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Abstract

The multilevel fast multipole algorithm (MLFMA) is a
powerful tool for efficient and accurate solutions of
electromagnetic scattering problems involving large and
complicated structures. On the other hand, it is still desirable
to increase the efficiency of the solutions further by
combining the MLFMA implementations with the high-
frequency techniques such as the physical optics (PO). In this
paper, we present our efforts in order to reduce the
computational cost of the MLFMA solutions by introducing
PO currents appropriately on the scatterer. Since PO is valid
only on smooth and large surfaces that are illuminated
strongly by the incident fields, accurate solutions require
careful choices of the PO and MLFMA regions. Our hybrid
technique is useful especially when multiple solutions are
required for different frequencies, illuminations, and
scenarios, so that the direct solutions with MLFMA become
expensive. For these problems, we easily accelerate the
MLFMA solutions by systematically introducing the PO
currents and reducing the matrix dimensions without
sacrificing the accuracy.

1 Introduction

For the solution of scattering problems involving large and
complicated targets, surface integral equations provide
accurate results when they are discretized appropriately by
using small elements (such as triangles) compared to
wavelength. Simultaneous discretizations of the integral
equations and the objects lead to dense matrix equations that
can be solved iteratively, where the matrix-vector
multiplications are accelerated by the multilevel fast
multipole algorithm (MLFMA). For an N x N matrix
equation, MLFMA performs the matrix-vector multiplications
in O(NlogN) time using O(NlogN) memory. Due its
low complexity, MLFMA provides the solution of
electromagnetic scattering problems involving large numbers
of unknowns on relatively inexpensive computing

platforms [4]. On the other hand, most of the real-life
problems require multiple solutions for different
illuminations, frequencies, and scenarios. For these
problems, it is desirable to accelerate the solutions by using
fast but less accurate techniques, such as the physical optics
(PO). In the literature, there are many studies on developing
hybrid techniques based on combining the method of
moments (MOM) and PO technique to utilize both the
accuracy ofMOM and the efficiency ofPO for the solution of
scattering and radiation problems [2],[4],[7],[8]. In general,
these hybrid techniques are successfully used to improve the
accuracy of the PO solutions by introducing MOM in some
limited regions, where it is critical to account for the
electromagnetic interactions for accurate simulations.

In this paper, we present a robust hybrid technique, which
involves the combination ofMLFMA and PO for the solution
of scattering problems involving complicated structures.
Similar to the other hybrid techniques in the literature, we
employ integral equations for specific regions (MoM
regions), such as the locations near the edges, cavities, and
surfaces around the shadow boundaries, while the surface
currents in other (smooth) regions are approximated by PO.
The surface currents in the MOM region are solved by
MLFMA with a low complexity. To achieve a desired level
of accuracy with the minimum number of unknowns and
processing time, we systematically introduce the PO currents
on the scatterer and reduce the dimensions of the matrix
equations solved by MLFMA. Effectiveness of this hybrid
technique is demonstrated on a scattering problem involving a
disc target with smooth edges.

2 Formulation

We consider scattering problems involving three-dimensional
conducting surfaces with arbitrary shapes. For a numerical
solution, surface of object is discretized by using small planar
triangles, on which the Rao-Wilton-Glisson (RWG) functions
[9] are defined to expand the unknown surface current
density, i.e.,

N

J(r)= ar b (r),
n=l

(1)



where a,, represents the unknown coefficient of the nth basis
function br (r). When a scattering problem is formulated
directly by using an integral-equation formulation,
simultaneous discretizations of the geometry and the integral
equation lead to N x N dense matrix equation, i.e.,

N

E Z."a, = V.
n=l

(m = 1,2,...,N).

Using the combined-field integral equation (CFIE) [6], which
is obtained by the combination of the electric-field integral
equation (EFIE) and the magnetic-field integral equation
(MFIE), matrix elements in (2) can be written as

Zmn.= ,°ZEmn + (1 °-a)Z;n, (3)

where a,,, represents a combination parameter between 0 and
1 for each m = 1,2,..., N [3]. In (3), contributions of EFIE
and MFIE are derived as

ZEr ik fdr tr (r) fdr' br (r')g(r, r')

where q is the wave impedance, while E"' and Hnc are the
incident electric and magnetic fields, respectively, due to the
external sources.

The matrix equation in (2) can be solved iteratively, where
the matrix-vector multiplications are accelerated by MLFMA
[10]. For more efficient solutions, however, we propose a
hybrid technique based on approximating the currents on
smooth surfaces by using PO. In this technique, PO and
MOM regions are determined on the object by considering
the trade-off between the efficiency and accuracy. To achieve
a desired level of accuracy with the minimum number of
unknowns and processing time, we apply MLFMA only on
such regions where the PO currents cannot provide accurate
results. These regions usually correspond to the locations
near the edges, cavities, and surfaces around the shadow
boundaries. For smooth surfaces that are illuminated strongly
by the incident fields, we expand the PO currents in a series
of basis functions, i.e.,

1 NpoJPU(r) =-n x Hznc (r) =
X a,br (r),

2 n=l
(8)

S,

f dr tr (r). fdr' br (r'). [VV'g(r, r')]
Sm SI

and

Zmn =f-dr tr(r) br(r)
SI

+ fdr tm(r) nx fdr' br(r')xV'g(r,r'),
SI SI

(4) where coefficients of the basis functions ( ar for
n = 1, 2, ..., Npo ) can be found by testing the equation as

1 ~~~~~~~Npof dr t, (r) -xHrnc(r) Idr tr(r) Ea,br(r)
Sm Sm ~ ~n=

Npo

arn dr t (r) br(r) (1 = 1,2,...IN )
(5) n=l

(9)

respectively, where k is the wavenumber, tr (r) represents

mth testing function, n is outward normal vector on the
surface, and

,) exp(ik r - r' 1)
4gTr'4r-r'r

(6)

This way, we obtain a sparse matrix equation in the form of

Npo
E 1Imn, a,,
n=l

Wm (10)

where

denotes the free-space Green's function in phasor notation
using exp(iwt) convention. In (4) and (5), Sn and Sm

represent the spatial supports of the nth basis function and

mth testing function, respectively. Using a Galerkin scheme,
we choose the testing functions also as the RWG functions.
Finally, in (2), elements of the excitation vector are derived as

Vm =-fdr tr(r) .a Erc(r) + (1 - )n x Hnc(r)] (7)
SI' L V7

Wm=-1 fdr tr (r)nr x H"c (r)
,

(1 1)

and

(12)Ir = fdr tm (r) * bn (r)
Sf

is the inner product of mth testing and nth basis functions,
which is nonzero only when the functions overlap in space.
Using RWG basis and testing functions, Im r is extremely
sparse and the matrix equation in (10) can be solved easily in
a few iterations using a Krylov subspace iterative algorithm
[1].

Sr;

(m = 11 2,..., Npo),



After the coefficients in (10) are determined, the PO currents
are radiated to the MOM region by performing a matrix-
vector multiplication, i.e.,

plot the difference between the real parts of the currents
obtained by PO and MLFMA.

Npo

n=l

In (13), ym for m = (Npo + 1),(Npo + 2),...,N corresponds
to the testing of the radiated field due to the PO currents on
the mth testing function located in the MOM region. The
multiplication in (13) can be performed efficiently by
employing MLFMA with reduced complexity. Then, the
coefficients of the basis functions in the MOM region can be
calculated by solving the matrix equation

N

s Z ,a,v (m = (N, +1±)(N,, + 2),...,N), (14)
n=Npo +1

where

vT = V -Ym (m = (N±o+ 1),(N±o+ 2),...,N) (15)

involves the testing of the incident fields due to both external
sources and the PO currents.

The matrix equation in (14) can also be solved iteratively by
employing MLFMA. Using the hybrid technique, dimensions
of the matrix equation is reduced from N x N to
(N - Npo) x (N - Npo). The extra cost is only due to the
solution of the extremely-sparse matrix equation in (10) to
expand the PO currents in a series of basis functions and the
matrix-vector multiplication in (13) to radiate the PO currents
to the MOM region. Both of these operations require
negligible time compared to the iterative solution of (14). As
a result, by choosing the PO region appropriately, matrix
dimensions can be reduced significantly [from (2) to (14)] to
accelerate the solutions without sacrificing the accuracy.

3 Results

To demonstrate the accuracy and the efficiency of the
proposed hybrid technique, Figure 1 presents a scattering
problem involving a disc with smooth edges. The target is
illuminated by a plane wave propagating at 450 from the z
axis with the electric field polarized in the y direction. The
problem is solved at 10 GHz and discretization of the
geometry with A/10 mesh size leads to about 260,000
unknowns.

Figure 1. A scattering problem involving a disc with smooth
edges.
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Figure 2. Real part of the surface current density induced on
the target depicted in Figure 1. (a) MLFMA. (b) PO. (c)
MLFMA-PO.

Figure 2 depicts the real part of the surface current density
induced on the target shown in Figure 1. Comparing Figure
2(a) and 2(b), we observe that the currents obtained by PO
differ significantly compared to the currents obtained by
MLFMA especially around the shadow boundary. The
inaccuracy of PO is also illustrated in Figure 2(c), where we

To further investigate the accuracy of the PO solution, Figure
3 presents the bistatic radar cross section (RCS) values in
decibels (dBms) as a function of bistatic angle from 225° to
270° on the z-x plane, where 225° corresponds to the
forward-scattering direction. We observe that the PO solution
is inaccurate compared to the reference solution by MLFMA.

(m = (N,, + 1), (N,, + 2),..., N). (I 3)

9ioPO.



XZ Plane, Frequency: 10 GHz.
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Figure 3. Bistatic RCS of the target in Figure 1 calculated by
MLFMA and PO.

The MLFMA solution of the scattering problem in Figure 1 is
performed in about 48 minutes on an AMD Opteron
processor. In order to reduce the processing time without
loosing the accuracy, we employ the hybrid MLFMA-PO
technique by systematically introducing PO currents on the
object. This is achieved by using PO currents on the lit and
shadow regions while keeping the MLFMA on the shadow
boundary (MOM region). By adjusting the area of the MOM
region, we examine the trade-off between the efficiency and
accuracy. In Figure 4, we present the error of the solutions by
plotting the difference between the currents obtained by the
hybrid technique and the reference MLFMA. It can be
observed that the currents obtained by the hybrid technique
becomes more and more accurate as the MOM region is
enlarged. This is also confirmed by the RCS plots in Figure
5. Using MLFMA in a narrow region discretized with 19,500
unknowns, we obtain the solution in only about 4.2 minutes,
while the results are close to the reference solution as

depicted in Figure 5(a). Then, by increasing the area of the
MOM region, accuracy of the results can be further improved
as depicted in Figure 5(b), Figure 5(c), and Figure 5(d), while
the solution time increases. In general, the choice of the PO
and MLFMA regions depends on the desired level of
accuracy and the efficiency requirements.

(c) (d)

Figure 4. Error in the real part of the induced currents
obtained by the hybrid technique compared to reference
MLFMA solution. (a) SMOM: 0.5k around edges with 19,500
unknowns. (b) SMOM : 0.8k around edges with 31,050
unknowns. (c) SMOM: 1k around edges with 39,750 unknowns.
(d) SMOM: 2k around edges with 82,500 unknowns.

Conclusion

We present a robust hybrid technique for the solution of
scattering problems involving three-dimensional complicated
targets. Our strategy is based on introducing PO currents
systematically on the target to reduce the dimensions of the
matrix-equation solved by MLFMA. We consider the trade-
off between the accuracy and efficiency of the results by
adjusting the PO and MOM regions carefully. This way, we

are able to accelerate the solutions without sacrificing the
accuracy.
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Figure 5. Bistatic RCS of the target in Figure 1 calculated by MLFMA, PO, and the hybrid technique. (a) SMOM: 0.5k around
edges with 19,500 unknowns. (b) SMOM: 0.8k around edges with 31,050 unknowns. (c) SMOM: 1X around edges with 39,750
unknowns. (d) SMOM: 2k around edges with 82,500 unknowns.
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