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ABSTRACT

HEDGING PERFORMANCE OF UTILITY INDIFFERENCE PRICING OF EUROPEAN
CALL OPTIONS

Köroğlu, Can

M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

September 2019, 50 pages

Hedging performance of the Utility Indifference Pricing model presented by Davis et. al [Eu-
ropean option pricing with transaction costs, SIAM J. Con. & Opt., 31(2), 1993] is studied in
this thesis. Their indifference pricing approach is based on utility indifference of an investor
towards portfolios with and without a short position in the European call option contract. The
option price is defined as a difference of the minimum amount of initial endowments that
make the maximum utilities from these portfolios equal to zero. Furthermore, Davis et al.
considered an incomplete market where transaction costs are included. They worked with an
exponential utility function which eliminates the dependence of investments in stocks to total
wealth. This framework is adopted and hedging strategy is defined as a difference of two con-
trol variables that solves the utility maximization problems for the portfolios. Thus, finding
the call option price embedded in utility maximization problems is studied via Optimal Con-
trol Theory. Markov Chain Approximation is utilized to compute the problem numerically
and the option price is derived. Ending wealth from the portfolio consisting of short position
in the option is measured. Hedging error is defined as the losses incurred in this portfolio.
Furthermore, hedging performance is measured by computing the conditional expected value
of losses as a percentage of the option price. Hedging performance is evaluated against differ-
ent levels of transaction costs, degree of risk aversion, volatility and option moneyness. Our
findings suggest that hedging performance measure is large when volatility and risk aversion
rates are low, and when transaction costs are high. We also find that moneyness of option has
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a decreasing effect on the hedging performance measure.

Keywords: Stochastic Optimal Control, Indifference Pricing, Transaction Costs, Markov
Chain Approximation, Hedging.
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ÖZ

AVRUPA TİPİ SATIN ALMA OPSİYONU FAYDA KAYITSIZLIĞI FİYATLAMASININ
KORUNMA PERFORMANSI

Köroğlu, Can

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

Eylül 2019, 50 sayfa

Bu tezde Davis v.d. [European option pricing with transaction costs, SIAM J. Con. & Opt.,
31(2), 1993] tarafından ortaya konan Fayda Kayıtsızlığı Fiyatlama modelinin korunma per-
formansı çalışılmıştır. Yazarların kayıtsızlık fiyatlaması yaklaşımı yatırımcının Avrupa tipi
alım opsiyonu olan ve olmayan portföylere karşı olan fayda kayıtsızlığına dayanmaktadır.
Opsiyon fiyatı bu portföylerden elde edilen maksimum faydaları sıfıra eşitleyen minimum
başlangıç donanımı miktarı farkları olarak tanımlanmıştır. Davis v.d. işlem maliyetlerini kap-
sayan tamam olmayan bir piyasa gözetmiştir. Yazarlar hisse senedine yapılan yatırımların
toplam varlığa olan bağımlılığını kaldıran üstel fayda fonksiyonu gözetmiştir. Bu çerçeve
kabul edilmiş ve korunma stratejisi portföylerin fayda maksimizasyonu problemlerini çözen
iki kontrol değişkenlerinin farkları olarak tanımlanmıştır. Bu nedenle fayda maksimizasyonu
problemine gömülü alım opsiyonu fiyatı Optimal Kontrol Teorisi kullanılarak çalışılmıştır.
Markov Zinciri Yaklaşımı problemi sayısal olarak çözmekte yararlanılmış ve opsiyon fiyatı
elde edilmiştir. Opsiyonda kısa pozisyon içeren portföyün bitiş varlık durumu ölçülmüştür.
Korunma hatası bu portföydeki gerçekleşen kayıplar olarak tanımlanmıştır. Buna ek olarak
korunma performansı kayıpların şartlı beklenen değerinin opsiyon fiyatı yüzdesi cinsinden
hesaplanması ile ölçülmüştür. Korunma performansı farklı büyüklüklerdeki işlem maliyeti,
riskten kaçınma derecesi, volatilite ve opsiyon değerliliğine karşı ölçülmüştür. Bulgularımız
korunma performansı ölçümünün volatilite ve riskten kaçınma derecesinin düşük olduğu du-
rumlarda ve işlem maliyetinin yüksek olduğu durumlarda büyük olduğunu göstermiştir. Bu-
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nun yanı sıra opsiyon değerliliğinin korunma performansı ölçümü üstünde azaltıcı bir etkisi
olduğu görülmüştür.

Anahtar Kelimeler: Stokastik Optimal Kontrol, Kayıtsızlık Fiyatlaması, İşlem Maliyetleri,
Markov Zinciri Yaklaşımı, Korunma.
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CHAPTER 1

INTRODUCTION

Option pricing is one of the central questions in research in mathematical finance. Earliest
study dates back to 1900 when Bachelier [1] derived a pricing formula for options by mod-
elling the underlying stock prices with driftless Brownian motion. Samuelson [28] introduced
the idea of modelling the stock prices using Geometric Brownian Motion in 1967. Another
breakthrough took place when Black and Scholes published their article [5] in 1973. They
adopted the Samuelson’s stock price model and proposed a European option pricing formula
which involved the solution of a parabolic differential equation, which could be reduced to the
solution of the standard heat equation. A more comprehensive approach has been published
later by Merton [25] where he introduced a riskless portfolio consisting of options and stocks
which gains the return of the risk free asset. Their work has been a major success and the
authors were awarded with Nobel Prize in 1997.

Black-Scholes-Merton model has several limitations: it assumes that financial markets mar-
kets are complete. That is, investors can create a replicating portfolio in which every contin-
gent claim is "replicated" exactly by taking appropriate positions in stocks and bonds. There-
fore, taking a position in option is completely redundant. However, this is not the case in real
life, one of the reasons is the presence of transaction costs and under them continuous trading,
which Black-Scholes requires for hedging the option becomes prohibitively costly. Therefore,
replicating portfolios cannot be constructed and trading options always bear a risk. An ex-
tensive literature has been emerged that incorporates transaction costs in option pricing [[6],
[7], [9], [12], [14], [18], [23], [26], [29], [30]]. The task of option pricing by constructing
a replicating portfolio under transaction costs was first studied by Leland [23]. He consid-
ered a model which preserves Black-Scholes-Merton approach and implements proportional
transaction costs. He developed a hedging strategy which involves rebalancing in discrete
time intervals. However, optimality of the strategy was not considered. Hodges and Neu-
berger [18] were first to devise a optimal strategy using dynamic programming to maximize
expected utility. They were not concerned with the exact replication of the option payoff due
to high probability of ruin. Taking a position in a option contract involves risk and investors’
risk preferences are considered by the authors. Instead of the replication argument, they in-
corporated utility indifference pricing notion to their model. Davis et al. [14] also takes this
approach and derive the price of a call option as Bw − B1 where Bw is the minimal amount
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of money to get 0 maximum utility from a portfolio having a call option and B1 is the same
amount for a portfolio not containing the option. They prove that the value functions of these
control problems are the viscosity solutions to the Hamilton Jacobi Bellman (HJB) equation
associated with the control problem. The numerical computation of the price in [14] is based
on a Markov Chain approximation of the control problem. A review of indifference utility
to option pricing is given in Chapter 4. The work [14] assumes that the stock price follows
Black-Scholes dynamics (i.e., constant drift and volatility driven by Brownian motion), con-
stant proportional transaction costs and constant interest rates. It deals with a European call
option written on a single stock. Many works since [14] have extended this framework in
several directions; some of these are reviewed in Chapter 2.

An interesting and important problem that is little studied in [14] (which focuses on the price
of the option) and in the literature that followed is the hedging performance of the hedging
algorithms implied by the utility indifference pricing framework. This is an important aspect
of the problem because if the optimal controls implied by these models lead to large losses
then the prices they imply may not be very meaningful. The main objective of this thesis is
to study hedging performance of Indifference Pricing model suggested by Davis et al. [14].
The paper doesn’t directly give a hedging algorithm associated with the pricing method. The
main result in [14] concerning hedging is as follows: let πw be the optimal trading strategy
maximizing the utility of the portfolio containing the call option; if transaction costs are
0 and if there is a hedging strategy πh replicating the option payoff perfectly, then πw −
πh is an optimal trading strategy for the portfolio without the option. This result and its
proof, following [14], is reviewed in Chapter 4, see Theorem 4.1.1. The work [14] doesn’t
treat the problem of hedging when there are transaction costs. To come up with a hedging
strategy we take inspiration from Theorem 4.1.1. This theorem implies that when perfect
hedging is possible when the utility maximization problems have unique optimal controls
πw − π1 hedges the option perfectly. This suggests the following hedging algorithm even
when perfect hedging is not possible: compute the optimal controls for the two portfolio
problems, use their difference as the hedging strategy. Neither of these control problems have
explicit analytic solutions. A natural approach to approximate the optimal controls is Markov
Chain approximation, this is also the approach taken in [14]. Chapter 3 is a review of both the
continuous time optimal control and the Markov Chain approximation frameworks. Chapter 5
presents our main results: in this chapter we give the details of the application of the Markov
Chain approximation framework to the computation of the value functions and the optimal
controls in the indifference pricing framework and the hedging performance of the resulting
hedging algorithms. In our computations we assume that the utility function is of the form
1− e−γx; this choice of the value function ensures that the optimal control is independent of
the initial bond position in the portfolio, leading to a reduction of dimension. Let us briefly
comment on the resulting optimal controls. As predicted in [14] the optimal control divides
the state space of the problem into three connected regions: buy, no transaction, sell. The
computation of the optimal control explicitly agrees with this prediction (see Figures 5.2,
5.5, 5.7 and 5.9). We see that as increase in transaction costs causes buy and sell regions to
drift away from each other. Also, no transaction region widens [shrinks] for higher [lower]
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transaction costs 5.5. In contrast, increase in volatility 5.7 or in risk aversion rate 5.9 causes
contraction of no transaction region. In the buy [sell] region, the optimal control consists of
buying [selling] enough number of shares to push the state process to the boundary between
no transaction and buy [sell]. To implement our hedging strategy we compute the optimal
portfolios for both of the control problems and then take their difference. The difference
between the buy-no transaction boundaries of the two control problems give an idea of what
the hedging portfolio looks like, this difference is shown in Figure 5.3; we notice that this
looks similar to the ∆ of a call option in the Black-Scholes framework except for very large
values of the price (the right side of the figure) where there is a sudden drop due to the
constraining boundary added to the problem to make the numerical problem finite. Section
4.2 presents are main results on the performance of the resulting algorithms. We measure
the performance of the resulting hedging algorithms by expected size of loss given that there
is a loss, as a percentage of the option price; see the introduction of 4.2. Subsections 4.2.1,
4.2.2, 4.2.3 and 4.2.4 study the dependence of the hedging performance on transactions costs,
risk aversion, volatility and moneyness of the option. Our main observations are as follows:
Hedging error increases for higher transaction fees (see Figure 5.4) and decreases for higher
risk aversion (see Figure 5.6) , volatility (see Figure 5.8) and stock price (see Figure 5.10).
We provide further comments on our results and possible for future work in the Conclusion
6.
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CHAPTER 2

LITERATURE REVIEW

Utility Indifference Pricing approach by Davis et al. [14] has been further developed by many
works. Weak convergence properties of the discrete value functions have been stuided by
Davis and Panas [12]. Pricing of the American options in similar setting was studied by
Zakamulin [30]. He computed indifference price for both put and call options and studied
the cases leading to early exercise. Monoyios [26] find bid-ask prices and compared his
results against Leland’s [23] policy. Asympthotic analysis of the model [14] was carried out
by Whalley and Wilmott [29]. Instead of evaluating the discretised value function, they have
reduced the problem to two dimensional inhomogenous diffusion equation. More complicated
incomplete market adaptations applied to this model can be found on Caflisch et al. [6], where
volatility is a stochastic process, and on Cantarutti et al. [7], where underlying price dynamics
follow exponential Lévy process. Particularly, Cantarutti et al. [7] worked with diffusions as
well as variance gamma processes and proposed an approximating chain. Cosso et al. [9]
studied the problem of indifference pricing of American Options with stochastic volatility. To
best of our knowledge, studies on hedging performance evaluation of the utility indifference
model are scarce. We hope to contribute this field of research in this thesis.
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CHAPTER 3

PRELIMINARIES

Models in the field of financial mathematics are extensively built on probabilistic foundations.
Some essential concepts from Probability Theory, Stochastic Calculus and Optimal Control
Theory are used throughout this thesis. This chapter is a review of results and ideas used from
these fields in our thesis and is based on the following works [[3],[15],[16],[17],[20], [22],
,[21],[27]]. Section 3.1 provides the necessary background on Probability Theory while 3.2
briefly introduces Stochastic Optimal Control Theory. Discrete Approximations to continous
time problems are introduced at 3.3. A convenient numerical method for the control problems
depending on time is developed at 3.4.

3.1 Probabilistic Setup

Main objective of this section is to provide a background prior to introduction of controlled
diffusion processes which will be used in later chapters. Proofs of the theorems are not pro-
vided in this thesis. All concepts introduced here follows the facts from Grimmet and Stirza-
ker [16], Karatzas and Shreve [20], Lamberton and Lapayre [22] and Labordere [17]. Reader
can refer to these works for more comprehensive analysis.

In this section, we shall work with a sequence of random variables, {Xn}n∈N , on a prob-
ability space (Ω,F ,P).

Theorem 3.1.1 (Monotone Convergence Theorem). Let {Xn}n∈N be a monotone sequence
and X be a random variable. If Xn ↑ X and E(X−0 ) <∞ ,then,

lim
n→∞

E(Xn) = E(X) (3.1)

Theorem 3.1.2 (Dominated Convergence Theorem). Let Xn ↑ X and U be a integrable
random variable satisfying |Xn| ≤ U for every n ∈ N, then

E( lim
n→∞

Xn) = lim
n→∞

E(Xn) (3.2)

Definition 3.1.1 (State Space). Let E ⊆ Rn and E = B(E). A state space (E,E ) is defined
as the Euclidean space provided with Borel σ-algebra of E. The functions mapped to this
space will be defined as states.
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Definition 3.1.2 (Stochastic Processes). A collection of random variables {Xt}t∈T taking
values in measurable state space (E,E ) are called stochastic process.

X : T × Ω 7→ E (3.3)

X(t, ω) = Xt(ω) (3.4)

If a stochastic process is indexed by the set T = N then it is a discrete-time process. A
continuous-time process would be indexed by T = [0,∞). Functions t 7→ Xt(ω) for every
fixed ω ∈ Ω are called path,or trajectory. In other words, Xt(ω) denotes the result of an
experiment ω at time t .

Definition 3.1.3 (Filtration). Filtration on the probability space is an increasing family of
sub σ-algebras {Ft}t≥0 satisfying,

Fs ⊂ Ft ⊂ F ∀ s ≤ t (3.5)

If Xt is Ft measurable for every t ≥ 0, then the process {Xt}t∈T is adapted to filtration
{Ft}t≥0. Therefore, for each t, elements of the adapted stochastic process {Xt}t∈T does not
have more information than Ft. In addition,the filtration generated by stochastic process is
called natural filtration defined as below,

FXt
t = σ(Xs : s ≤ t) (3.6)

Every stochastic process is adapted to its natural filtration. Therefore, natural filtration is the
smallest family of sigma algebra where the stochastic process {Xt}t∈T is adapted.

Definition 3.1.4 (Multi-Dimensional Stochastic Processes). Throughout this section, Xt is
defined as multi-dimensional unless specified otherwise. Let Xt = (X1

t , ..., X
n
t ) denote a

n-dimensional vector valued stochastic process defined on the filtered probability space
(Ω,F , {Ft}t≥0,P). In addition, Xi

t is Ft measurable ∀i ∈ [1, n].

Definition 3.1.5 (Wiener Processes). A stochastic process {Bt}t≥0 is a Wiener Process if
the following conditions hold;

1. B0 = 0 almost surely

2. Bt is Ft measurable for every t ∈ T .

3. F̂u = σ(Bu −Bt : t ≤ u) is independent of Ft.

4. t 7→ Bt are continous almost surely. That is, the sample paths of Bt ∈ C[0,∞)

5. Bu −Bt have normal distribution with mean 0 and variance u− t.

Wiener Processes are also called Standart Brownian Motion in the literature. Bt = (B1
t , ..., B

n
t )

shall denote a Wiener Process that takes values in Rn.
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Definition 3.1.6 (Martingales). Let the stochastic process X = {Xt}t∈T be adapted to fil-
tration and integrable. Then,

1. X is a Supermartingale if E[Xt|Fs] ≤ Xs ∀s ≤ t, s, t ∈ T

2. X is a Submartingale if E[Xt|Fs] ≥ Xs ∀s ≤ t, s, t ∈ T

3. X is a Martingale if E[Xt|Fs] = Xs ∀s ≤ t, s, t ∈ T

Definition 3.1.7 (Stopping Time). A Ft measurable random variable τ : Ω 7→ [0,∞)∪{∞}
with following property is called stopping time :

{τ ≤ t} ∈ Ft, ∀t ≥ 0 (3.7)

Definition 3.1.8 (Hitting and Escape Times). Boundary of a set is denoted by ∂. Let ∂E ⊂
E and the stochastic process {Xt}t∈T is taking values in the state space (E, ξ). Then, a
stopping time will be called as hitting time if the following holds,

τ = inf{t ≥ 0 : Xt ∈ ∂E}. (3.8)

Hitting times denote the first time when the process has reached the target set. We can define
escape times as

τ = inf{t ≥ 0 : Xt /∈ E}. (3.9)

Definition 3.1.9 (Markov Processes). A stochastic process {Xt}t∈T adapted to filtration
{Ft}t≥0 is a Markov process if the following propery holds ;

E
[
f(Xt)|Fs

]
= E

[
f(Xt)|Xs

]
such that s ≤ t. (3.10)

where f is a bounded Borel function. This property defined as Markov Property suggesting
that the future state of a random process does not depend on its history. In fact, the future
state only depends on the current value. This property is coherent with Weak Form Efficiency
of Markets [24] indicating that past price movements are irrelevant in forecasting the future
when markets are efficient. Present price reflects all the past knowledge.

Definition 3.1.10 (Markov Chain). LetE′ ⊂ E denote a finite state space and j, i1, ..., in−1, i

represent the states in E′ for any n ∈ N. A stochastic process {Xn}n∈N taking values in E′

is called Markov Chain if the following is satisfied,

P (i, j) = P(Xn+1 = j|Xn = i) = P(Xn+1 = j|X0 = i0, ..., Xn−1 = in−1, Xn = i)

(3.11)

where P (i, j) is called transition probability from state "i" to "j".

Definition 3.1.11 (Diffusion Processes). Diffusion processes are stochastic processes con-
sisting of a deterministic drift function µ and random diffusion function σ. Drift and diffusion
parts are defined as µ : T × Rn → Rn, σ : T × Rn → Rn×m such that∫ t

0
|µ(s,Xs)|ds +

∫ t

0
|σ(s,Xs)|2ds <∞, almost surely (3.12)
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µ(s, x) = (µi(s, x))1≤i≤n is a n-dimensional function and σ(s, x) = (σi,j(s, x))1≤i≤n,1≤j≤m

is a matrix. Multidimensional Diffusion process is given as,

Xt = X0 +

∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs (3.13)

as for ith component,

Xi
t = Xi

0 +

∫ t

0
µi(s,Xs)ds+

m∑
j=1

∫ t

0
σi,j(s,Xs)dB

j
s (3.14)

Theorem 3.1.3 (Itô Formula). LetXt be a diffusion process and f(·, ·) ∈ C1,2([0,∞)×Rn).
Then f(t,Xt)t∈T can be expressed as,

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)dXs +

1

2

∫ t

0

∂2f

∂x2
(s,Xs)d〈X,X〉s

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

n∑
i=1

∫ t

0

∂f

∂xi
(s,Xs)dX

i
s

+
1

2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(s,Xs)d〈Xi, Xj〉s (3.15)

Also this can be written as,

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

n∑
i=1

∫ t

0

∂f

∂xi
(s,Xs)µ

i(s,Xs)ds

+

n∑
i=1

m∑
j=1

∫ t

0

∂f

∂xi
(s,Xs)σ

i,j(s,Xs)dB
i
s

+
1

2

n∑
i,j=1

m∑
k=1

∫ t

0

∂2f

∂xi∂xj
(s,Xs)σ

i,k(s,Xs)σ
j,k(s,Xs)ds (3.16)

Definition 3.1.12 (Infinitesimal Generator). LetXt be a multidimensional diffusion process
and f ∈ C1,2(Rn). Such diffusion process can be described by its infinitesimal generator as;

(L tf)(t, x) = lim
t→0

E[f(t,Xt)]− f(t, x)

t

if the limit exists,

(L tf)(t, x) =

n∑
i=1

µi(t, x)
∂f

∂xi
(t, x) +

1

2

n∑
i,j=1

m∑
k=1

σi,k(t, x)σj,k(t, x)
∂2f

∂xi∂xj
(t, x) (3.17)

Infinitesimal generators characterizes the movement ofXt given an infinitesimal time interval.

Definition 3.1.13 (Stochastic Differential Equations). Let µ(·, ·) : T × Rn → Rn and
σ(·, ·) : T × Rn → Rn×m be measurable functions. Following type of equations are called
stochastic differential equations;

dXt = µ(t,Xt)dt+ σ(t,Xt)dBt (3.18)

X0 = x ∈ Rn (3.19)

where 3.19 is the initial condition for SDE.
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Definition 3.1.14 (Strong Solution). Let t ∈ T where T is a finite set and K be a constant.
In order for 3.18 to have a non exploding unique strong solution, following conditions must
be satisfied,

1. Global Lipschitz Condition ||µ(t, x)||−||µ(t, y)||+||σ(t, x)||−||σ(t, y)|| ≤ K||x−y||
for x, y ∈ Rn

2. Growth Condition : ||µ(t, x)||2 + ||σ(t, x)||2 ≤ K2(1 + ||x||2)

3. Square Integrable Initial Condition :E[||X0||2] <∞

Let the conditions above are satisfied, and Xt is an unique strong solution of 3.18 relative to
Bt. Xt is adapted to natural filtration FBt,X0

t generated by X0 and Bt. Furthermore,such
unique solution of the differential equation satisfies,

E
[
||Xt||2

]
≤ C(1 + E

[
||X0||2

]
)eCt

where C is constant. Uniqueness is defined in strong sense therein. That is, if X1 and X2 on
(Ω,F ,P) are strong solutions to 3.18, then P [X1

t = X2
t ;∀0 ≤ t < ∞] = 1 indicating both

solutions are pathwise unique.

Strong solutions are produced on a given probability space, filtration and Brownian Motion. In
other words, if Bt is input with initial datum X0 then the output would be Xt satisfying 3.18.
Usually strong solution conditions on the drift and diffusion coefficients are too restrictive for
some market models. Therefore, the concept of weak solutions are introduced.

Definition 3.1.15 (Weak Solution). Let F̂t be a increasing family of σ-algebras that satisfies
3.12 and 3.18. Xt is weak solution of the 3.18 if and only if it has the following properties;

1. Xt is a F̂t adapted process.

2. Bt is a F̂t martingale Brownian Motion.

It should be noted that the weak uniqueness of the solutions is defined in the sense of proba-
bility law such that P1(X1 ∈ Γ) = P2(X2 ∈ Γ) for Xi=1,2 on (Ω, F̂ i,Pi),∀Γ ∈ B(Rn).

We are only given the drift and the diffusion functions in the weak solution concept. Finding
the Brownian motion and the process that satisfies 3.18 is part of the solution. Therefore, Xt

does not have to be FBt,X0
t adapted process anymore. Weak solutions are quite useful in the

stochastic optimal control theory which will be discussed in the next section.
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3.2 Stochastic Optimal Control Theory

We shall consider systems of variables that can exist in different states in different times.
These systems are called dynamic systems and Optimal Control Theory mainly concerns
with control of such systems and finding optimal policies for them. This section provides
necessary tools used in the Stochastic Optimal Control Theory. All Definitions and Theorems
are based on the books by Kushner & Dupuis [21], Phâm [27] and Fleming & Soner [15].

Definition 3.2.1 (Time Horizon). Dynamic systems are characterized by their states at the
time . Time horizon of the system can be one of the following,

1. Finite Horizon: t ∈ [0, T ] for some positive finite number T .

2. Indefinite Horizon: t ∈ [0, τ ] where τ is a stopping time.

3. Infinite Horizon: t ∈ [0,∞).

Definition 3.2.2 (Control Process). Let A be a closed subset of Rn and αt = α(t, ω) where
α : [0, T ] × Ω → A. Dynamics of the system is influenced by progressively measurable
process αt called as control process. Control process is a collection of the decisions made at
a certain time with the information available up to that time. Therefore, αt should be adapted
to {Ft}t≥0. The set of admissible controls is given as;

A := {α(t, ω) : [0, T ]× Ω→ A | α(t, ω) is Ft measurable ∀t ∈ [0, T ]} (3.20)

Depending on the associated control problem, the set of admissible controls that we are inter-
ested in can be subject to more strict conditions.

Definition 3.2.3 (Controlled Diffusion Process). Let the continuous function µ defined as
µ : [0, T ] × Rn × A 7→ Rn and σ defined as σ : [0, T ] × Rn × A 7→ Rn×m be measurable.
Also, assume that αt ∈ A and µ and σ satisfies,∫ T

0
|µ(t,Xt, αt)|dt +

∫ T

0
|σ(t,Xt, αt)|2dt <∞, almost surely (3.21)

State of the system is identified by the controlled process X = {Xt}t∈[0,T ] and it is governed
by the stochastic differential equation as shown below;

dXt = µ(t,Xt, αt)dt+ σ(t,Xt, αt)dBt (3.22)

X0 = x ∈ Rn (3.23)

where K is constant. Since αt driving the movement of Xt is free to choose, these equations
are also called controlled stochastic differential equations. In other words, solution of the
3.22depends on X0 and αt. Controlled stochastic differential equation has an unique solution
if the following is satisfied,

||µ(t, x, a)− µ(t, y, a)||+ ||σ(t, x, a)− σ(t, y, a)|| ≤ K||x− y|| (3.24)

||µ(t, x, a)||2 + ||σ(t, x, a)||2 ≤ K2(1 + ||x||2 + ||a||2) (3.25)

E[||X0||2] <∞ (3.26)
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where a ∈ A and the unique solution X̂t has following property;

E
[
||X̂t||2

]
≤ C(1 + E

[
||X0||2

]
)eCt (3.27)

Definition 3.2.4 (Performance Criterion). The ultimate objective of the stochastic optimal
control is to find an optimal process which minimizes (maximises) the certain cost (gain)
function. This function used as a criterion by the controller in order to evaluate the perfor-
mance of the system quantitatively. The performance criterion can depend on the state of the
system, the control process and the time if finite time horizon is considered. Therefore, it can
be defined as either J : [0, T ]× Rn ×A or J : Rn ×A.

Firstly, the time horizon can be finite and agent who seeks optimal policy may wish to control
the system up to some time. Assume that the agent operates within [t, T ] and will not control
after time T . Accordingly, the cost or gain dynamics of the system is characterized by J(·, ·, ·)
as,

J(t, x, α) = E
[∫ T

t
F (s,Xs, αs)ds+ g(XT )|Xt = x

]
(3.28)

Here we consider a controlled diffusion process {Xs}s∈[t,T ] with the initial conditionXt = x.
F (·, ·, ·) is running cost or gain from the system and g(·) is boundary gain or cost. Let the
continous functions F : [0, T ] × Rn × A → R and g : Rn → R satisfy quadratic growth
conditions given some constant K,

F (t, x, α) ≤ K(1 + |x|2 + |α|2) (3.29)

g(x) ≤ K(1 + |x|2) (3.30)

Also both F (·, ·, ·) and g(·) are integrable. Secondly,we consider the scenario where the agent
seeks optimal policy in infinite time horizon, the performance criterion would be

J(x, α) = E
[∫ ∞

t
F (Xs, αs)e

−ρsds|Xt = x

]
(3.31)

where ρ > 0. Associated discount factor ensures that J(·, ·) has a finite value.

For the rest of this section, we consider the case 3.28 where the controller wishes to maximize
his gain from the system over a finite time horizon .

Definition 3.2.5 (Value Function). The problem of finding a maximum attainable gain from
the system is identified by the value function defined as,

V (t, x) = sup
α∈A

J(t, x, α) = sup
α∈A

E
[∫ T

t
F (s,Xs, αs)ds+ g(XT )|Xt = x

]
(3.32)

with the terminal condition V (T, x) = g(XT ) . Value functions are used to seek for the
optimal performance. Therefore, we are looking for an optimal policy α̂ such that

V (t, x) = sup
α∈A

J(t, x, α) = J(t, x, α̂) (3.33)
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Theorem 3.2.1 (Dynamic Programming Principle). Let τ be stopping time taking values in
[t, T ]. Dynamic Programming Principle can be stated as,

V (t, x) = sup
α∈A

Et,x
 τ∫
t

F (s,Xs, αs)ds+ V (τ,Xτ )

 (3.34)

Dynamic Programming Principle or Principle of Optimality is defined by Bellman [3]as; Re-
gardless of the initial conditions, controller must find a decision process which preserves
the optimality throughout the time horizon of the problem. If a smooth value function and
corresponding optimal control exists for the problem, we shall be able to describe its local
behaviour in terms of some mechanics via so-called Hamilton-Jacobi-Bellman equation.

Theorem 3.2.2 (Hamilton-Jacobi-Bellman Equation). Let V ∈ C1,2 ([0, T )× Rn) and an
optimal control satisfying 3.33 exists. Therefore, V satisfies the following SDE,

0 = sup
a∈A

[
F (t, x, a) +

∂V (t, x)

∂t
+ µ(t, x, a)

∂V (t, x)

∂x
+
σ2(t, x, a)

2

∂2V (t, x)

∂x2

]
with the boundary condition,

V (T, x) = g(XT )

Proof. Heuristic derivation of Hamilton Jacobi Bellman equation is given below,

V (t, x) = sup
α∈A

Et,x
[ ∫ t+dt

t
F (s,Xs, αs)ds+

∫ T

t+dt
F (s,Xs, αs)ds+ g(XT )

]
V (t, x) = sup

α∈A
Et,x

[ ∫ t+dt

t
F (s,Xs, αs)ds+ sup

α∈A
Et+dt,x+dx

[ ∫ T

t+dt
F (s,Xs, αs)ds+ g(XT )︸ ︷︷ ︸

by the Law of Iterated Expectations

]]

V (t, x) = sup
α∈A

Et,x
[ ∫ t+dt

t
F (s,Xs, αs)ds+ V (t+ dt, x+ dx)︸ ︷︷ ︸

Applying Itô Formula

]

V (t+ dt, x+ dx) = V (t, x) +

∫ t+dt

t

∂V (s, x)

∂t
ds+

∂V (s, x)

∂x
dx+

1

2

∂2V (s, x)

∂x2
dx2

where x2 is defined as,

dx2 = µ2 d〈t, t〉s︸ ︷︷ ︸
0

+2µσ d〈t, B〉s︸ ︷︷ ︸
0

+σ2 d〈B,B〉s︸ ︷︷ ︸
dt

= σ2dt

Then, we get

��
��V (t, x) = sup

α∈A
Et,x

[ ∫ t+dt

t
F (s,Xs, αs)ds+���

�V (t, x) +
∂V (s, x)

∂t
ds+

∂V (s, x)

∂x
µ(s,Xs, αs)ds

+
∂V (s, x)

∂x
σdBs︸ ︷︷ ︸

E[dBs]=0

+
∂2V (s, x)

∂x2

σ2

2
(s,Xs, αs)ds

]
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If we divide the equation by dt and let dt→ 0, the following is derived,

0 = sup
a∈A

[
F (t, x, a) +

∂V (t, x)

∂t
+ µ(t, x, a)

∂V (t, x)

∂x
+
σ2(t, x, a)

2

∂2V (t, x)

∂x2

]
(3.35)

Definition 3.2.6 (Markov Control). If the admissible control process αt is FBt,Xt
t measur-

able, then it is called closed loop or feedback control. A special case for the feedback controls
are Markov controls which depend on the state and time. They are in the form defined as
below,

αt = u(t,Xt) (3.36)

for some measurable function u : [0, T ]× Rn → A.

Definition 3.2.7 (Hamiltonian Function). Let Sn denote the set of symmetric matrices. H :

[0, T ]× Rn × Rn × Sn is called Hamiltonian of the associated control problem 3.32,

H(t, x, Vx, Vxx) = sup
a∈A

[
F (t, x, a) + µ(t, x, a)

∂V (t, x)

∂x
+
σ2(t, x, a)

2

∂2V (t, x)

∂x2

]
(3.37)

Suppose smooth function ϑ(·, ·) is a candidate solution to the optimization problem 3.32 and
we can find an admissible control α̂. Next theorem shows that this candidate solution is
actually the optimal solution and α̂ is the optimal Markov control.

Theorem 3.2.3 (Verification Theorem). Let function ϑ be a class of C1,2 ([0, T )× Rn) and
satisfies the condition |ϑ(t, x)| ≤ K(1 + |x|2) for all (t, x) ∈ [0, T ]× Rn.

1. Assume that

∂ϑ(t, x)

∂t
+ sup
α∈A

[
F (t, x, α) + L αϑ(t, x)

]
≤ 0, (t, x) ∈ [0, T )× Rn

and ϑ(T, x) ≥ g(XT ). Then, ϑ(t, x) ≥ V (t, x) on [0, T ]× Rn.

2. Assume for all (t, x) ∈ [0, T ]× Rn there exist a measurable process α̂(t, x) ∈ A with

∂ϑ(t, x)

∂t
+ sup
α∈A

[
F (t, x, α) + L αϑ(t, x)

]
=

∂ϑ(t, x)

∂t
+ F (t, x, α̂) + L α̂ϑ(t, x)

= 0,

where differential equation dXt = µ(t,Xt, α̂t)dt + σ(t,Xt, α̂t)dBt has an unique
solution denoted by X̂t. Then, ϑ(t, x) = V (t, x) on [0, T ] × Rn. Hence, ϑ coincides
with the value function and α̂ is an optimal control.

For proof of this theorem, the steps from Phâm [27] can be followed. Verification theorem
justifies the optimality of the control policy if the candidate solution is smooth and actually
corresponds to the value function associated to the problem. However, this is not usually
the case in stochastic control problems since it is difficult to find such smooth functions.
Therefore, the solution should be in weak sense when V is a non-smooth function.
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Definition 3.2.8 (Viscosity Solutions). Let Sn be the set of real valued symmetric n × n

matrices and O is open set with O ⊂ Rn. Let Ĥ : [0, T ]×O×R×R×Rn × Sn → R be a
continuous function defined as,

Ĥ(t, x, r, q, p,M) =
∂V (t, x)

∂t
+ sup
a∈A

[
F (t, x, a) + µ(t, x, a)

∂V (t, x)

∂x
+
σ2(t, x, a)

2

∂2V (t, x)

∂x2

]
= q + sup

a∈A

[
F (t, x, a) + µ(t, x, a)p+

σ2(t, x, a)

2
M

]
= 0 (3.38)

Also, Ĥ has parabolicity and ellipticity property,

Ĥ(t, x, r, q, p,M) ≤ Ĥ(t, x, r, q, p, M̂), M ≥ M̂
Ĥ(t, x, r, q, p,M) ≤ Ĥ(t, x, r, q̂, p,M), q ≥ q̂ (3.39)

where V : [0, T ]×O → R is locally bounded function. Let V∗ denote an upper semicontinous
function and V∗ denote a lower semicontinous function as below,

V∗(t, x) = lim sup
(t′,x′)→(t,x)

V(t′, x′)

V∗(t, x) = lim inf
(t′,x′)→(t,x)

V(t′, x′)

V(·, ·) is viscosity subsolution on [0, T )×O if the following is satisfied,

Ĥ∗(t0, x0,V∗(t0, x0), φt(t0, x0), φx(t0, x0), φxx(t0, x0)) ≤ 0 ∀(t0, x0) ∈ [0, T )×O,
∀φ ∈ C1,2([0, T ]×O)

(3.40)

where (t0, x0) is local maximum point of (V∗ − φ)(t0, x0). Likewise, V(·, ·) is viscosity
supersolution if the following is satisfied,

Ĥ∗(t0, x0,V∗(t0, x0), φt(t0, x0), φx(t0, x0), φxx(t0, x0)) ≥ 0 ∀(t0, x0) ∈ [0, T )×O,
∀φ ∈ C1,2([0, T ]×O)

(3.41)

where (t0, x0) is local minimum point of (V∗ − φ)(t0, x0). V is a viscosity solution if it
satisfies sub and super solution conditions on [0, T )×O.

Equivalence of weak solutions to viscosity solutions has been shown by Ishii [19]. Following
theorem states that viscosity solution is in fact unique when values of the sub and super
solutions coincide at the boundary.

Theorem 3.2.4 (Comparison Theorem). Let V andW be sub and super viscosity solution
to 3.38 on (t, x) ∈ [O, T ) × O such that V(T, x) ≤ W(T, x) holds for x ∈ O. Then the
following inequality holds for all (t, x) ∈ [0, T )×O,

V(t, x) ≤ W(t, x) (3.42)
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Viscosity solutions enable us to find a class of solutions for discontinous non-smooth value
functions. Furthermore, one of the key features of the viscosity solutions is that unique so-
lution can be guaranteed to an optimal control problem without assuming the strong solution
conditions. Reader can refer to Crandall, Ishii and Lions [11] for more information on vis-
cosity solutions.

3.3 Markov Chain Approximation for Optimal Control Problems

HJB equations usually have only formal meaning. Most of the stochastic control problems
do not admit an explicit solution as they involve solving a non-linear partial differential equa-
tion. Markov Chain Approximation provides a reliable method for solving Stochastic Optimal
Control Problems numerically. In this method, optimal control problem is approximated by a
discretizated process. This process is a Markov Chain and resembles more to original diffu-
sion process as discretization steps get smaller. Also, dynamic programming equation for the
approximating process coincides with HJB equation of the original problem. Therefore, we
can describe the value function by constructing sequence of Markov Chains without solving
the nonlinear partial differential (HJB) equation. Basic concepts regarding Markov Chain Ap-
proximation are introduced in this section and terms are adapted from the book by Kushner
and Dupuis [21].

3.3.1 Interpolation of the Diffusion Process

Let G be a compact set and G0 = G− ∂G denotes its interior. We shall consider a diffusion
process and a control problem as below,

dx(t) = µ
(
x(t), u(x(t))

)
dt+ σ

(
x(t)

)
dB(t) (3.43)

V (x) = inf
u∈A

W (x, u) = inf
u∈A

Eux
[ τ∫

0

k(x(t), u(x(t)))dt+ g(x(τ))

]
(3.44)

where τ = inf{t : xt /∈ G0}. Here Eux denotes the expectation that has controlled transition
probabilities P(ξn+1 = y|ξn = x, un = u) = p(x, y|u) where un = u(ξn) is a feedback
control. We shall establish an approximation to 3.43 and 3.44. Firstly, the terminology used
in Markov Chain Approximation will be introduced.

Definition 3.3.1 (Finite State Space). Let Eh = {±h,±2h, ..., Nh} be a finite discrete state
space with the parameter h > 0 and {ξh}n∈N be a discrete time Markov process on Eh.
Components of the state space is denoted by G0

h = Eh ∩G0.

Definition 3.3.2 (Interpolated Processes and Interval). Let ∆ξhn = ξhn+1 − ξhn denote the
difference and length of the time interval defined as ∆thn = ∆th(ξhn, u

h
n) satisfies the follow-

ing properties,

lim
h→0

sup
x,α

∆th(x, α)→ 0,∆th(x, α) > 0 (3.45)
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Hence, interpolation of the processes ξ and u is given as,

ξh(t) = ξhn,

uh(ξh(t)) = uh(ξhn) = uhn,

t ∈ [thn, t
h
n+1) (3.46)

where thn =
n−1∑
i=0

∆thi .

Definition 3.3.3 (Local Consistency). In order to establish meaningful approximation to the
controlled diffusion, the discretized process must have local consistency. Local consistency
conditions for ξh are given as below,

1. Eh,αx,n
[
∆ξhn

]
≡ µh(x, α)∆th(x, α) = µ(x, α)∆th(x, α) + o(∆th(x, α)).

2. Eh,αx,n
[[

∆ξhn−E
h,α
x,n [∆ξhn]

][
∆ξhn−E

h,α
x,n [∆ξhn

]′]
≡ ah(x)∆th(x, α) = a(x)∆th(x, α)+

o(∆th(x, α)) where a(x) = σ(x)σT (x).

3. sup
n
|ξhn+1 − ξhn|

h−→ 0.

Eh,αx,n denotes expectation with P(ξhn+1 = y|ξhn = x, uhn = α) = ph(x, y|α) . Let N be the
first time when process ξhn escapes G0

h. We can now write down the approximation of 3.43 as,

W h(x, uh) = Eu
h

x

[N−1∑
n=0

k(ξhn, u
h
n)∆th(ξhn, u

h
n) + g(ξhN )

]
(3.47)

Furthermore, the dynamic programming principle for the performance function is given as,

V h(x) = inf
α∈A

[
Eh,αx,n

[
V h(ξhn+1)

]
+ k(x, α)∆th(x, α)

]
(3.48)

V h(x) = inf
α∈A

[∑
y

ph(x, y|α)V h(y) + k(x, α)∆th(x, α)

]
, x ∈ G0

h

V h(x) = g(x), x /∈ G0
h (3.49)

We conclude that V h(x) → V (x) as h approaches 0. Reader can refer to Chapter 10 of [21]
for the convergence proofs.

3.3.2 Finite Difference Approximation

In order to approximate the value function (or performance function) of an optimal control
problem, one must get a locally consistent chain. Thus, time interval and transition proba-
bilities must be determined. There are many different ways to do that, as described by [21].
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Finite Difference type of approximations is one way to determine such variables. Although
the term "Finite Difference" is usually understood as a method for solving differential equa-
tions numerically, it is not exactly the case here. It will merely serve as a tool for getting
locally consistent chains which will be used to solve 3.49 recursively.

We shall now consider one dimensional problem where G = [0, B]. Boundary conditions
are given as W (x, u) = g(x) when x = 0, B. Therefore, τ = {t : x(t) /∈ (0, B)} and
performance function satisfies ,

(L u(x)W )(x, u) + k(x, u(x)) = 0 (3.50)

W (0, u) = g(0), W (B, u) = g(B) (3.51)

Finite Difference Approximation to the differentials of W (x, α) are given as,

Wx(x, α)→ W h(x+ h, α)−W h(x, α)

h
, when µ ≥ 0 (3.52)

Wx(x, α)→ W h(x, α)−W h(x− h, α)

h
, when µ < 0 (3.53)

Wxx(x, α)→ W h(x+ h, α)− 2W h(x, α) +W h(x+ h, α)

h2
(3.54)

When these are plugged into 3.50, we can write the following instead of the infinitesimal
generator of the controlled process,

Wx(x, α)µ(x, α) +Wxx(x, α)
σ2(x)

2
+ k(x, α) = 0 (3.55)

W h(x+ h, α)−W h(x, α)

h
µ+(x, α)− W h(x, α)−W h(x− h, α)

h
µ−(x, α)

+
W h(x+ h, α)− 2W h(x, α) +W h(x+ h, α)

h2

σ2(x)

2
+ k(x, α) = 0 (3.56)

where control parameter is fixed at α. It can be seen that when W h(x, α) terms are collected,
left hand side of the equation becomes

W h(x, α)
µ+(x, α)

h
+W h(x, α)

µ−(x, α)

h
+
σ2(x)

h2
W h(x, α) = R.H.S

W h(x, α)

(
|µ(x, α)|

h
+
σ2(x)

h2

)
= R.H.S

W h(x, α)

(
|µ(x, α)|h+ σ2(x)

h2

)
= R.H.S (3.57)

Furthermore, the equation turns into,

W h(x, α) =
σ2(x)/2 + hµ+(x, α)

|µ(x, α)|h+ σ2(x)
W h(x+ h, α) +

σ2(x)/2 + hµ−(x, α)

|µ(x, α)|h+ σ2(x)
W h(x− h, α)

+

(
h2

|µ(x, α)|h+ σ2(x)

)
k(x, α).

(3.58)
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Therefore, transitional probabilities and interpolation interval are constructed as,

ph(x, x+ h|α) =
σ2(x)/2 + hµ+(x, α)

|µ(x, α)|h+ σ2(x)
(3.59)

ph(x, x− h|α) =
σ2(x)/2 + hµ−(x, α)

|µ(x, α)|h+ σ2(x)
(3.60)

∆th(x, α) =
h2

|µ(x, α)|h+ σ2(x)
(3.61)

where ph(x, y|α) = 0 if y 6= x ± h. In conclusion, L u(x) is approximated by W h(x, u)

satisfying

W h(x, u) =
∑
y

ph(x, y|u(x))W h(y, u) + k(x, u(x))∆th(x, u(x)) (3.62)

In addition, if 3.62 has a solution, W h(x, u) satisfies 3.47 and associated value function is in
the form of 3.49 . Finally, local consistency conditions for 3.43 are checked as below,

Eh,αx,n
[
∆ξhn

]
= h

σ2(x)/2 + hµ+(x, α)

|µ(x, α)|h+ σ2(x)
− hσ

2(x)/2 + hµ−(x, α)

|µ(x, α)|h+ σ2(x)

= µ(x, α)∆th(x, α) (3.63)

Eh,αx,n
[
∆ξhn − Eh,αx,n

[
∆ξhn

]]2

= h2

(
σ2(x)/2 + hµ+(x, α)

|µ(x, α)|h+ σ2(x)
+
σ2(x)/2 + hµ−(x, α)

|µ(x, α)|h+ σ2(x)

)
= σ2(x)∆th(x, α) + o(∆th(x, α)) (3.64)

Thus, the chain approximation has been successfully built.

3.3.3 Computation by Iteration

Constructing a locally consistent process by finding transition probabilities has been the main
objective in the previous sections. Having built a consistent chain, we shall focus on solving
3.49. There are two main approaches in solving such problem. It can either be approximation
in policy space or in value space. Those methods are given by [21] in detail. We shall consider
approximation in value space in this thesis. One simple way to do value space approximation
is Jacobi Iteration.

Theorem 3.3.1 (Jacobi Iteration). Let u ∈ A be a feedback control andW h
n be the sequence

given as

W h
n+1(x, u) =

∑
y

ph(x, y|u)W h
n (y, u) + k(x, u)∆th(x, u) (3.65)

for any initial value W0. Then, W h
n →W as n→∞. Similarly, V h

n given as

V h
n+1(x) = inf

α∈A

[∑
y

ph(x, y|α)V h
n (y) + k(x, α)∆th(x, α)

]
(3.66)

converges to the value function of the optimal control problem for any V h
0 .
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3.4 Explicit Approximation Method For Bounded Time Intervals

Unbounded time intervals have been considered in the preceding section. The focus was on
the first time when x(t) exits the domain and the control is terminated. However, the chain
x(t) might have not stopped at all as the time interval is not specifically defined 1. Therefore,
value of the time was not explicitly taken into consideration. One has to make small adjust-
ments in the tools defined in 3.3 when time dependence is considered.

There are two main different methods of approximation when time horizon is finite. First
one is explicit method where the system variables evaluated at the forward time thn+1 is used
to calculate the value function at thn. That is, the trasitions are only happenning in x while we
take ∆t steps in time. Also, corresponding discrete control problem is solved by backward
iterations. Second one is implicit method where time is treated as an another state variable.
Its value changes for the each step and the value function is computed for trasitions both in
the state and the time. We shall use explicit method which is briefly introduced in this section.

W (t, x, u) = Eux
[ T∫
t

k(x(s), u(x, s))ds+ g(x(T ))

]
(3.67)

Analogous to previous arguments W (t, x, u) satisfies the equation below,

Wt(t, x, u) + (L u(x,t)W )(t, x, u) + k(x, u(x, t)) = 0

W (T, x, u) = g(x) (3.68)

We set ∆t = δ to simply the notation. Time interval is t ∈ {0, δ, 2δ, ..., Nδ} where N = T
δ .

Differential operator shall be approximated as,

Wt(t, x, α)→ W h,δ(t+ δ, x, α)−W h,δ(t, x, α)

δ
(3.69)

Wx(t, x, α)→ W h,δ(t+ δ, x+ h, α)−W h,δ(t+ δ, x, α)

h
, when µ ≥ 0 (3.70)

Wx(t, x, α)→ W h,δ(t+ δ, x, α)−W h,δ(t+ δ, x− h, α)

h
, when µ < 0 (3.71)

Wxx(t, x, α)→ W h,δ(t+ δ, x+ h, α)− 2W h,δ(t+ δ, x, α) +W h,δ(t+ δ, x+ h, α)

h2

(3.72)

Similar to the case without time dependence, W h,δ(t, x, α) satisfies,

W h,δ(nδ, x, u) =W h,δ(nδ + δ, x, u)ph,δ(x, x|u(x, nδ))

+W h,δ(nδ + δ, x+ h, u)ph,δ(x, x+ h|u(x, nδ))

+W h,δ(nδ + δ, x− h, u)ph,δ(x, x− h|u(x, nδ))

+ k(x, u(x, nδ))δ (3.73)

1 Stopping times τ can take values in [0,∞) by definition
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where the transition probabilities are given as,

ph,δ(x, x|u(x, nδ)) =

[
1− σ2 δ

h2
− |µ(x, u(x, nδ))| δ

h

]
ph,δ(x, x+ h|u(x, nδ)) =

[
σ2 δ

h2
+ µ+(x, u(x, nδ))

δ

h

]

ph,δ(x, x− h|u(x, nδ)) =

[
σ2 δ

h2
+ µ−(x, u(x, nδ))

δ

h

]
(3.74)

Therefore, the discrete counterpart of 3.67 is,

W h,δ(t, x, u) = Eux,n
[N−1∑

i

k(ξh,δi , u(ξh,δi , iδ))δ + g(ξh,δN )

]
. (3.75)

For any t = nδ < T , the value function becomes

V h,δ(t, x) = inf
α∈A

[∑
y

ph,δ(x, y|α)V h,δ(y, nδ + δ) + k(x, u(x, nδ))δ

]
. (3.76)

Solving 3.76 by backward iteration will generate an approximation to V (t, x). Local con-
sistency and convergence properties are extensively treated by [21]. We shall not asses such
properties within the scope of this thesis.

22



CHAPTER 4

INDIFFERENCE PRICING

Call option is an contract which grants the buyer right to purchase the underlying asset on
a defined price. This defined price is called strike price and will be denoted by E ∈ R+.
Such contract would only be exercised if underlying asset price denoted by ST is greater
than the exercise price E. Therefore, value of the option at maturity is CT = (ST − E)+.
Black-Scholes model has treated the problem of deriving fair option value with preference
free arguments. The price paid by investor to purchase option can be determined uniquely.
However, this framework is only an approximation to real life case. On the other hand, utility
based pricing argues that there exist a certain price where the investor is indifferent between
buying the option or holding his portfolio by not going through trading. In order to illustrate
this point, we shall adapt the definition from Chapter 2 of Carmona [8]. Let WT denote the
wealth of the investor at maturity and k number of shares held in the option contract. Value
function is defined as a maximum attainable utility of over the wealth process ,

V (W,k) = sup
WT∈A(W )

E[U(WT + kCT )]. (4.1)

It is assumed that investor has initial wealth of W and no endowment for the option. There-
fore, investor will initially pay pb(k) to obtain k amounts of CT at maturity:

V (W − pb(k), k) = V (W, 0),

sup
WT∈A(W−pb(k))

E[U(WT + kCT )] = sup
WT∈A(W )

E[U(WT )]. (4.2)

Price of the contingent claim is implicitly determined in this framework which can be ap-
plied to incomplete markets if some risks cannot be perfectly hedged. Law Of One Price is
preserved in incomplete markets but equivalent probability measure is no longer unique. De-
pending on the type of the market risk, probability measure corresponding to the fair option
price changes. Reader can find more information about this fact on Chapter 7 of Bingham &
Kiesel [4]. Black Scholes model determines same option price and risk measure for all levels
of risk preference unlike utility based pricing models in incomplete markets. Therefore, util-
ity approach is more realistic as true nature of the markets and risk preference of the investors
are considered. A compilation of Indifference Pricing models can be found on [8].

In this chapter, we shall introduce and work with the key ideas from Davis et al. [14]. Firstly,
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utility based pricing argument is introduced when transaction costs are excluded. Secondly,
transaction costs are introduced and corresponding value function is derived. Then viscosity
property of the solution to the optimal control problem is investigated. Finally, numerical
computation by Markov Chain Approximation is given. We demonstrate the case when stock
price process is one dimensional. Although authors [14] had introduced market dynamics
with multidimensional stock price processes in order to present the general idea, the option
price was computed with one dimensional processes in further sections.

4.1 Pricing without Transaction Costs

Time interval is considered as 0 ≤ t ≤ T for a positive finite number T . Market dynamics
are given as,

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW(t),

dB(t) = rB(t)dt. (4.3)

Here W(t) is a one dimensional Brownian motion. Option payoff at maturity is

C(T ) = (S(T )− E)+. (4.4)

Investor shall begin with wealth of B in cash and trades a dynamic portfolio with strat-
egy π. Hence, π ∈ A(B) is a set of admissible strategies where the vector process π =

(Bπ(t), yπ(t)) represents holdings in cash and risky asset over a finite time horizon. Control
presence is indicated on the superscripts of Bπ and yπ . We shall define cash value of the
position in stocks as c(y(t), S(t)) = y(t)× S(t) with c(0, S(t)) = 0.

We consider the writer of the call option as a person who would like to hedge his posi-
tion by forming a portfolio with holdings in stocks and cash account. Also, utility function
U : R → R is defined as an increasing and concave function. Therefore, option writer’s
maximum utility after the contract is exercised,

Vw(B) = sup
π∈A(B)

E
[
U

(
Bπ(T ) + 1{S(T )≤E}

(
c(yπ(T ), S(T )

)
+ 1{S(T )>E}

(
(c(yπ(T )− 1, S(T )) + E

))]
. (4.5)

Maximum utility of the portfolio without option is,

V1(B) = sup
π∈A(B)

E
[
U

(
Bπ(T ) + c(yπ(T ), S(T ))

)]
. (4.6)

Vj(·) <∞ and Vj(·) is a continuous monotone increasing function for j = 1, w.

Definition 4.1.1 (Indifference Price). Minimum amount of money that makes option writer
indifferent between getting into market or doing nothing is defined as,

Bw = inf{B : Vw(B) ≥ 0}. (4.7)
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It should be noted writer will charge Bw to short the option but this not the fair price of
the option. Cost of entering the market must be taken into account. Minimum entry fee for
investors to get into market is given as,

B1 = inf{B : V1(B) ≥ 0}. (4.8)

In order to get into market, writer is ready to pay B1 which satisfies B1 ≤ 0 as V1(0) ≥ 0.
Then, fair option price is

pw = Bw −B1. (4.9)

At this price, writer is indifferent between accepting the option’s obligations and sticking to
the portfolio without the option. In conclusion, we have a definition for selecting one price in
incomplete market framework.

Theorem 4.1.1 (Replicating Portfolio). Assume that A(B) is a linear space. Option price
is pw = B̂ if there exists a replicating portfolio π̂ ∈ A(B̂) such that (Bπ̂(T ), yπ̂(T )) =

1{S(T )>E}(−E, 1).

Proof. By the linearity of A(B) it can be stated that π = π̃ + π̂ and B = B̃ + B̂. Here π̂
shall be used to form replicating portfolio which must be equal to 4.4 at maturity. Therefore,
the fair price for the option is initial endowment in the replicating portfolio. In other words,
by using the strategy π̂, investor would be able to create call option’s payoff. In addition,
π̃ = π − π̂ representing the rest of the holdings will be used to form an optimal portfolio
consisting of stocks and bonds. As pointed above, option writer would charge minimum Bw

to write and hedge the option. Based on the assumptions for Vj , we can now derive the amount
needed for buying the option via linearity property as,

0 = Vw(Bw),

= sup
π∈A(B)

E
[
U

(
Bπ(T ) + 1{S(T )≤E}

(
c(yπ(T ), S(T )

)
+ 1{S(T )>E}

(
(c(yπ(T )− 1, S(T )) + E

))]
= sup

π̃∈A(Bw−B̂)

E
[
U

(
Bπ̃(T ) +Bπ̂(T ) + 1{S(T )≤E}

(
c(yπ̃(T ) + yπ̂(T ), S(T )

)
+ 1{S(T )>E}

(
(c(yπ̃(T ) + yπ̂(T )− 1, S(T )) + E

))]
By the fact that (Bπ̂(T ), yπ̂(T )) = 1{S(T )>E}(−E, 1) then,

= sup
π̃∈A(Bw−B̂)

E
[
U

(
Bπ̃(T )−(((((

((
1{S(T )>E}(E) + 1{S(T )≤E}

(
c(yπ̃(T ) + yπ̂(T )︸ ︷︷ ︸

0

, S(T )
)

+ 1{S(T )>E}
(
(c(yπ̃(T ), S(T )

)
+
���

���
�

1{S(T )>E}
(
E
))]

= sup
π̃∈A(B̃)

E
[
U

(
Bπ̃(T ) + c(yπ̃(T ), S(T ))

)]
= V1(Bw − B̂) (4.10)
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It should be noted that call option is eliminated from the optimisation problem by using π̂.
Since B1 is the minimum amount that makes V1(B) = 0 , we get B1 = Bw − B̂. So, the
price is given as B̂ = Bw −B1 = pw.

It has been shown that option can be hedged if the replicating portfolio exists. Thus, we
conclude that this model indeed reduces to Black-Scholes when transaction costs are not
considered.

Corollary 4.1.1 (Hedging Strategy). Investor who wishes to hedge the short position in the
option contract shall use the strategy πh = π̂ with the initial endowment of B̂ . Therefore,
two control problems presented below must be solved in order to find B̂ and corresponding
hedging strategy,

Vw(Bw) = sup
π∈A(Bw)

E
[
U

(
Bπ
w(T ) + 1{S(T )≤E}c(y

π(T ), S(T ))

+ 1{S(T )>E}(c(y
π(T )− 1, S(T )) + E)

)]
(4.11)

V1(B1) = sup
π̃∈A(B1)

E
[
U
(
Bπ̃

1 (T ) + c(yπ̃(T ), S(T ))
)]

(4.12)

Therefore, the hedging strategy is (π − π̃) with an initial endowment of Bw −B1.

4.2 Pricing with Transaction Costs

4.2.1 Optimal Control Problem

Indifference pricing in the case of transaction costs will be introduced. Authors of [14] have
considered transaction costs that are proportional to the holdings transferred from stock to the
cash account. Then, they have specified the conditions in which writer is indifferent between
getting into market with or without the option. Main purpose is to derive a partial differ-
ential equation satisfied by the value functions that is defined in utility indifference fashion.
Firstly, we consider that the investor has a portfolio consisting of a stock and a risk free asset.
Dynamics of the stock price is given as,

dS(t) = µS(t)dt+ σS(t)dW(t). (4.13)

where µ, σ, r are all positive constant coefficients. Dynamics of the cash account paying
interest at r is given as,

dB(t) = rB(t)dt− (1 + Θb)y(t)S(t)dL(t) + (1−Θs)y(t)S(t)dM(t). (4.14)

Θb,Θs ∈ R+ are transaction costs when buying and selling the stocks,respectively. So,
transaction costs are reflected in the cash account whenever stocks are being traded. Here
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trading strategy corresponds to the cumulative number shares that are bought, denoted by
L(t) and sold, denoted by M(t),

dy(t) = dL(t)− dM(t). (4.15)

Cash value of the stocks under this market is given as,

c(y(t), S(t)) = (1 + Θb)y(t)S(t), for y(t) < 0, (4.16)

c(y(t), S(t)) = (1−Θs)y(t)S(t), for y(t) ≥ 0. (4.17)

As pointed out in the [12], the system of differential equations presented in 4.13, 4.14 and
4.15 has solution only in weak sense. Secondly, conditions for Utility Indifference Pricing
will be constructed.

Definition 4.2.1 (Wealth Process). Wealth functions of the writer at maturity are given as,

W1(T,B(T ), y(T ), S(T )) = B(T ) + c(y(T ), S(T )), (4.18)

Ww(T,B(T ), y(T ), S(T )) = B(T ) + 1{S(T )≤E}
(
c(y(T ), S(T )

)
+ 1{S(T )>E}

(
(c(y(T )− 1, S(T )) + E

)
. (4.19)

for the portfolios with option and without option, respectively.

Definition 4.2.2 (Admissible Strategies). Investor holdings (Bπ(t), yπ(t)), solution to the
system of equations 4.13—4.15, are influenced in response to control process (L(t),M(t)).
Admissible strategy (L(t),M(t)) ∈ A(t, B, y, S) is any control policy that the triplet
(B(t), y(t), S(t)) satisfies the following property for a constant K ∈ R,

(Bπ(t), yπ(t), S(t)) ∈ SK , where SK is defined as,

SK = {(B, y, S) ∈ R× R× R+ : B + c(y, S) > −K}. (4.20)

Finally, L(0−) = M(0−) = 0 is assumed. Set of admissible strategies shall be denoted by A

in order to simplify the notations.

4.20 is similar to the solvency region from Davis and Norman [13]. However, shorting the
stocks or borrowing from the bank is allowed up to K in this model. This is useful for two
reasons. Firstly, this constraint refutes any policy that are surely not optimal. In other words,
investor cannot run up infinitely huge debts since there is a finite credit limit. Secondly, this
open set is later used to prove viscosity properties of the solution.

Definition 4.2.3 (Value Functions). Wealth functions are given in the form of 4.18 and 4.19.
Therefore, for j = 1, w and (s,B, y, S) ∈ [0, T ]× R× R× R+, the value function is given
as,

Vj(s,B, y, S) = sup
π∈A

E
[
U
(
Wj(T,B

π(T ), yπ(T ), S(T )
)]
. (4.21)
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Having defined the value functions for both portfolios, we are now interested in deriving
Hamilton-Jacobi-Bellman equation for the optimal control problem that is just defined. It
should be noted that same Hamiltonian is derived for both value functions. However, their
terminal utilities are different.

Let control processes satisfy L(t) =
t∫

0

l(s)ds andM(t) =
t∫

0

m(s)dswhere l(s) andm(s) are

positive functions which are uniformly bounded by a fixed constant k. Hence, HJB equation
for the value function is,

sup
0≤l,m≤k

{(
∂Vj
∂y

(
l −m

))
+

(
∂Vj
∂B

(
rB − (1 + Θb)Sl + (1−Θs)Sm

))
+
∂Vj
∂s

+
∂Vj
∂S

µS +
1

2

∂2Vj
∂S2

σ2S2

}
= 0. (4.22)

We shall now arrange the terms of 4.22 in the following fashion,

BVj =

(
∂Vj
∂y
− (1 + Θb)S

∂Vj
∂B

)
. (4.23)

SVj =

(
∂Vj
∂y
− (1−Θs)S

∂Vj
∂B

)
. (4.24)

NT Vj =
∂Vj
∂s

+ rB
∂Vj
∂B

+
∂Vj
∂s

+
∂Vj
∂S

µS +
1

2

∂2Vj
∂S2

σ2S2. (4.25)

Then, HJB becomes,

sup
0≤l,m≤k

{
BVjl − SVjm

}
+NT Vj = 0. (4.26)

Vj is an increasing function of y and B as they provide additional wealth which increases the

utility. That is,
∂Vj
∂y

and
∂Vj
∂B

must be positive. Therefore, optimality can be only achieved

through the following ways,

l =


k, if

∂Vj
∂y
≥ (1 + Θb)S

∂Vj
∂B

0, if
∂Vj
∂y

< (1 + Θb)S
∂Vj
∂B

(4.27)

m =


0, if

∂Vj
∂y

> (1−Θs)S
∂Vj
∂B

k, if
∂Vj
∂y
≤ (1−Θs)S

∂Vj
∂B

(4.28)

In fact, these expressions lead to three different scenarios of optimality,

1. BVj ≥ 0 and SVj > 0, maximum is achieved when l = k,m = 0.

2. BVj < 0 and SVj ≤ 0 maximum is achieved when l = 0,m = k.
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3. BVj ≤ 0 and SVj ≥ 0 maximum is achieved when l = 0,m = 0.

These optimality scenarios indicate that the control policy is singular because trading takes
place at maximum possible rate or do not take place at all. Scenarios also suggest that state
space is divided into three different regions which are Buy, Sell and No-Transaction regions.
Buy and Sell Regions do not intersect since buying and selling at the same time is not optimal
in this framework. Trading strategy is same with 4.2.2 when k → ∞ and the state space
is still divided into 3 regions. However, the transaction should occur in local time settings.
Properties and boundaries of these regions shall be defined in following.

Definition 4.2.4 (Buy Region). Buy Region and its boundary shall be denoted by B and ∂B
, respectively. Value function is constant along the trajectory of (s,B, y, S) as governed by
the control process in buy region. That is,

Vj(s,B, y, S) = Vj(s,B − (1 + Θb)S∆yb, y + ∆yb, S) (4.29)

∆yb denotes the amount of shares bought to take the state to the boundary. If we divide 4.29
by ∆yb and let ∆yb → 0, we get the condition for the boundary of Buy Region between No
Transaction Region as,

0 = lim
∆yb→0

Vj(s,B − (1 + Θb)S∆yb, y + ∆yb, S)− Vj(s,B, y, S)

∆yb

=
∂Vj
∂y
− ∂Vj
∂B

(1 + Θb)S

= BVj (4.30)

Definition 4.2.5 (Sell Region). Sell Region and its boundary shall be denoted by S and ∂S
, respectively. Similar to Buy Region, the value function is also constant along the trajectory
of (s,B, y, S) in Sell Region. That is,

Vj(s,B, y, S) = Vj(s,B + (1−Θs)S∆ys, y −∆ys, S) (4.31)

∆ys denotes the amount of shares sold to take the state to the boundary. If we divide 4.31
by ∆ys and let ∆ys → 0, we get the condition for the boundary of Sell Region between No
Transaction Region as,

0 = lim
∆ys→0

Vj(s,B + (1−Θs)S∆ys, y −∆ys, S)− Vj(s,B, y, S)

∆ys

0 =
∂Vj
∂y
− ∂Vj
∂B

(1−Θs)S

= SVj (4.32)

Definition 4.2.6 (No Transaction Region). No transaction region shall be denoted by N.
Following inequalities hold for no transaction region,

Vj(s,B, y, S) ≥ Vj(s,B − (1 + Θb)S∆yb, y + ∆yb, S)

Vj(s,B, y, S) ≥ Vj(s,B + (1−Θs)S∆ys, y −∆ys, S)

(4.33)
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which implies,

BVj ≤ 0 , SVj ≥ 0 (4.34)

By Dynamic Programming Principle Vj satisfies,

Vj(t, B, y, S) = Et
[
V (t+ dt,B + dB(t), y, S + dS(t))

]
(4.35)

Since we know that dL(t) = dM(t) = 0, the corresponding HJB equation is,

NT Vj = 0. (4.36)

Corollary 4.2.1 (Variational Inequality). Equations derived in 4.30,4.32 and 4.36 suggests
that for any (s,B, y, S) ∈ [0, T ]×R×R×R+ the value function Vj(s,B, y, S) satisfies the
following variational inequality,

max

{
BVj ,−SVj ,NT Vj

}
= 0 (4.37)

It should be noted that if Vj is computed in No Transaction region, its value can be determined
in B and S by using the boundaries given in 4.30 and 4.32. This is by the fact that Vj is
continuous.

In conclusion, if (s,B∗, y∗, S) ∈ B, an instant transaction which moves the state to ∂B
occurs. Similar action takes place in Sell Regions also. If (s,B∗, y∗, S) ∈ N, it is drifted
under the influence of stock process. Investors would like to stay in no transaction region as
much as they can. Therefore, tradings after this point will happen in local time fashion.

4.2.2 Option Price Model

We shall give specifications to the problem and derive the indifference price. Exponential
utility function shall be used to reduce the dimensionality of the problem. Let utility be
defined as

U(x) = 1− e−γx. (4.38)

where γ is the coefficient of risk aversion γ = −U
′′
(x)

U ′(x)
. Hence, risk aversion coefficient is

independent of the wealth. This will allow us to reduce the dimensionality of the problem
since weight in risky asset does not depend on the total wealth. Therefore, the termB shall be
omitted from the problem by doing some manipulations explained later in this section. Given
discount factor β(T, t) = e−r(T−t), the integral form of 4.14 is defined as,

Bπ(T ) =
B

β(T, s)
−
∫ T

s

(1 + Θb)S(t)

β(T, t)
dL(t) +

∫ T

s

(1−Θs)S(t)

β(T, t)
dM(t) (4.39)
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After these settings, the value function becomes,

Vj(s,B, y, S) = sup
π∈A

E
[
1− e−γWj(T,B

π(T ), yπ(T ), S(T ))
]
,

= 1− inf
π∈A

E
[
e−γWj(T,B

π(T ), yπ(T ), S(T ))
]
,

= 1− inf
π∈A

E
[
e

(
− γBπ(T )

)
e

(
− γWj(T,B

π(T ), yπ(T ), S(T )) + γBπ(T )
)]
,

= 1− inf
π∈A

E
[
e

(
− γBπ(T )

)
e

(
− γWj(T, 0, y

π(T ), S(T ))
)]
. (4.40)

Here the following interchange will be used in order to ease the computation burden,

V (s, 0, y, S) = 1− inf
π∈A

E
[
e
−γ
(
−
∫ T
s

(1+Θb)S(t)
β(T,t) dL(t) +

∫ T
s

(1−Θs)S(t)
β(T,t) dM(t)

)
× e−γ

(
Wj(T, 0, y

π(T ), S(T ))
]
,

Qj(s, y, S) = 1− V (s, 0, y, S),

= inf
π∈A

E
[
e
−γ
(
−
∫ T
s

(1+Θb)S(t)
β(T,t) dL(t) +

∫ T
s

(1−Θs)S(t)
β(T,t) dM(t)

)
× e−γ

(
Wj(T, 0, y

π(T ), S(T ))
]
.

(4.41)

whereQj : [0, T ]×R×R+ → R . It should be noted thatQj(s, y, S) is a decreasing function
of y and S. As a result, we can write the value function 4.40 as,

Vj(s,B, y, S) = 1− inf
π∈A

E
[
e
−γ
(

B
β(T,s) −

∫ T
s

(1+Θb)S(t)
β(T,t) dL(t) +

∫ T
s

(1−Θs)S(t)
β(T,t) dM(t)

)
× e−γ

(
Wj(T, 0, y

π(T ), S(T ))
)]
,

= 1− e
−γB
β(T,s)Qj(s, y, S). (4.42)

Moreover, the variational inequality 4.37 for Qj(s, y, S) becomes,

min

{
∂Qj
∂y

+
γ(1 + Θb)S

β(T, s)
Qj ,−

(
∂Qj
∂y

+
γ(1−Θs)S

β(T, s)
Qj

)
,

∂Qj
∂s

+
∂Qj
∂S

µS +
1

2

∂2Qj
∂S2

σ2S2

}
= 0, (4.43)

with the following boundary conditions,

Q1(T, y, S) = e−γ
(
W1(T, 0, yπ(T ), S(T ))

)
. (4.44)

Qw(T, y, S) = e−γ
(
Ww(T, 0, yπ(T ), S(T ))

)
. (4.45)

Lastly, if Qj(s, y, S) is known in N, then it can be computed in B or S regions from the
boundary conditions. We shall illustrate this point as following. Let yb = y + ∆yb and
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ys = y −∆ys. Therefore, for all y ≤ yb

Qj(s, y, S) = Qj(s, yb, S)e

(
− γ(1+Θb)S

β(T,s) (y − yb)
)
. (4.46)

Likewise, for all y ≥ ys,

Qj(s, y, S) = Qj(s, ys, S)e

(γ(1−Θs)S
β(T,s) (y − ys)

)
. (4.47)

Corollary 4.2.2 (Option Price with Transaction Costs). Fair option price for the writer is
given as,

pw(s, S) = Bw −B1,

=
β(T, s)

γ
ln

(
Qw(s, 0, S)

Q1(s, 0, S)

)
. (4.48)

Proof. Following the argument in 4.7 and 4.8 ,the minimum fees for writer to play the market
or accept the option are defined as

Bi = inf{B : Vi(s,B, y, S) ≥ 0} , i = 1, w. (4.49)

Thus, we write the value function for fee required to get into market as,

V1(s,B1, y, S) = 1− e
−γB1

β(T,s)Q1(s, y, S)

= 0 (4.50)

Similarly, the value function for writing the option is,

Vw(s,Bw, y, S) = 1− e
−γBw

β(T,s)Qw(s, y, S)

= 0 (4.51)

In order to derive the fair option price, following arrangements have been made,

e
−γBw

β(T,s)Qw(s, y, S) = 1,

Qw(s, y, S) = e
γBw

β(T,s) ,

Bw = ln(Qw(s, y, S))
β(T, s)

γ
. (4.52)

Likewise, B1 = ln(Q1(s, y, S))β(T,s)
γ . Thus, subtraction yields,

Bw −B1 =
β(T, s)

γ

(
ln(Qw(s, y, S))− ln(Q1(s, y, S))

)
. (4.53)

Therefore, the option price is

pw(s, S) =
β(T, s)

γ
ln

(
Qw(s, y, S)

Q1(s, y, S)

)
. (4.54)

where y can take any value.
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4.2.3 Viscosity Property

Theorem 4.2.1 (Existence of the Viscosity Solution). Let O ⊂ R3 and x be the state vector
of the variables t, B, y, S. Define Ĥ(x,W,Wx,Wxx) as a continous elliptic function such
that

Ĥ(x,W,Wx,Wxx) = min

{
−
(
∂W
∂y
− (1 + ΘbS

∂W
∂B

)
,
∂W
∂y
− (1−ΘsS

∂W
∂B

,

−
(
∂W
∂s

+ rB
∂W
∂B

+
∂W
∂S

µS +
1

2

∂2W
∂S2

σ2S2

)}
,

= 0. (4.55)

Particularly,W : [0, T ]×O → R and φ ∈ C1,2([0, T ]×O) satisfy

Ĥ(x0,W(x0), φx(x0), φxx(x0)) ≤ 0, (4.56)

Ĥ(x0,W(x0), φx(x0), φxx(x0)) ≥ 0. (4.57)

wheneverW − φ attains its maximum and minimum values at x0 ∈ [0, T ]×O, respectively.
Then, W is a viscosity solution of 4.55. Moreover, V1(s,B, y, S) = W(s,B, y, S) and it is
the viscosity solution on [0, T ]×SK .

Theorem 4.2.2 (Uniqueness of the Viscosity Solution). Let S 0
K be the interior of the set

4.20 and the following inequalities hold,

V ∗(T, x) ≤ V∗(T, x), ∀ x ∈ S 0
K , (4.58)

V ∗(t, B, y, 0) ≤ V∗(t, B, y, 0) ∀ (t, B, y, 0) ∈ [0, T ]×S 0
K . (4.59)

where V ∗ is an upper semicontinuous viscosity subsolution on [0, T ]×S 0
K and V∗ is an lower

semicontinuous viscosity supersolution of 4.55 on [0, T ] × SK . Therefore, the comparison
theorem holds,

V ∗(t, x) ≤ V∗(t, x) ∀ (t, x) ∈ [0, T ]×S 0
K . (4.60)

Although only the V1 is specified, validity of the results are same for Vw as well. We refer to
[14] for the proofs of these theorems.

4.3 Markov Chain Approximation

Markov Chain Approximation shall be utilised to solve the problem given in 4.43. Procedure
follows the explicit approximation method given by [21] and the solution is produced by
backward recursive algorithm on the value space. Table 4.1 includes discrete elements needed
for the approximation.
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Table 4.1: Discrete Scheme for the Model
Parameter Description Discrete Notation Continuous Counterpart
State Space S h

K := Eh ∩SK SK

Time th ∈ T = {0,±∆t,±2∆t, ..., N∆t} s ∈ [0, T ]

Cash Account Process Bh(th + ∆t) = B(th)er∆t dB(t) = rB(t)dt

Stock Price Process Sh(th + ∆t) = Sh(th)eµ∆t+χσ
√

∆t dS(t) = µS(t)dt+ σS(t)dW(t)

Value Function V h
j (th, Bh, yh, Sh) Vj(s,B, y, S)

Auxiliary Function Qhj (th, yh, Sh) Qj(s, y, S)

Time step is ∆t =
T − s
N

which is also equal to discretisation parameter h. Furthermore, χ
is a random variable defined as,

χ =

 1 , with probability 1
2

−1 , with probability 1
2

(4.61)

Discretised stock price process weakly converges to its continuous counterpart as argued by
Cox & Rubinstein [10]. Therefore, locally consistent chain has been built. Dynamic Pro-
gramming Principle in this scheme is,

V h
j (th, Bh, yh, Sh) = Et

h[
V h
j (th + ∆t, Bh(th + ∆t), yh(th + ∆t), Sh(th + ∆t))

]
(4.62)

This is replaced with the following as mandated by optimality scenarios defined in previous
section,

V h
j (th, Bh, yh, Sh) = max

∆y

{
Et

h[
V h
j (th + ∆t, Bh − (1 + Θb)Sh∆y, yh + ∆y, Sh(th + ∆t))

]
,

Et
h[
V h
j (th + ∆t, Bh + (1−Θs)Sh∆y, yh −∆y, Sh(th + ∆t))

]
,

Et
h[
V h
j (th + ∆t, Bh(th + ∆t), yh, Sh(th + ∆t))

]}
(4.63)

Hence, the discrete version of 4.37 becomes,

V h
j (th, Bh, yh, Sh) = max

{
V h
j (th, Bh − (1 + Θb)Sh∆L∗, yh + ∆L∗, Sh),

V h
j (th, Bh + (1−Θs)Sh∆M∗, yh −∆M∗, Sh),

Et
h[
V h
j (th + ∆t), Bh(th + ∆t), yh, Sh(th + ∆t))

]}
(4.64)

where ∆L∗ and ∆M∗ optimal number of shares bought and sold, respectively. If the left
hand side is carried to the right hand side, and the equation is divided by h, we would get the
finite difference approximation of 4.37 for the each term. This is a direct application of the
tools defined in Section 3.3.2. However, transition probabilities are tailored to the binomial
settings.
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Theorem 4.3.1 (Convergence to the Viscosity Solution). Discretized scheme converges to
the original value function as discretisation parameter gets smaller. That is,

lim
h→0

V h
j (th, Bh, yh, Sh) = Vj(s,B, y, S), (4.65)

locally uniformly.

We shall refer the reader to [2] and [21] for the proof. As from previous section, V h
j can be

written as below when utility is exponential,

V h
j (th, Bh, yh, Sh) = 1− e

−γ Bh

β(N,th)Qhj (th, yh, Sh). (4.66)

Dynamic Programming Principle enables us to write

Qhj (th, yh, Sh) = min
∆y

{
Et

h[
Qhj (th + ∆t, yh + ∆y, Sh(th + ∆t))

]
e
γ (1+Θb)Sh∆y

β(N,th) ,

Et
h[
Qhj (th + ∆t, yh −∆y, Sh(th + ∆t))

]
e
−γ (1−Θs)Sh∆y

β(N,th) ,

Et
h
[Qhj (th + ∆t, yh, Sh(th + ∆t))]

}
(4.67)

Therefore, the problem 4.43 characterized by Qhj (th, yh, Sh) in discrete setting becomes,

Qhj (th, yh, Sh) = min

{
Qhj (th, yh + ∆L∗, Sh)e

γ (1+Θb)Sh∆L∗

β(N,th) ,

Qhj (th, yh −∆M∗, Sh)e
−γ (1−Θs)Sh∆M∗

β(N,th) ,

Et
h
[Qhj (th + ∆t, yh, Sh(th + ∆t))]

}
(4.68)

with the boundary conditions given below,

Qh1(T, yh, Sh) = e−γW1(T, 0, yh, Sh)

Qhw(T, yh, Sh) = e−γWw(T, 0, yh, Sh) (4.69)

Define yhb = yh+∆L∗ and yhs = yh−∆M∗ . In the same way Vj is determined by boundary
conditions in buy and sell regions , Qhj can be calculated in the following manner,

Qhj (th, yh, Sh) = e
γ

(1+Θb)Sh(yhb−y
h)

β(N,th) Qhj (th, yhb , S
h), ∀ yh < yhb (4.70)

Qhj (th, yh, Sh) = e
−γ (1−Θs)Sh(yh−yhs )

β(N,th) Qhj (th, yhs , S
h), ∀ yh > yhs (4.71)

Corollary 4.3.1 (Price Approximation). Price given in 4.48 is turned its the discrete variant
as,

phw(th, Sh) =
β(N, th)

γ
ln

(
Qhw(th, 0, Sh)

Qh1(th, 0, Sh)

)
(4.72)
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Corollary 4.3.2 (Solution). Solution algorithm is presented below.

• Input: ∆t, r, θs, θb, γ, T, E, S(0) .

• Set ∆t = h, ph(x, y) = 1
2 .

• Discretize State Space into TN× YN× SN where each set is defined as

– TN = {0,±∆t,±2∆t, . . . , N∆t}, N ∈ N+.

– YN = {0,±∆yh(th),±2∆yh(th), . . . ,±My∆y
h(th)}, My ∈ N+, ∆yh(th) =

yh(th + ∆t)− yh(th).

– SN = {0,∆Sh(th), 2∆Sh(th), . . . ,MS∆Sh(th)},MS ∈ N+, ∆Sh(th) = Sh(th+

∆t)− Sh(th).

– Let 0 ≤ n < N , −My ≤ m ≤My, 0 ≤ k ≤MS where n,m, k ∈ N.

– Set Qj(n,m, k) = Qhj (th, yh, Sh) and Qj(N,m, k) = Qhj (T, yh, Sh)

• for n=N-1 to 0

1. Qj(n,m, k) = min{Q̂j(n,m+ 1, k), Q̂j(n,m− 1, k)E[Qj(n+ 1,m, k + 1)]}.

2. Determine the transaction boundaries by using m− 1,m,m+ 1.

• end for

• Output: Qhj (th, yh, Sh) for j = 1, w. Derive phw(th, Sh) as defined in 4.72.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter we compute numerically the hedging strategy implied by the indifference utility
approach expounded in the previous Chapter for a range of parameter values and evaluate its
performance. All of the computation in this section is done in Octave/MATLAB. In the next
section we overview and comment on the numerically computed option price and the implied
hedging strategy. The sections following it study the performance of the hedging strategy.

In all of the numerical studies in this Chapter we take r = 0 (i.e., we are working with
discounted prices) and the strike price E = 1. All times are in years.

5.1 Option Price and Hedging Strategy

Figure 5.1 shows the price of the call option as a function of the initial stock price computed
using Markov chain approximation algorithm for the following parameter values:

α = 5%, σ = 20%, T = 0.5, γ = 1,Θb = Θs = 0.1%, S(0) = 1,∆t = 0.02. (5.1)
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Figure 5.1: Call Prices versus Stock Prices.
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The x-axis in this figure corresponds to the price grid points, 25th point represents Sh(0) = 1,
for which the option price equals

pw(0, S(0)) = 0.0568. (5.2)

Each increment on the x-axis corresponds to an increase of e
√

∆tσ. We note that qualitatively
the price graph looks similar to the European call option price under Black Scholes.

The hedging strategy is computed as the difference between the optimal controls correspond-
ing to the value functions V1 and Vw. As discussed in the introduction these optimal controls
divide the state space of the price process into buy/no transaction/sell regions; we compute
these regions for the approximating Markov chain using the iterative algorithm given in the
previous Chapter. Several examples of these regions are shown in Figure 5.2, 5.5, 5.7 and 5.9.
The area under blue line is buy region while the area above red line is sell region. No trans-
action region is the area between these lines. As suggested in [14] and recalled in the earlier
chapter, the regions do not intersect. Sudden drop in y for SN ≥ 40 is due to constraints on
price dynamics at the boundary.
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Figure 5.2: Regions.

The hedging strategy consists of the difference πw−π1 of the optimal policies for Vw and V1.
The difference between the buy/no transaction boundaries gives a sense of what the hedging
strategy looks like, this is given in Figure 5.3. We note that this figure is similar to the ∆

of a European call option under the Black Scholes framework except for the sudden drop for
high underlying value, which is once again due to the constrained price dynamics imposed
at very high prices to keep the numerical computations finite. The next section explains the
performance measure used to test the performance of the hedging algorithm.
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Figure 5.3: Hedging Strategy.

5.2 Conditional Mean of Hedging Error As a Function of Parameters

Let Bh and yh denote the bond and stock positions given by the hedging algorithm. The
hedging error at terminal time T is defined as follows:

H(T ) = (c(yh(T )− 1, S(T )) + E)1{S(T )>K} + c(yh(T ), S(T ))1{S(T )≤K} + pw,

where we use r = 0. H(T ) = 0 means a perfect hedge, H(T ) > 0 means positive profit for
the call writer and H(T ) < 0 means that the writer will have to borrow H(T ) to complete the
call transaction. H(T ) is a random variable whose distribution is not known- then a natural
way to study is through simulation, and this is what we will do in this chapter. To simulate
H(T ) we generate K = 4000 sample paths of the underlying security and apply the hedging
algorithm to compute H(T ). Then, for example, E[H(T )] is approximated by

1

K

K∑
k=1

Hk(T ),

where Hk(T ) is the hedging error computed for the kth simulated price path. This algorithm
applied to the parameter values listed in (5.1) gives E[H(T )] = 0.000613, i.e., an average
hedging error of almost 0 and 1.09% of the option price given in 5.2. Although this is a
positive result for the option writer, the risky part of the hedging error for the writer is when
it is negative, therefore it is important to measure how negative H(T ) can be. The same
simulation results imply P (H(T ) < 0) = 45.51%, i.e., for the parameter values listed in
(5.1) the hedging algorithm leads to a loss almost half the time. The expected loss given
H(T ) < 0 turns out to be

E[H(T )|H(T ) < 0] = −0.0218, (5.3)

which is−38.43% of the option price, both of these values suggest that the hedging algorithm
does have a significant risk of losing money. In light of these observations we have decided
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to measure the performance of the hedging algorithm by the conditional expected loss given
in (5.3) as a percentage of the option price, i.e.,

Ξ(T ) =
E[H(T )|H(T ) < 0]

pw(0, S(0))

which incorporates both the size of the loss and its probability of happening. The next sections
study this performance measure as a function of the parameter values.

5.2.1 Transaction Costs

We shall now investigate the relation between hedging error and varying transaction costs.
Buying and selling transaction costs are set to be equal. The rest of the parameter values are

α = 5%, σ = 20%, r = 0%, T = 0.5, γ = 1, S(0) = 1, E = 1,∆t = 0.02.

Having specified the input parameters, we exhibit the results of hedging error evaluation at
Figure 5.4.
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Figure 5.4: Hedging Error and Transaction Costs.

We observe that hedging error increases as transaction costs increase. It reaches up to 65%
of the option price given for extremely high transaction fees. This is consistent with the fact
that as transaction costs converge to 0 the model converges to the standard Black Scholes
which has 0 hedging error. Another interpretation is as follows: increased transaction costs
leaves lesser room to make transactions. Boundaries of Buy and Sell region moves away from
each other as transaction costs increase. Therefore, No Transaction region expands. Ultimate
optimal policy for investor is to make transactions as little as possible. This point is illustrated
in the Figure 5.2.
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Figure 5.5: New Region for Θb,s = 0.005.

Expansion of the No Transaction region can be seen when we compare Figure 5.2 to Figure
5.5. Although the premium charged for the option increases due to transaction costs, it is not
enough to offset the losses caused by the lesser flexible trading strategy.

Table 5.1: Transaction Costs and Option Price
Θb = Θs pw(0,S(0))

0.001 0.0568

0.01 0.0620

0.05 0.1042

0.1 0.1412

0.15 0.1769

0.2 0.2128

Table 5.1 shows the option price for different levels of transaction costs. As indicated above,
the premium charged by the option writer increases with higher level of transaction costs.

5.2.2 Degree of Risk Aversion

Hedging Error against different levels of risk aversion, shown by γ, is tested with the param-
eters below,

α = 5%, σ = 20%, r = 0%, T = 0.5,Θb = Θs = 0.1%, S(0) = 1, E = 1,∆t = 0.02.

The results are given in Figure 5.6. It is observed that hedging performance measure de-
creases as investors are more risk averse. This is explained by the fact that increase in risk
aversion rate increases the premium charged by the option writer. Therefore, increase in op-
tion premium he receives is more likely to cover the loss from hedging errors. In addition,
the distance between Buy and Sell regions is shorter if the investor is more risk averse. This
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enables the investor to trade more in the market as No Transaction region is shrunk.
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Figure 5.6: Hedging Error and Risk Aversion.

The effect of increase in risk aversion rate on the regions is provided in Figure 5.7. It suggests
that No Transaction region becomes thinner for higher stock prices.
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Figure 5.7: New Region for γ = 2.

The effect of changes in risk aversion rate on the option premium is presented on the Ta-
ble 5.2. We see that option becomes more expensive as γ increases. However, it should be
pointed out that those changes taking place in option prices are relatively small. Changes in
transaction costs have stronger effect on the option price as indicated in Table 5.1.
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Table 5.2: Risk Aversion and Option Price
γ pw(0,S(0))

0.1 0.0564

0.5 0.0566

1 0.0568

1.5 0.0570

2 0.0571

5.2.3 Volatility

Relation between hedging error and volatility is investigated in this section. Measurement is
made with the following designated values;

α = 5%, γ = 1, r = 0%, T = 0.5,Θb = Θs = 0.1%, S(0) = 1, E = 1,∆t = 0.02.

We provide the results in Figure 5.8. It is observed that hedging error is up to almost 65%
of the option price for low volatility levels. Also, we see that hedging performance measure
decreases as volatility increases. For a risk averse option writer, higher volatility causes an
increase in the option price which he benefits from by receiving the premiums. Furthermore,
he is less likely to incur losses since No Transaction region is contracted as indicated in Figure
5.9. This enables investor to make more adjustments in the portfolio.
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Figure 5.8: Hedging Error and Volatility.

A direct comparison of Figure 5.2 and 5.9 suggests that Buy and Sell regions move closer to
each other as volatility increases. As pointed out before, this causes more transactions and
higher option premiums for the writer.
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Figure 5.9: New Region for σ = 0.5.

Relation between volatility and the option prices is demonstrated at Table 5.3. Similar to
the case when transaction costs are ignored, higher volatility rates cause option premiums to
increase. It is observed that changes in volatility have a substantial effect on the option price.
However, increase in volatility causes hedging performance measure to decrease unlike the
increase in transaction costs.

Table 5.3: Volatility and Option Price
σ pw(0,S(0))

0.1 0.0285

0.2 0.0568

0.3 0.0845

0.4 0.1118

0.5 0.1389

5.2.4 Moneyness of the Option

Hedging error is calculated for different initial stock prices. Computation is made with the
following inputs,

α = 5%, σ = 20%, r = 0%, T = 0.5, γ = 1, E = 1,∆t = 0.02.

Results of the computation is displayed in Figure 5.10. We observe that hedging error is a
decreasing function of stock prices. Hedging Error is large as 140% of the option price for
out of the money options. Our interpretation is as follows: since out of the money options have
0 intrinsic value, their prices are lower than that of in the money options. Therefore, option
writer would receive more premium which is a positive factor in decreasing the hedging error.
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Figure 5.10: Hedging Error and Moneyness.

Option prices for different initial stock prices are computed and shown in Table 5.4. It is
observed that initial stock prices have a significant effect on the option premium. Moreover,
the amount charged for the option increases considerably as intrinsic value increases. We
observe that this finding is consistent with the Black Scholes framework.

Table 5.4: Moneyness and Option Price
SN pw(0,S(0)) Moneyness
20 0.0104 Out of the Money
21 0.0160 Out of the Money
22 0.0222 Out of the Money
23 0.0318 Out of the Money
24 0.0423 Out of the Money
25 0.0568 At the Money
26 0.0725 In the Money
27 0.0925 In the Money
28 0.1137 In the Money
29 0.1389 In the Money
30 0.1654 In the Money

Remark 5.2.1. Numerical simulations show that Ξ(T ) is an increasing function of Θb,s and
decreasing function of γ, σ, S(0). Therefore, increasing the risk aversion parameter γ shall
result in lower hedging error for any level of Θb,s. This point is illustrated in Figure 5.11.
When parameters are specified as below

α = 5%, σ = 20%, T = 0.5, S(0) = 1,∆t = 0.02,

Ξ(T ) is the blue line for γ1 = 1 and is the red line for γ2 = 2. The figure suggests that there
is a significant decrease in hedging errors when γ is chosen appropriately.

45



0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Transaction Costs

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

(t
)

1

2

Figure 5.11: Hedging Error for Different Risk Aversion Rates and Transaction Costs. (γ1 =

1, γ2 = 2)

Same γ effect also is observed for σ as shown in Figure 5.12. For the following parameters,

α = 5%, T = 0.5, S(0) = 1,∆t = 0.02, γ1 = 1, γ2 = 2

we observe that increase in risk aversion rate causes hedging error to decrease for any level
of volatility.
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Figure 5.12: Hedging Error for Different Risk Aversion Rates and Volatility. (γ1 = 1, γ2 = 2)
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CHAPTER 6

CONCLUSION

In this thesis, we evaluated the hedging performance of the utility based option pricing ap-
proach by measuring the expected conditional loss. As in [14], Markov Chain Approximation
expounded in Kushner and Dupuis [21]) is adopted to compute the optimal control problem.
We have preserved the exponential utility function used in Davis et al. [14] and carried out
explicit approximations accordingly. Division of the state space into three regions is verified
when numerical computation is implemented. The potential loss caused by hedging strategy
is measured by expected loss given there is a loss. Our main finding is that, at least for a range
parameter values (low volatility, high transaction costs and low risk aversion of the hedger)
the hedging error can be significantly large as a percentage of the computed option price.
A natural remedy for this is to choose the risk aversion parameter in a way that conditional
expected loss is low; Figure 5.11 and 5.12 demonstrate this approach. On the positive side,
the hedging algorithm, when the risk aversion parameter is chosen correctly, does provide a
reasonable protection against loss arising from writing the call option.

As in [14] the present thesis works assumes that asset prices follow Black-Scholes dynamics
and the computed hedging performance measures are made under this assumption. A well
known fact is that actual asset price dynamics are not constant growth / volatility / interest
rate. Since [14] the indifference utility framework has been generalized to a wider range of
price dynamics (see our literature review in Chapter 2). A natural direction for future work is
to extend our hedging study to these dynamics. In the present work the hedging performance
is computed on simulated data; carrying out a similar analysis on actual asset price data is
another direction for future research.
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