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Abstract

The charge and entropy currents across a quantum point contact is expanded as a series in

powers of the applied bias voltage and the temperature difference. After that, the expansions of

the Seebeck voltage in temperature difference and the Peltier heat in current are obtained. With a

suitable choice of the average temperature and chemical potential, the lowest order nonlinear term

in both cases appear to be of third order. The behavior of the third-order coefficients in both cases

are then investigated for different contact parameters.
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I. INTRODUCTION

Various aspects of the ballistic electron transport across quantum point contacts are

studied extensively in the past. The most striking feature of this transport is the quantization

of conductance1,2 at integer multiples of the conductance quantum 2e2/h. This phenomenon

is usually treated with the Landauer-Büttiker formalism3,4 which provides a transparent

explanation for the effect. Electrons in each sub-band corresponding to the transverse modes

in the contact contribute one quantum to the conductance if the sub-band is sufficiently

populated. As the size of the constriction is changed by varying the negative voltage on

split gates, which are used to define the contact on a two-dimensional electron gas, the

conductance changes in smooth steps from one conductance quantum into the other. It is

observed that the linear Seebeck and Peltier coefficients for these structures display quantum

oscillations5,6,7,8,9 with peaks coincident with the conductance steps.

Nonlinear transport in these systems has also been studied extensively both

theoretically10,11,12,13,14,15,16 and experimentally.17,18 Since Onsager’s reciprocity relations

connecting the Seebeck and Peltier transport coefficients loose its meaning in this regime,

these two effects show distinctively different behavior. New peaks appear in the differential

Peltier coefficient as the driving voltage is increased,15,16 while the thermopower does not

change much even for very large temperature differences.18

A major theoretical difficulty in the nonlinear regime is, due to the small size of these

systems, finite voltage differences create large changes in the distribution of electrons around

the contact. As a result, more involved calculations are necessary for describing the electron

transport.19,20 However, it is of some interest to analyze the nonlinear transport properties

without taking such changes into account. The purpose of this article is to investigate the

nonlinearities in not so commonly studied Seebeck and Peltier effects, assuming that the

contact potential is not changed apart from the uniform shift caused by the gate voltage. It

is hoped that this will clarify the importance of the effects mentioned above. In the following

section, the charge and heat currents are expanded as a series in powers of the potential and

temperature differences. Appropriate expansions for the Seebeck and Peltier phenomena are

obtained and the series coefficients are investigated in sections 2 and 3, respectively. Finally,

the results are summarized and discussed.
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II. THEORY

In the following we consider two electron gases connected by a quantum point contact.

The chemical potentials µL and µR and the temperatures θL and θR of the left (L) and right

(R) reservoirs are the parameters that define the whole system. The difference between the

chemical potentials, ∆µ = µL−µR, is equal to (−e)V where V is interpreted as the electrical

potential difference between L and R. A difference in temperatures ∆θ = θL − θR as well as

a potential difference cause electron transport which can carry both charge and heat across

the contact. The average currents on the contact are completely determined by the sum

T (E) =
∑

n

Tn(E) ,

where Tn(E) is the transmission probability of an electron with energy E incident from the

nth mode. The charge and entropy currents from L to R can then be expressed as21

I = 2
(−e)

h

∫ ∞

−∞

dE(f(xL)− f(xR))T (E) , (1)

IS = 2
kB
h

∫ ∞

−∞

dE(s(xL)− s(xR))T (E) , (2)

where

f(x) =
1

1 + ex
, (3)

s(x) = −f(x) log f(x)− (1− f(x)) log(1− f(x)), (4)

xL,R =
E − µL,R

kBθL,R
, (5)

and the spin degeneracy factor is added for both currents.

For the case of weak nonlinearities, it is useful to expand the currents in terms of the

driving temperature and potential differences ∆θ and V . In order to do this the variable

of integration is changed from energy E to a dimensionless variable denoted by x, which is

defined as the arithmetic average of xL and xR.

x =
1

2
(xL + xR) .

This leads us to define average temperature and chemical potentials by

x =
E − µ

kBθ
, (6)

θ =
2θLθR
θL + θR

, (7)

µ =
θRµL + θLµR

θR + θL
. (8)
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Here, θ is the harmonic average of the temperatures of the two electron gases and µ is an

average of chemical potentials weighted by inverse temperatures. These two quantities will

be considered as the fundamental parameters describing the contact. In other words all of

the transport coefficients are considered as functions of these average quantities.

With these definitions the energy variable can expressed as E = µ + xkBθ and the

difference of the dimensionless x parameter is

∆x = xL − xR = −
∆µ+ xkB∆θ

kBθA
(9)

where θA is the arithmetic average of the temperatures on both sides of the contact

θA =
1

2
(θL + θR) .

Finally, dimensionless driving forces are defined as

ǫ =
∆θ

θA
, (10)

δ =
∆µ

kBθA
. (11)

The obvious advantage of these definitions is the elimination of some terms in the power

series expansion of the integrands in equations (1) and (2). We have

I = 2
(−e)

h

∞
∑

m=0

kBθ

22m(2m+ 1)!
×

×

∫

dx (δ + xǫ)2m+1f (2m+1)(x)T (µ+ xkBθ) , (12)

IS = 2
kB
h

∞
∑

m=0

kBθ

22m(2m+ 1)!
×

×

∫

dx (δ + xǫ)2m+1s(2m+1)(x)T (µ+ xkBθ) , (13)

where even order derivatives of the functions f(x) and s(x) have disappeared. This is the

primary reason for defining the averages in Eqs. (7) and (8) in this particular way. Defining

the parameters

fm,p = fm,p(µ, θ) = (−1)m
∫

dx xpf (m)(x)T (µ+ xkBθ) , (14)

which are only functions of the contact parameters µ and θ, the currents can be expressed
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as

I = 2
(−e)

h
kBθ

∞
∑

m=0

2m+1
∑

p=0

f2m+1,pǫ
pδ2m+1−p

22mp!(2m+ 1− p)!
, (15)

IS = 2
kB
h
kBθ

∞
∑

m=0

2m+1
∑

p=0

[f2m+1,p+1 − 2mf2m,p]ǫ
pδ2m+1−p

22mp!(2m+ 1− p)!
. (16)

This is the desired expansion of currents in terms of the driving forces ǫ and δ with the

coefficients being functions of the average quantities µ and θ.

One notable property of the equations (15) and (16) is that only the odd powers of the

driving forces combined together appear in those expressions. This implies that if both

driving forces change sign ǫ → −ǫ and δ → −δ then the charge and entropy currents change

direction. Including only up to the third order terms in the expansions we have

I = 2
(−e)

h
kBθ (f10δ + f11ǫ

+
1

24

(

f30δ
3 + 3f31δ

2ǫ+ 3f32δǫ
2 + f33ǫ

3
)

+ · · ·

)

(17)

IS = 2
k2
Bθ

h

(

f11δ + f12ǫ+
1

24

(

(f31 − 2f20)δ
3 + 3(f32 − 2f21)δ

2ǫ

+3(f33 − 2f22)δǫ
2 + (f34 − 2f23)ǫ

3
)

+ · · ·

)

(18)

These equations give the currents for arbitrary values of the temperature and potential

differences. However, measurements are rarely carried out for arbitrary ∆θ and V . Electrical

conductance and Peltier effect measurements are carried out at isothermal conditions while

the thermal conductance and Seebeck effect measurements are done with zero electrical

current. But, the equations above is a starting point for each particular phenomenon. In

the following, only the Seebeck and Peltier effects are investigated.

III. SEEBECK EFFECT

In the Seebeck effect, a temperature difference creates a potential difference across the

point contact when there is no electrical current (I = 0). This potential difference can be

expressed in dimensionless form as

−δ = σ1ǫ+ σ3ǫ
3 + σ5ǫ

5 + · · · (19)
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where the first two coefficients are

σ1 =
f11
f10

(20)

σ3 =
1

24f10

(

f33 − 3f32σ1 + 3f31σ
2
1 − f30σ

3
1

)

(21)

In terms of V and ∆θ the series expansion is

−V = S1∆θ + S3∆θ3 + S5∆θ5 + · · · (22)

where

Sm =
kB
(−e)

1

θm−1
A

σm m = 1, 3, 5, . . .

Appearance of only the third order terms in Eq. (22) implies that when the temperatures of

the two reservoirs are exchanged (in other words the sign of ∆θ is changed without changing

θA and θ), the induced potential difference due to the Seebeck effect is reversed.

The nonlinear terms in Eq. (22) becomes significant when

∆θthreshold ∼

√

∣

∣

∣

∣

S1

S3

∣

∣

∣

∣

.

It is possible to get a theoretical estimate of this quantity in the small temperature limit,

when kBθ ≪ EL, where EL is the energy range where T (E) changes by one. In this case,

the Taylor series expansion

T (µ+ xkBθ) ≈ T (µ) + xkBθT
′(µ)

in Eq. (14) gives the following approximate expressions for σ1 and σ3

σ1 ≈
π2

3

T ′

T
kBθ , σ3 ≈

π2

12

T ′

T
kBθ .

The threshold level for nonlinearity is then

∆θthreshold ∼ 2θA = θL + θR .

Since ∆θ can never go above this level, the nonlinearities in the Seebeck effect are always

small.18 For this reason, the expansion (22) is appropriate for almost all nonlinear cases.

For the opposite, high temperature limit, numerical calculations of the Seebeck coefficients

indicates that the threshold expression given above does not change much.
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FIG. 1: (a) The third order Seebeck coefficient, σ3 = (−e)θ2A/kB S3, is plotted as a function of

average chemical potential µ for ωy/ωx = 6 and kBθ/~ωy = 0.01, 0.02, 0.04, 0.08, 0.105 and 0.125

(from bottom to top). Each curve is shifted by 0.05 units for clarity. (b)For comparison the linear

Seebeck coefficient, σ1 = (−e)/kB S1, is plotted for the same set of parameters. Each curve is

shifted by 0.02 units and the temperature increases from bottom to top.

As for the general behavior of S3, we calculate it for a contact defined by the saddle

potential

V (x, y) = −
1

2
mω2

xx
2 +

1

2
mω2

yy
2 .

For this case the energy dependent transmission probability for the nth transverse mode

(n = 0, 1, 2, . . .) is

Tn(E) =
1

1 + exp
(

−
2π
~ωx

[E − ~ωy(n+ 1
2
)]
) .

In Fig. 1, S3 is plotted against µ for this potential. At sufficiently low temperatures, third
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FIG. 2: (a) The third order Seebeck coefficient, σ3 = (−e)θ2A/kB S3, is plotted as a function

of average chemical potential µ for kBθ/~ωy = 0.04 and ωy/ωx = 1.5, 3, 6 and 12 (from top to

bottom) respectively. Each plot is shifted by 0.025 units for clarity. (b)For comparison, the linear

Seebeck coefficient, σ1 = (−e)/kB S1, is plotted for the same set of parameters. Each plot is shifted

by 0.2 units and ωy/ωx ratio increases from top to bottom.

order Seebeck coefficient, S3, has single peaks coincident with the peaks of S1. When the

temperature is increased, these peaks start to split into two. This change happens around

kBθ/~ωx ∼ 0.08. It is observed that the distance between the peaks is proportional to the

temperature. For this reason, with increasing temperature, the structure develops into two

separate peaks. Also, the widths of the peaks increase proportionally with the temperature.

Inevitably, when the temperature is increased further (around kBθ/~ωy ∼ 0.08), each peak

of the pair starts overlapping with the peaks of the neighboring steps. For this reason, in
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this high temperature regime the nonlinearity in the Seebeck effect becomes more significant

away from the steps (at the plateaus of the electrical conductance). Same graphs are shown

in Fig. 2 for different values of ωy/ωx ratio. It can be seen that S3 has single peaks for small

values of ωy/ωx ratio (around ωy/ωx ∼ 1), and peak splitting occurs for larger values of the

ωy/ωx ratio.

In all cases it can be seen that S3 is always negative (σ3 is always positive) and never

changes sign. It implies that the nonlinearity increases the generated Seebeck voltage further

than the linear term alone suggests. Note that this feature of S3 is not apparent from its

definition, Eqn. (21). This appears to be a model dependent feature. Especially if T (E)

may decrease for some energies, S3 may display sign changes. But for the saddle potential

model and for all parameter ranges investigated in this study, S3 is found to have the same

sign.

IV. PELTIER EFFECT

The Peltier heat is defined as the heat carried Q̇ = θIS by the charge current I at

isothermal conditions (θL = θR = θ). The expansion of the Peltier heat and the charge

current in terms of the δ parameter is

Q̇ = 2
(kBθ)

2

h

(

f11δ +
1

24
(f31 − 2f20)δ

3 +
1

1920
(f51 − 4f40)δ

5 + · · ·

)

, (23)

I = 2
(−e)

h

(

f10δ +
1

24
f30δ

3 +
1

1920
f50δ

5 + · · ·

)

. (24)

Both of these expressions can be used to expand Q̇ as a power series in the current I

Q̇ = Π1I +Π3I
3 +Π5I

5 + · · · , (25)

where the first two terms of the expansion are

Π1 =
kBθ

(−e)

f11
f10

, (26)

Π3 =
h2

(−e)3kBθ

f10(f31 − 2f20)− f11f30
96f 4

10

, (27)

The appearance of only the odd powers of the current in the expansion of Q̇ signifies the

reversible character of the Peltier heat. The coefficient Π1 is for the linear Peltier effect,

which is related to S1 through the Thomson-Onsager relation by Π1 = θS1.
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The plots of Π3 are shown in Fig. 3 and 4 for the saddle potential model as a function of

µ for different values of parameters kBθ/~ωy and ωy/ωx, respectively. For low temperatures,

Π3 is non-zero only around the steps of the conductance. But, in contrast to S3, it displays

a change of sign for all parameter values. In particular Π3 has opposite sign at the peaks

of Π1 = θS. This behavior is an indication of the peak splitting15,16 behavior of the Peltier

coefficient under nonlinear currents. In other words, with nonlinear currents, the Peltier

heat decreases at the peaks of the linear Peltier coefficient, but increases at the foothills of

these peaks. Similar to S3, Π3 is extremely small at the plateaus of the conductance for

small temperatures, but when the temperature is higher (comparable to ~ωy) it also becomes

significant at the plateau region. Finally, Π3 is significant only around the first few steps.

At higher steps, it is observed that the peak heights are inversely proportional to the cube

of T (µ).

To estimate the threshold level for nonlinearity, we use the following approximations valid

in small temperature limit

f31 − 2f20 =
π2

3
(kBθ)

3T ′′′ ,

f11 =
π2

3
(kBθ)T

′ ,

in Eq. (23). Therefore, the nonlinearity sets in when the driving potential difference is of

the order of eVthreshold ∼ EL. Since it is possible that the driving potential difference on

the contact can easily exceed this threshold level, in these highly nonlinear cases it will not

be reasonable to use only a few terms of the expansion in Eq. (25). However, for weakly

nonlinear cases, the expansion above might be useful.

High-order nonlinearity in Peltier effect at small temperatures

As it was discussed above, highly nonlinear cases cannot be treated appropriately by the

power series expansion discussed here. For this case, we need to have a better method for

evaluating the heat and charge currents passing through the contact. We consider only the

isothermal case appropriate for the Peltier effect. The charge and entropy currents for this

10
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FIG. 3: The third-order Peltier coefficient Π3 (in arbitrary units) is plotted as a function of

average chemical potential µ for ωy/ωx = 6 and different values of temperatures (kBθ/~ωy values

are indicated in the figure).
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FIG. 4: The third order Peltier coefficient Π3 is plotted as a function of average chemical potential

µ for kBθ/~ωy = 0.04 and different values of ωy/ωx whose values are indicated in the figure.

case can be expressed as

I = 2
(−e)

h

∫ ∞

−∞

dx(−f ′(x))[A(µL + xkBθ)− A(µR + xkBθ)] , (28)

IS = 2
kB
h

∫ ∞

−∞

dx(−xf ′(x))[A(µL + xkBθ)−A(µR + xkBθ)] , (29)
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where A(E) is the energy integral of T (E),

A(E) =

∫ E

−∞

T (E)dE .

Assuming small temperatures (kBθ ≪ EL), the integrands can be expanded as

A(µ+ xkBθ) ≈ A(µ) + xkBθT (µ) .

Keeping only the lowest order terms the currents can be expressed as

I = 2
(−e)

h
(A(µL)− A(µR)) , (30)

Q̇ =
2π2

3h
(kBθ)

2(T (µL)− T (µR)) . (31)

As was discussed by Bogachek et al.,15,16 the differential Peltier coefficient can be expressed

as (assuming constant µ)

Πd =

(

∂Q̇

∂I

)

µ

=
π2(kBθ)

2

3(−e)

T ′(µL) + T ′(µR)

T (µL) + T (µR)
.

The peak splitting effect of the nonlinearity can be seen from this expression. When the

potential difference across the contact is less than EL, the individual peaks of T ′(µL) and

T ′(µR) will join in a single peak observed in the linear Peltier effect. However, if the po-

tential difference is more than EL, the contribution of these two terms can be distinguished

since they will form two separate peaks. The distance between the peaks, then, will be

proportional to the applied potential difference.

V. CONCLUSIONS

The expansions of the charge and entropy currents as a power series in temperature

and potential differences are obtained, assuming that the transmission probabilities are

unchanged by the nonlinearities. The main advantage of this particular expansion is, through

a different definition of average chemical potential, µ, and temperature, θ, some particular

terms disappear from the expressions. The Seebeck and Peltier effects are investigated as

special cases and it is found that the lowest order nonlinearities are of third order in both

cases.

In the case of the Seebeck effect, S3 is found to have the same sign as S1. Although

at low temperatures S3 is found to be simply proportional to S1, its peaks split into two
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at high temperatures. If kBθ is comparable to the energy difference between the successive

sub-bands, these peaks may join with the peaks of the neighboring steps, creating an unusual

appearance where S3 has maxima at the plateaus of the conductance and minima at the

steps. In all cases, it is found that the nonlinear signal is small compared to the linear one.

For the case of the Peltier effect, Π3 changes sign as the gate voltage is changed for all

parameter values. The main shortcoming of the expansion developed here is that in this

case the potential difference driving the current may be chosen above the threshold level

for nonlinearity. In such a case, the expansion is useless as more and more terms have to

be added up to obtain the correct response. In the small temperature limit, an alternative

expression has been developed for the differential Peltier coefficient that is also valid for

highly nonlinear cases.
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