
COVERT CHANNEL DETECTION USING MACHINE LEARNING METHODS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İMGE GAMZE ÇAVUŞOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

DECEMBER 2019

Approval of the thesis:

COVERT CHANNEL DETECTION USING MACHINE LEARNING
METHODS

submitted by İMGE GAMZE ÇAVUŞOĞLU in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assist. Prof. Dr. Hande Alemdar
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Burak Can
Computer Engineering, Hacettepe University

Assist. Prof. Dr. Hande Alemdar
Computer Engineering, METU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering, METU

Date: 02.12.2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İmge Gamze Çavuşoğlu

Signature :

iv

ABSTRACT

COVERT CHANNEL DETECTION USING MACHINE LEARNING
METHODS

Çavuşoğlu, İmge Gamze

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Hande Alemdar

December 2019, 94 pages

A covert channel is a communication method that misuses legitimate resources to by-

pass intrusion detection systems. They can be used to do illegal work like leaking

classified (or sensitive) data or sending commands to malware bots. Network timing

channels are a type of these channels that use inter-arrival times between network

packets to encode the data to be sent. Although these types of channels are hard to

detect, they are not used frequently due to their low capacity and sensitivity to the

network conditions. However, upcoming technologies like 5G and WiFi 6 offer more

reliable networks with low latency, which we believe can work in favor of network

timing channels and attract hackers to them. Therefore, we also believe that the de-

tection of network timing channels is an increasingly important issue.

In this thesis, we worked with two types of network covert channels: Fixed Inter-

val and Jitterbug. Fixed Interval defines an inter-arrival time for each symbol to be

transmitted and send network packets accordingly. On the other hand, Jitterbug does

not create new packet traffic; it just delays existing packets for some predefined time.

Two channels are very different: Jitterbug creates traffic that is similar to the legiti-

v

mate network though has lower capacity, and Fixed Interval has a very different traffic

shape from the legitimate network but has higher capacity. Our work has shown it is

indeed possible to detect these channels with a decision tree with four features called

mean, variance, skewness and kurtosis. However, more research is needed to make

this system work in the real world.

Keywords: Covert Channel, Covert Channel Detection, Machine Learning, Decision

Tree

vi

ÖZ

MAKİNE ÖĞRENMESİ METOTLARI KULLANILARAK ÖRTÜLÜ
KANALLARIN TESPİTİ

Çavuşoğlu, İmge Gamze

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Hande Alemdar

Aralık 2019 , 94 sayfa

Örtülü kanallar, saldırı tespit sistemlerini atlatabilmek için meşru kaynakları istismar

eden sistemlerdir. Bu kanallar hassas verileri kaçırmak veya zararlı botlara komut yol-

lamak gibi illegal işler için kullanılabilir. Örtülü kanalların bir türü ağ üzerinde çalışan

zamanlama kanallarıdır. Ağ üzerinde çalışan zamanlama kanalları, göndereceği veri

için; ağ üzerinden gönderilen paketlerin arasındaki zaman farklarından faydalanır. Bu

kanalları tespit etmek zor olsa da sağlayabildikleri bant genişliği düşük olduğu ve ağ

üzerinde oluşan sıkıntılara duyarlı oldukları için çok fazla tercih edilmezler. Fakat

5G ve WiFi 6 gibi teknolojilerin gelişmesi, gelecekte daha güvenilir iletişim ağlarının

oluşturulmasını sağlayacaktır. Biz bu durumun örtülü kanalları saldırganlar için daha

cazip hale getirdiğini ve bu sebeple de örtülü kanalların tespitinin önemli bir mesele

haline geldiğini düşünüyoruz.

Bu tezde iki çeşit ağ üzerinde çalışan zamanlama kanalları kullandık: Fixed Interval

ve Jitterbug. Fixed Interval gönderilecek her bir sembol için ayrı bir (ya da birden

fazla) zaman aralığı tanımlıyor ve paketleri aralarındaki zaman farkı tanımladığı ara-

vii

lıklara uyacak şekilde gönderiyor. Jitterbug ise yeni paket yaratmıyor, sadece başkası

tarafından gönderilen paketleri kendi tanımladığı zaman aralıklarına göre geciktiriyor.

İki kanalın farklı avantaj ve dezavantajları mevcuttur: Jitterbug meşru kaynaklardan

gelen trafiğe çok benzeyen bir trafik yaratabiliyor ama ötekine göre bant genişliği

daha düşük, Fixed Interval ise Jitterbug’a göre daha yüksek bant genişliğine sahip fa-

kat yarattığı trafik meşru kaynakların yarattıklarından çok farklı. Bu çalışmada, dört

istatistiki özelliği (ortalama, varyans, çarpıklık ve basıklık) kullanan karar ağaçların-

dan faydalanarak meşru ve örtülü (Jitterbug ve Fixed Interval kanalları) ayırt edildi.

Fakat, bu sistemin gerçek dünyada çalışabilmesi için üzerinde daha fazla araştırma

yapılması gerekecektir.

Anahtar Kelimeler: Örtülü Kanal, Örtülü Kanal Tespiti, Makine Öğrenmesi, Karar

Ağacı

viii

Dedicated to my mother, father and sister, who is always caring and patient with me.

ix

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Assist. Prof. Dr. Hande Alemdar. The

door to Assist. Prof. Dr. Alemdar’s office was always open whenever I ran into a

trouble spot or had a question about my research or writing. She consistently allowed

this paper to be my own work, but steered me in the right direction whenever she

thought I needed it.

I would also like to thank the experts and the other students who helped with me with

their ideas and other means: Assoc. Prof. Dr. Ertan Onur, Doğanalp Ergenç, Murat

Coşar, Feyza Hande Güleç, Gizem Çelik, Burak Eren Dere and the rest of WINS Lab

crew.

I would also like to acknowledge Assoc. Prof. Dr. Ertan Onur as the second reader

of this thesis, and I am gratefully indebted to him for his very valuable comments on

this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Proposed Methods and Models . 4

1.3 Contributions and Novelties . 5

1.4 The Outline of the Thesis . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Covert Channels . 7

2.1.1 Fixed Interval . 7

2.1.2 Jitterbug . 8

2.2 Related Work . 8

xi

3 DATASET . 15

3.1 Fixed Interval Dataset . 17

3.2 Jitterbug Dataset . 18

4 PROPOSED METHOD AND FEATURES 21

4.1 Decision Tree . 23

4.2 The First Four Moments . 25

5 EXPERIMENTS AND DISCUSSIONS 33

5.1 Experiments . 33

5.1.1 Experiments with Fixed Interval 36

5.1.2 Experiments with Jitterbug 37

5.2 Results and Discussion . 38

5.2.1 The Results for Fixed Interval 38

5.2.2 The Results for Jitterbug . 60

5.2.3 Discussion . 80

6 CONCLUSION AND FUTURE WORK 85

6.1 Conclusion . 85

6.2 Future Work . 86

REFERENCES . 87

xii

LIST OF TABLES

TABLES

Table 3.1 Fixed Interval Dataset Properties 18

Table 3.2 Jitterbug Dataset Properties . 19

Table 5.1 The results for channels with 0.018ms and 0.036ms inter-arrival

times. The splitting criterion is Gini Impurity. 39

Table 5.2 The results for channels with 0.018ms and 0.036ms inter-arrival

times. The splitting criterion is Information Gain. 40

Table 5.3 The results for channels with 0.035ms and 0.070ms inter-arrival

times. The splitting criterion is Gini Impurity. 41

Table 5.4 The results for channels with 0.035ms and 0.070ms inter-arrival

times. The splitting criterion is Information Gain. 42

Table 5.5 The results for channels with 0.065ms and 0.130ms inter-arrival

times. The splitting criterion is Gini Impurity. 43

Table 5.6 The results for channels with 0.065ms and 0.130ms inter-arrival

times. The splitting criterion is Information Gain. 44

Table 5.7 The results for features from Iglesias et al. [1]. The splitting crite-

rion is Gini Impurity, the splitter is best, the MSL is five thousand samples

and each slice consists of forty inter-arrival times. 44

Table 5.8 Feature calculation times for one slice of a legitimate channel and

Fixed Interval channels. 46

xiii

Table 5.9 The results for the detection of types of flows using the first four

moments. The covert channel uses 0.018ms and 0.036ms inter-arrival

times. The splitting criterion is Gini Impurity, the splitter is best, the MSL

is five thousand samples and each slice consists of forty inter-arrival times. 57

Table 5.10 The results for the detection of types of flows using the first four

moments. The covert channel uses 0.035ms and 0.070ms inter-arrival

times. The splitting criterion is Gini Impurity, the splitter is best, the MSL

is five thousand samples and each slice consists of forty inter-arrival times. 58

Table 5.11 The results for the detection of types of flows using the first four

moments. The covert channel uses 0.065ms and 0.130ms inter-arrival

times. The splitting criterion is Gini Impurity, the splitter is best, the MSL

is five thousand samples and each slice consists of forty inter-arrival times. 59

Table 5.12 The results for Jitterbug channels. The splitting criterion is Gini

Impurity. 60

Table 5.13 The results for Jitterbug channels. The splitting criterion is Infor-

mation Gain. 61

Table 5.14 The results for features from Iglesias et al. [1]. The splitting crite-

rion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 63

Table 5.25 Feature calculation times for one slice of a legitimate channel and

Jitterbug channels. 63

Table 5.15 The results for the detection of types of flows using the first four

moments. The covert channel has 1ms timing window. The splitting cri-

terion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 70

Table 5.16 The results for the detection of types of flows using the first four

moments. The covert channel has 3ms timing window. The splitting cri-

terion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 71

xiv

Table 5.17 The results for the detection of types of flows using the first four

moments. The covert channel has 5ms timing window. The splitting cri-

terion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 72

Table 5.18 The results for the detection of types of flows using the first four

moments. The covert channel has 7ms timing window. The splitting cri-

terion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 73

Table 5.19 The results for the detection of types of flows using the first four

moments. The covert channel has 9ms timing window. The splitting cri-

terion is Gini Impurity, the splitter is best, and each slice consists of forty

inter-arrival times. 74

Table 5.20 The results for the detection of types of flows using features from

Iglesias et al. [1]. The covert channel has 1ms timing window. The split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. 75

Table 5.21 The results for the detection of types of flows using features from

Iglesias et al. [1]. The covert channel has 3ms timing window. The split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. 76

Table 5.22 The results for the detection of types of flows using features from

Iglesias et al. [1]. The covert channel has 5ms timing window. The split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. 77

Table 5.23 The results for the detection of types of flows using features from

Iglesias et al. [1]. The covert channel has 7ms timing window. The split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. 78

xv

Table 5.24 The results for the detection of types of flows using features from

Iglesias et al. [1]. The covert channel has 9ms timing window. The split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. 79

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 A covert channel that uses the network. 3

Figure 3.1 Our covert channel setup . 15

Figure 3.2 Example images from CIFAR-10 (Image taken from [2]). 17

Figure 3.3 Channel capacities for all flows. 19

Figure 4.1 A decision tree example. Nodes are features, connections are

values for each feature, and leaves are classes. 23

Figure 4.2 Some mean, variance, skewness and kurtosis values for a legit-

imate (blue dots) and a Fixed Interval (orange dots) channel. These

are calculated using twenty consecutive inter-arrival times. Inter-arrival

time for the covert channel is 0.035ms (for the bit "1" and 0.070ms for

the bit "0"). 27

Figure 4.3 Some mean, variance, skewness and kurtosis values for a legit-

imate (blue dots) and a Fixed Interval (orange dots) channel. These

are calculated using twenty consecutive inter-arrival times. Inter-arrival

time for the covert channel is 0.065ms (for the bit "1" and 0.130ms for

the bit "0"). 28

Figure 4.4 Feature importances for two Fixed Intervals. Each importance

takes a value between zero and one. Features that contribute more to

classification have higher importance. 29

xvii

Figure 4.5 Some mean, variance, skewness and kurtosis values for a legiti-

mate (blue line) and a Jitterbug (orange line) channel. These are calcu-

lated using twenty consecutive inter-arrival times. The timing window

of the covert channel is 1ms. 30

Figure 4.6 Some mean, variance, skewness and kurtosis values for a legiti-

mate (blue line) and a Jitterbug (orange line) channel. These are calcu-

lated using twenty consecutive inter-arrival times. The timing window

of the covert channel is 5ms. 31

Figure 4.7 Feature importances for two Jitterbugs. Each importance takes

a value between zero and one. Features that contribute more to classifi-

cation have higher importance. 32

Figure 5.1 Changes in detection scores and decoding error rates for each

inter-arrival time configuration. Inter-arrival times increase from left to

right on the horizontal line and down to up on the vertical line. Detec-

tion scores were obtained using the following configuration: the split-

ting criterion is Gini Impurity, the splitter is best, the MSL is five thou-

sand samples and each slice consists of forty inter-arrival times. The

blue line represents results for the first four moments. The orange line

represents results for features from Iglesias et al. [1]. 45

Figure 5.2 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five million

samples and each slice consists of ten inter-arrival times. 47

Figure 5.3 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five million

samples and each slice consists of twenty inter-arrival times. 48

xviii

Figure 5.4 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five million

samples and each slice consists of forty inter-arrival times. 49

Figure 5.5 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five hundred

thousand samples and each slice consists of ten inter-arrival times. . . . 50

Figure 5.6 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five hundred

thousand samples and each slice consists of twenty inter-arrival times. . 51

Figure 5.7 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five hundred

thousand samples and each slice consists of forty inter-arrival times. . . 52

Figure 5.8 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five thousand

samples and each slice consists of ten inter-arrival times. 53

Figure 5.9 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five thousand

samples and each slice consists of twenty inter-arrival times. 54

Figure 5.10 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, the MSL is five thousand

samples and each slice consists of forty inter-arrival times. 55

xix

Figure 5.11 The feature importances for features from Iglesias et al. [1].

Detection scores were obtained using the following configuration: the

splitting criterion is Gini Impurity, the splitter is best, the MSL is five

thousand samples and each slice consists of forty inter-arrival times. . . 56

Figure 5.12 Changes in detection scores and decoding error rates for each

timing window configuration. Timing windows increase from left to

right on the horizontal line and down to up on the vertical line. Detec-

tion scores were obtained using the following configuration: the split-

ting criterion is Gini Impurity, the splitter is best, and each slice consists

of forty inter-arrival times. The blue line represents results for the first

four moments. The orange line represents results for features from Igle-

sias et al. [1]. 65

Figure 5.13 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, and each slice consists of

ten inter-arrival times. 66

Figure 5.14 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, and each slice consists of

twenty inter-arrival times. 67

Figure 5.15 The feature importances for the first four moments. Detection

scores were obtained using the following configuration: the splitting

criterion is Gini Impurity, the splitter is best, and each slice consists of

forty inter-arrival times. 68

Figure 5.16 The feature importances for features from Iglesias et al. [1].

Detection scores were obtained using the following configuration: the

splitting criterion is Gini Impurity, the splitter is best, and each slice

consists of forty inter-arrival times. 69

xx

LIST OF ABBREVIATIONS

ABBREVIATIONS

TCP Transmission Control Protocol

UDP User Datagram Protocol

IP Internet Protocol Address

LAN Local Area Network

WAN Wide Area Network

PCI Peripheral Device Interconnect

IOT Internet of Things

CPU Central Processing Unit

5G Fifth-Generation

4G Fourth-Generation

WiFi Wireless Fidelity

xxi

xxii

CHAPTER 1

INTRODUCTION

In this chapter, we will introduce the problem, discuss our solution, contributions

briefly, and give the outline of this thesis.

1.1 Motivation and Problem Definition

Consider two friends called Alice and Bob; both are in prison [3]. They can send each

other messages, but a warden reads these. Alice wants to send her brilliant escape plan

to Bob. She also wants to avoid the warden’s suspicion so she can neither directly send

nor encrypt the message. In this situation, Alice should not let the warden know she is

passing a message. One way she can do it successfully is by using covert channels.

A covert channel is a communication method that misuses legitimate resources to

bypass detection systems. The legitimate resource that is used may be the network,

file system, hardware registers, or even Central Processing Unit (CPU). This attack

requires two processes: an "insider" process that has the data and at least permission

to send it through the legitimate resource and an "outsider" process that can access

the resource at least read-only. The outside process may be a program that runs on

a remote machine, or just a different thread runs on the same CPU. Also, there is a

system like a firewall or intrusion detection system that checks the resource against

sensitive data leakage or illegal activities like sending commands to malware bots. In

our Alice and Bob analogy, Alice is the insider, Bob is the outsider process, and the

warden is the detection system. For instance, Alice may be a process that has access

to the intranet of a company, and Bob may be another process that exists on the

external network. The warden may be an intrusion detection system that runs on the

1

company’s routers (Figure 1.1). If Alice wants to leak the company’s sensitive data

to Bob, she has to use the external network. Though, the warden carefully monitors

the packets that are going from/to the external network. It can report the suspicious

packets (like the ones contain sensitive or encrypt data) or even change the content of

the packets (i.e., like removing rarely used fields of a packet). In this case, Alice has

to encode her data to network packets in a way that the warden can not detect it. To do

that, she can, for example, put it to a field of one or more network headers. This way,

the detection system will only see one or more legitimate packets. For instance, TCP

(Transmission Control Protocol) header has a field called "reserved". This field, as

its name implies, is not currently used. Alice can put her data into this field without

disrupting the header. Though, it is possible to detect such channels by checking

the integrity of packets’ fields. For our example, the warden can check whether the

reserved field is zero and raise a red flag if it is not. The warden can even nullify

this field altogether before passing the packet. Another option is to encode data into

inter-arrival times between packets. The detection system can not detect this type of

channel by just checking packets. Furthermore, attempts to prevent it may also harm

on legitimate communications [4], [5]. For example, Giles and Hajek [6] propose

jamming the channel, which may, in turn, cause higher packet delays. Note that, for

both channels, detection is likewise possible if the encoding method is known, but it is

inefficient to examine each communication channel for every network-related covert

channel.

In this thesis, we focused on detecting network timing channels. These types of

channels use inter-arrival times between network packets to encode the data to be

sent. They assign one or more inter-arrival time(s) to each symbol to be sent, then

either send or delay packets according to this mapping. For instance, if data to be sent

is binary, the channel can assign 10milliseconds (ms) for the symbol "0" and 20ms

for the symbol "1". Although they are hard to detect, they suffer low capacity and

sensitive to issues like delays caused by network jitters, packet loss, resend, and the

difference between clocks of sender and receiver, which lowers their capacity further.

These problems limit networks that this attack can be implemented. For instance,

implementing network timing channels in mobile networks would probably cause

noticeable packet delays.

2

Sender (Alice)Servers with sensitive data Other employees

Receiver (Bob)

WAN

Company LAN

Warden

Figure 1.1: A covert channel that uses the network.

As a result, network timing channels are not used frequently. Though, we believe

that upcoming newer technologies like Fifth-Generation (5G) 1 or Wireless Fidelity

(WiFi) 6 2 (aka IEEE 802.11ax-2019) can work in favor of network timing channels

and attract hackers to them. These technologies offer more reliable networks with

low latency even for Internet of Things (IoT) devices3.

There are other approaches for detecting network timing channels, and some of them

can detect nearly every type of network timing channel. Though, most of them are

either used for specific types of covert channels or require heavy and complicated

calculations. In our work, we aim to define an architecture that is both lightweight

1 5G [7], [8], [9] was the newest cellular network technology at the time we wrote this thesis. It offers about
a hundred times higher data rate, ten times less latency, energy efficiency, and many more improvements to its
predecessor Fourth-Generation (4G).

2 IEEE 802.11ax-2019 [10], [11], [12] was the newest wireless network technology at the time we wrote this
thesis. Compared to predecessor IEEE 802.11ac-2013 its throughput is about four times higher.

3 IoT [13], [14] is a network that is created by computer and non-computer devices like a mobile phone.

3

and can distinguish most types of covert channels from legitimate ones. We chose a

small subset of covert channels with different characteristics for our work. These are:

• Fixed Interval

• Jitterbug

Fixed Interval defines an inter-arrival time for each symbol to be transmitted and

send network packets accordingly and, Jitterbug delays existing packets for some

predefined time. Therefore, Jitterbug creates traffic that is similar to the legitimate

network though has lower capacity, and Fixed Interval has a very different traffic

shape from the legitimate network but has higher capacity.

1.2 Proposed Methods and Models

We aim for our model to work on an architecture that has shallow detectors on its

front-end and more sophisticated ones on its back-end (similar to the architecture

proposed by Iglesias et al. [15]). Shallow detectors filter incoming or outgoing net-

work traffic and search for covert channels. When they detect one, they send these

traffic to advanced detectors and warn operators of the system (network administra-

tors, end-users, firewalls, etc.). Advanced detectors can then determine the traffic is

covert or not for sure and its type. After that, operators of the system can take action

against the suspected channel like termination, suspension, or reporting to authorities.

Moreover, if the risk is too high, operators can suspend the channels even before the

advanced detectors make their final decisions. Our model will be a shallow detector

in this architecture.

A shallow detector must work on any network (that an attacker can create a covert

channel) online or offline, be flexible and understandable. This means our model

must work with switches and routers, run fast (i.e., within a minute), and adapt to

changing network conditions. To fulfill these requirements, we propose using one or

more decision trees with mean, variance, skewness, and kurtosis as features.

Decision trees can classify discrete target values given a set of features [16], [17]. It

4

uses a tree structure, places rules on inner nodes, and target values on leaves. Rules

are determined by the decision tree using features. For instance, a tree that uses our

features can define one inner node as "mean bigger than 2ms". Rules that are closer to

the root are more generalized, whereas rules that are closer leaves tend to be more spe-

cific to a case. The decision tree is robust to errors and can be validated by statistical

tests [18]. It also is one of the few machine learning methods that are understandable

by humans. A decision tree can even be converted to if-then-else rules. So, apart

from the detection, we also used the decision tree to determine importances of our

features. As for the features, mean and variance calculate the arithmetic average and

the spread of a given distribution. On the other hand, skewness and kurtosis calculate

the skewness and heaviness of tails of a given distribution relative to a normal one.

These four statistical features can be used to distinguish distributions. In our case,

distributions are inter-arrival time series.

Routers enabling the transition between the intranet and the Internet can be used to

calculate features. Decision trees can also be run on routers or a computer connected

to these routers.

In our work, we implemented a detector for Fixed Interval and Jitterbug covert chan-

nels using a decision tree. The detailed descriptions of features, the decision tree, and

setup are in Chapter 4.

1.3 Contributions and Novelties

Our contributions are as follows:

• We created network data for two covert channels: Fixed Interval and Jitterbug.

• We implemented a method that can detect Fixed Interval and Jitterbug covert

channels. This method can work with the network packets it received from a

router or switch (online). It can also detect threats in real-time and warn the

operator of the network.

5

1.4 The Outline of the Thesis

The structure of this thesis is as follows:

• In Chapter 1 and 2, we introduce the covert channel concept, detection problem,

and our propose for the solution.

• In Chapter 3, we present the legitimate, Fixed Interval and Jitterbug datasets we

used for our research. We also explain how we obtained these datasets.

• In Chapter 4, we explain the algorithms and structures that we used for our

solution (the decision tree and the first four moments). We also explained why

and how we chose these.

• In Chapter 5, we show the experiments we performed using our method and

another one from the literature. Also, in the same chapter, we discuss the ex-

perimental results and compare our method with the other one.

• In Chapter 6, we present our conclusion, criticize our work, and talk about

improvements we will implement in the future.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we will firstly explain the network timing channels we used for our

work. Then, we will summarize our literature research about covert channels, their

types, and detection algorithms.

2.1 Covert Channels

We used the following covert channels for our work:

2.1.1 Fixed Interval

This channel defines a different inter-arrival time value for each symbol to be trans-

mitted [19]. For example, for the two symbols (bits "0" and "1") of a binary channel,

two intervals may be defined; 10ms for the bit "1" and 20ms for the bit "0". In this

case, to send the bit "0", the channel waits for 20ms, then sends a packet, and for the

bit "0", it repeats the same steps using 10ms.

Fixed Interval channels are easy to implement. Moreover, if the implementer chooses

intervals appropriately, he or she can make the covert channel resistant to network

errors. On the other hand, it is not hard to detect this channel due to the reason the

traffic it creates is very different from the legitimate ones.

Berk et al. [19] have shown that the distributions of packet delays for legitimate and

covert channels are different. Delays in the legitimate channels are closer to the mean,

and delays in the covert channels are closer to the defined intervals. Based on this

7

observation, Berk et al. presented the following formula to calculate the probability

that the given inter-arrival times belong to a covert channel:

PCovChan =
Cµ
Cmax

,

where Cµ is the number of the packets with the mean (or close to the mean) inter-

arrival time, and Cmax is the number of the packets with the maximum (or close to

the maximum) inter-arrival time.

2.1.2 Jitterbug

Jitterbug is a binary channel that manipulates inter-arrival times of existing packets

[20]. It takes advantage of software that sends a packet with every keypress (like

SSH). Jitterbug delays the press, which in turn delays the packet.

This channel does not assign inter-arrival times to symbols. Instead, it uses a param-

eter called timing window(w) and interprets inter-arrival time mod w = bw/2c
as the bit "1" and, inter-arrival time mod w = 0 as the bit "0". For instance, if

the delay between keypresses are {90, 150, 128, 141}ms, the timing window is 20ms

and bits to send are {0, 1, 1, 0} these delays become {100, 150, 130, 160}ms [20].

Shah et al. [20] stated that it is better to define multiple timing windows and use them

rotationally (i.e., a channel may use 20ms for three packets, 30ms for four packets,

and then repeat the same process). By using multiple timing windows, Jitterbug can

prevent cluttering of inter-arrival times within certain ranges, thus can reduce the risk

of detection.

Compared to Fixed Interval, Jitterbug is harder to implement. Also, the method it

uses to encode bits is more prone to network error conditions. Nevertheless, it is also

harder to detect since it creates traffic similar to the legitimate ones [21].

2.2 Related Work

The covert channel concept was introduced by Lampson [22] in the 1970s. In his

work, he defined three computer programs, which he called the customer, the service,

8

and the owner of the service. The service is a program that runs safely from the

isolated environment created within the customer. It only has access to the necessary

resources (input, output, etc.). Also, the system does not allow the customer to access

the service’s data. The owner, as the name implies, is the creator of the service.

Lampson explored the ways for a service to leak data to its owner in this situation.

As a result of this research, he revealed storage and covert channels: storage channels

transfer the data by storing it to a medium, and covert channels transmit it by changing

the runtime of processes (i.e., by changing how fast it creates an output). Later,

Common Criteria (DoDI 8500.02) [23] 1 renamed covert channels as timing channels

and redefined covert channels as the superclass of timing and storage channels.

Covert storage channels abuse a medium like a file, hardware, network packet, or even

audio and CPU temperature to transfer data. Rutkowska [25] implemented a storage

channel that encodes the data into the sequence number field of SYN (Synchronize)

TCP packets2. Later, Scott [26] implemented a similar attack using X509 digital

certificates3. In his work, he encoded data into the fields that will not break the

integrity of the certificate. Okhravi et al. [27] showed that an attacker could create a

storage channel using the register that holds the address for the initialization code of a

Peripheral Device Interconnect (PCI) device4. They also mentioned a type of storage

channel that uses a property of files to transmit data in the same study. Deshotels [28]

showed how an attacker could create a covert channel using inaudible sounds that can

be generated and picked by mobile devices.

Covert timing channels modulate event times for communication. For instance, IP

(Internet Protocol Address) Covert Timing Channel (IPCTC) sends a network packet

after waiting for some predefined interval time for the bit "1" and keeps silent for the

bit "0". Another type of channel called TCP Timestamp Manipulation sends a TCP

packet when the least significant bit of the packet’s timestamp field matches with the

bit to send [1], [29]. Okhravi et al. mention a similar type of timing channel for

processes in [27] (Attack Based on the Operating System Timing Value). In such
1 Common Criteria is a set of standards that security teams use for evaluating the security of products. This

standard was known as The Orange Book (DoDD 5200.28-STD) [24] before 2002.
2 TCP sends a SYN packet to the device that it wishes to establish a connection.
3 A digital certificate verifies a public key belongs to a system. X.509 is a standard that defines the format of

a digital certificate.
4 PCI is an interface in the motherboard that supports plug-and-play for devices. PCI devices are devices that

compatible with this interface.

9

channels, the sender looks at the last bit of the system time. If that bit is equal to

the bit the sender will transmit, it calls the receiver. Wang et al. [30] mentioned a

channel that is implemented using Simultaneous Multi-Threaded processors. This

covert channel takes advantage of the ability of a processor to run multiple processes

in turns. In order to transmit a symbol, the sender process executes an operation

that changes its execution time (in the paper, processes use multiply to send "1" and

no operation instruction to send "0"). Timing channels can even use the computer’s

clock to transmit data. Zander et al. [31] describe a timing channel that manipulates

the CPU workload. Alterations in the CPU workload change the CPU temperature

and eventually skew the clock by a rate that can be noticed by an observer [32].

There are also studies to prevent and detect covert timing channels. Researches about

prevention mostly focus on either static analysis of resources or manipulating inter-

arrival times. Kemmerer et al. [33] introduced a static analysis method called Shared

Resource Matrix. This procedure involves creating a table for all resources in a sys-

tem: resources are on the first column of the table, and access rights of all operations

that use those resources are on other columns. The table even includes indirect ac-

cesses. This way, it is possible to perform a risk assessment for the system. Kang et al.

[34] introduced a special architecture that uses a buffer between the network and the

user. Authors claim that this architecture can reduce network timing channel capacity

without decreasing throughput. Another method proposed to prevent covert channels

is jamming [6]. This technique, as in [34], attempts to disrupt the covert channels

by changing the inter-arrival times of the network packets. The main propose of the

jamming is to disrupt covert channels without affecting the legitimate ones. It tries

to achieve this by creating a distribution similar to the cumulative distribution of the

inter-arrival times of legitimate channels.

On the other hand, detection techniques for covert timing channels involve captur-

ing differences between one or more statistical properties of legitimate and covert

communications. Cabuk et al. [35] introduced IPCTC and proposed two detection

methods called regularity and ε-Similarity. Regularity divides inter-arrival times to

non-overlapping groups, calculates standard deviation σ for each group, and then

computes a metric using the following formula:

10

regularity = STDEV (
|σi − σj|

σi
, i < j,∀i, j),

where STDEV () function calculates the standard deviation of all pairwise differ-

ences between deviations of groups. ε-Similarity firstly sorts inter-arrival times then,

calculates pairwise differences between consecutive times and, lastly, computes the

percentage of differences that are smaller than a chosen ε value. This technique is

based on the observation that for covert channels, most of the differences between

inter-arrival times tend to be very small. The same does not apply to legitimate chan-

nels. The results show that both methods are successful if there is no noise in the

channel, and there is only one timing interval. If more than one interval is used (for

instance, 40ms for three packets then, 60ms for four packets and after that 80ms for

five packets) regularity fails. In the case of noise, the success rate for both methods

decreases.

Gianvecchio and Wang [21] used four statistical properties named Kolmogorov-Smirnov

test, regularity, entropy, and corrected conditional entropy to detect three types of

binary channels: IPCTC, Time-Replay Covert Timing Charmel (TRCTC) and Jit-

terbug. Kolmogorov-Smirnov test calculates how close two distributions are [36].

Entropy observes repetitive patterns, and corrected conditional entropy is a version of

entropy that is adapted for finite data. TRCTC records and divides legitimate inter-

arrival times into two groups. After that, it uses values in one group for the bit "1"

and the other for the bit "0". Results show that corrected conditional entropy can

detect IPCTC and TRCTC, entropy can detect Jitterbug, and Kolmogorov-Smirnov

test can detect IPCTC. Regularity could not detect any channel. Authors conclude

that corrected conditional entropy and entropy are enough to detect channels IPCTC,

TRCTC, and Jitterbug. Shrestha et al. [37] also studied Kolmogorov-Smirnov, reg-

ularity, entropy, and corrected conditional entropy. The authors claim that it is not

possible to detect covert channels using threshold values for each property presented

in the paper [21] if the sampling size is one hundred inter-arrival times or less. In or-

der to improve detection performance, they tried to use these statistical features with

SVM (Support Vector Machine). SVM is a machine learning method that separates

data points into two classes [38], [39]. In this case, classes are legitimate and covert.

Authors tested their method with covert channels from [21] and another one called

11

L-bits-to-N-packets. L-bits-to-N-packets maps L number of given bits to N number

of inter-arrival times [40]. Results showed that the accuracy is above 90% for IPCTC,

L-bits-to N-packets, TRCTC when the sample size is two thousand inter-arrival times

(this was the value authors of [21] used). The accuracy dropped to 75% and above

when the authors changed the sample size to 100. For Jitterbug, accuracy increased

from 33% to 48%. Darwish et al. [41] introduced another form of entropy called

hierarchical entropy in their work. This technique divides the inter-arrival time list

to smaller lists, then selects the one with the lowest entropy and repeats the process.

It continues to do so until the currently selected list can not be divided anymore (is

a legitimate channel), or the difference between previous and current selected lists

exceeds a limit (is a covert channel). Hierarchical entropy successfully detected the

binary form of Fixed Interval, but failed for those encoding the data in four and six

bits. Later, Darwish et al. used hierarchical entropy with a big data analysis tool

called MapReduce [42] to search for covert channels in within a vast amount of chan-

nels [43].

Iglesias et al. [15] proposed a series of statistical methods for all types of covert

channels related to TCP/IP. To do that, they firstly captured flows of TCP packets

(authors defined flow as the group of packets with the same source and destination

addresses). Then they applied these methods to each TCP field that can be used

for covert communication (except address fields and fields that can be checked by a

packet integrity checker) and inter-arrival times of each flow. After that, they create a

matrix for each flow using the results of these methods and use it for covert channel

detection. Later, the same authors, along with Bernhardt, implemented eight different

types of network timing channels and used methods from [15] with a decision tree

[44]. The implemented channels are IPCTC, Fixed Interval, Jitterbug, Differential,

Huffman Coding, TCP Timestamp Manipulation, One Threshold, and Packet Bursts.

Differential adds or subtracts a predefined value from the Time-To-Live field of an

IP packet to indicate the bit "1" and preserves the value of the field to indicate the

bit "0" [45]. Huffman Coding encodes every symbol as a set of inter-arrival times,

according to Huffman encoding [46]. One Threshold defines a threshold value and

interprets inter-arrival times lower than this value as the bit "1", and higher ones as

the bit "0" [47]. Packet Bursts maps a symbol to a unique number of packets [48].

12

For each symbol, this channel sends a predefined number of packets simultaneously

and then waits for some time before sending another symbol. Results showed that the

decision tree could successfully detect these channels. Later, in another work, Iglesias

and Zseby [49] questioned whether network timing channels could be considered as

outliers and, thus, be detected with unsupervised outlier detection algorithms. For

this purpose, they used seven of the channels implemented in [44]: IPCTC, Fixed

Interval, Jitterbug, Differential, Huffman Coding, One Threshold, and Packet Bursts.

They created a dataset using these channels and legitimate data from MAWI Working

Group Traffic Archive [50]. After that, they ran a group of selected outlier detection

algorithms and supervised learning methods (using features similar to those in the

paper [15]) on this dataset. Results showed that network timing channels do not

have extreme characteristics that can be easily detected by outlier algorithms, though

detection is possible with supervised ones. Lastly, Iglesias et al. [1] extended the

network timing channel set implemented in [44] with ASCII Binary Encoding and

Five-Delay Encoding. ASCII Binary Encoding encodes the input symbol as ASCII

binary form, then it waits for a predefined time for the bit "0" and sends a packet

right away for the bit "1" [51]. Five-Delay Encoding maps every letter of the English

alphabet to a unique series five inter-arrival times [51]. They created a dataset of

network packets using these channels and various types of files and folders. Then, for

each flow, they calculated the following features:

• The number of unique values (U): This feature calculates the number of

unique inter-arrival times.

• The total number of packets in the flow (pkts)

• Mode frequency (p(Mo)): This feature divides the maximum number of re-

curring inter-arrival time with the total number of inter-arrival times.

• Estimation of covert byte-equivalent symbol (c): This feature represents the

estimated number of symbols sent in a flow.

• Multimodality based on kernel density estimations (Sk): This feature calcu-

lates the number of the peaks of the Gaussian kernel that fits inter-arrival times

[15], [52].

13

• Multimodality based on Pareto analysis (SS): This feature represents the

number of sharp peaks in the inter-arrival time histogram [15], [53].

• Average distribution width (ws): This feature calculates the mean of the stan-

dard deviations of Gaussians computed by the kernel.

• Sum of autocorrelation coefficients (ρA): Autocorrelation coefficients are cal-

culated by lagging the inter-arrival time series and correlating it with the origi-

nal one [54]. This feature is calculated by taking the sum of coefficients of lags

between one and the number of inter-arrival times. The value of ρA is one for

regular series.

• Runs test (TR): This feature test inter-arrival times for randomness [55].

• Sign test (TS): Sign test makes a pairwise comparison between inter-arrival

time and its one lagged version [56]. Like TR, it is used to test randomness in

[1].

• Kolmogorov complexity (K): Kolmogorov complexity is the shortest pro-

gram that can generate a given string [57], [58]. It is similar to entropy. For

the given time series A and its compressed version B, it is estimated as K =

lengthof(A)/lengthof(B) in [1].

• Hurst exponent (Hq): This feature estimates whether a given time series tends

to move in a certain direction [59]. It is used to measure self-similarity in [1].

• Approximate entropy (Ha): Approximate entropy is used to measure the reg-

ularity of short and noisy time series in literature [60].

Lastly, they gave these features as input to various supervised and unsupervised ma-

chine learning algorithms. Results showed that among these, K and c are most sig-

nificant features, Sk, SS , TR and TS are less significant, U , ws, Ha, p(Mo), pkts are

low significant and, ρA andHq are negligible. However, removing even the negligible

features dropped the detection accuracy.

14

CHAPTER 3

DATASET

In this thesis, we generated and used synthetic datasets for Fixed Interval and Jitter-

bug.

Our leakage scenario involves a network covert timing channel that is between the

intranet of a company and the Internet, as shown in Figure 3.1. In the intranet, there

is a "sender" (Alice) who has access to the sensitive data. The sender can also re-

ceive from or send packets to the Internet. However, these packets are collected and

checked by the warden. The warden can even modify these packets’ fields. For in-

stance, the warden can fill an unused field of a network header with zeroes to prevent

it from carrying covert data. The receiver can not access the intranet though he or she

can receive from or send packets to the sender.

Sender (Alice)

INTERNET

INTRANET
Warden

... 1 0 0 1 1 ...

Receiver (Bob)

... 1 0 0 1 1 ...

Figure 3.1: Our covert channel setup

As legitimate traffic, we used MAWI Dataset [50]. This dataset has collected samples

of real-world traffic from various sample points. We selected Sample Point F for our

evaluation. We chose Sample Point F because other points either were terminated a

long time ago or did not have daily data. Years available to Sample Point F are from

2006 to 2019. We chose the year 2018 since it is the closest year to the writing of this

thesis and has a record for each day.

15

We used test images from CIFAR-10 [2] in place of sensitive data. This dataset has

sixty thousand colored pictures, and each picture consists of 3072 bytes (example

pictures can be seen in Figure 3.2). It is suitable for generating different combinations

of bits. We used one thousand images for Fixed Interval and two hundred twelve

images for Jitterbug. Each channel used the first 1200 bytes of each image.

The receiver side of a covert channel has to "decode" (recover) data from inter-arrival

times during or after transmission. However, there may be errors in received data

because of the network conditions like jitters or packet losses. We call bit errors

caused by these conditions as ”decoding error” and the percentage of erroneous bits in

received data as ”decoding error rate”. In our setup, the data is one image. Therefore,

we calculated decoding error rates for each image. We intended to examine the effects

of errors on a covert channel’s performance and detection. For this reason, we ran

covert channels with various inter-arrival times. Also, we assumed latency is similar

for the detector and receiver. So, we assumed that the receiver and the sender were

close to each other. At first, this may seem to contradict our setup. However, it makes

sense to place the receiver close to the sender so that the channel is less affected

by network problems. Moreover, covert channels can use lower arrival times when

the delay is small. Lower inter-arrival times increase Fixed Interval’s capacity and

decrease Jitterbug’s chance of detection.

We used exponential distribution to simulate unexpected network delays. In the lit-

erature, this distribution is used for simulating times between events of a Poisson

process. The Poisson process is defined as a collection of random events that are

independent of each other [61]. The exact time between events is unknown, but the

average time is known [62], [63]. We assumed packet arrivals are a Poisson process

since they are random and mostly independent. Probability density function for an

exponential distribution is defined as f(x; 1/β) = 1/βe1/β [64]. This function only

requires one parameter, which is β. We calculated it from legitimate flows we used

for each covert channel.

Each flow of the MAWI dataset and covert channels is uniquely defined with protocol,

source IP, destination IP, source port and destination port tuple. We used the only TCP

and UDP (User Datagram Protocol) flows.

16

Covert channels are generated using UDP packets. UDP packets are processed on a

package basis so they can be easily generated and manipulated.

Figure 3.2: Example images from CIFAR-10 (Image taken from [2]).

3.1 Fixed Interval Dataset

For this dataset, we created one flow for each image from CIFAR-10. Covert chan-

nels sent each image as a big-endian binary bitstream. Also, channels used two inter-

arrival times, and each inter-arrival time represented a bit. We configured Fixed In-

terval to wait for a predefined time before sending the bit "0" and double of it before

sending the bit "1". For instance, if the predefined inter-arrival time is 50ms, 50ms is

used to transmit a "1" bit and 100ms is used to transmit a "0" bit.

We selected flows with TCP or UDP packets from a random day (8 December 2018

to be precise) of the MAWI dataset as legitimate flows. Packet type and content are

not important since only inter-arrival times are processed. We used UDP and TCP

due to the reason these are commonly used protocols.

We used following inter-arrival times to send all images: 0.018 − 0.036ms, 0.035 −

17

0.070ms, 0.065−0.130ms, 0.100−0.200ms and 0.185−0.370ms. These inter-arrival

times show a pattern; channels with higher inter-arrival times have lower decoding

error rates but also have lower capacity. We also will show the effects of inter-arrival

times to detection later. Table 3.1 shows the decoding error rate and capacity for each

inter-arrival time. We also calculated β as 0.018ms.

Table 3.1: Fixed Interval Dataset Properties

Inter-Arrival Times

(ms)
Decoding Error Rate

Capacity

(Kilobits per second)

0.018-0.036 30% 56

0.035-0.070 20% 29

0.065-0.130 10% 15

0.100-0.200 5% 10

0.185-0.370 1% 5

3.2 Jitterbug Dataset

For this dataset, we used SSH flows that we extracted from the legitimate dataset.

Jitterbug requires keypresses, so we extracted keypresses from our flows. We filtered

keypresses using inter-arrival times since it was not possible to understand which

package belongs to a keypress by looking at the contents of the packages. We ac-

cepted inter-arrival times equal to or bigger than 30ms as a keypress. This heuristic is

based on observations from the research made by Killourhy and Maxim [65] and the

book written by Tyeito et al. [66]. The first work contains a dataset that keystroke-

timing of fifty one people that type a password that has nine characters four hundred

times. It includes various of timing data, including delta times between keypresses.

The average value for minimum times for each delta time between keypresses is ap-

proximately 25ms. The other work shows that 1% of SSH text sessions have 32ms

inter-arrival times (Tveito et al., 2009, p. 207). Therefore, we set an optimistic lower

limit 30ms and extracted inter-arrival times equal to or bigger than that. The images

are converted to big-endian bits and sent one after another through multiple sessions.

We assumed that the receiver knows the size of each image beforehand. Also, as de-

18

fined by Shah et al. [20], Jitterbug interprets inter-arrival time mod w = bw/2c
as the bit "1" and inter-arrival time mod w = 0 as the bit "0".

We used following timing windows to send all images: 1ms, 3ms, 5ms, 7ms, and

9ms. Like Fixed Interval, channels with higher inter-arrival times have lower decod-

ing. However, unlike Fixed Interval, the capacity of Jitterbug depends only on the

number of keypresses. As a result, the capacity is independent of the timing window

and different for each flow. All timing windows have the same capacity. Figure 3.3

shows channel capacities for all flows. The average capacity of all flows is approxi-

mately 1 bit per second.

0 2000 4000 6000 8000 10000
Flow

0

5

10

15

20

Ca
pa

cit
y

(b
it

pe
r s

ec
on

d)

Figure 3.3: Channel capacities for all flows.

Table 3.2 shows the decoding error rate for each inter-arrival time. We also calculated

β as 0.25ms.

Table 3.2: Jitterbug Dataset Properties

Timing Window

(ms)
Decoding Error Rate

1 38%

3 15%

5 7%

7 4%

9 2%

19

20

CHAPTER 4

PROPOSED METHOD AND FEATURES

Our goal is to build a flexible, fast running and understandable detector, as we ex-

plained in Section 1.2. We decided to use machine learning methods to achieve flexi-

bility. Based on past studies, we selected a few of them as candidates: neural network,

SVM, unsupervised learning algorithms, ensemble methods, and decision tree.

Neural networks are composed of layers and inter-layer connections. Each connection

is associated with a number that is called "weight". Weights determine the output

of the network. During the training phase, neural networks adjust weights so that

results are close to expected ones. Neural networks are successfully used in many

tasks including anomaly and fraud detection (anomaly and fraud detection are similar

to the covert channel detection; all of them look for anomalies). Unfortunately, the

model build by neural networks is not easily understandable and often considered as

black-box.

SVM is used for data sets that can be divided into two separate categories. It treats the

input data as points on hyperspace and draws a hyperplane to separate this space into

two categories [37]. Unfortunately, SVM also does not produce an understandable

model and can not handle multiple target categories. Moreover, SVM tries to use a

single hyperplane to separate the space, and the data may not always be categorized

using a single hyperplane.

Unsupervised algorithms do not require labeled input. These algorithms split the

input data into categories using the statistical properties of the data. This means we

do not need to label the training data by hand. Unsupervised algorithms can also

handle multiple target classes. Although, it is not always clear why an unsupervised

21

algorithm categorised an input as a class. Moreover, Iglesias et al. have shown that

unsupervised outlier detection algorithms are not efficient covert channel detectors.

Ensemble methods combine multiple machine learning algorithms to gain better pre-

diction performance. These methods are less prone to overfitting than single machine

learning algorithms. Though ensemble methods also require more time and space.

We did not use ensemble methods because we only have four features and need a

model that requires less space and time.

The decision tree classifies given features using a tree structure. It is one of the few

machine learning methods that build a model understandable by humans. Moreover,

the decision tree can be used for feature selection. Also, Iglesias et al. claimed that

they achieved the best detection performances with a decision tree [1]. However,

decision tree is prone to overfitting thus must be used carefully. We decided to use

the decision tree because it is appropriate for the data with categorical target classes,

and the model it created is easily understandable.

When selecting features, we firstly evaluated the following: Kolmogorov-Smirnov

test, regularity, ε-Similarity, entropy and the ones defined by Iglesias et al. in [1].

Although all of them were used in previous studies, Jitterbug was only detected by

the latter. However, when we tried to implement features from [1], we ran into some

problems. Firstly, calculations took a long time. Secondly, it was not clear how they

computed some features. Since our detector must run fast, the working time of calcu-

lations is important. Also, our detector requires retraining when network conditions

change. It is crucial to finish the training as fast as possible and bring the system

to online. Moreover, if the detector fails, maintainers would want to know what is

happening on the inside. Debugging the system would be faster and easier with fewer

features. Features defined by Iglesias et al. are specialized for detecting various

types of covert channels and are better for advanced detection. For these reasons, we

looked for other options and found the first four moments (mean, variance, skewness

and kurtosis). These show mean, spread and shape of a distribution. Covert channels

we encountered either do not agree with the shape of the legitimate traffic (i.e., Fixed

Interval) or have to have a higher mean to compensate network delays (i.e., Jitterbug).

Therefore, we believe the first four moments can discriminate most types of covert

22

channels.

Detailed descriptions of the decision tree and the first four moments are given the next

sections:

4.1 Decision Tree

Decision tree is used for classifying discrete target values given a set of features.

It uses a tree, places rules on inner nodes, and target values on leaves. Rules are

determined by the decision tree using features. For instance, a tree that uses our

features can define an inner node as "mean bigger than 2ms". Rules are closer to the

root are more generalized, whereas rules are closer to leaves tend to be more specific

to a case. The decision tree is robust to errors and can be validated by statistical tests

[18]. Moreover, it is easily understandable and can even be converted to if-then-else

rules.

Outlook

WindHumidity

Strong Weak

No NoYes Yes

Yes

Overcast

Rain

Sunny

High Normal

Figure 4.1: A decision tree example. Nodes are features, connections are values for

each feature, and leaves are classes.

The decision tree algorithm uses heuristic methods to construct the tree. Heuristic

methods are called splitting criteria. The most frequently used ones are Gini Impurity

23

and Information Gain. Gini Impurity calculates the probability that a given classifi-

cation is wrong. It is calculated as:

GiniImpurity = 1−
N∑
k=1

p(classi)

where N is the number of target classes, classi is the ith class, and p(classi) is the

probability that a sample is in classi. Information Gain measures how much a given

feature contributes to classification. It is computed as:

H(E) = −
N∑
k=1

p(classi) ∗ log2p(classi)

H(E|x) = −
N∑
k=1

p(classi|x) ∗ log2p(classi|x)

InformationGain(x) = H(E)−H(E|x)

where InformationGain(x) is the information gain of a given feature x, H(E) is

the entropy of outcomes, and H(E|x) is the entropy of outcomes given a feature.

Both Information Gain and Gini Impurity is 0.0 if all samples belong to a class and

0.5 if the number of samples in all classes are equal. The splitting criterion a decision

tree will use is given to it by the user.

The decision tree algorithm creates the tree from top to bottom during the training

phase. During the construction of a level, the algorithm firstly computes a value for

all features using the given splitting criterion. After that, it selects the feature with

the highest (Information Gain) or the lowest value (Gini Impurity) as a node. The

algorithm continues to create new nodes until values for all features become zero (all

training samples are classified). After the training phase, the tree remains unchanged.

Sometimes a decision tree specializes for the given training data and loses its gen-

eralization abilities. This problem is called overfitting. Generally, decision trees are

pruned during or after the training phase to avoid overfitting. Pruning removes some

branches of the decision tree without decreasing the accuracy too much. Other op-

tions include limiting the maximum depth of the tree or the maximum number of

samples that are required to create a leaf node [18].

24

4.2 The First Four Moments

We utilized four features called mean, variance, skewness and kurtosis for our pur-

pose. Mean calculates the arithmetic average, variance calculates the spread, skew-

ness calculates the skewness and kurtosis calculates the amount of data in tails of a

given distribution. These are called the first four moments of statistics [67], [68],

[69].

Each of these features is calculated using last predefined consecutive inter-arrival

times (for instance, the last fifty consecutive inter-arrival times). That is, we defined

a "window" which takes ten, twenty, or forty consecutive inter-arrival times and com-

putes features using them (we will call "window" as "slice" in order to distinguish it

from Jitterbug’s timing window parameter). The number of consecutive inter-arrival

times to be used may be from two to the number of packets minus one.

Some mean, variance, skewness and kurtosis values for a legitimate and two different

Fixed Interval channels are given in Figure 4.2 and 4.3. These are calculated using

twenty inter-arrival times. Figure 4.2 and 4.3 show that the mean and the skewness

are good candidates for detecting a Fixed Interval channel. Since the shape of the

legitimate and Fixed Interval’s are different, the skewness can distinguish them. The

mean becomes the main distinguishing feature if inter-arrival times of Fixed Interval

are significantly smaller or bigger than the mean of the legitimate channel. This sit-

uation is present in Figure 4.2. A decision tree also supports these results. Features

weighted according to their contribution in classification are shown in Figure 4.4.

These weights are called "feature importances". Feature importances are calculated

using Gini Importance. Gini Importance is an extended version of the Gini Impurity.

It takes a value between zero and one. Features that contribute more to the classifi-

cation have higher Gini Importance [64]. Figure 4.4b shows that the Fixed Interval

with 0.065ms and 0.130ms inter-arrival times is detected using the skewness. This is

due to the fact that Fixed Interval and the legitimate channel have similar means, as

shown in the 4.3a. On the other hand, the Fixed Interval with 0.035ms and 0.070ms

inter-arrival times is detected using the mean (Figure 4.4a). Figure 4.2a shows that

the mean is slightly different for the covert and the legitimate channels. Another point

to note is that the values of the legitimate channel’s features are more scattered than

25

Fixed Intervals’ as seen in Figure 4.2, 4.3. This shows the legitimate channels tend to

be more chaotic than Fixed Intervals’.

Figure 4.5, 4.6, and 4.7 shows major differences between Jitterbug and an SSH legit-

imate channel are the mean and the variance. Jitterbug must use timing windows that

are high enough to avoid unexpected delays. As a result, Jitterbug has higher inter-

arrival times. Also, inter-arrival times that Jitterbug creates are multiples (or multiple

plus the half) of the timing window. Consequently, the variance of the inter-arrival

times are smaller and more regular for Jitterbug channels. So it makes sense that the

mean and the variance are the main distinguishing features. The shape of Jitterbug

is similar to the legitimate channel (Figure 4.5c, 4.6c, 4.5d and 4.6d). As a result,

values of skewness and kurtosis are more close to each other and less frequently used

(Figure 4.7). Though, the decision tree uses all features more or less for the detection

of Jitterbug.

26

0 100 200 300 400
Slice

1

2

3

4

5

M
ea

n
(x

10
4 m

s)

(a) Mean

0 100 200 300 400
Slice

0

5

10

15

Va
ria

nc
e

(x
10

7 m
s2)

(b) Variance

0 100 200 300 400
Slice

1

0

1

2

3

4

Sk
ew

ne
ss

(c) Skewness

0 100 200 300 400
Slice

0

5

10

15

Ku
rto

sis

(d) Kurtosis

Figure 4.2: Some mean, variance, skewness and kurtosis values for a legitimate (blue

dots) and a Fixed Interval (orange dots) channel. These are calculated using twenty

consecutive inter-arrival times. Inter-arrival time for the covert channel is 0.035ms

(for the bit "1" and 0.070ms for the bit "0").

27

0 100 200 300 400
Slice

1

2

3

4

5

M
ea

n
(x

10
4 m

s)

(a) Mean

0 100 200 300 400
Slice

0

5

10

15

Va
ria

nc
e

(x
10

7 m
s2)

(b) Variance

0 100 200 300 400
Slice

1

0

1

2

3

4

Sk
ew

ne
ss

(c) Skewness

0 100 200 300 400
Slice

0

5

10

15

Ku
rto

sis

(d) Kurtosis

Figure 4.3: Some mean, variance, skewness and kurtosis values for a legitimate (blue

dots) and a Fixed Interval (orange dots) channel. These are calculated using twenty

consecutive inter-arrival times. Inter-arrival time for the covert channel is 0.065ms

(for the bit "1" and 0.130ms for the bit "0").

28

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for a Fixed Interval channel with

0.035ms and 0.070ms inter-arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for a Fixed Interval channel with

0.065ms and 0.130ms inter-arrival times.

Figure 4.4: Feature importances for two Fixed Intervals. Each importance takes a

value between zero and one. Features that contribute more to classification have

higher importance.

29

0 50 100 150 200 250 300
Slice

0.0

0.5

1.0

1.5

2.0

M
ea

n
(m

s)

(a) Mean

0 50 100 150 200 250 300
Slice

0

1

2

3

4

5

Va
ria

nc
e

(m
s2)

(b) Variance

0 50 100 150 200 250 300
Slice

1

0

1

2

3

Sk
ew

ne
ss

(c) Skewness

0 50 100 150 200 250 300
Slice

2

0

2

4

6

8

Ku
rto

sis

(d) Kurtosis

Figure 4.5: Some mean, variance, skewness and kurtosis values for a legitimate (blue

line) and a Jitterbug (orange line) channel. These are calculated using twenty consec-

utive inter-arrival times. The timing window of the covert channel is 1ms.

30

0 50 100 150 200 250 300
Slice

0.0

0.5

1.0

1.5

2.0

M
ea

n
(m

s)

(a) Mean

0 50 100 150 200 250 300
Slice

0

1

2

3

4

5

Va
ria

nc
e

(m
s2)

(b) Variance

0 50 100 150 200 250 300
Slice

1

0

1

2

3

Sk
ew

ne
ss

(c) Skewness

0 50 100 150 200 250 300
Slice

2

0

2

4

6

8

Ku
rto

sis

(d) Kurtosis

Figure 4.6: Some mean, variance, skewness and kurtosis values for a legitimate (blue

line) and a Jitterbug (orange line) channel. These are calculated using twenty consec-

utive inter-arrival times. The timing window of the covert channel is 5ms.

31

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for a Jitterbug with 1ms time

window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for a Jitterbug with 5ms time

window.

Figure 4.7: Feature importances for two Jitterbugs. Each importance takes a value

between zero and one. Features that contribute more to classification have higher

importance.

32

CHAPTER 5

EXPERIMENTS AND DISCUSSIONS

In this section, we will first explain the experiments we performed to test our hypothe-

sis explained in Chapter 4. After that, we will discuss results of these the experiments.

5.1 Experiments

In these experiments, we wished to see how accuracy, precision, recall and F1 scores

[70], [71] of detection changes for different configurations of covert channels, fea-

tures, and decision trees. We also aimed to find the minimum number of network

packets we could detect a covert channel with high probability. In other words, we

aimed to see how soon can we detect a covert flow. We used Fixed Interval, Jitterbug,

and legitimate flows from our dataset for experiments.

We performed a different experiment for each important parameter that covert chan-

nels, features, and a decision tree have. For each experiment, we used only covert

flows with the same inter-arrival times (time window for Jitterbug) and legitimate

flows. Before running experiments, we calculated features using each flow in our

dataset. After that, we brought the features with the same configurations together to

create a list. We did the same for legitimate flows. Then, we ran each experiment

using a decision tree and features we calculated. In order to avoid biases, we shuf-

fled each feature list during an experiment. We also shuffled the legitimate and the

covert feature lists we intend to use together before giving them to the decision tree.

Furthermore, we kept the number of covert and legitimate features given to the tree

equal to prevent the decision tree from deciding in favor of the class that had more

samples. Also, we created a new tree for each run. Each experiment was performed

33

twenty times with five-fold cross-validation. We calculated the arithmetic average of

the results from all runs to find the final result.

In order to find the minimum number of network packets that detection can be made,

we calculated features from a flow using ten, twenty and forty consecutive inter-

arrival times. As we mentioned in Chapter 4, we call a group of these inter-arrival

times a "slice". We divided each flow into slices. Each slice other than the first starts

with the second element of the previous group. For example, if we were to use three

consecutive inter-arrival times and our inter-arrival times were {0.56, 1.01, 2.13, 0.6,
0.51}ms; the first group of features would be calculated using {0.56, 1.01, 2.13}ms,
the second one would be calculated using {1.01, 2.13, 0.6}ms and the third one would

be calculated using {2.13, 0.6, 0.51}ms. We created three different feature lists using

ten, twenty, and forty slices for covert flows with the same configurations. Three

different lists were also created for legitimate channels similarly. In each experiment,

we used features calculated using the same slice. Moreover, we calculated the results

of each experiment according to the slice used in that experiment.

We also modified the following parameters for the decision tree to improve detection

performance or observe differences between performances: the splitting criterion that

tree uses, the minimum number of samples that a leaf requires (MSL), and the splitter.

As we mentioned in Chapter 4, the splitting criterion is used to construct a tree. It is

one of the factors that determine the structure of the tree. We used Information Gain

and Gini Impurity splitting criteria for our experiments. The MSL specifies at least

how many samples must lead to a node in order for that node to be defined as a leaf.

For instance, if the MSL is five samples for a decision tree, then all leaves should

be accessible by at least five or more samples. The MSL is a parameter that affects

both the structure and the runtime of the tree. Smaller MSL values lead to shorter

runtimes but lower prediction performance. On the other hand, bigger MSL values

have higher prediction scores but cause longer runtimes and are more susceptible to

overfitting. The splitter specifies how the tree will select a node. Possible options for

this parameter are the best or the random. The best selects the most optimal feature

using methods described in Section 4.1. The random selects a feature randomly.

The best option has higher accuracy than the other. Though, it runs significantly

slower. Moreover, selecting options randomly instead of selecting the best may have

34

an positive impact on overfitting.

In addition to these, we aimed to see how our feature behaves for a flow. To do that, we

trained a decision tree using the two-thirds of legitimate and covert channels’ feature

lists. Then, we randomly selected ten legitimate and ten covert flows that do not have

features on these lists. After that, we gave each flow’s features one by one to the tree

and got its decision. For every inter-arrival time and timing window configuration

and every type of the flow (legitimate or covert), we created a new decision tree. We

also tested legitimate flows with trees that are created using different configurations

of covert channels. For each flow, we calculated how many times the right and wrong

decisions were made. We also calculated how many times the decision of the tree has

changed. The latter helped us understand how accurate and stable the decisions of the

tree were.

Lastly, we compared our features with other features in the literature that can detect

Fixed Interval and Jitterbug. For this purpose, we chose features defined by Iglesias

et al. in [1]. These are:

• The number of unique values (U): This feature calculates the number of

unique inter-arrival times.

• The total number of packets in the flow (pkts)

• Mode frequency (p(Mo)): This feature divides the maximum number of re-

curring inter-arrival time with the total number of inter-arrival times.

• Estimation of covert byte-equivalent symbol (c): This feature represents the

estimated number of symbols sent in a flow.

• Multimodality based on kernel density estimations (Sk): This feature cal-

culates the number of the peaks of the Gaussian kernel that fits inter-arrival

times.

• Multimodality based on Pareto analysis (SS): This feature represents the

number of sharp peaks in the inter-arrival time histogram.

• Average distribution width (ws): This feature calculates the mean of the stan-

dard deviations of Gaussians computed by the kernel.

35

• Sum of autocorrelation coefficients (ρA): Autocorrelation coefficients are cal-

culated by lagging the inter-arrival time series and correlating it with the orig-

inal one. This feature is calculated by taking the sum of coefficients of lags

between one and the number of inter-arrival times. The value of ρA is one for

regular series.

• Runs test (TR): This feature test inter-arrival times for randomness.

• Sign test (TS): Sign test makes a pairwise comparison between inter-arrival

time and its one lagged version. Like TR, it is used to test randomness in [1].

• Kolmogorov complexity (K): Kolmogorov complexity is the shortest program

that can generate a given string. It is similar to entropy. For the given time series

A and its compressed version B, it is estimated as K = lengthof(A)/length

of(B) in [1].

• Hurst exponent (Hq): This feature estimates whether a given time series tends

to move in a certain direction. It is used to measure self-similarity in [1].

• Approximate entropy (Ha): Approximate entropy is used to measure the reg-

ularity of short and noisy time series in literature. We used a different version

of entropy called sample entropy [72] in our calculations. Compared to the

approximate entropy, the results of sample entropy is less erroneous.

We were able to implement all but the c feature. We could not be able to implement

c due to the reason its calculation method was not specified. Experiments with these

features had the same steps as the ones that we did with our features.

We performed the experiments using Python programming language. Moreover, we

used Python’s libraries for mean, variance, skewness, kurtosis, decision tree, accu-

racy, precision, recall, and F1 score [64].

5.1.1 Experiments with Fixed Interval

We performed experiments with Fixed Interval channels using combinations of the

following parameters:

36

• Inter-Arrival Times: This parameter determines inter-arrival times that covert

channels use. The values used for these experiments are 0.018 − 0.036ms,

0.035− 0.070ms, and 0.065− 0.130ms.

• Splitting Criterion: The splitting criterion specifies the measurement method

that is used to determine tree nodes. The values used for these experiments are

Gini Index and Information Gain.

• Splitter: The splitter specifies how the decision tree will select a node. The

values used for these experiments are best and random.

• MSL: This parameter specifies at least how many samples must lead to a node

in order for that node to be defined as a leaf. The values used for these exper-

iments are five million, five hundred thousand, and five thousand samples. We

did not use values below five thousand samples to reduce the risk of overfitting.

• Slice: The "window" that we used to calculate features. The values used for

these experiments are ten, twenty and, forty inter-arrival times.

For the experiments with the features in [1], we set inter-arrival times as 0.018 −
0.036ms, 0.035 − 0.070ms, and 0.065 − 0.130ms, the splitting criterion as Gini

Impurity, the splitter as best, the MSL as five thousand samples and the slice as

forty inter-arrival times.

Before running each experiment, we used z-scaling to normalize features. We did this

in order to obtain slightly better results.

5.1.2 Experiments with Jitterbug

We performed experiments with Jitterbug channels using combinations of the follow-

ing parameters:

• Timing Window: This parameter determines the timing windows that covert

channels use. The values used for these experiments are 1ms, 3ms, 5ms, 7ms,

and 9ms.

37

• Splitting Criterion: The splitting criterion specifies the measurement method

that is used to determine tree nodes. The values used for these experiments are

Gini Index and Information Gain.

• Splitter: The splitter specifies how the decision tree will select a node. The

values used for these experiments are best and random.

• MSL: This parameter specifies at least how many samples must lead to a node

in order for that node to be defined as a leaf. The value used for these experi-

ments is ten samples.

• Slice: The "window" that we used to calculate features. The values used for

these experiments are ten, twenty and, forty inter-arrival times.

For the experiments with the features in [1], we set the timing window as 1ms, 3ms,

5ms, 7ms and 9ms, the splitting criterion as Gini Impurity, the splitter as best, the

MSL as ten samples and the slice as forty inter-arrival times.

5.2 Results and Discussion

Section 5.2.1 shows results for the experiments with Fixed Interval channels. Section

5.2.2 shows results for the experiments with Jitterbug channels. In Section 5.2.3, we

discuss these results.

In each section, we presented detection results and compared these results with covert

channel decoding performances. We also put feature importances for each samples

and slices. Moreover, we presented calculation times one slice of each covert channel.

5.2.1 The Results for Fixed Interval

In order to make detection results more understandable, we present them in six differ-

ent tables. Each table shows results for a covert channel configuration and a splitting

criterion. Each table shows the accuracy, precision, recall, and F1 score for each

splitter, MSL, and slice combination.

38

We also gave results related to flow detection, feature importances, calculation times

and, comparisons with covert channel decoding performances in this section.

Table 5.1: The results for channels with 0.018ms and 0.036ms inter-arrival times.

The splitting criterion is Gini Impurity.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 86.95 79.35 99.90 88.45

20 90.77 84.51 99.83 91.54

40 93.24 88.23 99.80 93.66

500000

10 97.43 95.76 99.26 97.48

20 98.18 99.57 96.78 98.16

40 98.56 99.91 97.20 98.54

5000

10 98.83 98.31 99.38 98.84

20 99.52 99.31 99.73 99.52

40 99.84 99.80 99.89 99.84

Random

5000000

10 57.16 39.98 51.18 43.12

20 57.68 37.49 59.68 45.22

40 67.90 54.79 72.95 61.19

500000

10 74.73 68.87 18 85.99 76.02

20 81.90 76.52 94.41 84.14

40 85.33 79.68 94.82 86.10

5000

10 88.87 84.76 95.18 89.60

20 92.06 88.81 97.90 92.85

40 94.25 91.45 98.91 94.80

39

Table 5.2: The results for channels with 0.018ms and 0.036ms inter-arrival times.

The splitting criterion is Information Gain.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 86.89 79.24 99.97 88.41

20 90.70 84.33 99.97 91.49

40 93.16 87.97 99.98 93.59

500000

10 97.52 98.68 96.32 97.48

20 98.43 99.54 97.30 98.41

40 98.09 99.93 96.25 98.05

5000

10 98.81 98.34 99.30 98.82

20 99.51 99.23 99.80 99.52

40 99.84 99.76 99.93 99.84

Random

5000000

10 57.76 39.39 57.22 45.49

20 63.69 50.57 67.33 56.29

40 61.58 43.03 64.97 50.83

500000

10 74.89 68.43 87.79 76.51

20 79.47 73.28 90.42 80.29

40 87.89 83.71 95.28 88.75

5000

10 88.53 84.37 94.94 89.29

20 93.83 90.87 97.71 94.11

40 96.14 94.55 98.80 96.46

40

Table 5.3: The results for channels with 0.035ms and 0.070ms inter-arrival times.

The splitting criterion is Gini Impurity.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 84.99 76.96 99.90 86.94

20 87.77 80.48 99.73 89.08

40 93.52 89.54 98.56 93.83

500000

10 98.31 99.45 97.16 98.30

20 99.36 99.78 98.94 99.36

40 97.97 99.97 95.97 97.93

5000

10 99.49 99.18 99.80 99.49

20 99.80 99.70 99.90 99.80

40 99.93 99.90 99.96 99.93

Random

5000000

10 57.92 39.73 61.69 47.46

20 70.34 58.36 75.89 64.81

40 65.59 46.60 66.55 54.01

500000

10 76.61 71.20 87.95 78.13

20 82.62 75.99 92.58 83.09

40 88.53 83.87 97.67 89.87

5000

10 90.13 86.37 95.74 90.75

20 93.32 90.03 98.30 93.82

40 97.84 96.61 99.28 97.90

41

Table 5.4: The results for channels with 0.035ms and 0.070ms inter-arrival times.

The splitting criterion is Information Gain.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 84.94 76.86 99.96 86.90

20 87.62 80.16 99.98 88.98

40 93.35 88.87 99.12 93.71

500000

10 98.49 99.41 97.56 98.48

20 99.74 99.64 99.84 99.74

40 98.30 99.96 96.64 98.27

5000

10 99.48 99.22 99.75 99.48

20 99.78 99.69 99.88 99.78

40 99.93 99.90 99.96 99.93

Random

5000000

10 53.34 35.01 53.38 40.43

20 64.80 51.00 67.82 56.73

40 66.53 50.14 72.23 58.33

500000

10 79.99 76.96 86.63 81.15

20 79.19 73.22 96.00 82.43

40 87.49 82.10 97.79 88.95

5000

10 90.89 87.43 95.93 91.42

20 93.65 90.87 98.04 94.12

40 96.91 94.95 99.30 97.03

42

Table 5.5: The results for channels with 0.065ms and 0.130ms inter-arrival times.

The splitting criterion is Gini Impurity.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 81.60 75.17 94.36 83.68

20 89.04 83.75 96.89 89.84

40 94.26 90.74 98.58 94.50

500000

10 98.12 97.20 99.11 98.14

20 98.36 99.81 96.89 98.33

40 97.76 99.97 95.55 97.71

5000

10 99.49 99.20 99.78 99.49

20 99.79 99.64 99.94 99.79

40 99.94 99.91 99.97 99.94

Random

5000000

10 58.89 42.31 58.55 47.65

20 60.30 41.87 62.19 48.88

40 60.03 42.04 66.87 50.77

500000

10 79.25 73.20 94.10 82.04

20 85.91 81.52 94.08 87.03

40 89.51 85.36 97.76 90.76

5000

10 87.97 83.84 94.41 88.76

20 94.39 91.94 97.58 94.62

40 96.13 94.34 99.20 96.50

43

Table 5.6: The results for channels with 0.065ms and 0.130ms inter-arrival times.

The splitting criterion is Information Gain.

Splitter MSL Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

Best

5000000

10 81.31 74.63 94.94 83.56

20 88.52 82.01 98.69 89.58

40 94.13 90.14 99.10 94.41

500000

10 99.21 99.18 99.25 99.21

20 99.22 99.76 98.69 99.22

40 98.21 99.95 96.46 98.17

5000

10 99.47 99.19 99.75 99.47

20 99.78 99.65 99.90 99.78

40 99.93 99.89 99.98 99.93

Random

5000000

10 56.30 38.42 59.85 45.63

20 62.18 44.38 65.94 52.07

40 71.61 57.04 75.99 64.27

500000

10 79.97 74.40 92.11 82.07

20 85.76 80.24 95.54 87.05

40 89.20 84.69 97.83 90.44

5000

10 88.76 84.82 94.69 89.44

20 93.62 90.55 97.93 93.99

40 95.64 93.73 99.15 96.12

Table 5.7: The results for features from Iglesias et al. [1]. The splitting criterion is

Gini Impurity, the splitter is best, the MSL is five thousand samples and each slice

consists of forty inter-arrival times.

Inter-Arrival Times

(ms)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

0.018 and 0.036 99.60 99.41 99.80 99.60

0.035 and 0.070 99.70 99.54 99.86 99.70

0.065 and 0.130 99.50 99.32 99.69 99.50

44

30 20 10
Decoding Error Rate (%)

98.0

98.4

98.8

99.2

99.6

100.0

Ac
cu

ra
cy

 (%
)

(a) Accuracy

30 20 10
Decoding Error Rate (%)

98.0

98.4

98.8

99.2

99.6

100.0

Pr
ec

isi
on

 (%
)

(b) Precision

30 20 10
Decoding Error Rate (%)

98.0

98.4

98.8

99.2

99.6

100.0

Re
ca

ll
(%

)

(c) Recall

30 20 10
Decoding Error Rate (%)

98.0

98.4

98.8

99.2

99.6

100.0

F1
 S

co
re

 (%
)

(d) F1 Score

Figure 5.1: Changes in detection scores and decoding error rates for each inter-arrival

time configuration. Inter-arrival times increase from left to right on the horizontal

line and down to up on the vertical line. Detection scores were obtained using the

following configuration: the splitting criterion is Gini Impurity, the splitter is best,

the MSL is five thousand samples and each slice consists of forty inter-arrival times.

The blue line represents results for the first four moments. The orange line represents

results for features from Iglesias et al. [1].

45

Table 5.8: Feature calculation times for one slice of a legitimate channel and Fixed

Interval channels.

Flow Type Feature Type Slice
Calculation

Time (ms)

Legitimate

The First Four

Moments

10 0.393

20 0.403

40 0.467

Features from

Iglesias et al. [1]

10 113.722

20 37.685

40 75.604

The covert channel with

0.018ms and 0.036ms

inter-arrival times

The First Four

Moments

10 0.705

20 0.466

40 0.417

Features from

Iglesias et al. [1]

10 88.413

20 152.406

40 644.143

The covert channel with

0.035ms and 0.070ms

inter-arrival times

The First Four

Moments

10 0.408

20 0.400

40 0.398

Features from

Iglesias et al. [1]

10 70.031

20 154.955

40 379.426

The covert channel with

0.065ms and 0.130ms

inter-arrival times

The First Four

Moments

10 0.400

20 0.406

40 0.423

Features from

Iglesias et al. [1]

10 57.963

20 87.742

40 387.103

46

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.2: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five million samples and each slice consists of ten inter-

arrival times.

47

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.3: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity,

the splitter is best, the MSL is five million samples and each slice consists of twenty

inter-arrival times.

48

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.4: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five million samples and each slice consists of forty inter-

arrival times.

49

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.5: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five hundred thousand samples and each slice consists of

ten inter-arrival times.

50

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.6: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five hundred thousand samples and each slice consists of

twenty inter-arrival times.

51

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.7: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five hundred thousand samples and each slice consists of

forty inter-arrival times.

52

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.8: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five thousand samples and each slice consists of ten inter-

arrival times.

53

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.9: The feature importances for the first four moments. Detection scores were

obtained using the following configuration: the splitting criterion is Gini Impurity, the

splitter is best, the MSL is five thousand samples and each slice consists of twenty

inter-arrival times.

54

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.10: The feature importances for the first four moments. Detection scores

were obtained using the following configuration: the splitting criterion is Gini Impu-

rity, the splitter is best, the MSL is five thousand samples and each slice consists of

forty inter-arrival times.

55

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(a) Feature importances for Fixed Interval

channels with 0.018ms and 0.036ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(b) Feature importances for Fixed Interval

channels with 0.035ms and 0.070ms inter-

arrival times.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(c) Feature importances for Fixed Interval channels

with 0.065ms and 0.130ms inter-arrival times.

Figure 5.11: The feature importances for features from Iglesias et al. [1]. Detection

scores were obtained using the following configuration: the splitting criterion is Gini

Impurity, the splitter is best, the MSL is five thousand samples and each slice consists

of forty inter-arrival times.

56

Table 5.9: The results for the detection of types of flows using the first four moments.

The covert channel uses 0.018ms and 0.036ms inter-arrival times. The splitting cri-

terion is Gini Impurity, the splitter is best, the MSL is five thousand samples and each

slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 459 0 0

2 1689 76 10

3 5939 0 0

4 1832 0 0

5 6510 0 0

6 61 0 0

7 220 0 0

8 6592 0 0

9 280 0 0

10 1454 0 0

Covert

1 9553 9 8

2 9563 0 0

3 9562 1 2

4 9562 1 2

5 9561 2 2

6 9551 12 8

7 9562 0 0

8 9531 32 18

9 9555 7 8

10 9538 25 8

57

Table 5.10: The results for the detection of types of flows using the first four moments.

The covert channel uses 0.035ms and 0.070ms inter-arrival times. The splitting cri-

terion is Gini Impurity, the splitter is best, the MSL is five thousand samples and each

slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 459 0 0

2 1759 6 2

3 5939 0 0

4 1832 0 0

5 6510 0 0

6 61 0 0

7 220 0 0

8 6591 1 2

9 280 0 0

10 1454 0 0

Covert

1 9562 0 0

2 9546 17 4

3 9563 0 0

4 9563 0 0

5 9561 2 2

6 9563 0 0

7 9562 0 0

8 9563 0 0

9 9562 0 0

10 9558 5 2

58

Table 5.11: The results for the detection of types of flows using the first four moments.

The covert channel uses 0.065ms and 0.130ms inter-arrival times. The splitting cri-

terion is Gini Impurity, the splitter is best, the MSL is five thousand samples and each

slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 459 0 0

2 1765 0 0

3 5939 0 0

4 1832 0 0

5 6510 0 0

6 61 0 0

7 220 0 0

8 6592 0 0

9 280 0 0

10 1454 0 0

Covert

1 9562 0 0

2 9563 0 0

3 9563 0 0

4 9563 0 0

5 9563 0 0

6 9562 1 2

7 9562 0 0

8 9563 0 0

9 9562 0 0

10 9563 0 0

59

5.2.2 The Results for Jitterbug

The results for Gini Impurity splitting criterion is in Table 5.12, and for Information

Gain splitting criterion is in Table 5.13. Each table shows the accuracy, precision,

recall, and F1 score for each timing window, splitter, and slice combination.

We also gave results related to flow detection, feature importances, calculation times

and, comparisons with covert channel decoding performances in this section.

Table 5.12: The results for Jitterbug channels. The splitting criterion is Gini Impurity.

Timing

Window

(ms)

Splitter Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

1

Best

10 83.71 83.71 83.71 83.71

20 82.33 82.33 82.33 82.33

40 84.41 84.41 84.41 84.41

Random

10 68.54 68.54 68.54 68.54

20 71.73 71.73 71.73 71.73

40 75.73 75.73 75.73 75.73

3

Best

10 79.75 79.75 79.75 79.75

20 80.75 80.75 80.75 80.75

40 83.33 83.33 83.33 83.33

Random

10 68.43 68.43 68.43 68.43

20 71.24 71.24 71.24 71.24

40 75.11 75.11 75.11 75.11

5

Best

10 79.38 79.38 79.38 79.38

20 80.49 80.49 80.49 80.49

40 83.15 83.15 83.15 83.15

Random

10 69.12 69.12 69.12 69.12

20 71.15 71.15 71.15 71.15

40 75.22 75.22 75.22 75.22

(table continues)

60

Table 5.12: continued.

7

Best

10 78.74 78.74 78.74 78.74

20 78.56 78.56 78.56 78.56

40 80.43 80.43 80.43 80.43

Random

10 68.24 68.24 68.24 68.24

20 71.06 71.06 71.06 71.06

40 73.86 73.86 73.86 73.86

9

Best

10 80.77 80.77 80.77 80.77

20 80.14 80.14 80.14 80.14

40 82.20 82.20 82.20 82.20

Random

10 69.28 69.28 69.28 69.28

20 72.19 72.19 72.19 72.19

40 75.51 75.51 75.51 75.51

Table 5.13: The results for Jitterbug channels. The splitting criterion is Information

Gain.

Timing

Window

(ms)

Splitter Slice
Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

1

Best

10 83.75 83.75 83.75 83.75

20 82.37 82.37 82.37 82.37

40 84.51 84.51 84.51 84.51

Random

10 68.55 68.55 68.55 68.55

20 71.82 71.82 71.82 71.82

40 75.54 75.54 75.54 75.54

(table continues)

61

Table 5.13: continued.

3

Best

10 79.77 79.77 79.77 79.77

20 80.81 80.81 80.81 80.81

40 83.42 83.42 83.42 83.42

Random

10 68.26 68.26 68.26 68.26

20 71.46 71.46 71.46 71.46

40 75.09 75.09 75.09 75.09

5

Best

10 79.41 79.41 79.41 79.41

20 80.52 80.52 80.52 80.52

40 83.24 83.24 83.24 83.24

Random

10 69.02 69.02 69.02 69.02

20 71.10 71.10 71.10 71.10

40 75.02 75.02 75.02 75.02

7

Best

10 78.70 78.70 78.70 78.70

20 78.60 78.60 78.60 78.60

40 80.50 80.50 80.50 80.50

Random

10 68.36 68.36 68.36 68.36

20 71.10 71.10 71.10 71.10

40 74.09 74.09 74.09 74.09

9

Best

10 80.84 80.84 80.84 80.84

20 80.18 80.18 80.18 80.18

40 82.28 82.28 82.28 82.28

Random

10 69.43 69.43 69.43 69.43

20 72.19 72.19 72.19 72.19

40 75.77 75.77 75.77 75.77

62

Table 5.14: The results for features from Iglesias et al. [1]. The splitting criterion is

Gini Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Timing

Window

(ms)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1 Score

(%)

1 74.94 74.94 74.94 74.94

3 73.44 73.44 73.44 73.44

5 72.30 72.30 72.30 72.30

7 72.67 72.67 72.67 72.67

9 72.88 72.88 72.88 72.88

Table 5.25: Feature calculation times for one slice of a legitimate channel and Jitter-

bug channels.

Flow Type Feature Type Slice
Calculation

Time (ms)

Legitimate

The First Four

Moments

10 0.394

20 0.407

40 0.397

Features from

Iglesias et al. [1]

10 19.103

20 74.779

40 193.578

The covert channel

with 1ms

timing window

The First Four

Moments

10 0.394

20 0.409

40 0.663

Features from

Iglesias et al. [1]

10 57.004

20 139.118

40 55.508

(table continues)

63

Table 5.25: continued.

The covert channel

with 3ms

timing window

The First Four

Moments

10 0.398

20 0.417

40 0.397

Features from

Iglesias et al. [1]

10 59.415

20 137.509

40 55.481

The covert channel

with 5ms

timing window

The First Four

Moments

10 0.446

20 0.412

40 0.573

Features from

Iglesias et al. [1]

10 56.882

20 134.425

40 0.584

The covert channel

with 7ms

timing window

The First Four

Moments

10 0.481

20 0.412

40 53.871

Features from

Iglesias et al. [1]

10 54.170

20 138.958

40 52.840

The covert channel

with 9ms

timing window

The First Four

Moments

10 0.620

20 0.443

40 0.592

Features from

Iglesias et al. [1]

10 57.166

20 142.354

40 54.619

64

32 22 12 2
Decoding Error Rate (%)

72

77

82

87

Ac
cu

ra
cy

 (%
)

(a) Accuracy

32 22 12 2
Decoding Error Rate (%)

72

77

82

87

Pr
ec

isi
on

 (%
)

(b) Precision

32 22 12 2
Decoding Error Rate (%)

72

77

82

87

Re
ca

ll
(%

)

(c) Recall

32 22 12 2
Decoding Error Rate (%)

72

77

82

87

F1
 S

co
re

 (%
)

(d) F1 Score

Figure 5.12: Changes in detection scores and decoding error rates for each timing

window configuration. Timing windows increase from left to right on the horizontal

line and down to up on the vertical line. Detection scores were obtained using the

following configuration: the splitting criterion is Gini Impurity, the splitter is best,

and each slice consists of forty inter-arrival times. The blue line represents results for

the first four moments. The orange line represents results for features from Iglesias et

al. [1].

65

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Jitterbug chan-

nels with 1ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Jitterbug chan-

nels with 3ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Jitterbug chan-

nels with 5ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(d) Feature importances for Jitterbug chan-

nels with 7ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(e) Feature importances for Jitterbug channels with

9ms time window.

Figure 5.13: The feature importances for the first four moments. Detection scores

were obtained using the following configuration: the splitting criterion is Gini Impu-

rity, the splitter is best, and each slice consists of ten inter-arrival times.

66

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Jitterbug chan-

nels with 1ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Jitterbug chan-

nels with 3ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Jitterbug chan-

nels with 5ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis
Fe

at
ur

e

(d) Feature importances for Jitterbug chan-

nels with 7ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(e) Feature importances for Jitterbug chan-

nels with 9ms time window.

Figure 5.14: The feature importances for the first four moments. Detection scores

were obtained using the following configuration: the splitting criterion is Gini Impu-

rity, the splitter is best, and each slice consists of twenty inter-arrival times.

67

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(a) Feature importances for Jitterbug chan-

nels with 1ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(b) Feature importances for Jitterbug chan-

nels with 3ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(c) Feature importances for Jitterbug chan-

nels with 5ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(d) Feature importances for Jitterbug chan-

nels with 7ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

Mean

Variance

Skewness

Kurtosis

Fe
at

ur
e

(e) Feature importances for Jitterbug channels with

9ms time window.

Figure 5.15: The feature importances for the first four moments. Detection scores

were obtained using the following configuration: the splitting criterion is Gini Impu-

rity, the splitter is best, and each slice consists of forty inter-arrival times.

68

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(a) Feature importances for Jitterbug chan-

nels with 1ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(b) Feature importances for Jitterbug chan-

nels with 3ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(c) Feature importances for Jitterbug chan-

nels with 5ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(d) Feature importances for Jitterbug chan-

nels with 7ms time window.

0.0 0.2 0.4 0.6 0.8 1.0
Feature Importance

U
pkts

p(Mo)
K

Ha

TR

TS

Sk

SS

ws
A

Hq

F
e
a
tu

re

(e) Feature importances for Jitterbug channels with

9ms time window.

Figure 5.16: The feature importances for features from Iglesias et al. [1]. Detection

scores were obtained using the following configuration: the splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

69

Table 5.15: The results for the detection of types of flows using the first four moments.

The covert channel has 1ms timing window. The splitting criterion is Gini Impurity,

the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 66 8 14

2 1476 399 514

3 143 0 0

4 48 22 31

5 0 41 0

6 258 228 180

7 149 140 80

8 20 17 11

9 22 34 12

10 59 42 28

Covert

1 2509 10 14

2 7 0 0

3 377 14 16

4 143 5 2

5 56 0 0

6 2565 447 248

7 86 142 98

8 28 9 2

9 85 58 48

10 436 463 218

70

Table 5.16: The results for the detection of types of flows using the first four moments.

The covert channel has 3ms timing window. The splitting criterion is Gini Impurity,

the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 61 13 17

2 1462 413 529

3 143 0 0

4 32 38 25

5 19 22 4

6 261 225 186

7 131 158 90

8 16 21 16

9 19 37 16

10 55 46 33

Covert

1 2502 17 20

2 7 0 0

3 372 19 24

4 139 9 11

5 56 0 0

6 2514 498 306

7 96 132 77

8 31 6 6

9 116 27 24

10 429 470 257

71

Table 5.17: The results for the detection of types of flows using the first four moments.

The covert channel has 5ms timing window. The splitting criterion is Gini Impurity,

the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 59 15 22

2 1484 391 534

3 143 0 0

4 49 21 22

5 7 34 2

6 252 234 197

7 140 149 79

8 13 24 8

9 39 17 14

10 63 38 32

Covert

1 2509 10 12

2 7 0 0

3 371 20 19

4 145 3 5

5 54 2 4

6 2437 575 328

7 104 124 87

8 26 11 6

9 104 39 23

10 461 438 273

72

Table 5.18: The results for the detection of types of flows using the first four moments.

The covert channel has 7ms timing window. The splitting criterion is Gini Impurity,

the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 58 16 18

2 1435 440 492

3 143 0 0

4 49 21 28

5 9 32 4

6 270 216 149

7 142 147 68

8 12 25 8

9 32 24 13

10 58 43 23

Covert

1 2504 15 22

2 7 0 0

3 379 12 13

4 144 4 6

5 56 0 0

6 2054 958 471

7 96 132 56

8 11 26 6

9 126 17 10

10 434 465 218

73

Table 5.19: The results for the detection of types of flows using the first four moments.

The covert channel has 9ms timing window. The splitting criterion is Gini Impurity,

the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 68 6 10

2 1463 412 483

3 138 5 2

4 43 27 36

5 9 32 5

6 257 229 181

7 132 157 94

8 22 15 10

9 23 33 18

10 50 51 38

Covert

1 2513 6 8

2 7 0 0

3 366 25 24

4 148 0 0

5 55 1 2

6 2134 878 352

7 103 125 66

8 20 17 4

9 90 53 29

10 429 470 265

74

Table 5.20: The results for the detection of types of flows using features from Iglesias

et al. [1]. The covert channel has 1ms timing window. The splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 53 21 23

2 666 1209 662

3 112 31 20

4 64 6 6

5 38 3 4

6 381 105 140

7 136 153 102

8 29 8 12

9 56 0 0

10 87 14 14

Covert

1 2112 407 419

2 3 4 1

3 286 105 69

4 126 22 27

5 25 31 13

6 1829 1183 766

7 110 118 94

8 27 10 10

9 115 28 25

10 683 216 264

75

Table 5.21: The results for the detection of types of flows using features from Iglesias

et al. [1]. The covert channel has 3ms timing window. The splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 43 31 34

2 634 1241 691

3 118 25 32

4 70 0 0

5 40 1 2

6 372 114 157

7 158 131 91

8 31 6 8

9 55 1 2

10 87 14 21

Covert

1 2123 396 445

2 5 2 4

3 204 187 70

4 124 24 35

5 32 24 13

6 1785 1227 848

7 146 82 67

8 26 11 13

9 103 40 36

10 695 204 264

76

Table 5.22: The results for the detection of types of flows using features from Iglesias

et al. [1]. The covert channel has 5ms timing window. The splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 54 20 23

2 579 1296 644

3 137 6 10

4 69 1 2

5 40 1 2

6 378 108 150

7 187 102 94

8 32 5 6

9 53 3 5

10 92 9 13

Covert

1 2105 414 444

2 2 5 1

3 199 192 73

4 122 26 32

5 30 26 23

6 1862 1150 939

7 135 93 87

8 35 2 4

9 112 31 32

10 683 216 247

77

Table 5.23: The results for the detection of types of flows using features from Iglesias

et al. [1]. The covert channel has 7ms timing window. The splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 52 22 22

2 621 1254 661

3 133 10 16

4 70 0 0

5 38 3 3

6 373 113 166

7 184 105 92

8 37 0 0

9 53 3 3

10 91 10 12

Covert

1 2205 314 366

2 3 4 4

3 220 171 94

4 111 37 39

5 24 32 19

6 1928 1084 989

7 132 96 84

8 33 4 0

9 98 45 50

10 712 187 266

78

Table 5.24: The results for the detection of types of flows using features from Iglesias

et al. [1]. The covert channel has 9ms timing window. The splitting criterion is Gini

Impurity, the splitter is best, and each slice consists of forty inter-arrival times.

Flow Type
Index of

Flow

Number of

Correct

Estimates

Number of

Incorrect

Estimates

Number of

Decision

Changes

Legitimate

1 54 20 26

2 482 1393 560

3 138 5 10

4 20 50 27

5 40 1 2

6 356 130 153

7 142 147 94

8 29 8 11

9 55 1 1

10 83 18 12

Covert

1 2107 412 414

2 5 2 3

3 268 123 127

4 120 28 39

5 50 6 12

6 1659 1353 819

7 132 96 98

8 5 32 10

9 45 98 44

10 439 460 303

79

5.2.3 Discussion

The results show that the splitter parameter has the most effect on the scores regard-

less of the type and parameters of covert channels and features. This means that the

splitter parameter is the one that affects the structure of the tree the most. Moreover,

the detection performance of a tree with a random splitter is much lower than the

one with the best splitter. The slice also has significant effects on detection; slices

with more inter-arrival times have significantly higher detection scores. Surprisingly,

using different splitting criteria did not ultimately lead to significant changes. The

detector achieved the best result for all covert channels when the splitter was the best,

the MSL was small, and a slice consisted of forty inter-arrival times.

For Fixed Interval channels, scores are above 90%. This means we can use our fea-

tures to detect Fixed Interval channels that transmit binary data with two different

inter-arrival times. Moreover, detection scores are similar for all Fixed Interval chan-

nels as we can see in Figure 5.1 and the tables between Table 5.1 and 5.6. So, even if

the attacker settles for higher decoding errors to avoid being caught, it would have no

effect. Furthermore, we can use the same parameters to detect Fixed Interval channels

with different inter-arrival times. We were able to achieve high scores with a small

number of network packages when the splitter was best and the MSL was low. Table

5.1 shows an example of this. We achieved 98.83% accuracy only using ten inter-

arrival times (thus, eleven network packets). This means that our system can detect a

Fixed Interval channel only after eleven packets.

On the other hand, detection results for Jitterbug channels is significantly lower than

Fixed Interval channels. This is because Jitterbug is more similar to the legitimate

channel than Fixed Interval. Still, scores are above 80%. Table 5.12, 5.13 and Figure

5.12 show that the timing window has a small impact on detection performance. The

reason for this is that some timing window values can generate inter-arrival times that

are a bit like legitimate traffic. However, this effect is too small for an attacker exploit.

We achieved the highest detection performance when the splitter was the best and a

slice consisted of forty inter-arrival times. The results for Jitterbug indicate that our

system requires a large number of packages to detect this covert channel. Though

Jitterbug itself also requires a large number of packages. A solution may be to use

80

multiple flows with a small number of packages, but since Jitterbug does not create

flows, it is not easy to do so. Moreover, users tend to use one SSH session at a time.

As a result, Jitterbug would probably have to wait sometime between sessions. This

will cause the data transmission to slow down considerably.

Table 5.7 and 5.14 show the detection scores for features from Iglesias et al. [1].

From Table 5.7 and Figure 5.1, we can see for Fixed Interval channels, the results

that these features achieved are similar to the first four moments. On the other hand,

Table 5.14 and Figure 5.12 show that for Jitterbug channels, the first four moments

perform significantly better.

Feature importances for the first four features and Fixed Interval show that the mean

and the skewness are used for detection. Since the shape of the Fixed Interval traffic

is different from the legitimate traffic, it affected the skewness, a feature that mea-

sures shape. Normally, the shape also affects the kurtosis, but the decision tree uses

only one of these features. For some covert channels, the mean of the inter-arrival

times are also different from the legitimate channels’. Feature importances for fea-

tures from Iglesias et al. [1], show that the SS is the dominant feature. This means

that the number of sharp peaks in the inter-arrival time histogram is different for Fixed

Interval and legitimate channels. The SS is most likely affected by the shape differ-

ence between channels. Theoretically, entropy-related features (K and Ha) is also

different for Fixed Interval and legitimate channels because Fixed Interval channels

have repetitive inter-arrival times and legitimate channels are more random. Entropy-

related features probably were negatively affected by unexpected network delays.

Among the first four moments, the decision tree, chose mean and variance as dom-

inant features to detect Jitterbug channels. This happened because the shape of Jit-

terbug channels is similar to the legitimate one. Also, the traffic Jitterbug creates has

a higher mean. Moreover, inter-arrival times that it creates are multiples (or multi-

ple plus the half) of the timing window. On the other hand, Hq is dominant among

the features of Iglesias et al. [1]. Hq is a way to measure self-similarity. Also, im-

portances for K, Ha and TR are a little higher than the others. These features also

measure self-similarity and repetitiveness. This means that features from Iglesias et

al. [1] captured repetitive patterns in the Jitterbug.

81

Table 5.9, 5.10 and, 5.11 show that our method can determine the type of a flow

with high accuracy. Moreover, incoming network packages can not easily change its

decision. This means that our method can determine whether a channel is legitimate

or Fixed Interval using a small number of packages. Unfortunately, we can not say

the same for Jitterbug. Table 5.15, 5.16, 5.17, 5.18 and, 5.19 indicate that there is no

specific pattern for classification of a flow. Our method accurately identifies some of

them, accidentally identifies some as legitimate, and can not decide what the others

are. The same goes for legitimate channels. In order to see whether this situation is

specific to our method, we also tried to classify flows with features from Iglesias et

al. [1]. Table 5.20, 5.21, 5.22, 5.23 and, 5.24 show that the situation is similar for

these features.

The results for all covert and legitimate flows state that the differences in inter-arrival

times or timing windows have small effects on classification. This result is consistent

with the results of our experiments with all flows.

The network latencies and inter-arrival times we used in our work are close to the

LAN (Local Area Network). The LAN allows the covert channels to operate with low

latencies. Lower latencies increase Fixed Interval channels’ capacity and decrease the

probability to detect them. Moreover, it is also possible to decrease the probability to

detect Jitterbug channels’. We can not infer this from our results though theoretically,

lower latencies mean lower timing windows. Lower timing windows would create

inter-arrival times closer to the inter-keypress times. As a result, detection rates would

become lower. The LAN is the worst-case scenario for our detector. On the other

hand, if Fixed Interval or Jitterbug tries to operate on wider networks, they would

have problems due to higher rates of packet loss and latencies. For instance, if the

sender tries to transmit the message to another LAN through the MAN (Metropolitan

Area Network), it would have to create higher inter-arrival times to compensate with

latencies. The worst case scenario for a covert network timing channel is to operate

on WAN (Wide Area Network). The latencies on WAN can be up to 100ms. This

means that Fixed Interval and Jitterbug would have to create inter-arrival times up to

the second resolution. As a result, they would cause huge delays that even an ordinary

user can notice.

82

Our model has to collect data from routers and switches. In order to run fast, it must

be on or close to these devices. There are several ways to implement our model on

routers and switches. The first one is to use specific hardware and software. This

allows us to implement our model as we want, but it is costly. Another way is to use

a generic coding language like P4 [73]. This method is cheaper but slows down the

packet forwarding process because network packets are processed before forward-

ing. In order to fix this, we could try to replace the decision tree with rules created

using this tree, but there would still be a certain amount of delay. We could also

mirror the ports using hardware or software and send mirrored packets to another

computer. This way, the packet forwarding process would not slow down. However,

under heavy load, some mirrored packets may be lost. Nevertheless, this technique

is used for monitoring the network, diagnosing error or detecting network intrusions.

For instance, the Cisco intrusion detection module [74] processes the packets that

routers mirror to it.

Table 5.8 and 5.25 show calculation times for the first four moments and features from

Iglesias et al. [1]. The time to calculate a slice of the latter is much higher that the

first one. If we use routers or switches to calculate features from Iglesias et al., users

would experience high delays. This will not be the case when packets are collected

via mirroring. Even so, there will still be significant delays in delivering detection

results.

For Jitterbug detection, we must know which packets belong to keypresses. In our

work, we assumed that our detector did. However, in real world the detector must

find a way to detect keypresses. Zhang and Paxson [75] observed that interactive

network traffic is different than other types of network traffic. They found out that

interactive connections have a higher number of small packets. Also, the inter-arrival

time distribution of interactive connections is different than other types of network

traffic. Moreover, the keystroke packets tend to be smaller than 20 bytes. They de-

veloped an algorithm based on these facts. There are also works on the properties of

keystroke dynamics [76]. We must do more research before before deciding which

algorithm to apply and how to apply it.

83

84

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we tried to detect Fixed Interval with two inter-arrival times and Jitter-

bug with a single timing window using the first four moments and a decision tree. In

order to do that, we firstly created a dataset that contains Fixed Interval and Jitterbug

channels. Then, using this dataset, we performed some experiments. During these

experiments, we tried different configurations for covert channels, features, and deci-

sion trees to find out the best configuration and detection performance. The accuracy,

precision, recall and F1 scores for Fixed Interval channels were above 90%. This did

not change even for a small number of network packages. On the other hand, scores

for Jitterbug were slightly worse (above 80%) , but still plausible. Moreover, when

we compared detection performances with the decoding performances, we found out

that inter-arrival times and timing windows have a little or no impact on detection per-

formances. This means we can use decision trees with similar parameters to detect

channels with different configurations but the same type.

We also compared our features’ detection performance and calculation times with the

ones defined by Iglesias et al. [1] (except c). For Fixed Interval, detection scores

were similar. On the other hand, for Jitterbug, the first four moments outperformed

the features from the paper [1]. Also, the timing results showed that the computational

time of our features is significantly lower than the features in the [1] paper.

In addition to these, we tried to classify some flows in accordance with the real-

life scenario. The results showed that our method could correctly and consistently

discriminate legitimate and Fixed Interval flows. Unfortunately, for Jitterbug flows

85

the result was not so good. Our features reacted differently for each flow and did not

achieve consistent behavior. The same was true for the features from the paper [1].

6.2 Future Work

Although we come this far, we still have a long way to go. In the future, we plan to

work on detection flow we will work on better detection of Jitterbug flow. we also

plan to work with different versions of Fixed Interval and Jitterbug. One possible

variety is using multiple inter-arrival times and timing windows. For instance, we can

create a Jitterbug channel with 1ms, 3ms and 5ms timing windows. This channel

then can "rotate" these timing windows while sending data. Another variety may be

sending multiple symbols instead of binary symbols. This way, a covert channel may

send data using less inter-arrival times, thus would reduce the chance of detection.

We also intend to expand our dataset with other types of files and folders (text, pdf,

etc.). After that, we plan to experiment with other types of channels.

We would like to see our system work in the real world in the near future.

86

REFERENCES

[1] F. I. Vázquez, R. Annessi, and T. Zseby, “Analytic study of features for the de-

tection of covert timing channels in network traffic,” Journal of Cyber Security

and Mobility, vol. 6, no. 3, pp. 225–270, 2017.

[2] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” tech. rep., Citeseer, 2009.

[3] R. Greenstadt, “Covert channels towards a qual project,” 2008. Available

at https://www.cs.drexel.edu/~greenie/eecs_files/ccslides.pdf, access date 2019-

12-18.

[4] I. S. Moskowitz and M. H. Kang, “Covert channels-here to stay?,” in Proceed-

ings of COMPASS’94-1994 IEEE 9th Annual Conference on Computer Assur-

ance, pp. 235–243, IEEE, 1994.

[5] S. Cabuk, Network covert channels: Design, analysis, detection, and elimina-

tion. PhD thesis, Purdue University, 2006.

[6] J. Giles and B. Hajek, “An information-theoretic and game-theoretic study of

timing channels,” IEEE Transactions on Information Theory, vol. 48, no. 9,

pp. 2455–2477, 2002.

[7] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.

Zhang, “What will 5g be?,” IEEE Journal on selected areas in communications,

vol. 32, no. 6, pp. 1065–1082, 2014.

[8] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufves-

son, A. Benjebbour, and G. Wunder, “5g: A tutorial overview of standards,

trials, challenges, deployment, and practice,” IEEE journal on selected areas in

communications, vol. 35, no. 6, pp. 1201–1221, 2017.

[9] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low

87

latency towards 5g: Ran, core network and caching solutions,” IEEE Communi-

cations Surveys & Tutorials, vol. 20, no. 4, pp. 3098–3130, 2018.

[10] B. Bellalta, “Ieee 802.11 ax: High-efficiency wlans,” IEEE Wireless Communi-

cations, vol. 23, no. 1, pp. 38–46, 2016.

[11] S. McCann, “Status of project ieee 802.11ax,” 2019. Available at

http://www.ieee802.org/11/Reports/tgax_update.htm, access date 2019-11-16.

[12] B. Vijay and B. Malarkodi, “High-efficiency wlans for dense deployment sce-

narios,” Sādhanā, vol. 44, no. 2, p. 33, 2019.

[13] R. H. Weber, “Internet of things–need for a new legal environment?,” Computer

law & security review, vol. 25, no. 6, pp. 522–527, 2009.

[14] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,” International

Journal of Communication Systems, vol. 25, no. 9, p. 1101, 2012.

[15] F. Iglesias, R. Annessi, and T. Zseby, “Dat detectors: uncovering tcp/ip covert

channels by descriptive analytics,” Security and Communication Networks,

vol. 9, no. 15, pp. 3011–3029, 2016.

[16] İlyas Çiçekli, “Decision tree learning,” 2016. Available at

https://web.cs.hacettepe.edu.tr/~ilyas/Courses/BIL712/lec02-DecisionTree.pdf,

access date 2019-06-27.

[17] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-

ology,” IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3,

pp. 660–674, 1991.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[19] V. Berk, A. Giani, G. Cybenko, and N. Hanover, “Detection of covert channel

encoding in network packet delays,” Rapport technique TR536, de lUniversité

de Dartmouth, vol. 19, 2005.

88

[20] M. B. Gaurav Shah, Andres Molina, “Keyboards and covert channels,” USENIX

Security Symposium, vol. 15, 2006.

[21] H. W. Steven Gianvecchio, “Detecting covert timing channels: An entropy-

based approach,” Proceedings of the 14th ACM conference on Computer and

communications security, pp. 307–316, 2007.

[22] B. Lampson, “A note on the confinement problem,” 1973.

[23] T. C. C. Project, “Common methodology for information technology security

evaluation, common methodology for information technology security evalua-

tion, version 3.1 revision 5,” tech. rep., 2017.

[24] U. D. of Defense, “Trusted computer system evaluation, the orange book,” tech.

rep., 1985.

[25] J. Rutkowska, “The implementation of passive covert channels in the linux ker-

nel,” in Chaos communication congress, chaos computer club eV, vol. 16, 2004.

[26] C. Scott, “Network covert channels: Review of current state and analysis of

viability of the use of x.509 certificates for covert communications,” Technical

Report: Department of Mathematics-University of London., 2008.

[27] S. T. K. Hamed Okhravi, Stanley Bak, “Design, implementation and evaluation

of covert channel attacks,” In Technologies for Homeland Security (HST), 2010

IEEE International Conference, pp. 481–487, 2010.

[28] L. Deshotels, “Inaudible sound as a covert channel in mobile devices,” in 8th

{USENIX} Workshop on Offensive Technologies ({WOOT} 14), 2014.

[29] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert messaging through

tcp timestamps,” in International Workshop on Privacy Enhancing Technolo-

gies, pp. 194–208, Springer, 2002.

[30] Z. Wang and R. B. Lee, “Covert and side channels due to processor architec-

ture,” in 2006 22nd Annual Computer Security Applications Conference (AC-

SAC’06), pp. 473–482, IEEE, 2006.

89

[31] S. Zander et al., “Performance of selected noisy covert channels and their coun-

termeasures in ip networks,” Centre for Advanced Internet Architectures Faculty

of Information and Communication Technologies, 2010.

[32] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock skew,”

in Proceedings of the 13th ACM conference on Computer and communications

security, pp. 27–36, ACM, 2006.

[33] R. A. Kemmerer and T. Taylor, “A modular covert channel analysis methodol-

ogy for trusted dg/ux/sup tm,” in Proceedings 12th Annual Computer Security

Applications Conference, pp. 224–235, IEEE, 1996.

[34] M. H. Kang, I. S. Moskowitz, and S. Chincheck, “The pump: A decade of covert

fun,” in 21st Annual Computer Security Applications Conference (ACSAC’05),

pp. 7–pp, IEEE, 2005.

[35] C. S. Serdar Cabuk, Carla E. Brodley, “Ip covert timing channels: Design and

detection,” Proceedings of the 11th ACM conference on Computer and commu-

nications security, pp. 178–187, 2004.

[36] Y. Dodge, “Kolmogorov–smirnov test,” The concise encyclopedia of statistics,

pp. 283–287, 2008.

[37] F. R. H. S. Pradhumna L. Shrestha, Michael Hempel, “A support vector

machine-based framework for detection of covert timing channels,” IEEE Trans-

actions on Dependable and Secure Computing,(1), pp. 1–1, 2016.

[38] T. Evgeniou and M. Pontil, “Support vector machines: Theory and applica-

tions,” in Advanced Course on Artificial Intelligence, pp. 249–257, Springer,

1999.

[39] B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2002.

[40] S. H. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing channels:

Theory to implementation,” in IEEE INFOCOM 2009, pp. 2204–2212, IEEE,

2009.

90

[41] O. Darwish, A. Al-Fuqaha, M. Anan, and N. Nasser, “The role of hierarchical

entropy analysis in the detection and time-scale determination of covert timing

channels,” in 2015 International Wireless Communications and Mobile Com-

puting Conference (IWCMC), pp. 153–159, IEEE, 2015.

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large

clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[43] O. Darwish, A. Al-Fuqaha, G. B. Brahim, and M. A. Javed, “Using mapre-

duce and hierarchical entropy analysis to speed-up the detection of covert tim-

ing channels,” in 2017 13th International Wireless Communications and Mobile

Computing Conference (IWCMC), pp. 1102–1107, IEEE, 2017.

[44] F. Iglesias, V. Bernhardt, R. Annessi, and T. Zseby, “Decision tree rule induction

for detecting covert timing channels in tcp/ip traffic,” in International Cross-

Domain Conference for Machine Learning and Knowledge Extraction, pp. 105–

122, Springer, 2017.

[45] S. Zander, G. Armitage, and P. Branch, “An empirical evaluation of ip time to

live covert channels,” in 2007 15th IEEE International Conference on Networks,

pp. 42–47, IEEE, 2007.

[46] J. Wu, Y. Wang, L. Ding, and X. Liao, “Improving performance of network

covert timing channel through huffman coding,” Mathematical and Computer

Modelling, vol. 55, no. 1-2, pp. 69–79, 2012.

[47] W. C. Gasior, “Network covert channels on the android platform,” 2011.

[48] X. Luo, E. W. Chan, and R. K. Chang, “Tcp covert timing channels: Design and

detection,” in 2008 IEEE International Conference on Dependable Systems and

Networks With FTCS and DCC (DSN), pp. 420–429, IEEE, 2008.

[49] F. Iglesias and T. Zseby, “Are network covert timing channels statistical anoma-

lies?,” in Proceedings of the 12th International Conference on Availability, Re-

liability and Security, p. 81, ACM, 2017.

[50] C. Sony and K. Cho, “Traffic data repository at the wide project,” in Proceedings

of USENIX 2000 Annual Technical Conference: FREENIX Track, pp. 263–270,

2000.

91

[51] E. J. Castillo, X. Mountrouidou, and X. Li, “Time lord: Covert timing channel

implementation and realistic experimentation,” in Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, pp. 755–756,

ACM, 2017.

[52] B. W. Silverman, “Using kernel density estimates to investigate multimodality,”

Journal of the Royal Statistical Society: Series B (Methodological), vol. 43,

no. 1, pp. 97–99, 1981.

[53] M. E. Newman, “Power laws, pareto distributions and zipf’s law,” Contempo-

rary physics, vol. 46, no. 5, pp. 323–351, 2005.

[54] E. Parzen, “On spectral analysis with missing observations and amplitude modu-

lation,” Sankhyā: The Indian Journal of Statistics, Series A, pp. 383–392, 1963.

[55] J. V. Bradley, “Distribution-free statistical tests,” tech. rep., 1968.

[56] H. B. Mann, “On a test for randomness based on signs of differences,” The

Annals of Mathematical Statistics, vol. 16, no. 2, pp. 193–199, 1945.

[57] A. N. Kolmogorov, “Three approaches to the quantitative definition of informa-

tion,” International journal of computer mathematics, vol. 2, no. 1-4, pp. 157–

168, 1968.

[58] M. Li, P. Vitányi, et al., An introduction to Kolmogorov complexity and its ap-

plications, vol. 3. Springer, 2008.

[59] A. Carbone, G. Castelli, and H. E. Stanley, “Time-dependent hurst exponent

in financial time series,” Physica A: Statistical Mechanics and its Applications,

vol. 344, no. 1-2, pp. 267–271, 2004.

[60] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Pro-

ceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301,

1991.

[61] “Poisson point process,” 2019-10-22. Available at

https://en.wikipedia.org/wiki/Poisson_point_process, access date 2019-11-

16.

92

[62] W. Koehrsen, “numpy.random.exponential,” 2019-01-21. Available at

https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-

explained-4e2cb17d459, access date 2019-06-24.

[63] “Exponential distribution,” 2019-10-10. Available at

https://en.wikipedia.org/wiki/Exponential_distribution, access date 2019-

11-16.

[64] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Nic-

ulae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly,

B. Holt, and G. Varoquaux, “API design for machine learning software: experi-

ences from the scikit-learn project,” in ECML PKDD Workshop: Languages for

Data Mining and Machine Learning, pp. 108–122, 2013.

[65] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection algorithms

for keystroke dynamics,” in 2009 IEEE/IFIP International Conference on De-

pendable Systems & Networks, pp. 125–134, IEEE, 2009.

[66] A. Tveito, A. M. Bruaset, and O. Lysne, Simula Research Laboratory: By Think-

ing Constantly about it. Springer Science & Business Media, 2009.

[67] D. Zwillinger and S. Kokoska, CRC standard probability and statistics tables

and formulae. Crc Press, 1999.

[68] S. W. AuYeung, “Finding probability distributions from moments,” Master’s

Thesis, Imperial College, London, 2003.

[69] K. K. Lai, L. Yu, and S. Wang, “Mean-variance-skewness-kurtosis-based port-

folio optimization,” in First International Multi-Symposiums on Computer and

Computational Sciences (IMSCCS’06), vol. 2, pp. 292–297, IEEE, 2006.

[70] J. Taylor, Introduction to error analysis, the study of uncertainties in physical

measurements. 1997.

[71] G. Hackeling, Mastering Machine Learning with scikit-learn. Packt Publishing

Ltd, 2017.

93

[72] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using ap-

proximate entropy and sample entropy,” American Journal of Physiology-Heart

and Circulatory Physiology, vol. 278, no. 6, pp. H2039–H2049, 2000.

[73] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Programming

protocol-independent packet processors,” ACM SIGCOMM Computer Commu-

nication Review, vol. 44, no. 3, pp. 87–95, 2014.

[74] CISCO, “Chapter: Intrusion detection system module,” 2019. Available at

https://www.cisco.com/c/en/us/td/docs/routers/7600/Hardware/Hardware_Guides/

7600_Series_Router_Module_Guide/modguid/09intrus.html, access date 2019-

12-10.

[75] Y. Zhang and V. Paxson, “Detecting backdoors.,” in USENIX Security Sympo-

sium, Citeseer, 2000.

[76] J. Ilonen, “Keystroke dynamics,” Advanced Topics in Information Processing–

Lecture, pp. 03–04, 2003.

94

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	Background and Related Work
	Covert Channels
	Fixed Interval
	Jitterbug

	Related Work

	Dataset
	Fixed Interval Dataset
	Jitterbug Dataset

	Proposed Method and Features
	Decision Tree
	The First Four Moments

	Experiments and Discussions
	Experiments
	Experiments with Fixed Interval
	Experiments with Jitterbug

	Results and Discussion
	The Results for Fixed Interval
	The Results for Jitterbug
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES

