
A SECURE MODEL FOR EFFICIENT LIVE MIGRATION OF CONTAINERS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ZEYNEP MAVUŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

A SECURE MODEL FOR EFFICIENT LIVE MIGRATION OF
CONTAINERS

submitted by ZEYNEP MAVUŞ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Pelin Angın
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Hikmet Doğru
Computer Engineering, METU

Assist. Prof. Dr. Pelin Angın
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Burak Can
Computer Engineering, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Zeynep Mavuş

Signature :

iv

ABSTRACT

A SECURE MODEL FOR EFFICIENT LIVE MIGRATION OF
CONTAINERS

Mavuş, Zeynep

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Pelin Angın

September 2019, 84 pages

Cloud services have become increasingly widespread in the past decade due to their

ability to reduce the complexity and cost of managing computers and networks. Cloud

applications are run in virtualized environments such as virtual machines and con-

tainers to be able to allocate resources in an inexpensive manner. Both of these ap-

proaches require effective resource utilization, for which an important enabling tech-

nology is live migration, which involves moving a service from one host to another

with the minimum possible downtime. Live migration is also required for system

maintenance, load balancing, and protecting services from attacks through moving

target defense. While migrating a service, the system should not be vulnerable to

attacks. In this work, we propose a secure model for efficient live migration of

containers. Because the applications are isolated from each other while running in

Docker containers, checkpointing was used to generate the required migration data.

In our proposed model, we provide security of the migration data using secure au-

thentication, and ensuring all connections between the nodes are protected to provide

communication security, making the system protected against migration attacks. The

v

efficiency of the migration system designed based on the proposed model has been

proven on stateless and stateful sample applications. Experiments with sample ap-

plications running on the Docker container platform demonstrate that the proposed

approach achieves significantly better performance than its virtual machine live mi-

gration counterpart.

Keywords: Live Migration, Container, Virtual Machine, Docker, CRIU, Security

vi

ÖZ

ETKİN KAPSAYICI CANLI TAŞIMASI İÇİN GÜVENLİ BİR MODEL

Mavuş, Zeynep

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Pelin Angın

Eylül 2019 , 84 sayfa

Bulut hizmetleri, bilgisayar ve bilgisayar ağlarının yönetme karmaşıklığını azaltma

ve maliyetlerini düşürme yeteneklerinden dolayı son on yılda giderek yaygınlaşmış-

tır. Bulut uygulamaları, kaynakları masrafsız bir biçimde tahsis edilebilsin diye sanal

makineler ve kapsayıcılar gibi sanallaştırılmış ortamlarda çalıştırılır. Bu yaklaşım-

ların her ikisi de, mümkün olan en az aksama süresiyle bir hizmeti bir ana bilgi-

sayardan diğerine taşımayı hedefleyen canlı taşıma teknolojisinin şartlarından, etkin

kaynak kullanımını gerektirir. Canlı taşıma, aynı zamanda, sistem bakımı, yük den-

gelemesi ve sunucu hizmetlerinin hareketli hedef savunması yoluyla gelen saldırılara

karşı korunması için de gereklidir. Bir servisi taşırken, sistem saldırılara açık olma-

malıdır. Bu çalışmada, kapsayıcıların etkin bir şekilde canlı taşınması için güvenli

bir model öneriyoruz. Docker kapsayıcılarında uygulamalar çalışırken birbirlerinden

izole edildiğinden, gerekli geçiş verilerini oluşturmak için denetim noktası yöntemi

kullanılmıştır. Önerilen modelimizde, güvenli kimlik doğrulaması kullanarak geçiş

verilerinin güvenliğini sağlıyoruz ve düğümler arasındaki tüm bağlantıların iletişim

güvenliğini sağlayarak sistemi taşıma saldırılarına karşı korumalı hale getiriyoruz.

Önerilen modele dayanarak tasarlanan canlı taşıma sisteminin verimliliği, durumsuz

vii

ve durumlu uygulama örnekleriyle kanıtlanmıştır. Docker kapsayıcı platformunda ça-

lışan örnek uygulamalarla yapılan deneyler, önerilen yaklaşımın sanal makine canlı

taşımasından önemli ölçüde daha iyi performans elde ettiğini göstermektedir.

Anahtar Kelimeler: Canlı Taşıma, Kapsayıcı, Sanal Makine, CRIU, Güvenlik

viii

To my family...

ix

ACKNOWLEDGEMENTS

First, I would like to thank to my supervisor Asst. Prof. Dr. Pelin Angın who guided

me by motivating and encouraging with a great patience and understanding during

my study. For their precious comments and questions, I also thank to my committee

members.

I would also like to thank my managers and teammates from ASELSAN for their

understanding and support during my academic studies. I would also like to express

my special thanks to my friends for making them feel around me whenever I needed

them, even if they were far away.

Last, I would like to thank my family: my parents Nurefşan and Türker Mavuş, for

trusting me and supporting me for every choice I made throughout my life, my brother

Ahmet Mavuş for giving me valuable advices and being a good role model to be

followed for me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGEMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Live Migration Attacks . 2

1.3 Live Migration Security Factors . 3

1.3.1 Access Control . 4

1.3.2 Authentication . 4

1.3.3 Data Confidentiality . 4

1.3.4 Communication Security . 4

1.3.5 Data Integrity . 4

1.3.6 Availability . 5

xi

1.4 Proposed Methods and Models . 5

1.5 Contributions and Novelties . 5

1.6 The Outline of the Thesis . 6

2 BACKGROUND INFORMATION . 7

2.1 What is a Container? . 7

2.2 The Differences Between Containers and Virtual Machines 8

2.3 Docker Container Technology . 9

2.3.1 Images . 10

2.3.2 Containers . 11

2.3.3 Services . 11

2.4 Live Migration . 11

2.5 Moving Target Defense . 13

2.6 Stateless and Stateful Applications 14

2.6.1 Stateless Application . 14

2.6.2 Stateful Application . 15

2.7 SSH (Secure Shell Protocol) . 15

2.7.1 Symmetric encryption . 16

2.7.2 Asymmetric encryption . 17

2.7.3 Hashing . 17

2.8 Advanced Encryption Standard . 18

2.9 Key Exchange Method . 18

2.9.1 Diffie-Hellman Key Exchange Algorithm 19

2.9.2 Diffie-Hellman Usage in SSH 22

xii

2.10 SFTP . 23

2.11 Algorithms Used in SSH and SFTP 24

3 RELATED WORK . 29

3.1 Secure Live Migration of Virtual Machines 29

3.1.1 Migration Network Isolation 29

3.1.2 Network Security Engine Hypervisor 30

3.1.3 Secure VM-vTPM Migration Protocol 30

3.1.4 Improved VM-vTPM Migration Protocol 31

3.1.5 Using IPSec Tunneling . 31

3.1.6 Live Migration Defense Framework 32

3.1.7 Inter Cloud Virtual Machine Mobility 32

3.1.8 Trust Cloud Security Level 33

3.1.9 Secure VM Migration by Using RSA with SSL protocol 33

3.1.10 Trust Token based VM migration protocol 33

3.1.11 Runtime Monitors . 34

3.1.12 Migration Using Memory Space Prediction 35

3.1.13 Encryption of Migration Data with AES Algorithm 36

3.2 Live Migration of Containers . 37

3.2.1 ESCAPE Live Migration Model 38

3.3 Live Migration of Containers vs Virtual Machines 39

4 PROPOSED MODEL . 41

4.1 Model Architecture . 41

4.2 Checkpointing and Restoring . 45

xiii

4.3 Model Execution Plan for Stateless Application 46

4.4 Model Execution Plan for Stateful Application 48

4.5 Security Evaluation . 50

4.6 Attack Resilience . 51

5 EXPERIMENTAL EVALUATION . 53

5.0.1 Experiment Setup . 53

5.0.1.1 Source and Destination Cloud Instance Setup 53

5.0.1.2 Docker and CRIU Configurations 54

5.0.1.3 Application Server Setup 55

5.0.1.4 Database Server Setup 56

5.0.1.5 Applications Used in Experiments 57

Clock Application . 57

Installation . 58

Face Recognition Application 58

Installation . 58

5.0.1.6 SSH Connection and File Transfer Application 60

SSH Public Key Authentication: 60

5.0.2 Experiment Metrics . 62

5.0.3 Experiment Results and Discussion 63

5.0.3.1 Multi User Test Scenario Results 68

5.0.3.2 Comparison with Layered Framework Experiment . . . 70

6 CONCLUSION AND FUTURE WORK 77

REFERENCES . 79

xiv

LIST OF TABLES

TABLES

Table 2.1 Diffie-Hellman Mechanism [1] . 22

Table 5.1 IP Addresses of Instances . 54

Table 5.2 Stateless Clock Application Experiment Results 67

Table 5.3 Multi User Test Cases and Transfer Duration Results 69

Table 5.4 Layered Framework Experiment Setup Machines’ Details 71

Table 5.5 Total Migration Duration and Transfer Data Size for LXC 72

Table 5.6 Total Migration Duration and Transfer Data Size for KVM 72

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Containers versus Virtual Machines 8

Figure 2.2 Docker Architecture . 10

Figure 2.3 Overview of Live Migration . 12

Figure 2.4 Pre-Copy Migration [2] . 13

Figure 2.5 Post-Copy Migration [2] . 13

Figure 2.6 Diffie-Hellman Algorithm Illustration 21

Figure 3.1 Migration Network Isolation [4] 30

Figure 3.2 Network Security Engine Hypervisor [4] 30

Figure 3.3 vTPM Migration Solution [4] 31

Figure 3.4 IPSec Tunneling [4] . 32

Figure 3.5 Prediction Based Compression Architecture [5] 36

Figure 3.6 System Design [6] . 37

Figure 3.7 Live VM Migration using AES encryption [6] 37

Figure 4.1 Model Architecture Overview 41

Figure 4.2 Model Architecture . 43

Figure 4.3 Proposed Model Activity Diagram 44

xvi

Figure 4.4 CRIU Principle Diagram [3] 46

Figure 4.5 Clock Application Execution Plan 48

Figure 4.6 Face Recognition Application Execution Plan 50

Figure 5.1 Cloud Instance Details . 53

Figure 5.2 Experimental Setting . 54

Figure 5.3 Docker Configuration . 55

Figure 5.4 Application Server Details . 56

Figure 5.5 Database Server Details . 56

Figure 5.6 SSL Connection Configuration 57

Figure 5.7 Containerizing Stages of an Application 59

Figure 5.8 Total Migration Time and Downtime 64

Figure 5.9 Upload Speed Effect on Downtime and File Transfer Duration . 65

Figure 5.10 Checkpoint and Resume Duration 66

Figure 5.11 Stateless Clock Application Experiment Results Graph 67

Figure 5.12 Multi-User Total Migration Time and Checkpoint File Sizes . . . 69

Figure 5.13 Multi-User Checkpoint and Resume Duration 70

Figure 5.14 LXC Results [7] . 73

Figure 5.15 KVM Results [7] . 74

Figure 5.16 Proposed Secure Model Results with Face Recognition Appli-

cation . 75

xvii

LIST OF ABBREVIATIONS

ABBREVIATIONS

VM Virtual Machine

AES Advanced Encryption Standard

NIST National Institute of Standards and Technology

SSH Secure Shell

SFTP SSH File Transfer Protocol

SSL Secure Sockets Layer

CRIU Checkpoint/Restore In User Space

RMM Remote Monitoring and Management

RSA Rivest Shamir Adelman

IDS Intrusion Detection System

TCP Transmission Control Protocol

LXC Linux Container

KVM Kernel-based Virtual Machine

xviii

CHAPTER 1

INTRODUCTION

Cloud Computing has recently become one of the most popular computing paradigms.

This methodology is transforming IT services into remote computing services over

the Internet in an on-demand manner. Additionally, these services can be configured

according to the requirements of the customers. Because the cloud customers or users

are not expected to pay for IT service infrastructure, buy the hardware and software

resources (such as license), cloud computing is beneficial to the customers in many

aspects like flexibility, portability and scalability.

In order to provide these benefits to the users, virtualization techniques are frequently

utilized in cloud computing, as it needs to enable users to share the infrastructure,

which makes the service availability less expensive. Without virtualization tech-

niques, cloud providers would need to provide distinct resources to their customers,

which is possible, but would result in high costs as a significant disadvantage.

In order to tackle the high service cost, virtualization technologies such as virtual

machines and containers are used. In that case, the whole performance efficiency

of the cloud has a strong relation with the performance efficiency of the VMs and

containers. Other than the performance issue, security concern is also dependent to

the security concern of the virtualized environment used in the cloud.

1.1 Motivation and Problem Definition

A basic cloud service can be defined as cloud provider’s service present to users via

internet access. The cloud applications are generally made resident in virtualized

1

environments such as virtual machines and containers. Containers are a new technol-

ogy relative to virtual machines. There are key differences between two technologies:

One of them is that while virtual machines imitate the operating system kernel, con-

tainers make use of the hardware and kernel of a single host operating system in a

shared manner. Containers encapsulate applications with their required binaries in

order to provide the application as a service. Therefore, containers have less virtual-

ization cost and use less resources relative to VMs because of their lightweight nature.

Both virtualization techniques could provide increase in efficiency in the utilization

of the resources in the big data centers. This could be provided by the migration of

the encapsulated service. Live migration has become an increasingly popular topic

because of its contribution to the consolidation of services. There are many other

reasons to migrate a service from a source host to a destination. These can be system

maintenance (for a software or hardware update), load balancing, efficient resource

utilization, protecting the service from an attack as a moving target defense method,

etc. There are many studies in the literature on VM live migration as in [4], [5], [8].

In addition to these, migration management frameworks have also been developed

for virtual machines like OpenStack to be able to apply load balancing between vir-

tual machines. On the other side, migration management frameworks do not exist for

containers because of the immaturity of the technology.

Although virtual machine migration has been extensively investigated and discussed

in the cloud computing research area, container migration does not have the same set

of investigations in the literature because it can be counted as a relatively new technol-

ogy. Especially, existing solutions do not consider the security aspect of migration.

In the cloud computing area, live migration is unprotected against many kinds of at-

tacks such as network sniffing, man-in-the-middle, replay etc. An ideal live container

migration system should take precautions for these.

1.2 Live Migration Attacks

Cloud services are publicly available to machines connected to the Internet, which

makes cloud computing services an open target for online threats. Since live mi-

gration takes place between different machines in the cloud, also, the network that

2

connects these machines to each other should be resistant to outsiders’ attacks. By

using intrusion detection systems to catch suspicious behaviors on cloud machines,

some solutions are proposed to tackle these problems. Live migration as a moving

target defense strategy has been proposed as one of these solutions. Nevertheless, the

live migration concept has still security issues which should be dealt with.

Live migration is susceptible to active and passive attacks. An active attack causes

loss of data integrity. On the other hand, passive attacks cause loss of sensitive data

confidentiality. Some of the most remarkable attacks can be listed as man-in-the-

middle, denial of service, overflow and replay attacks [35].

• Man-in-the-Middle Attack: Attackers can eavesdrop on the data while migrat-

ing from source host to destination. This could cause loss of data integrity.

• Denial of Service (DoS) Attack: By using false resource advertisement, attack-

ers can captivate more virtual machine towards themselves. They can migrate a

virtual machine stealing the bandwidth resource by preventing required migra-

tions. This can lead to serious problems in the cloud system, where migrations

are started in an automatic manner.

• Overflow Attack: Stack overflow can be caused by attackers by creating con-

gestion in the communication channel traffic, which can result in the memory

corruption of the running process.

• Replay Attack: Attackers can re-transmit the previous replicates of memory

pages to the destination host where the changed ones are required. This hap-

pens because of frequent dirty page occurrences. Attackers can also modify the

order of memory pages sent to destination from source. This results in ordering

problems in the destination host [35].

1.3 Live Migration Security Factors

A secure live migration technique should provide the security of the system from

different perspectives. Each individual level of the architecture of the system should

be taken into account separately. To be able to ensure the quality of proposed systems,

3

there are some security factors used as a checklist. The detailed factors making live

migration secure are as follows:

1.3.1 Access Control

Unauthorized users are allowed to start, move and stop a machine if improper access

control policies are defined. Therefore, if the appropriate control policies are defined,

the VMs or containers and the host server becomes protected [36].

1.3.2 Authentication

Authentication is required between the source and the destination hosts. By this

way whether the migration occurs between authorized source and target hosts can

be checked [36].

1.3.3 Data Confidentiality

Data encryption is required while migrating data between source and destination

hosts. If it is transferred as plain text, it makes the system open to man-in-the-middle

attacks and sensitive data can get stolen in the migration period [36].

1.3.4 Communication Security

The data transmission channel should be protected and secure. In order to prevent

the system from becoming open to active and passive attacks, a secure transmission

channel should be defined on the migration path between source and destination hosts.

1.3.5 Data Integrity

Data integrity can also be destroyed due to some vulnerabilities in the migration mod-

ule. In order to prevent that, methodologies for secure programming are required to

4

be used. Beside the migration data encryption, integrity can be protected by utilizing

message authentication code (MAC), checksums and digital signatures.

1.3.6 Availability

If the system is not protected against denial-of-service attacks by allowing unautho-

rized users to initiate unnecessary outgoing migrations in an increasing manner, it

makes the system resources unavailable to the authorized users. It is required to ap-

ply strong procedures for controlled access to protect availability.

1.4 Proposed Methods and Models

In our proposed model, we provide security of the migration data by using secure

authentication and file transfer protocols. We propose a migration architecture which

includes cloud host and target instances, an application server and a database server.

All connections between the nodes are protected by secure protocols and encryption

techniques specified in order to provide the communication security and make the

system protected against migration attacks. The application server triggers the migra-

tion process between the nodes. The application server acts like a control manager

over the migration system. The database server is a common pool in order to keep

application results and serve them to the application server in order to return the re-

sult to the user by the application server. Performance efficiency is also measured

and provided in order to show the overhead resulting from this encrypted channel

approach.

1.5 Contributions and Novelties

Our contributions are as follows:

• A secure container live migration method is proposed.

• The efficiency of the implemented model has been proven on stateless and state-

ful sample applications.

5

• The impact of container encryption on the live migration system performance

is provided.

1.6 The Outline of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 describes the tools and concepts vital to understanding the proposed

live container migration model.

• Chapter 3 provides an overview of virtual machine and container live migration

models in the literature.

• Chapter 4 describes the proposed model architecture.

• Chapter 5 describes the setup, analysis metrics, and results of the experiments

with the proposed model.

• Chapter 6 gives a summary of the contributions and concludes with future work

directions.

6

CHAPTER 2

BACKGROUND INFORMATION

This chapter provides the background information regarding the terminology, method-

ologies and tools used in this thesis. In addition, definitions and general overview of

the live container migration concepts are explained in this chapter.

2.1 What is a Container?

A container is a software component to package an application with its code and all

dependencies so it can be run as isolated from other processes. Containers of the

shipping industry inspired the name of this technology. Instead of finding a unique

packaging style for each product to be shipped, containers are used to make all the

products fit in the ship by using standard sized containers, which are already fit in

ship. If this idea is applied to the computer container technology, it means that con-

tainers provide a mechanism to package an application, which can be abstracted from

its actual running environment. The containers include not only the software, but

also its dependencies with their libraries, binaries and configuration files, and they

get transported as a unit, by eliminating the differences between machines, operating

systems and used hardware, which causes incompatibilities usually. This decoupling

gives the ability to deploy container-based applications in an easy and consistent man-

ner, regardless of the destination environment type [9].

7

2.2 The Differences Between Containers and Virtual Machines

Figure 2.1: Containers versus Virtual Machines

Containers have become popular in an increasing manner and have become an alter-

native for classic VMs [10]. Virtual machines offer physical hardware abstraction.

Therefore, they provide full isolation, meaning that they have their own applications

running, users and networking, which are distinct from the host system and other

guest systems and not visible to them or vice-versa. Multiple virtual machines are

managed by hypervisors to work on a single machine. Each of the virtual machines

contains a complete copy of an OS, the process, required binaries and libraries, which

needs a memory space that is approximately tens of gigabytes. Therefore, booting can

take a long time.

Containers offer application layer abstraction. Containerization means packaging

source code and dependencies together. Containers offer virtualization technology,

which makes them similar to virtual machines. However, they differ from each other

in many aspects. Multiple containers can run on the same machine and the OS ker-

nel is used commonly with other containers, each running as isolated processes in the

user space. A container needs memory space that is approximately tens of megabytes,

which means it requires less space than virtual machines. The goal of the container-

ization is to provide more computing power to the applications by sacrificing this

8

flexibility and therefore all containers use the same kernel [11].

Similar to virtual machines, containers run on a host machine, which can be virtual

or bare metal. Containers can be configured to any specification required, providing

isolated processes, users and networking, too.

The difference between virtual machines and containers is that containers contain

only the application code and the required binaries and libraries that are required for

the related container. Furthermore, this means that since a container does not need

its own operating system, it uses only the resources required for the application upon

container start [12] [13].

Containers also are stored as images. However, the main difference is that their im-

ages are much smaller and more portable than virtual machine images because they

do not need a complete operating system installation.

Containerization technology, like OpenVZ [14], LXC [15] and Docker [16] become

a different way of virtualization instead of classic VMs due to their lightweight struc-

ture [10].

2.3 Docker Container Technology

Docker [16] is a tool for software developers and system administrators to develop,

transport and operate distributed applications using Docker Engine, which is a portable,

lightweight tool to run and package the applications, and Docker Hub which is a cloud

service for deployment and sharing applications and workflow automation [17].

Docker containers include software and all of its dependencies in a unit. This makes

the developer sure that the application will run the same, independent of the host ma-

chine. Docker enables making applications independent of the infrastructure. There-

fore, software can be delivered quickly [9].

Client-server architecture is the basis of the Docker structure. The Docker archi-

tecture consists mainly of three components: daemon, client registries and objects.

Docker daemon is responsible for compiling, running, and distributing the contain-

9

ers. The client containers communicate with the daemon located on the host machine

through a bridge [17].

Docker API requests are handled by the Docker daemon and it manages Docker ob-

jects, which are images, containers, networks and volumes.

Docker users first interact with Docker by means of docker client. The Docker client

communicates with the Docker daemon. Docker images are stored in the Docker

registry. Docker Hub is a registry that any user can access publicly.

When the docker pull or docker run commands are called, the necessary images are

installed from the selected registry. When the docker push command is called, the

built image is pushed to the selected registry.

Figure 2.2: Docker Architecture

The main Docker objects can be listed as Images, Containers and Services.

2.3.1 Images

Docker containers can be created via an image, which is a read-only template. For

instance, an image can include a CentOS operating system with an application server

such as TomCat and some other web applications. Docker also provides means to

create images and also to use previously created images from the registry.

In order to build an image, a Dockerfile is required. It contains the instructions re-

10

quired to create the image and execute it. Every instruction step in a Dockerfile forms

a layer in the related image. When the Dockerfile is edited and the related image is

recompiled, only the edited layers are recompiled. This makes images lightweight

and efficient relative to other virtualization technologies [9] [17].

2.3.2 Containers

A container is an executable image instance. Docker API (or CLI) allows to create,

start-stop or remove a container.

A container is isolated from others and its host machine. Isolation specifications of

the container can also be manipulated.

2.3.3 Services

Services provide container scaling across Docker daemons. A service provides the

opportunity to define the required status, i.e. the number of duplications of the service

available at any given time [9].

2.4 Live Migration

The process of moving a running application instance or a virtual machine between

different physical or cloud machines without making the client disconnected is de-

fined as live migration. If a failure is encountered in the system, migration provides

fault tolerance by moving the service to another machine. In addition to that, load

balancing, reallocation of resources, hardware maintenance with acceptable down-

time and high availability can be achieved using live migration. Memory, process

and storage migration are the main parts of the VM and container live migration

mechanisms.[8]

11

Figure 2.3: Overview of Live Migration

There are mainly two types of memory migration techniques. The first one is pre-

copy memory migration. The second one is post-copy memory migration. The steps

listed below is followed in pre-copy memory migration: [8]

• The source node continues to run while copying the memory pages from the

source node to the destination node.

• Only the dirty pages that were changed during the previous transfer round are

copied.

• The source node is stopped and the CPU state and the remaining dirty pages

are transferred.

• The destination node is started.

The steps listed below are followed in post-copy memory migration: [8]

• The Source node is stopped. The CPU state is copied to the destination node.

• The destination node is resumed with no memory content.

12

Figure 2.4: Pre-Copy Migration [2]

• If the destination node attempts to reach pages not transferred yet, the miss-

ing pages are requested over the network from the source node. The remaining

states are copied from the source node to the destination node in parallel, mean-

ing in the background.

Figure 2.5: Post-Copy Migration [2]

The memory migration method consists of two methods (pre-copy and post-copy) as

mentioned above. However, these methods have already been developed in Linux

with a project named as CRIU. Instead of the familiar methods of transferring the

entire memory, there are some efforts to improve performance by transferring the

working set of the virtual machines and the status of CPU. [18]

2.5 Moving Target Defense

Moving Target Defense (MTD) is a game change strategy released in the National

Cyber Leap Year Summit in 2009 [22]. The idea behind the MTD mechanism is

13

security through diversification. Its main concern is to alter the configurations of a

target in a random and dynamic manner. These kinds of randomness in the system’s

configuration makes the complexity increase, which makes the attackers unable to

exploit the system easily in this kind of a system, which has continuously altering

configurations.

After Moving Target Defense was introduced at the National Cyber Leap Year Sum-

mit in 2009 [22] , it gained acceptance in many research areas. The shell game can

be counted as a successful example of this concept. In the shell game, a person puts

a marble sized object under one of the three shells, which are identical and looking

downward. The person who placed the marble moves them in a consecutive and fast

manner. When he stops, the player who finds the right shell containing the marble

becomes the winner. Since the target (marble in our example) is randomly changing

its place, it becomes hard to find for the player. Randomness and diversity are the

main parts in this strategy. MTD became an alternative security solution in the last

decades for researchers instead of investigating perfectly securing systems [22].

2.6 Stateless and Stateful Applications

The live migration concept can be categorized into stateless and stateful service mi-

gration. According to the category of the application, the migration procedure differs.

In order to better understand the reason behind the difference of procedures applied

when live migrating these services, requirements by definition of these application

types should be classified accordingly. The migration system model should give re-

action according to the classification of the related service.

2.6.1 Stateless Application

A stateless application can be defined as a computer program, which does not store

any data computed in any of the sessions in order to be able to use in the following

sessions. In other words, every session is conducted by assuming that it is the first

execution of that program. The results of any of the executions of that program are

not related to the results or data computed in the previous sessions.

14

Stateless application development is popular in the cloud computing environment,

because it provides high scalability on the distributed system models in the cloud

computing area. The main reason of that popularity comes from the ability of the easy

redeployment in a failure situation occurence. This also makes live migration of the

related stateless service easier, as any storage, program counter or state data related

to that service is not needed to migrate between the instances. Only the redeployment

of the service on the new instance is adequate to make the client keep on using the

service.

2.6.2 Stateful Application

By contrast to stateless applications, stateful applications store data in order to con-

tinue execution. Application state has a crucial role in the migration process. Only

making the related network traffic rerouted and making the application redeployed on

the new machine as in the stateless applications are not enough. In addition to that,

a checkpoint of the application, transfer of that checkpoint data and resuming the ap-

plication on the new host are all required to make the client keep using the service

without experiencing a service failure.

2.7 SSH (Secure Shell Protocol)

SSH (Secure Shell Protocol) enables establishing login connections and transferring

files over the Internet or other insecure networks in a secure manner. In order to

authenticate both sides of the connection, cryptography is used. All data transmitted

is encrypted automatically and data integrity is provided at the same time [23]. This

protocol is the most used way of administering remote servers securely. With the

help of encryption techniques, it also provides a mechanism for sending commands

between machines in addition to securely authenticated connection and file transfer.

The three major components of SSH are as follows:

• The Transport Layer Security Protocol: This protocol provides server authenti-

cation, confidentiality, and integrity of SSH. It also has the capability of com-

15

pression if required.

• The User Authentication Protocol: This protocol provides the authentication of

the client side user to the server side.

• The Connection Protocol: This protocol multiplexes a number of logical com-

munication channels over a single underlying SSH connection [24].

SSH uses a number of authentication and encryption/decryption methods to provide

secure connection between two remote devices. While conducting a transaction, the

used methods can be categorized as symmetric/asymmetric encryption and hashing.

2.7.1 Symmetric encryption

Symmetric encryption is an encryption technique in which the same key can be used

to both encrypt and decrypt the messages. In other words, anyone knowing the key

can both encrypt and decrypt messages. This type of encryption is also called as

shared secret encryption. There is generally only one key used for all functions.

SSH employs symmetric keys to encrypt the whole connection. Both of the client

and server sides make contributions for the key decision and the decided secret key

is not shared with parties other than the client and server. Key exchange algorithms

are used for key creation. These algorithms enable both the server and client to have

the same key by sharing specific public data and modifying them using specific secret

data. The key built this way is based on sessions. When the session is started and

connection is established, the remaining data must be encrypted by using this shared

key. This is completed before client authentication.

The symmetric cipher systems used by SSH are the followings: 3DES, AES, Blow-

fish, CAST128 and Arcfour. Both of the client and server side can agree on a list of

available ciphers they have.

16

2.7.2 Asymmetric encryption

Asymmetric encryption is an encryption technique in which two keys are required,

namely the public key and private key. Public keys can be distributed publicly mean-

ing that public keys can be shared by anyone without a restriction. On the other hand,

private keys must only be known by the key owner. Public key should be related to its

private key. However, the private key cannot be guessed by analyzing the public key.

The message encrypted with a receiver’s public key is decrypted only by using the

corresponding private key owned by the receiver. This mechanism provides the con-

fidentiality. This encryption method is used in different stages of SSH. In the first step

used in session encryption, the key exchange algorithm is utilized. By this algorithm,

asymmetric encryption is used. Both of the server and client sides create their related

key pairs and exchange their public keys to be able to create a key which is used in

symmetric encryption, in this step. The asymmetric authentication used in SSH in-

cludes authentication based on key. In order to authenticate a client to a server, key

pairs of SSH are used.

First, the client produces a key pair and then sends the public key to any remote server

it tries to connect to. After that, this key is written in a file named as authorized keys in

the /.ssh directory in the user’s home folder on the remote server. After the symmetric

encryption is setup to provide secure communication of the server and the client, the

client must complete the authentication process. Then, the server uses this public key

which is located in the file to encrypt a message to the client. If the message can be

decrypted by the client, it is proven that the related private key belongs to the client.

Then, the remote server can provide the environment for this client [25].

2.7.3 Hashing

Cryptographic hashing is also used in SSH. The main distinctive properties of crypto-

graphic hash functions are that they are unique in practice and cannot be reversed and

predicted. If we change even a small piece of data, the hash functions creates a com-

pletely different hash for that message. The given hash cannot be used to re-create the

original message, but can say that the given message results in a specific hash with

17

the same hashing function. Data integrity is guaranteed with this hash mechanism. In

SSH, hash based message authentication codes (HMAC) are used. They are used for

assurance that the received message content is unchanged.

A message authentication code algorithm is chosen in symmetric encryption as well.

Each message transferred after the encryption must include a message authentication

code so that the receiver side can understand that the packet integrity is provided. By

using the the message packet sequence number and the content of the actual message

and symmetric shared secret, the message authentication code is computed [25].

2.8 Advanced Encryption Standard

Advanced Encryption Standard or AES is one of the most popular ways for encryption

and decryption methodology for electronic and sensitive data approved for use by

National Institute of Standards and Technology (NIST) [26].

Joan Daemen and Vincent Rijmen developed AES in 1998. AES is a symmetric-key

block cipher. It is a bit block cipher and uses 128, 192 or 256-bit long keys [27]. Each

data block has 128 bits to be encrypted or decrypted by the AES algorithm. Block

cipher means that it divides data in blocks and makes each block combined with the

key to obtain an encrypted version of the data. AES uses 10, 12, or 14 rounds to

encrypt data. The key size, mentioned above as 128, 192, or 256 bits, is dependent

on the number of rounds [28].

AES encryption is efficient and adaptable to most different platforms. In addition to

that, AES has been verified for many security applications [27]. Although increasing

the key length causes extra overhead in performance aspects, it provides a more secure

way to encrypt/decrypt the data [29].

2.9 Key Exchange Method

Key exchange methods provide the encryption/decryption helper keys to be exchanged

between hosts through use of a cryptographic algorithm.

18

If both sides need to exchange messages which are encrypted, each side must be

capable of encrypting and decrypting to send and receive respectively. This capability

mainly depends on the technique used for encryption. If two parties utilize a password

or code, both will need to have a replica of that password or code. If they utilize a

cipher, they will require the input keys for the cipher to gain the right output after

the execution of the algorithm of the cipher. If the cipher algorithm is based on

the symmetric key approach, both parties will need to have a replica of that key. If

the cipher algorithm is based on an asymmetric key approach (with the public and

private key properties), both parties will require the public key of the other party.

The key exchange problem arises because of the need to exchange the keys to create

a communication channel in a secure manner so that anybody else cannot have a

replica or copy of those keys.

In order to provide data privacy while one party is sending the data to the other party,

SFTP, HTTPS and FTPS file transfer protocols encrypt the data in the related file by

using symmetric encryption. As mentioned above, the symmetric encryption has a

rule that both parties who are in communication with each other must have a key as

shared for encryption and decryption of the data in the files. But the main issue is

caused by the difficulty of sharing a key between two parties. The parties in commu-

nication can be too far away from each other. Therefore, the key cannot be transmitted

with the standard daily used methods by everyone. If it was so, it means that any user

who accesses that key would have the capability to decrypt all the message traffic be-

tween the parties. The solution method must be user friendly, scalable and secure. In

addition to that, it must be appropriate for the Internet environment channels which

is mostly insecure and needs high speed. If not, it means that it cannot be usable

for the areas which need sensitive, large sized transmissions between long distances

conducted on a daily basis. The most popular method used to tackle the key exchange

problem is the Diffie-Hellman key exchange algorithm.

2.9.1 Diffie-Hellman Key Exchange Algorithm

In 1976, Whitfield Diffie and Martin Hellman created an algorithm which is known

with the name of the Diffie-Hellman (DH) Algorithm.

19

It is a widely available algorithm used in most of the secure connection protocols

on the Internet. Diffie-Hellman is a method to exchange a shared key between two

parties in a secure manner over a distrusted network. A shared key is crucial between

the parties, who may not have ever established a connection previously, so that they

can encrypt the messages sent/received in their communications. It is utilized by

most of the protocols, such as Secure Shell (SSH), Secure Sockets Layer (SSL), and

Internet Protocol Security (IPSec) [1].

Behind the scenes, the algorithm has basic mathematical concepts such as modular

arithmetic operations and exponents algebra, which makes the algorithm relatively

easy to understand. In order to analyze and explain the algorithm operations better,

Alice and Bob, popular placeholder names in cryptology, will be used. The main

aim of this algorithm is making Alice and Bob reach an agreement on a shared key

so that anyone trying to overhear the communication between Alice and Bob cannot

solve the shared secret. The shared key between Alice and Bob is utilized separately

to compose keys to use in symmetric encryption algorithms, which will provide to

encrypt data between the two parties. The term used as key does not appear in the

network as different from shared secret and encryption key [1].

Diffie-Hellman process can be described easier by using a color blending example

before diving into the details of the mathematical interpretation. In the beginning, we

assume that Alice and Bob agree on an initial color by choosing a color inside a very

crowded color collection. Both of the parties share this selected color with each other

publicly. Secondly, Alice and Bob pick new different colors (secret colors). This

picked color is related to the publicly selected color. Alice and Bob mix their selected

secret colors with their public ones and after that they send the resulting colors to

each other. Both parties picked different secret colors. Then it means that their color

mixtures are different from each other. After receiving mixtures from each other, they

mix this received blend with their secret colors. After this last mixing operation, they

have the same color, which means the secret key that they will utilize to exchange

data between the two parties.

20

Figure 2.6: Diffie-Hellman Algorithm Illustration

In the following table, the mathematical operations used behind the Diffie-Hellman

algorithm are described.

21

Alice and Bob agree on the values p and g p is a large prime numeric value

g is the base/generator

Alice selects a secret key a Alice’s secret key is a

Bob selects a secret key b Bob’s secret key is b

Alice finds her public key x = ga mod p Alice’s public key is x

Bob finds his public key y = gb mod p Bob’s public key is y

Alice and Bob exchange their public keys Alice has p, g, a, x, y values

Bob has p, g, b, x, y values

Alice calculates ka = ya mod p ka = (gb mod p)a mod p

ka = (gb)a mod p

ka = gba mod p

Bob calculates kb = xb mod p kb = (ga mod p)b mod p

kb = (ga)b mod p

kb = gab mod p

Alice’s ka is the same as Bob’s kb, Alice and Bob both know the secret

or ka = kb = k value k

Table 2.1: Diffie-Hellman Mechanism [1]

2.9.2 Diffie-Hellman Usage in SSH

Secure shell (SSH) is a popular network security protocol used for secure remote lo-

gin on the Internet. It was considered as an alternative solution to the unsecured Telnet

on the network and File Transfer Protocol (FTP) on the system. The main reason was

neither Telnet nor FTP has data encryption capability, and instead just send data in

plain text format. On the other hand, SSH has the capabilities for encryption, authen-

tication and compression of messages transmitted. The kex (key exchange) protocol

itself is a part of the SSH, especially stands for making both parties agree on the keys

used in the SSH protocol. This constitutes the first step of the SSH mechanism. This

occurs before the session keys are established. The protocol consists of three stages.

The first stage is the greeting phase. In this step, both sides identify each other for

22

the first time. The supported algorithms list is included in here after the first greeting

“Hello” message. This list includes the detailed provided Diffie-Hellman key groups.

In the second stage, both of the two parties agree on a shared secret key with the help

of the Diffie-Hellman key exchange algorithm. At the last stage, the application keys

are formed by using the shared secret key, session digest and identifier. In order to

provide host authentication, the key exchange is confirmed with the host key [30].

2.10 SFTP

SFTP (SSH File Transfer Protocol) means secure file transfer protocol. It executes

on the SSH protocol. The whole security and authentication of SSH is provided by

this protocol. It provides all the functionality offered by FTP and FTP/S, but in a

more secure and reliable manner. It is also configurable easier than these protocols.

Because of that, there is no reason to use the legacy protocols after that protocol.

Password sniffing and man-in-the-middle attacks can also be avoided with the help

of the SFTP protocol. The data integrity is protected by using encryption/decryption

techniques, cryptographic hash functions and the authentication of both the client and

the server [31].

SSH cannot do file transfers. This means that there is nothing in the SSH protocol

about file transfer: an SSH client cannot request anything from its peer to transmit

or receive a file through that protocol. File transfer tools, scp1, scp2 and sftp, do not

include the implementation of the SSH protocol themselves. Instead, they execute the

SSH client as a subprocess, to make a connection to the remote machine and execute

the remaining part of the file-transfer operation there. The SFTP protocol basically

provides bidirectional file transfers by using a full-duplex byte stream connection

[32].

SFTP advantages are given in the following items:

• It executes in a secure manner by using an SSH-protected channel for file trans-

fer.

• Multiple commands for file copying and manipulation can be triggered with a

23

single sftp session. SCP opens a new session for each time it is triggered.

• It can be scripted by using the FTP command language.

• Software applications running an FTP client in the background can be replaced

with SFTP, and by this way security of the file transfers of that application is

provided [32].

2.11 Algorithms Used in SSH and SFTP

In this section, the basic workflow of the SSH connection and the algorithms used

in SSH and SFTP are provided to better explain how it provides security. The se-

cure shell protocol issues a client server model to make two hosts authenticated and

provide the communication between them in an encrypted manner. The server side

waits for connections by listening on a specified port. If the username and password

are valid for connection, the server makes the connected client side authenticated and

prepares the required environment to provide a secure channel between itself and the

client. On the other hand, the host on the client side is in the charge of initiating the

handshake with the host on the server side and supplies the username and password in

order to authenticate. The establishment of a session with SSH is made in two main

steps. The first step is to agree on the communication and make an establishment on

encryption to provide security on the communication. The other step is to make the

client authenticated and decide whether the privilege for the access from the client to

the server should be given or not.

Once the connection request is received by the server, the supported protocol versions

are returned as the response to the client. The connection process keeps on when any

of the supported versions complies with the client. The server host also publishes its

own public key. This key is utilized by the client in order to be sure about the host,

regarding whether it is the expected one or not. Then, the server and the client agree

upon a session key with the help of the variants of the Diffie-Hellman algorithm. This

enables both sides to compose their private keys with the public key published by the

other side to agree on the same session key. The whole session is encrypted with the

help of this key. These mentioned keys are different from the keys which are used in

24

the client authentication to the intended server [25].

The flow of this process with the basic Diffie-Hellman is as given in the following:

• The server and client hosts choose a large prime number as the seed value for

the algorithm.

• The server and client hosts choose an encryption algorithm. Generally AES

encryption algorithm is used.

• Both the server and the client hosts select one more prime number and this is

kept as a secret in themselves. This is the above mentioned private key.

• A public key is produced by using the selected encryption algorithm, the com-

mon prime number and the produced private key.

• This public key is sent to each other by the client and server hosts.

• The side who received the public key calculates the common secret key by

using this public key sent by the other party, the commonly selected prime

number and its own private key. By this way, the resulting secret key is the

same although they are calculated separately on both sides.

• The communication is encrypted with this key after all.

The explained shared secret key process provides both sides to make contributions on

the shared secret production stage. That is, the key is not manipulated by only one

side of the communication. By this way, shared secret key information never travels

on the communication channel. Because both sides have the same key in themselves

in the end, it means that this key can be used for both encryption and decryption of

the messages between them. After all these above mentioned process, the step for the

user authentication starts.

This step contains the user authentication and making the decision on the user access

to the server. For the user authentication, authentication by passwords are used. The

server asks for the credentials of the user. This data is transmitted over the agreed

connection in a secure manner. The other way used for the user authentication is

applied with SSH key pairs. These key pairs are not symmetric. The data is encrypted

25

with the public key, but the data can only be deciphered by using the private key. It is

allowed to share the public key because it is not possible to extract the private key by

using the public key [25].

The authentication process using SSH key pairs proceeds as given in the following

steps:

• An ID is transmitted by the client side to the server.

• The server searches the ID in the authorized_keys file.

• If it hits a public key with that ID in that file, the server side produces a number

in a random manner and issues the public key in order to be able to encrypt the

number.

• This generated encrypted message is transmitted to the client host.

• If the related private key is really known by the client, it means that the client

has the capability to decrypt the message by using that. When it decrypts the

message, it gets the number which is generated by the server randomly.

• The client host makes the composition of the number decrypted and the shared

session key, which encrypts the communication. Then, it also computes an

MD5 value of this composition.

• The computed MD5 value is transmitted to the server host by the client host.

• The server host also computes an MD5 value by using the number which is

selected at the beginning randomly by itself and the shared session key. It then

makes a comparison between its own computed value and the received MD5

value. If they are the same, it means that the private key is known by the client

and it has the right to authenticate to the server [25].

AES, 3DES, Blowfish, Arcfour and CAST128 symmetric encryption algorithms are

available and can be used in SSH by modifying configuration files of SSH. In ad-

dition to algorithm specification, we can also specify modes for some of the used

algorithms. These modes include CBC (Cipher Block Chaining) and CTR (Counter)

mode. The modes are named as block ciphers, which are methods to convert each

26

block of plain text to the cipher text or each block of cipher text to the plain text with

the identical length. Blazhevski et al. [33] investigated block ciphers on AES algo-

rithm. According to the results of the investigations, CTR mode is the most secure

way of encryption among the other block ciphers. Another work on this topic shows

that CBC mode has some vulnerabilities. However, they recommend the CTR mode

instead of other modes to satisfy security of the used encryption method [34].

27

28

CHAPTER 3

RELATED WORK

This chapter includes a literature survey on live container and virtual machine migra-

tion models.

3.1 Secure Live Migration of Virtual Machines

VM platforms handle the live migration problem within the concept of high avail-

ability by applying checkpointing and record-and-replay strategies. While record-

and-replay is the method that transfers every piece of information from primary to

secondary, checkpointing is the strategy storing the state of the primary VM and

transferring the state to the secondary node as a replication. In both methods, the

synchronization of primary and secondary nodes is a challenging issue. While check-

pointing handles this issue in a simple way, there are drawbacks such as the size of

data and frequency of the process, affecting the performance of the migration [37].

Besides, the security of the data is an another issue that needs to be handled in the

live migration concept. In order to prevent attacks, many solutions have been defined

for virtual machines. In the following titles, the solutions in the literature are given.

3.1.1 Migration Network Isolation

In [38] the authors proposed a system with network isolation of the migration traffic.

This approach is mainly based on setting the migration network apart from the others.

With this method, no one else will be aware of the migration process. One of the

examples of this method is Openstack [4].

29

Figure 3.1: Migration Network Isolation [4]

3.1.2 Network Security Engine Hypervisor

In [39] the authors proposed a system by using Network Security Engine Hypervisor.

By definition, hypervisor means something between middleware and OS. In other

words, it can be named as a Meta OS in the virtual domain. The whole physical parts

can be accessible by the hypervisor. Virtual machines can reach the resources over

the hypervisor. It can function on operating system or on the hardware. Additional

operations such as intrusion detection and prevention systems and firewall can be

defined [4].

Figure 3.2: Network Security Engine Hypervisor [4]

3.1.3 Secure VM-vTPM Migration Protocol

In [40] the authors proposed a model by utilizing the secure VM-vTPM protocol. In

case that Trusted Platform Module is included in the hardware, Virtual Trusted Plat-

30

form Module (vTPM) might be implemented. In order to use in the migration traffic,

an authentication protocol providing security is presented by the vTPM module. By

this authentication protocol, two machines, who are the "from" and "to" nodes of the

migration process, authenticate, and confirm the integrity check of the connection be-

tween the source and destination before the migration process. After that preparation,

the migration as encrypted is carried out in a secure manner [4].

Figure 3.3: vTPM Migration Solution [4]

3.1.4 Improved VM-vTPM Migration Protocol

In [41] the authors proposed an improved version of the vTPM protocol for secure

VM live migration. In this type of vTPM protocol, an additional layer is appended.

This additional layer has the Diffie Hellman (DH) key exchange implementation.

3.1.5 Using IPSec Tunneling

In [42] the authors proposed a secure VM live migration model by utilizing the IPSec

Tunneling method. IPSec Tunneling contains Internet Protocol Security (IPSec),

which is a protocol in the network layer which provides IP traffic security. It of-

fers that the traffic of migration should be encrypted as a standard internet protocol

packet. Because of the long downtime duration, this solution makes the migration

process decelerate [4].

31

Figure 3.4: IPSec Tunneling [4]

3.1.6 Live Migration Defense Framework

In [43] the authors proposed a framework for VM live migration named as LMDF.

Data centers of cloud providers are located in different places or even in different

countries, which means that they can start the migration process from source users’

VM to the destination users’ VM without making the user feel the process. Live

Migration Defense Framework was implemented, which will make the user notice

the migration. This will enable the user to postpone the live migration to develop

additional security assessments before the internal data migration. When the migra-

tion process is finished, the framework can check that the VM was migrated to the

expected data center.

3.1.7 Inter Cloud Virtual Machine Mobility

In [45], the authors proposed a technology for VM live migration. The technology of

Inter Cloud Virtual Machine Mobility contains inter cloud agents to make the chan-

nels secure channels between proxies. Inter Cloud proxies make the hosts which are

included in this mobility keep their IP address private. In addition to that, unautho-

rized users will not be allowed to reach hosts which are utilized by this mobility. An

SSH tunnel will be provided by the secure channel in between proxies. The aim of

SSH tunneling is to camouflage the details of the "from" and "to" nodes of the migra-

tion. In total three channels are defined. They are secure inter cloud storage channel,

32

network and migration channel.

3.1.8 Trust Cloud Security Level

In [46] the authors proposed a method for secure VM live migration. The cloud do-

main is separated into different sections with security levels. For each reliable section

and cloud, a security level is assigned. It will be the responsibility of the Reliable

Migration Module (RMM) to manage the VM migration. Four main operations are

performed by this module. The initial operation is central security management of

resources that will also manage scheduling for all security levels. In the second op-

eration of RMM, integrity check and encryption are provided. The third operation is

component security management, which will separate nodes in different areas. The

fourth operation is migration waiting queue arrangement which plans the VMs’ mi-

gration petitions.

3.1.9 Secure VM Migration by Using RSA with SSL protocol

In [47] the authors proposed a new way to secure VM live migration by utilizing RSA.

RSA is a public key cryptographic system to provide data transmission security. It has

been released as a method to make live migration secure by utilizing RSA encryption

with the SSL protocol. They consider several stages to migrate a VM using RSA with

SSL. In order to achieve this aim, it computes the physical host load. Then, by using

pre or post copy they migrate memory from source to destination. In the end, RSA is

used to encrypt VM content and authentication.

3.1.10 Trust Token based VM migration protocol

In [48], the authors proposed a VM migration model by using a token methodology.

This methodology uses TPM and offers a platform trust credential (Trust Token),

which each cloud implements to identify the Trust Assurance Level (TAL) of that

cloud. Initially, the model performs policy setting, where the cloud users establish a

migration policy for the VM migration management. The second step contains mi-

33

gration policy implementation. When the users require to migrate from one source

machine to another reliable destination machine, the cloud service provider imple-

ments the policy. Third, migration is observed by cloud users. The cloud users can

control whether their specified policy has been obeyed or not by the cloud server

provider. If the Trust Assurance Level in the Trust Token of the destination host

matches the Trust Assurance Level specified in the migration policy of user, then the

migration will be applied.

3.1.11 Runtime Monitors

In [4] the authors proposed a system model for VM live migration by using runtime

monitors. In this architecture, including monitors is suggested for the whole migra-

tion event in the live migration procedure. Therefore, for each hypervisor virtual

machine, an independent monitor agent will be attached. The main task of this agent

is to watch different processes and detect any abnormal event. The structure consists

of three main elements: Control Manager, Monitor Agents and Database Module.

Control Manager is the main part of the architecture. It gathers all migration requests

from the different hypervisors. Additionally, Control Manager assigns tasks to agents

to watch the whole migration and owns the permission to pause or end the migration.

Each migration begins with the permission of this manager.

Monitor Agents watch the migration process and inform any abnormal activity to

the Control Manager. If any suspicious activity is detected, the Control Manager will

decide what to do after analyzing the situation. For instance, it can decide to terminate

the process accordingly. There are two kinds of monitor agents.

• Agent dedicated to VM: An agent including IDS that observes the whole mi-

gration process of a specified migrated virtual machine.

• Agent dedicated to Attack: A seperate agent that is allocated to monitor the net-

work for particular kinds of threats on the live migration process. For example,

DoS attack dedicated agent monitors for this type of threat.

A database module is involved in this architecture. All data about all hypervisors

34

and guest virtual machines are kept in the database. A newly established hypervisor

has to have an entry containing all related data in this database such as MAC and IP

addresses. This new record can only be added by the admin privileged users.

In the migration setup period and before establishing a TCP connection between the

source and the destination, the hypervisor of the source machine requests migration

from the control manager. The request contains the data about source and destina-

tion hosts in order to be utilized in the authentication phase. The authentication phase

consists of these stages: authentication of both hosts, computing the load on the desti-

nation host and generating a new entry for the new virtual machine data to be entered

in the database.

When the authentication is achieved, an encrypted TCP channel will be setup between

the source and the destination hosts. An independent agent will be assigned to watch

the migration process. The agent knows the whole needed data to watch the migration

process together with a unique time stamp nonce.

Many agents will be watching the whole network for particular threats. An allocated

agent is assigned to watch every migrated virtual machine and a dedicated agent will

be assigned to observe each migrated VM action. [4]

3.1.12 Migration Using Memory Space Prediction

In [5] the authors proposed a system model for VM migration by utilizing memory

space prediction. In order to decrease the data loss caused by the attacks on memory

space and to make the migration of data in a secure manner, Virtual Machine Mi-

gration using Memory Space Prediction with compression method is defined and de-

veloped. The prediction based compression algorithm is utilized to send compressed

data. Additionally, it reduces the migration time and down time. The hash algorithm

included increases the migration security. [5]

35

Figure 3.5: Prediction Based Compression Architecture [5]

3.1.13 Encryption of Migration Data with AES Algorithm

In [6] the authors proposed a system model by using AES encryption during migra-

tion. The execution steps of the system are as given in the following figure. Firstly,

according to their requirements, resources are distributed to virtual machines. An un-

der or overload is being checked continuously by using a cloud monitoring system.

In case of an underload or overload, the K-means clustering algorithm is executed.

When it finishes execution, VM migration is started. In order to provide security,

AES encryption algorithm is used. As soon as the migration ends, the migrated data

is decrypted and the resource allocation is applied. This process continues in a cyclic

manner.

36

Figure 3.6: System Design [6]

The data which is loaded to the cloud might be compressed and changed. AES guar-

antees data confidentiality. To be able to solve these problems, which might occur in

the live migration period, AES encryption is applied. The migration duration might

be seriously affected from the encryption technique used. For the encryption, AES

costs less than other techniques. Because of that, it is more convenient to use in mi-

gration. In addition to that, it is the least costly method and the application downtime

is mostly decreased by that way. The overhead of encryption is also related to the

respective speed of source and destination hosts [6].

Figure 3.7: Live VM Migration using AES encryption [6]

3.2 Live Migration of Containers

Live migration process of containers heavily leans on checkpoint/resume strategies

by benefiting the small sized nature of containers compared to VMs [49]. In order to

overcome the attacks on containers, some solutions have been proposed. The solu-

tions in the literature are given in the following.

37

3.2.1 ESCAPE Live Migration Model

In [50] the authors proposed the ESCAPE model for live migration of containers. The

ESCAPE model is inspired from the survival technique in nature. This approach is

based on a moving target defense mechanism by modeling the interaction between

the attackers and their preferred victim hosts as a predator looking for a prey game.

ESCAPE uses runtime container (prey) live migration to overcome attacks (predator).

The whole process is driven by a behavior monitoring system, which is host-based

and observes containers for detecting intrusions/attacks.

In order to enable checkpointing a running application, the model employs Docker

(experimental version) that can run with the CRIU checkpoint tool to pause the run-

ning container and its attached applications taking a live memory content snapshot

and any used documents/files. The images which are dumped are saved in persis-

tent storage. The initial step is setting up the configuration of the container in order to

host the application. To be able to monitor containers, the model employs an intrusion

detection system. The system is especially designed to observe the Linux container

behaviors. Based on intrusion detection the migration process is initiated.

In ESCAPE model, utilizing a virtual network interface with a specifically dedicated

IP address for each container is preferred to achieve runtime migration. The direct

access right to a dedicated network interface are given to applications in the con-

tainer. ESCAPE deals with the runtime mapping by local or network wide mapping

of interfaces and IPs.

ESCAPE initiates the migration process by choosing an appropriate destination host.

The implementation currently performs the prey versus predator model to decide the

next destination host to migrate the container. ESCAPE can also be capable of choos-

ing the next destination with a distance logically far away to escape from attackers.

By definition, the logical distance depends on a diversity scale. If the destination has

more different settings on account of network, configurations and data center rela-

tion, it means that it is a good candidate to become a new destination for ESCAPE.

By this way, the model intends to select a destination host to make the application of

the same failure cause more complexity. After selecting a suitable destination, ES-

38

CAPE mounts the shared storage, which keeps the running container and applies the

network settings to provide network relocation. It insulates the destination host from

the active network by making its interfaces disabled and then begins the container

process. When the container is started, ESCAPE changes the ARP table to redirect

the network traffic from the source to the destination host and stops the source host.

The migration process begins with checkpointing the container and terminating the

process on the source host, applies an ARP update in order to alter the MAC/IP as-

signment of the previous server network interface to map the new one and resume the

container and all related applications on the destination.

ESCAPE is led by an intrusion detection system monitoring container behavior for

possible attacks. According to these attack indications, ESCAPE model conducts

a risk assessment, which determines whether to migrate and where to migrate the

running container to keep the attacker victim sufficiently far from the attacker [50].

3.3 Live Migration of Containers vs Virtual Machines

In [7] the authors proposed a layered framework for live migration of applications

encapsulated either in containers or virtual machines. Experiments have been con-

ducted to make a comparison based on the results obtained when working with VMs

and containers.

The framework aims at achieving the good performance based on the need of frequent

migration in the mobile edge cloud architecture. Mobile edge cloud is a network

architecture, which provides cloud services at the cellular network edge.

When users travel around, it is required to migrate their applications as the cloud ser-

vice in order to take advantage of the mobile edge cloud architecture. The proposed

layered framework is compatible with the applications running in VMs and contain-

ers. The authors have separated the container state into different kinds of layers.

These are base layer, instance layer and application layer. Base layer has the operat-

ing system and kernel with no application. Instance layer is for holding applications

and their states while running. Actually, application layer is a division of instance

layer. It only holds the application copy when the application is idle. The state when

39

the application is running is only saved in the instance layer. By this subdivision,

application is copied when the service is running in the instance layer. The base layer

is required to be available on each mobile edge cloud. Only the instance layer is

migrated to the destination host. This layering technique provides the improvement

from the performance aspect and provides less downtime. If we go into the details of

the proposed mechanism, when we need to migrate a service application, we pause it

first and migrate just the instance layer by making the assumption that the base layer is

existent in all the mobile edge clouds. The migrated service can be restored by using

the instance and the base layer together. Without the need to migrate the base layer

in all the migration processes, it is intended to reduce the size of the transfer data.

This is the two layer technique basically. The improved version of this technique is

with three layers, which includes the application layer. This separates the application

from the instance layer into an additional application layer which includes the idle

version of the application and the data which is specific to the application. With the

inserted application layer, the instance layer is only required to store the application

in-memory state. When the migration process is started, the application layer is first

migrated while the service is being executed. After that, the service is paused and the

instance layer is sent to the target. By using all layers after the migration in the target

node, the service can be resumed. An iterative file synchronization is used to send

just the different parts between the application and instance layer.

In the research made in [7] the difference between VM and container migration is

analyzed. Experiment results show that containers (LXC is used for the experiment)

have more advantage over VMs (KVM is used for the experiment) for the total mi-

gration time, application downtime and the data transferred from the source node to

the destination while migrating. The main reason for that is explained as that con-

tainers are lightweight relative to VMs and the container memory content is mostly

related to the application running inside the container. However, for the VMs that is

different, i.e. the VM memory content is related to a lot of other processes including

background processes, which may be mostly unrelated to the migrated service.

40

CHAPTER 4

PROPOSED MODEL

This section describes the proposed model for secure live migration of containers.

4.1 Model Architecture

This section describes the proposed model architecture. The model aims to migrate

a service from one node to another one without disconnecting clients from the ap-

plication, with an acceptable downtime. In our proposed model, there are five main

components. Two of them are the source and destination instances to play the roles

of the migration source and destination sides. The live migration process could be

operated between any nodes determined by any of the load-balancing modules, the

attack detection module or another mechanism belonging to the cloud environment.

The remaining main components are an application server, a database server and the

client side. As shown in the 4.1, they have secure connections between them.

Figure 4.1: Model Architecture Overview

41

The application server behaves as the admin of our model that initiates the migration.

It connects to the instances by SSH and issues commands over that SSH channel.

Over that channel, the application server has the right to start, stop, kill, and remove

the Docker containers. In addition to that, it has the right to completely shut down the

instance machines. Because of storing authentication information in the application

server, any migration process cannot be initiated if the application server does not

take an action.

The application server creates the related SSH channels between the instances that

would be assigned as source and destination nodes among all nodes on the cloud net-

work. Also, the application server establishes secure channels between those nodes

and itself in this model. In order to achieve that, it creates an SSH channel between

itself and the source node first. Then, it commands the source node to run the appli-

cation on Docker, and start migration if requested. That is, it commands the source

node to send related checkpoint files to the destination node by using the SSH chan-

nel created by the parameters provided by the application server. Parameters are also

provided by using the SSH channel, which means that an SSH command is sent to the

source node to connect it to the other instance by using the SSH command parameters.

42

Figure 4.2: Model Architecture

An SSL connection is used for connecting to the DB server. The SSL connection can

be configured to use MD5 encryption between the DB Server and the other machines.

It also can be setup to allow the connections from the specified IP addresses. By

configuring SSL in this way, we make the DB server only allow connections requested

by the application server and cloud instances. No other machine with a different IP

address is allowed by the database server.

The migration process operates different flows for stateless and stateful applications.

While there are common steps in both flows, such as security check and controlling

43

life-cycle of containers, transferring data between nodes is the separating point among

these application types. Migration operations for stateless and stateful applications

is visualized in Figure 4.3. Details of this process are explained in the following

sections.

Figure 4.3: Proposed Model Activity Diagram

44

4.2 Checkpointing and Restoring

For the purpose of checkpointing/restoring, the CRIU tool is used. CRIU (Check-

point/Restore In User Space) is a software tool for the Linux OS. Using this tool, a

running application can be frozen and it can be check-pointed as a set of disk files.

The files can be utilized to resume the application and run it starting from the state at

the time of the freeze. Application live migration becomes possible with this feature.

CRIU is supported as integrated into Docker, OpenVZ, LXC/LXD [19].

The main property of the CRIU tool is that it is basically developed in the user space,

instead of the kernel space. This feature makes this tool provide live container mi-

gration by letting the users check-point and restore the currently running application

instances. The process migration performed by the CRIU tool could be desribed

mainly in three phases, which are checkpointing, page server activities and restoring.

CRIU provides the ability for check-pointing a running process as a set of files such

as page maps, files descriptors and sockets opened. In other words, CRIU searches

the process’ tree to collect sufficient information about the related process for the

resurrection [20]. In detail, at the beginning of checkpointing, the dumper process

runs through process directories under /proc and establish a process tree structure

by gathering the necessary information of related processes. Then, the parasite code

is added to the relevant place of the task in order to run CRIU’s subroutines inside

the address space of the related process. The parasite code is connected to CRIU

and takes commands from CRIU. After the dumping process, the parasite code is

extracted from the task to returns to the original code. CRIU releases the process and

gives the control to the operating system fully. In the end, CRIU evaluates the entire

gathered data and records these information to dump files.

At restoring stage, CRIU reads the image files and resolves which resources are

shared between processes. Then, by calling the operating system function fork(),

CRIU creates processes on the destination node. After that, CRIU arranges necces-

sary settings for files, namespaces, maps, private memory areas, sockets and owner-

ship. Finally, memory mappings to the exact location, timers, credentials and threads

are restored to fulfill the resurrection of processes on the destination side [3].

45

CRIU is required only on containers having statefull applications, it is not preferred

for use on stateless applications because the memory content and the states of the

execution are not significant for restoration of the container. CRIU instantly stops the

running container process and checkpoints it to a set of image files, which is needed

to restore the container to the state in which it was stopped. In other words, CRIU

is basically used to dump the container memory into a persistent collection of files,

which makes the transfer and recover operations simpler [21]. The following figure

is for showing the sequences for live migration of a container in CRIU.

Figure 4.4: CRIU Principle Diagram [3]

4.3 Model Execution Plan for Stateless Application

In our stateless application example, Clock Application, we retrieve the system time

from cloud instances. We created a table in the database to store the current instance

46

time. The users logging into the migration system, after navigating the clock tab

should observe the clock timestamp with the provider cloud instance IP on the screen.

Because our instances are located in the same geographic location, they have the

same system time information. If the user navigates to the Clock tab by using its own

browser application after connecting to the application server over the Internet, the

user can see the clock data and this data is not affected by any user input and does

not save any state at the execution time on the instance machine, which makes this

application stateless, indeed.

If any migration decision is made for the source node, the application server kills

the container running the application in it by sending a command to the source node.

Then, it runs the same application on the destination node, in order to continue to

provide the service to the end user.

Although the service provider address is changed after the migration process, the user

does not have to change the address on the browser. This is because the application

server is also a bridge between the user and service providers. The application server

reads the output of the running application and serves the result to the end user. The

instances which provide the service in the backstage write the application output to the

database on the database server. The output is retrieved by the application server from

the database and after parsing the output and rendering the new page, the application

serves the output to the end user.

47

Figure 4.5: Clock Application Execution Plan

4.4 Model Execution Plan for Stateful Application

In our stateful application example, the Face Recognition application, we give an im-

age as the input of the application. This application provides detection of the faces in

the given image, saves them to the database, extracting the features of the given face

and compares them with the images in the database. We integrated model training

functionality to the application, in order to make analysis of the migration by making

the application duration longer and making the checkpoint file size change dynami-

cally. In other words, we will change the model training set size by giving parameters

to the model training function in the source code. In order to be able to take metrics

on the system performance, this modification is integrated to the application. It does

48

not affect the functionality of the application. It only affects the application runtime

duration and the complexity of the checkpoint and resume operations.

The application server also acts as the bridge between the client and the cloud in-

stances, which means that although the service provider address is changed after the

migration process, the user does not have to navigate to the new address of the ser-

vice provider. Because the application depends on the user input and is not required

to execute infinitely as in the Clock application, we need to know the end of the pro-

gram execution and make the end user wait until the execution is finished. In order

to achieve that, we needed to save a status flag in the database. This flag holds the

information on whether the result set is updated or not. The application server waits

until the flag indicates that execution is ended. If the flag turns to 1, it means that the

result is ready to display. The application server again retrieves the output from the

database. It also parses the result and renders the page accordingly.

49

Figure 4.6: Face Recognition Application Execution Plan

4.5 Security Evaluation

Access Control is covered with this model. This factor requires that unauthorized

users are not allowed to start, move and stop a machine. In our case, the rights to

perform these operations belong to the application server. It acts like the control

manager in our system. Only for test purposes, we added migration buttons to the user

interface. Normally, the expected scenario includes that after the migration decision

is made, the application server manages the remaining process.

Authentication is covered, because all the machines in the system authenticate to

each other in order to perform the required operations remotely. Instead of pass-

word authentication, we used public key authentication with the help of strong key

50

exchange and symmetric encryption algorithms.

Data Confidentiality is covered, too. While migrating, we used an SSH channel and

the SFTP file transfer method to guarantee the data encryption between the source

and the destination. This enabled us to protect the migration process from man-in-

the-middle attacks.

Communication Security is covered, as the data transmission channel is protected

via SSH protocol. This security factor requires to define a secure migration path

between the source and the destination hosts, which is achieved via the SSH protocol.

Data integrity is also provided by this system, as the SSH channel utilizes available

MAC algorithms to provide data integrity.

Availability security factor is similar to the access control and authentication security

factors. Because unauthorized users are not allowed to initiate a migration process,

the system avoids DoS attacks initiating unnecessary outgoing migrations in an in-

creasing manner, which makes the system resources unavailable to the authorized

users.

4.6 Attack Resilience

By satisfying the mentioned security factors in the previous section, we can avoid the

attacks given in the following:

• The first attack avoided is the man-in-the-middle-attack. This is because no-

body else can actively eavesdrop on the data while migrating with the help of

the secure mechanism of the SSH protocol.

• DoS is also avoided with this model. The resources are not allowed to be used

by unauthorized users. In addition to that, SSH has a configuration parame-

ter named as MaxSessions which specifies the maximum open sessions’ count

allowed per network connection. The default is 10. If we try to open more

sessions than this specified value, the SSH connection is automatically closed,

which prevents DoS.

51

• Overflow attack is also avoided, because the transmission channel is protected

by the SSH protocol, attackers which are unauthorized users (who cannot per-

form public key authentication) can not cause a congestion in the communica-

tion channel traffic.

• Replay attack is achieved by re-transmitting the replicates of the dirty pages

in a sequential manner. The frequent dirty page occurrence results in a replay

attack. In our scenario, only the checkpoint folder in a compressed file format

is transmitted from source to destination after the application server triggers the

migration. The destination host is specified by the application server and the

file transmission is performed once for each migration.

52

CHAPTER 5

EXPERIMENTAL EVALUATION

This section describes the experimentation setup used to analyze the overhead caused

by proposed secure live migration model.

5.0.1 Experiment Setup

5.0.1.1 Source and Destination Cloud Instance Setup

The experimental setup includes two identical Google Cloud [9] instances. One of

them is the destination node, the other one is the source node. Checkpoint/Restore

application (CRIU) runs on a dockerized image. This image is based on an Ubuntu

distribution. The details of cloud instances’ configuration is visualized in Figure 5.1.

Figure 5.1: Cloud Instance Details

Throughout the document, these identical instances are named as instance1 and in-

53

stance2, which are source and destination machines on which the migration process is

performed. Access point for those machines are given as IP addresses in the following

table.

Name IP Address

instance1 35.232.36.90

instance2 35.232.243.128

Table 5.1: IP Addresses of Instances

5.0.1.2 Docker and CRIU Configurations

Docker is required to be installed on both instances. The checkpoint/restore function-

ality is supported in the Docker 17.04.0-ce version. However, one additional config-

uration is needed to achieve use of CRIU tool together with Docker to checkpoint the

applications. Because CRIU is an experimental feature of Docker, we need to enable

the experimental option of the installed Docker. In order to do that, we should create

a new file by using the following command on the terminal window:

sudo nano /etc/docker/daemon.json

and we need to type the below lines into that file:

Figure 5.2: Experimental Setting

After saving that file, we need to type the following in the terminal window:

sudo service docker restart

54

In order to be sure about that experimental functions are enabled, we need to call this

command in the terminal:

docker version

The output of that command should provide the result as given in the figure below.

Figure 5.3: Docker Configuration

After Docker installation, CRIU installation is required by using the following com-

mand:

sudo apt-get install criu

The experiment is conducted with the version of 2.6 for CRIU.

5.0.1.3 Application Server Setup

Stateful/Stateless applications run on the execution environment given in 5.4:

55

Figure 5.4: Application Server Details

Python 3.5, Cpanel, Apache Server and PhP are installed in order to make the appli-

cation server meet the requirements of the system architecture.

5.0.1.4 Database Server Setup

Figure 5.5: Database Server Details

56

The configuration of the database server setup is given in Figure 5.4.

PostGreSql 10.8 should be installed on the database server in order to execute SQL

commands sent by instances. In order to connect to DB, we use the SSL proto-

col. Postgresql provides the ability to give access to specific machines. Therefore,

we specify IP of the instances and application server to the Postgresql configuration

files. This means that no other machine other than cloud instances and the application

server can connect to the database to execute any query. In the database cloud in-

stance, under /etc/postgresql/10/main folder, there are configuration files provided to

specify allowed IP addresses. The configuration file named as pg_hba.conf is edited

in the system to allow just cloud source and destination instances and the application

server as given in the following:

Figure 5.6: SSL Connection Configuration

5.0.1.5 Applications Used in Experiments

The container live migration system needs to be analyzed with two kinds of appli-

cations: stateless and stateful, because the system reaction can change based on the

application type. For the stateless applications, if an attack is detected, the container is

migrated to a new host without a need to save application state and resume from that

state. Therefore, the experiment with stateless applications does not include CRIU

tool utilization. For stateful ones, checkpointing is required to achieve the goal of

preventing the loss of service provided to the cloud client.

Clock Application For the stateless application example, a clock application is

used. This application mainly gives the system time as the output. The resulting

system time with the instance IP address is displayed on a browser on client ma-

57

chines.

Installation

• Python 3.3+ is required to be installed on the cloud instances having containers.

In this experiment python:3.6-slim-stretch is used.

• ClockApp folder including source code, Dockerfile and requirements.txt files,

should be copied to the instance.

• In order to create a docker image, after navigating to the installed ClockApp

folder, it is required to be built by using Dockerfile by typing the below com-

mand:

docker build –tag=clockimage .

Face Recognition Application For the stateful application example, a face recogni-

tion application is used. This application provides to recognize and manipulate faces

from Python console or the command line by using a popular face recognition library.

It also enables to apply face recognition on a folder containing images. In order to

recognize faces, it uses the dlib library, which is developed with a deep learning tech-

nique. One of the features of this application is face detection, which means that it

detects all the people’s faces seen on a photo and gives the coordinates of the faces

on the photo as output. The other feature is to identify the people’s faces appearing

on a photo. In other words, it matches the given face with the other face photos of the

same people which is saved in the DB.

Installation

• Python 3.3+ is required to be installed on the cloud instances having containers.

In this experiment Python python:3.6-slim-stretch is used.

• dlib installation is required. In order to do that:

– First, the source code should be cloned from github:

git clone https://github.com/davisking/dlib.git

58

– Build the main dlib library:

cd dlib

mkdir build

cd build

cmake ..

cmake –build .

– Compile&Install the required Python extensions after navigating to the

dlib folder:

python3 setup.py install

• Then, installation of the module from pypi using pip3 is required:

pip3 install face_recognition

• In order to create a Docker image, after navigating to the installed face_recognition

folder, it is required to build with using Dockerfile by typing the below com-

mand:

docker build –tag=facerecog .

In order to containerize an application, it is required to build an image as described

in the Dockerfile. Then, on that image, containers can be run by using the docker run

command. In the following figure, the schema of this process is given.

Figure 5.7: Containerizing Stages of an Application

59

5.0.1.6 SSH Connection and File Transfer Application

An application is developed to establish an SSH connection between cloud instances

and between an instance and an application server. This application also provides to

transfer checkpoint files with SFTP. In order to do that, ssh should be configured to

provide remote login in the related machine. Configuration steps should be as given

in the following:

• SSH configuration is applied by editing the sshd_config file. In order to achieve

that we need to type the following on the command line:

sudo nano /etc/ssh/sshd_config

In that file, these features should be set as given in the following:

– PermitRootLogin yes

– RSAAuthentication yes

– PubAuthentication yes

– AuthorizedKeysFile /root/.ssh/authorized_keys

• Application uses public key authentication.

• Application server sends a request to the source instance to execute this Python

application. Therefore, this Python code should be placed in the correct path of

the source instance specified in the application server. In our experiment, it is

placed under the "/home/zmavus/dockerScript/" folder.

• The application is developed with Python. In the previous, applications used in

the experiment require the Python installation steps. Therefore, before applying

these steps, we need to verify the Python installation. Python 3.3+ is required

for the experiments.

SSH Public Key Authentication: As an alternative to login to an SSH server with

a password, public key authentication is supported by secure shell protocol. Public

key authentication when compared to password-based authentication is not the main

subject for brute force hacking attacks. In addition to that, if the password is known

60

by a hacker, it means that the hacker can login to the system without requiring any

extra information. However, if a public key is known by a hacker, the hacker cannot

authenticate directly to the system because the private key pair of that public key is

known only by the ssh server. Therefore, it is not enough to authenticate to the system,

which makes the connection more secure when compared to password authentication.

Moreover, public key authentication has many other benefits if multiple clients try to

login to the same system. The single server password is not required to be shared

between clients. Instead of this, public key authentication provides multiple clients to

login to the system without having that single password. It makes the login process

easier for a client to many servers without a need to manage all required passwords.

Public key authentication has a requirement to have a key pair, namely public and

private keys. The private key is never shared with other parties. Only the public key

is shared and when it is matched with a private key when authenticating, it means that

the sender of the public key can login to the system. All key pairs are unique and

these two keys work together in that mechanism. [51] Public key authentication is

achieved in our system by applying the following steps:

• A key pair is generated by using the following command on the client side:

ssh-keygen -t rsa

This command generates two different files. The one is named as id_rsa which

contains the private key. The other one is named as id_rsa.pub which contains

the public key. The private key file is saved in /<username>/.ssh/id_rsa. The

public key file is saved in /<username>/.ssh/id_rsa.pub.

• The public key is uploaded to the server by using the following command in

the client side:

ssh-copy-id -i /.ssh/id_rsa.pub <username>@<server_ip>

This command edits the /.ssh/authorized_keys in order to add public key in it.

In order to do that, it asks for password once.

• The permission of the files on the .ssh directory is corrected on the server side

by using the following commands:

chmod 700 /root/.ssh;

chmod 640 /root/.ssh/authorized_keys

61

In our experiments the above process is applied among the application server, source

and destination nodes. Because the user inputs entered are forwarded by the appli-

cation server to the cloud instances over the SSH channel. The checkpoint files are

forwarded from the source of the live migration process to the destination.

The communication encryption and key exchange algorithms are handled by the SSH

server and client programs. There are also configurations provided to the users in

order to make a choice between the algorithms in order to manage the security level.

The checkpoint folder contains the application snapshot and it should be migrated in

a secure manner. In order to achieve that, by using the algorithm configuration in-

terface of the paramiko, we set the algorithms by injecting these lines into the SSH

connection and File Transfer application source code:

paramiko.Transport._preferred_ciphers = (’aes256-ctr’,)

paramiko.Transport._preferred_kex = (’diffie-hellman-group-exchange-sha256’,)

In other words, for SSH communication encryption, AES algorithm in counter mode

with 256-bits key size is used. For the key exchange process, Diffie Hellman Key

Exchange algorithm is used with the SHA-256 algorithm as hashing. SHA-256 is the

Secure Hashing Algorithm, which generates a hash value of 256-bits.

5.0.2 Experiment Metrics

In this section, performance of the proposed model is measured based on the metrics

listed below.

• Total migration time refers to the time frame starting from the migration op-

eration initialization, and ending at the successful resume operation of the con-

tainerized application at the destination host.

• Application downtime refers to the total amount of time passed between stop-

ping the containerized application at the source and resuming it at the destina-

tion from where it stopped. In this time period, service becomes unavailable to

the user in the background. Because of that, this is an important metric to be

62

able to decide performance of the migration technique. Downtime is the sum-

mation of the time needed to transfer files between source and the destination,

stop the container at the source and start it at the destination.

• File transfer duration refers to the time frame required to transfer all check-

point files from source host to the destination. This metric has a great impact

on the downtime metric.

• Transfer file size refers to the size of the folder generated by the CRIU. It

changes according to application state and memory used at that time.

• Upload speed has a great impact on file transfer duration, which means it has

also impact on the downtime metric.

• Checkpoint duration refers to the timeframe required to take the application

snapshot at a specific time of the execution.

• Resume duration refers to the timeframe required to resume an application at

the destination node from where it stopped on the source node.

5.0.3 Experiment Results and Discussion

The first step in the experiment is to run one container on the source node and migrate

it to the destination node. By using that step, the gathered data of the specified metrics

during the whole migration process is analyzed.

For the stateless application, there is no need to checkpoint the application. Because

it is stateless, the snapshot of the application is not required to be taken. Therefore,

checkpoint related metrics are not applicable to stateless applications. For the stateful

applications, all of the metrics given in the previous section are applicable.

The results obtained in the first step of the experiment show that the above metrics

have a strong relation in between. Total migration time basically depends of the file

size to be transferred during migration. In addition to that, the migration process con-

sumes the system resources like network bandwidth, CPU time etc. Unless there are

enough free system resources on the source machine, the migration time is influenced

negatively from these parameters. Although the checkpoint file is not counted as large

63

to transfer between nodes, the migration time can get expanded because of low band-

width. The first step is repeated seven times by using the Python logging library, log

files are generated in order to monitor the whole process and get the duration of each

function used in the live migration process.

The migration performance of the model can be evaluated by analyzing the total mi-

gration time and downtime, which means that these are the main metrics to be ana-

lyzed. Downtime is a part of the total migration time. The Figure 5.8 shows both

of the total migration time and downtime analysis of containers and indicates that

the total migration duration has a dependency on the checkpoint file size which is

transferred to the destination node. Test results given in Figure 5.8 belongs to Face

Recognition Application.

Figure 5.8: Total Migration Time and Downtime

Downtime has a great impact on total migration time. However, there is still another

factor which affects the total migration time other than the downtime. This factor is

file upload speed in the migration channel between source and destination nodes. Be-

cause Figure 5.8 shows that both of the total migration time and downtime increases

when the transfer file size increases. However, it does not increase linearly because

64

of non-linear network bandwidth between the source and the destination nodes.

Upload speed during migration is the parameter which has a big impact on migration

performance. Migration Link bandwidth has inverse ratio with both the downtime

and total migration time. When the upload speed gets higher, it means that faster file

transfer will occur and it will result in less time to complete the migration process.

Figure 5.9 shows the relation between them according to the data logged in seven

test cases.

Figure 5.9: Upload Speed Effect on Downtime and File Transfer Duration

Checkpoint and resume operations are also part of the total migration time. Rela-

tive to file transfer effect on total migration, checkpoint and resume duration has a

smaller effect on the total migration time when migrating one container from source

to destination host.

65

Figure 5.10: Checkpoint and Resume Duration

For the stateless application, killing the container duration on source host, starting

the container on the destination host, downtime and total migration time are the only

metrics applicable. Downtime refers to the timeframe between killing the container

on source and starting the container on destination. Total migration duration refers to

all the migration preparation operations such as establishing secure SSH connection

using public key authentication and removing the containers with the same name

on the hosts, before starting on the destination and after killing on the source. The

experiment is performed seven times and the results are provided in the Table 5.2

66

Kill Duration Start Duration Downtime
Total Migration

Duration

0.57733798 0.55944109 1.87 2.577

0.546288013 0.568042994 1.888 2.481

0.538717031 0.559737206 1.764 2.346

0.64366889 0.557837963 2.408 3.075

0.65865612 0.556710005 2.392 3.171

0.657931805 0.5573771 2.386 3.162

0.637104988 0.55532217 2.396 3.15

Table 5.2: Stateless Clock Application Experiment Results

The stages of the application are given in the following Figure 5.11. Kill duration,

start duration and downtime are counted as the stages of the application migration.

According to the graph the biggest part of the migration timeframe belongs to the

application downtime, which is the time difference between killing the container on

the source host and starting the new container on the destination host.

Figure 5.11: Stateless Clock Application Experiment Results Graph

67

5.0.3.1 Multi User Test Scenario Results

For the stateless application example (Clock Application) in our experiments, there

is no need to create a new container for each user in the cloud instances. Because

the service does not save any state, the output of the service is saved in the database

server periodically. Therefore one container is enough to provide service to all users

connected to the system.

For the stateful application example (Face Recognition Application), the service is not

running infinitely. For each request taken from the user, a new container is created

and started to run. When the execution of the application is finished, the container is

killed by using the command provided for the Docker daemon. In order to provide

isolation between the processes initiated based on the user requests, we preferred

creating a new container for each request taken.

When the number of containers increases, the checkpoint file size increases as we

expected. This is because for the each container a new checkpoint folder is gen-

erated by the CRIU tool. After checkpointing all the containers, we compress the

folders into one and transfer this compressed file to the destination host. Table 5.3

shows the number of containers used in the experiments and both of the CPU and

RAM resources allocated to achieve the migration process for that many containers

are given. Upload speed and file transfer duration measured fors these experiments

are also given in the table. When we increase the container count to 50, it is required

to increase the resources to handle the migration process.

68

Source Destination

Number of

Containers

CPU

Count

RAM

(GB)

CPU

Count

RAM

(GB)

Upload

Speed

(MB/sec)

File Transfer

Duration (sec)

3 1 3.75 1 3.75 20.9 10.240219

10 1 3.75 1 3.75 21.9 11.338588

20 1 3.75 1 3.75 19.4 15.227305

25 1 3.75 1 3.75 22.4 23.300659

Table 5.3: Multi User Test Cases and Transfer Duration Results

For the Face Recognition application, total migration time changes according to file

size and container count given in the Figure 5.12. The file size reaches a value in

gigabytes, the file transfer process which includes encryption and decryption at the

source and destination relatively increases the total migration time. However, increase

in upload speed results in decrease in downtime and total migration time.

Figure 5.12: Multi-User Total Migration Time and Checkpoint File Sizes

69

In the Figure 5.13, we observed that the resume operation takes much longer com-

pared to the checkpoint operation, when we increase the number of containers. When

we migrate multiple containers at the same time, in order to speed up the checkpoint

operation, each container is stopped after checkpointing. However, in the destination

host, while reading the checkpoint files from the disk, each newly resumed applica-

tion also starts to consume the resources. Each checkpointing operation results in

freezing one of the containers but each resuming operation results in starting one of

the containers. Therefore, resource consumption increases rapidly, which results in a

long resume duration relative to checkpointing.

Figure 5.13: Multi-User Checkpoint and Resume Duration

5.0.3.2 Comparison with Layered Framework Experiment

The experiments conducted in [7] to analyze the live migration performance of the

proposed layered framework were performed with the following applications:

• Game Server Application: That is a server for an online game which is used to

70

transmit/receive messages according to user position.

• RAM Simulation Application: In order to simulate memory consumer appli-

cations, a script application is used, named as RAM Simulation. The memory

utilization of the application is specified by the user as a parameter to that script.

• Video Streaming Application: This application requires to store a video of size

50 MB in the mobile edge cloud together with the application.

• Face Detection Application: That is an application used to detect faces in a

video.

• No Application: This represents only the operating system with no additional

application running. This is used for analyzing the additional cost of the migra-

tion of the applications.

Three virtual machines were used to perform the experiments. The details of the VMs

used in the experiment setup are as given in the following table:

Operating System Ubuntu 15.10

Ram 2 GB

Processor 2 vCPU

Intel Core i7 @ 2.6GHz

Link Bandwidth 100 Mbps

Table 5.4: Layered Framework Experiment Setup Machines’ Details

Two of the virtual machines used in that setup were used as mobile edge clouds on

which the migration process takes place. The other virtual machine was used as user.

Each virtual machine standing for a mobile edge cloud includes a KVM and LXC in

the specified operating system in a nested manner to be able to provide the service

to the user. In that experiment, the rsync command is used for iterative file system

synchronization. Rsync is a command to copy and synchronize files/folders between

remote machines that is used in Unix/Linux systems. Via using the rsync command,

a Linux system can be reflected to another system by performing synchronization of

71

files, networks, data backups across the source and destination machines. No encryp-

tion is performed on the rsync command on its own unless a secure channel is used

between the machines.

LXC Total

Data Transfer Size (in MB)

LXC Total

Migration Time (in sec)

Downtime

(in sec)

No Application 1.4 6.3 2.0

Game Server 1.6 6.4 2.0

RAM Simulation 97.1 19.8 15.3

Video Streaming 7.4 8.5 3.3

Face Detection 10.0 15.5 3.7

Table 5.5: Total Migration Duration and Transfer Data Size for LXC

KVM Total

Data Transfer Size (in MB)

KVM Total

Migration Time (in sec)

Downtime

(in sec)

No Application 65.2 79.7 56.1

Game Server 69.7 80.9 58.7

RAM Simulation 170.4 93.0 72.0

Video Streaming 87.3 86.4 61.3

Face Detection 99.0 152.3 107.5

Table 5.6: Total Migration Duration and Transfer Data Size for KVM

The experiment results as shown in the Table 5.5 and Table 5.6 are obtained by

computing the mean value of seven distinct executions.

According to the test results, the authors claim that containers’ performance is better

than VMs’. The reason is that containers are lightweight compared to virtual ma-

chines, which means that the file system and the memory context are related to the

running application. On the other hand, VM can have much more unrelated informa-

tion to the application. Rsync method is required to take the difference of much more

72

data when compared to containers. Therefore, migration duration and downtime is

less than VMs [7].

The following Figure 5.14 and Figure 5.15 are drawn with the data given in the

Table 5.5 and Table 5.6 in the order of the applications given (No Application,

Game Server, RAM Simulation, Video Streaming, Face Detection given from left to

right numbered as from 1 to 5).

Figure 5.14: LXC Results [7]

73

Figure 5.15: KVM Results [7]

When we compare the above results with the results of our architecture performance

analysis experiment results, we can support the idea provided by the authors of the

paper given in [7], which is that container performance is better than VMs for live

migration of applications. Although we have run our experiments with the instances

having 1 vCPU, 3.75 GB memory and changing link bandwidth used in that exper-

iment, we obtained better results especially than the KVM migration performance.

Our architecture flow assumes that all the applications that need to be migrated have

already been installed to the potential migration machines. Therefore, in order to

compare our results with the layered framework, we need to use the data given in

the Application Found results of the layered framework as given in the Table 5.5

and Table 5.6. If we compare the boundary values given in the test results, with the

99 MB transfer data size, the migration process takes 152.3 seconds on average with

100 Mbps (12.5 MBps) bandwidth. However, the transferred data size is close to 99

MB, migrated within approximately 13 seconds on average with 36 MBps bandwidth,

which is much less than the KVM migration result clearly. In order to make band-

width values of the experiments the same, we can multiply the bandwidth of 12.5

MBps with 3, which means that it will migrate 297 MB of data in that timeframe,

which can be migrated approximately in 30 seconds in our model, which is still much

74

less than the result obtained in the KVM migration model. In addition to that, in this

test scenario 107.5 sec downtime is given in the Table 5.6. For even a transferred

data with size 250 MB, our model downtime is measured as 11.127 seconds.

When we compare the results with the results given in Table 5.5, we see that the

migration data size is small with respect to our model. Although the size of the

transferred data is smaller than the transferred data obtained in our model, the total

migration time takes longer with LXC. For instance, in a 15.5-second timeframe,

transferred data with size 10.0 MB can be migrated with 100 Mbps (12.5 MBps)

bandwidth. In our architecture, in that timeframe, we could migrate approximately

126 MB of transfer data with 35 MBps bandwidth. In order to make bandwidth values

of the experiments the same, we can multiply the bandwidth of 12.5 MBps with 3,

which means that it will migrate 30.0 MB transfer data in that timeframe, which is

still less than the 126 MB result obtained in our test case.

Figure 5.16: Proposed Secure Model Results with Face Recognition Application

While Machen et al [7] uses the rsync tool to transfer data incrementally belonging to

the specified process, our proposed model compresses application’s data and transfers

this compressed data, which saves bandwidth drastically. While incremental synchro-

nization of data by benefiting from differences of instances seems to be a pretty good

idea, it could suffer from the duration finding deltas and building the current version

of the application from the old version and deltas on the destination side. If the appli-

75

cation’s data changes frequently, then the majority of the data should be transferred.

Incremental synchronization could lose its advantage easily in these scenarios. Our

proposed model handles the situation in a standard way by transferring compressed

application’s data that provides predictable effort.

In the layered framework, security issues are not mentioned. However, security is a

very important aspect and gets ahead of the performance in mission-critical domains.

In our framework, additionally we applied encryption on the transfer data. By using

the public key authentication, we also protect the passwords of the instances. Instead

of rsync, we used the SFTP protocol over an SSH channel with the enabled channel

encryption mechanism.

76

CHAPTER 6

CONCLUSION AND FUTURE WORK

Cloud computing provides an efficient common pool of hardware and software re-

sources which can be scaled up and down in a simple manner, based on the various

and continuously changing requirements of the users. Because cloud computing di-

minishes the cost and complexity of resource management, it has become preferred

by users and the organizations. Cloud services as the applications running in the

cloud are encapsulated in virtualized environments in order to lower the resource

cost. Virtual machines and containers are utilized to create a virtual environment

for cloud services. In order to achieve effective resource utilization, live migration

feature should also be supported by these virtualization techniques.

Live migration, by definition, is the process of moving a running service between dif-

ferent physical or cloud machines. In addition to its contribution to efficient resource

utilization, live migration also plays an important role for system maintenance, load

balancing and applying moving target defense technique to make the service avoid

attacks. Based on the small occupied space in memory and time required to start up

a service fast as provided by container virtualization, the container technology is get-

ting adopted in a fast manner. [52] There are many studies in the literature on VM

migration issues already [4], [5], [35]. Container is still a relatively new technology

when compared to virtual machines. There are still issues that need to be addressed

in the existing literature. One of the most important issue is container live migration

security.

When a migration decision is made and the process to migrate the service is started,

the system should not be vulnerable to attacks. In this work, we propose a model to

apply live migration on containers in a secure manner. Docker containers are used

77

to implement the model and conduct the experiments in this study. By using Docker

containers, faster and more lightweight migration is possible. Because virtual ma-

chine migration encounters serious problems from the performance aspect and the

key features of the containers such as having lightweight structure and supporting

application isolation, container live migration has more advantages relative to virtual

machine live migration [53].

In the proposed model, checkpointing is used to take the snapshot of the running

application. In order to achieve that, we utilized the CRIU [19] tool providing check-

point and resume functionality on Docker container services. Via this method, we

achieved to decrease transfer file size during migration, which affects model perfor-

mance efficiency and the time required to transfer data in a secure way, in an en-

crypted channel in our proposed model. In our proposed model, in order to provide

communication security and make the system protected against migration attacks, we

provide security of the migration data using secure authentication, and ensuring all

connections between the nodes are protected. The efficiency of the migration system

designed based on the proposed model has been proven on stateless and stateful sam-

ple applications. Experiments with sample applications running on the Docker con-

tainer platform demonstrate that the proposed approach achieves significantly better

performance than its virtual machine live migration counterpart.

Optimization on the multi user scenario should be applied as a future work. In ad-

dition to that, a machine learning algorithm can be developed in order to decide the

migration process source and destination nodes. In our model, the application server

acts like control manager for the migration process. In order to avoid single point of

failure, application server can be divided into multiple application servers working in

a distributed manner.

78

REFERENCES

[1] David A. Carts, “A Review of the Diffie-Hellman Algorithm and its Use in

Secure Internet Protocols,” tech. rep., SANS Institute, 2001.

[2] “Container Live Migration.” https://www.infoq.com/articles/container-live-

migration, 2016. [Online] Last accessed on 03-March-2019.

[3] S. Nadgowda, S. Suneja, and A. Kanso, “Comparing Scaling Methods for Linux

Containers,” in IEEE International Conference on Cloud Engineering (IC2E),

pp. 266–272, 2017.

[4] A. M. Mahfouz, M. L. Rahman, and S. G. Shiva, “Secure live virtual machine

migration through runtime monitors,” 2017 10th International Conference on

Contemporary Computing, IC3 2017, vol. 2018-Janua, no. August, pp. 1–5,

2018.

[5] G. J. Jeincy, R. S. Shaji, and J. P. Jayan, “A secure virtual machine migration us-

ing memory space prediction for cloud computing,” Proceedings of IEEE Inter-

national Conference on Circuit, Power and Computing Technologies, ICCPCT

2016, pp. 1–5, 2016.

[6] S. Sengole Merlin, N. M. Arunkumar, and M. A. Angela, “Automated Intelligent

Systems for Secure Live Migration,” Proceedings of the International Confer-

ence on Inventive Communication and Computational Technologies, ICICCT

2018, no. Icicct, pp. 1360–1371, 2018.

[7] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live Service

Migration in Mobile Edge Clouds,” IEEE Wireless Communications, vol. 25,

no. 1, pp. 140–147, 2018.

[8] V. Medina and J. M. Garcia, “A Survey of Migration Mechanisms of Virtual

Machines,” ACM Computing Surveys (CSUR), vol. 46, no. 3, pp. 1–33, 2014.

79

[9] “Containers at Google.” https://cloud.google.com/containers/, 2008. [Online]

Last accessed on 24-February-2019.

[10] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A Comparative Study of

Containers and Virtual Machines in Big Data Environment,” IEEE International

Conference on Cloud Computing, CLOUD, vol. 2018-July, pp. 178–185, 2018.

[11] Á. Kovács, “Comparison of different linux containers,” 2017 40th Interna-

tional Conference on Telecommunications and Signal Processing, TSP 2017,

vol. 2017-Janua, pp. 47–51, 2017.

[12] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting with docker:

Linux container and baseos attack surfaces,” International Conference on Infor-

mation Society, i-Society 2016, pp. 17–21, 2017.

[13] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De

Rose, “Performance evaluation of container-based virtualization for high per-

formance computing environments,” Proceedings of the 2013 21st Euromicro

International Conference on Parallel, Distributed, and Network-Based Process-

ing, PDP 2013, pp. 233–240, 2013.

[14] “OpenVZ Containers.” https://openvz.org/Main, 2005. [Online] Last accessed

on 01-April-2019.

[15] “Linux Containers.” https://linuxcontainers.org/, 2013. [Online] Last accessed

on 01-April-2019.

[16] “Docker Container Technology.” https://www.docker.com/, 2013. [Online] Last

accessed on 21-December-2018.

[17] P. E. N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of Docker contain-

ers based on hardware utilization,” International Conference on Control Com-

munication and Computing India, 2015.

[18] U. Deshpande, D. Chan, T. Y. Guh, J. Edouard, K. Gopalan, and N. Bila, “Agile

Live Migration of Virtual Machines,” Proceedings - 2016 IEEE 30th Interna-

tional Parallel and Distributed Processing Symposium, IPDPS 2016, pp. 1061–

1070, 2016.

80

[19] “Checkpoint Restore in User Space.” https://criu.org/Main_Page, 2012. [On-

line] Last accessed on 03-March-2019.

[20] Y. Chen, “Checkpoint and Restore of Micro-service in Docker Containers,”

no. Icmii, pp. 915–918, 2015.

[21] M. Azab, B. M. Mokhtar, A. S. Abed, and M. Eltoweissy, “Smart Moving Target

Defense for Linux Container Resiliency,” in IEEE 2nd International Conference

on Collaboration and Internet Computing (CIC), pp. 122–130, 2016.

[22] J. Zheng and A. S. Namin, “A Survey on the Moving Target Defense Strategies:

An Architectural Perspective,” Journal of Computer Science and Technology,

pp. 207–233, 2019.

[23] T. Ylonen, “SSH - Secure Login Connections over the Internet,” in Proceedings

of the 6th USENIX Security Symposium, pp. 37–42, 1996.

[24] W. Stallings, “Protocol Basics: Secure Shell Protocol,” in The Internet Protocol

Journal, pp. 18–30, 2009.

[25] “Understanding the SSH Encryption and Connection Process.”

https://www.digitalocean.com/community/tutorials/understanding-the-ssh-

encryption-and-connection-process, 2014. [Online] Last accessed on 10-

March-2019.

[26] “National Institute of Standards Technology.” https://www.nist.gov, 2001. [On-

line] Last accessed on 24-March-2019.

[27] M. Panda, “Performance analysis of encryption algorithms for security,” Inter-

national Conference on Signal Processing, Communication, Power and Embed-

ded System, SCOPES 2016 - Proceedings, pp. 278–284, 2017.

[28] B. Thiyagarajan and R. Kamalakannan, “Data integrity and security in cloud

environment using AES algorithm,” 2014 International Conference on Informa-

tion Communication and Embedded Systems, ICICES 2014, no. 978, pp. 1–5,

2015.

[29] K. B.Adedeji and J. O. Famoriji, “Investigating the Effects of varying the Key

Size on the Performance of AES Algorithm for Encryption of Data over a Com-

81

munication Channel,” International Journal of Applied Information Systems,

vol. 7, no. 8, pp. 6–10, 2014.

[30] M. Ahmed, B. Sanjabi, D. Aldiaz, A. Rezaei, and H. Omotunde, “Diffie-

Hellman and Its Application in Security Protocols,” International Journal of

Engineering Science and Innovative Technology (IJESIT), vol. 1, no. 2, pp. 69–

73, 2012.

[31] “SSH File Transfer Protocol.” https://www.ssh.com/ssh/sftp/. [Online] Last ac-

cessed on 30-April-2019.

[32] D. J. Barrett and R. Silverman, “The Secure Shell: The Definitive Guide,” 2001.

[33] D. Blazhevski, “Modes of operation of the aes algorithm,” The 10th Conference

for Informatics and Information Technology (CIIT 2013), no. Ciit, pp. 212–216,

2013.

[34] K. G. Paterson and G. J. Watson, “A Formal Security Treatment of SSH-CTR,”

Advances in Cryptology — EUROCRYPT 2010, vol. 216676, pp. 345–361,

2010.

[35] J. B. Princess, G. Jeba, L. Paulraj, and I. J. Jebadurai, “Methods to Mitigate

Attacks during Live Migration of Virtual Machines – A Survey,” International

Journal of Pure and Applied Mathematics, vol. 118, no. 20, pp. 3663–3670,

2018.

[36] M. Aiash, G. Mapp, and O. Gemikonakli, “Secure live virtual machines migra-

tion: Issues and solutions,” Proceedings - 2014 IEEE 28th International Confer-

ence on Advanced Information Networking and Applications Workshops, IEEE

WAINA 2014, no. March, pp. 160–165, 2014.

[37] W. Li and A. Kanso, “Comparing containers versus virtual machines for achiev-

ing high availability,” Proceedings - 2015 IEEE International Conference on

Cloud Engineering, IC2E 2015, pp. 353–358, 2015.

[38] J. Shetty, A. M R, and S. G, “A Survey on Techniques of Secure Live Migration

of Virtual Machine,” International Journal of Computer Applications, vol. 39,

no. 12, pp. 34–39, 2012.

82

[39] F. Zhang and H. Chen, “Security-preserving live migration of virtual machines

in the cloud,” Journal of Network and Systems Management, vol. 21, no. 4,

pp. 562–587, 2013.

[40] P. Fan, B. Zhao, Y. Shi, Z. Chen, and M. Ni, “An improved vTPM-VM live

migration protocol,” Wuhan University Journal of Natural Sciences, vol. 20,

no. 6, pp. 512–520, 2015.

[41] X. Wan, X. Zhang, L. Chen, and J. Zhu, “An improved vTPM migration pro-

tocol based trusted channel,” 2012 International Conference on Systems and

Informatics, ICSAI 2012, no. Icsai, pp. 870–875, 2012.

[42] A. Tamrakar, “Security in Live Migration of Virtual Machine with Automated

Load Balancing,” vol. 3, no. 12, pp. 806–811, 2014.

[43] S. Biedermann, M. Zittel, and S. Katzenbeisser, “Improving security of virtual

machines during live migrations,” pp. 352–357, 07 2013.

[44] H. Alshahrani, A. Alshehri, R. Alharthi, A. Alzahrani, D. Debnath, and H. Fu,

“Live Migration of Virtual Machine in Cloud : Survey of Issues and Solutions,”

in Int’l Conf. Security and Management | SAM’16 |, pp. 280–285, 2016.

[45] K. Nagin, D. Hadas, Z. Dubitzky, A. Glikson, I. Loy, B. Rochwerger, and

L. Schour, “Inter-cloud mobility of virtual machines,” ACM International Con-

ference Proceeding Series, 2011.

[46] Y. Chen, Q. Shen, P. Sun, Y. Li, Z. Chen, and S. Qing, “Reliable migration

module in trusted cloud based on security level - Design and implementation,”

Proceedings of the 2012 IEEE 26th International Parallel and Distributed Pro-

cessing Symposium Workshops, IPDPSW 2012, pp. 2230–2236, 2012.

[47] V. P. Patil and G. a. Patil, “Migrating Process and Virtual Machine in the Cloud:

Load Balancing and Security Perspectives,” International Journal of Advanced

Computer Science and Information Technology, vol. 1, no. 1, pp. pp. 11–19,

2012.

[48] M. Aslam, C. Gehrmann, and M. Björkman, “Security and trust preserving VM

migrations in public clouds,” Proc. of the 11th IEEE Int. Conference on Trust,

83

Security and Privacy in Computing and Communications, TrustCom-2012 - 11th

IEEE Int. Conference on Ubiquitous Computing and Communications, IUCC-

2012, pp. 869–876, 2012.

[49] W. Li, A. Kanso, and A. Gherbi, “Leveraging Linux containers to achieve High

Availability for cloud services,” Proceedings - 2015 IEEE International Confer-

ence on Cloud Engineering, IC2E 2015, pp. 76–83, 2015.

[50] M. Azab, B. Mokhtar, A. S. Abed, and M. Eltoweissy, “Toward Smart Moving

Target Defense for Linux Container Resiliency,” 2016 IEEE 41st Conference on

Local Computer Networks (LCN), pp. 619–622, 2016.

[51] “SSH Public Key Authentication.” https://www.tecmint.com/ssh-passwordless-

login-using-ssh-keygen-in-5-easy-steps/, 2015. [Online] Last accessed on 01-

July-2019.

[52] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete Container

State Migration,” Proceedings - International Conference on Distributed Com-

puting Systems, no. Section III, pp. 2137–2142, 2017.

[53] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient Live Migration of Edge Services

Leveraging Container Layered Storage,” IEEE Transactions on Mobile Comput-

ing, vol. PP, no. c, p. 1, 2018.

84

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Live Migration Attacks
	Live Migration Security Factors
	Access Control
	Authentication
	Data Confidentiality
	Communication Security
	Data Integrity
	Availability

	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background Information
	What is a Container?
	The Differences Between Containers and Virtual Machines
	Docker Container Technology
	Images
	Containers
	Services

	Live Migration
	Moving Target Defense
	Stateless and Stateful Applications
	Stateless Application
	Stateful Application

	SSH (Secure Shell Protocol)
	Symmetric encryption
	Asymmetric encryption
	Hashing

	Advanced Encryption Standard
	Key Exchange Method
	Diffie-Hellman Key Exchange Algorithm
	Diffie-Hellman Usage in SSH

	SFTP
	Algorithms Used in SSH and SFTP

	Related Work
	Secure Live Migration of Virtual Machines
	Migration Network Isolation
	Network Security Engine Hypervisor
	Secure VM-vTPM Migration Protocol
	Improved VM-vTPM Migration Protocol
	Using IPSec Tunneling
	Live Migration Defense Framework
	Inter Cloud Virtual Machine Mobility
	Trust Cloud Security Level
	Secure VM Migration by Using RSA with SSL protocol
	Trust Token based VM migration protocol
	Runtime Monitors
	Migration Using Memory Space Prediction
	Encryption of Migration Data with AES Algorithm

	Live Migration of Containers
	ESCAPE Live Migration Model

	Live Migration of Containers vs Virtual Machines

	Proposed Model
	Model Architecture
	Checkpointing and Restoring
	Model Execution Plan for Stateless Application
	Model Execution Plan for Stateful Application
	Security Evaluation
	Attack Resilience

	Experimental Evaluation
	Experiment Setup
	Source and Destination Cloud Instance Setup
	Docker and CRIU Configurations
	Application Server Setup
	Database Server Setup
	Applications Used in Experiments
	Clock Application
	Installation

	Face Recognition Application
	Installation

	SSH Connection and File Transfer Application
	SSH Public Key Authentication:

	Experiment Metrics
	Experiment Results and Discussion
	Multi User Test Scenario Results
	Comparison with Layered Framework Experiment

	Conclusion and Future Work
	REFERENCES

