavation case study in 

Ankara/Turkey. The parameters of soil are backcalculated and these parameters are 
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then used for future predictions of deep excavation response. The attainment of the 

successful results has been observed due to the use of the optimization algorithm and 

the sensitivity of the measured values. This backcalculation using the PSO algorithm 

can be used to create more realistic models for the construction of underground 

structures which share the same properties and ground conditions. 
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ÖZ 

 

DERİN KAZILARDAKİ PARAMETRELERİN SAPTANMASINDA 

METASEZGİSEL TABANLI GERİ HESAPLANMA YÖNTEMİ 

 

Akgül, Abdülsamed 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Onur Pekcan 

 

Eylül 2019, 123 sayfa 

 

Zemin koşullarındaki belirsizlikler ve zeminin karmaşık yapısı nedeniyle, derin 

kazılar gibi yapıların tasarımlarında kullanılan geoteknik parametrelerinin doğru 

belirlenmesi, imalatların ekonomik olması hususunda büyük önem taşımaktadır. 

Laboratuvar ve saha deneylerinin yanı sıra arazide gözlem verilerine dayanan ve saha 

şartlarını daha gerçekçi yansıtan geri hesaplama yöntemleri, özellikle geoteknik 

mühendisliği alanında son dönemlerde popülerliğini artırmaktadır. Geri hesaplama 

yöntemi kullanılarak, derin kazı inşaat aşamasında yapılan deplasman gözlemleri 

sayesinde, kazı çevresinde bulunan malzeme parametreleri standart tekniklere göre 

daha gerçekçi olarak elde edilebilmektedir. Zemin parametrelerinin pratik şekilde elde 

edilmesi, derin kazı inşaat aşamasında kullanılacak parametrelerin kalibrasyonu 

açısından da büyük önem taşımaktadır. Bu çalışmada, sürü optimizasyonu yöntemi 

kullanılarak sonlu elemanlara dayanan bir geri hesaplama yöntemi geliştirilmiştir. 

Geliştirilen platformda, metasezgisel optimizasyon algoritması, sonlu elemanlar 

yöntemine veri sağlayan akıllı bir parametre seçim yöntemi olarak geri hesaplama 

yönteminin içine gömülmüştür. İksa yapılarının tepkileri ise 2 boyutlu sonlu elemanlar 

analizleri ile elde edilmiştir. Geliştirilen geri hesaplama platformu, örnek bir iksa 

projesi sırasında ölçülen deformasyon verileri kullanılarak test edilmiş ve böylelikle 

derin kazı çevresindeki malzeme parametrelerinin geri hesaplanması da sağlanmıştır. 
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Daha sonra bu parametreler ileri hesaplama yöntemi kullanılarak, sonraki kazı 

aşamaları tahmin edilmeye çalışılmıştır. Elde edilen sonuçların başarısının, ölçüm 

verilerinin hassasiyetine ve kullanılan optimizasyon algoritmasının seçimine bağlı 

olduğu gözlenmiştir. Raporlanan parametreler aynı zemin yapısına sahip birimlerde 

açılacak olan yeni yer altı yapılarının gerçekçi modellenmesinde kullanılabilecektir. 

 

 

Anahtar Kelimeler: Derin Kazılar, Geri Hesaplama, Parçacık Sürü Optimizasyonu, 

Metasezgisel, Parametre Saptanması 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. General 

In developed countries, especially in urbanized areas, buildings have to be constructed 

in the neighborhood of existing structures due to limited space. This has resulted in 

the tendency towards having prevalent underground constructions, which naturally 

brings deep excavations into the picture. Figure 1-1 and Figure 1-2 show typical deep 

excavation applications supported by anchorages and struts, respectively, built in two 

major city centers of Turkey.  

 

Figure 1.1. Özdilek Shopping Mall (24 m of Diaphragm Wall) – Bursa, Turkey –                                                   

The Fourth Highest Population in Turkey with 2.9 Million 
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Figure 1.2. Ankara Metro 3. Stage Kızılay Retaining System (35 m Deep Station) – Ankara, Turkey – 

The Second Highest Population in Turkey with 5.5 Million 
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Constructions of deep excavations are often a significant concern due to ground 

movements and structural effects on the adjacent structures. From engineering point 

of view, it is crucial to estimate these effects and monitor them during the lifetime of 

open cuts. For this purpose, there has been significant number of theoretical and case 

studies performed in the literature. As a result, empirical settlement envelopes and 

other semi-empirical methods (e.g., Goldberg et al. 1976; Mana and Clough 1981; 

Clough and O’Rourke 1990) have been used by the designers in order to predict 

ground movements induced by deep excavations.  

In addition to so called conventional approaches based on empirical works, the finite 

element method (FEM) of analysis has been popular to estimate the wall and ground 

movements accurately. For example, Whittle et al. (1993) studied the application of 

FEM analysis for modeling top-down constructions and analyzed them through 

comparing the differences between predicted and measured wall displacements. With 

time, the rate of increase in the use of FEM proves that more accurate results have 

been obtained lately. However, there are several factors that may affect the accuracy 

of results of this type of numerical tools, including appropriate soil material 

parameters, initial conditions of the ground, groundwater flow, boundary conditions, 

pre-history of the construction site, etc. Linking the field data with the numerical 

modeling reflects the soil behavior during the construction and increases the 

performance of solving even extremely complex excavation problems (Finno and 

Harahap 1991). Such an attempt is also useful for future displacement predictions. 

Most of the well-documented assessment on measured and calculated displacement in 

the literature has been done by using back analyses (Whittle et al., 1993). In back 

analyses cases, geotechnical input parameters of a model such as elastic modulus, 

friction angle, and cohesion of the soil are calibrated against the field data which 

results in more accurate soil and wall movement estimations. It has been confirmed 

that back analysis is very beneficial in order to get information regarding the 

geotechnical parameters (Du et al., 2006). If the estimations and field data are linked 

together, the analyses are improved, and the results approach the measured 
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deflections. However, due to complex nonlinear behavior of soil structures, back 

analysis processing becomes grueling most particularly when back-calculated 

parameters are high in number. Moreira et al. (2012) state that optimization algorithms 

are used in the back analysis in order to minimize the number of iterations and find 

the best results of parameters. 

Shao and Macari (2008) argue that the optimization algorithms are used to yield the 

optimal possible results of soil parameters. These results are then used to forecast the 

deformation of the ground at separate stages throughout the excavation period while 

constantly inputting the results into the system. This, in turn, allows for increasing 

accuracy of soil deformation forecasting. This method provides acceptable benefits 

over the conventional analysis. Unlike conventional modeling, entering continuously 

updated field data into the system leads to more precise estimations and enables to 

find the global response of the deep excavation system. Since the results are 

continuously updated throughout the excavation period, any variation from the 

original design will be noticeable and possibly dealt with. In order to reach the optimal 

solution, numerical model and optimization algorithm are coupled to apply back-

analysis for deep excavation problem.  

In this thesis, the back-analysis platform is established which combines the finite 

element model and the optimization algorithm in order to find the actual, i.e., in-situ, 

soil material parameters. The developed platform is then applied to back-calculate the 

soil material parameters of deep excavation of Maidan Office-Home Office-Square 

project constructed in Ankara/Turkey. The forecasted behavior of deep excavation and 

its conformity with measured field data are discussed thoroughly.    

 

1.2. Research Objective 

Most of the previous studies in the literature on back analysis are performed to 

evaluate the effectiveness of the preliminary designs. However, in light of continuous 

monitoring, precautions can be taken during construction. Entering continuously 

http://tureng.com/tr/turkce-ingilizce/gruelling
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updated field data into the system leads to more precise estimations and enables 

designers to find the global response of the deep excavation system. Nowadays, 

systematically calibrating the outcome of numerical simulation using perceived 

ground movements is problematic without expending hefty resources. Back analysis 

of such systems requires an optimization algorithm to get faster and accurate results.  

Within the above framework, calibration of soil parameters for selected stages by 

comparing measured field data and FEM results and thus extracting constitutive model 

parameters that reflects the soil behavior in a deep excavation case study is the primary 

interest of this study. In this sense, the set of soil material parameters are obtained by 

using a developed back analysis platform for selected stages of construction, and the 

alteration of the material parameters set are observed. The study hopes to clarify 

whether the upcoming stages’ behavior can be predicted or not by using calibrated 

parameters obtained by using the combination of FEM and Particle Swarm 

Optimization (PSO) algorithm. This work is also intended to encourage possible future 

studies for ways of finding the actual soil material parameters that contribute to a safe 

and economical geotechnical design.  

 

1.3. Scope 

Within scope of this thesis, a back analysis platform is developed for modeling deep 

excavations, in which the field measurements are used to acquire the constitutive 

model parameters for both FE model and therefore the in-place properties of soils. 

Other types of field data such as the ones obtained from the extensometers are not 

taken into account within the scope. For modeling purposes, the commercial finite 

element program PLAXIS is preferred to compute displacements of the wall at 

selected construction stages. Computed displacements by the numerical model and 

inclinometer readings at corresponding stages are compared, and the difference 

between them is minimized through the metaheuristic-based optimization method 

named PSO.  
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Constitutive parameters of soil layers are identified using Hardening-soil model. Only 

the reference secant Young’s modulus at the 50% stress level (𝐸50
𝑟𝑒𝑓

), cohesion (c’) 

and effective angle of friction (Ø’), the three material parameters that are having 

weighty effects on horizontal deflections at the site, are considered and calibrated 

during the optimization process. 

 

1.4. Thesis Outline 

This chapter contains the problem statement, objectives and the scope of the study. 

Then, the literature survey is provided in Chapter 2 including the studies related to 

deep excavations, numerical analysis, back calculation, and optimization techniques. 

Chapter 3 contains the main work; where the back analysis platform is described 

including the development of numerical model and optimization algorithm used in the 

thesis. In Chapter 4, the application of a back analysis platform on the deep excavation 

of a recently constructed set of buildings named Maidan Office – Home Office – 

Square, and the performance of PSO algorithm is presented. Following this, 

comparison of inclinometer measurements and FEM calculations and the deflection 

predictions are revealed. In conclusion, the findings of the study are highlighted and 

the recommendations for future studies are presented in Chapter 5.  
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CHAPTER 2  

 

2. LITERATURE SURVEY  

 

2.1. Introduction  

Deep excavations are a necessity when it comes to the development and construction 

in urban environments. This is due to the fact that existing structures in urban areas 

take up much of the space on the surface and therefore engineers have to utilize 

underground expanses. When dealing with deep excavations; it is of utmost 

importance that existing structures are not affected before, during and after the 

excavation is complete. Hence, estimation of the magnitude and distribution of the 

ground movements and minimizing these movements is absolutely critical (Marulanda 

2005). Support systems are usually designed and constructed to prevent and/or 

minimize critical ground movements. According to Marulanda (2005), when 

designing support systems, three conditions have to be met: 

1- Stability against bottom heave and piping 

2- Failure of the support system 

3- Limitation of ground lateral movements that may damage neighboring existing 

structures.  

In light of these conditions, the engineer must include stability and deformation in the 

analysis of deep excavations.  

Commonly used design approaches for estimation of deep excavation induced 

movements in the literature reviewed in Section 2.2. Monitoring of deep excavation 

is reviewed in Section 2.3. Section 2.4 includes previous works related to numerical 

analyses and common modeling approaches for solving geomechanics problems. In 

section 2.5, back analysis concept in geotechnical engineering and assessment on 
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measured and calculated displacement using back analysis is discussed. Section 2.6 

presents a description of the observational method. Optimization techniques for 

solving inverse problems and studies in the literature are briefly overviewed in the 

same section.  

 

2.2. Commonly Used Design Approaches for Estimating Deep Excavation-

induced Movements 

When designing support systems in deep excavations, lateral ground movements are 

the key aspect of design. Therefore, the prediction of ground movements is also 

significant regarding the design of support systems. After investigating sheet pile 

support systems in an excavation, Peck (1969) came to the conclusion that the property 

of the soil around the support system is the main aspect that affects the soil 

deformations. He further elaborates that lateral movements even occur under the 

excavation level and that the extent of these movements is governed by the depth of 

the excavation.  

Mana and Clough (1981) investigated the correlation between soil lateral movements 

and important soil parameters by using a combination of field tests and finite element 

analyses. After studying 11 case histories with field data, they constructed a graph that 

illustrates the correlation between the factor of safety and movement. It was concluded 

after plotting maximum wall movement over excavation depth and the factor of safety 

against basal heave that there is a significant correlation between the movement of the 

soil and factor of safety where movements promptly increase as factor of safety 

decreases (See Figure 2-1). Additionally, as the factor of safety increases, movements 

tend to decrease and remain constant at around 0.5%.  

Mana and Clough (1981) further investigated the effects of time on maximum lateral 

wall movements as seen in Figure 2-2. This investigation concluded that as time 

passes, the rate of movement decreases rapidly.  Moreover, Figure 2-3 plots maximum 
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settlement values against lateral wall movements. The graph shows an almost linear 

correlation where settlements are 0.5 to 1.0 times the horizontal wall displacements.  

Mana and Clough (1981) also performed over 70 finite element analyses taking in 

factors such as wall and strut stiffness, strut spacing, preloading, excavation width and 

depth, soil stiffness and stress distribution. To confirm their field measurements, they 

plotted the finite element values of maximum wall movement over excavation depth 

versus the basal heave safety factor as shown in Figure 2-4. Moreover, the correlation 

resembled that of the field measurements. Additionally, Figure 2-5 shows that also 

when using finite element studies, correlations similar to the field data suggests that 

settlements become a larger percentage of lateral movements at 1.0 to 1.5 factor of 

safety values.  

Mana and Clough (1981) concluded the following in their finite element studies: 

1- As strut stiffness increases, soil movements decrease. 

2- Increasing the stiffness of the wall and increasing the number of struts in an 

excavation prompts a decrease in soil movements. This effect is increasingly 

significant at a lower factor of safety values.  

3- With an increase in the width and depth of excavation, movements also 

increase. 

4- Soil modulus of elasticity radically disturbs the movements of the soil where 

increasing measurements of elasticity modulus produce smaller movements 

and vice versa.  

5- Preloaded struts decrease the movements in the soil, however; the effects also 

fade at higher preloads.  
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Figure 2.1. Relationship between Factor of Safety against Basal Heave and Maximum Lateral Wall 

Movements (Mana and Clough, 1981) 

 

Figure 2.2. Relationship between Time and Maximum Lateral Wall Movements                                                         

(Mana and Clough, 1981) 
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Figure 2.3. Relationship between Maximum Ground Settlements and                                                      

Maximum Lateral Wall Movements (Mana and Clough, 1981) 

 

Figure 2.4. Relationship Factor of Safety against Basal Heave                                                                               

and Maximum Lateral Wall Movements (Mana and Clough, 1981) 
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Figure 2.5. Relationship between Maximum Surface Settlements and Maximum Lateral Wall 

Movement (Mana and Clough, 1981) 

 

Clough and O’Rourke (1990) studied existing ways to forecast ground movement 

patterns and settlement distributions by investigation of the movements of in-situ 

walls. They also used updated existing data bearing in mind the effects of construction 

activities, excavation and support process. As stated by them, movements in in-situ 

walls are affected and caused by aspects like groundwater and soil settings, depth and 

shape of excavation, wall support condition, surcharge loads, wall stiffness, 

groundwater level undulation and the construction technique of the wall with its period 

of exposure. However, one of the chief reasons of wall movements is related with the 

support and excavation method. Figures 2-6 and 2-7 investigate the wall and soil 

movements in residual soils, sand and stiff clays where maximum displacements and 

settlements are plotted against the depth of excavation. Looking at the graphs, it can 

be said that there are no significant dissimilarities between maximum movement 

tendencies of different walls. Therefore, Clough and O’Rourke (1990) considered wall 

and soil stiffness, the coefficient of lateral earth pressure and support spacing in their 

implemented finite element analyses as seen in Figure 2-8. The linear graph resembles 
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that of its predecessor for horizontal movements where an average of approximately 

0.2% of H is illustrated. They perceived that the coefficient of lateral earth pressure 

and soil modulus have a significant effect on stiff soil movement although strut 

spacing and wall stiffness have a lesser effect.  

In terms of the basal heave safety factor, soft to medium soil settlements and 

movements are plotted against system stiffness as seen in Figure 2-9. According to 

this graph by Clough and O’Rourke (1990), movements rise at a faster pace when the 

factor of safety is below 1.5 while base stability is certain for factors of safety of 2 and 

above.  

 

 

Figure 2.6. Monitored Maximum Lateral Movements for In-situ Walls in Stiff Clays, Residual Soils 

and Sands (Clough and O’Rourke, 1990) 
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Figure 2.7. Monitored Maximum Settlements in the Soil                                                                               

Retained by In-situ Walls (Clough and O’Rourke, 1990) 

 

Figure 2.8. Maximum Horizontal Wall Movement in Stiff Soils (Obtained by using Finite Element 

Analyses) (Clough and O’Rourke, 1990) 
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Figure 2.9. Design Curves for Maximum Horizontal Wall Movement for excavations in Soft to 

Medium Clays (Clough and O’Rourke, 1990) 

 

Cough and O’Rourke (1990) generalized wall and ground movement patterns of 

braced and tied-back walls as illustrated in Figure 2-10 using inclinometer and 

settlement values. Moreover, Figure 2-10a demonstrates a cantilever movement where 

soil settlements increase inversely with respect to the distance from the excavation 

edge. With deeper excavations, movements at lower levels of the excavation are 

formed when higher elevations are restrained with a support system as seen in Figure 

2-10b. The combination of these two cases is presented in Figure 2-10c to further 

illustrate the general movement in such a case.   
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Figure 2.10. Movement Patterns of Braced and Tied-Back Walls (Clough and O’Rourke, 1990) 

The authors associated wall displacements with the construction method of the wall 

itself and identified the main causes of these movements. These causes fall under the 

following criteria: 

1- Construction technique: Less experienced contractors and geotechnical 

engineers may lead to poor wall construction quality which may cause large 

movements of the wall. 

2- Wall installation method: Driving method of in-situ walls and their placements 

can produce ground movements.  

3- Deep excavation below supports: Extending the excavation depth way below 

the support location can increase wall movements.  

4- Construction and removal of deep foundations: In demolition or renovation 

cases, old deep foundations have to be replaced with new ones and that may 

cause movements. 

Moreover, the designer controls the support system of the excavation which can affect 

wall movements significantly. The designer can increase wall stiffness in order to 

reduce wall movements. Additionally, increasing the support spacing and stiffness 

both horizontally and/or vertically will reduce wall movements. Preloading of the in-

situ wall may also be applied to diminish the soil movements. Furthermore, wall 
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settlement, earth berms, piezometric pressure and movements in the anchored wall are 

special geotechnical factors that affect in-situ wall movements.  

Clough and O’Rourke (1990) concluded that in-situ wall displacements can be 

approximated rationally given that the primary causes of displacements are 

considered. They also concluded that the wall movements are primarily affected by 

the method of excavation and support system, construction activities, and geotechnical 

respects. Additionally, horizontal and vertical settlements are caused by excavations 

at the front end of an in-situ wall. Finally, to investigate the damage to structures, it is 

important to consider a structure’s response to ground movements based on the nature 

and condition of the building.  

Wang et al. (2009) studied the wall and soil movements because of deep excavations 

in Shanghai by collecting and analyzing 300 case histories including diaphragm wall, 

contiguous pie walls, sheet pile walls and deep soil mixing walls. He questioned the 

reasons affecting the wall deformation and confirmed that when the system stiffness 

and the basal heave safety factor increase, the wall displacement decreases as Mana 

and Clough (1981) suggested. He also associated the wall and ground deformations 

with worldwide case histories. 

In the analysis, Wang (2009) classified the results according to wall type and the 

method of construction. 32 cases were constructed by the top-down method of which 

4 were contiguous pile wall (CPW), 28 were diaphragm wall (DW). 92 cases were 

bottom-up DW, 78 cases were CPW and 30 cases of compound deep soil mixing 

columns (CDSM). 11 cases of sheet pile wall (SPW), 23 cases of compound soil nail 

(CSN) wall and 34 cases were retained by deep soil mixing (DSM) columns. Figure 

2-11 demonstrates the relationship between the horizontal movement of the wall (δhm) 

and the depth of excavation (H) for all the cases.  

Wang (2009) concluded the following in his study: 

1- As the depth of excavation increases, wall movements increase. 
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2- For the top-down method of constructions, δhm values vary between 0.1%H 

and 0.55%H; an average of 0.27%H (see Figure 2.11a). 

3- For the bottom-up method of constructions and stiff walls (DW, CPW, and 

CDSM), δhm values vary between 0.1%H and 1.0%H; an average of 0.4%H 

(see Figure 2.11b). 

4- For SPW, wall displacement becomes larger up to 3.2%H; an average of 

1.5%H (see Figure 2.11c). 

5- For CSN walls, δhm values vary between 0.2%H and 0.9%H; an average of 

0.55%H (see Figure 2.11d). 

6- For DSM walls, δhm values vary between 0.3%H and 2.4%H; an average of 

0.91%H (see Figure 2.11e). 

7- The maximum horizontal movement of walls heavily depends on the wall type. 

In other words, the stiffness of the system plays an important role on the lateral 

displacement.  
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Figure 2.11. Relationship between Lateral Movement of Wall and                                                             

Excavation Depth for Different Supporting System (Wang et al., 2009) 
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In Table 2.1, the comparison of the maximum deformation of the wall studied by 

different authors for different ground condition and wall type is shown. 

 

Table 2.1. Comparison of Wall Displacements Measured in Worldwide Case Histories (Wang et al., 

2009) 

 

 

Wang et al. (2009) also mentioned the parameters that affect the wall displacement. 

Although the data are quite limited, it can be said that the wall movements decrease 

as the thickness of the wall increase. Figure 2-12 represents deflection paths of 

diaphragm walls with a thickness of 600 mm, 800 mm and 1,000 mm.  Another 

parameter that affects the wall displacement is the system stiffness. Many researchers 

pointed out that stiffness of a supporting system is one of the most essential parameters 

for the excavation performance. Location, spacing and axial stiffness of support and 

wall bending stiffness are counted as system stiffness. Figure 2-13 is the graph of 

system stiffness vs. normalized maximum horizontal movement defined by Clough et 

al. (1989) for top-down and bottom-up construction method including diaphragm 

walls and contiguous pile walls. The factor of safety against basal heave (FOS) 

suggested by Clough and O’Rourke (1990) are shown as design curves in the figure. 

It can be deduced that as system stiffness increases, normalized maximum horizontal 
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movements of the wall decrease. This conclusion is consistent with other researchers’ 

findings on the influence of system stiffness.  

 

Figure 2.12. Deflection Paths of Diaphragm Walls with Different Thickness (Wang et al., 2009) 
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Figure 2.13. Relationship between System Stiffness and Normalized Maximum Horizontal 

Movement (Wang et al., 2009) 

 

Executing numerical analyses that are able to model real constructions helped many 

engineers to avoid retrieving and studying a hefty number of empirical relations as it 

is problematic and time-consuming. These analyses are mentioned in section 2.4.  

 

2.3. Deep Excavation Monitoring 

Recently, monitoring of deep excavation has become a vital issue in order to control 

the risks of failure which causes loss of life. Monitoring is one of the most important 

parts to complete geotechnical projects. Especially for the projects in the district of 

the existing structures, instrumentation becomes more essential. In deep excavation 

projects, instruments are installed to control displacements of the wall and surrounding 

soil, stresses on the wall and water pressures. Figure 2-14 shows commonly used 

geotechnical instruments for deep excavation monitoring purposes. 



 

 

 

23 

 

Information gathered from the instruments are also used for back-analysis calculations 

in order to improve design quality by calibrating the soil parameters and thus predict 

upcoming stages’ behavior for safety and financial purposes. Geotechnical input 

parameters of a model are altered by using the field data which results in more accurate 

soil and wall movement estimations. Inclinometers are the most commonly used 

instrument for the purpose of measuring horizontal displacements of the wall.   

 

 

Figure 2.14. Deep Excavation Monitoring Instruments (source: 

http://www.recordtek.com/solutions/geotechnical-solution/) [last accessed on 13.09.2019] 

 

2.3.1. Inclinometers 

Inclinometers are used to measure horizontal displacements in underground structures. 

In order to drive the inclinometer probe, firstly vertical boreholes, mostly made of 

polyvinyl chloride (PVC) materials, are placed in the ground or inside the wall. After 

http://www.recordtek.com/solutions/geotechnical-solution/
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placing the inclinometer casing (Figure 2.15) by grouting, inclinometer probe (Figure 

2.16) is driven and gets angular measurements at specified points in a casing by tilt-

sensors in it. Displacements are compared with the initial reading each time to 

calculate the relative movements. This procedure is done periodically while the 

construction takes place. Schematic of inclinometer probe placed in casing is shown 

in Figure 2.17. 

 

Figure 2.15. Inclinometer Casing (source http://www.geotechnicaltrade.com/product-detail/pvc-

inclinometer-casing) [last accessed on 14.05.2019] 

 

Figure 2.16. Typical Inclinometer System including Probe, Cable, Readout Unit (source: 

http://www.geoada.com/geoada-aletsel-gozlem-cihazlari.html) [last accessed on 04.05.2019] 

http://www.geotechnicaltrade.com/product-detail/pvc-inclinometer-casing
http://www.geotechnicaltrade.com/product-detail/pvc-inclinometer-casing
http://www.geoada.com/geoada-aletsel-gozlem-cihazlari.html
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Figure 2.17. Schematic of Inclinometer Probe placed in Casing (Mikkelsen, 1996) 

 

2.4. Numerical analysis of Deep Excavations 

Recently, there has been a significant rate of increase of using numerical modeling 

techniques by designers while dealing with deep excavations in order to predict more 

reliable ground movements. Finite element method (FEM) is one of the most common 

techniques for solving the equilibrium equations boundary value problem including 

many significant analysis programs (Hashash et al., 2003). These programs such as 

ABAQUS, FLAC, and PLAXIS are used in the analysis of deep excavations to 

estimate the ground movements.  

The widely use of numerical analysis to calculate ground deformations in deep 

excavation started in the early 1970s. Clough and Duncan (1971) analyzed the 
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behavior of the interface between soil and the wall using finite element analysis. Mana 

and Clough (1981) provided envelope curves to represent the maximum wall 

movement over excavation depth against the basal heave safety factor by using FEM. 

Clough et al. (1989) studied the relation between the system stiffness and the 

maximum horizontal wall movement. Many other studies on numerical analysis of 

deep excavations can be found in the literature counting Finno and Harahap (1991); 

Hashash (1992); Ou et al. (1996); Yoo and Lee (2008) as a significant number of 

designers tend to use the finite element method to analyze deep excavations. That is 

because the finite element method provides the ability to model the complex nonlinear 

behavior of the soil through various geometrics with diverse boundary limits and 

constitutive model. 

 

2.4.1. Finite Element Method (FEM) 

Use of the finite element method is dramatically increased in the studies of numerical 

analysis in geomechanics (Sloan and Randolph, 1982). It is practical to use the finite 

element method in geotechnical engineering since it simplifies the calculations. This 

method estimates the stress, deformation and pore pressures and analyzes the system 

stability throughout the excavation (step by step) for several geometries and boundary 

conditions. The soil is modeled as a continuum and decoupled into meshes (the 

specified number of elements). The meshes can be formed in different shape and size. 

As the size of mesh increases, the execution time of the analysis shortens but the 

accuracy decreases. Therefore, the designer should choose the proper size of the mesh 

to balance the execution time and the accuracy of the results. Recently, PLAXIS is 

commonly used finite element program for deep excavation analyses in Turkey and 

Europe.  
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2.4.1.1. PLAXIS Software 

PLAXIS 2D is developed by the Delft University of Technology and nowadays is used 

for deformation and stability analyses, two-dimensional finite element analysis 

software. It allows the user to solve non-linear finite element calculations efficiently. 

The software enables to view the analysis solutions for the selected phase. The user 

can view the outputs such as total displacements, total strains, effective stresses, total 

stresses, pore pressures and internal forces of the structural elements. Eight different 

constitutive models for soil behavior may be used for analysis; Mohr-Coulomb model 

(MC), Jointed Rock model (JR), Hardening Soil model (HS), Hardening Soil model 

with Small-Strain Stiffness (HSsmall), Soft Soil Creep model (SSC), Soft Soil model 

(SS), Modified Cam-Clay model (MCC), and User Defined (UD) model. Drained, 

undrained and non-porous behaviors are available for pore pressure behavior 

simulation. Mohr-Coulomb model is a linear elastic, perfectly plastic model. Soil 

parameters used in this model E,, , c, and  and average stiffness. Stress 

dependency, the stress path dependency of stiffness and anisotropic stiffness are not 

involved in this model (Brinkgreve et al., 2009). Therefore, this model can only be 

used for the initial estimate (PLAXIS 2D User Manual). On the other hand, the stress 

dependence on soil stiffness is considered in hardening soil constitutive model. The 

soil behavior is non-linear, and the stiffness of soil is never constant. It is inversely 

proportional with the stress level within the soil. The stiffness modulus decreases as 

the load increases as illustrated in Figure 2-18. Considering the theory of plasticity, 

including soil dilatancy and yield cap makes hardening soil model more thematic. This 

model is an elastoplastic form of hyperbolic model, expressed in the framework of 

shear hardening plasticity. Soil parameters used in this model are E50, Eoed, Eur, , c, 

, K0, ur. The difference between two models is that the Mohr-Coulomb model uses 

constant soil stiffness while the soil has effective stress dependent stiffness as used in 

hardening soil model (PLAXIS 2D User Manual). Not only the loading stiffness (E50), 

but also the unloading-reloading modulus (Eur) and oedometer modulus (Eoed) are 

considered in the HS model. Details about the HS model are given in Section 3.2.1.  
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Figure 2.18. Non-linear Stress-Strain Curve and Inconstant Soil Stiffness (Liong, 2014) 

 

2.4.2. Conventional Constitutive Modeling for Deep Excavations 

Mostly, constitutive models used in geotechnical engineering are based on elasticity 

and plasticity theories (Marulanda, 2005). Material failure was represented by Tresca 

and von Mises yield criteria (Hill 1950) which contained by initial forms of yield 

criterion. Recent plasticity models that contained by constitutive relations used for 

geological materials are studied by Prevost and Popescu (1996). These models are 

adjusted by common laboratory tests.  

As a common method to update constitutive models in deep excavation, linear process 

with ad hoc loops are followed as represented in Figure 2-19 (Hashash et al., 2006).  

1. Description of problem and model idealization: For deep excavations, ground 

movements are assessed by model simulation. 

2. Description of material property, field and laboratory testing: Soil parameters used 

in the model are defined by in-situ and laboratory tests. 
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3. Material constitutive behavior, model and property selections: Information acquired 

from Step-2 is used for material constitutive behavior. Model signify soil stress-strain-

strength characteristics.  

4. Boundary value problem solution: Finite element programs are used to predict stress 

and deformations of the system for numerous geometrics with different boundary 

conditions.  

5. Comparing with actual field behavior: Lateral wall movements and surface 

settlements are generally used field data to link with the calculated results during 

construction. If the compared results are not satisfied, the model and soil properties 

are adjusted by repeating Step 3 and solve the boundary value problem (Step 4). This 

loop repeats until satisfactory criteria have been met (Step 5).  

6. Analysis of upcoming excavations/stages: The model simulations are used for soil 

and wall movement prediction for future excavation stages or another project.  

This common approach to modeling geomechanics was first demonstrated by Mana 

and Clough (1981) and Whittle et al. (1993). 

http://tureng.com/tr/turkce-ingilizce/acquired
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Figure 2.19. Common Approach to Modeling of Geomechanics Problems (Hashash et al., 2003) 

Inverse analysis concept with its capability to automatically estimate the appropriate 

parameters that give comparable predicted and calculated outcomes is discussed in the 

following section. 

 

2.5. Back Analysis in Geotechnical Engineering 

Back analysis concept is to match the estimated performance of the results of the 

analysis of numerically denoted parameters and the hypotheses of a problem by any 

means necessary (Vardakos, 2007). For geomechanics point of view, calculation 

procedure is reverse of forward analysis such that the measured stress and 

displacement values are input while mechanical properties of soil are output in the 

back analysis (Sakurai, 1997). Figure 2-20 illustrates the difference between forward 

and back analysis.  
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Figure 2.20. Difference between Forward Analysis and Back Analysis (Sakurai, 1997) 

 

Inverse approach and direct (minimization) method are two common back-analysis 

approaches in geotechnical engineering practice. In the former, the known 

performance converts an input parameter and the output becomes the original 

parameters since all equations of the numerical model are reversed. This method is 

applicable when the numerical model can be reversible and therefore can only be 

useful for some engineering problems under good control of test implementation 

(Vardakos, 2007). Sakurai (1993) states that this approach is only valid for the linear 

elastic materials where the stress-strain relationship is expressed in a linear form. The 

latter’s goal is to minimize the difference between observed and estimated quantities 

(e.g., deformations and stresses) of numerical analysis. The iterative procedure 

continues until the difference between observed and estimated results is a tolerable 

range. The direct method is applicable to many engineering problems including 

numerous unknowns, non-linear equations and procedures (Vardakos, 2007). It 

consists of three key elements which are the error (fitness) function, the numerical 

model, and the optimization algorithm. The numerical model reflects the structure’s 

response by including soil characteristics and excavation scheme. Error function 
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represents the difference between observed and estimated values. The optimization 

algorithm is used for modification of the material parameters in order to minimalize 

the error function. According to Cividini et al. (1981), any standard algorithms such 

as the Simplex method (Nelder & Mead, 1965), Powell method (Powell, 1964), 

Conjugate Gradient method (Fletcher & Reeves, 1964), etc. can be used in direct 

method for the numerical solution which counted as an advantage for this method. 

Shao (1999) indicates that using the direct approach sets better for excavation 

problems due to the order of construction and the boundary conditions. Figure 2-21 

illustrates the schema of the iterative back analysis procedure.  

 

 

Figure 2.21. Schema of Iterative Back Analysis Procedure (Calvello and Finno, 2004) 

Many studies on back-analysis have been published in the literature using both 

approaches. Gioda and Maier (1980) applied the direct method to back calculation 

problem using a tunnel case study. Cividini et al. (1981) reviewed back analysis 

philosophy together with examples of both inverse and minimization methods. Gioda 

(1985) studied an embankment problem using both approaches. Sakurai and Abe 
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(1981), Sakurai and Takeuchi (1983) studied displacement based back analysis 

method. Sakurai et al. (2003) compared different methods of back analysis and 

showed the significance of the assumptions.  

 

2.5.1. Assessment on Measured and Calculated Displacement using Back 

Analysis 

Applying the back-analysis concept in geotechnical engineering is useful in order to 

minimize the uncertainness of design parameters for geotechnical projects (Gioda and 

Sakurai, 1987). In situ measurements (displacements etc.) are provided by design 

made by actual soil parameters. According to Finno and Calvello (2005), the essential 

advantage of inverse analysis is its capability to automatically estimate the appropriate 

parameters that give comparable predicted and calculated outcomes.  Even when the 

problem has high complexity, the inverse analysis provides a valuable aid to designers 

(Keidser and Rosjberg, 1991; Ou and Tang, 1994; Poeter and Hill, 1997)   

Most of the well-documented assessment on measured and calculated displacement in 

the literature has been done by using back analyses method (Whittle et al., 1993). In 

these assessments, geotechnical input parameters of a model such as elastic modulus, 

friction angle, the cohesion of the soil and Young Modulus, etc. are calibrated by using 

the field data which results in more accurate soil and wall movements. If the 

estimations and field data are linked together, the analyses are improved, and the 

results approach the measured deflections. It has been confirmed that back analysis is 

very beneficial in order to get information regarding the geotechnical parameters (Du 

et al., Chi, 2006). Calvello and Finno (2004) state that the inverse analysis method is 

an effective and more objective way of choosing soil parameters for constitutive 

models since they do not require subjective judgment.  

Whittle et al., (1993) applied FE analysis to model seven-story top-down construction 

in Boston to compare the measured and estimated wall movements by using back 

analysis concept. The aim of the back analysis is to observe the finite element model’s 
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success rate for interpretation of geotechnical parameters such as displacement of wall 

and ground movements. ABAQUS finite element program is used to model the case 

study. The major uncertainty in the finite element analysis is soil input parameters 

because of the deficiency of laboratory tests. The field data contain 13 inclinometers 

for monitoring the horizontal movement of the wall and 11 inclinometers for 

monitoring horizontal ground movement. The observed data are compared with 

estimations from the back-case analysis at three different stages of construction. The 

phases of finite element match up with the history of construction activities. Figure 2-

22 illustrates the comparison of predicted and measured horizontal wall deformations 

including modified analysis. While base case analysis underestimates the maximum 

deflections by approximately 20 mm, modified analysis predictions are compatible 

with the measured lateral wall deflections. The authors indicate that the description of 

a constant pore pressure boundary condition can improve the reliability of base case 

analysis. The key benefits of using finite element analyses in the mentioned study are 

that time-dependent displacements related with the temporary groundwater flow, and 

nonlinear and inelastic effective stress, strain and strength properties of soil can be 

described by these analyses. The major outcome of the study is that it is conceivable 

to estimate deep excavation-induced movements during construction. However, as the 

complexity of the model increases, the characterization of soil properties becomes 

harder with an increasing amount of uncertainties. The quality and amount of 

laboratory tests need to be increased to minimalize uncertainties.   
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Figure 2.22. Comparison of Predicted and Measured Lateral Wall Deflections (Whittle, Hashash, and 

Whitman, 1993) 

 

Gioda and Locatelli (1999) exemplify the back-analysis case in order to minimize the 

difference between measured and calculated displacements of Monteolimpino 2 

tunnel on the railway connecting Milan (Italy) to Chiasso (Switzerland). Firstly, the 

average secant elastic modulus of the soil around the tunnel was intended to find and 

secondly, the authors want to assess the success of preliminary design by comparing 

observed and estimated displacements. SPT and dilatometer tests were completed for 

estimating the in-situ elastic modulus and topographic surveys and sliding 

micrometers were used to record displacements. Authors point out the finite element 

model provides a realistic estimate of vertical movements compared to measured ones. 

The study shows that reasonable results and tunnels’ performance can be provided by 

back analyses during construction. 
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Many other studies published in the literature including Horodecki et al. (2004), Vogt 

and Totsev (2006), Ma et al. (2006), Becker et al. (2008), Hsiung (2008), Ma’ruf and 

Darjanto (2017), etc. using back-analysis concept. The studies aided for the evaluation 

of estimated displacement of wall or soil movements for the different type of 

excavations and support systems. All of these studies on back-analysis evaluate the 

effectiveness of preliminary design instead of mentioning about modification of the 

design during construction. Information obtained from back-analyses should be used 

during construction to predict upcoming stages’ behavior for safety and financial 

purposes. 

Peck (1969) suggests that back-analysis is positively linked to the observational 

method in geotechnical engineering. Observational method and optimization 

techniques for solving inverse problems are discussed in the following section. 

 

2.6. Observational Method 

When perilous ground movements are detected in a certain excavation, the need for 

approximating these movements arises (Marulanda, 2005). These approximations can 

be obtained through either similar experiences or semi-empirical methods (Clough and 

O’Rourke, 1990). Model simulation can also be used for estimation of the ground 

movements in excavations (Clough and Tsui 1974; Potts and Flourie 1984; Mana and 

Clough 1981; Whittle et al. 1993).   

Model simulations rely on the usage of numerical programs such as the FEM whereas 

semi-empirical methods partly include past performance data. Nonetheless, the 

application of a monitoring program that registers ground movements, and reactions 

of nearby structures is of utmost significance due to the uncertainties associated with 

soil properties, construction methods, and support system details. The monitoring 

program produces interpretations which are used to assess the performance of the 

construction and compares it with original design expectations. In case a substandard 

performance is observed, modifications to the construction and support system can be 
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made (Marulanda, 2005). This procedure is called the observational method (Peck 

1969) which is usually implemented in the engineering practice (Institution of Civil 

Engineers GB 1996).  

The observational method comprises of a design based on the most likely conditions 

coupled with estimates of behavior and a system monitoring performance through the 

construction process. Past projects can provide valuable information which would aid 

engineers, especially geotechnical engineers, in the design and construction of a new 

yet similar project. Hence, noting deformations in structures and soil surface 

settlements during an excavation construction provide useful information on the 

stress-strain response of the soil due to the fact that these deformations and settlements 

occur as a result of complex shearing of the soil surrounding the excavation 

(Marulanda, 2005). Knowledge from precedence characterizes a classic inverse 

analysis problem intending to understand the soil-stress response implied by field 

measurements. Ad-hoc approaches are frequently used to unravel this inverse problem 

whereby soil model parameters are adjusted to narrowly duplicate numerical analyses 

with field measurements. However, the ad-hoc methods for the model update are not 

adequately wide-ranging. (Marulanda, 2005) 

 

2.6.1. Optimization Techniques 

Gioda and Sakurai (1987); Ou and Tang (1994); Zentar et al. (2001); Calvello and 

Finno (2004) suggest a substitute to ad-hoc procedures in determining the solution of 

inverse problems and learning from precedence, named optimization techniques. If 

one is provided with a numerical model, unidentified properties of the material in the 

constitutive model are analytically tinkered with to diminish the discrepancy between 

numerical model estimations and the observational response. Optimization techniques 

can be quite helpful in model calibration although there are some setbacks. (Hashash 

et al., 2006). Moreira et al. (2013) state that optimization algorithms are used in the 
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back analysis in order to minimize the number of iterations and find the best results of 

parameters.  

Many authors combined inverse analysis with the use of different optimization 

techniques in their studies. Zentar et al. (2001) used back-analysis concept based on 

an optimization code SiDoLo (Simulation and identification of constitutive models) 

in order to minimalize the function indicating the discrepancy between experimental 

data and the in-situ test results. Finno and Calvello (2005) combined observational 

method and inverse modeling based on the Gauss-Newton method using UCODE 

(Poeter and Hill, 1998) computer code that is used for parameter estimation. 

Numerical analysis is used to optimize the FEM of a deep excavation in order to 

minimalize the observed and estimated horizontal displacements of Chicago clays. 

Rechea et al. (2008) compared the gradient-based method and genetic algorithm (GA) 

by simulating excavation support systems. Both synthetic and real excavation 

displacement results are used to demonstrate the performance of the algorithms. The 

reason for using synthetic excavation is to prevent the algorithms being affected by 

complexity and errors in in-situ measurements. The authors also want to show some 

of the findings to apply the approaches in the field by using a well-documented case. 

In spite of the high calculation costs, GA gives better solutions. On the other hand, the 

gradient method showed higher performance from the point of view of time. Shao and 

Macari (2008) studied a systematic process called “information feedback analysis” 

with the purpose of estimate excavation-induced ground deformations by using a 

combination of “downhill simplex method” and “the conjugate direction method” 

optimization algorithms in deep excavation case (Subway station in Shanghai City, 

China). The authors think that their study encourages the use of inverse-analysis-based 

“computer observational method” in practice. Another work done for learning deep 

excavation response is by Hashash et al. (2009) by comparing two inverse analysis 

techniques. The first technique GA is a parameter optimization method while the 

second technique SelfSim is a back-analysis method which bonds the finite element 

method with an unceasingly evolving material model (Ghaboussi et al., 1998). Two 
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techniques are compared for real deep excavation case in Chicago. They concluded 

that the accuracy performance of SelfSim is better in surface settlement prediction. 

GA predicts higher values of settlement. Miranda et al. (2011) applied two 

optimization techniques using the back-analysis concept in order to estimate soil 

parameters during the construction phase of an underground structure by using 3D 

numerical model. Classical optimization algorithm and the evolutionary optimization 

algorithm are used in their study. The performances of both approaches are found well 

by the authors. Many other papers have been published in the same field by using 

different optimization methods.    

Optimization methods used in geotechnical engineering can be separated into three 

main groups as deterministic optimization techniques, nature-inspired search methods 

(stochastic) and hybrid optimization techniques (Yin et al., 2018). Gradient-based 

algorithms and Nelder-Mead Simplex algorithms (Ledesma et al., 1996; Gens and 

Ledesma, 1996; Lecampion et al., 2002; Calvello and Finno, 2004; Finno and 

Calvello, 2005) are two main deterministic optimization techniques. Gradient-based 

methods such as the steepest descent, the conjugate gradient, and the Newton method 

can expedite the progression of optimization due to the use of gradient information. 

However, it requires a derivative calculation which may be hard to implement. 

Besides, the initial trial solutions may change the results (Finno and Calvello., 2005). 

According to Yin et al. (2018), gradient-based methods are insufficient for complex 

nonlinear problems. Gradient-based methods cannot be used when the objective 

function is non-differentiable, discrete or discontinuous. These shortcomings limit the 

use of deterministic optimization methods especially in complex engineering 

problems. Nature-inspired search methods which are also called stochastics, genetic 

programming, evolutionary algorithms and swarm intelligence (Arora, 2004). They 

are also called as metaheuristic methods since there is no assumption about the 

optimization problems and having huge search spaces. Metaheuristics are designed 

for large scale, complex and challenging problems (Yang, 2010). These methods have 

a capability of escaping from local optimum and can solve multiple-objectives 
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problems, mixed design variables and problems having uncertainness in the model 

(Arora, 2004). Particle swarm optimization (PSO), differential evolutions (DE), 

evolution strategy (ES), genetic algorithms (GA), etc. (Pal et al., 1996; Samarajiva et 

al., 2005; Goh, 1999; Levasseur et al., 2007, 2008, 2009, 2010; Rechea et al., 2008; 

Miranda et al., 2010; Papon et al., 2012; Hashash et al., 2010) are the most common 

stochastic optimization techniques. Metaheuristics are applicable to most real-life 

problems. Unlike conventional optimization techniques, which have speed and local 

optimality problems, hybrid optimization techniques show high performance for 

convergence speed (Tsai et al., 2004). Some of the cases that hybrid optimization 

techniques can be applied are the optimization of pile groups, geotechnical parameter 

identification, slope stability problems, etc. (Yin et al., 2018). Since stochastic 

methods have robust search ability, they can be combined in hybrid methods. In the 

geotechnical engineering field, the use of hybrid optimization techniques may increase 

in the future.   

More details about metaheuristic search methods and Particle Swarm Optimization 

used in this research are in the following section.  

 

2.6.1.1. Nature-inspired (Metaheuristic) Search Methods  

Nature-inspired methods are developed by imitating natural phenomena and they have 

been developed over the past 20 years. These search methods may appear to be a 

random technique to reach an optimum solution; however, it makes use of a natural 

optimization or intelligent heuristic way to lead the search for the optimum solution. 

The technique starts with a collection of design points which is called the population. 

The method then attempts to generate a better design point throughout each iteration 

of the algorithm using specific stochastic procedures.  

Stochastic search algorithms have recently been a highlight in solving adamant 

engineering optimization problems due to their apparent robust and efficient 

performance when compared to the deterministic algorithms (Saka and Dogan, 2012). 
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This is due to the fact that these methods travel in a restricted design domain randomly 

with the goal of reaching the optimum solution. Their objective is to proficiently 

explore the search space using certain governing mechanisms to provide an almost 

optimal solution if not a global optimum. They also exploit some approaches to evade 

getting stuck in limited areas of the search space. Additionally, they do not require an 

unambiguous affiliation between the objective function and the limitations. 

Metaheuristic methods are estimation techniques and there is no scientific evidence 

that the optimum answer obtained is the global one. Nonetheless, while they are not 

problem specific, they have demonstrated a highly effective and forceful way of 

procuring the solution of practical engineering design optimization problems with 

continuous as well as the discrete design variables.  

The literature suggests that the metaheuristic techniques are proficient and reliable to 

an acceptable degree. Their performance is not affected by the complexity of 

optimization problems (Saka and Dogan, 2012). Voss (2000), states that in complex 

engineering design optimization problems with continuous and discrete variables, 

metaheuristic algorithms often achieve better results than the traditional approaches 

of the branch, bound and dynamic programming. Moreover, metaheuristics are 

relatively more malleable when compared to classical mathematical programming 

techniques due to the fact that they tackle the optimization problem directly without 

imposing any condition such as expressing objective function or design constraints.    

The disadvantage of these algorithms is that they do not secure a global solution. 

However, this setback can be minimized by allowing the algorithm to run multiple 

times for longer periods (Arora, 2004).   

 

2.6.1.2. Particle Swarm Optimization (PSO) 

Swarm intelligence is a metaheuristic approach that is based on the collective behavior 

of insect swarm, bird flocking or fish schooling that is seen in nature. PSO turns this 

combined behavior of particles into a numerical optimization algorithm just like how 
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a swarm of bees works together to achieve a single optimum goal instead of the 

survival of the fittest idea.   

It falls under the class of swarm intelligence methods and it is also a population-based 

stochastic optimization procedure presented by Kennedy and Eberhart in 1995. PSO 

initiates its process with a randomly generated set of solutions call the initial 

population. The optimization process is then implemented by searching for the 

optimum solution by updating the generations.  

Considering other metaheuristic optimization methods, PSO has better search routine 

for some hard optimization problems with a faster solution (Kennedy and Eberhart, 

2001). PSO offers quick implementation since the algorithm needs adjustment of few 

parameters only. Since the gradient data obtained from the error function is not 

essential for PSO, it can be used in optimization problems where the gradient 

information is either unobtainable or time consuming to derive (Bergh, 2001). 

Contrasting to evolutionary optimization techniques such as GA, binary number 

encoding is not a requirement for this algorithm making it simpler in terms of 

implementing it digitally. PSO has been implemented successfully on a number of 

problems such as mechanical and structural optimization problems, artificial neural 

network training and fuzzy system control (Arora, 2004).  

Nguyen et al., (2016); Zhang et al., (2013); Knabe et al., (2013); Mulia A., (2012); 

Knabe et al., (2012); Sadoghi et al, (2011); Zhang et al., (2009); Meier et al., (2008); 

and Schanz et al., (2006) studied inverse analysis using Particle Swarm Optimization 

with the intention of parameter identification of constitutive models.   
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CHAPTER 3  

 

3. BACK ANALYSIS PLATFORM 

 

3.1. Introduction 

The stages of metaheuristics based back analysis platform in order to estimate 

geotechnical parameters based on the field measurements in deep excavations are 

explained in this chapter. The aim is to calibrate the soil parameters for selected 

construction stages by using back-calculation, thus to predict upcoming stages’ 

behavior using calibrated parameters. Updated field data are added into the platform 

at every stage, therefore the predictions become more accurate for subsequent 

excavation phases.  

Development of the back-analysis platform and its application to deep excavation 

problems is described in detail in the following sections.   

 

3.2. Development of Back-analysis Platform for Deep Excavation-induced 

Movements 

Back-analysis platform established in this thesis consists of followings:  

(1) numerical modeling of deep excavation using the finite element method (FEM) in 

order to calculate the geo-structure’s responses, 

(2) implementation of Particle swarm optimization (PSO) algorithm with the intention 

of modification of the soil material parameters in the light of observed field 

measurements.  

In a typical deep excavation problem, construction sequence and geo-structure’s 

response are defined by the numerical model. The deep excavation is first modeled by 
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taking the construction scenario into consideration in back-analysis platform. The 

initial design parameters are used in the first run. Back analysis platform enables 

multiple input parameters to be optimized simultaneously through the iterations. At 

each iteration, the optimization code compares the computed displacements and the 

measured field data. Iterative process repeats until the stopping criteria are met. The 

back-analysis procedure is shown in Figure 3-1.   

 

Figure 3.1. Back Analysis Platfrom Flowchart 

 

In this research, the commercial finite element program PLAXIS is used to model the 

deep excavation and to compute the horizontal displacements. The discrepancy 

between computed displacements and the measured field data is minimalized by the 

PSO algorithm, which is coded in Python 3.6.0 software. The optimization is 
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performed by coupling PLAXIS and Python code developed specifically for this 

purpose. 

 

3.2.1. Finite Element Analysis Configuration  

FEM enables solving the equilibrium equations of the geostructures through the 

discretization and provides the ability to model the complex nonlinear behavior of the 

soil through various geometries with diverse boundary limits and constitutive models. 

Plane strain assumption is made in 2D FEM while disregarding possible 3D effects on 

the results. The plane strain model implies that the strains in the longitudinal axis (out 

of plane direction) are ignored (εz = 0). This model is used where the length is 

considerably greater than the width of the excavation. The plane strain assumption is 

effective in the analysis of deep excavation and generally gives correct estimations of 

lateral deflections, especially away from the corners. Creating the geometry by 

considering the construction scenario is the first step of modeling the deep excavation. 

Coordinates of soil layers, structural elements (i.e. wall, anchors, struts), and 

excavation levels are entered. Next step is the definition of soil stratigraphy and 

properties of structural elements. Material parameters and interfaces are assigned to 

corresponding soil and structural elements. The interfaces are used to model the 

interaction between the soil and the wall and enable indication of the reduced wall 

friction as compared with soil friction. Strength reduction factor interface (Rinter) value 

is entered in PLAXIS, which refers to the strength of the soil to the interface strength 

and is calculated using equation 3-1. The lowest value of Rinter=0.01 which refers to 

non-friction between the soil and the wall, whereas the upper bound value of Rinter=1.0 

which means the soil and the wall is totally in contact.     

Rinter = 
𝑡𝑎𝑛Ø𝑤𝑎𝑙𝑙

𝑡𝑎𝑛Ø𝑠𝑜𝑖𝑙
                     (3-1) 

The soil is modeled as a continuum and decoupled into meshes (the specified number 

of elements) in different shape and size. Meshes are linked at nodal points, and the 
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stresses and deformations are computed at these points. Size of the mesh is not uniform 

throughout the model such that they become finer at soil-structure interaction points 

as shown in Figure 3-2.  

 

 

Figure 3.2. Generated Mesh Example of Deep Excavation with Supported Wall 

 

Finally, in the calculation stage, the construction steps of deep excavation are defined 

in the software. The construction scenario is divided into phases. For instance, the first 

phase of the model includes the wall installation to the anticipated depth and the 

activation of external loads. At each phase, the soil is progressively extracted until the 

final excavation depth. In PLAXIS, this procedure is known as staged construction 

where the construction activities are defined step by step. Unless the failure has 

occurred, the calculation stage ends, and the results of the analysis can be viewed. 

Total displacements, total strains, effective stresses, total stresses, pore water 

pressures and internal forces of the structural elements results can be viewed in the 

results.   
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The successful use of FEM depends on the constitutive model selection. Constitutive 

models for soil behaviors are discussed in section 2.4.1.1. The behavior of soil layers 

is taken into account using Hardening-soil (HS) model in this research. Considering 

the theory of plasticity, including soil dilatancy, and yield cap make the HS model 

more thematic. This model is an elastoplastic type of hyperbolic model, expressed in 

the framework of shear hardening plasticity. Due to the fact that the stiffness of soil 

for isotropic loading, unloading/reloading, and shearing can be automatically provided 

by the HS model, it gives more accurate results for calculating horizontal 

displacements. The basic parameters used in the HS model is given in Table 3-1, and 

the formulation of the HS model is shown in Figure 3-3. 

 

Table 3.1. Parameters of Hardening Soil Model 

Parameter Description 

c’ref Effective cohesion 

’ Effective angle of friction 

 Angle of dilatancy 

𝐸50
𝑟𝑒𝑓

 Secant stiffness in standard drained triaxial test 

𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 Tangent stiffness for primary oedometer loading 

𝐸𝑢𝑟
𝑟𝑒𝑓

 Unloading-reloading stiffness (Eur=3E50) 

ur Poisson’s ratio for unloading-reloading (ur=0.2) 

K0 K0 value for normal consolidation (K0=1-sin) 

m Power for the stress-level dependency of stiffness 
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Figure 3.3. Hyperbolic Stress-Strain relation in Primary Loading for a Standard Drained Triaxial Test 

(PLAXIS 2D User’s Manual, 2010) 

 

Ei = Initial Stiffness (Young’s) Modulus 

for  

q < qf ; - ε = 
1

Ei 
 

𝑞

1−q/qa 
                   (3-2) 

Ei = 
2𝐸50

2−𝑅𝑓
                                            (3-3) 

Rf = 
𝑞𝑓

𝑞𝑎
 =0.9                                           (3-4) 

The failure stress is defined by equation 3-8. 

qf = (𝑐′𝑐𝑜𝑡Ø′-σ 3
′

 ) 
2𝑠𝑖𝑛Ø′

1−𝑠𝑖𝑛Ø′                                       (3-5) 

The stress dependency for secant stiffness (E50) and unloading/reloading (Eur) 

modulus can be expressed by equation 3-6. 

E50 = 𝐸50
𝑟𝑒𝑓

(
𝜎3

′+𝑎

𝑃𝑟𝑒𝑓+𝑎
)𝑚                   (3-6) 

or             
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E50 = 𝐸50
𝑟𝑒𝑓

(
𝑐′𝑐𝑜𝑠Ø′−𝜎3

′𝑠𝑖𝑛Ø′

𝑐′𝑐𝑜𝑠Ø′+𝑃𝑟𝑒𝑓𝑠𝑖𝑛Ø′)
𝑚                           (3-7) 

Differently, oedometer modulus Eoed can be expressed by equation 3-8. 

Eoed = 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

(
𝑐′𝑐𝑜𝑠Ø′− 

𝜎3
′

𝐾0
𝑠𝑖𝑛Ø′

𝑐′𝑐𝑜𝑠Ø′+𝑃𝑟𝑒𝑓𝑠𝑖𝑛Ø′)
𝑚                 (3-8) 

where, 

Pref = Pa = 100 kPa (the atmospheric pressure) 

σ3
′  = confining pressure 

a = 
𝑐

tan Ø′                          (3-9) 

m = 1 for clays and 0.5 for sands (Gouw, 2012).  

 

3.2.2. Particle Swarm Optimization Algorithm 

Swarm intelligence is a metaheuristic approach that is based on the collective behavior 

of insect swarm, bird flocking or fish schooling that is seen in nature. Particle swarm 

optimizer (PSO) turns social behaviors of particles such as bird flocking or fish 

schooling into a numerical optimization algorithm just like how a swarm of bees works 

together to achieve a single optimum goal instead of the survival of the fittest idea. 

The PSO computational algorithm is described through the following terms:  

Particle is used for identification of an individual in the swarm. Particle Position is the 

coordinates of the particle and denotes a design point (a vector of design variables). 

Particle Velocity simply answers the question “What is the moving rate of particles in 

the search space?” Swarm Leader presents the particle with the best position. It 

denotes a particle position (design point) having the lowest fitness value.    

Fitness value is the difference between computed displacements and the measured 

field data. It represents the function that is being iteratively minimized during 
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optimization process by modification of soil parameters between predefined 

boundaries. The quality of solution is evaluated by defining the fitness function and 

different combination of fitness function is possible (Zhao and Yin, 2009; Tang et al, 

2006; Vardakos, 2007; Knabe et al., 2013).  

 The fitness value for deep excavation problem in this research is calculated using 

equation 3-10. 

Fitness (f) = √∑ (𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 
𝑖𝑛

𝑖=1 − 𝑥𝑓𝑒𝑚 
𝑖10

)10                                          (3-10) 

where, n is the number of selected points on the model (10 points in this study) and x 

is the lateral deflection.  

The number of selected points on the model should not be chosen arbitrarily. The 

measured points in the field that are compared should be chosen according to FE mesh 

points since the displacements can only be computed at these mesh nodes.  

In the PSO algorithm, each particle has a location (design point) which signifies a 

potential solution to an optimization problem. Each particle is specified by its own ID 

“i”. The following symbols Xi refers to the present position of the particle, and Vi is 

the present velocity of the particle.    

Each particle in the swarm records its own present position and its finest position 

gained during the algorithm. The best position for the ith particle is referred as (pBest)i. 

The best position that has been reached for all the particles in the swarm together is 

referred as gBest.   

The f symbol refers to the fitness function that needs to be minimized and k is the 

iteration number. Equation 3-11 is used in order to update the personal best position.  

(pBest)i  (k+1)= {
(pBest)𝑖 (k)           𝑖𝑓 𝑓(𝑥𝑖(𝑘 + 1)) ≥ 𝑓((pBest)𝑖 (k))

𝑥𝑖  (k + 1)               𝑖𝑓 𝑓(𝑥𝑖(𝑘 + 1)) < 𝑓((pBest)𝑖 (k))
         (3-11) 
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Equation 3-11 states that if the new fitness value is not better than pBest, keep the 

previous pBest, if the new fitness value is better than pBest, set new position as pBest. 

At each iteration of the algorithm, each particle’s velocity is updated according to its 

best and swarm’s best position as shown in equation 3-12. This process is the 

accelerating the particle to the best-known position. 

𝑣𝑖(k + 1)=w∗ 𝑣𝑖(k) + 𝑟1 ∗ 𝑐1[(pBest)𝑖(k)- 𝑥𝑖(k)]+ 𝑟2 ∗ 𝑐2[(gBest)𝑖(k) - 𝑥𝑖(k)]  

(3-12) 

where w is the inertia weight that is used in order to avoid the new velocity being 

affected by the previous velocity and generally less than 1. r1 and r2 are the arbitrarily 

selected numbers between 0 and 1. c1 and c2 are constant numbers that help to direct 

the particles to better position and generally equal to 2 (Knabe et al., 2013). 

Equation 3-13 is used in order to update the new position of the particle.  

𝑥𝑖  (k + 1) = 𝑥𝑖  (k) + 𝑣𝑖 (k + 1)              (3-13) 

Equation 3-13 states that the updated position of each particle is calculated by adding 

new velocity to the current position.  

The procedure presented above is repeated until the stopping criteria are satisfied. 

Figure 3-4 shows the vectorial drawing of the position update process. Figure 3-5 

illustrates the PSO algorithm flow chart. 
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Figure 3.4. Position Update Process using PSO 

 

 

Figure 3.5. PSO Algortihm Flow Chart 
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The above framework is developed as a coupled software implementation where the 

Plaxis is run to obtain the FEM based realistic field deflections as realistically as 

possible, and PSO is then run to obtain the minimize the differences of the calculated 

deflections.  
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CHAPTER 4  

 

4. CASE STUDY:  

DEEP EXCAVATION OF MAIDAN OFFICE – HOME OFFICE - SQUARE 

 

4.1. Introduction 

In the present chapter, the application and the performance of the developed back 

analysis platform is explained and tested through a deep excavation case study, named 

Maidan Office-Home Office-Square project constructed in Ankara/Turkey. General 

information about Maidan Office-Home Office-Square Project including geological 

and geotechnical information, construction and monitoring processes are given in 

Section 4.2. Finite element model of deep excavation including detailed parameter 

settings is studied in Section 4.3. The application and the performance of Particle 

Swarm Optimization (PSO) algorithm for modification of the soil parameters related 

to observed field data are discussed in Section 4.4. Computed deformations of 

upcoming stages with back calculated parameters are compared with field data in 

order to see the prediction performance of the algorithm in Section 4.5. Finally, results 

and comparisons are presented in Section 4.6.   

 

4.2. Project Description 

Maidan Office-Home Office-Square Project was constructed in 2017 which includes 

3 blocks of a 15-story commercial building with 3 basement levels, and a block of a 

car park with 3 basement levels. The project is in Ankara, which has the second highest 

population in Turkey with 5.5 million. The traffic density and structuring rate is very 

high at the location of the project, which necessitates deep excavation for many 

purposes such as car parking and water distribution networks. The location of the 

project is illustrated in Figure 4-1.  
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Figure 4.1. The location of the Project (retrieved from soil investigation report “Ankara İli, Çankaya 

İlçesi, 25389 Ada, 3 Parsel Jeolojik – Jeoteknik Etüt Raporu” by Toker Drilling and Construction 

Engineering Consultancy CO) 
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4.2.1. Geological and Geotechnical Information 

According to soil investigation report, named “Ankara İli, Çankaya İlçesi, 25389 Ada, 

3 Parsel Jeolojik – Jeoteknik Etüt Raporu” and prepared by Toker Drilling and 

Construction Engineering Consultancy CO on May 2015, at the top of the excavation 

site, alluvial deposit up to 10 m in thickness which are deep brown – grey in color and 

includes medium-stiff / medium dense clay / gravelly clay / silty clay / sandy clayey 

gravel zones underlain by partly silty Gölbaşı Formation which  are reddish fawn 

colored includes fine gravels, very stiff-hard clay zones. This clay layer partly includes 

very dense gravelly clayey sand / clayey gravel / clayey sand.  

Geotechnical information such as idealized soil profile, initial estimations of 

geotechnical parameters of the soil and ground water table are determined in the light 

of laboratory and field tests. 17 boreholes, 559 m of total boring length, have been 

drilled in deep excavation site including standard penetration tests (SPT) and 

pressuremeter tests (PMT) boreholes. Initial design parameters of soil material are 

given in Table 4-1, which are determined using empirical correlations given in 

Equations 4.1 to 4.3, Table 4.2, Figures 4.2 and 4.3, are in the range of laboratory test 

findings (see Appendix C for laboratory test results).   

 

Table 4.1. Initial Design Parameters of Soil Materials 

Layer 

Average 

SPT-N 

Value 

PI 

(Plasticity 

Index) 

Undrained 

Shear 

Strength 

Cu (kPa) 

c’ 

(kPa) 

Ø’ 

(degree) 

Deformation 

Modulus Es 

(MPa) 

Alluvial 

Deposit 

Clay 

Layer 

24 40 120 10 25 35 

Hard 

Clay 

Layer 

50 45 250 20 26 55 
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Cu = f1 * N60     (Stroud, 1974)                 (4-1) 

Es = 100 – 300 * Cu    (Duncan & Buchignani, 1976)                                    (4-2) 

c’ = α’ * tan Ø’   (Lunne, 1997)                                                            (4-3) 

where α’ is in between 20-50 for hard clays.  

 

Table 4.2. α’ – tanØ’ Relationship (Lunne, 1997) 

 

 

Figure 4.2. Ø’-PI Relationship (Gibson, 1953) 
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Figure 4.3. SPT-N60 -Cu – PI Relationship (Stroud,1974) 

 

It took 100 days to complete the deep excavation construction, between 21.07.2015 – 

31.10.2015. Total of 531 piles, having a total of 7477 m length, Ø60/100 bored piles 

were constructed. Their depth changed between 12.2m and 15.2 m. In addition, total 

of 696 prestressed ground anchorages having 14,109 m total length were constructed 

as horizontal supports. The excavation site was well instrumented with 10 

inclinometers in order to monitor the horizontal displacements of the pile wall 

periodically. Instrumentation plan and project layout are shown in Figure 4-4.  
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Figure 4.4. Project Layout and Instrumentation Plan (retrieved from soil investigation report “Ankara 

İli, Çankaya İlçesi, 25389 Ada, 3 Parsel Jeolojik – Jeoteknik Etüt Raporu” by Toker Drilling and 

Construction Engineering Consultancy CO) 
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In the scope of this thesis, deep excavation around C Block is studied. C block is a 15-

story commercial building with 3 basement levels. The idealized soil profile is 

determined using SK-14 boring log. Figure 4-5 presents SPT-N values obtained from 

the SK-14 and a geological section of the soil underneath the C Block. 
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Figure 4.5. SPT-N values of SK-14 and Geological Section up to 40 m (retrieved from Toker Drilling 

and Construction Engineering Consultancy CO) 
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4.2.2. Construction and Monitornig 

A typical cross section and the deep excavation geometry with a support system are 

shown in Figure 4-6 in details. Ø60/100 bored piles were designed as structural 

elements which are 15.2 m deep. The wall was supported by three levels of 3x0.6” 

prestressed ground anchors. Drill diameter of anchorages is 140 mm. The final 

excavation depth was 9.8 m from the pile cap and 11.6 m from the original ground 

level. 1.8 m of the slope was designed between the original ground level and the top 

of the pile. 

 

 

Figure 4.6. Ground Profile and Deep Excavation Geometry 

 

Horizontal displacements of the studied case are monitored by Inclinometer #2. In the 

light of these displacement measurements, optimization takes place with the intention 

of calibration of the soil material parameters. The cumulative deflection versus depth 
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plot during 7 weeks of Inclinometer #2 is shown in Figure 4-7. In inclinometer 

readings, the deflection at the bottom is fixed to zero and the deflections are taken 

relative to this point cumulatively from bottom to top. The maximum cumulative 

movements are observed at the top of the pile and the deflection reached equilibrium 

after 7 weeks (Stage 5) as it can be seen from the figure. 

 

Figure 4.7. Inclinometer #2 Cumulative Readings  
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4.3. Finite Element Model 

The commercial finite element program PLAXIS is used to model the deep excavation 

and to compute displacements of the wall. The model creation started by defining 

project properties as illustrated in Figure 4-8. The procedure summarized in Chapter 

3.2.1 was followed in order to model the deep excavation.     

 

 

Figure 4.8. Numerical Model Properties 

 

Constitutive parameters of soil layers are identified using Hardening-Soil model in 

this thesis. In Hardening soil model, the following material parameters must be 

defined for each soil layer: γ, c, Ø, 𝐸50
𝑟𝑒𝑓

, 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

, 𝐸𝑢𝑟
𝑟𝑒𝑓

, Rinter, m. Three parameters (c, Ø, 

𝐸50
𝑟𝑒𝑓

) which are having a weighty effect on a horizontal deflection for two clay layers 

are calibrated during an optimization process. Table 4-3 shows the search range of 

parameters that are calibrated by the optimization algorithm. The rest of the 
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parameters were directly taken from the geotechnical investigations.  Unit weight of 

top alluvial deposit clay layer and hard clay layer are taken as 19 kN/m3 and 19.5 

kN/m3 respectively using laboratory test results retrieved from Toker Drilling and 

Construction Engineering Consultancy CO. Strength reduction factor interface (Rinter) 

value is taken as 0.7 for both soil layer. “m” values are taken as 1 since both layers are 

clay layer (Tjie-Liong, 2014). Since 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 parameter is internally adjusted in PLAXIS, 

it cannot be optimized by back analysis (Calvello and Finno, 2004). The value of 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

 

is taken as the value of 𝐸50
𝑟𝑒𝑓

. Also, the value of 𝐸𝑢𝑟
𝑟𝑒𝑓

is taken as 3 times of 𝐸50
𝑟𝑒𝑓

 value 

(Tjie-Liong, 2014). The finite element mesh is shown in Figure 4-9.   

 

Table 4.3. Search Range of Optimized Parameters 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
40 – 7.5 29 - 24 10 - 3 

Hard Clay Layer 100 - 30 30 - 24 25 - 10 
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Figure 4.9. Finite Element Mesh 

 

Wall structures are defined by plate elements in PLAXIS 2D. C25/30 type of concrete 

is used in the construction of piles which has the modulus of elasticity of 30.000 MPa.  

A = 𝜋𝑟2;                       (4-4) 

𝐼 = 𝜋𝑟4/4                               (4-5) 

for Ø60/100 piles 

r = 0.3 m and s = 1m 

EA / s = 8.48 x 106 kN/m; and 

EI / s = 1.91 x 105 kN/m2/m 

Prestressed anchors are defined by anchor and embedded pile row elements in 

PLAXIS 2D. For the free length of anchors 3x0.6” type of anchor is used in the 

construction. The modulus of elasticity of steel is 210,000 MPa, and the nominal steel 

area of 7 wire strand 6” is 139 mm2. For the bond length of anchors, C16 type of 

concrete is used in grout construction which has the modulus elasticity of 27,000 MPa 
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and unit weight (γ) of 24 kN/m3. The diameter of the grout hole is designed as 14 cm 

and the anchor spacing is 2 m.  

Afree = 3 x 139 = 417 mm2  

EAfree = 8.76 x 104 kN 

for anchor capacity of 400 kN/m2 and the bond length of 8 m, allowable skin 

resistance; 

Ttop, max = 50 kN/m 

Another important parameter in finite element modeling is to determine the level of 

ground water. Gouw (2012) states that improper modeling of ground water causes 

uncertainties in numerical analysis. According to soil investigation report, ground 

water was encountered in SK-14 borehole at depths between 2.5 m to 2.8 m below the 

existing ground level. However, it was stated that high potential of ground water was 

not observed in the site, and existing water groups can be drained by pumps during 

the excavation process. Therefore, drained conditions and long-term strength 

parameters (c’, Ø’, E’) have been used in numerical analysis.  

The structural element has been designed as an intermittent pile wall in this study. 

Permeable walls cause water drawdown on the unexcavated part. Especially for 

intermittent pile walls in clays and rocks, ground water is drained more in unexcavated 

part. Figure 4-10 shows the ground water level representation and ground water flow 

for the final calculation phase in the analysis.  
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Figure 4.10. (a) Groundwater Level Definition; (b) Groundwater Flow through the Pile 

 

In the calculation step, the construction stages of excavation are defined in PLAXIS 

2D. The finite element model consists of 12 calculation phases, which are shown in 

Figures 4.11 to 4.23.  

 

• The initial phase shows the initial conditions of the field. Two different clay 

layers and the ground water table can be seen from the Figure 4.11.  
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Figure 4.11. Initial Phase 

 

• Phase 1: 1.8 m of slope (1:1) was excavated and 15.2 m length, Ø60/100 bored 

concrete pile was installed. 20 kPa surcharge load (construction vehicles and 

materials, and surrounding buildings) was activated.   

 

 

Figure 4.12. Phase 1 
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• Phase 2: 1st excavation to a depth of -1.50 m was activated. 

 

 

Figure 4.13. Phase 2 

 

• Phase 3: 2nd excavation to a depth of -2.50 m was activated. 

 

Figure 4.14. Phase 3 
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• Phase 4: 1st row prestressed anchorage was activated.   

 

 

Figure 4.15. Phase 4 

 

• Phase 5: 3rd excavation to a depth of -4.00 m was activated. 

 

Figure 4.16. Phase 5 
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• Phase 6: 4th excavation to a depth of -5.00 m was activated. 

 

 

Figure 4.17. Phase 6 

• Phase 7: 2nd row prestressed anchorage was activated.   

 

 

Figure 4.18. Phase 7 
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• Phase 8: 5th excavation to a depth of -6.50 m was activated. 

 

 

Figure 4.19. Phase 8 

• Phase 9: 6th excavation to a depth of -8.00 m was activated. 

 

Figure 4.20. Phase 9 
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• Phase 10: 3rd row prestressed anchorage was activated.   

 

 

Figure 4.21. Phase 10 

• Phase 11: 7th excavation to a depth of -9.00 m was activated. 

 

 

Figure 4.22. Phase 11 
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• Phase 12: 8th excavation to a depth of -9.80 m was activated. 

 

Figure 4.23. Phase 12 

 

Table 4-4 summarizes the construction of deep excavation scenario by indicating 

construction stages and corresponding calculation phases. As can be seen from this 

Table, 5 construction stages are selected in order to compare the computed 

displacements by FEM and corresponding inclinometer readings. The created 

numerical model is then used for the PSO algorithm.  
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Table 4.4. Construction Stages and Calculation Phases in Numerical Model 

 

 

4.4. Application and the Performance of Particle Swarm Optimization 

The purpose of this part is to calibrate 6 soil parameters (𝐸50
𝑟𝑒𝑓

, Ø’ and c’ref) for two 

clay layers in the light of continuously entered field measurements assuming that the 

factual observed field measurements and well represented finite element model. With 

this intention, a well-known optimization algorithm Particle swarm optimization 

(PSO) was coded, which is used to fit the observed field measurements and FEM 

results. The procedure summarized in Chapter 3.2.2 was followed in order to apply 

PSO. 40 particles are used in the swarm and 20 maximum number of iterations are 

chosen during the analyses. Although 5-10 iterations are enough for PSO method to 

work well (Gedik, 2018), the maximum iteration number is set to 20 in order to see 

the performance of the algorithm. Inertia weight w is selected as 0.99 and as Knabe 

(2013) suggests, velocity constants c1 and c2 are selected as 2. The algorithm 

initializes the swarm of particles with random positions and velocities. PLAXIS 

calculates the lateral deformations at ten predetermined points for each 40 particles. 

Fitness values are calculated for each particle using Equation 3-1. The lowest fitness 

value becomes gBest for that iteration. After updating velocities and positions of the 

particles using Equations 3-12 and 3-13, new parameter sets are generated for the next 

Description Calculation Phase Construction Stage

At-rest (Before Construction) 0 Initial Conditions

 Slope excavation

Construction of wall

2 Excavate until -1,50 m

3 Excavate [-2,50 m] (Stage 1)

4 First row anchorage prestressing

5 Excavate [-4,00 m]

6 Excavate [-5,00 m] (Stage 2)

7 Second row anchorage prestressing

8 Excavate [-6,50 m]

9 Excavate [-8.00m] (Stage 3)

10 Third row anchorage prestressing

11 Excavate [-9,00 m] (Stage 4)

12 Excavate [-9,80 m] (Stage 5)

Wall Installation 1

Deep Excavation
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iteration. The same procedure is repeated for 20 iterations starting from the calculation 

of deformations at ten predetermined points for 40 new particles. Parameters with the 

best fitness value, which gives the minimum difference between inclinometer 

readings, and results estimated using PLAXIS are the optimized parameters.  

The developed back-analysis platform is run for each stage, and parameters which 

give the lowest fitness value are found using the inclinometer results of the 

corresponding stage. Then, forward calculations with obtained parameters are 

performed to predict the upcoming stages’ lateral deformations in order to see the 

performance of the back-analysis platform. With this, 6 soil material parameters are 

obtained in the light of inclinometer readings at each back-analysis run.  

Reaching the maximum number of iterations is the stopping criteria for the 

optimization algorithm. Besides, there must be an acceptance criterion for the 

algorithm. It is considered that there may be measuring errors while taking 

inclinometer readings. The tolerance for the difference between inclinometer readings 

and results estimated using PLAXIS at 10 points is selected as 1.5 mm to overcome 

potential measurement errors. The corresponding maximum fitness value is calculated 

as 0.0019 m. Fitness value lower than 0.0019 is accepted as a feasible solution for this 

specific problem. Fitness values calculated by using initial design parameters are 

0.0027; 0.0029; 0.0021; 0.0027 and 0.0096 for stages 1, 2, 3, 4 and 5 respectively. 

Results prior to any optimization and the results after each optimization process are 

presented in the following parts. Forward calculations and conformity with 

inclinometer measurements are also shown at the end of each run. 

4.4.1. Initial Design Performance 

Visual examination is the simplest way to demonstrate the difference between the 

computed and the measured results. Figure 4-24 illustrates the visual conformity 

between the inclinometer readings and FEM computed lateral deflections by initial 

design parameters for the selected five construction stages. The figures show that the 

computed deflections are lower than the inclinometer readings especially in the upper 
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clay layer for the first three stages. On the other hand, the initial design parameters are 

underestimated so that the computed deflections are considerably larger than the actual 

deflections which cause delusive deflection profiles in the final stage. This result 

shows that the site investigations and laboratory tests did not reflect the field 

conditions properly in this specific problem assuming that the factual observed field 

measurements and well represented finite element model. 
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Figure 4.24. Measured versus Computed Deflections: Initial Design Parameters 
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4.4.2. Optimization based on Stage 1 Observations 

It took approximately 8 hours and 30 minutes to complete the optimization for Stage 

1. Figure 4-25 illustrates the evolution of the particle’s best position (pBest) for 

different iterations of the optimization process. Figure 4-25(a-d) show the best 

positions of particles at 1st, 10th, 15th and 20th iterations. These graphs illustrate the 

convergence of the particles towards the optimum solution. As can be seen from the 

graphs, the convergence is dramatic between the 1st and the 10th iterations. There is a 

no significant difference between 15th and 20th iterations. The optimum solution is 

found in the early iterations. Furthermore, gBest values of the best particle in the 

swarm in 20 iterations is shown in Figure 4-26. As it is seen in this Figure, gBest 

values decrease progressively towards the solution. The fitness value is 0.00104 at the 

end of the optimization process, which is considered a feasible solution.   

 

 

Figure 4.25. Evolution of Particle’s Best Positions pBest in Different Iterations for Stage 1: (a) 1st 

iteration; (b) 10th iteration; (c) 15th iteration;(d) 20th iteration 
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Figure 4.26. gBest Fitness Values of Best Parameter in 20 Iterations for Stage 1 

Figure 4-27 illustrates the visual conformity between the inclinometer readings and 

FEM computed lateral deflections by optimized parameters based on Stage 1 

observations. Optimization produced a good fit between the measured and computed 

deflections. The back calculated parameters by PSO are given in Table 4-5.  

 

Figure 4.27. Measured versus Computed Deflections: Parameters Optimized based on Stage 1 

Observations 
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Table 4.5. Optimized Parameters after Stage 1 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
22.9 26.8 6.2 

Hard Clay Layer 61.2 25.2 10 

 

4.4.3. Optimization based on Stage 2 Observations 

Optimization of Stage 2 took approximately 12 hours. Figure 4-28(a-d) show the best 

positions of particles at 1st, 10th, 15th and 20th iterations. The decrease of gBest values 

for 20 iterations is shown in Figure 4-29. The fitness value is 0.00135 at the end of the 

optimization process which is considered as feasible solution.   

 

 

Figure 4.28. Evolution of Particle’s Best Positions pBest in Different Iterations for Stage 2: (a) 1st 

iteration; (b) 10th iteration; (c) 15th iteration;(d) 20th iteration 
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Figure 4.29. gBest Fitness Values of Best Parameter in 20 Iterations for Stage 2 

 

Figure 4-30 illustrates the visual conformity between the inclinometer readings and 

FEM computed lateral deflections by optimized parameters based on Stage 2 

observations. Optimization produced a good fit between the measured and computed 

deflections. The back calculated parameters by PSO are given in Table 4-6.  

 

Figure 4.30. Measured versus Computed Deflections: Parameters Optimized based on Stage 2 

Observations 
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Table 4.6. Optimized Parameters after Stage 2 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
22.5 26.0 6.1 

Hard Clay Layer 74.2 27.9 10.7 

 

4.4.4. Optimization based on Stage 3 Observations 

It took approximately 15 hours and 30 minutes to complete the optimization for Stage 

3. Figure 4-31(a-d) show the best positions of particles at 1st, 10th, 15th and 20th 

iterations. The decrease of gBest values for twenty iterations is shown in Figure 4-32. 

The fitness value is 0.00128 at the end of the optimization process which is considered 

as feasible solution.   

 

 

Figure 4.31. : Evolution of Particle’s Best Positions pBest in Different Iterations for Stage 3: (a) 1st 

iteration; (b) 10th iteration; (c) 15th iteration;(d) 20th iteration 
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Figure 4.32. gBest Fitness Values of Best Parameter in 20 Iterations for Stage 3 

 

Figure 4-33 illustrates the visual conformity between the inclinometer readings and 

FEM computed lateral deflections by optimized parameters based on Stage 3 

observations. Optimization produced a good fit between the measured and computed 

deflections. The back calculated parameters by PSO are given in Table 4-7.  

 

Figure 4.33. Measured versus Computed Deflections: Parameters Optimized based on Stage 3 

Observations 
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Table 4.7. Optimized Parameters after Stage 3 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
11.3 26.6 3.8 

Hard Clay Layer 82.4 28.0 11.2 

 

4.4.5. Optimization based on Stage 4 Observations 

It took approximately 18 hours and 30 minutes to complete the optimization for Stage 

4. Figure 4-34(a-d) show the best positions of particles at 1st, 10th, 15th and 20th 

iterations. The decrease of gBest values for twenty iterations is shown in Figure 4-35. 

The fitness value is 0.00130 at the end of the optimization process which is considered 

as feasible solution.   

 

 

Figure 4.34. Evolution of Particle’s Best Positions pBest in Different Iterations for Stage 4: (a) 1st 

iteration; (b) 10th iteration; (c) 15th iteration;(d) 20th iteration 
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Figure 4.35. gBest Fitness Values of Best Parameter in 20 Iterations for Stage 4 

 

Figure 4-36 illustrates the visual conformity between the inclinometer readings and 

FEM computed lateral deflections by optimized parameters based on Stage 4 

observations. Optimization produced a good fit between the measured and computed 

deflections. The back calculated parameters by PSO are given in Table 4-8.  

 

Figure 4.36. Measured versus Computed Deflections: Parameters Optimized based on Stage 4 

Observations 
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Table 4.8. Optimized Parameters after Stage 4 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
8.4 25.9 6.9 

Hard Clay Layer 85.1 28.8 11.5 

 

4.4.6. Optimization based on Stage 5 Observations 

It took approximately 20 hours to complete the optimization for Stage 5. Figure 4-

37(a-d) show the best positions of particles at 1st, 10th, 15th and 20th iterations. The 

decrease of gBest values for twenty iterations is shown in Figure 4-38. The fitness 

value is 0.00183 at the end of the optimization process which is considered as feasible 

solution.   

 

Figure 4.37. Evolution of Particle’s Best Positions pBest in Different Iterations for Stage 5: (a) 1st 

iteration; (b) 10th iteration; (c) 15th iteration;(d) 20th iteration 
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Figure 4.38. gBest Fitness Values of Best Parameter in 20 Iterations for Stage 5 

 

Figure 4-39 illustrates the visual conformity between the inclinometer readings and 

FEM computed lateral deflections by optimized parameters based on Stage 5 

observations. Optimization produced a good fit between the measured and computed 

deflections. The back calculated parameters by PSO are given in Table 4-9.  

 

Figure 4.39. Measured versus Computed Deflections: Parameters Optimized based on Stage 5 

Observations 
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Table 4.9. Optimized Parameters after Stage 5 

 𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) ’ (degree) c’ref (kPa) 

Alluvial Deposit 

Clay Layer 
9.0 26.2 5.3 

Hard Clay Layer 91.9 28.8 15.8 

 

4.5. Forward Predictions with Optimized Parameters 

In this part of the thesis, the prediction performance of optimized parameters is 

examined by applying a forward calculation process for each stage. For this purpose, 

back calculated parameters are fed to the PLAXIS as inputs to obtain the next stage’s 

lateral deformations at ten predetermined points. The comparison of measured 

inclinometer readings and the predicted horizontal deflections for each stage are 

presented.  

4.5.1. Horizontal Displacement Prediction of Stage 2 

Back calculated parameters obtained from Stage 1 is used to predict the horizontal 

deflection behavior of Stage 2. The comparison of measured inclinometer readings 

and the predicted horizontal deflections is illustrated in Figure 4-40. The fitness value 

is calculated as 0.0021 by optimized parameters which was calculated as 0.0029 by 

initial design parameters. 
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Figure 4.40. Measured versus Predicted Deflections of Stage 2: Parameters Optimized based on Stage 

1 Observations 

 

4.5.2. Horizontal Displacement Prediction of Stage 3 

Back calculated parameters obtained from Stage 2 is used to predict the horizontal 

deflection behavior of Stage 3. The comparison of measured inclinometer readings 

and the predicted horizontal deflections is illustrated in Figure 4-41. The fitness value 

is calculated as 0.0014 by optimized parameters which was calculated as 0.0021 by 

initial design parameters. 
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Figure 4.41. Measured versus Predicted Deflections of Stage 3: Parameters Optimized based on Stage 

2 Observations 

 

4.5.3. Horizontal Displacement Prediction of Stage 4 

Back calculated parameters obtained from Stage 3 is used to predict the horizontal 

deflection behavior of Stage 4. The comparison of measured inclinometer readings 

and the predicted horizontal deflections is illustrated in Figure 4-42. The fitness value 

is calculated as 0.0011 by optimized parameters which was calculated as 0.0027 by 

initial design parameters. 
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Figure 4.42. Measured versus Predicted Deflections of Stage 4: Parameters Optimized based on Stage 

3 Observations 

 

4.5.4. Horizontal Displacement Prediction of Stage 5 

Back calculated parameters obtained from Stage 4 is used to predict the horizontal 

deflection behavior of Stage 5. The comparison of measured inclinometer readings 

and the predicted horizontal deflections is illustrated in Figure 4-43. The fitness value 

is calculated as 0.0043 by optimized parameters which was calculated as 0.0096 by 

initial design parameters. 
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Figure 4.43. Measured versus Predicted Deflections of Stage 5: Parameters Optimized based on Stage 

4 Observations 

 

These results are satisfying since the observations used in the analyses give 

comparable predictions for subsequent stages. Back calculations based on PSO could 

predict the inclinometer results reasonably.  

 

4.6. Results and Comparisons  

Calibration of soil parameters for selected stages by comparing measured field data 

and FEM results and thus extracting constitutive model parameters that reflect the soil 

behavior in a deep excavation case study is the primary interest of this thesis. The 

evolution of soil parameters is tabulated in Table 4-10 for each optimization stage. It 

is experienced that the parameter change in the hard clay layer has more effect on the 

behavior of the deep excavation than the upper clay layer for the abovementioned case 
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study as it is expected. The hard clay layer is the layer where the bottom of the 

excavation exists. Moreover, it is the firm clay layer where the pile tip is located.  

The stiffness and the strength properties of the soil have an important impact on 

deformations. However, it is highly problematic to decide these parameter values 

precisely. Due to discontinuities in soil, its stress-strain response is inconstant 

(Marulanda, 2005). Available site investigations and laboratory tests may not be 

adequate in quantitative determinations especially for stiffness parameter (𝐸50
𝑟𝑒𝑓

) at 

smaller strains due to sampling disturbance. Moreover, there are number of factors 

that may affect the accuracy of results of numerical analyses including initial 

conditions on the ground such as at-rest in-situ stresses, ground water activities, 

complex pre-history of the construction, etc. Therefore, initial design parameters are 

contrasting with optimized parameters as illustrated in Table 4-10. These results 

indicated that the field conditions could not be reflected properly by site investigations 

and laboratory tests especially at small strains levels assuming that the factual 

observed field measurements and well represented finite element model. 

Table 4.10. Best-fit Values of Parameters at Each Optimization Stages 

 Alluvial Deposit Clay Layer Hard Clay Layer 

𝐸50
𝑟𝑒𝑓

(𝑀𝑃𝑎) 
’ 

(degree) 

c’ref 

(kPa) 
𝐸50

𝑟𝑒𝑓
(𝑀𝑃𝑎) 

’ 

(degree) 

c’ref 

(kPa) 

Initial 35 25 10 55 26 20 

Stage 1 22.9 26.8 6.2 61.2 25.2 10.0 

Stage 2 22.5 26.0 6.1 74.2 27.9 10.7 

Stage 3 11.3 26.6 3.8 82.4 28.0 11.2 

Stage 4 8.4 25.9 6.9 85.1 28.8 11.5 

Stage 5 9.0 26.2 5.3 91.9 28.8 15.8 
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The conformity of the physical and numerical model shows the success of the 

optimization. In order to see the performance of the back-analysis platform, lateral 

deflections prior to any optimization and the lateral deflections computed by using 

optimized parameters are plotted and compared with the inclinometer results in Figure 

4-44. In almost all the stages, the deflections computed by the initial design parameters 

are higher than the observed field deflections. On the other hand, the results using 

optimized parameters have high convergence rates in fitting the observed lateral 

deflections for all the stages. It can be deduced that; the back calculated parameters 

can simulate the lateral deflections. Comparing the fitness values is another way of 

examining the performance of the optimization as shown in Table 4-11. Calculated 

fitness values by optimized parameters are accepted as a feasible solution since they 

are lower than the threshold fitness value which is calculated as 0.0019 m.  
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Figure 4.44. Comparison of Field Observed and Computed Deflections at each Stage using Initial 

Design Parameters and Best-fit Estimates of Parameters 



 

 

 

99 

 

Table 4.11. Calculated Fitness Values at Each Optimization Stages 

 Fitness Values (m) 

 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Initial Design 

Parameters 0.0027 0.0029 0.0021 0.0027 0.0096 

Optimized Parameters 0.0010 0.0014 0.0013 0.0013 0.0018 

 

Considering these comparisons, estimating soil geotechnical properties from the 

actual site conditions rather than initial investigations would be beneficial in the 

numerical analysis of deep excavations. Computed deflections by using back 

calculated parameters are in good agreement with the actual deflections. Additionally, 

the optimized material parameters can be used in the prediction of following stages’ 

lateral deformations. Comparison of observed and the predicted deflections using 

parameters from the previous stage and initial estimates of parameters are illustrated 

in Figure 4-45. The discrepancy between these deflections are reasonable. Predicted 

results using optimized parameters have solid convergence rates in fitting actual 

deflections at Stages 2,3 and 4. The maximum difference is observed in Stage 5 and 

is less than %26 of actual horizontal displacement. These results show that back 

calculated parameters are not only used in lateral deflection computation at the 

observation stage but also beneficial in the prediction of horizontal deflections 

during/after construction. The predictions enable designers to understand a deep 

excavation’s behavior even if not perfectly estimated. The design is updated 

throughout the excavation period due to continuously entered field measurements. 

Hence, any variation from the original design will be noticeable and possibly dealt 

with.  
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Figure 4.45. Comparison of Field Observed and Predicted Deflections for Stages 2-5 using Optimized 

Parameters from the Previous Stage and Initial Design Parameters 
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In the present study, both the lateral deflection computations at the observation stage 

and the deflection predictions of the subsequent stage are physically and numerically 

reasonable. However, as can be seen in Table 4-12, completion time of the 

optimization process is considered as a disadvantage. It takes around 25 minutes to 

complete one iteration at Stage 1 while it takes approximately 1 hour for Stage 5. 800 

FEM runs need to be completed in the optimization of one stage. Nevertheless, the 

results obtained from the back analysis platform are valuable from the point of safety 

assurance and economy. It enables designers to modify geotechnical design during the 

deep excavation construction. Thus, the back calculation can be regarded as a required 

part of the geotechnical design. The completion period of optimization process can be 

reduced either by decreasing the number of iterations or the number of particles in the 

swarm. As it can be observed from the gBest values’ evolution, 10 iterations are 

enough for optimization method to work well in the first four stages while the best 

fitness value is reached at 15th iteration at Stage 5. Separately, the number of particles 

in the swarm may be reduced. Although decreasing the number of particles in the 

swarm reduces the completion period, it may affect the performance of the 

optimization process adversely. One way to overcome this problem is that an 

experienced designer should decide the number of particles in the swarm after a few 

trials. Another way is to update the stopping criteria of optimization algorithm so that 

the process must stop when the fitness value is low enough until the discrepancy 

between the observed and calculated lateral displacements is an acceptable range.   
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Table 4.12. Completion Period of Each Optimization Stages 

FEM Calculation 

Phase 
Construction Phase 

Optimization Completion 

Period 

3/12 Excavate [-2,50 m] (Stage 1) 8 hours 30 minutes 

6/12 Excavate [-5,00 m] (Stage 2) 12 hours  

9/12 Excavate [-8,00 m] (Stage 3) 15 hours and 30 minutes 

11/12 Excavate [-9,00 m] (Stage 4) 18 hours and 30 minutes 

12/12 Excavate [-9,80 m] (Stage 5) 20 hours 
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CHAPTER 5  

 

5. SUMMARY AND CONCLUSION 

 

5.1. Summary 

The aim of this study was to a develop a back analysis platform to obtain accurate 

geotechnical parameters of materials surrounding the deep excavations for safer and 

more economical designs. Developed platform consists of finite element based 

numerical modeling of deep excavation, optimization scheme and deflection 

monitoring throughout the excavation period. The commercial software, PLAXIS, is 

used to model the deep excavation and to compute the horizontal displacements. 

Material parameters are obtained by fitting the horizontal deflections obtained from 

the software and inclinometer data for selected construction stages through the widely 

used optimization technique named Particle Swarm Optimization (PSO) algorithm, 

coded using Python (version 3.6.0.). Obtained material parameters are then used to 

predict the upcoming stages’ deformations. Periodically taken inclinometer readings 

are entered into the back analysis platform at the corresponding stages to calibrate the 

soil parameters. 

The developed platform is applied to identify the soil parameters in a deep excavation 

project named Maidan Office-Home Office-Square project constructed in 

Ankara/Turkey. These parameters are then used for future predictions of deep 

excavation response. Firstly, deep excavation was numerically modeled by 

considering the actual construction scenario. Then, the back analysis was applied to 

identify the geotechnical parameters for Stage 1 by using the recorded inclinometer 

readings during the construction of Stage 1. The same procedure applied to Stages 

2,3,4 and 5 as well. At the end of each run, geotechnical parameters are calibrated 

against newly entered field data. In addition, obtained parameters are used to predict 
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the next stage’s lateral deflections. This is done by comparing the FEM results with 

the inclinometer readings. In conclusion, the evolution of soil parameters is observed, 

and it is clarified that the upcoming stages’ behavior can be predicted during the 

excavation process by using calibrated parameters.  

 

5.2. Findings of the Study 

The reliability of results acquired from this study depends on many factors including 

factuality of the developed numerical model, accurate monitoring, etc. Firstly, true 

monitoring is the most essential component of a back analysis platform. Material 

parameters are obtained by fitting the FEM results and monitored inclinometer data. 

In other words, incorrect field monitoring causes improper material parameter 

identification through the back analysis platform. Secondly, the actual construction 

scenario and the behavior of soil surrounding the deep excavation should be 

represented by the numerical model. The deep excavation should be numerically 

modeled with the actual construction scenario in order to compare the corresponding 

inclinometer and FEM results. A selected constitutive model for soil behavior also has 

a significant share of the results. The back calculated parameters do not converge the 

actual values if the selected constitutive model is not appropriate. For instance, the 

hardening soil model is suitable for reflecting deep excavation response due to 

consideration of stress dependency whereas; stress dependency is not considered in 

the Mohr-Coulomb soil model. Another important factor is the number of parameters 

that are subjected to the optimization process. Every layer is defined by at least 8 

different soil parameters in the hardening soil model, and some of them are highly 

correlated parameters such as 𝐸50
𝑟𝑒𝑓

and m. This number increased to 16 when two soil 

layers are existing in the analyses. It is almost impossible to optimize all the 

parameters at the same time since the number of available field data must be higher 

than the number of optimized parameters. Therefore, the designer should choose 

appropriate parameters to optimize in accordance with the available measurement 
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data. To exemplify, it would not be practical to optimize Poisson’s ratio (ν) in linear 

elasticity model. In brief, not only PSO used in the present work but also all the 

metaheuristics-based optimization algorithms combined with FEM analysis concept 

do not secure a precise solution. For instance, numerous amalgamations of material 

properties may cause similar estimates of field deformations which in turn lead to a 

non-unique or non-converged solution. However, these setbacks can be minimized by 

increasing the number of selected points in the model and allowing the algorithm to 

run multiple times for longer periods as Nguyen (2011) suggests. Additionally, the 

geotechnical designer should be able to judge the consistency of optimized parameters 

by using engineering intuition.  

Based on the performed finite element based back analyses and the literature, the 

following conclusions are inferred: 

• This study shows that it is possible to increase the effectiveness of the 

geotechnical design of deep excavations in light of field monitoring data. 

Actual soil material parameters can be identified by the developed back 

analysis platform with true monitoring and numerical model. The results prove 

that geotechnical parameters were successfully obtained by using monitored 

inclinometer results through the back analysis platform. Back calculated 

parameters are then succeeded in the prediction of subsequent stage’s 

horizontal deflections. The predictions enable designers to understand the 

global response of the deep excavation. The design is updated throughout the 

excavation period due to continuously entered field measurements. Hence, any 

variation from the original design will be noticeable and possibly dealt with at 

early stages of construction. The importance of uncertain factors including 

initial conditions on the ground such as at-rest in-situ stresses, groundwater 

activities, complex pre-history of the construction, etc. is highly reduced. Back 

analysis combined with finite element analysis and optimization algorithm 

forms an efficient numerical tool that provides safer and more economical 

design over the conventional methods. Conventional analysis presumes that 
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the excavation proceeds as it is designed while the design is always updateable 

in the back analysis.  

• The field conditions could not be reflected properly by site investigations and 

laboratory tests.  Available site investigations and laboratory tests may not be 

adequate in the quantitative determination of actual soil material parameters 

due to sample disturbance, construction effects, etc. These uncertainties were 

minimized by back calculation method by considering the continuous 

monitoring.  

• It was observed that PSO is a highly prospering global optimization method. 

PSO demonstrated an effective and forceful way of procuring the solution in 

the early iterations of the optimization process. The method showed the high 

performance of solving a complex deep excavation problem even if the design 

variables are correlated. It was concluded that the PSO algorithm is suitable 

and applicable for parameter identification in deep excavation problems.  

• The stiffness parameter (𝐸50
𝑟𝑒𝑓

) and the failure parameters (c’ and Ø’) have an 

impact on horizontal deformations. It is observed from the analyses that the 

stiffness parameter is more effective in controlling the horizontal 

deformations. It was also approved (Pakbaz et al. 2013) that the stiffness 

parameter (E) has more effect for small deformations at lower depths while 

failure parameters (c and Ø) are more effective for significantly larger 

deformations because of soil’s plastic behavior at greater depths.   

• In the back calculation of material parameters of multiple soil layers, the 

layer’s sensitivity to input parameters on excavation behavior shows an 

alteration. For instance, parameter change in a layer where the bottom of the 

excavation exists or layer where the pile tip is located has more effect on 

horizontal deformations. In the light of this information, in the case of multiple 

layer problems (more than 2 layers), it would be a good idea to combine two 

layers and analyze it as one layer when one of the layers has a considerably 

lower influence on the results. In this way, the number of parameters that are 
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subjected to optimization will be reduced, and the performance of the 

optimization process will be increased.  

• The completion period of the optimization process is considered as a 

disadvantage. It takes around 8 hours and 30 minutes to complete Stage 1 

optimization while it takes approximately 20 hours for Stage 5. In order to 

complete the optimization process of one stage, 800 FEM runs need to be 

completed in the present study. Reducing the number of iterations will shorten 

the completion period. Another alternative is decreasing the number of 

particles in the swarm to a certain extent since it may affect the performance 

of the optimization process adversely. The geotechnical designer should be 

able to judge the optimum number of particles and the iteration number. It 

would be more practical and user-friendly to update the stopping criteria of 

optimization algorithm so that the process stops when the fitness value is low 

enough until the discrepancy between the observed and calculated lateral 

displacements is in an acceptable range.     

In the present work, metaheuristic-based soil parameter identification in deep 

excavation is studied. Back-analysis platform is established which combines the finite 

element model and the particle swarm optimization algorithm. The application and the 

sufficiency of the technique were presented. The benefits over the conventional 

methods of the platform were demonstrated. It enables designers to reassess the 

estimations, enhance the quality of the design and redesign in case of any variation 

from the design predictions during the construction. It is also applicable to complex 

deep excavation problems with multiple soil layers and input parameters. 

Consequently, the back analysis should be involved in field investigations for safe and 

economical geotechnical design.   
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5.3. Recommendations for Future Study 

• The back analysis platform developed in this thesis can be applied in different 

case studies involving deep excavation to validate the applicability of the 

method.  

• Inclinometer readings are the only monitoring data used in this study. It would 

be more sophisticated and reliable if the stress inputs such as the load cell 

readings are also included in monitored data. 

• In order to reduce the execution time of the optimization process, one of the 

best alternatives is to use popular machine learning technique “Artificial 

Neural Network (ANN)” instead of running FEM analyses for all the 

iterations. Hashash et. al, (2003) state that neural network based constitutive 

models are adopted to “learn or evolve” methodology and provide an insight 

into material behavior. ANN is operated by using previously attained artificial 

data from FEM analyses; they are used to find deflections once appropriate 

input values are provided
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APPENDICES 

 

A. Borehole Logs 

 

Figure A.1. Borehole Log 1/3 
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Figure A.2. Borehole Log 2/3 
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Figure A.3. Borehole Log 3/3 
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B. Inclinometer #2 Readings 
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C. Laboratory Test Results 
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