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ABSTRACT

INVESTIGATION OF DYNAMIC WAKE THEORY WITH RUN  -TIME
VARYING NUMBER OF DYNAMIC INFLOW STATES

KarakayaAli
Master of ScienceAerospace Engineering
SupervisorAssoc. Prof. DrK | kay Yavrucuk

November 2019125 pages

The effect of number of inflow states to inflow distribution is investigated when
dynamic wakeanflow is used to represent the rotor inflow. A simulation isugeto

be able to change the number of inflow states irtime. The number of itdw states

are changed with respect to advance ratio and the controls to the rotor. In this thesis,
a new nethod to compute inflow distribution is proposed. The number of inflow states
are decreased during Htime to reduce computation time when the higgtate inflow
models are not required. When conditions on the rotor requires higher state inflow

models, he number of inflow states are increasedalculate inflow distribution.

Keywords:Helicopter, Rotor, Inflow, PeteiisHe, Rotor Simulation, Dyamic Wake
Theory
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Hel i kopter rotorl ar énén dnamk kukreékkiic-ak @€wm én mode

teorisi kullanilmasi durumda, dinamik-ek € Kk dur um dej i kK-BRka@kerinin

daj él éména et ki si-ak & vcedejnimelkamldadnieni K-
deji kteicreglielbslyosi omgt amé hazérl anméekteér. Duru
hel i kopterin hezéna ve rotora veiciakém kontr ol
daj el eménén hesapl anmaseé i -1 n yeni bir me t
deji kkemi ikuldkéka model |l erine 1 htiya- duyul
deji kkeBnémavdeke¢r ¢l er ek i Kl em sg¢gresinin k e
kokul |l ar é y ¢ ksek durum dejikkenl: i nfl ow
duruml arda i se dut &meéleakjéakk kdeanjie | £fangansLén aires ap

sajl anmextéer .
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Mathematical modeling of physical systems come to play a significant role in design
anddevelopment of electrmechanical systems. Especially in aerospace applications,
due to its expensive development and operational costs, engineers mostly rely on
computer simulations to drive their overall designs and control systems. In addition,
thesesimulations are used extensively used to train operators of these aerospace

platforms.

In rotorcraft applications, the main contributor to system behavior is its rotor. Thus,
engineers are researching more reliable, more accurate models to represent rotor
dynamics realistically. Modeling of a rotor is mainly centered around the flapping of
the rotor blades and the inflow motion through the rotor disc. The differential
equations representing these dynamics do not have explicit solutions and they are
requirel to be solved simultaneously. However, for such solutions there are two
options besides the dynami@keinflow model[6][7] First one is the quasiteady,
two-dimensional momentum theory which results in static inflow with crude
approximation, and the send one is the highly sophisticated computation intensive
threedimensional vortex theorif.he lattelincludes a full aerodynamic analysis of the
flow in and around the rotor and capable of predicting fuselage interactions. Therefore,
it is impractical fo reattime applications. In the middle ground, there is the dynamic
inflow theory of Peters He. It is basically a theory of an unsteady aerodynamics over
the actuator disc exited by the rotor lift. The number of the states which used to
represent PeteisHe inflow is dictated by the engineer with respect to the application

type.



1.2.Literature Review

The behavior of a generic helicopter mainly depends on the behavior of its main rotor.

This led scientist and engineers to develop sophisticated modéatte motion

during its operation. However, the mathematical rotor models of the past were lacking

the comparable level of detail in its aerodynamic counterpart. In the core of rotor

aerodynamic lies the induced inflow at the rotor and its proxind]tinfthe past, most

models used the uniform inflow approach to reduce the computational intensity to stay

relevant in the redime simulations. However, the exponential growth of the

computational capabilities of the last decades enabled more detailed rapleéxco

inflow representations to be implemented for 4tgak environments.

The methods of representing the induced inflow are categorized like the following

figure.

Inflow

Uniform

Non-Uniform

Static (instantaneous)
v = vg(1 + 7k, cos(y) + 7k, sin(x))

Author(s)

ky ky

Coleman et al. (1945)
Drees (1949)

Payne (1959)

White & Blake (1979)
Pitt & Peters (1981)
Howlett (1981)

. sin’ x

tan(y /2)

(4/3)(1 — cos x — 1.8u2)/sin x
@/ /(1.2 + p/M)]
Zsinx

(15m/23) tan(x /2)
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In the early days of inflow modelling, the uniform inflow was the only options. In
hovering conditions, the performance of the uniform inflow is relatively good due to
the symmetrical conditions on the rototZ] In the forward flight conditionsthis

inflow becomes highly asymmetrical due to the relative velocities experienced by the
blade along the radius. In order to better represent the inflow, in 1926 Gl&8pert|

suggested a longitudinal variation using the following formula:
0 0 P i rQ Al D (1.1
Where theb is the uniform inflow,i [is the nordimensional distance from root to

blade location,Q is the variation coefficient in the longitinél axis and is the

azimuthal location on the rotor.

This formula is merely a geometrical remapping of the uniform inflow on the rotor
disc meaning that the overall integration of the-naiform inflow issame as that of

the uniform inflow. This formla is the root of the neaniform, static inflow. After

this formulation, a great effort is made determine the value ofxhalue. In 1934
Wheatley #5 suggested that usin@ 1@ results better correfian with the
experimental data. Wheal also stated that without an accurate inflow distribution
model, the motion of the model cannot be determined. Then, in his paper Coleman et.

al. [8] a cylindrical rotor wake and linked tf@ value with the skewangle of the rotor
wake. They propasi a longitudinal variatiorQ OA%+  Figure 2.2. However,

Brotherhood §] investigated the flight tests and showed that the valu®faovas in
the range from 1.3 to 1.6 for advance ratios 0.14 to 0.19. Thdy stwowed that
Coleman underestimated the valueXbMmeaning that the longitudinal variation was
greater thannitially thought. Later Dreeslp] proposed a variation which accounts
for the advance ratio of the helicopter rotor. He also proposadation in the lateral

axis in the following form.
o 0 p IQATO IIQOEM (1.2)

He suggested the following values f@randQ:



o TOEL.

(13)

(1.4)

For a period, the only way to estimate inflow was to find th@sandQ . The

following table shows some suggested valueXidhroughout the inflow modeling

history.

Tablel.1 Suggestedykalues

Authors Q
T p
Payne B3 o_ b
White & Blake 46] NcOE.
Pitt & Peters 39 PO OAF
Co___
Howlett[22] OE ..

Using the table above, the static prediction of the inflow can be mddteagnt flight

conditions. The skew angle greatly affected by the angle of attack of tmedisto

plane and forward velocities of the helicopter. The detailed comparison of these static

model s

Although static models were widely used, they lack the transient behavior which

at

di fferent

flightpapgeofl.di ti ons

observed in the experiments. This lead the study of Carpenter and Fridgvithdy

observed the time delay between the sudden pitch changes on the bladelandithe

and inflow response. Inflow was lagging behind the inputs. This clearly showed that

theinduced inflow created inertia effects. Therefore, the requirement for a dynamic

inflow theory arose. These inertial effects were named as apparent masfiaf the

which then used to account for the acceleration of the stagnant flow. The inclusion of

these dynamic effects resulted better correlation with the experimental data especially

below 0.4 advance ratiog][

ar

e

pr



The early work on the dynamic inflow was mdgeSissingh.42] He employed the
instantaneous thrust and inflow perturbations to deducenbar Irelations between

two phenomena. He also showed that the dynamic effects of inflow improved the
damping of helicopter during pitch and roll maneuvers. d_ &ertiss and Shup&®]
formulated the dynamic relation between the induced inflow and thyarfiig behavior

using equivalent Lock number.

r (1.5)

Wherel is the equivalent Lock number apds the rotor solidity. However, the first
formulation of the dynamic inflow as it is known made by the Ormiston and Peters

[31]. They expressed the dynamic inflow in the following matrix form:

nFZ Tt Tt ()

0 1§ n o
0 B | 9 T nog (1.6)
0 fr C n o« ’
L) on
Tt EU
Whereu — 0 —,and

Above values are the empirical observations made by Pitt and Peters. Following this
new methodPeters work on a generalized version of this Hstage dynamic inflow
model. B5][37] The general form of the generalized dynamic wake theory is in the

following form:



& 8 é

0 @ 0 W T (1.7)
€, € €
£ £ €

0 w 0 w T (1.8)
8 8 8

The detailed derivation of this theory is given in the Chapter 2. This solution
formulated by Peters and He rely on the acceleration potential on the elliptic
coordinates and assumes the wake as a cylindrical dynamic Waikeheory offers

a solution for inflow which is expressed by Fourier series in azimuth variation and

Legendre functionm radial variation. 4]

In 2009, Van Hoydonck et.§4.3] reviewed the modern solutions for inflow which use
the freevortex computationFreeVortex method makes less assumption about the
wake and let it evolve freely in its own influence. They conclutiat completely
free-vortex theory took multiple days to compute a 10 seconds maneuver. As the
constraints on the wake are increased, the solution time is shortenedtimeedh
addition, they also stated that the dynamic inflow models still haie ube in the

flight simulator models.

Murakami R9] extended the usage of PetérsHe dynamic wake theory to be
applicable on autorotation.

Guner et.al. 15 compared the fidelity of the aboweentioned inflow models. They
concluded that the greatermberof inflow states increased the correleation between
experimental data in high asymmetry flight conditions such as high advance ratio
conditions. They also concluded that during symmetrical flight conglisanh as
hovering flight, the higher numbef mflow states do not contribute to the fidelity of

the inflow model.



1.3.Objective of the Thesis

The inflow models that are mentioned in the literature survey section have their usage
in the rotor simulations. These models are implemented beforehasanihations

and do not change throughout the simulation run. High state models take more time to
compute whereas lowstate models can not cover all flight conditions in acceptable

fidelity. Therefore, a problem of simulation fidelity and computation tinngea

In this thesis, a new method to implement dynamic wake theory is proposed which
changes its active inflow states during-time with respect to some flight conditions.
Objective of this work is to construct a logic to adjust the numbdymmicinflow

states to reduce computation time while keeping a low deviation fromdtigé
inflow models.In this new method, the switching logic of the dynamic inflow states
are investigated with respect to advance ratio and with respect to pilot controls,

colledive and cyclics.

The number of inflow states greatly affect the distribution of inflow over the rotor
disc. Especially in highly asymmetric conditions, istate dynamic inflow models
deviates from the hightate models. In this thesis, these conditiaestiéed to be
isolated and investigated. Main contributor to this asymmetry is found to be the
advance ratio and cyclic & collective control inputs. The stat@ber switching logic

is emerged from these isolated tests and depends on the thresholdsfae adtio

and controls.

In this thesis, a varying state inflow model is employed to represent the induced
velocity field over an actuator disc. Two simulations which represent a flight envelope

are run. The computation times of these simulations arpaah
1.4. Organization of the Thesis

In chapterl, a brief introduction to thesis is made. Also, the objective of the thesis and
the organization of the thesis are includiedhis sectionIn chapter 2, the analytical

derivationto thegeneralized dynamic wakeflow model ismade. In Chapter 3, an



attempt is made to generate a procedure to implement vastateydynamic inflow
model.In Chapter 4, the simple rotor modslintroducedIn Chapter 5, total of 96
simulation runs & made and presented. These tests are used to createnarstiode
switching logic.In Chapter 6, the stateumber switching logic is explained and two
long simulations are made to assess the paegnce of varyingstate inflow model.

In Chapter 7, the ewlusion to the thesis is made.



CHAPTER 2
FORMULATION OF DYNAMIC WAKE INFLOW THEORY

2.1.Background and FundamentalEquations

The dynamt wake inflow theory is a rotor disk inflow theory that is based on
conservation of mass (continuity equation) and congervamomentum 35]. The
continuity equation is given as follows:

T_‘ nomMe  TI (2.1)
T o

where” is the densityois time and V is the flow velocity vector field. However, in
dynamic wakeanflow theory, the fluid is assumed to be incompressible meaning that

the density is constant. Therefore the &dl) can be written as:

n®B T (2.2

The behavior of fhw is described by NaviérStokes equation:

—n

@
— 0 h g e (2.3)

where the is viscosity. However, fluid is assumed to be inviscid meaning thatt

and the flow is governed by tiiiler equation given in E¢R.4)

—n

N W (24)

0
wherel3 is the pressure potential function driving the flow. The dynamic inflow
model isbasically a set of linear equations. However, the(Ed) represents a nen

linear behavior that requires to be linearized.



It is beneficial to divide Eq2.4) into two tems, time derivative term (unsteadasg
and spatial derivate term (convection). In order to linearize thdimesr convection
term, w3 w, the flow velocity is written a® @ U wherew is the steady flow

andu is the perturbation.
W @ T can be expanded as,
O ® w 0L w U

(2.9)
WA W WwIw VAW wv L3I

since thaw is the steady flow (e..0 1), Eg. (2.5) can be rearranged as following:

G OIRD DD (2.6)

The term 0 0 is a higher order error which can be neglected for this confiei}t. |

In addition, the time derivative term can be written as:

T_(bT ®w U (2.7)
T o T O

Finally, thecombining Eq(2.6) and(2.8) into Eq.(2.4):
TT—Ub ¥ DR (2:9)

In Eq. (2.9), it is easier to see that tleis the hduced velocity in the rotor disc.
Basically, the equation defines that, for a velocity field over the rotor disc, the change
of the momentum of thedW is caused by the change in the pressure field, namely the

lift force generated by the rotor disgq This lift can be better explained as a

10



discontinuous momentum change in the upper & lower sides of the rotor disc. The

Peterd He inflow model is bagkon this principle.

From Eq.(2.9) both unsteadiness of theoW and the spatial variation of the flow
contribute to the spatial variation of the pressure gradient. Therefore, the pressure

difference can be written as:

B & B (2.10
wherel3 is the pressure gradient that is generated by the spatial variation
of the velocity field andg Is the pressure gradient that is generated by the time

derivative of the velocity field.
In references19], [29], [35], [38] and B9] it is suggestethat the Eq(2.10) shall be

written as follows:

TV g Fooow b (2.12)

When both equations in E(R.11) are multiplied byt Eq.(2.12) are obtained.

T 0
0

nwdv 1R (2.13)

0 N K (2.12)

In Eqg.(2.12) left i hand side is the time dependent derivative of the velocity. field
Therefore, the spatial derivation of the term is zero. In addition, combining the

Eq.(2.13) with the Eq.(2.2), for incompressible flow, the terh & 310 becomes

zer o. Finally, following Laplacebs equa

be written.

11



(2.14)

n i T
n R I (2.15)
N g N g N g n (2.16)

The Eq.(2.14) and(2.15) are in the form of an acceleration gotial and there exist
an analytical solution to acceleration potential functidf].[Thus, the derivation of
the Eq.(2.16) are essential for the formulation of Petéide inflow. In order to solve

these equations, following bodary conditions are define@d].

x  The pressure distribution is required to be linearly proportional to the disc
loading. Since the E@2.9) is linearized, disc loading is directly proportional
to the induced veloty [2§].

x  The Pressure distribution is required to be zero at infinity.

x Becomes zerat the edge of the rotor

Inrefs. 19, [29],[35andB6 it i s stated that when t
in ellipsoidal coordinate system (see the Appendl), the Eqg.(2.16) defining a

pressure distribution on a circular disc can be solved by using the separation of
variables method. When the boundary conditions are applied in ellipsoidal coordinate
system, folleving solution fort he pressure distribution

potential function.
B Oh-ir ROl
0 00 Q-6 oAl & 0 oFOEdr (2.17)
wherebh- andl are the coordinates of ellipsoidal coordinate system.

12
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Note that the variable® 0 and 0 "Q-are called associated Legendre function
of the first and second kind respectivaly. 6 andO O are arbitrary coefficients
of the harmaics.

Figure 2.1. Rotor Disc Frame Cylindrical and Cartesian Coordinate System

The Eq.(2.17) defines the pressureefd around the rotor. The difference of the
pressure between upper and lower surfaces of the rotor results in the lift generated by
the rotor. Therefore, upper and lovwgnfaces of the rotor need to be represented in

the elliptical coordinate system.

In Figure 2.1, the cylindrical coordinate syster

radi ugoand fi hatockwise wzintudh rangle. In both cartesian and

13



cylindrical coordinate systemsaxis is pinting downward through the vehicle body.
Wp iFandf T,

In elliptical coordinates, rotor disc is representee asT, L
the region hove the rotor disc is where < 0 and the region below the rotor

disc is whera) > 0. Therefore, the pressure distinuity on rotor disc is represented

using appropriate andv .

In elliptical coordinates the lower and upper surfaces can besespesl as,

x B B ifi fwhere- mUO T
x B B ifi W where- mThOO T
Then the rotor load carelwritten as:
oiff Ml B B (218
Plugging Eq(2.17) into Eq.(2.18):
0 off F
¢ 0 00 ®eé FAIE O HOES 219
h B
Rewriting the Eq(2.19) in the following format 11]:
0 off Ff
0 0t OAT& t+ oOEdr (2.20)

Wheretheterm ¢ @ is plugged in the coefficient ternis o andO .

These terms are renamedtas ol andt

v v (2.22)

o and given asdilows:

14



, p_& aA (2.22)
¢ce pe aA

T p ¢ @b (2.23)

t p ¢ @ O (2.24)

The EQq.(2.20) can bedivided into timei dependent contributions and convection

contributions.

0 O Pl
o ot of Aid@ t o  OEdr (229

h )

0 OfF POl

O vt o A& t of @ OEdl (2.26)

In Eq. (225 and Eq. (2.26) termst o  ,t o  ht o and
T o are the Fousdr coefficients. In order tdetermine these coefficients, the

rotor loading, namely the lift, needs to be calculated.

In the context of induced inflow, the induced inflawy,is a vector which have three
induced inflow components in space such éhat 6fohy . The radial andamuthal
components of the induced infloé@,andV respectively, are negligible compared to
the normal component of the inflow, namely In fact, in the literature the term
induced inflow directly refers to the of é. [19][ 35]

15



In the equations,(2.17) to (2.26), the effort is to determinell3 and
R . However, to establish link between induced inflow and pressure

potential, Eq(2.11) is addressed below.

Firstly, the time dependent term of .HQ.11) is rewritten using only the normal
component of the induced inflow.

ro T8

5 T e mhadoi Smi ¢ 0e i (2.27)

Note that Eq(2.27) fundamentally implies that the difference in tifhelependent
component of pressure distribution above and below of the surface of the rotor disc

gives the acceleration of the induced inflow.

.
-*

.
.
*
x\—y‘
.
o
.O
-
"

Figure 2.2. Streamline Coordinate System

In (Figure2.2)| is the angle between rotor disc and the-Bweam velocity. The flow
pasing through the rotor disc combined with the induced inflow skews into the normal
of the disc. Therefore, the daghetween normal of the rotor disc and the flow below

the rotor is called the skew angle.. .

16



Secondly, when written in the streamliogordinate system, the inflow through the
rotor disc becomes a scalar, because the direction of the inflow isesetecthe
, 0 B definition. Therefore, the convection term of the @dql1) becomes as

follows:

) L’) T B A WAL Jaxy v, J Ny 3 7 g

&) Wm@ Mmool Wi ¢ 080 o (229
Equations(2.27) and(2.28) are the differential eqtians which relates the lift to the

inflow distribution across the tor disc. The solutions to these differential equations

complete the PetefsHe inflow model.

to T
o P 1B . (2:30)
w T (o

The pressure discontinuity functions defined in Ef25) and (2.26) are linear
functions that are generated by the superposition of th& 0 :

T o ht o . Therefore, the mapping of these equations can be
represented by linear operationsg ~ and' B . Notethatthe sett 0 :

T o ht o consists of linearly independent elements, since they ar
generated by the associated Legendre function of the second kind which itself defines

an orthommrmal set 80].

The Eq.(2.29) and Eqg(2.30) can be rewritten as:

o, ™

B (2.32)

o
—
Q

. P i
0 = —Fg 71 k'8 (232

17



When a proper series is selected in order to expand the induced flow, the linear
mapping ! B and ' B becoms invertible 19][35]. Then Eq.(2.29) and

Eq.(2.30) are rearranged as follows:

G, A (233
0 B h 0 0 5

2.2. Matrix Form

The Inflow distribution can be expanded as thesguee distribution formulated by
Eq. (2.17) . Such expansion of the inflow accounts for the radial distribution and
harmonic distribution on azimuth. The Fourier series expansion of the induced inflow

is given as follows:

L

w ifre FATIOr @ FOElT (2.36)
h B

In Eq.(2.36) the weltknown Peter$ He induced inflows formulated. Where,
w DrThe radial distribution function,

@ : Time dependent cosine coefficient state of inflow,

@ : Time dependergine coefficient state of inflow.

Note that the values r and j in above equat86) dictates the final state number of

the Peter$ He inflow model, whose effects are investigated throughout this thesis.

The radial distribution functiony [, can be chosen as:

18



wir 29 o (237
0
which is expanded as follows:

‘ 000 ‘ p QAo
wip cp ' W ioR 100 f po

(2.39)

Note that the radial expansion function has either only even or only odd powjer of

where,

i popQi pbpD (2:39)
NQinopQio

O

In Eq.(2.35) the equatiorg B 5 is defined. Plugging E(R.33) and
(2.34) , and decoupling cosine and sine equations, thé2E3p) can be rearranged in

the ollowing form:

()

é é
! e i o
w w t (2.40)
& 8 8
' e " é é
' W ' w t (2.41)
é é é

With the Eq.(2.40) and (2.41), the weltknown Peters He inflow model can be

written as:
g ° é é
U W v w T (2.42
e, e €
é e é
U W U W T (2.43)
e é é
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whered represents the inverse of linear opera'ttorand the operatos © and
0 O are the linear operatér defined in the E¢2.31) and(2.32) respectively. Note
that the 0 matrix does not change for sine and cosine equatioms; & is a

mapping in time29]. Furthermore, the behavior of thedperators for sine and cosine
matrices are uncoupled. This igpéained in ref. 19] by the neglect of wake rotation

effects.
In the next section computation of these matrices aretigaesd.
2.2.1.Computation of Apparent Mass Matrix [M]

The matrix [M] is the part that is associated with the acceleration of the flawe, isin
is the coefficient matrix of the time derivative of the velocity field states. Therefore,

it is called as apparent s®matrix in this context.

In order to compute the elements of [M] matrix, the R9) is needed to beacried

out. The Eq.(2.29) is written in the ellipsoidal coordinate system. Therefore, the

operator— is redefined in the ellipsoidal coordinate system (See the appendix A) as:

T p T . T (2.44)
Ta v - T o

when— Ttis applied in Eq(2.44), equation reduced to following form:

T e (2.45)

When EQq.(2.27) is solved with help of Eq2.17), (2.37), (2.45) following relations
are obtainedZ3|[11][19].

& o-

- T (2.46)

20



I —— 1 (2.47)

Note thai andf are the induced inflow stateé (and® ) represented ir0

orthonormal set such that:

O Bl 0E D QT (248

where [Y] is the mapping from the basi® to basis- 0 0 , given in Eq.(2.37).

Note that the basis selection to solve (E45) is identcal to radial distribution

function in Eq.(2.37) except the harmonssubscript

In addition, the derivative which used in E247) and(2.48) evaluated as:

e,
Q
|

-0 kv (2.49)

Thus, the relation between and t cand® and t is shown.

Finally, the mass matrix [M] can be written as:

E
0 0 (2.50)
E
0 0 9 (2.51)
where,
) p when j = n, ang melsewhere (252
o O 1 6 =0 (253
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Note that the matrix [M] is purely in diagonal form due to the tgrms in

Eq(2.51). As a result, there is no radial or harmonic coupling in this operator. This
property of the mass matrix [M] simplifies tikemputation of timegesponse of the

states and eigenvalue analydig][

2.2.2.Computation of Gain Matrix [L]

The [L] matrix is divided into two square matrices due to its uncoupled structiffe, [L
and [L9] for the harmonic terms that are multiplying tw@s and sine terms

respectively. In order to compute matrix [L], Ej17) and(2.36) are substituted into

~
5

Eq.(2.32). and multiplied by eithed 0 AT1iOr or-0 0 OEIlT.

In addition,elements in [L] matrix are divided by the friestream velocity, such that

the governing equation becomes:

o —0 hwhere supersqt V indicates the division by V.  (2.54)

o 2ot (2.55)
w

Note that®d and’Q are the induced flow states ¢ and @) represented im

orthonormal set. The following transformation relation in Ef58) can be made

between givetasis sets.
™ O w,0E D 0w, (2.56)
where [Z] is the mapping from the basis U to basis- 0 U , given in Eq(2.37),

These operation results in definition of tlling integrals.

22



X 0 D0 Q-AT & Q-QWQ
¢ T a ! ( (2.57)

0 00 Q-Al ®F Q-QUQT (2.58)

n ; af’ VO Q-O0Ed| Q-QuQr (2.59)

N

The solutions to these integrals are highly complex, and it is out of the scope of this
thesis. In the Refs1p] and 8] a rigorous solution ofhese integrals is carried out

andthe results are presented below.

5 5 0 (2.60)
0 G plgr s Q (261)
5 oE s pER s Q (262

where/b | ETha and® OAF . Notethat, ...is the skew angle given in

Figure2.2.
- OAT = (2.63)
where_is the total inflow due to both oncoming flow and induced inflangi‘ is

the advance ratio of the rotor.

Generation of the gain matrix depends on the computation of vasiable
The functiomrs  is defined as follows28]|[ 29[ 35]:

Forr+misodd,andn<r,
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¥ T (2.64)

Forr + mis odd, and ®r, and r > m,

Y p—— “0 CQp ¢ p
¢ 00 Qe e Qp (2.65)

For r+ mis odd, and ©r, and r < m,

' p—— “"0 CQp g p
¢ 00 Qe e Qp (2.66)

Forr+ miseven,andn<r,

0 G i pbpi & ¢Db CQp cE p
£ ipi £ pp QEE Qop (267

Forr+ miseven,and@ r ,

o
0 (2.68)

2.2.3. Combined Inflow Theory

In sections?.2.1) and @.2.2 the computation of matriced in basis- 0 0 , and
01in0 U is made. Iraddition, the transformation matrix [Y], from basi®) 0 ,

to basis- 0 U , and transformation matrix [Z], from basis 0 to basis- 0 U ,

are given in Eq(2.48) and(2.56). Using these matrices, matrix form of the Peters

He inflow can be constructed.

A z

E
o = ft (2.69)

c
e
mh
o C* M
m
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Note that the states are not in the formiaindd. Therefore, Eq(2.69) is expanded

to give:
E E »
0 A @ A hw
E E
wE 0O E E ® E ow
é é

Rearranging E§2.70) such that,
0 @ 0,

0 @ 0

Substituting Eq2.71) and (2.72) into

equations in matrix form is obtained.

z

(2.70)

.71
2.72)

Eq(2.70), well-known Peters He inflow

E é
0 | w E O E = 1 (2.73

E é

e Z é
0 o w E 0 E w = f 2.74)

E é

wherev is computed as in E2.53), and 0  are computed as:

0 O 3 (2.79)
0 (I)S < p .ﬂi’b@ S 3 (276)
0 Gt plgr e g 2.77)

where/b | Eth and® OAF .

In addition, thes function is given below:
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forr + mis even:

s p ¢ G pcQp

0 0 Qe Qe ¢ Q¢ p (2.79)
forr+misoddand) ¢ p:

“ i Q¢ «a

3 1 b

c 0 o G PcRp (2.79
Forr+misoddan® ¢ pD
3 T (2.80)

The forcing term of the dynamic inflow differential equatiorfis andt  which

neeals to be computed using a proper lift theory. (See Chapter 4)

2.2.4. VVp Contributions

In Eq. (2.54) and (2.55) the gain matrix [L] is divided by free stream velocity. In
addition, in Eq.(2.73) and(2.74) Vp is replaced with an equivalent V matrix. This

refinement of the theory accourits the energy discontinuity in rotor.
In Ref. [25] it is suggested to use V as following:

W

~ , rl

11 w ]

H AR (2.81)
u EV

where,

(2.82)

26



‘ (2.83)

where,
_dnondimensional total inflow through rotor disc,
: nondimensional inflow through rotor distue to oncoming flow of air.
_ dnondimensional mean induced inflow given aidws:
_ Ma |, where® is the Peters He inflow state forr =0 and j =1

‘ d,advance ratio of rotor

The coupling between the stabeand thew  introdues norlinearity to the inflow

theory, such thab  becomes dependent on the inflow states.
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CHAPTER 3

IMPLEMENTATION OF PETERS T HE INFLOW THEORY

3.1.Introduction

In Chapter2 theoretical background of the PetdrdHe inflow theory is briefly
revisited. In Refs.14],[19],[28],[29],[34],[35],[36],[38],[39] and 7] the details of

the theory are rigorously studied, and the implementation of the theory is shown.
However, where the mathematical rigor and complexity are increased in these studies,
implementation clarity and simpity fall short. Therefore, an attempt is made to
generate @rocedure which can be followed stiep-step and yield a complete inflow

model.
3.2.Implementation of inflow theory
3.2.1.Selection of State Number

The number of Peters He inflow states are dictated byetliequirements of the
application in which the model is gemated. In Refs1] and [L6], authors rigorously
investigated the advantages and disadvantages of using different number of states
while constructing PeteisHe inflow model and break down tHeght condition with

respect to the fidelity compared tethumber of inflow states. However, at this point

of the thesis, the selection of the number of inflow states is merely to demonstrate the

implementation and it is selected R&tate arbitrarily.

In the Peter$ He inflow model, the final inflow at statid fi and at time =t, is given
in the Eq.(2.36).

O il R w ifF®d FATIOr & OFOENT

h B
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The inflow 0 ifi Rl is represented as amfinite Fourier expansion. For practical
purposes, Fourier expansion of the inflow function is required to be finite. Therefore,
the harmonic expansion is determined using following table for r and j.

Table3.1. Choice for the Number of Spatial Modes

Highest j Total Inflow
Power of r 6171819101112 States
1
3
6
10
15
21
28
36
45
55
1 66
78
2111 91

=
N
w
N
al

~NooulugbdMwwN N Rk o
olo|u|u|aNWWNN|R(F
olulolarlwlwNNREk
SIS IFNEN TR ST TR
GIENENTRTN S ST
AN lWWNNR(E-
AlwlwNNRk|k
WWNN[R[-
WINN PP
N[N

=

=

el
REBlo|oNjo|u|s|wvik|o

The value of the r determines the harmonic variation in azimuth and radial distribution
of the inflow. To illustrate, for the selected valua of X following row of theTable

3.1is of importance:

Table3.2. Number of Spatial Modes when r =5

Highest j Total Inflow
Powerofr| 0| 1|2[3|4[5|6|7|8|9[10[11]12 States
) 31321211 21

The selection of the j value dictates the expansion range for the Fourier Badks

increment of the j adds a new pair of sine and cosine statescXed. iOr
@ OEil 7). The values written in the table is the number of spa#ightion states

corresponding the highest values of r.
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The collective number of the states can be computed as:

Table3.3. Total Number of States Whenr =5 and j =5

Value of j Non-Harmonic CosineState Sine State
State
0 3 - -
1 - 3 3
2 - 2 2
3 - 2 2
4 - 1 1
5 - 1 1

Note that the number of states is determined from the summatio(2(&&).):

0 ifi w ifo TATIOr o JOENT

h B
Total number of states for r = 5 is givenTiable3.3 is as follows:

G 0 0 G G G GC PP P PGP (3.1)

The inflow equation for 21 state becomes:

"Q¢ @ of wheredlis nondimensional time (3.2
O il w o if® oA w ifd o4 w if®d o
wird dAT® o JOEG
w ird FAT® o JdOEd
wirfeo JAT® o JOEF
w irfrd dAT O & JOEG
w ifew dAT¢® @ JOE]G
W ire dAT® @ JdOEd
W ire dAT® @ JdOEd
w ifo FAT® o JOET
w ifo FAT® o JOEU
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Table3.4. State list when r=5 and j=5

Radial Disj[ribmion Cosine Coefficients , D
Func‘tlon & AT 0T Sine Coefficientso
w oif
w il o FAT © o HOEM
w if @ AT o AOET
w il & OFAT ® o "OER
W ir W AT @ o "OEF
w il @ AT @ o FOEd
w il @ AT @ o FOEd
w ir O AT @ o TOEG
w il O AT ¢ o NOEGF
w il & AT & o AOEd
w il & AT & o "OEG
w ir O AT O o YOEd
w il w FAT @ o FOEd

Note that inTable 3.4 total number of states is 24. However, for tfeh@rmonics,
OEf T Thus, the state® o and® disappears from the equation. Also note
that theA T P, which results in the neharmonic inflow stateé hid and
that when combined with the radial dibtition functionsyy it i[ andw il

respectivelygive the mean inflow on the tar disc.

Throughout the Chapter 2, the state vectors for sine and cosine terms are decoupled.
In addition, the matrix form of the theory isvgh as two separate equations in
Eq.(2.73) and(2.74) for sine and cosine states. Therefore, both equations require to be

constructed separately. (e.qQ. and 0 )
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3.2.2. Apparent Mass Matrix [M]

In order to construct M matrix @f 21 State Petefde inflow theory, the state vectors

& and @ are written separately.

Cosine States:

v Ty
PO 'y
Creo Uy
rey UF
UF o UF
Uy
w (3.3
[rQ (7
Ur¢y Up
Cr o Uy
e, Ur
r
rw 'y

Sine States:

v P
I"l’w I"l’

(3.4)

€
()
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Elements of [MPP and [M]® the elements given in EG.53) needs to be computed.

O VIR b 2O (2.53)

Since the termis and make matrix M is a purely diagonal one, there is no need

to compute ofii diagonal elements. Therefore, using state vectors given i(8BY.

and(3.4) following table can be generated.

Table3.5. Elements of Cosine States Apparent Mass Matrix

U] 0 0 0 0 0 0 0 0 0 0 0
0 |0 0 0 0 0 0 0 0 0 0 0
0 0 |0 0 0 0 0 0 0 0 0 0
0 0 0 | v 0 0 0 0 0 0 0 0
0 0 0 0 | v 0 0 0 0 0 0 0
0 0 0 0 0 |0 0 0 0 0 0 0
0 0 0 0 0 0 |0 0 0 0 0 0
0 0 0 0 0 0 0 |v 0 0 0 0
0 0 0 0 0 0 0 0 |0 0 0 0
0 0 0 0 0 0 0 0 0 |0 0 0
0 0 0 0 0 0 0 0 0 |0 0
0 0 0 0 0 0 0 0 0 0 |0
Using Eq.(2.53), values of the above matrix are calculated as follows:

0 = (3.5)
T®OoQQ T 1 s T s s T Tt T Tt T o,
I{YI 1 ™ Ygw T s T s s T L T L i .l’.l
L T T™YPpp T T T T T T T T LIS
T L T MqTT I b b T Tt T Tt T o,
TR m s s T™® QT T s s m s m m
1T b T s T TULUULUC T T Tt T Tt T
1T m m s m s T™OoWwu T m s T[ T
1T b T s T s s T WT T T T Tt T N
Iom s 1 s 1 s s m T® WP T T L MmN
I m b m b m m m 11 ™XCULU T mon
U n T I T T T T T T T Moy m 0
U m s 1 s 1 s s m L m Tt e o Mg
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In order to write apparent mass matrix for the sine states, same procedure is applied.

Table3.6. Elements of Cosine States Apparent Mass Matrix

) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Using Eq.(2.53), values of the above matrix are calculated as follows:

0 = (3.6)
T T T T T T T T T T m .,
|”| T TCPT T s n n s s s Il,ll
T ) T LULC T T T T T LS
TERL T ] T 0 WL T T T T m ;
1T T ] ] TH WT T T T T m i
I LIS T T LIS T8 WP T T s m n
T T T T T T T XU T mon
U n Tt Tt Tt i i T Tgoyyx mw "
U Tt Tt T T Tt Tt Tt Tt ™ o W¢

Note that the sine states apparent mass mairix is a submatrix of the matrix

0 . The rows and columns correspondingdtd ® multiplying statesw , &

and® are truncated in sine states mass matrix. The reason for this truncation is that
thecounterparts ofd , & andd® states, namelg , @ ando , are removed from the

inflow equation. (se€able3.4)
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3.2.3.Gain Matrices [L]© and [L] ©

The calculation of the elements of fLJand [L]® matrices are given in E¢2.75),
(2.76) and(2.77) as:

0 & 3 (2.79)
#) N plER ¢ 3 (2.76)
0 G F plp s o3 (2.77)

where 3 is given in Eq(2.78),(2.79) and(2.80). It is important to notice that the

elementsO0  are depend# on skew angle.

Let us rewrite Eq(2.78),(2.79) and(2.80) in the following form:

0 — ..3 ,where— .. ® (3.7)

0 — ... 3 ,where— ... ™ ® REA (38)

0 — ... 3 ,where— ... A p eR  ® (39
where,

Unlike the apparent mass matrix, thie and 0 matrices are not diagonal,

and thus there are four variables, namely r, m, j, n, to construct L matrices. The

determination of the subscripts and superscripts are done in the following manner
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Table3.7. Subscripts and Superscripts of Cosine States L matrix elements

seed £ [+ [+ (% [+ [£ 13 [F [+ £ 13 [%
+= |0 |0 |0 |0 |0 |0 |0 |0 |O |O |O |0
= |0 |0 |0 [0 |0 [0 |O |0 |0 |O |0 |D
+= |0 |0 |0 [0 [0 [0 |0 |O |0 |O |D |D
+= |0 |0 [0 |0 [0 |O |O |O |0 |0 |O |O
= |0 |0 |0 [0 |0 [0 |O |0 |0 |O |0 |O
+= |0 |0 |0 |O |0 |O |O |O |0 |0 |O |O
+= |0 |0 [0 |0 [0 |O |0 |O |0 |0 |O |O
+= |0 |0 |0 [0 |0 [0 |0 |O |0 |0 |D |D
+= |0 |0 |0 [0 |0 [0 |0 |O |0 |O |DO |D
= |0 |0 |0 |0 [0 |O |O |O |0 |0 |O |O
+ |0 |0 |0 [0 |0 [0 |0 |O |0 |0 |D |D
+ |0 |0 |0 [0 [0 [0 |O |O |O |0 |D |D

In Table3.7, the states at first column drive the r and jueal of0  in their row.

Similarly, the states in first row drive m and n valuesiof in their column.

As seen in Eq(2.75), (2.76) and(2.77) elements aa be divided into two parts. The
part that is independent of the skew angle can directly be computed using the
definition of3 function given in Eq(2.78), (2.79) and(2.80).

0 — .3 (310
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Thes

part of thed

Table3.8. Column (16 )

of

Cosine

for r, m, j, n given infable3.7 is calculated as:

States

0.730

0.1909

-0.0299

-0.4967

0.0000

0.0000

0.1909

0.6563

0.2057

-0.48'8

-0.4978

0.0000

-0.0299

0.2057

0.6445

0.0000

-0.4964

-0.4988

0.4967

0.4878

0.0000

0.629

0.1914

-0.0333

0.0000

0.4978

0.4964

0.1914

0.6328

0.2041

0.0000

0.0000

0.4988

-0.0333

0.2041

0.6348

0.1743

0.5991

0.1877

0.4453

0.4545

0.0000

-0.0289

0.1987

0.6227

0.0000

0.4796

0.4819

0.0000

0.4391

0.4378

0.1688

0.5581

0.180

0.0000

0.0000

0.4732

-0.0316

0.1936

0.6022

-0.029

0.1721

0.5393

0.0000

0.4153

0.4173

W W W WWw|Ww W W w|w | w(w

0.0000

0.0000

0.4052

-0.0271

0.1658

0.5157

Table3.9. Column (71 2)

of

Cosine

States

0.1743

-0.0289

0.0000

0.0000

-0.025

0.0000

0.5991

0.1987

-0.4391

0.0000

0.1721

0.0000

0.1877

0.6227

-0.4378

-0.4732

0.5393

-0.4052

-0.4453

0.0000

0.1688

-0.0316

0.0000

-0.0271

-0.4545

-0.4796

0.5581

0.1936

-0.4153

0.1658

0.0000

-0.4819

0.180

0.6022

-0.4173

0.5157

0.5469

0.1814

-0.4008

0.0000

0.1571

0.0000

0.1814

0.6016

-0.423

-0.4572

0.5210

-0.3915

0.4008

0.423

0.4922

0.1708

-0.3663

0.1462

0.000

0.4572

0.1708

0.5713

-0.3959

0.4892

0.1571

0.5210

0.3663

0.3959

0.4512

-0.339D

WIWWIWw Ww[Ww(w|w|w (W (w|w

0.0000

0.3915

0.1462

0.4892

0.339D

0.4189

To obtain the gain matrix L for cosine states, the values-of

computed besides thes

matrix. Since function—

angle,...an arbitrary selection far.is made such that:
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For the skevangle selected in E@.11) the —

i wQQOE i

(3.12)

. is calculated as follow:

Table3.10.Column (36) of Cosine States
[ [ [ [ / I
| 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000
| 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000
| 1.0000 1.0000 1.0000 0.2000 0.2000 0.2000
| 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600
| 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600
| 0.4000 0.4000 0.4000 0.9600 0.9600 0.9600
| 0.0800 0.0800 0.0800 0.1920 0.1920 0.1920
| 0.0800 0.0800 0.0800 0.1920 0.1920 0.1920
| 0.0160 0.0160 0.0160 0.0384 0.0384 0.03&
| 0.0160 0.0160 0.0160 0.0384 0.0384 0.0384
| 0.0032 0.0032 0.0032 0.0077 0.0077 0.0077
| 0.0006 0.0006 0.0006 0.0015 0.0015 0.0015
Table3.11. Column (#12) of Cosine Stats d Mat r i x
] 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003
] 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003
] 0.0400 0.0400 0.0080 0.0080 0.0016 0.0003
| 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015
| 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015
| 0.1920 0.1920 0.0384 0.0384 0.0077 0.0015
] 1.0016 1.0016 0.2003 0.2003 0.0401 0.0080
] 1.0016 1.0016 0.2003 0.2003 0.0401 0.0080
] 0.2003 0.2003 0.9999 0.9999 0.2000 0.0400
] 0.2003 0.2003 0.9999 0.9999 0.2000 0.0400
] 0.0401 0.0401 0.2000 0.2000 1.0000 0.2000
] 0.0080 0.0080 0.0400 0.0400 0.2000 1.0000
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Finally, bothfunctions to constructd ,— ...and3 , are ready. Note that
the multiplicationa and— ... are not a matrix multiplication but an element

wise multiplication such that:

5 .. Es (312

whereop r a o ri niid i c at & svisetntuléplicatioreofmeatrites.

Exact same procedure is applied for the matrix for the r, m, j, n combinations

given below.

Table3.12. Subscripts ané&uperscripts of Sine States L matrix elements

States) f | 4 | 4+ | &+ | 4+ [+ [ &+ |+ |+
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
+ 0 0 0 0 0 0 0 0 0
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a

a

Table3.13.Column(35) of Sine States
o 0.6250 0.1914 -0.0333 | -0.4453 0.0000
o 0.1914 0.6328 0.2041 -0.4545 | -0.4796
o -0.0333 0.2041 0.6348 0.0000 -0.4819
o 0.4453 0.4545 0.0000 0.5469 0.1814
d 0.0000 0.4796 0.4819 0.1814 0.6016
o 0.1688 0.5581 0.1800 0.4008 0.4230
o -0.0316 0.1936 0.6022 0.0000 0.4572
o 0.0000 0.4153 0.4173 0.1571 0.5210
= -0.0271 0.1658 0.5157 0.0000 0.3915
Table3.14.Column(69) of Sine States
b 0.1688 -0.0316 0.0000 -0.0271
O 0.5581 0.1936 | -0.4153 0.1658
= 0.1800 0.6022 -0.4173 0.5157
b -0.4008 0.0000 0.1571 0.0000
b -0.4230 | -0.4572 0.5210 -0.3915
= 0.4922 0.1708 -0.3663 0.1462
b 0.1708 0.5713 -0.3959 0.4892
0 0.3663 0.3959 0.4512 -0.3390
- 0.1462 0.4892 0.3390 0.4189
Table3.15. Column (35) of Sie St ates d Matri x
o 1.0400 . 1.0400 .
; 1.0400 1.0400 1.0400 0.2080 0.2080
o 1.0400 1.0400 1.0400 0.2080 0.2080
o 0.2080 0.2080 0.2080 0.9984 0.9984
o 0.2080 0.2080 0.2080 0.9984 0.9984
o 0.0416 0.0416 0.0416 0.1997 0.1997
o 0.0416 0.0416 0.0416 0.1997 0.1997
= 0.0083 0.0083 0.0083 0.0399 0.0399
o 0.0017 0.0017 0.0017 0.0080 0.0080

Matri x

Matri x



Table3.16. Column (69) ofSi ne States d Matri x

. 0.0416 | 0.0416 | 0.0083 | 0.0017
2 0.0416 | 0.0416 | 0.0083 | 0.0017
- 0.0416 | 0.0416 | 0.0083 | 0.0017
. 0.1997 | 0.1997 | 0.0399 | 0.0080
- 0.1997 | 0.1997 | 0.0399 | 0.0080
- 1.0001 | 1.0001 | 0.2000 | 0.0400
. 1.0001 | 1.0001 | 0.2000 | 0.0400
- 0.2000 | 0.2000 | 1.0000 | 0.2000
. 0.0400 | 0.0400 | 0.2000 | 1.0000

Note that, one can compube element without separating skew angle contribution

and 3 function contribution. If such method is chosen, the computation of Gamm
function becomes redundant. Because Gamma function only required to be computed
initially, whereas—is a function of skevangle,.., it can be computed once and then

use throughout the simulation. Separatirgnd 3 functions is merely to increase

calculation speed and avoid unnecessary computatieriofctions.

3.2.4.Velocity [V] Matrix

In Eq.(2.81) and(2.82), ®  andw is computed. The only unknown to compute
is the inflow stée 0 . The state is initialized to zero, and as the simulation progress

replaced with the newly commd @ state. This yields a relation such that:

(3.13)
(3.14)

Therefore, there is an iterative relation betweenrthew states and the mean inflow,

which makes this a nelmear theory.
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3.2.5.Final Equations

Finally, following equations for Petsi He inflow can be written;

b o e 0 @ ot (3.15
b O e 0 B t (3.16)

0O D — .. @& t (317
z Z (.b . 7 (318)

The harmonic and radial expansion for the inflow is selected by Uisinig3.1. The
apparent mass matrices and - are computed ifrable 3.5, Table 3.6,
Eq(3.5) ard Eq.(3.6). The skew angle functions of L matrfx, ? andf ? are
computed and given ifmable 3.10, Table3.11, Table3.15 and Table3.16 . The3s
functions of L matrix,3 and3 are computed and presented Tiable 3.8,
Table 3.9, Table 3.13 and
Table3s.14.

All inflow states are initialized to zero initially. Then, the state derivatives with respect
to nondimensionaltime are calculated. Integration of these derivatives yields to
inflow states. It is important taote that the derivative is a ndimensional time

derivative where:

o npwheremE OEAN C G A G IAGEIOMETA ABAT (319

Therefore, the Euler integration of that stéteor @ looks like as follows:

G G OO & O md, (3.20)
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: (3.22)

In above section, all matrices are calculated except the forcing véctoior both

sine and cosine states. The forcing vector is determined by the lift. One can implement

any metled to calculate lift and generatd . The inflow theory is essentially

independent of the lift theory.

In Chapte#, the isolated rotor model and generatioiging vector,t , is explained.
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CHAPTER 4

ISOLATED ROTOR MODEL

4.1.Basic Rotor Dynamics

The helicopter rotor generates lift simply by pulling air from above, accelerating
through the rotodisc and pushing air below. This simple mechanic is achieved by
complex inflow dynamics mainly the rotation of the blades and partially by the

forward velaity of the helicopter.

A control input given by the pilot that is shown in figure below aslth& his results
in an angle of attack for the blade. In return a lift is generated on the blade. The

geometric relations are shown in the figure below.

Figure4.1. Pitch angle corresponding to control inpat [16]

This control input creates and apparent angle of attack with respect to the travel of the

blade section due to rotation of rotor and motion of the aircratft.
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The control input is the collective and cyclic inputs given in the followingtemjua

— — — A0 —  zi e (4.2)

In order to write infinitesimal lift dL and infinitesimal drag dD given in equations

below,the effective angle of attack is required to be determined.

Q0 “z"z@zé | [ z@rQi (4.2)

QO Zz"z@m zd | R zZ4or Qi (4.3)

However, the itself depends on the inflow of the rotor. In addition, the inflow

states are driven by the lift generated by the rotor which depends on the effective angle

of attack in return whete s given as:

LY
— A0 A;!V (4.4)

Where'Y is the perpendicular velocity on the blade element,
"Y is the tangential velocity on the blade element,

" is density,

V is total velocity on blade element,

0 ando are lift and drag coefficients respectively,

cis chord,

dr is the infinitesimal element length.
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4.2. Calculation of Section Velocities

The determination of lift of the blade is dirgctlepends on the effective angle of
attack seen by the infinitesimal & There are three main contributors to the
perpendicular velocity.

Figure 4.2. Blade length and angle&€]

Considering the figurabove, the velocities at statio

theRef [16] for an articulated blade as below:

Y m Qi 6 O0ET 0 Qir (4.5)
% 0 OofATO ur OET U T1i

(4.6)
Q1 Nt Qe nowegli

Where,

6 b i are translation velocities of the helicopter in body frame,
N are rotaibnal velocities of the helicopter in body frame,

r is the distance from flapping hinge to bladement,

e is the distance from rotor hub to flapping hinge,

U is the induced inflow,
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I is the flapping angle of the blade around flapping hinge

In order to compute the forcing vector which depends on the lift of the blade, the blade
element theory is used. The values tables of lift and drag coefficiermisd0 are

given in the Appendix @long with the blade element figure.

Itisimportatit o note that Aro and fieo are structur a
6 ho fy and p, q are states of the helicopter which are calculated@f6dynamic

equations. This left with two important values for the calculation of efieetngle of

attack, which are andu . These two valueare solved simultaneouslyhe value of

equation of motion fdr can be written af][24][26][32][40]:

i 2°Q) Qizv 1 a1 (O] 1 (4_7)
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4.3.Rotor Model Procedure

Initialize inflow states, {ajr} =0 and {bjr}: 0

Initialize f§ flapping angle, S(y)) = 0

Initialize inflow forcing vector {T]r} =0

90: glatﬂ Qlong

N

4

[

Determine the inflow

[M©], [v]@, [L(c)]'l
Inflow Matrices are

F 3

F 3

state number. calculated.
_‘
- Solve Inflow Equation (2.42) and (2.43)
v
A 4
4 ™
Calculate w(#, 1, £) in Eq. (2.36)
\ J
. |
=) Uy .
Calculatea, sy = atan (E) Up and U using f§ and w,
\
r l' )
Calculate Rotor Forces and Moments
Y y
\ 4 l ‘
4 -\ (- -)
Using blade Using Lift Using Forces
o moments calculate inflow and Moments
caleulate f§ forcing vector T}” Compute 6-
\ DOF Aircraft
states
. J/

Figure 4.3. Rotor Model Flowchart
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In above chart, the basic simulation steps are given for an isolated rotor model. In
order tocompute the inflow, only missing information is the forcing vector. The

equations to compute forcing vectois given as follows:

P e
AT g (4.9)
T —“D QF %o 1]
ol (410
T - QU %o | I,_

Where r and j aréhe r and j value of the respective inflow stai@s and @ |,
Q is the total number of blade elements on a blade,

g is the blade element number,

[ is the azimuth angle of the blade in whibe blade element resides.

In the innermost iteration of the blade element calculations, the forcing vector is

generated alongside with the infinitesimal lift dL.

Computation of these completes the PeteisHe inflow theory.
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4.4.Properties of Isolated Rotor Model

The rotor model used tovestigate inflow throughout this thesis is thé@helicopter

rotor with following parameters.

Table4.1. Parameters of §6 Helicopter{41]

RotorRadius [m] 6.7056
Rotor Speed [rpm] 293
Hinge Offset 0.037
Solidity Ratio 0.0748
Airfoil SC1095
Blade Number 4
Blade Twist Figure4.4

R ' pre

Figure 4.4. Twist along the blade radiu§4]

In the rotor model 16 virtual blade is used. lEddade is divided into 20 blade
elements. Inflow values are obtained at these stations. An example of the obtained

inflow distribution for various flight conditions are given in the following figure.
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Figure 4.5. Example of inflow distributions
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4.5. Error Calculation for Difference Analysis

In the following chapter, a rigorous investigation is mau order to understand the
effects of state number to inflow distribution under different advance ratios and
control combinations. Therefore, the following error procedure is used throughout

Chaper 5 to quantify the differece between two inflow distribution.
Error is calculated by the following procedure:

A The i nflow distri butPRe@msi Heinflolh madal svent i c

selected as baseline inflow model and used for the calculation of mean inflow.

A F o rtuallbBdes and 20 blade elements, total 320 sections inflows are calculated

for each stateumber inflow model.
A The i nf onalifferedce s talcilabed déxtracting baseline distribution
model from varying state inflow distribution.

A An etnixis obtaineddor 320 elements at each time step (100 Hz.).

A Then, using the following ekror equat.i
Q I — — : P
P 570 (4.11)

Where n and g show the blade and blade element number respectively, for N blade

and Q bladelement on each blade.
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CHAPTER 5

DYNAMIC INFLOW DISTRIBUTION SIMULATIONS

5.1.Introduction

In this chapter, the effects of advance ratio and control inputs to Pdtersnflow
distribution are thoroughly investigated for 6, 10, 15 and 21 State Pdtersnflow

models.

Throughout this chapter, it is assumed that the-higinberstate modeld better for

the simulation fidelity [5][16][28][29]. Therefore, a 21 State inflow model is selected
as the baseline inflow model. All other inflow models such as 6, 10, and 15 inflow
distributions are compared with the 21 State inflow model. The pugfdbés is to
determine flight condition regions where a léwstate inflow distribution do not
greatly differ from the 2&state model and thus can be employed in that regions
instead. Furthermore, an error line at 15% percent is drawn in all figureseridrs
limitis utilized in theChapter o determine a switching logic for varying state inflow

model.
5.2.Collectivei Inflow Relations

In this section simulations ifable 5.1 are done in order to determine effects of
collective toinflow distributions and transition from a stédteumber to another state

-number.

The 8 tests conditions givenTable5.1 are repeated for 6, 10, 15 and 21 constant state
inflow models making a total of 32 test combined. Téwults are presented such that
for a given advance ratio and collective commasttdie, 16State and 15tate are
compared with the 25tate modelAn example comparison at t=12 filvesetess are
given in the Appendix B.
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Table5.1. Collective Tests

Collective Simulations
¢ | Collctve | i | Cycic | imputType | MBULTme | Advance
(Deg) (Deg)
1| 51020 | 00 0.0 Ramp | Dot | 0.00
2| 5t020 | 00 0.0 Ramp | o™ | 010
3| 5120 | 00 0.0 Ramp | Dot | 0.20
4| 51020 | 00 0.0 Ramp | Dot | 0.30
5| 20105 | 00 0.0 Ramp | Dot | 0.00
6| 20105 | 00 0.0 Ramp | Dot | 0.10
7| 20t05 | 00 0.0 Ramp | Dot | 0.20
8 | 20t05 | 0.0 0.0 Ramp | Dot | 0.30

5.2.1. Collective Up

The following collective input given iRigure5.1 are given to the simulations run below

for continuous collective up tests.

=20
a
S5
(0]
=
810,
9
5
O 5

o
o

5 10
Time [s]

Figure5.1. Collective Up @mmand for tests iable5.1. Collective Test§l-2-3-4)
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5.2.1.1.Advance Ratio: 0.0

The simulation results are presented below.

w
o

m— 15-State

= 10-state

N
9]
T

6-state

N
o
T

15 T 45% Error Limit

Difference from 21-state Inflow Distribution [%]
o

B
L ——————
e
e

e

6 8 10
Time [s]

12

Figure 5.2. Continuous Collective Up at 0.0 advance ratio

In the Figure5.2 the difference from 25tate inflow is same for 6 and 10 state inflow

model s

states given imable3.1 when r =2 j = 0 for 6 state and r =3, j = 0 for 10 state. Same

because

of the fact t hat

holds for 15 and 21 state inflow distributions.

In the tablebelow, 15% error crossings are given at zero advance ratio for collective

up input.

Table5.2. 15% Error Crossing Collective Values for Zero Advance Ratio

b avt h

State Number

15%Error CrossingCollective (deg)

6

10

15
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Since none of the simulations for given inflow states crosses the 15% error at zero
advance ratio, for varyingtate implemeiition, during hover, 6 state inflow model

can be used for all collective range instead of 21 state.

5.2.1.2.Advance Rato: 0.1

The simulation results are presented below.

w
o

m— 15-State

e 10-state

N
a

6-state

N
o

o

Difference from 21-state Inflow Distribution [%]
o

0| I 1 L | 1
0 2 4 6 8 10 12

Time [s]

Figure 5.3. Continuous Collective Upt®.1 advance ratio

As advance ratio increases, the asymmetry of inflow increases. Therefore, the

difference between lowtate and higistate inflow distribution increases.
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In the table below, 15% error crossings are given at 0.1 advance ratio fotizellg

input.
Table5.3. 15% Error Crossing Colletive Values for 0.1 Advance Ratio
State Number 15%Error Crossing Collective (deg)
6 12.00
10 17.00
15 -

The 6State crosses 15% error threshold at égreles collective input whereas -10
State model crosses the threshold at 16 degrees. Note th&tate does not cross

15% error at 0.1 advance ratio.
5.2.1.3.Advance Ratio: 0.2

The simulation results are presenbatow.

Figure 5.4. Continuous Collective Up at 0.2 advance ratio
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