
MAPPING AND OBSTACLE AVOIDANCE ALGORITHMS FOR
QUADROTORS IN THE INDOOR ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖMER ORAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

NOVEMBER 2019

Approval of the thesis:

MAPPING AND OBSTACLE AVOIDANCE ALGORITHMS FOR
QUADROTORS IN THE INDOOR ENVIRONMENTS

submitted by ÖMER ORAL in partial fulfillment of the requirements for the de-
gree of Master of Science in Mechanical Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M. A. Sahir Arıkan
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Ali Emre Turgut
Supervisor, Mechanical Engineering Department, METU

Assist. Prof. Dr. Kutluk Bilge Arıkan
Co-supervisor, Mechanical Engineering Department, TEDU

Examining Committee Members:

Assoc. Prof. Dr. Mehmet Bülent Özer
Mechanical Engineering Department, METU

Assist. Prof. Dr. Ali Emre Turgut
Mechanical Engineering Department, METU

Assist. Prof. Dr. Kutluk Bilge Arıkan
Mechanical Engineering Department, TEDU

Assoc. Prof. Dr. Ulaş Yaman
Mechanical Engineering Department, METU

Assist. Prof. Dr. Selçuk Himmetoğlu
Mechanical Engineering Department, Hacettepe University

Date: 28.11.2019

mugurlu
Line

mugurlu
Line

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ömer Oral

Signature :

iv

ABSTRACT

MAPPING AND OBSTACLE AVOIDANCE ALGORITHMS FOR
QUADROTORS IN THE INDOOR ENVIRONMENTS

Oral, Ömer
M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Ali Emre Turgut

Co-Supervisor: Assist. Prof. Dr. Kutluk Bilge Arıkan

November 2019, 82 pages

Recently, there has been increased interest for search and rescue missions with au-

tonomous flying vehicles. However, as most of the designed techniques are suitable

for outdoors, only a few techniques have been developed for indoors. SLAM (Si-

multaneous Localization and Mapping) is a method that allows autonomous robots

to navigate in both indoor and outdoor environments. Localization part can be eas-

ily performed using a GPS(Global Positioning System) outdoors. On the contrary,

GPS cannot be used indoors. In this study, the aim is to obtain 2D map of indoor

environments without hitting any obstacles by using a quadrotor that is capable of

autonomous navigation. Local positioning system is established with a UWB(Ultra

Wide-Band) sensor and a LIDAR(Laser Imaging Detection and Ranging) is used to

obtain the map of the unknown indoor environment. A novel algorithm, which maps

indoor environments autonomously, is designed and presented. It is compared with

two known navigation algorithms with the help of various metrics in order to measure

the performance of the presented algorithm. One of the known algorithms directly

fails on bigger maps with obstacles while the other one is overtaken by the presented

v

novel algorithm during comparisons although it successfully completes the mapping

process. The algorithms have obtained similar results in some simulations on small

map. However, the novel algorithm beats the opponents by completing the tasks with

better scores regardless of the size of the indoor environments.

Keywords: LIDAR, SLAM, Mapping, UWB Technology, Trilateration Technique,

Quadrotor, UAV, Indoor, Obstacle Avoidance

vi

ÖZ

İHA İLE GPS KULLANMADAN VE ENGELLERE ÇARPMADAN KAPALI
ALANLARIN HARİTASININ ÇIKARILMASI

Oral, Ömer
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Emre Turgut

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Kutluk Bilge Arıkan

Kasım 2019 , 82 sayfa

Son dönemlerde, otonom uçuş kabiliyetine sahip hava araçlarlarıyla yapılan arama

kurtarma operasyonlarına ilgi artmıştır. Geliştirilen tekniklerin büyük kısmı dış me-

kanlarda kullanılmaya elverişli olduğundan iç mekanlar için geçerli az sayıda teknik

bulunmaktadır. Eş zamanlı konum tespiti ve haritalama otonom robotların açık ve ka-

palı alanlarda gezinim yapmasına olanak veren bir yöntemdir. Açık alanlarda konum

tespiti GPS kullanılarak kolaylıkla gerçekleştirilebilir. Buna karşın kapalı alanlarda

GPS kullanılamamaktadır. Bu çalışmada, otonom gezinim yapabilen bir kuadrotor

yardımıyla herhangi bir engele çarpmadan kapalı alanların iki boyutlu haritasının çı-

kartılması hedeflenmiştir. Ultra Geniş-Bant teknolojisi kullanılarak bir lokal konum-

landırma sistemi oluşturulmuştur ve bir lazer mesafe ölçer yardımıyla bilinmeyen

kapalı alanların haritası çıkartılmıştır. Kapalı alanlarda otonom bir şekilde dolaşır-

ken haritalama yapabilecek yeni bir algoritma tasarlanmış ve sunulmuştur. Bilinen

iki gezinim algoritması ile kıyaslamalar yapılarak sunulan algoritmanın performansı

ölçülmeye çalışılmıştır. Bu kıyaslama esnasında çeşitli performans kriterlerinden fay-

dalanılmıştır. Bilinen algoritmalardan biri içerisinde engeller barındıran büyük hari-

vii

talarda direkt olarak başarısız olurken, diğer algoritma haritalama işlemini düzgün bir

şekilde gerçekleştirmesine rağmen kıyaslamalar esnasında sunulan yeni algoritmaya

yenik düşmüştür. Küçük çaplı haritalarda gerçekleştirilen bazı benzetimlerde algorit-

malar benzer sonuçlar elde etmiştir fakat sunulan yeni algoritma harita büyüklüğün-

den bağımsız olarak görevini her durumda tamamlamış ve aldığı başarılı sonuçlarla

rakiplerine üstünlük sağlamıştır.

Anahtar Kelimeler: Lazer Ölçüm Cihazı, Haritalama, Eş Zamanlı Konum Tespiti ve

Haritalama, Ultra Geniş-Bant Teknolojisi, Trilaterasyon Tekniği, Kuadrotor, İnsansız

Hava Aracı, Kapalı Alanlar, Engellerden Kaçınma Algoritması

viii

To my family

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciation and gratitude

to my supervisor Asst. Prof. Dr. Ali Emre Turgut and co-supervisor Asst. Prof.

Dr. Kutluk Bilge Arıkan for their continuous support, encouragement, criticism and

invaluable guidance throughout my thesis study. Their support was not only limited

to my academic studies, but they also always helped me whenever I had a problem in

my personal life.

I would like to specially thank my colleague and friend M. Burak Macit for his im-

mense support and precious knowledge that he shared. He is always available to

discuss my academic questions regardless of time and condition. I also need to apol-

ogize for the hours he missed in his life while helping me.

I would like to state my grateful appreciation to my parents Meral and Akın Oral,

and my sister Zeynep Oral for their endless love and support. They have always been

encouraging, patient and helpful to me throughout my years of study and in my life.

Their enlightened vision helped me to choose my goals and pursue them. This study

would not be finished without their patience, support and encouragement.

I would like to thank Musab Çağrı Uğurlu for his friendship and technical support,

and my friends Semih İnyurt, Kadir Akkuş, M. Burak Atak, Naci Koray Koç, Berk

Alparslan, Mustafa Süyüm, Fatih Apaydın, Cesur Bahadır Çelik, Furkan Celen, Ege

Kayalı, H. Alpay Küçüker, Derya Uğurlu and Aybeniz Akbaba for their invaluable

friendship and encouragement.

Last, but not least, I express my deep-hearted thanks to Turkish Aerospace Industries

Inc. for giving an opportunity to pursue academic studies.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvi

LIST OF ALGORITHMS . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 UAV Applications . 1

1.2 What is Quadrotor? . 2

1.3 Aim of the Thesis . 3

1.4 Thesis Outline . 4

2 LITERATURE SURVEY . 7

2.1 Simultaneous Localization and Mapping(SLAM) 7

2.1.1 Outdoor Environment . 8

xi

2.1.2 Indoor Environment . 9

2.1.3 Contribution of the Thesis . 12

3 MATHEMATICAL MODEL AND METHODS 13

3.1 Kinematic Model . 13

3.2 Dynamic Model . 17

3.3 State Space Representation . 19

3.4 Localization and Mapping . 20

3.4.1 Ultra Wide-Band Localization 20

3.4.2 SLAM . 21

3.4.3 Navigation Algorithms . 22

3.4.3.1 Wall Following Algorithm 23

3.4.3.2 Exploration Algorithm 24

Opening Detection Algorithm 25

Obstacle Avoidance Algorithm 25

3.4.3.3 Target-Based Navigation Algorithm 26

Mission Controller . 26

Flight Controller . 27

Navigation Controller . 29

A* Search Algorithm . 30

3.5 Control Method . 32

3.5.1 PID Control . 32

4 EXPERIMENTS . 37

4.1 Experimental Setup . 37

xii

4.1.1 Software Packages . 37

4.1.1.1 Ubuntu 16.04-LTS (Xenial Xerus) 38

4.1.1.2 Robot Operating System (ROS) - Kinetic Kame 38

4.1.1.3 ROS Visualization Tool (Rviz) 39

4.1.1.4 Gazebo 7.1 . 39

4.1.1.5 QT Creator 4.8 . 40

4.1.2 Quadrotor . 40

4.1.2.1 Laser Imaging Detection and Ranging(LIDAR) 41

4.1.2.2 Sound Navigation and Ranging(Sonar) 41

4.1.2.3 Inertial Measurement Unit(IMU) 42

4.1.2.4 Ultra Wide-Band Sensor(UWB Sensor) 42

4.2 Experimental Procedure . 43

4.2.1 Simulations . 44

4.2.2 Performance Metrics . 44

4.2.2.1 Distance . 45

4.2.2.2 Effective Distance . 45

4.2.2.3 Time . 46

4.2.2.4 Entropy . 46

4.2.2.5 Repeatability . 47

5 RESULTS . 49

5.1 Simulations . 49

6 DISCUSSION . 75

7 CONCLUSION AND FUTURE WORK 77

xiii

7.1 Conclusion . 77

7.2 Future Work . 78

REFERENCES . 79

xiv

LIST OF TABLES

TABLES

Table 3.1 Wall Following Algorithm Decision Table[12] 23

Table 5.1 Performance Comparison Table for Map 1 without Obstacles 50

Table 5.2 Performance Comparison Table for Map 1 with Obstacles 51

Table 5.3 Performance Comparison Table for Map 2 without Obstacles 52

Table 5.4 Performance Comparison Table for Map 2 with Obstacles 53

xv

LIST OF FIGURES

FIGURES

Figure 1.1 Direction of Rotation for Quadrotor Propellers 2

Figure 1.2 Thrust Movement . 3

Figure 1.3 Pitch Movement . 3

Figure 1.4 Roll Movement . 4

Figure 1.5 Yaw Movement . 4

Figure 2.1 2.5D Map and Straight-Line Segments [7] 9

Figure 2.2 The Schematic Diagram of Navigation System Proposed by Mo-

hamed et. al. [22] . 10

Figure 2.3 The Result of the 2D Optical Flow Implementation [37] 11

Figure 3.1 Basic Rotation Matrices of the Quadrotor 14

Figure 3.2 UWB Communication with Trilateration Method 21

Figure 3.3 SLAM Algorithm Flow Chart [19] 22

Figure 3.4 Operating Logic of Wall Following Algorithm 24

Figure 3.5 Sample Navigation Path with A* Search Algorithm 33

Figure 3.6 Controller of the Hector Quadrotor with Separate Cascaded PID

Controllers[27] . 35

xvi

Figure 4.1 Ros Disributions [2] . 38

Figure 4.2 Gazebo Software Architecture [1] 39

Figure 4.3 QT Creator User Interface . 40

Figure 4.4 Hector Quadrotor [27] . 41

Figure 4.5 Map 1 without Obstacles [31] 43

Figure 4.6 Map 1 with Obstacles [31] . 44

Figure 4.7 Map 2 without Obstacles . 45

Figure 4.8 Map 2 with Obstacles . 46

Figure 4.9 Release Numbers for Repeatability Analysis on Map 1 47

Figure 4.10 Release Numbers for Repeatability Analysis on Map 2 48

Figure 4.11 Sample 3D Histogram Graph 48

Figure 5.1 Navigation with Exploration Algorithm on Map 1 without Ob-

stacles . 50

Figure 5.2 Navigation with Target-Based Navigation Algorithm on Map 1

without Obstacles . 54

Figure 5.3 Navigation with Wall Following Algorithm on Map 1 without

Obstacles . 55

Figure 5.4 3 Dimensional Histogram Graph of Map 1 without Obstacles . . 56

Figure 5.5 Repeatability Analysis for Exploration Algorithm in Map 1 with-

out Obstacles . 57

Figure 5.6 Repeatability Analysis for Target-Based Navigation Algorithm

in Map 1 without Obstacles . 58

Figure 5.7 Repeatability Analysis for Wall Following Algorithm in Map 1

without Obstacles . 59

xvii

Figure 5.8 Navigation with Exploration Algorithm on Map 1 with Obstacles 60

Figure 5.9 Navigation with Target-Based Navigation Algorithm on Map 1

with Obstacles . 61

Figure 5.10 Navigation with Wall Fallowing Algorithm on Map 1 with Ob-

stacles . 62

Figure 5.11 3 Dimensional Histogram Graph of Map 1 with Obstacles 63

Figure 5.12 Repeatability Analysis for Exploration Algorithm in Map 1 with

Obstacles . 64

Figure 5.13 Repeatability Analysis for Target-Based Navigation Algorithm

in Map 1 with Obstacles . 65

Figure 5.14 Repeatability Analysis for Wall Following Algorithm in Map 1

with Obstacles . 66

Figure 5.15 Navigation with Target-Based Navigation Algorithm on Map 2

without Obstacles . 67

Figure 5.16 Navigation with Wall Following Algorithm on Map 2 without

Obstacles . 68

Figure 5.17 3 Dimensional Histogram Graph of Map 2 without Obstacles . . 69

Figure 5.18 Repeatability Analysis for Target-Based Navigation Algorithm

in Map 2 without Obstacles . 70

Figure 5.19 Repeatability Analysis for Wall Following Algorithm in Map 2

without Obstacles . 70

Figure 5.20 Navigation with Target-Based Navigation Algorithm on Map 2

with Obstacles . 71

Figure 5.21 Navigation with Wall Following Algorithm on Map 2 with Ob-

stacles . 72

Figure 5.22 3 Dimensional Histogram Graph of Map 2 with Obstacles 73

xviii

Figure 5.23 Repeatability Analysis for Target-Based Navigation Algorithm

in Map 2 with Obstacles . 74

Figure 5.24 Repeatability Analysis for Wall Following Algorithm in Map 2

with Obstacles . 74

xix

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Pseudocode for Wall Following Algorithm 23

Algorithm 2 Pseudocode for Flight Controller Algorithm Main Function . . 28

Algorithm 3 Pseudocode for Flight Controller Algorithm Main Function

Cont’d . 29

Algorithm 4 Pseudocode for Navigation Controller Algorithm Main Function 31

Algorithm 5 Pseudocode for Navigation Controller Algorithm FindOpenSpaces

Function . 32

Algorithm 6 Pseudocode for Navigation Controller Algorithm SelectNextDes-

tination Function . 33

Algorithm 7 Pseudocode for Navigation Controller Algorithm SelectNextDes-

tinationByAStar Function . 34

Algorithm 8 Pseudocode for Navigation Controller Algorithm isFlyable Func-

tion . 35

xx

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle

SLAM Simultaneous Localization and Mapping

UWB Ultra Wide-Band

GPS Global Positioning System

EKF Extended Kalman Filter

MMW Milimeter-Wave Radar

RFID Radio Frequency Identification

IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging or Laser Imaging Detection and

Ranging

SONAR Sound Navigation and Ranging

Rx (φ) Rotation Matrix About X-axis

Ĉ(a,b) Transformation matrix from Body-a to Body-b

LTS Long Term Support

ROS Robot Operating System

Rviz ROS Visualization Tool

OGRE Object-Oriented Graphics Rendering Engine

IDE Integrated Development Environment

URDF Universal Robot Description Format

LQR Linear-Quadratic Regulator

PID Proportional Integral Derivative

xxi

xxii

CHAPTER 1

INTRODUCTION

Advances in air vehicles have been the key development of the century. Especially,

aircrafts played a vital role during World War I and World War II. However, cost of

the air vehicles and the difficulty and cost of pilot training led the aerospace industry

to develop unmanned aerial vehicles. Not only civil industry but also military in-

dustry have been affected by these developments. Today, it is possible to encounter

unmanned aerial vehicles that are easy to use, easy to manufacture and cost effec-

tive. UAV sector attracted the attention of researchers as a result of recent advances.

At first, UAV’s were controlled remotely in order perform dangerous tasks. Then, it

was thought that the UAV’s can move autonomously with the use of inertial sensors.

Quadrotors gained popularity due to mostly their high maneuverability. Moreover,

quadrotors do not need airfield for take-off and landing. Nevertheless, they have also

disadvantages. Quadrotors have a limited flying time and small payload capabilities.

In addition, a major part of the energy of the quadrotors is spent against gravity and

providing stability. Still, they are preferred by researchers since making trade-offs is

a mandatory part of engineering.

1.1 UAV Applications

UAV’s can be used in a variety of tasks with the help of different sensors. Type of

the UAV and the related sensors are altered depending on the operating area being

indoors or outdoors. One of them is on the area of photography/cinematography.

During celebrations, activities and events, quadrotors are used as an effective tool.

Recently, it has been indispensable in cinema productions as well. Moreover, it is

1

commonly used in racing as a hobby. It can be used for entertainment purposes by

children and adults as well as remote controlled vehicles in speed races. In addition,

UAV’s may perform pick up or drop tasks. They can be used to control remote areas.

Similarly, they can transport the products from one point to another. For instance,

Amazon Prime Air, which was introduced as future transport system for goods, aims

to deliver products safely within 30 minutes by using drones. Finally, search, rescue

and mapping are well-known usage areas of UAV’s as they are objectives of this

study. Drones might be used to inspect a dangerous area that is hard to explore by

humans. In parallel, security forces may take advantage of UAV’s in order to rescue

the hostages in unknown environments.

1.2 What is Quadrotor?

Quadrotor is the member of multirotor aircraft family that involves the versions with

6, 8 and 10 rotors as well. Quadrotor has four independent rotors on the fixed base. It

was tested first by scientist Etienne Oehmichen in 1920 [16]. It has vertical take-off

and landing capability without the need of any airfield. In quadrotors, rotor 1 and 3

turn in clockwise direction, while rotor 2 and 4 turn in counter clockwise direction in

order to eliminate torque effects as it is shown in Figure 1.1.

Figure 1.1: Direction of Rotation for Quadrotor Propellers

2

The reason of this kind contra-rotation is to eliminate yawing moment just like the

task of the tail rotor in the helicopter. If they are turning in the same direction, the

quadrotor would rotate where it was. Altering the speed of these independent rotors,

it is possible to control the position and orientation of the robot. Increasing or de-

creasing the speed of four rotors simultaneously leads the quadrotor to move up and

down in Figure 1.2 as follows,

Figure 1.2: Thrust Movement

Roll, pitch and yaw movements are shown in Figures 1.3, 1.4, 1.5 as follows,

Figure 1.3: Pitch Movement

1.3 Aim of the Thesis

In literature, mapping process is performed in several ways. Camera and laser range

finder are commonly used to map of an unknown environment. Many researchers

have used different methods such as scan matching, SLAM, and computer vision.

3

Figure 1.4: Roll Movement

Figure 1.5: Yaw Movement

In this thesis, we aim to obtain a 2D map of an unknown indoor environment without

hitting any obstacles by using a quadrotor that is capable of autonomous navigation.

1.4 Thesis Outline

Chapter 2 presents the literature survey of mapping applications with UAV’s. Firstly,

a short description is given about search and rescue operations that are performed

by quadrotors equipped with various sensors. Secondly, the studies on SLAM prob-

lem are examined. Finally, indoor and outdoor SLAM applications carried out with

different platforms and sensors in the literature are introduced.

Chapter 3 focuses on the the mathematical model and the exploration methods, which

are used to explore indoor environments. At first, kinematics and dynamics of the

4

quadrotor are mentioned. Then, the navigation and mapping algorithms used in the

simulation environment are expressed. Lastly, this section is completed with the ex-

planation of control method.

Chapter 4 is devoted to experimental setup and experimental procedure. In the exper-

imental setup part, each and every hardware and the software of the system are clari-

fied. Then the procedure that is followed on the simulation environment is mentioned

and the scenarios are explained. Finally, the performance metrics are introduced.

Chapter 5 includes the results of the performed simulations. Comparisons of different

algorithms are interpreted.

Chapter 6 is the discussion section for the results presented in the previous chapter.

Chapter 7 summarizes the work done throughout the dissertation. It concludes the

achievements of the thesis.

5

6

CHAPTER 2

LITERATURE SURVEY

In recent years, exploration, search and rescue operations in challenging and danger-

ous tasks started to be carried out by using unmanned and autonomous aerial vehicles.

Performing these tasks indoors is much more complicated than outdoors since Global

Positioning System (GPS) cannot be used indoors. Therefore, SLAM applications

first started for outdoor environment due to ease of localization using GPS.

2.1 Simultaneous Localization and Mapping(SLAM)

SLAM is the process of simultaneous map extraction and robot positioning. The dif-

ficulty of this process can be easily understood from its definition. A map is required

for correct positioning, while an accurate positioning is required for mapping. There

are three main paradigms used for SLAM [36]. The first and the oldest one is Ex-

tended Kalman Filter (EKF) SLAM. It has lost its popularity due to computational

complexity. Second one is the Graph-based SLAM. Since it can be successfully ap-

plied to non-linear optimization method, it has become the main paradigm for the

solution of all SLAM problems. The last method, which is a non-parametric statisti-

cal filtering technique and a popular method for online SLAM, is the Particle Filter.

It provides a new solution to SLAM’s data association problem. Dissanayake et al.

[14] introduce a solution for SLAM problem after clarifying the underlying reason of

this problem. Also, they present an implementation of the SLAM algorithm by using

milimeter-wave radar (MMW) to obtain map in an outdoor environment. Data assos-

ciation and map management,which were mentioned theoretically, were verified with

this implementation. Finally, the obtained results and actual positions of the map’s

7

landmarks are checked. Nguyen et al. [28] demonstrate the experimentally validated

Orthogonal SLAM (OrthoSLAM) algorithm. This algorithm is suitable for embedded

robotic systems and capable of running real-time with low computational cost. They

try to reduce complexity with an assumption of related environment. Considering

the indoor environment, they manage to solve this issue by mapping just parallel and

perpendicular lines of the primary structure. They obtain the map of their laboratory

hallway and compare the test results with the measurements to check the accuracy

of results. Dissanayake et al. [13] introduce a computationally efficient solution for

SLAM process. They show that the efficiency of the SLAM process increases when

the landmarks are selected properly.

2.1.1 Outdoor Environment

Arth et al. [7] come up with a new method for large-scale geo-localization and track-

ing of mobile devices in urban area by using video stream. They register a SLAM

map by localizing the first frame according to 2.5D map that is transformed from the

capture as shown in Figure 2.1. At this point, 2.5D map represents the area covered by

the building in 2D and the height of the building is estimated approximately. During

the process, the absolute camera orientation, which is estimated by using straight-

line segments and the camera translation of the sides of the building in the image are

matched. Reasonable pose is obtained to initiate SLAM at the end of this operation.

Similarly, Cole et al. [11] use basic segmentation algorithm in order to separate the

data stream into distinct point clouds that are referred to the position of the vehi-

cle. A 3D scanning laser range finder is integrated to the vehicle and 3D SLAM is

performed using improved 2D SLAM technology. Moreover, a new registration tech-

nique which is created by combining and optimizing the previous techniques is used

to match frames.

Brenneke et al. [9] present a SLAM approach that is stand on leveled range scans. 2D

SLAM is merged with 3D perception instead of using full 3D modelling in order to

reduce the computational cost. This paper also describes the other steps of the process

such as data acquisition and obstacle segmentation with showing the experimental re-

sults. Paz et al. [32] present a new SLAM technique that is valid for both large

8

Figure 2.1: 2.5D Map and Straight-Line Segments [7]

indoor and outdoor environments. Different from existing visual SLAM systems that

use both monocular information and 3D stereo information, their system cover both

monocular and stereo. In order to get to map both near and far features, textured

point features are taken out and stored as three-dimensional points. The SLAM algo-

rithm creates the local maps first then the novel conditionally independent divide and

conquer algorithm forms the full map. Experimental results in indoor and outdoor

environment are shared to testify the robustness and the scalability of the system.

2.1.2 Indoor Environment

Indoor mapping process can be performed by using several methods. In order to

discover indoor environments, ground based robots are commonly used due to ease

of control [6], [10]. In studies with ground robots, while laser range finder and inertial

measurement unit are generally used, Omara et al. [30] use Kinect instead of laser

range finder since it is more economical. Different sensors are utilized when the

unmanned aerial robots are used to obtain map of an indoor area. Johnson [21] ,in his

thesis, manage the control of a quadrotor using image processing with camera. On

the other hand, Ahrens et al. [5] manage to avoid collisions and obtain the map of

indoor area. In addition to camera, Roberts et al. [34] prefer a quadrotor equipped

with ultrasonic sensor and infrared sensor. By using these sensors, it is aimed to

control the unmanned aerial vehicle without hitting any obstacle. The trials on test

environment end up with reasonable results. Mohamed et al. [22] propose a new,

cost-effective and simple indoor navigation system. In this system, three laser beams

9

integrated to the body of the UAV and they are oriented to the ground at a certain

angle as shown in Figure 2.2. In order to determine the position and orientation of the

UAV, several computer vision algorithms and a camera are used by tracking the laser

marks on the ground.

Figure 2.2: The Schematic Diagram of Navigation System Proposed by Mohamed et.

al. [22]

Achtelika et al. [4] find a solution for navigation, exploration and object detection of

quadrotors in unknown indoor environments. They define the design and operation

of quadrotor by showing the architecture of the software and algorithms. The IMU

is used as base structure. Additionally, visual or laser odometry algorithm is imple-

mented in order to estimate the quadrotor’s postion with respect to local environment.

Extended Kalman Filter (EKF) is added to integrate odometry estimates and IMU

data. Lastly, simple obstacle avoidance algorithm is applied with LQR controller to

get more stability. Parallel to Achtelika’s study, Grzonka et al. [18] perform mapping

and exploration tasks using microcopter, inertial measurement unit and laser range

finder. In contrast, a mirror is used to reflect laser beams to the ground and height of

the air vehicle is determined with the help of laser marks. Wang et al. [37] present

navigation and control for an UAV system that is operating in the indoor environ-

ment. The testbed quadrotor platform is equipped with an inertial measurement unit,

10

a camera which is looking downward, a barometer for height measurement, and a

laser range finder to get planar map at the quadrotor’s level. The robot can estimate

its position and velocity, and fly in the room without colliding the obstacles. The

velocity estimation by vision optical flow is shown in Figure 2.3. The system, which

has algorithms running on board in real time, is verified in the test environment.

Figure 2.3: The Result of the 2D Optical Flow Implementation [37]

In many studies, inertial measurement unit and laser range finder are found enough

for localization of the robot. However, wireless localization systems is also included

in some studies. The system which is called RFID (Radio Frequency Identification)

is divided into two types: active and passive. Basically, RFID systems are working

using radio frequency signals to locate the position of the robot [26, 25]. It is possible

to estimate the robot’s position with another wireless localization system which is

called UWB(Ultra-Wideband) technology. Although the communication with UWB

technology is not preferred since it is a very costly system, Kempke et al. [23] manage

to establish an adequetly and economic system. Barral et al. [8] develope a plugin

including UWB communication for tracking forklifts in an indoor environment. They

test various real scenarios on Gazebo simulator by defining different modes according

to the UWB signal permeability of the obstacles in the environment.

11

In most of the studies, Gazebo, USARSim, V-REP and Webots are used as the physics

based simulation platform[33, 29, 8]. Hector Slam, GMapping and Laser Scan Matcher

are used as SLAM algorithm[15]. Generally, inertial measurement unit, laser range

finder and camera are used to obtain map of an unknown areas.

2.1.3 Contribution of the Thesis

The focus of this study is to obtain 2D map of the unknown indoor environments

without hitting any obstacles by using a quadrotor. Various sensors such as laser

range finder, sonar and IMU are used to operate quadrotor autonomously. UWB

sensor is used for localization and an UWB plugin is integrated to project to establish

a realistic communication between quadrotor and UWB sensors. A novel navigation

algorithm is presented and it is compared with two known algorithms. In order to

measure performance, different maps are designed and various performance metrics

are used.

12

CHAPTER 3

MATHEMATICAL MODEL AND METHODS

In this chapter, kinematics and dynamics of whole system are presented. Position and

velocity analysis, equation of motions and the state space representations are men-

tioned in these subjects. Firstly, kinematics of the quadrotor is modelled. Secondly,

dynamics of the quadrotor is derived by using the kinematic equations. Lastly, state

space representation of the overall system and the control method are explained.

3.1 Kinematic Model

The basic rotation matrices, which are based on unit directions and rotation angles,

are written both exponential and matrix forms in 3.1 as follows:

Rx (φ) = eũ1φ =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (3.1)

Ry (θ) = eũ2θ =

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.2)

Rz (ψ) = eũ3ψ =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (3.3)

13

Figure 3.1: Basic Rotation Matrices of the Quadrotor

Transformation matrix is shown as follows:

Rzyx (φθψ) = Rzyx (ψ)Rzyx (θ)Rzyx (φ) (3.4)

or,

Ĉ(i,b) = eũ3ψeũ2θeũ1φ (3.5)

Rzyx (φ, θ, ψ) = Ĉ(i,b)

=

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

(3.6)

Basic column matrices are required to carry out position and velocity analysis. Basic

column matrices are expressed as follows:

14

ū1 =

1

0

0

 ū2 =

0

1

0

 ū3 =

0

0

1

 (3.7)

The position of the quadrotor can be defined in matrix form as follows:

p̄(i)q =
[
x y z

]T
(3.8)

Linear velocity matrix of the quadrotor can be defined by taking time derivative of

the position matrix as,

˙̄p(i)q =
[
ẋ ẏ ż

]T
(3.9)

Similarly, angular velocity of the quadrotor can be defined in the body-fixed reference

frame as follows:

ω̄(b)
q =

[
p q r

]T
(3.10)

Angular velocity matrix can be written in another form as,

ω̄(b)
q = L̂ ˙̄γ (3.11)

where L̂ is the mapping matrix and ˙̄γ is the matrix which symbolises derivative of

Euler angles as,

L̂ =

1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ

 (3.12)

15

The angular velocity in the inertial fixed reference frame can be obtained by using the

angular velocity in the body-fixed reference frame as follows:

ω̄(i)
q = Ĉ(i,b)ω̄(b)

q (3.13)

ω̄(i)
q = Ĉ(i,b)L̂ ˙̄γ = T̂ ˙̄γ (3.14)

In equation (3.14), T̂ stands for the mapping matrix for the derivative of the Euler

angles to the quadrotor’s angular velocity in the inertial reference frame.

The generalized coordinates and velocities of the system can be defined using the

obtained linear and angular velocities as,

q̄ =
[
x y z φ θ ψ

]T
(3.15)

˙̄q =
[
ẋ ẏ ż φ̇ θ̇ ψ̇

]T
(3.16)

Then, linear and angular velocities are defined in terms of the generalized velocities

as follow,

v̄ =
6∑
i=1

V̄ (i)q̄(i) (3.17)

ω̄ =
6∑
i=1

Ω̄(i)q̄(i) (3.18)

Here, in equations (3.17) and (3.18), V̄ represents linear velocity influence coefficient

and Ω̄ sybolises angular velocity influence coefficient. Using these coefficients, the

velocity of the quadrotor can be rewritten as,

16

˙̄p(i)q =
[
Î(3x3) 0̂(3x3)

]
˙̄q = V̂q ˙̄q (3.19)

˙̄ω(i)
q =

[
0̂(3x3) T̂

]
˙̄q = Ω̂q ˙̄q (3.20)

3.2 Dynamic Model

The Lagrange-d’Alembert formulation is used to obtain the equation of motion of the

system. The Lagrange-d’Alembert formula is in the following form,

d

dt

(
∂L

∂ ˙̄q

)
− ∂L

∂q̄
= ū+ ūext (3.21)

L = K − U (3.22)

In order to get the equation of motion, kinetic and potential energies that is involved

in equation (3.22) should be calculated as follow,

K =
1

2
˙̄p(i)Tq mb ˙̄p(i)q +

1

2
˙̄ω(i)T
q Ĉ(i,b)ÎbĈ

(i,b)T ˙̄ω(i)
q (3.23)

U = mbgū
t
3p̄

(i)
q (3.24)

Then, the equation of the motion of the system is obtained by plugging equation

(3.23) and equation (3.24) into equation (3.22).

M̂(q̄)¨̄q + Ĉ(q̄, ˙̄q) ˙̄q + Ĝ(q̄) = ū+ ūext (3.25)

K =
1

2
˙̄qTM̂(q̄) ˙̄q (3.26)

17

M̂(q̄) = V̂ T
q mbV̂qΩ̂

T
q Ĉ

(i,b)T Ω̂q (3.27)

ca,b =
6∑
j=1

1

2

{
∂ma,b

∂qj
+
∂ma,j

∂qb
− ∂mj,b

∂qa

}
(3.28)

Ĝ(q̄) =
∂U

∂q̄
(3.29)

The navigation algorithms that will be verified in simulation environment use "Hector

Quadrotor" package and this package has its own dynamic equations. Flight dynam-

ics, motor dynamics and thrust calculation are given in the following lines.

Meyer et al. [27] who prepared the Hector Quadrotor package used the following

formulas for the calculations of flight dynamics,

ṗn = vn (3.30)

v̇n = m−1Cb
nF (3.31)

ẇb = J−1M (3.32)

In the equations, all the loads acting on the platform are indicated by F and all torques

are indicated by M, while the relevant position and speed information calculated

based on the world reference center is indicated by ṗn and v̇n. Cb
n is the transforma-

tion matrix that transforms the robot reference system to the world reference system.

ẇb indicates the angular velocity in the robot reference system.

The force vector F includes the motor thrust FM , the drag forces Fd and the gravity

vector Fg. Similarly, the torque vector contains the propulsion torque MM and drag

moments Md. Moments and drag forces are obtained as,

Fd = −Cd,F · Cb
n · |vn − vnw| · (v − vw) (3.33)

18

Md = Cd,M ·
∣∣ωb∣∣ · ωb (3.34)

In equations 3.33 and 3.34 Cd,F and Cd,M represent the diagonal drag coefficient

matrices while the wind vector is shown as vnw . Lastly, the gravity force Fg is given

as,

Fg = m · Cb
n ·
[
0 0 ge

]T
(3.35)

Motor dynamics behaviour that is based on four brushless DC motor is expressed

with the following formulas,

UA = RAIA + ψωm (3.36)

Me = ψIA (3.37)

ω̇M =
1

JM
· (Me −Mm) =

1

JM

(
ψ

RA

· (UA − ψωM)−Mm

)
(3.38)

T = C(T,0)ω
2
M + C(T,1)v1ωM ± C(T,2)v

2
1 (3.39)

CT (J) = C(T,0) + C(T,1)J ± C(T,2)J
2 (3.40)

3.3 State Space Representation

The vector of state can be congregated as,

X =
[
φ θ ψ x y z

]T
∈ <6 (3.41)

19

Then, the equations of the kinematics of the quadrotor can be written in state space

representation form as follows,

φ̇ = p+ r[c(φ)t(θ)] + q[s(φ)t(θ)]

θ̇ = q[c(φ)]− r[s(φ)]

ψ̇ = r c(φ)
c(θ)

+ q s(φ)
c(θ)

ẋ = ω[s(φ)s(ψ) + c(φ)c(ψ)s(θ)]− v[c(φ)s(ψ)− c(ψ)s(φ)s(θ)] + u[c(ψ)c(θ)]

ẏ = v[c(φ)c(ψ) + s(φ)s(ψ)s(θ)]− ω[c(ψ)s(φ)− c(φ)s(ψ)s(θ) + u[c(θ)s(ψ)]]

ż = ω[c(φ)c(θ)]− u[s(θ)] + v[c(θ)s(φ)]

(3.42)

where s(θ) = sin(θ), c(θ) = cos(θ), s(φ) = sin(φ), c(φ) = cos(φ), s(ψ) = sin(ψ),

c(ψ) = cos(ψ), t(θ) = tan(θ)

3.4 Localization and Mapping

The most important and challenging part of this study is to obtain accurate location

and map information. The robot processes the data that is received via inertial mea-

surement device and sensors into a huge matrix. The matrix detects information about

the location by assigning a value based on the density of the object. This process is

repeated until the entire map is obtained and it is verified continuously.

3.4.1 Ultra Wide-Band Localization

Ultra wide-band (UWB) technology is an innovative wireless active marker sensor

system that can be used for localization in the indoor environment. It makes local-

ization so easy for the UAV to be able to determine its position, especially at the first

moment when it begins the mission. Afterwards, the reliability of the map is increased

by cross-checking with the data from other sensors. Compared to other wireless sys-

tems, UWB technology stands out because of its low energy consumption and the

ability to work independently of the effects of surrounding objects. However, in or-

der to use the UWB technology in positioning, at least three UWB transmitters must

20

be placed in the area before mapping starts. This is one of the most important factors

that make it difficult to use in search and rescue operations. Yet, before the SLAM,

the UAV can accurately place the transmitters on the area and record these locations

for later use. In this study, it is assumed that the sensors are already placed in the field.

The operating logic of the system is shown in Figure 3.3 and trilateration technique

is used to calculate the position of robot according to the information gathered from

UWB transmitters as shown in Figure 3.2. This technique localize the robot using

circle equations 3.43.

(x− xi)2 + (y − yi)2 + (z − zi)2 = Ri
2 , i = 1, 2, 3 (3.43)

Figure 3.2: UWB Communication with Trilateration Method

3.4.2 SLAM

SLAM (Simultaneous Localization and Mapping) is abbreviation given to simultane-

ous map extraction and robot positioning. The difficulty of this process can be easily

understood from the definition. A map is required for correct positioning, while an

21

accurate positioning is required for mapping. SLAM is one of the major problems

that must be solved in fully autonomous robots. Autonomous robots are classified ac-

cording to their operating areas like indoor robots, outdoor robots, underwater robots

and aerial robots. Therefore, SLAM methods differ as in this classification. Many

methods have been developed since the mid-80s. The SLAM process can be simply

described as shown in Figure 3.3.

Figure 3.3: SLAM Algorithm Flow Chart [19]

3.4.3 Navigation Algorithms

In this section, navigation algorithms are introduced. Working principles and the logic

behind the scene are explained. Although ROS allows coding in many programming

languages, all algorithms are written in C++ to take an advantage of QT Creator

opportunities.

22

3.4.3.1 Wall Following Algorithm

Wall following algorithm is a simple but highly successful method used for exploring

and mapping of maze-like indoor environments[12]. An example of wall following

algorithm is presented in related study [24]. There are two different versions where

the robot moves to the right or left of the wall. In this study, the UAV covers the

wall on the left side by controlling its orientation and speed. The decisions that the

robot will make according to the situations it will meet are shown in Table 3.1 and

pseudocode that belongs to wall follow algorithm is expressed in Algorithm 1,

Table 3.1: Wall Following Algorithm Decision Table[12]

Left Right Front Action

0 X X Turn counter clockwise direction

1 0 X Go straight

1 1 X Turn clockwise direction

In table 3.1, "0" indicates that no wall is detected while "1" represents that wall is

detected. "X" means that it is not considered according the information getting from

other sides.

Algorithm 1: Pseudocode for Wall Following Algorithm

while Exploration is not finished do

if Wall is not spotted ahead of the UAV then

Adjust the turning velocity;

Adjust the forward velocity;

Adjust the altitude velocity;

else
Turn 90 degrees right

end

end

Elements used in this algorithm is shown in Figure 3.4. Laser range finder gives

information about ranges for various directions around the UAV,Range1 andRange2

denote the ranges at 10 ° to the left of the quadrotor and Range3 denotes the range

23

in front of the quadrotor. If Range3 is larger than a certain threshold, quadrotor

continues to go forward with constant velocity, while yaw velocity is continuously

adjusted as follows:

vyaw = Kyaw(Range2 −Range1) (3.44)

where Kyaw is the gain to determine turning velocity. Altitude velocity is adjusted so

that quadrotor stays at a constant altitude throughout the task(1 meter in this case).

WhenRange3 is below a certain threshold, 1.5 m is used in simulations, i.e. a vertical

wall is reached, UAV turns 90 ° and continues to follow the wall to the left of it as

explained above. Translation velocity of the quadrotor is simply found by adding

forward velocity and avoidance velocity.

Figure 3.4: Operating Logic of Wall Following Algorithm

3.4.3.2 Exploration Algorithm

The purpose of this algorithm is to explore each part of a closed area by avoiding

any collision and by going the least. The speed contribution required for each of two

sub-tasks is calculated. The total velocity command for the UAV is obtained by the

vectoral addition of velocity contributions from the opening detection and obstacle

avoidance algorithms. This algorithm is proposed in related paper[24].

24

Opening Detection Algorithm It is important to identify the openings and select

the destination accordingly to explore each part of a region. The opening points are

obtained by comparing the proportions of distances obtained from two consecutive

angles over the entire scanning area. The distance of the opening from the starting

point is found in Equation 3.45,

rcorner = max
ri
ri+1

, i = 1, 2, 3... (3.45)

Since the UAV’s orientation, estimated position, UWB data, distance to the corner

point and angle information are known, the position of the corner point can be ob-

tained using Equation 3.46 and Equation 3.47. It refers to the angle of deviation in

these equations and the angle between the UAV and the corner point in the deviation

correction.

xcorner = xUAV + rcorner cos (ψ + θ) (3.46)

ycorner = yUAV + rcorner cos (ψ + θ) (3.47)

Once the corner point has been determined, a destination must be selected. The dis-

tance to the target is selected as the average of the distances between the left side and

right side of the corner. The angle between the target and the UAV is selected as 10 °

away form the corner compared with the the angle between the corner point and the

UAV. In most cases, a target point is assigned in the middle of the open area and it

leads to extract more space to explore.

While the UAV’s orientation is always towards the target, its forward speed is adjusted

according to its distance from the target as stated in the equation 3.48.

vforward = K0 +Kp
3
√
l (3.48)

Obstacle Avoidance Algorithm The speed contribution required to cross obstacles

safely and move around walls without impact is calculated using the information

25

obtained from the laser range finder at each angle. Using laser scans at each angle,

velocity vectors are generated such that the magnitude is inversely proportional to and

opposite to the distance as shown in Equation 3.49.

vi =
K

ri
r̂i (3.49)

By summing obstacle avoidance velocity contributions from each laser scan and the

forward velocity contribution to the target calculated by the opening detection algo-

rithm, the UAV can move to the target smoothly without any collision.

3.4.3.3 Target-Based Navigation Algorithm

This algorithm is based on "Frontier Based Probabilistic Approach" principle [17].

This method aims to explore map of the environment by moving the border between

discovered and undiscovered areas. During the process, the robot does not need to

large-scale map for navigation. Therefore, it reduces the computational burden.

The algorithm is written in C++ programming language by following the open-closed

and generic programming principles. Open-closed principle states that software en-

tities (classes, modules, functions, etc.) should be open for extension, but closed for

modification. On the other hand, generic programming allows to write common func-

tions or types to reduce duplication. It emphasizes the importance of the reusability

criterion.

This algorithm includes three nodes that are named Mission Controller, Flight Con-

troller and Navigation Controller. Features and structures of the nodes are expressed

with pseudocodes below.

Mission Controller

Description: Mission Controller may hold different tasks although it is currently per-

forming a single task that is called "Search and Rescue".

26

Flight Controller

Description: It is a node for managing the messages that are send to "cmd vel"

topic. FlightController first enables the motors and ascends to the "OperatingAlti-

tude". Then, it waits for destination commands from Navigation Controller. If a new

destination is given, it corrects heading of the quadrotor first, and then flies to the

destination. All of the velocity commands are controlled by a PID controller. When

it reaches the destination, maintains the Quadrotor in hovering position until a new

destination command is received from the Navigation Controller. The details of the

PID is given in section 3.5.

Important Parameters:

Important parameters used in Flight Controller algorithm are listed as follows,

• OperatingAltitude = 0.5; (This is the operating altitude of the quadrotor in me-

ters)

• PIDGain.Kp = 0.1; PID control, proportional component coefficient

• PIDGain.Ki = 0.0005; PID control, integral component coefficient

• PIDGain.Kd = 0.00005; PID control, derivative component coefficient

• ThresholdParameters: The threshold parameters are the tolerances that the quadro-

tor is accepted to be at the speficied position or angle

Main States:

Main states of the Flight Controller algorithm are listed as follows,

• GroundAtRest

• AscendingToFlightAltitude

• CorrectingHeading

• FlyingToDestination

• Hovering

27

Pseudocode:

The pseudocode of the "FlightController" node is shown in Algorithm 2 and Algo-

rithm 3 ,

Algorithm 2: Pseudocode for Flight Controller Algorithm Main Function

FlightState = GroundAtRest; // At the start;

EnableMotors(); // Start the motors of the quadrotor;

while Quadrotor.Altitude < Operating Altitude do

FlightState = AscendingToFlightAltitude;

Ascend in positive z direction with PID control;

if Quadrotor is within the threshold of the operating altitude then

FlightState = Hovering;

end

end

while FlightState == Hovering do

CalculateZOutput(); // Maintain altitude by calculating velocity in z;

PublishVelocity(); // Publish the command to cmd_vel topic;

if A new destination is given then

FlightState = CorrectingHeading;

PublishDestinationNotReached();

end

end

while FlightState == CorrectingHeading do

CalculateZOutput(); // Maintain altitude with PID control;

CalculateYawOutput(); // Calculates the yaw velocity with PID;

PublishVelocity(); // Publish the calculated command to cmd_vel topic;

if Quadrotor heading is correct (within threshold) then

FlightState = FlyingToTheDestination;

end

end

28

Algorithm 3: Pseudocode for Flight Controller Algorithm Main Function

Cont’d

while FlightState == FlyingToDestination do

CalculateZOutput(); // Maintain altitude;

CalculateVelocityOutput(); // Calculates the speed command in x-axis;

PublishVelocity(); // Publish the calculated command to cmd_vel topic;

if Quadrotor is in the vicinity of the destination point then

FlightState = Hovering; // Publish this to the Navigation Controller;

PublishDestinationReached();

end

end

Navigation Controller

Description: It decides on the next destination to fly looking at the "map" topic data

published by hector mapping and using unique algorithm to find open spaces and add

those points to the ToBeVisitedList. It uses A* path finding algorithm if it anticipates

that next destination is not reachable by direct flight. It subscribes to FlightController

and monitors if it reaches the destination, and gives new destination points until there

are no points left to be visited.

Important Parameters:

Important parameters used in Navigation Controller algorithm are listed as follows,

• double mapResolution = 0.5; //Map resolution in meters. It must be same as in

mapping-default-omer launch file

• double mapSize = 256; //Map grid count (i.e map is mapSize x mapSize). It

must be same as in mapping-default-omer launch file.

• int clearanceForFlight = 2; //To be able to understand that a point is clear to

be moved onto, system checks if the number of map grids around that point is

29

not occupied. //If the mapSize is larger and resolution is smaller, the clearances

must be specified accordingly.(must be increased)

• int clearanceForOpenSpace = 2; //When a point is processed as a potential dis-

covery point candidate, this specifies the number of map grids around that must

not be occupied. // a=1 means 3x3 grid, a=2 means 4x4 grid and goes like this.

• double minDiscoverDistance = 4; //Min discovery distance in meters. The new

discovery point must be far away from other discovery points for this much.

Main States:

There are two main states in the Navigation Controller :

• DestNotReached

• DestReached

Pseudocode:

The pseudocode of the main function is shown in Algorithm 4.

The pseudocode of the FindOpenSpaces function is shown in Algorithm 5.

The pseudocode of the SelectNextDestination function is defined in Algorithm 6.

The pseudocode of the SelectNextDestinationByAStar() function is defined in Algo-

rithm 7.

The pseudocode of the isFlyable function is shown in Algorithm 8.

A* Search Algorithm

A* search algorithm calculates the cost of each adjacent node by using heuristic eval-

uation function as shown in equation 3.50. After all the calculations are done, it

30

Algorithm 4: Pseudocode for Navigation Controller Algorithm Main Func-

tion

prevNavStatus = DestNotReached;

NavStatus = DestNotReached;

while True do
if NavStatus == DestReached && prevNavStatus == DestNotReached

then

Add current destination to AlreadyVisitedPoints;

FindOpenSpaces(); //Reexamine the map;

if PointsToBeVisitedList.empty() then

Print a Message that all of the map is visited;

return 0;

else

SelectNextDestination();

end

end

end

creates a suitable path by combining the nodes with minimum cost.

F (n) = G(n) +H(n) (3.50)

In equation 3.50, n is the previous node of the path, G(n) is the cost of the path from

the start node to adjacent node, and H(n) is heuristic that estimates the cost of the

cheapest path from n to the target node. In our case, H(n) equals to air distance

between corresponding node and target node.

As the map is divided into grids, the robot moves through those grids just like in chess

game. A representative movement of the robot is shown in Figure 3.5.

31

Algorithm 5: Pseudocode for Navigation Controller Algorithm Find-

OpenSpaces Function

// currentMap is the latest map published by hector mapping;

For each Grid Point on currentMap;

CheckOccupancy(); // Occupancy Value must be 0 for the point;

CheckClearance(); // Occupancy Value must be 0 for the neighbour points

specified by clearanceForOpenSpace parameter;

CheckAlreadyVisitiedList(); // Confirm that the point is far away from every

point on the already visited points list by minDiscoverDistance parameter;

CheckToBeVisitiedList(); // Confirm that the point is far away from every

point on the to be visited points list by minDiscoverDistance parameter;

if Point meets criteria listed above then

Add the point to PointsToBeVisited list;

end

3.5 Control Method

3.5.1 PID Control

Hector Quadrotor cascaded PID controller scheme is shown in Figure 3.6. Controller

of the Hector Quadrotor is implemented as a set of cascaded PID controllers. Con-

trolling the vertical velocity, attitude and yaw rate occurs in the inner loop while

controlling the horizontal velocity, altitude and heading runs in the outer loop. Each

axis and the altitude can be controlled independently with this system. The output of

the inner loop are managed vertical thrust and torques.

In this work, PID control is executed to determine desired yaw rate, horizontal and

vertical velocities of the Quadrotor. These outputs are published to ROS so that the

controller of Hector Quadrotor uses them as inputs.(see Figure 3.6).

vx,d = KP ex +KI

∫
ex +KD

dex
dt

(3.51)

32

Algorithm 6: Pseudocode for Navigation Controller Algorithm Select-

NextDestination Function
NearestPoint = FindTheNearestPointToBeVisited(); // Gets the nearest point

in the PointsToBeVisitedList;

if isFlyable(CurrentPoint,NearestPoint) then
NextDestination = NearestPoint; // If the nearest point is directly flyable,

then it is the next destnation;

publish(NextDestination); // Publish this to the FlightController;

else
SelectNextDestinationByAStar(); // If the nearest point is not directly

flyable, let A* algorithm decide the next destination point;

end

Figure 3.5: Sample Navigation Path with A* Search Algorithm

vz,d = KP ez +KI

∫
ez +KD

dez
dt

(3.52)

ωz,d = KP eψ +KI

∫
eψ +KD

deψ
dt

(3.53)

Where, vx,d is the desired velocity in the heading direction, vz,d is the desired velocity

in the altitude direction, ωz,d is the desired yaw velocity, ex is the position error in

the heading direction, ez is the position error from the desired altitude in the altitude

direction, eψ is the error of angular deviation from the desired attitude angle. Also,

33

Algorithm 7: Pseudocode for Navigation Controller Algorithm Select-

NextDestinationByAStar Function
NearestPoint = FindTheNearestPointByAStar(); // Gets the least cost path

by A* as the nearest point amongst the points listed in the

PointsToBeVisited list;

NavPath = CreateAStarPath(); // Gives the next destination from a

navigation path consisting of points found by the A* algorithm for the next

couple of turns. // CreateAStarPath() draws all the paths and then decide

the shortest one that includes minimum point;

while NavPath.isNotEmpty() do

NavPath.erase(); // Erase already given point;

NextDestination = NavPath.next // Give the next point from the

navigation path constructed by A* as the new destination point;

// Note : For simplicity some of the details of the A* path selection is

not shown. For example, while navigating through the path created by

A*, if nav controller detects that the final destination is flyable it

overrides the rest of the path and flies directly;

end

KP , KI and KD are the proportional, integral and derivative gains of the PID, respec-

tively. Publishing these velocities with vy,d = 0 into the Hector Quadrotor’s cmd_vel

topic, position control of the quadrotor will be managed.

34

Algorithm 8: Pseudocode for Navigation Controller Algorithm isFlyable

Function
ConstructALine(); // Construct a line from the start point to the target point

For Selected Points On The Line; // 1 meter intervals CheckOccupancy();

// Check that the grid location on the "map" corresponding to this point is

not occupied CheckClearance(); // Check that the vicinity of the point

specified by clearanceForFlight parameter that is also not occupied // Since

the quadrotor is bigger than grid size, it needs to check the neighbour of the

related grid.

if Above Criteria Holds then
return true;

else
return false;

end

Figure 3.6: Controller of the Hector Quadrotor with Separate Cascaded PID

Controllers[27]

35

36

CHAPTER 4

EXPERIMENTS

4.1 Experimental Setup

In this section, software and hardware parts of the overall system are described. Ver-

sions of software packages are shared as well to avoid compatibility issues.

4.1.1 Software Packages

In this section, the software used during the study will be mentioned. Ubuntu 16.04

LTS(Xenial Xerus), which is a simple, useful and one of open source Linux distribu-

tions, is used as operating system. The LTS (Long Term Support) version is released

every two years and lasts five years. Moreover, it provides a version that errors in

previous versions are corrected and the problems that may arise are solved quickly.

Therefore, the LTS version is particularly selected to work smoothly. ROS (Robot

Operating System) Kinetic Kame distribution is chosen as a framework because it is

recommended with Ubuntu 16.04 LTS(Xenial Xerus). Similar to Linux distributions

such as Ubuntu, Kubuntu, Lubuntu and so on, a ROS distribution is a group of ROS

packages. The purpose of the ROS distributions is to allow developers to work with

a relatively stable code base until the next release is available. Rviz (ROS Visualiza-

tion Tool) comes with a suitable version according to the ROS distribution. Lastly,

Gazebo 7.1 is used as a 3D simulation environment. In spite of the fact that it may

seem trivial, time to time the usage different versions of the same software may cause

compatibility problems in the world of open source.

37

4.1.1.1 Ubuntu 16.04-LTS (Xenial Xerus)

Ubuntu is a Linux-based open source software operating system. It has been the focus

of interest of developers worldwide since it is simple, fast and secure.

4.1.1.2 Robot Operating System (ROS) - Kinetic Kame

ROS which stands for "Robot Operating System" is an open source software for con-

trolling robots and robot components contrary to first connotation. It provides the

features involved low-level device control, hardware abstraction, message-passing

among processes, and management of packages. While it was only working on Linux-

based operating systems, it has recently become a part of the MATLAB - Robotics

System Toolbox and available on other platforms. The Kinetic Kame version of ROS

is primarily published for 16.04 (Xenial Xerus) in Ubuntu. There are lots of ROS

distribution even though ROS Kinetic Kame was used in this study. (see Figure 4.1)

Figure 4.1: Ros Disributions [2]

ROS, that works with the logic of subscribing and publishing, is enabling commu-

nication among nodes thanks to rosmaster network based server. It is preferred by

researchers as it contains many libraries and it has a structure that can be integrated

with the most common programming languages. In addition, it allows developers to

use the study of different researchers in their project. Furthermore, it is possible to

integrate ROS with realtime code, though ROS is not a realtime framework.

38

4.1.1.3 ROS Visualization Tool (Rviz)

Rviz is a ROS graphical interface that allows developers to visualize the data gathered

by using plugins for many available topics. A robot’s map and the traces left behind

it can be observed, as well as a variety of commands can also be given.

4.1.1.4 Gazebo 7.1

Gazebo, a three-dimensional simulation tool, is a software that can show the physical

interaction between objects while simulating robots and objects. In this Linux-based

system, the rendering task is undertaken by the open source graphics engine OGRE.

Many libraries such as physics, rendering and sensors are located in Gazebo. These

libraries are used by the server (gzserver) that generates the sensor data and runs

the physical loops, and the client (gzclient), which enables visualization with user

interaction. It is the choice of researchers because it provides convenience in robot

design for real environments thanks to the sensors with noise added in it. Gazebo

version 7.1 is used in this study. Gazebo installation, integration with ROS, various

examples of ground and air robots are described in detail in the relevant document

[35]. Gazebo software architecture, communications and connections realized in it

are shared in Figure 4.2.

Figure 4.2: Gazebo Software Architecture [1]

39

4.1.1.5 QT Creator 4.8

QT is the cross-platform C++, Java script and QML integrated development environ-

ment(IDE). IDEs increase programmer efficiency by centralizing common activities

of writing software into a single application: editing source code, building executa-

bles, and debugging. In this study, QT Creator is preferred due to its ability to create

ROS workspace. It means that QT constitutes all required folders and files automat-

ically to initiate programming in ROS. Moreover, it includes the ROS terminal that

allows the programmers to make and build operations. QT-ROS plug-in should be

installed into QT Creator base to benefit opportunities mentioned above. Graphically

user interface of QT Creator is shown in Figure 4.3,

Figure 4.3: QT Creator User Interface

4.1.2 Quadrotor

The selected platform for using in the three-dimensional simulation program is de-

fined as in the special format named URDF (Universal Robot Description Format)

that exists in "hector-quadrotor-urdf" ROS package. This detailed model has the im-

age information of the robot limbs and joints as well as their position and orientation.

In addition, thanks to the collision zone definition of robot, various algorithms can be

40

tested on Gazebo. The Hector Quadrotor model, which is included in the package and

shown with the integrated laser range finder in Figure 4.4, can get ready for operation

by adding the necessary sensors.

Figure 4.4: Hector Quadrotor [27]

"Hector SLAM" package, which is developed especially for indoor operations, is

used in this study. There are many different packages available under this package

such as "Hector Mapping, Hector IMU Tools and Hector Nav Msgs" for simultaneous

localization and mapping.

4.1.2.1 Laser Imaging Detection and Ranging(LIDAR)

Laser range finder device "Hokuyo UTM-30LX LIDAR" is selected and mounted

under the platform. The laser range finder has a scanning speed in the 40 Hz band

and field of vision of 270. Detailed information is available at the relevant address

[20].

4.1.2.2 Sound Navigation and Ranging(Sonar)

Sonic sensors emit high-frequency sound waves that people cannot hear and measure

distance by calculating the time between these waves hitting and returning. It is

suitable for measurements up to 30 meters. In this study, it is aimed to control the

height of the vehicle from the ground by placing it under the aircraft.

41

4.1.2.3 Inertial Measurement Unit(IMU)

The inertial measurement device (IMU) is the most important sensor for stable control

and movement of the aircraft. It is responsible for measuring the angular velocity and

acceleration of the aircraft according to the world reference system. This electronic

unit can measure the acceleration in 3 axes by means of the accelerometer in it and

measure the rotational force in 3 axes thanks to the gyroscope. Since it is so difficult

to calculate the acceleration of the platform according to the world reference system

without knowing the position and direction of the air vehicle, it is an indispensable

part of the unmanned aerial vehicles and many spacecrafts.

4.1.2.4 Ultra Wide-Band Sensor(UWB Sensor)

Ultra wide-band is a radio transmission system used for precise positioning, data

acquisition and monitoring. It allows more data exchange over a period of time com-

pared to traditional technologies. The UWB with low power spectral density can use

other frequency spectra allocated for communications without interference. It is capa-

ble of detecting 10 cm accuracy for reconnaissance robots even at a very high speed

of 20 km / h. Three transmitters, that is located in approximately the known posi-

tions, are available in the indoor environment as active markers, while one receiver is

located on the UAV for position detection.

In this study, a new plugin named "Gazebosensorplugin" that is developed by Barral

et al. [8] was used. This plugin contains many features that can be used in Gazebo

Simulator. Even though it was written for Gazebo 9 version, all functions and defini-

tions were converted to Gazebo 7 version in order to avoid compatibility issues. They

implemented UWB localization technology to forklift trucks in their study. UWB

system can be established by putting anchors on walls and mounting tag to vehicle.

It is applied to hector quadrotor in a similar way. Calculations for communication

between anchors and tag is provided by using trilateration technique. A node is writ-

ten for this technique and it is aimed to localize robot’s position using at least three

anchor. In this node, position data is calculated by using circle equations and as-

signing a weight proportional to distance to related anchor in order to gather reliable

42

information.

4.2 Experimental Procedure

In 3D simulation environment, two maps are designed in different complexity. One of

them is designed by considering the future studies that are performed in test environ-

ment. On these maps, various navigation and mapping algorithms are experienced.

The map 1, that can be constructed in physical environment easily, is introduced in

related paper [31] first. Also, the same map is equipped with obstacles to to test the

behavior of algorithms against objects. In order to check the effect of external geom-

etry on algorithms, different obstacles are chosen. Corresponding maps are presented

in Figures 4.5 and 4.6.

Figure 4.5: Map 1 without Obstacles [31]

Similarly, another challenging map is design to evaluate performance of the algo-

rithms. As it is three times bigger than the other map, the course becomes difficult.

Obstacles are added to the same map to increase the level of difficulty one more step.

Standing man, cube, barrier are some of these obstacles. Corresponding maps are

shown in Figures 4.7 and 4.8.

43

Figure 4.6: Map 1 with Obstacles [31]

Simulations are performed on two maps. All three algorithms are tested on map 1.

However, exploration algorithm is failed on map 2 since it is not smart enough to

carry out navigation and mapping on huge maps with obstacles. Therefore, only two

algorithms can be tested on map 2. In addition, quadrotor is released on the map from

different positions in order to check the repeatability performance of the algorithms.

In map 1, three initial points are determined as shown in Figure 4.9. On the other

hand, two starting points are assigned on map 2 as shown in Figure 4.10.

4.2.1 Simulations

4.2.2 Performance Metrics

All described algorithms perform the same task that is to obtain map of a unknown

indoor environment without hitting any obstacle. However, it is required to determine

some criteria in order to measure the effectiveness of algorithms in different scenarios.

In this section, the performance criteria in which the algorithms are superior to each

other are determined and expressed.

44

Figure 4.7: Map 2 without Obstacles

4.2.2.1 Distance

The distance travelled by the robot can be compared among algorithms and scenarios.

The smaller the distance value, the more successful the algorithm.

d represents the distance of the robot in meters.

4.2.2.2 Effective Distance

Using distance metric that is defined before, a new metric can be generated by taking

into account for the area of the map.

Pd =
d[m]

A[m2]
=

1

[m]
(4.1)

d represents the distance of the robot in meters as it is mentioned in previous part.

A specifies the size of the area to be discovered in m2. Pd refers to the performance

criterion that results from the ratio of the robot’s path to the total area of the map.

45

Figure 4.8: Map 2 with Obstacles

4.2.2.3 Time

This criterion is the total time spent throughout the mapping process of an unknown

indoor environment. This performance criterion, which is indicated by t and calcu-

lated in seconds, can be controlled by means of a three-dimensional simulation tool.

4.2.2.4 Entropy

Shannon Entropy, which is used to measure uncertainty about random variables, is

one of the most important criteria of information theory. This concept was introduced

in 1948 by Claude E. Shannon, who gave his name to the calculation [3]. Shannon

Entropy is formulated as follows,

H(x) = −
n∑
i=1

p(xi) logb p(xi) (4.2)

In the equation, Shannon Entropy is expressed as H(x), while the probability of the

source is shown as p(xi). The logarithm base b is generally considered to be 2 in the

calculations.

With the help of a code written on MATLAB, the histograms are obtained with the

"hist3 ()" command and the entropies are calculated with the "entropy ()" command.

46

Figure 4.9: Release Numbers for Repeatability Analysis on Map 1

Since the large entropy value indicates that mapping is performed by leaving more

traces on the map, the navigation algorithm with a small entropy value is considered

more successful. Entropy values of two different autonomous navigation algorithms

are shared in "Results" chapter.

In Figure 4.11, the dark blue sections symbolize the map of the enclosed area. The

dots of different colors indicate the trace that the robot left behind after autonomous

navigation. By calculating the probabilities of different colored squares, entropy in-

formation is obtained. This information refers to the disorder in the room. The high

entropy value can be achieved by the excess of squares of different colors in the room.

In other words, the more traces the robot leaves on the map, the greater the irregular-

ity. Therefore, low entropy value makes the algorithm successful.

4.2.2.5 Repeatability

Repeatability criterion is specified to measure the ability to perform similar perfor-

mances regardless of the starting point. No units have been identified for this criterion.

It would be measured by using other metrics.

47

Figure 4.10: Release Numbers for Repeatability Analysis on Map 2

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.22915

Figure 4.11: Sample 3D Histogram Graph

48

CHAPTER 5

RESULTS

5.1 Simulations

Simulations performed in Map 1 without obstacles are shown in Figures 5.1, 5.2 and

5.3. The map is explored with five stops in Figure 5.1 while it is explored with six

stops in Figure 5.2. On the other hand, number of stops is four in Figure 5.3 and it is

equal to number of corners since wall following algorithm stops if it encounters with

a wall.

The three-dimensional histograms of the map 1 and the trace left by the robot on

the map are plotted in Figure 5.4. Wall following algorithm has the smallest entropy

value while the rest share similar entropy values.

In order to measure repeatability, quadrotors are released at different positions. Re-

sults are given in Figures 5.5, 5.6 and 5.7. Entropy values of the target-based nav-

igation algorithm are close to each other for different starting points. Exploration

algorithm and wall following algorithm get distant values depending on the initial

positions.

Performances of the algorithms on map 1 without obstacles are shown in Table 5.1.

Target-based navigation algorithm obtain better results compared with other algo-

rithms except entropy value.

Simulations performed in Map 1 with obstacles are shown in Figures 5.8, 5.9 and

5.10. The map is explored with five stops both in Figure 5.8 and Figure 5.9. Number

of stops is four for wall following algorithm and it follows the same path in previous

simulation without obstacles in Figure 5.10.

49

(a) Time step 1 (b) Time step 2 (c) Time step 3

(d) Time step 4 (e) Time step 5

Figure 5.1: Navigation with Exploration Algorithm on Map 1 without Obstacles

Table 5.1: Performance Comparison Table for Map 1 without Obstacles

Exploration

Algorithm

Target-Based

Navigation

Algorithm

Wall Following

Algorithm

d [m] 37.62 36.32 45

Pd [1/m] 0.133743 0.12912 0.16

t [s] 253 247 312

H 0.23142 0.22915 0.21645

The three-dimensional histograms of the map 1 with obstacles and the trace left by

the robot on the map are plotted in Figure 5.11. There is no big difference among

entropy values. However, wall following algorithm has the smallest entropy value

50

while the rest share similar entropy values.

In order to measure repeatability, quadrotors are released at different positions. Re-

sults are given in Figures 5.12, 5.13, and 5.14. Entropy values of the target-based

navigation algorithm are so close to each other for different starting points. Entropy

values of exploration algorithm and wall following algorithm deviate more depending

on the initial positions.

Performances of the algorithms on map 1 with obstacles are shown in Table 5.2.

Target-based navigation algorithm obtain better results compared with other algo-

rithms except entropy value.

Table 5.2: Performance Comparison Table for Map 1 with Obstacles

Exploration

Algorithm

Target-Based

Navigation

Algorithm

Wall Following

Algorithm

d [m] 32.91 31.22 40

Pd [1/m] 0.117026 0.110993 0.142222

t [s] 220 214 277

H 0.20136 0.20544 0.19384

Simulations performed in map 2 without obstacles are illustrated in Figures 5.15 and

5.16. Number of stops in Figure 5.15 is greater although the distance travelled is

short. Oppositely, a couple of stops exist in Figure 5.16 while the distance travelled

is long.

The three-dimensional histograms of the map 2 without obstacles and the trace left

by the robot on the map are plotted in Figure 5.17. There is a significant difference

between entropy values. Target-based navigation algorithm obtain the smaller entropy

value.

In order to measure repeatability, quadrotors are released at different positions. Re-

sults are given in Figures 5.18 and 5.19. Entropy values of both navigation algorithms

are so close among themselves for different starting points. However, entropy values

of target-based navigation algorithm is smaller than entropy values of wall following

51

algorithm.

Performances of the algorithms on map 2 without obstacles are shown in Table 5.3.

Target-based navigation algorithm is far superior to wall following algorithm in terms

of all performance metrics.

Table 5.3: Performance Comparison Table for Map 2 without Obstacles

Target-Based Navigation

Algorithm

Wall Following

Algorithm

d [m] 157.66 181.5

Pd [1/m] 0.186859 0.215111

t [s] 1239 1393

H 0.18724 0.23961

Simulations performed in map 2 with obstacles are shown in Figures 5.20 and 5.21.

Number of stops in Figure 5.20 decreases compared with previous simulation due to

obstacles. Wall following algorithm performs similar performance with in previous

simulation without obstacles in Figure 5.21. Similarly, it travels longer distance.

The three-dimensional histograms of the map 2 with obstacles and the trace left by the

robot on the map are plotted in Figure 5.22. There is a significant difference between

entropy values. Target-based navigation algorithm obtain the smaller entropy value.

In order to measure repeatability, quadrotors are released at different positions. Re-

sults are given in Figures 5.23 and 5.24. Entropy values of both navigation algorithms

are so close among themselves for different starting points. However, entropy values

of target-based navigation algorithm is smaller than entropy values of wall following

algorithm.

Performances of the algorithms on map 2 with obstacles are shown in Table 5.4.

Target-based navigation algorithm is far superior to wall following algorithm in terms

of all performance metrics.

52

Table 5.4: Performance Comparison Table for Map 2 with Obstacles

Target-Based Navigation

Algorithm

Wall Following

Algorithm

d [m] 103.3 181.5

Pd [1/m] 0.122436 0.215111

t [s] 812 1393

H 0.15011 0.23923

53

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.2: Navigation with Target-Based Navigation Algorithm on Map 1 without

Obstacles

54

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.3: Navigation with Wall Following Algorithm on Map 1 without Obstacles

55

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.23142

(a) Exploration Algorithm

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.22915

(b) Target-Based Navigation Algorithm

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.2113

(c) Wall Following Algorithm

Figure 5.4: 3 Dimensional Histogram Graph of Map 1 without Obstacles

56

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.23142

(a) Exploration Algorithm at First Initial Po-

sition

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.22276

(b) Exploration Algorithm at Second Initial

Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.18809

(c) Exploration Algorithm at Third Initial Po-

sition

Figure 5.5: Repeatability Analysis for Exploration Algorithm in Map 1 without Ob-

stacles

57

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.22915

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.20724

(b) Target-Based Navigation Algorithm at

Second Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.19905

(c) Target-Based Navigation Algorithm at

Third Initial Position

Figure 5.6: Repeatability Analysis for Target-Based Navigation Algorithm in Map 1

without Obstacles

58

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.2113

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.26

(b) Target-Based Navigation Algorithm at

Second Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.18822

(c) Target-Based Navigation Algorithm at

Third Initial Position

Figure 5.7: Repeatability Analysis for Wall Following Algorithm in Map 1 without

Obstacles

59

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.8: Navigation with Exploration Algorithm on Map 1 with Obstacles

60

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.9: Navigation with Target-Based Navigation Algorithm on Map 1 with Ob-

stacles

61

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.10: Navigation with Wall Fallowing Algorithm on Map 1 with Obstacles

62

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.20136

(a) Exploration Algorithm

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.20544

(b) Target-Based Navigation Algorithm

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.19384

(c) Wall Following Algorithm

Figure 5.11: 3 Dimensional Histogram Graph of Map 1 with Obstacles

63

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.20136

(a) Exploration Algorithm at First Initial Po-

sition

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.22215

(b) Exploration Algorithm at Second Initial

Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.21094

(c) Exploration Algorithm at Third Initial Po-

sition

Figure 5.12: Repeatability Analysis for Exploration Algorithm in Map 1 with Obsta-

cles

64

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.2166

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.21497

(b) Target-Based Navigation Algorithm at

Second Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.21393

(c) Target-Based Navigation Algorithm at

Third Initial Position

Figure 5.13: Repeatability Analysis for Target-Based Navigation Algorithm in Map

1 with Obstacles

65

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.19384

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.24296

(b) Target-Based Navigation Algorithm at

Second Initial Position

0 5 10 15 20

x [m]

0

5

10

15

y
[m

]

3D histogram of robot's path, Entropy = 0.28311

(c) Target-Based Navigation Algorithm at

Third Initial Position

Figure 5.14: Repeatability Analysis for Wall Following Algorithm in Map 1 with

Obstacles

66

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.15: Navigation with Target-Based Navigation Algorithm on Map 2 without

Obstacles

67

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.16: Navigation with Wall Following Algorithm on Map 2 without Obstacles

68

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.18724

(a) Target-Based Navigation Algorithm

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23961

(b) Wall Following Algorithm

Figure 5.17: 3 Dimensional Histogram Graph of Map 2 without Obstacles

69

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]
3D histogram of robot's path, Entropy = 0.18724

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.17825

(b) Target-Based Navigation at Second Initial

Position

Figure 5.18: Repeatability Analysis for Target-Based Navigation Algorithm in Map

2 without Obstacles

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23961

(a) Wall Following Algorithm at First Initial

Position

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23188

(b) Wall Following Algorithm at Second Ini-

tial Position

Figure 5.19: Repeatability Analysis for Wall Following Algorithm in Map 2 without

Obstacles

70

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.20: Navigation with Target-Based Navigation Algorithm on Map 2 with

Obstacles

71

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

(e) Time step 5 (f) Time step 6

Figure 5.21: Navigation with Wall Following Algorithm on Map 2 with Obstacles

72

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.15011

(a) Target-Based Navigation Algorithm

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23923

(b) Wall Following Algorithm

Figure 5.22: 3 Dimensional Histogram Graph of Map 2 with Obstacles

73

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]
3D histogram of robot's path, Entropy = 0.15011

(a) Target-Based Navigation Algorithm at

First Initial Position

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.1677

(b) Target-Based Navigation Algorithm at

Second Initial Position

Figure 5.23: Repeatability Analysis for Target-Based Navigation Algorithm in Map

2 with Obstacles

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23923

(a) Wall Following Algorithm at First Initial

Position

0 5 10 15 20 25 30 35 40 45

x [m]

0

5

10

15

20

25

30

35

y
[m

]

3D histogram of robot's path, Entropy = 0.23149

(b) Wall Following Algorithm at Second Ini-

tial Position

Figure 5.24: Repeatability Analysis for Wall Following Algorithm in Map 2 with

Obstacles

74

CHAPTER 6

DISCUSSION

In this study, navigation characteristics of different algorithms on various maps have

been investigated. Algorithms are classified according to their success.

Exploration algorithm basically moves towards the corner points. It is successful on

small indoors. However, it fails on large indoor environments. Therefore, simulation

of this algorithm could not be performed in map 2. Since the obstacles are also

considered as corners, the number of visiting points increases during navigation. In

other words, the number of destination points is directly proportional to the number

of obstacles. It can be observed by examining the simulations on map 1 as shown in

Figure 5.1 and Figure 5.8. It is possible to re-visit the discovered areas since it does

not keep the positions in its memory. Major changes are observed in entropy values

when the initial position of the robot is altered (see Figure 5.5 and Figure 5.12). This

indicates that the algorithm is poor in repeatability. In addition, Table 5.1 and Table

5.2 state that exploration algorithm obtains moderate results in terms of distance,

effective distance, and time compared with other algorithms.

Wall following is a well known algorithm to navigate in maze-like environments.

Although it is known as a simple and effective algorithm, it has some drawbacks. If

the size of the map increases, the distance travelled and the time spent also increase.

In other words, size of the map is inversely proportional to success of the algorithm. It

explores the map in similar ways. Thus, starting from different points for navigation

does not affect the entropy value much(see Figures 5.7, 5.14, 5.19, 5.24). It does not

check whether the map is explored or not since the only reference is wall tracking.

It may obtain successful results in the indoor environments covered with continuous

walls. However, it fails if there are nested walls in the environment. Moreover, the

75

center of the indoor may not be discovered if the area is too large. The performance

metrics in Table 5.3 and Table 5.4 show that wall following algorithm has worse

results than other algorithms.

Target-based navigation algorithm assigns targets and generates safe paths that can

be controlled by parameters. This algorithm is able to explore indoor environments

in each and every case. Since angle of sight and range of vision of the sensor are high

according to the size of small map, all algorithms obtain similar results. The perfor-

mance and capability of target-based navigation algorithm can be understood easily

on large maps with obstacles. If a small clue is obtained about an unknown indoor

to be discovered, the performance of the algorithm can be improved by manipulating

the parameters. If there is no restriction in terms of time and distance, the value of

parameters can be reduced to form more stops within the indoor environment. Low

entropy values are obtained because quadrotor does not make irregular movements

and the trace is relatively low (see Figures 5.4, 5.11, 5.17, and 5.22). The time and

distance values in the Tables 5.1, 5.2, 5.3, and 5.4 also support this argument. In

addition, similar results are obtained regardless of the initial position since it has a

consistent target generation algorithm as shown in Figures 5.6, 5.13, 5.19, and 5.24.

All in all, exploration and wall following algorithms move by using the details in

the indoor environment. Therefore, they do not check whether the map has been

discovered. On the other hand, target based navigation algorithm directly uses the

explored area to select the next destination. This opportunity guarantees that the map

is explored. In addition, comparisons show that target-based navigation algorithm

gets better results than other navigation algorithms.

76

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this study, a novel mapping and obstacles avoidance algorithm was developed for a

quadrotor in order to obtain the map of unknown indoor environments. Two different

navigation algorithms that were presented in the previous studies were used to com-

pare performance of developed novel algorithm with various performance metrics.

LIDAR based SLAM method was used in all algorithms to discover indoor areas.

UWB localization was applied to exploration algorithm and novel algorithm by using

many anchors placed on the walls and a tag mounted on quadrotor. In this way, local

positioning system was formed. It was not used for wall following algorithm since it

does not deal with localization. Considering different scenarios, different advantages

and disadvantages of algorithms may arise. Wall following is an old and well-known

navigation algorithm. It is suitable for maze-like environments but it can be used for

any indoor environment. However, it may fail when time and distance travelled are

crucial. In addition, it does not succeed indoors with large empty spaces in the middle

of the place. Exploration algorithm uses corners and open spaces to find destination

points. Even if it is considered as successful at small indoors, it fails in large indoor

environments with obstacles. Differently, presented novel algorithm guarantees to

obtain the whole map since it directly uses explored areas by composing a matrix.

Navigation system of the wall following and exploration algorithms is not based on

explored map. The map of an indoor environment is explored unconsciously by these

algorithms since they just use the features of the field without checking whether the

map is explored or not. In addition, novel algorithm may be applied for any robots

including aerial robots, ground robots and underwater robots since it is written with

77

generic programming style. Furthermore, the characteristics of this navigation algo-

rithm may be altered by configuring the parameters.

The performed simulations showed that novel algorithm mostly beats the opponents.

Performance criteria such as time, distance, entropy, etc. reveal the superiority of

novel algorithm. Exploration algorithm directly failed in large indoor environments

including different obstacles. Although wall following algorithm managed to ob-

tain map of indoors, it wasted time and travelled to a longer distance. Moreover,

repeatability analysis indicates that performance metrics come out with close values

for novel algorithm. In other words, navigation with novel algorithm raises similar

results regardless of the robot’s initial position.

7.2 Future Work

The aim of this study was to obtain map of unknown indoors in three dimensional

simulation environment. In the future, navigation algorithms can be tested in physical

environment by setting up the maps in real world. Instead of LIDAR based SLAM

method, camera based SLAM method may be used easily by taking advantage of

generic novel algorithm. Experiments can be repeated using a couple of UWB an-

chors by defining soft walls which UWB signals can pass. In addition, several quadro-

tors can be released from different points simultaneously in order to reduce discovery

time of the map and communication among quadrotors can be established using wire-

less technologies. Furthermore, novel algorithm can be tested using various aerial,

ground and underwater robots.

78

REFERENCES

[1] Gazebosim.Org.

[2] Ros.Org.

[3] J. M. Abatti. Small power: The role of micro and small UAVs in the future.

(November):165–197, 2005.

[4] M. Achtelik, J. Williams, M. J. Owen, and M. C. O’Donovan. Autonomous

Navigation and Exploration of a Quadrotor Helicopterin GPS-denied Indoor En-

vironments. First Symposium on Indoor Flight, 2009.

[5] S. Ahrens, D. Levine, G. Andrews, and J. P. How. Vision-based guidance and

control of a hovering vehicle in unknown, gps-denied environments. Proceed-

ings - IEEE International Conference on Robotics and Automation, pages 2643–

2648, 2009.

[6] A. Araújo, D. Portugal, M. S. Couceiro, and R. P. Rocha. Integrating Arduino-

Based Educational Mobile Robots in ROS. Journal of Intelligent and Robotic

Systems: Theory and Applications, 77(2):281–298, 2014.

[7] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit. Instant Out-

door Localization and SLAM Initialization from 2.5D Maps. IEEE Transac-

tions on Visualization and Computer Graphics, 21(11):1309–1318, 2015.

[8] V. Barral, P. Suárez-Casal, C. J. Escudero, and J. A. García-Naya. Multi-sensor

accurate forklift location and tracking simulation in industrial indoor environ-

ments. Electronics (Switzerland), 8(10), 2019.

[9] C. Brenneke, O. Wulf, and B. Wagner. Using 3d laser range data for slam in

outdoor environments. (October):188–193, 2004.

[10] F. Çakmak, E. Uslu, M. Balcılar, S. Yavuz, and M. F. Amasyalı. ROS Uyumlu

Robot Platformu Gerçeklenmesi ROS Compatible Robot Platform Implementa-

tion. 2014.

79

[11] D. M. Cole and P. M. Newman. Using laser range data for 3D SLAM in outdoor

environments. Proceedings - IEEE International Conference on Robotics and

Automation, 2006(May):1556–1563, 2006.

[12] J. R. B. del Rosario, J. G. Sanidad, A. M. Lim, P. S. L. Uy, A. J. C. Bacar,

M. A. D. Cai, and A. Z. A. Dubouzet. Modelling and Characterization of a

Maze-Solving Mobile Robot Using Wall Follower Algorithm. Applied Mechan-

ics and Materials, 446-447(July):1245–1249, 2013.

[13] G. Dissanayake, H. Durrant-whyte, and T. Bailey. A (slam). (April 2000), 2006.

[14] M. W. M. G. Dissanayake and R. A. Jarvis. A New Solution to the Simultane-

ous Localization and Map Building Problem. Robotics and . . . , 17(3):229–241,

2005.

[15] L. Fang, A. Fisher, S. Kiss, J. Kennedy, C. Nagahawatte, R. Clothier, and J. L.

Palmer. Comparative evaluation of time-of-flight depth-imaging sensors for

mapping and SLAM applications. Australasian Conference on Robotics and

Automation, ACRA, 2016-Decem:285–291, 2016.

[16] FRANCESCO SABATINO. Quadrotor control: modeling, nonlinear control

design, and simulation. PhD thesis, 2015.

[17] L. Freda and G. Oriolo. Frontier-Based Probabilistic Strategies for.

(April):3892–3898, 2005.

[18] S. Grzonka, G. Grisetti, and W. Burgard. A fully autonomous indoor quadrotor.

IEEE Transactions on Robotics, 28(1):90–100, 2012.

[19] C. Hegde and N. S. Guptha. Implementation of Mapping Algorithm for SLAM

Operation. Ijetae, 3(9):235–238, 2013.

[20] HOKUYO. Scanning Rangefinder Distance Data Output/URG-04LX-UG01

Product Details | HOKUYO AUTOMATIC CO., LTD.

[21] N. Johnson. Vision-Assisted Control of a Hovering Air Vehicle in an Indoor

Setting. Engineering and Technology, (August), 2008.

80

[22] M. Kara Mohamed, S. Patra, and A. Lanzon. Designing simple indoor naviga-

tion system for UAVs. 2011 19th Mediterranean Conference on Control and

Automation, MED 2011, pages 1223–1228, 2011.

[23] B. Kempke, P. Pannuto, and P. Dutta. SurePoint. pages 318–319, 2016.

[24] E. B. Küçüktabak, M. M. Pelit, Z. Ö. Orhan, and A. Emre. Kapalı Bir Alanda

Basit Bir İHA ile Keşif Metodu Tasarımı Indoor UAV Exploration Method with

UWB Localization. pages 1–6, 2017.

[25] H. Liu, J. Liu, P. Banerjee, and H. Darabi. Survey of Wireless Indoor Posi-

tioning Techniques and Systems. Oftalmologia (Bucharest, Romania : 1990),

35(1):39–42, 1991.

[26] G. Mao, B. Fidan, and B. D. Anderson. Wireless sensor network localization

techniques. Computer Networks, 51(10):2529–2553, 2007.

[27] J. Meyer, A. Sendobry, S. Kohlbrecher, and U. Klingauf. Simulation, Modeling,

and Programming for Autonomous Robots. 7628(November), 2012.

[28] V. Nguyen, A. Harati, A. Martinelli, R. Siegwart, and N. Tomatis. Orthogo-

nal SLAM: A step toward lightweight indoor autonomous navigation. IEEE

International Conference on Intelligent Robots and Systems, pages 5007–5012,

2006.

[29] F. M. Noori, D. Portugal, R. P. Rocha, and M. S. Couceiro. On 3D simulators

for multi-robot systems in ROS: MORSE or Gazebo? SSRR 2017 - 15th IEEE

International Symposium on Safety, Security and Rescue Robotics, Conference,

pages 19–24, 2017.

[30] H. I. M. A. Omara and K. S. M. Sahari. Indoor mapping using kinect and ROS.

2015 International Symposium on Agents, Multi-Agent Systems and Robotics,

ISAMSR 2015, pages 110–116, 2016.

[31] O. Oral, A. E. Turgut, and K. B. Arıkan. IHA ile GPS Kullanmadan Kapalı

Alanların Haritasının Çıkartılması. ToRK 2019 - Türkiye Robotbilim Konfer-

ansı, 5(1):105–111, 2019.

81

[32] L. M. Paz, P. Piniés, J. D. Tardós, and J. Neira. Large-scale 6-DOF SLAM with

stereo-in-hand. IEEE Transactions on Robotics, 24(5):946–957, 2008.

[33] L. Pitonakova, M. Giuliani, A. Pipe, and A. Winfield. Feature and performance

comparison of the V-REP, Gazebo and ARGoS robot simulators. Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 10965 LNAI:357–368, 2018.

[34] J. F. Roberts, T. S. Stirling, J.-C. Zufferey, and D. Floreano. Indoor Flight.

European Micro Air Vehicle Conference and Flight Competition (EMAV2007),

(September):17–21, 2007.

[35] R. Sinekli. Multi-Robot Simülatörü. 2013.

[36] P. Toivanen, V. Imani, and K. Haataja. Three main paradigms of simultaneous

localization and mapping (SLAM) problem. (April):74, 2018.

[37] F. Wang, J. Cui, S. K. Phang, B. M. Chen, and T. H. Lee. A mono-camera and

scanning laser range finder based UAV indoor navigation system. 2013 Inter-

national Conference on Unmanned Aircraft Systems, ICUAS 2013 - Conference

Proceedings, pages 694–701, 2013.

82

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	UAV Applications
	What is Quadrotor?
	Aim of the Thesis
	Thesis Outline

	LITERATURE SURVEY
	Simultaneous Localization and Mapping(SLAM)
	Outdoor Environment
	Indoor Environment
	Contribution of the Thesis

	Mathematical Model and Methods
	Kinematic Model
	Dynamic Model
	State Space Representation
	Localization and Mapping
	Ultra Wide-Band Localization
	SLAM
	Navigation Algorithms
	Wall Following Algorithm
	Exploration Algorithm
	Opening Detection Algorithm
	Obstacle Avoidance Algorithm

	Target-Based Navigation Algorithm
	Mission Controller
	Flight Controller
	Navigation Controller
	A* Search Algorithm

	Control Method
	PID Control

	Experiments
	Experimental Setup
	Software Packages
	Ubuntu 16.04-LTS (Xenial Xerus)
	Robot Operating System (ROS) - Kinetic Kame
	ROS Visualization Tool (Rviz)
	Gazebo 7.1
	QT Creator 4.8

	Quadrotor
	Laser Imaging Detection and Ranging(LIDAR)
	Sound Navigation and Ranging(Sonar)
	Inertial Measurement Unit(IMU)
	Ultra Wide-Band Sensor(UWB Sensor)

	Experimental Procedure
	Simulations
	Performance Metrics
	Distance
	Effective Distance
	Time
	Entropy
	Repeatability

	Results
	Simulations

	Discussion
	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES

