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ABSTRACT

EXPERIMENTAL DESIGN AND STATISTICAL MODELING FOR
EFFICIENT WIND TUNNEL TESTING

Savaş, Özgün

M.S., Department of Aerospace Engineering

Supervisor: Assist. Prof. Dr. Ali Türker Kutay

September 2019, 62 pages

Wind tunnel testing is an essential procedure to measure the aerodynamic forces and

moments on an air vehicle. In this thesis, a method is presented to perform such test

in an efficient way. First, an experimental design process is carried out before the

testing in order to cover the flight regime as fine as possible with the least possible

number of tests. After the determination of the test matrix and conducting the wind-

on tests, the modeling of the output data is the next step. On that matter, since the

vehicle of interest is an agile missile which may fly at high angles of attack and in

a relatively broader Mach regime, the aerodynamic data is highly nonlinear. There-

fore, two nonlinear modeling techniques are presented and compared with each other.

First technique is the widely used Artificial Neural Networks (ANN) and the second

one is relatively lesser known but a powerful modeling algorithm Multivariate Adap-

tive Regression Splines (MARS). After the data is modeled using both approaches,

their statistical metrics are compared and the models are integrated into a high fidelity

6DoF equations of motion model. Since all this effort is to improve the simulation

accuracy and performance, 6DoF simulations are performed using several flight sce-
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narios that cover the flight regime of the missile. Afterwards, obtained trajectories

and flight parameters are compared. Finally, various flight conditions are produced

and the models are evaluated in batch mode to see their performances in terms of

computational speed.

Keywords: Design of experiments, Modeling and simulation, Flight simulations,

Wind tunnel testing, Experimental aerodynamics, Multivariate Adaptive Regression

Splines, Neural Networks, Data sampling
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ÖZ

VERİMLİ BİR RÜZGÂR TÜNELİ TESTİ İÇİN DENEY TASARIMI VE
İSTATİSTİKSEL MODELLEME YÖNTEMİ

Savaş, Özgün

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Türker Kutay

Eylül 2019 , 62 sayfa

Rüzgâr tüneli testleri, bir hava aracına etkiyen aerodinamik kuvvet ve momentleri

ölçmede önemli bir kaynaktır. Bu tezde, rüzgâr tüneli testini verimli bir şekilde ger-

çekleştirmek için bir yöntem sunulmuştur. İlk olarak, hava aracının uçuş rejimini

mümkün olan en az sayıda testle en iyi şekilde kapsayan bir test matrisi oluştura-

bilmek için deney tasarımı çalışması gerçekleştirilmiştir. Test matrisi belirlendikten

ve bu matrise göre rüzgâr tüneli testleri icra edildikten sonraki adım veriyi modelle-

mektir. Bu konuda da yüksek hücum açılarında ve geniş bir Mach sayısı aralığında

uçabilen çevik bir füze incelendiğinden aerodinamik verinin yüksek oranda doğru-

sal olmayan bir karakter göstereceği öngörülmektedir. Bu nedenle, bu çalışmada iki

farklı doğrusal olmayan veri modelleme yöntemi sunulup birbiriyle karşılaştırılmak-

tadır. İlk yöntem, sık kullanılan "Yapay Sinir Ağları" , ikinci yöntem ise görece daha

az bilinen ama güçlü bir modelleme algoritması olan MARS’tır. Her iki yöntemle rüz-

gâr tüneli verisi modellendikten sonra, istatistiksel metrikleri karşılaştırılan modeller

6 serbestlik dereceli yüksek başarımlı benzetim ortamına eklenmektedir. Çalışmanın

temel amacı, benzetim ortamının doğruluğunu ve başarımını artırmak olduğundan,
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çevik füzenin uçuş rejimindeki birçok uçuş senaryosu simule edilip elde edilen yö-

rüngeler ve uçuş parametreleri karşılaştırılmıştır. Son olarak, oluşturulan çok sayıda

uçuş koşulu bu modellerde yığmalı şekilde çalıştırılıp yöntemlerin başarımları hesap-

lama zamanı açısından karşılaştırılmıştır.

Anahtar Kelimeler: Deney tasarımı, Modelleme ve simulasyon, Uçuş benzetimleri,

Rüzgâr tüneli testleri, Deneysel aerodinamik, MARS, Yapay sinir ağları, Veri örnek-

leme
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recommendations and feedbacks on issues regarding statistics.

In addition, I would like to thank my friend Ali Oğuz Yüksel for his help on LATEXthat

enabled a better writing process.

This thesis is supported by Defense Industries Research and Development Institute

(SAGE) of The Scientific and Technological Research Council of Turkey (TUBITAK).

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Aerodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Aerodynamics Database Generation . . . . . . . . . . . . . . 1

1.1.2 Aircraft Properties . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Aerodynamic Definitions . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Motivation and Proposed Methodology . . . . . . . . . . . . . . . . 8

1.3 Contributions and Novelties . . . . . . . . . . . . . . . . . . . . . . 9

xi



1.4 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Design of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Full Factorial Designs . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Fractional Factorial Designs . . . . . . . . . . . . . . . . . . 14

2.1.3 Sequential Space Filling . . . . . . . . . . . . . . . . . . . . . 15

2.2 Adaptive Downsampling . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Statistical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Overfitting and Selection Bias . . . . . . . . . . . . . . . . . 20

2.3.2 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Common Remarks on Selected Methods . . . . . . . . . . . . 22

2.3.4 Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . 23

2.3.5 Multivariate Adaptive Regression Splines (MARS) . . . . . . 25

3 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Design of Experiment Results . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Scenario Coverage . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1.1 Flow Parameters . . . . . . . . . . . . . . . . . . . . . 30

3.1.1.2 Deflection Angles . . . . . . . . . . . . . . . . . . . . 32

3.1.1.2.1 Actual Deflections . . . . . . . . . . . . . . . . 32

3.1.1.2.2 Virtual Deflections . . . . . . . . . . . . . . . . 33

3.1.1.2.3 Cross Relations . . . . . . . . . . . . . . . . . . 33

3.1.2 Parallel Coordinates Chart . . . . . . . . . . . . . . . . . . . 35

3.2 Adaptive Downsampling Results . . . . . . . . . . . . . . . . . . . . 36

xii



3.3 Statistical Modeling Results . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Variable Importance Check . . . . . . . . . . . . . . . . . . . 44

3.3.2 Model Convergence Chart . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Statistical Metrics . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3.1 Coefficient of Determination . . . . . . . . . . . . . . . 46

3.3.3.2 Mean Squared Error . . . . . . . . . . . . . . . . . . . 47

3.3.4 Random Input Analysis . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.6 Model Integration . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Simulation Accuracy and Performance . . . . . . . . . . . . . . . . 50

3.4.1 Flight Simulations . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1.1 Scenario 1 - Non-maneuvering flight . . . . . . . . . . 50

3.4.1.2 Scenario 2 - One Circle Maneuver . . . . . . . . . . . . 52

3.4.1.3 Scenario 3 - S-Maneuver . . . . . . . . . . . . . . . . . 54

3.4.2 Simulation Runtime . . . . . . . . . . . . . . . . . . . . . . . 56

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



LIST OF TABLES

TABLES

Table 1.1 Aerodynamic Forces and Moments . . . . . . . . . . . . . . . . . . 5

Table 1.2 Conversion Between Actual and Virtual Fin Deflections . . . . . . . 7

Table 3.1 Downsampling Ratio for Each Coefficient . . . . . . . . . . . . . . 36

Table 3.2 Downsampling Data Accuracy for Each Coefficient . . . . . . . . . 37

Table 3.3 r2 Comparison for Each Coefficient . . . . . . . . . . . . . . . . . 47

Table 3.4 MSE Comparison for Each Coefficient . . . . . . . . . . . . . . . . 48

Table 3.5 Hardware Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 Aerodynamic Data Source Progress . . . . . . . . . . . . . . . . 2

Figure 1.2 Generic Missile Geometry with Control Fins [1] . . . . . . . . . 3

Figure 1.3 Aircraft Body and Stability Axis [3] . . . . . . . . . . . . . . . 4

Figure 1.4 Tail Fin Layout of a Generic Missile Geometry [1] . . . . . . . . 6

Figure 1.5 Flight Simulation Model Block Diagram . . . . . . . . . . . . . 8

Figure 1.6 Flowchart of the Proposed Procedure . . . . . . . . . . . . . . . 9

Figure 2.1 Full Factorial Experimental Design . . . . . . . . . . . . . . . . 14

Figure 2.2 Fractional Factorial Experimental Design . . . . . . . . . . . . . 15

Figure 2.3 Space Filling Experimental Design . . . . . . . . . . . . . . . . 15

Figure 2.4 Sequential Space Filling Example . . . . . . . . . . . . . . . . . 17

Figure 2.5 Downsampling Example . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.6 Underfitting and Overfitting Visualization . . . . . . . . . . . . 20

Figure 2.7 k-fold Cross Validation Scheme . . . . . . . . . . . . . . . . . . 22

Figure 2.8 Simple Artificial Neural Network - Perceptron . . . . . . . . . . 23

Figure 2.9 Multi-Layer Artificial Neural Network . . . . . . . . . . . . . . 24

Figure 2.10 Example of Basis Functions [13] . . . . . . . . . . . . . . . . . 25

xv



Figure 2.11 Forward Selection Part of Technique [13] . . . . . . . . . . . . . 27

Figure 3.1 Scenario Coverage in Angle of Attack . . . . . . . . . . . . . . 30

Figure 3.2 Scenario Coverage in Angle of Sideslip . . . . . . . . . . . . . . 30

Figure 3.3 Scenario Coverage in a - b . . . . . . . . . . . . . . . . . . . . 31

Figure 3.4 Scenario Coverage in Total Angle of Attack . . . . . . . . . . . 31

Figure 3.5 Scenario Coverage in Actual Deflections, δi . . . . . . . . . . . 32

Figure 3.6 Scenario Coverage in Virtual Deflections, δa,e,r . . . . . . . . . . 33

Figure 3.7 Scenario Coverage in δa − δe Cross Relation . . . . . . . . . . . 34

Figure 3.8 Scenario Coverage in δa − δr Cross Relation . . . . . . . . . . . 34

Figure 3.9 Scenario Coverage in δe − δr Cross Relation . . . . . . . . . . . 35

Figure 3.10 Parallel Coordinates Chart of DoE . . . . . . . . . . . . . . . . 36

Figure 3.11 Downsampling Result for Cx . . . . . . . . . . . . . . . . . . . 38

Figure 3.12 Downsampling Result for Cy . . . . . . . . . . . . . . . . . . . 38

Figure 3.13 Downsampling Result for Cz . . . . . . . . . . . . . . . . . . . 39

Figure 3.14 Downsampling Result for Cl . . . . . . . . . . . . . . . . . . . 39

Figure 3.15 Downsampling Result for Cm . . . . . . . . . . . . . . . . . . . 40

Figure 3.16 Downsampling Result for Cn . . . . . . . . . . . . . . . . . . . 40

Figure 3.17 Random Test Result and Model Comparison - 1 . . . . . . . . . 41

Figure 3.18 Random Test Result and Model Comparison - 2 . . . . . . . . . 42

Figure 3.19 Model Correlation Table . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.20 Variable Importance Check . . . . . . . . . . . . . . . . . . . . 44

Figure 3.21 Model Convergence Comparison . . . . . . . . . . . . . . . . . 45

xvi



Figure 3.22 Flight Trajectory, Mach, and a and b Profiles for Scenario-1 . . . 51

Figure 3.23 Aerodynamic Coefficients for Scenario-1 . . . . . . . . . . . . . 51

Figure 3.24 Flight Trajectory, Mach, and a and b Profiles for Scenario-2 . . . 53

Figure 3.25 Aerodynamic Coefficients for Scenario-2 . . . . . . . . . . . . . 54

Figure 3.26 Chirp Signal Generated as Control Surface Deflections . . . . . 55

Figure 3.27 Flight Trajectory, Mach, and a and b Profiles for Scenario-3 . . . 55

Figure 3.28 Aerodynamic Coefficients for Scenario-3 . . . . . . . . . . . . . 56

Figure 3.29 Batch Run Model for Simulation Performance Assessment . . . 57

xvii



LIST OF ABBREVIATIONS

ABBREVIATIONS

6DoF Six Degree of Freedom Simulation Model

AIAA American Institute of Aeronautics and Astronautics

ANN Artificial Neural Networks

BF Basis Functions

CFD Computational Fluid Dynamics

deg degrees, °

DoE Design of Experiments

DoF Degree of Freedom

FDS Fin Deflection Set

Fr Froude Number

GPS Global Positioning System

GPU Graphical Processing Unit

HLS Hidden Layer Size

Hz Hertz

INS Inertial Navigation System

LHS Latin Hypercube Sampling

Mach Mach Number

MARS Multivariate Adaptive Regression Splines

MDoE Modern Design of Experiments

MSE Mean Squared Error

NN Neural Networks

OFAT One-Factor-At-a-Time

xviii



Re Reynolds Number

SSE Sum of Squares due to Error

SSR Sum of Squares due to Regression

SST Total Sum of Squares

Str Strouhal Number

UAV Unmanned Aerial Vehicle

WT Wind Tunnel

xix



LIST OF SYMBOLS

SYMBOLS

α Angle of attack

αtot Total angle of attack

β Angle of sideslip

Cx, CX Axial force coefficient along +xb

Cy, CY Side force coefficient along +yb

Cz, CZ Normal force coefficient along +zb

Cl, CLL Rolling moment coefficient around +xb

Cm, CM Pitching moment coefficient around +yb

Cn, CLN Yawing moment coefficient around +zb

° degrees

δa Aileron deflection angle

δe Elevator deflection angle

δr Rudder deflection angle

δa,e,r Aileron, elevator, rudder deflection angles (virtual controls)

δi i’th control surface deflection angle (actual controls)

δsm Deflection squeeze mode

φ Roll angle (around +xb)

θ Pitch angle (around +yb)

ψ Yaw angle (around +zb)

W Stability axis rotation rate

w Angular rates

n Measurement error

xx



M Mach number

r2 Coefficient of determination

xb x-axis in body coordinates (positive out of nose)

yb y-axis in body coordinates (positive out the right wing)

zb z-axis in body coordinates (positive below aircraft)

xxi



xxii



CHAPTER 1

INTRODUCTION

1.1 Aerodynamic Modeling

Aerodynamics studies the motion of air particularly around the solid objects when

moving through it. Even though multi storey building engineers and ground vehicles

designers make use of aerodynamics, most of the aerodynamicists deal with aircrafts.

Aerodynamics has an utmost importance in aircraft design. This is due to most of the

flight characteristics of the aircraft depends on external geometry. Important features

such as stability, flight performance, maneuever capability, range, speed, endurance

partially determined by the aerodynamic design.

In addition, aerodynamic model has to be obtained before the flight in order to suc-

cessfully control the aircraft. Whether the aircraft has a pilot on board or it is an

unmanned aerial vehicle (UAV), aerodynamic modeling is important. Furthermore,

to design an autopilot for each type, an advanced aerodynamic characteristics knowl-

edge is essential.

1.1.1 Aerodynamics Database Generation

There are several methods for aerodynamic database generation. In the early stages

of the projects semi-empirical methods are widely used due to their speed. However,

as the project advances and the geometry is more or less become clear, computational

fluid dynamics (CFD) analysis become necessary. Despite usually costly in compu-

tational time, CFD analyses provides advanced results of aircraft aerodynamics.
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Afterwards, following the geometrical freeze, aerodynamic ground test, i.e wind tun-

nel tests are conducted. This tests will further enhance the aerodynamic database and

also validates all of the analyses which have been performed so far. Finally, with

performing real flight test and collecting that data, through some techniques such as

system identification, the aerodynamic model can be upgraded.

Figure 1.1 shows the aforementioned progress of aerodynamic database development.

Semi Empirical
Predictions

CFD
Analyses

   Wind Tunnel 
Tests

  Flight 
 Tests

Figure 1.1: Aerodynamic Data Source Progress

1.1.2 Aircraft Properties

In this thesis, the aircraft of interest is an agile missile that travels through subsonic,

transonic and supersonic Mach number regimes and controlled by four independent

control surfaces, more specifically tail fins, and is capable of reaching high a and

b values to be able to provide adequate turn performance. A generic geometrical

representation of the aircraft of interest is shown in Figure 1.2.

This type of missiles operate within comparatively large flight envelope, broad Mach

regime and reaches high a and b values, as in this case. This may result in a situation

where the flight dynamics of the missile behave nonlinear with changing conditions.

As a result, the design space is very large in terms of Mach number, a - b regions

and control surface deflection angles. To cover that nonlinearity throughout the en-

tire flight envelope, design of experiment and statistical modeling techniques that are

suitable for this type of problem are investigated.

Having a large flight envelope in terms of every parameter is quite suitable for this

study. Because, the challenges of each regime can be observed and the applicability

of the method will be shown.
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Figure 1.2: Generic Missile Geometry with Control Fins [1]

1.1.3 Aerodynamic Definitions

In this section, a summary of the aerodynamic coefficients, axes and equations of

motion for 6DoF simulations is presented. Aerodynamic model consists of static and

dynamic force and moment coefficients which are non-dimensional. The coefficients

are defined with respect to the non-dimensional parameters derived based on dimen-

sional quantities. The definition of an aerodynamic coefficient is given below;

Ci = Ci(α, β, δ,
Ωl

V
,
Ω̇l2

V 2
,
V̇ l

V 2
,Mach,Re, Fr, Str, ...) (1.1)

where i = x, y, z, l,m, n

Since mass and inertia of the missile are significantly larger than the surrounding

air mass and inertia, fluid properties change slowly. Thereby, Froude Number effect

is small. Moreover, because of the quasi-steady flow assumption, the flow adjusts

instantaneously to changes. This result is an exception to Strouhal number effect [2].

The change in Reynolds number can also be neglected because it differs only slightly

during the flight. Then, the Equation 1.1 becomes;

Ci = Ci(α, β, δ,
Ωl

V
,
Ω̇l2

V 2
,
V̇ l

V 2
,Mach) (1.2)
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For wind tunnel testing, the number of parameters is decreased to α, β, δ, Mach since

it is not feasible, due to the requirements of special balance and sting mechanisms,

for the dynamic components such as angular rates to be tested. For this reason, the

coefficients that is to be calculated are static aerodynamic coefficients and does not

incorporate the unsteady characteristics of the flow. Then, the Equation 1.2 reached

its final form as follows;

Ci = Ci(α, β, δ,Mach) (1.3)

The axis system that is used to define the aerodynamic coefficients and equations of

motion is presented in Figure 1.3. The center of gravity of aircraft, "O", is the origin

of both the stability and body axes. Body axis is defined as,

• Positive Oxb axis forward and aligned with the nose of the vehicle

• Positive Oyb axis points out the right wing

• Positive Ozb axis is directed through the downside which forms a right hand

rule with xb and yb.

Figure 1.3: Aircraft Body and Stability Axis [3]
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Table 1.1: Aerodynamic Forces and Moments

Coefficient Explanation

Cx axial force coefficient along +xb

Cy side force coefficient along +yb

Cz normal force coefficient along +zb

Cl rolling moment coefficient around +xb

Cm pitching moment coefficient around +yb

Cn yawing moment coefficient around +zb

To simulate the agile missile, a 6DoF simulation model is to be built. In 6DoF model,

the body assumed to be rigid, an assumption that eliminates the need to consider the

interaction between individual elements of the missile [2]. Other than the rigid body

motion assumption, the second simplification for 6DoF simulation is that the location

of center of mass is coincident with the center of gravity. Effects due to structural

deformations and relative motion of control surfaces during flight are assumed to be

negligible. Also, the effect of the Earth’s rotation is neglected due to considerable

short flight time. With the simplification stated above, the governing equations for

vehicle motion can be explained by Newton’s 2nd law;

~F =
d

dt
(m~V ), ~M =

d

dt
(I~ω) (1.4)

The matrix representations of ~F , ~V , ~M , I and ~ω are given in Equation 1.5;

~F =


Fx

Fy

Fz

 ~V =


u

v

w

 ~M =


Mx

My

Mz

 I =


Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 ~ω =


p

q

r

 (1.5)

In Figure 1.4, tail fin layout of the missile is given. As can be seen a cruciform

tail fin layout is considered. When looking from behind, the fin on the top right is

characterized as first and the numbering continued in clockwise direction.
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δ1

δ2

δ3

δ4

Figure 1.4: Tail Fin Layout of a Generic Missile Geometry [1]

Unlike an airplane, in most of the missiles, there is a concept called actual and vir-

tual controls. In a conventional airplane; aileron controls roll motion, elevator control

pitch motion and rudder controls the yaw motion. These are the three rotational de-

grees of freedom and considered virtual controls in missiles. The reason is that there

is no dedicated control surface for each of that motions. Instead, by utilizing four

tail fins independently, control authority for each axis is constituted. From the hinge

line, the fins can rotate to either direction. Clockwise rotation of the leading edge is

identified as a positive deflection for every fin. Using that convention, virtual controls

can be derived from actual controls as in Equation 1.6. In addition, in Table 1.2, a

summary of the conversion is stated.

δa =
δ1 + δ2 + δ3 + δ4

4

δe =
δ1 + δ2 − δ3 − δ4

4

δr =
δ1 − δ2 − δ3 + δ4

4

(1.6)
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Table 1.2: Conversion Between Actual and Virtual Fin Deflections

Virtual Control Resultant Motion Conversion Relation

Aileron Roll (φ) (+,+,+,+)

Elevator Pitch (θ) (+,+,−,−)

Rudder Yaw (ψ) (+,−,−,+)

After the definition of virtual and actual controls, there is a need to define another

virtual control called deflection squeeze mode, or δsm. Since there are three virtual

and four actual controls, there may be some undesirable control couplings that reduce

the control authority. To overcome that and minimize the control couplings in an

autopilot design process, a new virtual parameter δsm is introduced in Equation 1.7

and forced to be around zero within a predefined tolerance level [4].

δsm =
δ1 − δ2 + δ3 − δ4

4
(1.7)

As explained earlier, for a single control input, there has to be four different fin de-

flection angles is to be determined. However, there are some boundaries for each

and every parameter. Therefore, to keep the deflection angles reasonable within those

limits, mathematical norm of the angles are calculated as in Equation 1.8. After that,

norm is set to be between the respective boundaries for every flight condition as a

design constraint.

norm =
√

(δ1)2 + (δ2)2 + (δ3)2 + (δ4)2 (1.8)

1.1.4 Simulation Model

Flight simulation models are quite important in aircraft system design. They offer

plenty of benefits throughout the design and test processes. They probably will gather

more interest in time now that the model based design has an increased importance in

aerospace industry.

There are several type of simulation models depending on complexity. In this ap-
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plication, the model of interest is a six degree of freedom (6DoF) simulation model

consisting of 3 translation degrees of freedom (DoF) and 3 rotational DoF. Using

them one can design and integrate any subsystems, analyze the trajectory, orienta-

tion, design subsystems, perform optimizations etc. 6DoF model includes complex

subsystems such as guidance and autopilot, navigation, fin actuation system, atmo-

sphere, wind and gust models, rocket propulsion and last but not least an aerodynamic

model.

Simple representation of the flight simulation model is illustrated in Figure 1.5.

Atmosphere

Aircraft Dynamics
(EoM, Aerodynamics,

Propulsion)
ActuatorsGuidance 

Controller
(Autopilot)

Sensors
(INS, GPS, etc.)

∑ ∑

∑

Control Surface
Deflections

Figure 1.5: Flight Simulation Model Block Diagram

To perform simulations that are similar to the real world dynamics, the subsystems

have to be accurate so that the overall model performs well. The subsystem that is to

be improved in this study is the aerodynamic model of the aircraft.

1.2 Motivation and Proposed Methodology

Wind tunnel testing is extensively used in the aerodynamic characteristic determina-

tion of solid bodies, mostly air vehicles. Even though computational fluid dynamics

(CFD) tools are becoming more advanced day by day, their results are not completely

accurate and the need of real world testing remains necessary to validate its results.
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However, unfortunately wind tunnels are quite expensive since it is an exhausting task

from producing the perfectly scaled model, setting the correct pressure and turbulence

intensity, wind-on testing, data collection and post processing.

In this thesis, aerodynamic database of an aircraft is to be obtained using wind tunnel

testing in an efficient way without compromising data accuracy. The aim is to do it in

such a way that it is accurate, as less expensive as possible and the final product does

not require abundant computational resources. Because, wind tunnel testing is quite

expensive and by using statistics and nonlinear modeling, huge amounts of expenses

may be saved [5].

In Figure 1.6, proposed methodology can be seen as a flowchart.

Wind-on
TestsExperimental Design

Full Factorial
Fractional Factorial

Sequential Space Filling

Statistical Metrics
Variable Importance
Model Convergence

Random Input Analysis

Hyperparameter Tuning

Statistical Modeling
ANN

MARS

Data
 ReductionAdaptive

Downsampling

Batch simulation results using CFD database
Design parameters' limit and constraints

Pre-Processing

Post-Processing
&

Model Integration
Model Selection

Figure 1.6: Flowchart of the Proposed Procedure

1.3 Contributions and Novelties

In today’s world, most of the breakthroughs are made through blending the scientific

disciplines. This study inspired from that fact and brought together the cutting edge

technologies from computer science and statistics into an aerospace problem.

Following will be the most important contributions of this study and they may help

be to the ones that has the same challenge:
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• Propose a method to perform cost effective wind tunnel campaigns

• Shows how to evaluate the experimental design in statistical metrics along with

the technical graphs on scenario coverage

• Demonstrates how to perform model assessment like variable importance, model

convergence, overfitting prevention and random input analysis

1.4 Literature Review

Only few studies have been found on this topic. The reason behind it may be the

know-how sharing issue since most of the applications are on defense industry. In ad-

dition to that, even though neural networks are known for years, to apply that method-

ology in such a data rich field is dependent on the recent drastic improvements on

computational resources especially on graphical processing units (GPU).

Early work on modern design of experiment (MDoE) applications on wind tunnel

test results are published by DeLoach, 1998 [6]. The implications from the paper is

positive towards the use of MDoE in wind tunnel test matrix determination.

Application of neural networks on the wind tunnel test result modeling is previously

considered. Integration of several linear regression methods into two different neural

network algorithms, namely back propagation networks and radial basis function net-

works, is given [7]. It suggests that artificial neural networks are capable of modeling

the nonlinear behaviour of the wind tunnel data.

Apart from wind tunnel aerodynamic modeling, space filling algorithms for various

applications are investigated.

Latin Hypercube Sampling (LHS) is a method of statistical random sample generation

for high dimensional cases. Sequential schemes with LHS have several advantages

on undersampling and oversampling compared to one shot LHS [8].

It has been suggested that Monte Carlo based highly efficient sequential space filling

algorithms are quite suitable for experimental design of multivariate problems [9].

Consequently, considering the prior work on the subject, design of experiments is a
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such a suitable and effective application to the problem. Apart from that, nonlinear

modeling techniques and artificial neural networks are applicable on the modeling

part.
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CHAPTER 2

METHODOLOGY

2.1 Design of Experiment

Before launching a wind tunnel test campaign, test matrix should be prepared with

the utmost consideration. For that purpose, there is a concept called Design of Ex-

periments (DoE). There are different approaches to DoE, but the main breakdown is

one-factor-at-a-time (OFAT) or the methods that consider multiple factors simultane-

ously. In this thesis, the latter will be applied and its advantages will be stated.

For the missiles, the typical parameters for design of experiment and mathematical

modeling are angle of attack (a), angle of sideslip (b), Mach number, and control sur-

face deflections (di) . Those are the design parameters or factors that will be simul-

taneously considered when designing the wind tunnel experiment. Control surface

deflections can also become an independent variable thanks to the wind tunnel model

that has a motorized fin deflection adjuster. That automatic fin deflection system saves

a lot of wind tunnel time and enables more tests to be performed.

Moreover, wind tunnel testing is usually conducted using traverses, sometimes called

sweeps or polars. That means, once the flow Mach number, sideslip angle and the

fin deflections are set, aircraft starts from one position and be continuously rotated

vertically through the flow while recording the aerodynamic data using a robotic arm.

That process is called an angle of attack sweep and includes a lot of data point in the

respective testing conditions.

Considering all that, the absolute aim is to cover the entire flight regime of the missile

with the least number of tests since the tests are quite costly and time-consuming.
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2.1.1 Full Factorial Designs

In experimental design, full factorial designs take all the possible combinations into

account by fully crossing the factors with each other. In other words, when there is

more than one factor with possible discrete values, one can design such an experiment

that cross every factor and their value with each other to investigate the interactions

of the parameters.

However, this type of experiment will require a lot of experimental effort when deal-

ing multiple factors with large value range. In Figure 2.1, a full factorial experimental

design on three parameters is shown.

0

0.2

1

0.4

0.6

z

0.8

1

y

0.5 10.8

x

0.60.40.20 0

Figure 2.1: Full Factorial Experimental Design

2.1.2 Fractional Factorial Designs

Unlike the full factorial designs, fractional factorial designs consist of the subset of

the all possible combinations. That subset is determined using prior knowledge of

interactions between the factors. That way, the experimental effort is reduced since

taking the fraction of the whole set prevents redundant tests to be performed. In

Figure 2.2, a fractional factorial experimental design on the previous three parameters

is shown.
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Figure 2.2: Fractional Factorial Experimental Design

2.1.3 Sequential Space Filling

This method is called either sequential or incremental space filling algorithm. Both

names intend to indicate the space filling algorithm takes place through some stages

or phases. Figure 2.4 shows the one stage space filling design for the previous three

parameter design space.
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Figure 2.3: Space Filling Experimental Design
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The wind tunnel test campaigns are usually performed in different phases which may

have different aims and utilize different test matrices that cover a space with a number

of parameters. Different approaches can be taken which may include a uniform matrix

of test points that cover a design space or randomly generated and optimized points

that cover the design space with combinations of parameters. The aim is to generate

enough data from wind tunnel testing that covers the entire space while including a

combination of parameters at a level to achieve a mathematical model that predicts

dependent parameters with accuracy during simulations.

For the case of this work, firstly a uniform test matrix with OFAT approach is designed

to understand the aerodynamic characteristics of a missile with a limited number of

test points. The reason behind this is to validate the current aerodynamic database

which is generated using CFD. The rest of the test points are inserted to cover the en-

tire design space with different combinations of parameters in two phases. Therefore,

a specific DoE approach named space filling design methodology seems appropriate

for this problem.

Space filling designs aim to place the new points in a uniform manner while maxi-

mizing the distance between each test point in the design space. In addition to that,

with space filling, different set of points can be generated consecutively which makes

its use reasonable on a multi-phased wind tunnel test campaigns. Since the test cam-

paign in this case have a number of phases, while designing the experiment of the new

phases, the test conditions that were performed in the previous phases are also con-

sidered. Incremental or sequential approach of space filling helps add test points onto

an existing set of points considering the distances between each point combination in

the multi-dimensional space.

Figure 2.4 represents a sample DoE result. The blue dots are Phase 1 test conditions

that are placed in uniform manner, which happens to be an initial test points for the

upcoming sequence of Phase 2 that are illustrated by the red dots. The green dots

represent the Phase 3 test conditions which are generated using both the blue and the

red ones as initial test points. That sequential approach may continue as much as

desired.

16



M
ac

h

AoS AoA

Figure 2.4: Sequential Space Filling Example

2.2 Adaptive Downsampling

Upon completion of the experimental design and the wind-on tests, resultant data can

be obtained. Usually for a wind tunnel test, despite depending on the data acquisition

ability and agreement, entire data set is really large. That mostly depends on the data

acquisition frequency and most of the time it is abundantly frequent just because the

equipment can provide as much.

However, that frequent of a data may cause some some problems. That’s why the raw

aerodynamic data should be resampled into a somewhat smaller data set. While doing

the resampling, or downsampling in this case, data cannot be arbitrarily omitted. The

purpose is to get rid of the redundant measurements in each traverse. Therefore,

downsampling shall be performed in an adaptive manner for each traverse.

To do that, an algorithm is utilized and run for each traverse to perform downsam-

pling. The procedure of the algorithm is as follows;
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• Sort the data with respect to the independent variable

• Define a tolerance value for triangle area

• Starting from the first three data points draw a triangle connecting each points

• Calculate the enclosed triangle area and check if it exceeds the tolerance

• If the tolerance value is exceeded keep the point, if not eliminate the data point

in the middle

• Continue with the successive data points

In addition to increase in efficiency by eliminating redundant data points, adaptive

downsampling enables automatic data filtering and smoothing, which is also useful

for modeling.

In Figure 2.5, downsampling of a random traverse is shown. Original data is down-

sampled from 138 data points into 43, which is roughly 30%.
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Figure 2.5: Downsampling Example
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2.3 Statistical Modeling

The modeling of the aerodynamic coefficients based on the measured aerodynamic

parameters is the next step. After finalizing the test matrix by DoE, the wind tunnel

tests will be carried out on those conditions. Afterwards, the modeling takes place.

Accuracy of modeling the aerodynamic properties using the wind tunnel data is very

important since the model performance solely affect the simulation accuracy. The

aerodynamic models that will be obtained at the end of modeling study are integrated

into six-degree-of-freedom (6DoF) equations of motion model of the missile. Models

with higher complexity and accuracy would lead to higher simulation accuracy, obvi-

ously. However, the model which will be used during simulations needs also be able

to perform in a reasonable speed as well. That emerges a trade-off between accuracy

and performance.

There are several studies in the past that suggest a number of methods to model the

aerodynamic coefficients. The simplest method is using linear interpolation tech-

nique on multiple dimensions over the data. The dimensions for the case of this study

are Mach number, a, b and control surface deflections. This approach requires OFAT

type of experimental design and includes shortcomings of the methodology. There are

studies on more complex methods to model the data collected from testing with DoE.

The more complex methods are able to model interactions between the parameters.

The outcome of the models is linear or nonlinear functions depending on the methods.

It is possible to categorize the modeling techniques as parametric and non-parametric

classes. The techniques that are presented above have advantages and disadvantages.

Obviously, the linear interpolation technique has a disadvantage of not modeling in-

teraction of parameters. However, it is the easiest modeling technique to understand

the physical phenomenon at hand. The parametric modeling technique has the abil-

ity to model interactions in the aerodynamic data; yet, the technique is not able to

model the nonlinearities that occur in the physical plane. Still, the physical meaning

of the model is understandable through the order of the parameters. Parametric mod-

eling techniques such as stepwise regression and least squares or orthogonal model-

ing techniques are widely used in aerospace field to model aerodynamic coefficients

[3]. However, for modeling of nonlinear data, this class of techniques is not very

19



effective due to the nature of the mathematics behind it. Non-parametric techniques

are able to model nonlinearities with success. But, the nature of the non-parametric

model allows the possibility of overfitting and the resulted model functions can be

unpredictable. The physical understanding of the resulted model is much harder to

understand and control. Parametric techniques are relatively easy to understand and

generally protected against “overfitting” since they are subjected to statistical testing

such as normality of residuals, goodness-of-fit etc.

2.3.1 Overfitting and Selection Bias

Overfitting takes place when the model is redundantly complex, and the result has

low predictive performance. It happens due to the methodology’s excessive effort to

model every behavior of the data. Overfitting usually occurs when there are many

predictors or parameters. In order to visualize the underfitting and overfitting con-

cepts Figure 5 is presented. The function that is underfitting can be seen in red color

which has a linear fit that barely represents the data. Function that is overfitting can

be seen in blue color which passes through nearly all points and has nice statistical

performance, yet it is so concentrated on the existing data that the overfitting function

does not work well in the predictive sense. A good fit is expected to look like the

green line as given in the figure.
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Figure 2.6: Underfitting and Overfitting Visualization
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On the other hand, there is one more undesirable phenomenon called selection bias.

Selection bias is an experimental error introduced when the selected data does not

represent the entire data population. When modeling, input data is to be partitioned

in a random manner. If one of those partitions happen to include selection bias, that

cause some adverse effects on modeling. To prevent selection bias, cross validation

technique can be applied.

2.3.2 Cross Validation

Artificial neural networks and MARS starts modeling the data with partitioning the

initial data into two subgroups, train and test data sets. Both algorithms use training,

or sometimes called learning, data set for analyzing and exploring the trends, effects

and the interactions. After the training is completed, the resultant model is to be tested

on the remaining of the data which happens to be the test data set, sometimes called

hold out sample. That way, the algorithm knows how good the model performance is

at that instant.

The process of partitioning the data is important and it must be carried out carefully.

Most of the time, it depends on random selection. But, the selection of the test sample

must be performed without compromising the remaining data. Because, the model

will learn the patterns from that remaining training data set.

Also, sometimes that selection may cause to some errors if the selected subset hap-

pens to be misleading. That concept is called selection bias and should be avoided.

To prevent all that from happening, popular solution is performing a cross validation.

Cross validation is the process of consecutively changing the test sample data in the

population. Total number of consecutive sample selection determines the k value

in k-fold cross validation. For instance, if the partitioning will be repeated 5 times,

there happens to be 5 different test samples and that constitutes 5-fold cross validation

modeling as in Figure 2.7.
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Figure 2.7: k-fold Cross Validation Scheme

2.3.3 Common Remarks on Selected Methods

For the class of non-parametric techniques, the most common technique is the arti-

ficial neural networks (ANN) technique which is also widely used in aerospace with

success [7], [10]. The technique is nonlinear and non-parametric in nature. As a re-

sult, the statistical test metrics, such as goodness-of-fit, cannot be used to evaluate the

models. The non-parametric techniques have great potential to model nonlinearities

in data, however they are also quite perceptive to "overfitting". To overcome that,

there are some techniques and cross validation is the outstanding one.

For the modeling problem of this study, the data to be modeled is highly nonlinear

since the vehicle passes through a vast region of Mach number and flight angles.

Also, the control surface deflections cover a good amount of area in experimental

design space. In this case, it is highly unlikely to acquire a model of high accuracy

with linear parametric modeling techniques. The studies on non-parametric modeling

method ANN revealed that the test data can be modeled with high accuracy with a

penalty of very long functions which has an impact on the simulation time. Since the

aim is to produce a model function to be used in simulations, the search for a new

type of non-parametric modeling technique with simpler model functions is done.
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The Multivariate Adaptive Regression Splines (MARS) technique is proposed and

evaluated to be a contender to ANN while decreasing calculation time during the

simulations.

2.3.4 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) is a computing technique inspired by human brain

and nervous system as a network of units called neurons. It is estimated that the hu-

man brain have approximately 10 billion neurons each having connection with 10000

others. The mathematical model view of a neuron as a basic building block of ANN

can be shown as in Figure 6. ANN works with layers such as input layer, output layer

and optional hidden layers. Input layer presents the patterns of the data and through

hidden layers, where the data processing is performed, input layer makes a connection

to the output layer. [11]

w1

w2x2

w3

y

synapsesinputs neuron output

∑
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Figure 2.8: Simple Artificial Neural Network - Perceptron
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Figure 2.9: Multi-Layer Artificial Neural Network

There are a number of different architectures of ANN to propose solution to different

type of problems. Since this study is about curve fitting to wind tunnel test data,

curve fitting aspect of ANN is considered. The idea behind curve fitting is to select

the suitable parameters that minimize the error over the set of data. ANN is a widely

used nonlinear modeling technique that relates the output(s) with the input(s) on curve

fitting problems. The most successful applications in curve fitting and modeling of

neural networks are multi-layer networks. This type of networks simply accept the

input values and successive layers of nodes. The outputs of neurons in a layer are

inputs to neurons in the next layer. The last layer is called the output layer. Layers

between the input and output layers are called as hidden layers

ANN works well on large set of data with nonlinear relationships. Therefore, it is

appropriate to use ANN when modeling large and nonlinear aerodynamic datasets.
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2.3.5 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) is an adaptive procedure for re-

gression which is introduced by Jerome H. Friedman, [12] and trademarked to Salford

Systems.

The technique is well suited for problems with multiple inputs. It can be viewed as a

generalization of stepwise linear regression using splines instead of a whole function.

Technique works in two parts which are forward selection and backward elimination

[13].

MARS technique uses expansions in piecewise linear basis functions (BF) of the form

like (x − t)+ and (t − x)+ where “+” means positive part. The formulation is given

in Equation 2.1.

(x− t)+ =

x− t, if x > t

0, otherwise
(t− x)+ =

t− x, if x < t

0, otherwise
(2.1)

where x resembles the value of the independent variable and t resembles the position

of the knot. An example for the basis functions is given in Figure 2.10 for t value of

0.5.

Figure 2.10: Example of Basis Functions [13]
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The final model is constructed with a number of basis functions, Each BF piecewise

linear, with a knot at the value t which can be defined as linear splines. The two

functions are defined as reflected pairs. The technique forms reflected pairs for each

inputXJ at each value of xiJ . The collection of the basis functions define the function

set C as in Equation 2.2.

C = {(Xj ∗ t)+, /(t−Xj)+} t ∈ {x1j, x2j, ..., xnj} (2.2)

where j = 1, 2, 3, ..., p

where N resembles the number of data points and p resembles the number of inputs.

As can be deduced from Equation 2.2, it is possible to generate (2 x N x p) BFs. The

model building strategy is similar to stepwise regression. However, the functions in

the set C are used in place of the original variables. The model form is presented in

Equation 2.3.

f(x) = β0 +
M∑

m=1

βmhm(X) (2.3)

where hm(X) is a multiplication of two or more functions from set C. The procedure

is very similar to least-squares regression technique. The forward selection part of the

technique is illustrated in Figure 2.11, with first three steps. The left side shows the

functions that are currently in the model while the right side covers the function pool

that the selections will be from. At each state, all products in the pool are evaluated

and the product that decreases the residual error the most is added into the current

model.
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Figure 2.11: Forward Selection Part of Technique [13]

At the end of the forward selection, the acquired model is very large and inclined

to overfitting. The backward elimination procedure is applied to remove the candi-

dates which increase the residual error at the smallest amount until the final model is

achieved.
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, result of the experimental design procedure, adaptive downsampling

methodology and the statistical modeling process will be presented through various

graphs and discussed.

3.1 Design of Experiment Results

This section will concentrate on the DoE results and show the flight scenario coverage

of the design along with the performance graph on each parameter generated utilizing

parallel coordinates chart.

3.1.1 Scenario Coverage

Prior to the wind tunnel testing, the simulation model was constructed with aerody-

namic database generated using CFD. Using that model, a pool of simulation trajec-

tories containing hundreds of flight scenarios were run and the results are saved for

the further use. Analyzing that results can give not an overall but quite a meaningful

insight about the aircraft and its behaviour. An overall understanding is only possible

with real flight tests with every possible flight scenarios.

After the simulation results of the flight scenarios are obtained, the approach is to plot

the relevant output together in the same figure in order to see the distribution of the

flight parameters such as a, b and the actual and virtual fin deflection angles. Those

parameters are to be plotted with respect to Mach number to see at which flow regime

the parameters occur.
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3.1.1.1 Flow Parameters

In Figures 3.1 & 3.2, scenario coverage of α and β are shown, respectively. Black

lines represents the batch simulation results and the red lines are the DoE points for

each parameter. In Figure 3.3, α and β results are given with respect to each other

rather than Mach number.

Figure 3.1: Scenario Coverage in Angle of Attack

Figure 3.2: Scenario Coverage in Angle of Sideslip
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Figure 3.3: Scenario Coverage in a - b

Total angle of attack, αtot, is the combination of angle of attack and angle of sideslip.

It is meaningful when considering manuevers along both axes. αtot is calculated as in

Equation 3.1.

αtot = cos−1(cosα cos β) (3.1)

Figure 3.4: Scenario Coverage in Total Angle of Attack
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3.1.1.2 Deflection Angles

3.1.1.2.1 Actual Deflections

Scenario coverage of each actual deflection angle DoE is shown in Figure 3.5. The

results indicates that the fin deflection angles are covered successfully.

Figure 3.5: Scenario Coverage in Actual Deflections, δi
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3.1.1.2.2 Virtual Deflections

Scenario coverage of each virtual deflection angle DoE is shown in Figure 3.6.

Figure 3.6: Scenario Coverage in Virtual Deflections, δa,e,r

3.1.1.2.3 Cross Relations

Scenario coverage of virtual deflection cross relations of DoE are shown in the Fig-

ures 3.7-3.9.
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Figure 3.7: Scenario Coverage in δa − δe Cross Relation

Figure 3.8: Scenario Coverage in δa − δr Cross Relation
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Figure 3.9: Scenario Coverage in δe − δr Cross Relation

3.1.2 Parallel Coordinates Chart

In statistical data representation, there is a type of graph named parallel coordinates

chart which is very handy when visualizing high dimensional and multivariate data.

Since the experimental design procedure is multivariate in terms of design parameters,

the output can be examined using this specific chart type.

Since the chart covers all the variables and have only one y-axis, the parameters have

to be either in the same scale or to be normalized. In this case, our parameters, a,

b, Mach, d1, d2 , d3, d4, are not in the same scale. Therefore, the output should be

normalized into a certain range.
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Figure 3.10: Parallel Coordinates Chart of DoE

3.2 Adaptive Downsampling Results

In Table 3.1, downsampling ratio of the aerodynamic coefficients having a relatively

linear behaviour is higher, as expected. In addition, since the r2 values are signif-

icantly high, in the applications that does not require very high accuracies, those

downsampling ratios can be further decreased. By increasing the tolerance value for

triangle area, with a slight data accuracy sacrifice, downsampling ratios can be further

improved and the modeling speed may become faster.

Table 3.1: Downsampling Ratio for Each Coefficient

Coefficient Initial Size Final Size
Downsampling

Ratio

Cx 193812 34631 17.9%

Cy 193812 23839 12.3%

Cz 193812 21046 10.9%

Cl 193812 46885 24.2%

Cm 193812 30973 16.0%

Cn 193812 32753 16.9%
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Table 3.2: Downsampling Data Accuracy for Each Coefficient

Coefficient Minimum r2 Average r2 Maximum r2

Cx 0.995760 0.999700 1.000000

Cy 0.988430 0.999747 0.999992

Cz 0.996850 0.999921 1.000000

Cl 0.987177 0.999435 1.000000

Cm 0.996748 0.999777 0.999996

Cn 0.993106 0.999669 0.999995

In Table 3.2, downsampling accuracy of the aerodynamic coefficients having a rela-

tively linear behaviour is higher, as expected.

Figures 3.11-3.16 shows the downsampling result for each aerodynamic coefficient.

In the upper axis, downsampling r2 can be seen for every traverse. This value is

calculated using the difference between each data point in the respective traverse. If

the downsampled data represents the original test data perfectly, the value must be

equal to 1. As can be seen in Table 3.2, the worst traverse of the entire test campaign

appears to have r2 ≈ 0.987, which is more than enough for most of the applications

including this one.

On the other hand, on the lower axis of each figure, there is the original versus the

downsampled data graph of the traverse with the least r2. It is drawn to make sure

even the worst downsampling operation is acceptable.
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Figure 3.11: Downsampling Result for Cx
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Figure 3.12: Downsampling Result for Cy
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Figure 3.13: Downsampling Result for Cz
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Figure 3.14: Downsampling Result for Cl
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Figure 3.15: Downsampling Result for Cm
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Figure 3.16: Downsampling Result for Cn
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3.3 Statistical Modeling Results

In this section, modeling results are presented. Modeling results will be evaluated

by their statistical performance in terms of r2 and MSE, physical modeling perfor-

mance. It is important to note that when modeling both with ANN and MARS,

cross-validation is performed to see whether the test sample selection is biased or

not. In this study, 5-fold cross-validation is performed and the final model is selected

considering the cross-validation results.

In Figure 3.17 and Figure 3.18, random wind tunnel test results and the corresponding

models that represent the same results are given. It can be seen that both ANN and

MARS models cover the data well and the overfitting is not present.

Figure 3.17: Random Test Result and Model Comparison - 1
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Figure 3.18: Random Test Result and Model Comparison - 2

To be able to compare ANN and MARS techniques, a pool of random points is gen-

erated within the limits of DoE. The size of the pool is above a million points which

covers the space adequately. Model calculation results for each coefficient are pre-

sented in Figure 3.19.

Comparison results indicate an overall alignment of the coefficients between the tech-

niques. Results reveal the fact that the modeling methodology of the techniques pro-

duces slightly different results for flight conditions. Considering the results for the

coefficients individually, it is clear that Cy and Cz coefficients are modeled similarly

by ANN and MARS techniques. On the other hand, in Cx coefficient, a widening

on the shape of the resulted points, which is a sign of diverging of results, can be

seen. The moment coefficients show similar behavior to the Cx coefficient. Judging

by the high nonlinearity and complexity of these coefficients, it can be said that as the

complexity of coefficient increases the modeling results start to differ between ANN

and MARS techniques. This is an expected outcome since the functions produced
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for each technique are quite different and it is not possible to dictate the success of a

particular technique over the other with the information at hand. In terms of general

performance, the results for MARS technique are promising considering statistical

success of the technique.

Figure 3.19: Model Correlation Table

Table 2 shows the statistical performance of each technique on every coefficient in

terms of r2 and mean squared error. According to the table, an interesting outcome is

that ANN performed better in force coefficients, whereas MARS performed better in

moment coefficients. Since moment coefficients are relatively more nonlinear, MARS

appeared to handle the nonlinearities better.

In addition, it should be noted that r2 is a nondimensional statistical metric, whereas

MSE depends on the parameters’ magnitude. Therefore, in Table 2, MSE of Cm and

Cn coefficients appear to have larger values unlike the other parameters.
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3.3.1 Variable Importance Check

When modeling the aerodynamic data, variable importance on each coefficient are

observed and checked whether the result turns out as expected. Each parameter af-

fects the aerodynamic coefficients in different amount. For instance, pitching moment

coefficient (Cm) is mostly related with a, whereas side force coefficient (CY ) is with

b. Figure 3.20 shows the variable importance on all coefficients.

CX

 M
1 2 3 4

0

20

40

60

80

100
CY

 M
1 2 3 4

0

20

40

60

80

100

CZ

 M
1 2 3 4

0

20

40

60

80

100
CLL

 M
1 2 3 4

0

20

40

60

80

100

CM

 M
1 2 3 4

0

20

40

60

80

100
CLN

 M
1 2 3 4

0

20

40

60

80

100

Figure 3.20: Variable Importance Check
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3.3.2 Model Convergence Chart

Modeling process is not a one-step procedure. For example, when modeling with

MARS, various different models are generated with changing number of basis func-

tions. Likewise, when modeling with ANN, hidden layer size is changed and models

are generated. After that, model selection is performed mainly considering statistical

performance. Models are generated with increasing the number of basis functions

and hidden layer size until the test sample error stops decreasing.

In Figure 3.21, statistical performances of different models of MARS and ANN are

presented. As can be seen, they both converge to a value at which the r2 reaches to

its maximum and MSE reaches to its minimum. Models with larger BFs and HLSs

diverge and cannot be used.
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Figure 3.21: Model Convergence Comparison
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3.3.3 Statistical Metrics

3.3.3.1 Coefficient of Determination

In regression analysis, there are several ways to assess the accuracy of the model

or in this case goodness-of-fit. There is an important statistical metric is called the

coefficient of determination and denoted as r2.

It can be said that r2 is related with the variance of one factor that can be caused by

its relationship to another factor.

To find r2, some other parameters are to be calculated. For the i′th observation in

regression, the dependent variable is denoted yi, and its estimated value is ŷi. Their

difference, yi − ŷi is called the i′th residual.

The i′th residual represents the error term when estimating the dependent variable.

The sum of squares of these residuals or errors is the quantity that is minimized by the

least squares method. This quantity, also known as the sum of squares due to error,

is denoted by SSE. [14]

SSE =
∑

(yi − ŷi)2 (3.2)

SSE estimates the error through evaluating the regression mode. There is also another

two parameters called SST ans SSR and they are calculated as indicated in Equation

3.3.

SST =
∑

(yi − ȳ)2 SSR =
∑

(ŷi − ȳ)2 (3.3)

Finally, coefficient of determination yields,

r2 =
SSR

SST
=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

(3.4)
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Table 3.3: r2 Comparison for Each Coefficient

r2

Coefficient MARS ANN

Cx 0.9981 0.9986

Cy 0.9985 0.9988

Cz 0.9993 0.9993

Cl 0.9907 0.9883

Cm 0.9966 0.9962

Cn 0.9945 0.9941

3.3.3.2 Mean Squared Error

Mean Squared Error (MSE) can be defined as the mean of the squared difference

between the estimated values and the dependent variable itself.

Apart from r2, MSE is dimensional, in other words, dependent on the absolute value

of the data. That fact appears important while assessing the result. The analytical

calculation of MSE is given in Equation 3.5.

MSE =
SSE

n
=

1

n

∑
(yi − ŷi)2 (3.5)

where n is the number of data points
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Table 3.4: MSE Comparison for Each Coefficient

MSE

Coefficient MARS ANN

Cx 0.0019 0.0013

Cy 0.0309 0.0249

Cz 0.0250 0.0256

Cl 0.0229 0.0287

Cm 1.1591 1.2767

Cn 1.2423 1.3340

3.3.4 Random Input Analysis

After going through the whole modeling process and evaluating the statistical metrics,

in order to test the different models random input analysis is to be performed. This is

the final step before the model selection.

To do that, a large set of random input parameters has to be generated. To make a

proper random input analysis, that dataset should cover as much space as possible

considering the limits. In addition, it is better to test a lot of points to make sure the

model performs successfully.

Following the preparation of the input dataset, those inputs are fed into the model to

generate the model output for each aerodynamic coefficient.

3.3.5 Model Selection

Following procedure is performed to ensure the selection of the best model possible;

• Boundaries, limits and constraints for each design parameter are specified with

prior knowledge.

• Experimental design algorithm is implemented and run many times using pre-
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defined inputs.

• DoE results are thoroghly investigated using scenario coverage and parallel co-

ordinates check.

• Selected test matrix is prepared with utmost consideration the parameter limits.

• The raw wind tunnel data is carefully acquired and pre-processed.

• Hyperparameter matrix is designed for ANN and MARS algoritmhs.

• Modeling under different hyperparameter values is monitored the results are

tabulated.

• Statistical metrics such as r2 and MSE are recorded for every run.

• 5-fold cross validation is performed for overfitting and selection bias preven-

tion.

• Random input analysis to check whether the model complies with the parameter

boundaries.

• Report generation including every coefficient model’s every traverse to see the

model performance in comparison to the real test data.

3.3.6 Model Integration

Following the model selection, selected model is to be integrated into 6DoF sim-

ulation model. To do that, depending on the application, there may be some post

processes such as applying axial symmetry to the model, transition function imple-

mentation for the regions having risky crossings and s-function generation to increase

the simulation pace.
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3.4 Simulation Accuracy and Performance

The wind tunnel testing with the prepared DoE is conducted and the results are mod-

eled with ANN and MARS techniques. Then, the aerodynamic models are integrated

into a high fidelity 6DoF simulation model. Simulation results are be compared with

each other in terms of flight trajectories and the specified flight parameters.

6DoF model is a large superior system that contains and unites the subsystems to be

able to simulate the missile dynamics under various conditions. The objective is to

simultaneously optimize the simulation accuracy and the performance. Models with

higher statistical performance would lead to higher simulation accuracy, obviously.

However, the model should also be able to perform faster. And, there emerges a

trade-off between accuracy and performance.

3.4.1 Flight Simulations

In this section, the modeled wind tunnel test results are integrated to a high fidelity

6DoF simulation environment of the missile in order to compare ANN and MARS

techniques in terms of flight parameters. For this purpose, 3 different flight scenar-

ios which are capable of covering different Mach number, a-b and control surface

deflection angle regions are determined and simulations are performed.

3.4.1.1 Scenario 1 - Non-maneuvering flight

The first scenario consists of a non-maneuvering flight, which is expected to be the

most common flight scenario. One can see the difference between ANN and MARS

models in Figure 3.22 in terms of trajectory, Mach, a and b.

In addition, The aerodynamic coefficients throughout the flight are shown in Figure

3.23.
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Figure 3.22: Flight Trajectory, Mach, and a and b Profiles for Scenario-1
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Figure 3.23: Aerodynamic Coefficients for Scenario-1
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From Figure 3.22 and Figure 3.23, it can be inferred that two models behave similar

in terms of trajectory and Mach number. However, there are slight differences in a

and b responses and aerodynamic coefficients. Since aerodynamic coefficients and

a-b values are calculated in an iterative manner, one must keep in mind that those

parameters trigger each other and it is expected to see such disparities in closed loop

system responses.

3.4.1.2 Scenario 2 - One Circle Maneuver

The second scenario consists of a maneuvering case in order to observe the relevant

dynamic behaviour, mostly on turn performance. One can compare the effects of

ANN and MARS models in Figure 3.24.

Looking in the bottom left graph, it can be seen that angles of attack have changed

trends dramatically towards the end of the simulation. As the missile gets closer to

the target, position estimation becomes more important and in this terminal phase,

model differences yields to a target positions that are very distinct. That is why the

missile requires completely different angles of attack in each simulation.

Also, the aerodynamic coefficients throughout this flight are shown in Figure 3.25.
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Figure 3.24: Flight Trajectory, Mach, and a and b Profiles for Scenario-2
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Figure 3.25: Aerodynamic Coefficients for Scenario-2

As in Scenario-1, Figure 3.24 and Figure 3.25 also show differences in aerodynamic

coefficients and a and b profiles. Since this scenario focuses on b plane, the differ-

ences on Cy, Cn and b profiles appear smaller.

3.4.1.3 Scenario 3 - S-Maneuver

The third scenario is carried out under specific control surface deflections. To excite

the system sufficiently and reveal various underlying dynamics, it is common practice

to apply a signal that contains variety of frequencies. For this purpose, chirp signals

that have magnitude 5°, duration of 15 seconds and frequency varies from 0.5 Hz to

5 Hz are applied as control surface input angles, which can be seen in Figure 3.26.

As a result of this input, rapidly changing flight conditions are expected. The resulted

simulation outputs are shown in Figure 3.27.
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Figure 3.26: Chirp Signal Generated as Control Surface Deflections
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Figure 3.27: Flight Trajectory, Mach, and a and b Profiles for Scenario-3
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Unlike previous scenarios, the differences in the trajectory and Mach profiles become

observable. Also, the differences between a and b profiles increase as the frequency

goes up. The aerodynamic coefficients throughout the flight are shown in Figure 3.28.
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Figure 3.28: Aerodynamic Coefficients for Scenario-3

Under that challenging flight conditions, responses of aerodynamic models may pro-

vide insight about model accuracy. As the input frequency increases, the differences

between two model responses become distinctive and this leads to a diversified mis-

sile trajectories and Mach profiles.

3.4.2 Simulation Runtime

In this section, various numbers of simulations are performed to see which technique

is faster and consumes less computational time. All simulations are carried out in The

MathWorks, Inc.’s MATLAB & Simulink and using the hardware specified below:
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Table 3.5: Hardware Properties

CPU Intel Core i5-3470 @ 3.2 GHz

Memory 8.00 GB

System Type 64-bit Operating System

In order to compare two modeling techniques in terms of simulation runtime, Simulink

model (Figure 3.29) is constructed for both model functions and a batch run process

is conducted for over a million uniformly distributed random inputs which are men-

tioned earlier in the random input analysis section. It takes ANN model to complete

the simulation in 149.9 seconds whereas the MARS model’s result is 128.5 seconds.

Consequently, using ANN instead of MARS costs approximately 17% more compu-

tational time.
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Figure 3.29: Batch Run Model for Simulation Performance Assessment
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CHAPTER 4

CONCLUSION

In this thesis, a methodology for experimental design for wind tunnel testing and

modeling of the collected aerodynamic data for an agile missile is presented. The

ultimate aim is to improve the 6DoF simulation accuracy and performance by better

representation of the aerodynamics.

Wind tunnel tests are quite necessary when evaluating the aerodynamics of air vehi-

cles. However, since testing is also costly, the process should be optimized to obtain

the maximum benefit. In most cases, all the design space cannot be tested due to time

and cost concerns. Therefore, DoE is considered to determine the test matrix. DoE is

a vast subject in statistics and there are lots of different algorithms. Among those dif-

ferent algorithms, sequential space filling is selected when designing the experiment.

Because, wind tunnel tests mostly conducted in several phases and sequential space

filling is well suited for this kind of procedure.

Due to highly nonlinear nature of the aerodynamic properties of an agile missile, non-

parametric modeling tools are considered to model the output of the wind tunnel test.

ANN modeling technique, which is in common use in the field, is utilized to construct

models to predict aerodynamic coefficients during simulations. MARS technique is

also utilized as a new tool to model the wind tunnel data for its consideration as a

contender to ANN technique.

Both techniques are found to be successful in modeling of the aerodynamic coeffi-

cients. The statistical modeling performance of MARS is similar to that of ANN.

However, MARS appeared to have better statistical performance on moment coeffi-

cients which usually have more nonlinear behavior compared to the force coefficients.
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After the modeling is completed, aerodynamic models are integrated into 6DoF equa-

tions of motion model in order to assess their accuracy and performance. In flight

simulations, both techniques perform closely under 3 different scenarios. Yet, the

difference between the techniques becomes more observable as the scenario covers

broader flight regime. Batch run study tells that MARS appeared 17% faster in terms

of computational time. As a result, both techniques appeared to be well suited for the

solution of the problem with minor differences when applied in correct manner.

Consequently, it can be said that the methodology given in this thesis is quite mean-

ingful and yields to a good result. Aerodynamic modeling of the agile missile that

has a large flight envelope with a limited budget can be considered a big challenge.

Nevertheless, when performed correctly, experimental design and nonlinear statistical

modeling is proven to be successful when overcoming that complex problem.

4.1 Future Works

• Improvements on hyperparameter tuning procedure, e.g automation

• Test matrix updates and interruptions with on-site modeling

• Transfer learning application using system identified flight test data
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