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ABSTRACT

A STUDY ON COUNTERMEASURES ON AES AGAINST SIDE CHANNEL ATTACKS

Çenesiz, Damla

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

August 2019, 37 pages

Side Channel Attacks have a important role for security of cryptographic algorithm. There
are different method which include Threshold Implementation to protect against these kind of
attacks. In this thesis, we study certain countermeasures to side channel attacks for AES. We
start with a survey on Side Channel Attacks for block ciphers and we mentioned attack models
for AES. We give also partical attention Treshold Implementation properties and construction
methods. We also give some details of subfield construction and Threshold Implementation
of AES.

Keywords: Side channel attack, S-box, AES, Subfield
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ÖZ

YAN KANAL ANALİZLERİNE KARŞI AES İÇİN GELİŞTİRİLEN KORUMA
YÖNTEMLERİ ÜZERİNE BİR ÇALIŞMA

Çenesiz, Damla

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ağustos 2019, 37 sayfa

Yan kanal analizi atakları, günümüz kriptografik algoritmaları için tehdit oluşturmaktadır.
Altsınır gerçeklemesinin de içinde olduğu yan kanal analizi ataklarına karşı birçok yöntem
bulunmaktadır. Bu çalışmada belirli yan kanal analizi saldırılarına karşı, AES şifreleme yön-
temi için geliştirilen belirli bir koruma yöntemi çalışılmıştır. Öncelikli olarak blok şifrelere
uygulanan yan kanal analizi ataklarıyla ilgili araştırma yapılmıştır ve AES için oluşturulan
bazı atak modelleri incelenmiştir. Daha sonrasında Altsınır Gerçeklemesi’nin özellikleri in-
celenmiştir ve AES için kullanılan Altsınır Gerçeklemeleri ve AES algoritmasının altcisim
yapılanması ile ilgili detaylı bilgiye yer verilmiştir.

Anahtar Kelimeler: Yan kanal Analizi, S-kutusu, AES, Altcisim
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CHAPTER 1

INTRODUCTION

Cryptographic algorithms include encryption algorithm, plaintext-ciphertext pairs and key
and must provide four properties such that confidentially, data integrity, authentication and
non-repudation. If a device use cryptographic algorithm for security of information, then this
device is called a crytographic device. These devices can be smart cards, FPGA, id card,
computer and some other devices.

Kerchoff’s law assummes that cryptographic algorithm process is known. Only key is kept
as a secret. Therefore, breaking a cryptographic algorithm generally means obtaining secret
key. If there is no attack to get secret key, then the algorithm is considered secure in practice.
If the currect technologies is not enough to break a cryptographic algorithm, the algorithm is
called computationally secure.

Not only cryptograhic algorithm security but also device characteristic are so important for
the security of an algorithm. Because there are some methods to obtain secret key which are
called Side Channel Attacks. The most known of these attack is Power Analysis Attack[16]
and the attack is applicable with very few and cheap equipment. This method is first shown
by Kocher in 1998 [11], then this attack type has been popular. After that, protection methods
against these attack has been developed for algorithms used today. One of the protection
algorithm is Threshold Implementation [19] method which was proved reliability against first
order power analysis attacks. [9] [1]

In this thesis, first chapter is consists of side channel attacks on cryptographic devices. Also,
power analysis attacks method and model construction of attacks on AES are detailed. In
second chapter, AES algorithm and subfield construction [12] [7] details of AES Substitution
Box are given. In the third chapter, Threshold Implementation properties are explained.[14]
Construction method of Threshold Implementation are shown with explanatory examples.
In the last part of thesis, a Threshold Implementation of AES [13] [1] is given in detailed
and functions are used in this implementation and analyzed from the points of Threshold
Implementation properties and construction methods.
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1.1 Side Channel Attacks on Cryptograhic Devices

All efforts try to obtain key are named an attack. These attack are divided into two groups:
passive and active attacks.

Passive attacks attempt to obtain secret information by examining the chracteristic of a cryp-
tographic device such as power, EM , and time consumption without interfering the device.

Active attacks attempt to device by direct intervention. Behaviours as a result of this attack
inform about secret information.

There is an also different classification of attack types. Invansive attack, can be embedded to
cryptographic devices. There is no restriction in this attack type to obtain secret key. Invansive
attack start with analyzing different part of device. By using probe, different part of device
is attained. If probing is just used to observe data signal, this attack is passive attack also. In
Semi-invansive attack, secret information is attempted to obtain from memory cells without
probing. Active semi-invansive attack cause a fault in the device by using electromagnetic
field, x-ray etc.

Non-invansive attacks are also called side channel attacks. Some non-expensive devices
would be enough for these kind of attacks. Side channel attacks does not affect the algortihm
process.In this thesis, power analysis attack, one of the most important side channel attack, is
mentioned in detail. Power analysis attack is big threat for cryptographic devices because the
attack use only a oscilloscope and computer to attack.[8]

1.1.1 Power Analysis Attacks

In 1998, Power analysis attack is introduced by Kocher.[11] This attack tries to get the secret
key by measuring power consumption. The attacker needs some equipments; a oscilloscope
to collect power consumption and a computer to analyze obtaining data for revealing secret
key. There are mainly three types of power analysis attacks simple power analysis, differential
power analysis and correlation power analysis. [25]

Cryptographic Device
(FPGA)

Oscilloscope

Control Power 
Measurement

Control 
Plaintext-Ciphertext

Figure 1.1: Side Channel Attack General Concept
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1.1.1.1 Simple Power Analysis

Simple power analysis attack to obtain secret key by using power consumption of crypto-
graphic devices. For this attack, details of implementation of cryptographic algorithm must
be known and get a trace or few traces. In practice, this type of attack is not enough for suc-
cesful attack. At the same time, this attack helps to understand which algorithm works in the
device. The attack is used with the other attack types.

1.1.1.2 Differential Power Analysis

By using large number of traces, this attack does not need information about the cryptographic
device. It is enough to know which algorithm works in the device. This attack search for data
dependency with power consumption. The attacker use statistical techniques after measuring
power consumption.

Firstly, depending on algorithm characteristic, the attacker tries to decide intermediate value.
Intermediate value which must depend on known plaintexts or ciphertexts and a part of secret
key. After the deciding intermediate value of attack, power consumption are measured during
encrypting known plaintexts.[8]

Let the attacker has n different plaintexts and P = (P1, P2, ..., Pn) be the set of plaintexts ,
T = (T1, T2, ..., Tn) be traces set and length of all Ti block is t and Ti = (Ti1, Ti2, ..., Tit)

represent point on trace.

Next, power models are constituted for every possible key values according to intermediate
values f(p, k) of this encryption. To find model power traces, Hamming Distance model or
Hamming Weight model is used.

P1 P2 ... Pn−1 Pn

Table 1.1: Set of Plaintexts

K1 K2 ... Km−1 Km

Table 1.2: Key possibilities

For all key possibilities, intermediate values are calculated by
f(P1,K1) f(P1,K2) ... f(P1,Km)

f(P2,K1) f(P2,K2) ... f(P2,Km)
...

...
...

...
f(Pn,K1) f(Pn,K2) ... f(Pn,Km)


nxm

Table 1.3: Intermediate values of the attack

and traces for every plaintext are ;
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T1,1 T1,2 ... T1,t

T2,1 T2,2 ... T2,t
...

...
...

...
Tn,1 Tn,2 ... Tn,t


nxt

Table 1.4: Traces Ti,j of all plaintexts

Results by statistical analysis for all Pi by correlation coefficient ;


R1,1 R1,2 ... R1,t

R2,1 R2,2 ... R2,t

...
...

...
...

Rm,1 Rn,2 ... Rm,t


mxt

Table 1.5: Results

The highest values of the results show which key is probably used to encrypt selected in-
termediate value. If the all results are raughly same, attacker must measure more power
consumption to reveal secret key.

Difference of Means : examines the relationship between power measurement and inter-
mediate values of the attack by take into account least significant bit or most significant bit.
[22]

Let intermediate value of this algorithm be output of s-box. Firstly, the s-box output are
calculated for all key possibilities by known plaintext. Two groups are set according to least
significant bit. Mean of measurements are calculated for two groups. After difference of
these means for all key hypothesis are calculated, analyzing of these differences give best key
hypothesis.

1.1.1.3 Correlation Power Analysis

Correlation power analysis attack is statistical power analysis attack by using Pearson correla-
tion coefficient. Compared to differential power analysis, CPA attack need less power traces.
[4]

Using plaintext(or ciphertext) and a part of key, intermediate value f(p, k) are generated.
Power models of intermediate values are calculated by Hamming Weight or Hamming Dis-
tance model for all key possibilities.

Definition 1. Hamming Weight: is the number of ones in the binary sequence and denoted by

HW (x) = #1

where x ∈ Fn
2

4



Definition 2. Hamming Distance: is the number of different bits between two binary se-
quences

HD(x, y) = #1 of x⊕ y

where x, y ∈ Fn
2

Power measurements are taken during cryptographic algorithm. After measurement of power
consumption, Pearson correlation coefficient is used for relation between power model and
real power consumption.

Definition 3. Pearson Correlation Coefficient: Let xi and yi are in different data groups, n

is sample size and x̄ =
1

n

n∑
i=1

xi , ȳ has also same structure. Then,

r =

∑
i

xiyi + x̄ȳn− x̄
∑
i

yi − ȳ
∑
i

xi√√√√(∑
i

xi2 + nx̄2 − 2x̄
∑
i

xi

)(∑
i

yi2 + nȳ2 − 2ȳ
∑
i

yi

) (1.1)

is Pearson Correlation Coefficient. r can have a value between -1 and 1 and shows that
relationship between two data groups;

• is strong negative when r is -1.

• is strong positive when r is 1.

• does not exist when 0.

If r values are close enough to these values, they give information about the relationship
between two groups.

1.1.2 Power Analysis Attacks Models for AES

AES algorithm is resistant to mathematical attacks and used in many cryptographic devices.
This algorithm is sensitive to side channel analysis due to the features of the device used
and how it is implemented. There are hypothesis power models using Hamming weight and
Hamming distance which can be used for both DPA and CPA attacks for AES.

1.1.2.1 First Round Attack Model

First round attack model is constituted by using plaintext and S-box operation. AES has a 0th

round which is just consist of adding round key.
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P = P0 P1 ... P14 P15

Table 1.6: A plaintext 128 bit length with 16 byte representation

Let P be a plaintext and 128 bit length . Firstly, inverse shift operation is applied.

All key possibilities k is applied for every plaintext. Let Ki = i where i ∈ F 8
2 ;

Ki = k0 k1 ... k14 k15

Table 1.7: A key possibilities 128 bit length with 16 byte representation

Then,

P +Ki = P0 + k0 P1 + k1 P2 + k2 ... P14 + k14 P15 + k15

After the adding key operation, output of S-box A.5 is calculated with the table for every key
hypothesis.

1 Input: byte plaintext[nx1], int n , int out[nx256]

2 begin

3 byte state[nx1]

4 state=plaintext

5 for counter=0 to n-1 do

6 for key=0 to 255 do

7 state[counter]+key

8 sbox (state)+plaintext

9 hamming weight(state)

10 end for

11 end for

12 out state

13 end

Then, Hamming Distance of plaintexts and S-box [A.5] output of P +ki’s are calculated. For
every plaintexts, hypothesis power models are calculated with 256 key possibilities. Relation
between power traces and hypothesis power models are examined with Pearson Correlation
Coefficient[1.1].

1.1.2.2 Last Round Attack Model

The lack of column mixing in the final round of AES is a weakness for side channel analysis.
The power model should be created with the S-box, which is the nonlinear, dependent to key
and encrypted text operation of the AES algorithm.

Let C be a ciphertext and 128 bit length . Firstly, inverse shift operation is applied.

6



C = C0 C1 ... C14 C15

Table 1.8: Set of Ciphertexts

=⇒ By Inverse Shift Operation

Cinv−shift = C0 C5 C10 C15 C4 C9 C14 C3 C8 C13 C2 C7 C12 C1 C6 C11

Table 1.9: Inverse Shift Results

After the inverse shift operation, all key possibilities k apply to every ciphertext. Let Ki = i

where i ∈ F 8
2 and all length of Ki is 8 bit.,

Ki = k0 k1 ... k14 k15

Then,

Cinv−shift +Ki = C0 + k0 C5 + k1 C10 + k2 ... C6 + k14 C11 + k15

The inverse of this table of this process for all entries is given in Appendix A because inverse
s-box [A.6] is necessary to use in the last round attack. Let index of S-box be x then xth entry
give the result inverse S-box of x ∈ GF (28)

1 Input: byte ciphertext[nx1], int n , int out[nx256]

2 begin

3 byte state[nx1]

4 state=ciphertext

5 for counter=0 to n-1 do

6 for key=0 to 255 do

7 st1=invshift(state[counter])+key

8 st2=inverse sbox (state)

9 state +st1

10 hamming weight(state)

11 end for

12 end for

13 out state

14 end

Then Hamming Distance of Cinv−shift + ki and S-box outputs of Cinv−shift is calculated.
For every 8 bit of ciphertexts, there exist 256 hypothesis power models. Real power mea-
surements and the relationship between these hypothesis power models are examined with
Pearson Correlation Coefficient 1.1.

7



1.1.2.3 S-Box Input Output Model

This is also an Hamming Distance model 2. Since the confusion part of the AES in both the
key schedule and the algorithm itself is provided by the s-box, all hypothesis power models
are generated by the substitution box of AES.

Likewise 1.1.2.1, all key possibilities k is added to every plaintext. After the adding key
operation, output of S-box is calculated with the table [A.5] for every key hypothesis. For the
construction of the hypothesis power model, s-box output and input are summed.

1 Input: byte plaintext[nx1], int n , int out[nx256]

2 begin

3 byte state[nx1]

4 state=plaintext

5 for counter=0 to n-1 do

6 for key=0 to 255 do

7 state[counter]+key

8 sbox (state)

9 state+plaintext+key

10 hamming weight(state)

11 end for

12 end for

13 out state

14 end

Three power analysis attack models for AES which is implemented as unprotected against
side channel attacks are given in above. These attacks also depend number of power traces
and characteristic of cryptographic devices. Since there is no mix column operation in the last
round of AES, it creates a weakness against side channel attacks. Therefore, the last round
attack amoung these three attack models provides the best correlation with power consump-
tions. In other attack models, correlation will be more powerful if more suitable power traces
are taken.

8



CHAPTER 2

AES ALGORITHM AND SUBFIELD S-BOX CONSTRUCTION

2.1 Preliminaries

Definition 4. Field:By commutative ring R, an object R 6= ∅ together with second binary
operation

+ : R×R→ R

. : R×R→ R

Having this properties;

• {R,+} is an abelian group : +(a, b = a+ b)

• .(a, b) = a.b under this operation ∃ unit element denoted by 1, with denoted the prop-
erty that a.1 = 1.a = a ∀ ∈ R. R is commutative ring with R∗ = R\0. Then, R is
called a field and it is usually denoted by F . If F has finite elements, then it is called
finite field. [15]

Definition 5. Extention of field: K is an extension of F, then K is a vector space over F. dim
K over F is called degree of the extension F ⊂ K and denoted by [K : F ] = dimF\K

F ⊂ K field extension, α is algebraic over F of ∃ monic polynomial

g(x) = xm + a1x
m−1 + ...+ an ∈ F [x] such that g(α) = 0

Definition 6. Trace: Let F be a finite field and F = Fqn and K = Fq, then trace of F over K
is

TrF\K(α) =

n−1∑
i=0

αqi

Definition 7. Norm: Let F = Fqn be a finite field over K = Fq and norm of F over K is

NF\K(α) =

n−1∏
i=0

αqi

9



Definition 8. Polynomial Basis: Let α be a primitive element of F over K, then

{1, α, α2, α3, ..., αn−1}

is a polynomial basis of F over K.

Definition 9. Normal Basis: Let F be a extension of K with degree n. Then, α ∈ F

{α, αq, αq2 , ..., αqn−1}

is a normal basis of F over K.[17]

Definition 10. Boolean Function: Let f(x) : Fn
2 → F2 is a Boolean function which maps n

bits to a single bit.
f(x) = c1f1(x) + c2f2(x) + ...+ cnfn(x)

where ci are constant.

Definition 11. S-box: S-box can be considered as a vector of Boolean functions. Let S(x) :

Fn
2 → Fm

2 be a S-box which maps n bits to m bits. Each entry of S(x) is a Boolean function.

Definition 12. Affine function: Let f(x) = c1f1(x) + c2f2(x) + ... + cnfn(x) + C is an
affine function where f(x) : Fn

2 → F2 and C is a constant in F2. If C = 0, then this function
is called linear function and denoted by lc = cx

2.2 Block Ciphers

Block cipher is a cryptographic encryption method which works by dividing plaintext into
blocks with fixed length. All blocks divided according to this method will be encrypted
seperately, and the ciphertext will be obtained by the sequence of these blocks. [18]

For obtaining good block cipher depends on diffusion and confusion properties. Diffusion
means that a character of a plaintext is changed then several characters of ciphertext should
change. Confusion each character of the ciphertext should depend on several parts of key.

Permutation and substitution satisfy these two properties. There are two main structures of
block ciphers. One of the structures is Substitiution Permutation Network(SPN). The structure
is constituent of Advanced Encryption(AES). [23]

2.2.1 Advanced Encryption Standard and S-box Construction

AES which is the most widely used algorithm in block cipher, is a symmetric encryption
algorithm. [3] In 2002, AES found a place among the encryption algorithms. AES is called
Rijndael by the developers of this algorithm Vincent Rijmen and John Daemen. AES with
128 block length uses 128 bit, 192 bit and 256 bit length key alternatively. All operations are
applied to 4x4 matrices. According to key length, the number of cycle change.
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Key length Number of Rounds
128bit 10

192bit 12

256bit 14

Table 2.1: Key sizes of AES algorithm

Each round consists of four layers in the AES algorithm. The algorithm’s input output and
matrices are 128 bits. These matrix is 4x4 and each entry is 8 bit length. Firstly, 128 bit data
is converted to a 4x4 matrix.

Let plaintext be [P0, P1, P2, ..., P15] and all Pi is 8 bit. Matrix form is
P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15


Table 2.2: 128 bits plaintext matrix construction

There are four basic steps called layers respectively.

1. ByteSub(S-Box)

2. ShiftRow

3. MixColumn

4. AddRoundKey

Rjindael Encryption 0th round is consists of AddRoundKey, 9 rounds of all four layers and
the final round without Mixcolumn.

2.2.1.1 Substitution Box

For the subfield construction, we examine S-box construction of AES. We can describe the
operations in GF (28) = F2[x]/ < x8 +x4 +x3 +x+ 1 >. For computing ByteSub, we first
compute the inverses of the entries of our matrix start with plaintext x = x7x6x5x4x3x2x1x0

where xi ∈ {0, 1} and x ∈ GF (28). Then, compute the inverse of x, i.e compute x−1 =

y7y6y5y4y3y2y1y0 = y.

Let Sbox(x) = S = s7s6s5s4s3s2s1s0, then

11





s0

s1

s2

s3

s4

s5

s6

s7


=



1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1


.



y0

y1

y2

y3

y4

y5

y6

y7


+



1

1

0

0

0

1

1

0



Note that if α = α0 + α1x+ ...+ α7x
7 ∈ GF (28) then, α−1 = β0 + β1x+ ...+ β7x

7 = β

such that α.β = 1modf(x). In order to compute α−1, Euclidean algorithm for polynomials
is used.

2.2.1.2 Shift Row

The four rows of the state matrix are shifted cyclically. The method is that ith row is shifted i
times


S00 S01 S02 S03

S10 S11 S12 S13

S20 S21 S22 S23

S30 S31 S32 S33

 =⇒


S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32


Table 2.3: Shift Row operation

2.2.1.3 Mix Columns

Mix columns operation, which is a polynomial multiplication operation, is used for diffusion
of this algorithm.


x x+ 1 1 1

1 x x+ 1 1

1 1 x x+ 1

x+ 1 1 1 x



S00 S01 S02 S03

S11 S12 S13 S10

S22 S23 S20 S21

S33 S30 S31 S32

 =


M00 M01 M02 M03

M11 M12 M13 M10

M22 M23 M20 M21

M33 M30 M31 M32


Table 2.4: Mix Column operation

12



2.2.1.4 Add Round Key

The main 128 bit key creates 4x4 matrix of key bytes. For the other round keys are obtained
by 4 columns of this matrix.


K00 K01 K02 K03

K11 K12 K13 K10

K22 K23 K20 K21

K33 K30 K31 K32


Table 2.5: Key expanded matrix

Let columns of the matrix be numarized by Ci where i ∈ {0, 1, ..., 43}. Then the construction
of the other round keys;

• i 6≡ 0(mod4)→ Ci = Ci−4 ⊕ Ci−1

• i 6≡ 0(mod4)→ Ci = Ci−4 ⊕ T (Ci−1)

T is a transformation which is consists of cyclic, substitution box and addition round constant.
Firstly, take a column of the key matrix then shift cyclically. Let

Ci =


a

b

c

d

 =⇒


b

c

d

a

 =⇒


S(b)

S(c)

S(d)

S(a)


After this operation, round constant of key operation is calculated by r(i) = (00000010)(

i−4
4

) ∈
GF (28)

2.3 S-box with Subfield Construction

S-box of AES is consists of GF (28) multiplication with polynomial basis and constant addi-
tion. Irreducible function is x8 + x4 + x3 + x + 1 and α be a root of this polynomial. Then
the polynomial basis is [α7, α6, α5, α4, α3, α2, α, 1]. Finding inverse element in GF (28) is a
hard operation and calculated by Euclidean algorithm. The inverse operation in GF (28) can
be calculated by combination of some subfield operations. [5] [6]

Firstly, a element Y ∈ GF (28) can be shown over GF (24) as Y = y1x+ y0 and multiplica-
tion is calculated modular f(x) = x2 + rx+ v 2 degree irreducible polynomial. Polynomial
basis of GF (28)/GF (24) is [x, 1] and normal basis is [x2

4
, x] = [x16, x] [12] [20]
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f(x) = x2 + rx+ ν = (x+X)(x+X16)

so trace and norm equal to
TrGF (28)/GF (24) = r = X +X16 and NormGF (28)/GF (24) = ν = (X)(X16).

2.3.1 Inverse GF (28) over GF (24)

Firstly, inverse operation in GF (28) over GF (24) be defined for construction of the S-box.
Let Y = y1y+ y0 and D = d1y+d0 be inverse of g ∈GF (28). For this inversion in the sub-
field GF (24) an inversion, three multiplication, bitwise sum (⊕), squaring and multiplication
with norm are necessary. By the normal basis construction;

If D is inverse of Y, then Y D ≡ mod(x2 + rx+ v)

Y D = (y1x+ y0)(d1x+ d0)mod(x2 + rx+ v)

1 = y1d1x
2 + y(y1d0 + y0d1) + y0d0mod(x2 + rx+ v)

1 = y1d1x
2 + y(y1d0 + y0d1) + y0d0 + y1d1(x

2 + rx+ v)

1 = (y1d0 + y0d1 + y1d1r)x+ (y0d0 + y1d1v)

1 = 0x+ 1

Because of the Y D = 1 = 0x+ 1;

0 = (y1d0 + y0d1 + y1d1r) (2.1)

1 = (y0d0 + y1d1v) (2.2)

by 2.1 and 2.2 equations are multiplied by y0 and y1 respectively

0 = y1y0d0 + (y20 + y1y0r)d1 (2.3)

y1 = y1y0d0 + y21vd1 (2.4)

By equation 2.2 multiply with y1, y1y0d0 = y1 + y21d1v and from equaiton 2.3, equations in
below are obtained.

y1 = (y20 + y1y0r + y21v)d1

y1d0 = (y20 + y1y0r + y21v)d1

Then, the inverse of Y in figure 2.1;

d1 = (y20 + y1y0 + y21v)−1y1 (2.5)

d0 = (y21v + y1y0r + y20)−1(y0 + y1r) (2.6)

By 2.5 and 2.6 equation [d1, d0] ,which represent the element Y, are ;

Y −1 = (y1X
16 + y0X)−1 = (d1X

16 + d0X) (2.7)

= [((ν × (y1 + y0)
2) + y1y0)

−1 + y0]X
16 (2.8)

+ [((ν × (y1 + y0)
2) + y1y0)

−1 + y1]X (2.9)
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y1 y2

v x y2

y-1

d1 d2

Figure 2.1: GF (28) inversion on subfield GF (24)

2.3.2 Inverse GF (24) over GF (22)

Equations 2.8 and 2.9 and figure 2.1 show that inverse in GF (28) include GF (24) inverse
operation.

For the inversion GF (24) over GF (22), irreducible polynomial s(z) = z2 + Tz +N is used
for multiplication operations. In GF (24) of y = G1z +G0 and d = D1z +D0 be inverse of
y then,

yd = (G1D0 +G0D1 +G1D1T )z +G0D0 +G1D1N

Then

D1 = (G2
1N +G1G0T +G2

0)
−1G1

D0 = (G2
1N +G1G0T +G2

0)
−1(G0 +G1T )

2.3.3 Inverse GF (22) over GF (2)

Similarly GF (22) of G = g1w + g0 D = h1w + h0 be inverse of G and the irreducible
polynomial is t(w) = w2 + w + 1

1 = GD = (g1h0 + g0h1 + g1h1)w + (g0h0 + g1h1)

h1 = (g21 + g1g0 + g20)−1g1

h2 = (g21 + g1g0 + g20)−1(g0 + g1)
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g1 g2

g-1

h1 h2

g2 g2

Figure 2.2: GF (22) inversion on subfield GF (2)

2.3.4 Multiplication GF (24) over GF (22)

For the GF (24) multiplication, operations in GF (22) are necessary. This operation 3 multi-
plication, 4 addition and multiplication with norm. Other operation inGF (24) is combination
of squaring and multiplication with scalar.

yd = (G1Z
4 +G0)× (D1Z

4 +D0)

= [N × [(G1 +G0)× (D1 +D0)] + (G1 ×D1)]Z
4

+ [N × [(G1 +G0)× (D1 +D0)] + (G0 ×D0)]Z

= P1Z
4 + P0Z

where

P1 = [N × [(G1 +G0)× (D1 +D0)] + (G1 ×D1)]

P0 = [N × [(G1 +G0)× (D1 +D0)] + (G0 ×D0)]

2.3.5 Multiplication GF (22) over GF (2)

Multiplication in the GF (22) has the same structure only multiplication by norm is different.
Irreducible polynomial ofGF (22)/GF (2) is t(x) = w2+w+1. Then,NormGF (22)/GF (2) =
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TrGF (22)/GF (2) = 1

GD = (g1w
2 + g0w)(d1w

2 + d0w)

= g1d1(w
2 + 1) + w2w(g1d0 + g0d0) + g0d0w

2

= w2g1d1 + w[(g0 + g1)(g0 + d1)] + g0d0w

= w2g1d1 + (w2 + w)(g0 + g1)(d0 + d1) + g0d0w

= w2(g1d0 + g0d1 + g0d0) + w(g0d1 + g1d0 + g1d1)

2.3.6 Squaring GF (24)

Squaring in GF (24) is the last operation to calculate inverse in GF (28) where irreducible
polynomial is z2 + Tz + N = (z + Z)(z + Z4), T = Z + Z4 and N = ZZ4. For the
squaring, some calculations are necessary;

z2 = Tz +N

z4 = T 2z2 +N2

= z + T 2N +N2

T = z4 + z (2.10)

NT = Nz4 +Nz (2.11)

N =
N

T
z4 +

N

T
z (2.12)

Let Y = G1z
4 +G0z

Y 2 = G2
1z

8 +G2
0z

2

= G2
1z

8 +G2
0(Tz +N)

= G2
1(Tz

4 +N) +G2
0(Tz +N)

= G2
1Tz

4 +G2
0Tz +N(G2

1 +G2
0)

= G2
1Tz

4 +G2
0Tz + (

N

T
z4 +

N

T
z)(G2

1 +G2
0) By 2.12

= z4
[
G2

1T + (G2
1 +G2

0)
N

T

]
+ z

[
G2

0T + (G2
1 +G2

0)
N

T

]
Let T = 1

= z4
[
G2

1 + (G2
1 +G2

0)N
]

+ z
[
G2

0 + (G2
1 +G2

0)N
]

For the squaring in GF (24), squaring in GF (22) is also needed. Squaring in GF (22) where
irreducible polynomial is w2 + w + 1 = 0 and G = g0w + g1

G2 = g20w
2 + g21

= g0w
2 + g1

= g0(w + 1) + g1

= g0w + (g0 + g1)
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Substitution Box of AES was constructed by using normal basis subfield operations. GF (28)

inverse operation with a normal basis was consists of an inversion and three multiplication in
GF (24) , bitwise sum (⊕), squaring and multiplication with norm in GF (22)
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CHAPTER 3

THRESHOLD IMPLEMENTATION

3.1 Threshold Implementation

In this section, some definitions and properties about Threshold Implementation. Then, these
properties are applied to some examples. Threshold Implementation is a method applied to
function. Input of these function must be satisfied two properties which are Correctness and
Uniform Masking. These properties are also used by all masking methods. Functions of
Threshold Implementation depends on three properties constitutively.[2]. Threshold imple-
mentation is based two information sharing methods in below.

Definition 13. Multiparty Computation: Let n different parties [P1, P2, ..., Pn] has different
input [x1, x2, ..., xn]. Then, Multiparty computation is a protokol let that Pi only learns the
value yi where f(x1, x2, ..., xn) = (y1, y2, ..., yn)

Definition 14. Shamir Secret Sharing Scheme: [24] Let secret information S be [S1, S2, ..., Sn].
This information is shared that if the knowledge of k parts of secret are enough to know secret
S, then k − 1 part does not reveal any information about S.

This method is called threshold scheme and denoted by [k, n]. The case of k = n requires all
parts of secret to compute S. Threshold implementation use the case of k = n

These two definitions are the basis of Threshold Implementation. Let f(x) = y where Fn
2 to

Fm
2 , firstly sensitive variable x is shared;

Definition 15. (Sharing) Let X ∈ Fm and s be number of shares.To share all entities of
~X = (x, y, z, ..., t);

1. Generate random bit shares of entity up to s− 1 and then,

2. sth share be equal to
∑i=1

s−1 = xi to satisfy x = x1+x2+ ...+xs, y = y1+y2+ ...+ys

,...,t = t1 + t2 + ...+ ts.

This method is also used in Boolean Masking. Then, ~̃x = (x1, x2, .., xs) is called share vector
of sensitive variable of x and xi denote the share vector without xi term where i ∈ 1, 2, ..., s.
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Property 1. Let N(~̃x) = #{x̃ = (x1, x2, ..., xs) : x1 +x2 + ..+xs = x ∈ F}. If N(~̃x) = n

where n ∈ Z ∀x ∈ Fm, then the masking is uniform.

In words, if for each sensitive value x, number of share vectors of x is constant, then this
masking is uniform.

A dth order masking of a variable x is obtained by seperating d + 1 random xi where
i ∈ {1, 2, ..., d + 1}. Given sharing of input, threshold implementation can apply linear
and nonlinear function with using this sharing. [10]

F = (f1, f2, ..., ft) is vector of functions where fi component function and t is the number of
component functions. For the threshold implementation, ∀fi : Fm

q → Fq must satisfied three
properties.

Property 2. (Correctness) Let F (X) = Y = Y1 + Y2 + ... + Yt = f1 + f2 + ... + ft, ∀
Y ∈ Fn

2 Y = f1(x) + ...+ ft(x) ∀x ∈ Fm
2

Example 1. Let F (x, y, z) = xy + z

F (x1, x2, x3, y1, y2, y3, z1, z2, z3) = f1 + f2 + f3 where

f1 = x2y2 + x2y3 + x3y2 + z2

f2 = x1y3 + x3y1 + x3y3 + z3

f3 = x1y2 + x2y1 + x1y1 + z1

f1 + f2 + f3 = (x1 + x2 + x3)(y1 + y2 + y3) + z1 = xy + z

3.1.1 Threshold Implementation of Linear Functions

Let l(x) = y be linear function over GF (2). If s is the number of shares. Then input and
output shares;

x = x1 ⊕ x2 ⊕ ...⊕ xs and y = y1 ⊕ y2 ⊕ ...⊕ ys.

By the linearity of the function;

y = y1 ⊕ y2 ⊕ ...⊕ ys = l(x1)⊕ l(x2)⊕ ...⊕ l(xs) = l(x)

Like above equation, threshold implementation of linear function is constructed by applying
the function to different shares of x.

3.1.2 Threshold Implementation of Nonlinear Functions

To construct a nonlinear function F (X) = Y where X ∈ Fm
2 and Y ∈ Fn

2 according
to Threshold Implementation need two more properties Noncompleteness and Uniformity of
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function.

Property 3. (Noncompleteness) If all Fi is independent from at least one xi, then F satisfy
non-completeness property of Threshold Implementation.

z1 = F1(x2, x3, ..., xn, y2, y3, ..., yn, ...)

z2 = F2(x1, x3, ..., xn, y1, y3, ..., yn, ...)

...

zn = Fn(x1, x2, ..., xn−1, y1, y2, ..., yn−1, ...)

In Example 1, all component are independent from at least a share of input.

Corrollary 1. A dth degree function can be shared with at least d + 1 shares to satisfy
noncompletenesss property.

While these properties are easily satisfied, it is not easy to provide the next feature that gives
near-linear qualification to the Threshold Implementation functions.

Property 4. Let X ∈ Fm
2 and Y ∈ Fn

2 with F (X) = Y

N(a, b, c, ...) = #{(xi, yj , ...) : F1(...) = a, F2(...) = b, , ..., Ft(...) = k where i, j ∈
{1, ..., s}} and t is number of shares. F has uniformity if and only if N(ai, bi, ..., ki) =

N(aj , bj , ..., kj) where ai⊕ bi⊕ ci⊕ ...⊕ ki = aj ⊕ bj ⊕ cj ⊕ ...⊕ kj where ∀i, j ∈ {1, .., t}

Example 2. F (X,Y ) = XY with four shares First order noncompleteness Threshold Imple-
mentation)

f1 = (x3 + x4)(y2 + y4) + y2 + x2 + y4

f2 = (x1 + x3)(y1 + y4) + y1 + x1 + y4

f3 = (x2 + x4)(y1 + y4) + y2 + y3 + x2 + x3 + x4

f4 = (x1 + x2)(y2 + y3) + y1 + y3 + x1 + x3 + x4

f = f1 ⊕ f2 ⊕ f3 ⊕ f4 Times of appearance
0 20
1 12
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3.1.3 Methods for Construction Threshold Implementation

3.1.3.1 Direct Sharing

Direct Sharing is a method to construct functions which satisfy three properties of Thresh-
old Implementation. By this method, first two properties are easily satisfied. However, this
method does not guarantee to give component functions which satisfy uniformity.

Construction 1. First order direct sharing construction for quadratic functions: Let f :

Fn
2 → Fm

2 be a quadratic function. f =
t∑

i=1

fi , where t is the share of share number of

function and x =
s∑

i=1

xi , y =
s∑

i=1

yi where s is the share number of input. Then,

• If the linear term exists, then {i} and {i+1} share of term, these shares are in {i−1}th

component function.

• Quadratic terms with only {i} shares and {i, i + 1} shares are in also {i− 1}th com-
ponent function.

Example 3. (Quadratic Example) Let F (x, y) = xy + y and x =

3∑
i=1

xi and y =

3∑
i=1

yi

f1 = x2y2 + x2y3 + x3y2 + y2;

f2 = x3y3 + x3y1 + x1y3 + y3;

f3 = x1y1 + x1y2 + x2y1 + y1;

{f1, f2, f3} Total x=y=0 x=0,y=1 x=1,y=0 x=1,y=1
000 21 7 0 7 7
001 5 0 5 0 0
010 5 0 5 0 0
011 9 3 0 3 3
100 5 0 5 0 0
101 9 3 0 3 3
110 9 3 0 3 3
111 1 0 1 0 0

For the higher degree functions, there is no method directly. However, similar method can be
used for higher degree function.
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Construction 2. First Order Direct Sharing for Cubic Functions:

Let f : Fn
2 → Fm

2 be a cubic function, f =
t∑

i=1

fi , where t is the share of share number of

function and x =

s∑
i=1

xi , y =

s∑
i=1

yi, and z =

s∑
i=1

zi where s is the share number of input.

Then;

• If the linear term exists, then {i+ 1} share of inputs are in {ith} component function.

• If the quadratic term exists, then {i + 1, i + 1} ,{i + 1, i + 2} ,{i + 1, i + 3} and
i+ 3, i+ 2 are in also {ith} component function.

• Cubic terms whose first and second entries indexes are {i+1, i+2}, with mixed indexes
such as {i+1, i+2, i−1} and the last one {i−1, i−1, i+2} are also in {ith} component
function.

Example 4. (Cubic Example) Let F (x, y) = xyz + yz and x =
4∑

i=1

xi, y =
4∑

i=1

yi and

z =
4∑

i=1

zi

f1 = x2y2z2 + x2y3z2 + x2y2z3 + x2y3z4 + x2y4z3 + x2y2z4+

x2y4z2 + x2y4z4 + x2y3z3 + x4y3z2 + x3y4z2 + x4y2z3+

x3y2z4 + x4y3z3 + x4y4z3 + x4y3z4 + y2z2 + y2z3 + y2z4 + y4z3

f2 = x3y3z3 + x3y4z3 + x3y3z4 + x3y4z1 + x3y1z4 + x3y3z1+

x3y1z3 + x3y1z1 + x3y4z4 + x1y4z3 + x4y1z3 + x1y3z4+

x4y3z1 + x1y4z4 + x1y1z4 + x1y4z1 + y3z3 + y3z4 + y3z1 + y3z4

f3 = x4y4z4 + x4y1z4 + x4y4z1 + x4y1z2 + x4y2z1 + x4y4z2+

x4y2z4 + x4y2z2 + x4y1z1 + x2y1z4 + x1y2z4 + x2y4z1+

x1y4z2 + x2y1z1 + x2y2z1 + x2y1z2 + y4z4 + y4z1 + y4z2 + y2z1

f4 = x1y1z1 + x1y2z1 + x1y1z2 + x1y2z3 + x1y3z2 + x1y1z3+

x1y3z1 + x1y3z3 + x1y2z2 + x3y2z1 + x2y3z1 + x3y1z2+

x2y1z3 + x3y2z2 + x3y3z2 + x3y2z3 + y1z1 + y1z2 + y1z3 + y3z2

After constructing component functions, the hardest part is obtaining uniformity so, there are
some methods to provide uniformity of shared functions.
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3.1.3.2 Remasking

Definition 16. Remasking: Let F : Fn
2 → Fm

2 be function. Then component functions of F

will be {f1, f2, ..., ft} where F =
t∑

i=1

fi and the components fi does not satisfy uniformity.

• Generate t−1 random number such thatm1,m2, ...,mt−1 to add fi components where
i ∈ {0, 1, ..., t− 1}

• Add mt to last component ft where mt =
t−1∑
i=1

mi

f∗1 = f1 +m1

f∗2 = f2 +m2

... =
...

f∗t = f1 +

t1∑
i=1

mi

İt is last choice to construct uniform sharing functions for Threshold Implementation because
of the fact that finding fresh random numbers is expensive operation.

3.1.3.3 Increasing the number of input shares

To keep cost low, share number must be kept minimum but it is not possible for every func-
tion. Increasing number of input creates new spaces to find function construction. By direct
sharing method, uniform function construction cannot be obtained everytime. By increasing
the shares, function which is satisfied all properties can be founded.

Example 5. Let F (x, y) = yz + x and x =

4∑
i=1

xi, y =

4∑
i=1

yi and z =

4∑
i=1

zi

f1 = x2 + (y2 + y3 + y4)(z2 + z3 + z4)

f2 = x3 + y1(z3 + z4) + z1(y3 + y4) + y1z1

f3 = x4 + y1z2 + y2z1

f4 = x1
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3.1.3.4 Correction Terms

After satisfying property 1 and 2, using correction terms expand the possible sharing func-
tions. In some cases, it may be more useful than increasing share of input. [21]

Definition 17. Correction term is a term which is that can be added than more than one
component to construct uniform functions. Let F : Fn

2 → Fm
2 and deg(F ) = d. Then;

• For the noncompleteness property, (w.l.o.g) terms with (i,j) indices, can be used as a
correction term in all components except fi, fj component function

• If there is no bound about term degree, higher degree terms is usable as correction
term.

Corrollary 2. For the first order direct sharing of function with degree d, up to d-1 degree
terms are used as a correction term to satisfy all properties.

Example 6. Let F = XY and because of the noncompleteness property x4 and y4 can be
used as a correction term.

F1 = (x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y4
F2 = (x1 ⊕ x3)(x1 ⊕ y4)⊕ (x1y3)⊕ x4
F3 = (x2 ⊕ x4)(x1 ⊕ y4)⊕ (x1y2)⊕ x4 ⊕ y4

3.2 Threshold Implementation of AES algorithm

Security of Threshold Implementation is proved against first order power analysis attacks and
is applicable for all algorithms used. Providing all the features of Threshold Implementation
becomes difficult as degree of function increases. AES algorithm works in GF (28) field.
Even if the first order Threshold Implementation is used for the AES algorithm, at least 9
shares function must be used. Assuming that this function exists, it will need large area on
embedded devices such as a smart card.

After Canright construction, it was possible to protect the AES algorithm with Threshold
Implementation. There different types of Threshold Implementation for AES. In this section,
A Threshold Implementation is applied to the AES algorithm and S-box construction will be
discussed.

3.2.1 Raw Implementation

Threshold Implementation has become feasible after Canright construction for AES. In appli-
cations in implemented in embedded devices, it is important that the algorithm takes up little
area and works in a short time. Therefore, there is a trade off between share numbers and
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time consuming of Threshold Implementations of AES. In Raw Implementation, the number
of shares was kept small and as constant as possible.

AES is consist of four layers. Before these four operation plaintext are shared by four shares.
The most important reason is that all operation is in GF (24). After that two shares is used for
Add Round Key operation which is the 0th round operation, then these two shares are added
to any two shares of plaintexts. By the same way, Mix column operation is worked for two
shares simultaneously.

Implementation of Substition Box, which is important and nonlinear part of AES, is detailed
and functions of Raw Implementation of AES is analyzed in terms of constructiom method
and properties of Threshold Implementation. Lastly, Shift row operation is implemented as
normal version.

3.2.1.1 Raw Implementation of AES S-Box

Figure 3.1: Raw Implementation of AES S-box[1]

Raw implementation of S-box useGF (24) tower field construction for nonlinear operation. It
is known that 3 times GF (24) multiplication, a GF (24) inverse and a GF (24) square scalar
are used for construction of S-box.

Linear Map and Inverse Linear Map(Change of Basis): Linear map and inverse linear
map in figure represent transformation of basis from polynomial basis to normal basis and
vice versa. Any x element in GF (28)is represented by polynomial basis in AES algorithm.
However, Raw Implementation use normal basis construction so input of S-box must be rep-
resented by normal basis before S-box operation.

Let x be element GF (28) then x can be represented as a vector over GF (2).

x = x0 + x1α+ x2α
2 + x3α

3 + x4α
4 + x5α

5 + x6α
6, x7α

7

where {α, α, α2, α3, α4, α5, α6, α7} is polynomial basis and normal basis from GF (28) to
GF (24) be [y16, y]. Then, for construction of normal basis in Appendix A [Table A.1].
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y = y1x
16 + y0x

= (G1z
4 +G0z)x

16 + (G1,2z
4 +G0,2z)x

= [(β7w
2 + β6w)z4 + (β5w

2 + β4w)z]x16 + [(β3w
2 + β2w)z4 + (β1w

2 + β0w)z]y

= β7w
2z4y16 + β6wz

4y16 + β5w
2zy16 + β4wzy

16 + β3w
2z4y + β2wz

4y + β1w
2zy + β0wzy

Inverse linear map shows changing basis from normal to polynomial in Appendix A [Table
A.2].

After this converting, Square scalar andGF (24) Multiplication are applied to 4 shares of 8-bit
inputs.

GF(24) Multiplication: Firstly 4 shares of the s-box input ,which are shared at the begin-
ning of algorithm, are used as input of GF (24). Every input of multiplication has 4 shares
such as x1 = x11 ⊕ x12 ⊕ x13 ⊕ x14. Then, at the end of GF (24) multiplication, there exist
3 output shares for all component GF (24).

Let x = (x1, x2, x3, x4, x5, x6, x7, x8) is vectorial representation of any element x inGF (28)

and x1 be most significant bit and x8 be least significant bit. Then,

F = (x1, x2, x3, x4)(x5, x6, x7, x8)

is GF (24) multiplication

F1 = x1x5 + x3x5 + x4x5 + x2x6 + x3x6 + x1x7 + x2x7 + x3x7 + x4x7 + x1x8 + x3x8

F2 = x2x5 + x3x5 + x1x6 + x2x6 + x4x6 + x1x7 + x3x7 + x2x8 + x4x8

F3 = x1x5 + x2x5 + x3x5 + x4x5 + x1x6 + x3x6 + x1x7 + x2x7 + x3x7 + x1x8 + x4x8

F4 = x1x5 + x3x5 + x2x6 + x4x6 + x1x7 + x4x7 + x2x8 + x3x8 + x4x8

where F1, F2, F3, F4 are component functions of F . Threshold Implementation function is
applied to all terms in this components such that x2x5 is shared by 4-3 TI function below.
After the sharing operation, there are 3 shares for every component function so, there are 12
shares for F1, F2, F3, F4 end of the sharing

F = F1+F2+F3 = XiXj whereXi = xi1⊕xi2⊕xi3⊕xi4 andXj = xj1⊕xj2⊕xj3⊕xj4
[1]

F1 = (xi2 ⊕ xi3 ⊕ xi4)(xj2 ⊕ xj3)⊕ xj4
F2 = (xi1 ⊕ xi3)(xj1 ⊕ xj4)⊕ (xi1xj3)⊕ xi4
F3 = (xi2 ⊕ xi4)(xj1 ⊕ xj4)⊕ (xi1xj2)⊕ xi4 ⊕ xj4

This function is constructed by using increasing number of input and decreasing number of
output. At the same time, correction term is used to satisfy the all properties.
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f = f1 ⊕ f2 ⊕ f3 ⊕ f4 Times of appearance
0 48
1 16

When implementing this cascaded and parallel functions, one of the things that need attention
is uniformity of function is still satisfied. The same function as a composite function may
result in loss of uniformity.

Example 7. Let F (X,Y ) = XY + Y Z and X =

4∑
i=1

xi ,Y =

4∑
i=1

yi and Z =

4∑
i=1

zi

f1 = (x2 + x3 + x4)(y2 + y3) + y4 + (y2 + y3 + y4)(z2 + z3) + z4

f2 = ((x1 + x3)(y1 + y4)) + x1y3 + x4 + ((y1 + y3)(z1 + z4)) + y1z3 + y4

f3 = ((x2 + x4)(y1 + y4)) + x1y2 + x4 + y4 + ((y2 + y4)(z1 + z4)) + y1z2 + z4 + y4

f = f1 ⊕ f2 ⊕ f3 ⊕ f4 Times of appearance
0 768
1 256

Let F (X,Y ) = XY + ZY = (X + Z)Y and X =

4∑
i=1

xi ,Y =

4∑
i=1

yi and Z =

4∑
i=1

zi

f1 = (x2 + x3 + x4)(y2 + y3) + y4 + (z2 + z3 + z4)(y2 + y3) + y4

f2 = ((x1 + x3)(y1 + y4)) + x1y3 + x4 + ((z1 + z3)(y1 + y4)) + z1y3 + z4

f3 = ((x2 + x4)(y1 + y4)) + x1y2 + x4 + y4 + ((z2 + z4)(y1 + y4)) + z1y2 + z4 + y4

{f1, f2, f3, f4} Times of appearance
000 1152
001 384
010 384
011 1152
100 128
101 384
110 384
111 128

Threshold implementation of GF (24) inverse operation need 5 shares. Before inverse opera-
tion there are three output shares from GF (24) multiplication. Two more shares is necessary
for invertion. Square scalar is a linear operation and work in parallel for two shares. However,
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there is no guarantee for the uniformity of these two functions’ outputs. Because if outputs
of these two functions are supposed same functions output, uniformity is not satisfied. It is
known that GF (24) multiplication is uniform so masking output of square scalar is enough.
Therefore, random variables [r1, r2]are added for two output of square scalar. Then, r1 + r2

is added to one output of GF (24) multiplication.

GF(24) Inverse Function Inverse for the x ∈ GF (24) where the component functions are

Y1 = x2x3x4 + x2x3 + x2 + x1x3 + x3

Y2 = x1x3x4 + x1x3 + x4 + x2x3 + x2x4

Y3 = x1x4x2 + x1x4 + x2 + x1x3 + x1

Y4 = x1x3x2 + x1x3 + x2 + x1x4 + x2x4

By using 5 shares Threshold Implementation below, first order resist implementation of in-
verse operation is formed. This Threshold Implementation is applied to bitwise operation.

Let F = XY Z +XY + Z [1]

F = F1 + F2 + F3 + F4 + F5

F1 = [(x2 + x3 + x4 + x5)(y2 + y3 + y4 + y5)(z2 + z3 + z4 + z5)]+

[(x2 + x3 + x4 + x5)(y2 + y3 + y4 + y5)] + z2

F2 = [x1(y3 + y4 + y5)(z3 + z4 + z5) + y1(x3 + x4 + x5)(z3 + z4 + z5)+

z1(x3 + x4 + x5)(y3 + y4 + y5) + x1y1(z3 + z4 + z5)+

x1z1(y3 + y4 + y5) + y1z1(x3 + x4 + x5) + x1y1z1]+

[x1(y3 + y4 + y5) + y1(x3 + x4 + x5) + x1y1] + z3

F3 = (x1y1z2 + x1y2z1 + x2y1z1 + x1y2z2 + x2y1z2+

x2y2z1 + x2y1z4 + x1y2z4 + x1y4z2 + x2y4z1+

x4y1z2 + x4y2z1 + x1y2z5 + x2y1z5 + x1y5z2+

x2y5z1 + x5y1z2 + x5y2z1) + (x1y2 + y1x2) + z4

F4 = (x1y2z3 + x1y3z2 + x2y1z3 + x2y3z1 + x3y1z2 + x3y2z1) + z5

F5 = z1

f = f1 ⊕ f2 ⊕ f3 ⊕ f4 Times of appearance
0 768
1 1280

Table 3.1: Uniformity of 5-5 shares function

29



This first order noncompleteness 5 shares Threshold Implementation is also constructed by
increasing input and output shares but correction term is not used. Squaring scalar part is just
copied for two different shares because multiplication has 3 output and inverse operation need
5 shares. For the output of square scalar algorithm two random numbers in GF (24) are used.

For theGF (24) multiplication after inverse operation, 3 random variables are added to outputs
of inverse operation because multiplication inputs must be uniform and need 4 shares. By
adding one output to another one, 4 input shares is obtained and by the 3 random 4-bit numbers
uniformity is satisfied. In totally, 5 random 4-bit numbers are used for the S-box operation.

After the last two GF (24) multiplication, 3 output shares are gotten. The last operation is the
inverse linear operation is converting basis from normal basis to polynomial basis. The other
operations of AES are needed two shares so, one of the three shares whic are the S-box output
is added to one of the others.

Operation except s-box works on two shared input. 24 random bits are used to increase
number of shares for substitution box of other rounds.

There are three types for the construction of AES with Threshold Implementation. Raw Im-
plementation of AES use minimum share numbers for the implementation and based for the
others.
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CHAPTER 4

CONCLUSION

Side channel attack is a parameter for testing security of an cryptographic algorithms and
devices. Power analysis attack is an important role symmetric and asymmetric cryptographic
algorithm. There are so many side channel attack types for AES which is most widely used
cryptographic algorithm.

In this thesis, in Chapter 1, we research side channel attack and we investigate that power
analysis attack are used especially for AES. We mentioned and compare according to reveals
of AES algorithm that three of these attacks when the algorithm is implemented without any
protection for SCA.

In Chapter 2, we give details of subfield construction for substitution box of AES which is
necessary to countermeasure Threshold Implementation against side channel attack for AES.

In Chapter 3, we focused on properties and construction methods of Threshold Implementa-
tion with explanatory examples.

In conclusion, Threshold Implementation functions which are used for AES are examined. A
Threshold Implementation of AES whose security is proved against first order power analysis
attack and base for other type TI of AES is detailed.
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APPENDIX A



α0

α1

α2

α3

α4

α5

α6

α7


=



0 0 0 1 0 0 1 0

1 1 1 0 1 0 1 1

1 1 1 0 1 1 0 1

0 1 0 0 0 0 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0


.



β0

β1

β2

β3

β4

β5

β6

β7


Table A.1: Converting Polynomial Basis to Normal Basis



α0

α1

α2

α3

α4

α5

α6

α7


=



0 0 0 1 0 0 1 0

1 1 1 0 1 0 1 1

1 1 1 0 1 1 0 1

0 1 0 0 0 0 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0


.



β0

β1

β2

β3

β4

β5

β6

β7


Table A.2: Converting Polynomial Basis to Normal Basis
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β0

β1

β2

β3

β4

β5

β6

β7


=



1 1 1 0 0 1 1 1

0 1 1 1 0 0 0 1

0 1 1 0 0 0 1 1

1 1 1 0 0 0 0 1

1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1

0 1 1 0 0 0 0 1

0 1 0 0 1 1 1 1


.



α0

α1

α2

α3

α4

α5

α6

α7


Table A.3: Converting Normal Basis to Polynomial Basis



0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7

1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7

2 3 3 4 3 4 4 5 3 4 4 5 4 5 5 6

3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7

3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7

4 5 5 6 5 6 6 7 5 6 6 7 6 7 7 8


Table A.4: Hamming Weight Table For All Elements in GF (28)
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9 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21

4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168
81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22


Table A.5: Substition Box of AES



82 9 106 213 48 54 165 56 191 64 163 158 129 243 215 251
124 227 57 130 155 47 255 135 52 142 67 68 196 222 233 203
84 123 148 50 166 194 35 61 238 76 149 11 66 250 195 78
8 46 161 102 40 217 36 178 118 91 162 73 109 139 209 37

114 248 246 100 134 104 152 22 212 164 92 204 93 101 182 146
108 112 72 80 253 237 185 218 94 21 70 87 167 141 157 132
144 216 171 0 140 188 211 10 247 228 88 5 184 179 69 6
208 44 30 143 202 63 15 2 193 175 189 3 1 19 138 107
58 145 17 65 79 103 220 234 151 242 207 206 240 180 230 115

150 172 116 34 231 173 53 133 226 249 55 232 28 117 223 110
71 241 26 113 29 41 197 137 111 187 98 14 170 24 190 27

252 86 62 75 198 210 121 32 154 219 192 254 120 205 90 244
31 221 168 51 136 7 199 49 177 18 16 89 39 128 236 95
96 81 127 169 25 181 74 13 45 229 122 159 147 201 156 239

160 224 59 77 174 42 245 176 200 235 187 60 131 83 153 97
23 43 4 126 186 119 214 38 225 105 20 99 85 33 12 125


Table A.6: Inverse Substition Box of AES
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