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ABSTRACT

PRECISE INDOOR POSITIONING USING BLUETOOTH LOW ENERGY
(BLE) TECHNOLOGY

Taşkan, Aybars Kerem

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Hande Alemdar

November 2019, 121 pages

Using wireless technologies, locating objects with very precise measures is hard. It

is even harder when we want to locate indoor positions due to surrounding materials

preventing signals to be received. With the help of Bluetooth low energy technol-

ogy, we can locate indoor objects/people with more precision than using previous

Bluetooth technologies. In this thesis, methods will be improved and implemented to

achieve cost-effective precise indoor location.

Keywords: Bluetooth Low Energy, Indoor Positioning, Particle Filter, Multilateration
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ÖZ

BLUETOOTH DÜŞÜK ENERJİ TEKNOLOJİSİ (BDE) KULLANARAK
YÜKSEK DOĞRULUKLU YER TESBİTİ

Taşkan, Aybars Kerem

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Hande Alemdar

Kasım 2019 , 121 sayfa

Kablosuz Ağ Teknolojileri kullanarak, nesnelerin yer tesbitini yüksek doğrulukla yap-

mak zor; kapalı alanlarda nesnelerin yer tesbiti, bu alanı çevreleyen nesnelerden do-

layı, daha da zor bir problem. Bluetooth düşük enerji teknolojisi kullanarak, kapalı

alanlarda nesnelerin/insanların yer tesbitini, daha önceki Bluetooth teknolojilerinde

olmadığı kadar yüksek doğrulukla yapmak mümkün. Tezim kapsamında bu problemi

çözmek için yöntemler geliştirilip, yüksek doğrulukla ve uygun bir maliyetle uygula-

nacak.

Anahtar Kelimeler: Bluetooth Düşük Enerji, Kapalı Alan Yer Tesbiti, Parçacık Filt-

resi, Multilaterasyon
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CHAPTER 1

INTRODUCTION

As the indoor environments (IEs) get larger, it becomes harder to find our ways in

them. For a visually impaired individual, finding ways is even harder. As the IEs like

malls have more stores and the markets have more products to choose from, it can be

really confusing what to do and which section to go without spending much time on

looking for directions. For these kinds of situations, indoor positioning systems (IPSs)

become really handy. An IPS can direct us and can tell us where we are. Besides,

IPSs provide many business and marketing benefits. For instance, a store owner may

wonder where their customers spend time and what their dwell times in the store

are; a museum application can send informative push notifications to the museum

visitors when they look at a particular painting or an antique piece by knowing the

visitor positions via an IPS. However, for an IPS to work properly, the accuracy of

the system should be high. Furthermore, this IPS should be cost-effective so that its

usage becomes more broad and hence, more people can benefit from it.

1.1 Problem Definition

Our problem is an indoor tracking problem. For indoor tracking, we need some in-

formation about the possible location of the person of interest (POI), that is, person

who we track. Depending on the problem, this information can be acquired using

sensor devices like camera, gyroscope and accelerometer or using wireless signal an-

tennas [1]. For tracking using signals, we need to eliminate the noise in the signals

and extract the right information from these signals.

Indoor positioning can be an expensive problem either due to the methods used or due

1



to expensive hardware components. Using camera technologies for indoor tracking

may not be preferable due to two main reasons:

• If we need to track people, we need to be able to recognize them using tech-

niques like face recognition.

• Cameras are expensive as data acquisition devices.

Using wireless signal technologies for indoor positioning is a cheaper option than

using cameras most of the time. However, some wireless technologies could be more

preferable than others. For example, BLE gives us broader opportunities comparing

to other wireless methods. BLE is a common wireless technology that is generally

used in small proximities which is supported by Android, iPhone operating system

(IOS) and many other devices. BLE uses very low energy which means long battery

life. For example while ZigBee consumes low energy as BLE does, ZigBee is not

as widely supported. Wi-Fi is widely supported; yet has higher energy requirement

than BLE. GPS is a well-known technology for positioning, however it does not work

well indoors. On a map, GPS could show the same spot for a point which is located

vertically the same on all the floors of a building.

Solutions using BLE may be expensive in some cases due to expensive hardware re-

quirements like high quality antennas, using many beacons (signal transmitters), us-

ing many receivers or using beacons with battery-draining parameters such as low

advertisement interval and high transmission (TX) power. Therefore, we present

a cost-effective solution which mitigates the problems we mention for BLE indoor

tracking problem.

1.2 Aim

With this thesis, we aim to give a detailed analysis of the BLE beacons and how to use

them for indoor positioning. Our main aim is to track a person who carry a beacon

object in an indoor environment with low cost and high accuracy.

Moreover, we aim to give visual results for better understanding of the BLE technol-

ogy and indoor positioning problem. To that end, we present a simulation for our
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solution which demonstrates the theoretical part of our solution in a graphical envi-

ronment. We also conduct some experiments in a real world environment to show

how BLE signals behave in real world and how our solution performs in practice.

Different test results for different hardware-related tools are mentioned in the scope

of this thesis with the hope that this would give an idea about how hardware affects

the signal propagation.

1.3 Contributions

Our contributions are as follows:

• We propose a wireless indoor positioning algorithm called IP-PPFONM, which

is publicly available at https://github.com/AKerem/IP-PPFONM. In PPFONM

algorithm,

– We take into account the effect of obstructions in the indoor environment

and make our positioning calculations accordingly.

– We can position the POI with some uncertainty using only one received

signal strength indicator (RSSI) value unlike the common requirement of

three RSSIs for IPSs.

– We follow a parametrized and flexible approach so that our solution is

applicable for different environmental conditions.

• We propose ways to make indoor positioning more cost-effective:

– We use experimentally calibrated beacon parameters to find the optimum

parameters so that batteries of the beacons last as long as possible. The

longer the battery life, the less amount of replacement of the beacons with

the new ones.

– We implement a way to place receivers in the indoor environment in the

most efficient way possible.

• We implement a simulation tool to simulate and visualize the IP-PPFONM al-

gorithm. This tool can simulate people trajectories in an IL and generate RSSIs

at the receivers. This simulation tool visualizes:

– the positioning result of the IP-PPFONM algorithm.
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– the uncertainty of our indoor positioning prediction.

– the material and obstruction information in the indoor environment.

• We perform real-world experiments to show

– how BLE signals behave in certain environmental conditions.

– how the IP-PPFONM algorithm performs in real life.

1.4 Organization

In Chapter 2, we give background information about the concepts we discuss through-

out this thesis and we explain currently used wireless indoor positioning technologies

with their advantages and disadvantages. Then, we explain why we choose to proceed

with BLE technology.

In Chapter 3, we mention related studies performed in the field of indoor positioning

using wireless technologies. We explain various wireless indoor positioning meth-

ods, the environments where these methods are applied in and the accuracy of these

methods.

In Chapter 4, we explain our indoor positioning via prefiltering and particle filtering

with obstruction-aware no-signal multilateration (IP-PPFONM) algorithm and some

of its use cases.

In Chapter 5, we perform some theoretical experiments using our simulation tool to

show how IP-PPFONM would behave in different environmental conditions and dif-

ferent parameter settings in theory. Then, we analyze the results of these simulations

and discuss if IP-PPFONM gives satisfactory results according to our expectations.

In Chapter 6, we perform two types of real-world experiments. The first type is

performed to see how IP-PPFONM works in practice by tracking a person in an

office environment where the second type is performed to understand the BLE signal

behavior in different situations.

In Chapter 7, we summarize our experiments and the IP-PPFONM algorithm. Then,

we conclude this thesis by mentioning some ideas to improve our work.

4



CHAPTER 2

BACKGROUND INFORMATION

In this chapter, we explain different terms related to object tracking, different wireless

signal technologies that can be used for indoor positioning and indoor positioning

with wireless signals. In Section 2.3, we explain methods used and inherent problems

of wireless signals for indoor positioning.

2.1 Object Tracking

The main method for tracking is the Bayesian approach which is the conceptual basis

for other tracking algorithms. The Bayesian approach is composed of three main

parts:

• Prior: Initial guess of a position.

• Likelihood: Measurement for prior position.

• Posterior: Updated position.

Hence, according to the Bayesian approach, we make a prediction. Then, we make

some measurements to find the real position. After that, we update our prediction ac-

cording to measurement results. In the prediction part, Chapman-Kolmogorov equa-

tion is used as shown in Equation 2.1.

p (xk|z1:k−1) =
∫

p (xk|xk−1) p (xk−1|z1:k−1) dxk−1 (2.1)

In the update part, a posterior probability function is used as shown in Equation 2.2.

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(2.2)
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where the normalizing constant is [2]:

p (zk|z1:k−1) =
∫

p (zk|xk) p (xk|z1:k−1) dxk (2.3)

Bayesian solution is an analytical solution which is hard to solve exactly, therefore

there are optimum approximation methods called Kalman filters. For Kalman filters

to work, our system should:

• be linear

• be unimodal

• have Gaussian noise

• have Gaussian posterior

If these conditions are met, the Kalman filter is an optimum algorithm for tracking.

Kalman filter has a term called Kalman gain which gives us how much of the predic-

tion should be used for our measurement. If we have 0 Kalman gain, we only trust the

measurement; if we have 1, we only trust our prediction neglecting any measurements

that we received to update our position information in the IE we are interested in.

However most of the time our system is not linear e.g. human motion is not linear

considering direction and speed at each time step. To achieve non-linearity, extended

Kalman filter (EKF) can be used. Extended Kalman filter is basically the Kalman

filter method where non-linearites are approximated by linear functions. To approxi-

mate a non-linear motion graph in the shape of a curve, this curve is approximated by

the first order Taylor expansion at the mean point. This means that we approximate

this curve as the slope of this curve at the mean point of the curve which results in a

linear line. For the rest, Kalman filter is used.

There is also unscented Kalman filter (UKF) which resembles the extended Kalman

filter in terms of trying to approximate a non-linear curve as a line. The difference

is, unscented Kalman filter uses multiple points to make the approximation unlike

extended Kalman filter where we only use the mean point. However, these differ-

ent Kalman filtering methods only applicable for unimodal systems which means we

cannot track multiple objects using them. Furthermore, they require Gaussian noise

and a Gaussian motion model which may not be the case in real life.
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Hence, we need a filtering algorithm which can be used for multimodal, non-linear

systems with non-Gaussian motion and noise models. Particle filter has the proper-

ties that we want. Hence, we use particle filtering for the algorithm we propose in

Chapter 4 in this thesis.

There are different versions of particle filtering. The five main steps of a particle

filtering method is as follows:

• Initialization: We initialize imaginary points called particles all around the IE

map that we want to locate the person of interest (POI) in. These particles will

accumulate towards the POI as time goes and we will know the POI position

with some uncertainty. The initialization step is done once, but the following

steps are done at each iteration.

• Prediction: We predict where our particles should be given the human motion

model and update particle positions according to our prediction.

• Weight update: We update the weights given the measurements (e.g. the signal

power information)

• Resampling: The prediction and update step purposes are the same as that of

Bayesian approach. Yet, each filtering algorithm has its own parameters and

update/prediction steps are used to change these parameters. In the particle

filtering case, our parameters are particle positions and weights. In the resam-

pling step, all particles are recreated around the region where the most weighted

particles reside previously.

• Positioning: We make the positioning estimation according to particle weights

and distribution.

Different versions of particle filtering algorithms may differ in the resampling step.

We use a particle filtering algorithm which uses sequential importance resampling

(SIR) for the resampling part of our algorithm. We do not use a method called se-

quential important sampling (SIS) because SIS suffers from the degeneracy problem.

We explain the particle filtering steps that we use for our application in more detail in

Chapter 4.
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2.2 Wireless Signal Technologies

There are different wireless technologies that can be used for positioning. Systems

like global positioning system (GPS) is only suitable for outdoor usage, but not for

indoor usage. The reason is GPS signals are weak and severely degraded/scattered

due to indoor environment’s roof, walls, etc. which prevents them to reach the indoor

environment. Even if they reach, the receiver devices should have a strong antenna to

compensate for the weakness of the signal or there should be some repeater devices

at the roof and some parts of the indoor environment depending on the size of the

building.

Hence, GPS is not reliable indoors. To make this system a little bit more reliable, we

need to have additional equipments which increase the cost. Therefore, we inspect

some technologies like Bluetooth that can be used indoors and explain why we choose

Bluetooth over the other wireless technologies for indoor positioning [3] [4]. We

explain some wireless technologies that can be used for indoor positioning which are

listed below:

• Bluetooth

• Wi-Fi

• ZigBee

• Ultra-Wide Band (UWB)

• Radio-Frequency Identification (RFID)

• Frequency Modulation (FM)

From all of these wireless technology signals, we can extract a value called the re-

ceived signal strength indicator (RSSI) which is used to determine the distance of the

transmitter of these signals. This makes these technologies suitable for positioning.

[5]

2.2.1 Bluetooth:

Bluetooth is a wireless communication protocol standard developed for personal area

networks (PAN). The key features of Bluetooth are its low cost, low energy consump-
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tion and robustness. At first, this technology was standardized as IEEE 802.15.1.

This standard specifies wireless medium access control (MAC), physical layer (PHY)

specifications for wireless personal area networks (WPANs) and explains methods for

communication devices in WPANs. [6] [7]. However, Bluetooth is currently main-

tained by the Bluetooth Special Interest Group (SIG). Bluetooth versions are pub-

lished in a specification called Bluetooth core specification. These specifications are

periodically revised and each revision is another Bluetooth version. Revision 1.0a is

the first version of Bluetooth specification published on the public website. Starting

with Revision v1.2, the SIG adopted the Bluetooth core specification.

Bluetooth operates in the unlicensed 2.4GHz industrial, scientific and medical ra-

dio (ISM) band. This frequency band contains frequencies between 2400MHz and

2483.5MHz. Bluetooth is a constantly developing technology and each major de-

velopment is specified as a new version. Bluetooth versions up to v2.0 is called as

Bluetooth basic rate (BR) . Bluetooth v2.0 specifies Bluetooth enhanced data rate

(v2.0 + EDR) where a new modulation scheme is added for Bluetooth to increase the

bit rate, hence enabling higher data transfer speed. The Bluetooth technology com-

bining the modulation scheme in BR and EDR is called as Bluetooth BR/EDR, which

is also known as Bluetooth classic. Bluetooth v3.0 specifies Bluetooth high speed

(v3.0 + HS) enabling much higher data rates compared to Bluetooth classic. With

the emergence of Bluetooth v4.0, a technology called Bluetooth low energy (BLE)

became available in addition to Bluetooth classic and Bluetooth high speed which is

a Bluetooth technology lowering the power consumption considerably. Several new

features were added to make BLE technology to consume lower energy when transi-

tioning from v3.0 + HS to v4.0. These features include changes in several layers in

which some of them are: [8].

• Physical Layer ( PHY )

• Link Layer ( LL )

• Host Controller Interface ( HCI )

• Logical Link Control and Adaptation Layer Protocol ( L2CAP )

• Generic Access Profile (GAP)

When transitioning from v4.2 to v5.0 on December 2016, the maximum achievable
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BLE range is increased, which is stated as LE Long Range in the specifications [8].

Additional to LE 1M which is the PHY used in Bluetooth 4, Bluetooth 5 adds two

new PHY variants to the PHY specification used in Bluetooth 4 which are LE 2M and

LE Coded. With the help of LE 2M, the speed of Bluetooth 4 is doubled while LE

Coded helped to quadruple the range of Bluetooth 4. New LE 2M PHY allows the

PHY to operate at 2Ms/s and hence enables higher data rates than LE 1M [9]. At

the time of writing, the latest Bluetooth version is v5.1. [8].

Bluetooth core specification revisions before and after the SIG adoption with their

corresponding revision dates can be found in Table 2.1 and Table 2.2 respectively.

Table 2.1. Bluetooth Revisions after SIG

Revision Date

v5.1 Jan 21 2019

v5.0 Dec 06 2016

v4.2 Dec 02 2014

v4.1 Dec 03 2013

v4.0 June 30 2010

v3.0 + HS April 21 2009

v2.1 + EDR July 26 2007

v2.0 + EDR Aug 01 2004

v1.2 Nov 05 2003

Table 2.2. Bluetooth Revisions before SIG

Revision Date

1.1 Feb 22 2001

1.0B Dec 01 1999

1.0a July 26 1999

1.0 draft July 05 1999

0.9 April 30 1999

0.8 Jan 21 1999

0.7 Oct 19 1998

Devices supporting BLE are known as Bluetooth smart devices whereas devices sup-

porting both BLE and Bluetooth classic are known as Bluetooth smart ready devices.

If a device has Bluetooth v4.0 or higher in their specifications, this does not neces-

sarily mean that this device support Bluetooth classic, BLE and Bluetooth high speed

modes together. It just shows that this device supports at least one of these modes

of the Bluetooth technology complying with the requirements of the corresponding

Bluetooth version.

BLE is a tempting indoor positioning technology due to its low cost and ubiquity. A

BLE receiver can measure a value named RSSI from the BLE signal at the time of

receiving which can be used for distance calculations making this technology suitable
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for indoor positioning. Moreover, BLE signals carry some data which could be useful

for positioning or to identify the signal source. Hence, we explain the packet format

of BLE where we extract these signal data that we use for indoor positioning.

The BLE packet format has four main sections[10]:

• Preamble: This value is an alternate sequence of zeros and ones. Using these

sequences, receiver device synchronize its radio to the right frequency and do

some more calculations to make sure the remaining part of the BLE packet is

received correctly.

• Access Address: This address is used as a correlation code to ensure the trans-

mission is indeed for the receiver which is receiving the packet. This address

prevents unrelated BLE devices using the same RF channel simultaneously.

• Protocol Data Unit(PDU): This section contains the main information of the

BLE packet.

• Cyclic Redundancy Check(CRC): It is the 3-byte checksum calculated over

the PDU.

PDUs split into two categories which are advertising channel PDUs and data channel

PDUs. Yet, we will focus on the advertising channel PDUs (ACP). Access address

value is the same for all ACP. ACP have three types:

• Advertising PDUs: These PDUs consist of the advertisement packet. There

are different specifications like iBeacon, Eddystone and AltBeacon which try

to form a standard for advertisement packet. We will only mention iBeacon and

Eddystone.

• Scanning PDUs: These PDUs consists of the Scan Response Packet. There

is no globally accepted standard for scan response packet. Hence, different

beacon manufacturers may send different information in this packet like battery

status and beacon name.

• Initiating PDUs: Link layer uses these PDUs to initiate a connection to the

advertiser (beacon).
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In the PDU payload, there is also BLE MAC address information of the beacon even

though this MAC address might have been spoofed. If this MAC address does not

change, this address can also be used to identify the beacon. Note that, RSSI value

is not in the original BLE packet sent by the beacon, but it is the value sensed by the

receiver (sniffer) device.

We mention two specifications iBeacon and Eddystone for the advertisement packet

structure which reside in advertising PDUs.

2.2.1.1 iBeacon

It is the Apple’s software protocol to transmit BLE signals. We use this protocol.

Some of the fields used by this protocol are [11]:

• Major: Two byte data. It has a decimal value between 0 and 65535.

• Minor: Two byte data. It has a decimal value between 0 and 65535.

• UUID: Sixteen byte data (Thirty two hexadecimal digits).

• RSSI at 1 meter: This value is determined after calculating RSSI value at the

receiver device 1 meter (1m) away from the beacon. It is used to predict the

distance of the beacon to the receiver device.

UUID, major and minor fields are used to identify the beacon. So, for instance, we

can make two groupings using these three fields by grouping beacons by their UUIDs

first and then their major values. After all groupings, using the minor value, we can

identify each individual beacon.

2.2.1.2 Eddystone

It is the Google’s open software protocol which is designed to be robust and transpar-

ent [12]. Inside an Eddystone frame, different payload types can be included:

• Eddystone-UID: Sixteen byte data.

• Eddystone-URL: Data generally used by a service to redirect client (receiver)

to the service’s website.
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• Eddystone-TLM: Beacon status data.

• Eddystone-EID (Ephemeral Identifier): An identifier field varies by time

which can resolved to reach information shared by a service that sends infor-

mation to a beacon by a key called ephemeral identity key (EID) [13].

2.2.2 Wi-Fi

Wi-Fi is the most commonly used wireless communications technology which is

based on Electrical and Electronics Engineers (IEEE) wireless communication stan-

dard 802.11. This standard makes specifications about wireless local area networks (

WLANs).

Wi-Fi Technology is a trade-mark of a global non-profit association formed by world-

wide network of companies, named Wi-Fi Alliance. The trademark term "Wi-Fi" is

adopted in 2000 [14]. The 802.11 standard adopted by Wi-Fi was initially released

in 1997 before even Wi-Fi Alliance formed, where standard specifications made in

1997 is superseded by specifications in 1999, 2007, 2012 and 2016 respectively. [15]

[16] [17] [18] [19]. Therefore, at the moment of writing, latest 802.11 standard de-

pends on the specifications made in IEEE 802.11-2016. The usage of channels and

frequency spectrum width for WLAN in 2.4GHz band may differ in different regions

of the world as in the United States (US) and Europe.

Being the most common wireless technology, this technology is used in many indoor

environments already. Moreover, Wi-Fi signal has signal strength value indicator

which decreases as the distance traveled by this signal increases which makes this

technology usable in indoor positioning systems (IPS).

2.2.3 ZigBee

ZigBee is a wireless communication protocol standard developed for Personal Area

Networks and Local Area Networks. This technology is intended to require low en-

ergy and have low data rate. It is based on IEEE 802.15.4 standard. At the time of

writing the newest ZigBee standard is ZigBee 3.0 which is built on ZigBee PRO.
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It uses 2.4GHz ISM Band like Bluetooth globally and it also enables regional opera-

tion at 868Mhz for America and 915Mhz for Europe. It uses:

• 16 channels each of which 2MHz wide in 2.4GHz ISM Band with a data

throughput of of 250Kbits/s.

• 27 channels for 915− 921MHz with a data throughput of of 10Kbits/s.

• 63 channels for 868MHz with a data throughput of of 100Kbits/s.

ZigBee 3.0 can reach a range of 300m outdoors, when transmitter and receiver devices

are in line of sight and can reach 75m−100m for indoor usage which makes its usage

suitable for indoor positioning.

For positioning systems, wireless signal inteference is an important issue that should

be handled and ZigBee mitigates this problem having 16 separate channels in 2.4GHz

ISM band where several of these channels do not overlap with European and US

versions of Wi-Fi.

2.2.4 Ultra Wide Band

Ultra wide band (UWB) is a wireless technology that is used to transfer data at high

rates over short distances by generating very narrow electrical pulses. As the name

of this tehcnology implies this technology covers a very wide bandwidth, which is

at least 500MHz and this brings some problems like interference with other sig-

nals such as universal mobile telecommunications service (UMTS), global system for

mobile communications GSM, television (TV) and GPS. To prevent UWB from inter-

fering with other signals, regulatory actions are taken and thus, the radiated power of

UWB is low [20].

The Federal Communications Commission (FCC) in the US defines UWB as the radio

tecnology having bandwidth of at least 500MHz or a bandwidth occupying more than

20% of the center frequency. [20], FCC also regulates parameters like interference to

noise ratio (INR) for the UWB signal powers [21].

UWB is suitable for indoor positioning since, owing to its high transmission band-

width, UWB makes accurate positioning estimations and does not fade away easily
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when propagating or penetrating through objects which is mostly the case for the

other signals like Wi-Fi [22]. UWB may achieve as minimum as 10cm as ranging

accuracy [23]

This technology is emerged as a result of the IEEE 802.15.3a Task Group’s work

[24]. However, later, this technology is adopted and promoted by a global non-profit

organization called WiMedia Alliance [25] and an industry organization UWB Forum.

Now it is promoted by a global non profit organization named UWB Alliance. UWB

Alliance promotes 802.15.4 and other standards as base standards for UWB. This

Alliance also promotes usage of frequencies ranges greater than 95GHz [26]. The

delay of the standardization process of UWB might have delayed the ubiquity of this

technology.

2.2.5 Radio-Frequency Identification

Radio-Frequency Identification (RFID) is a low cost, long-lasting and low power con-

sumer wireless technology where the installation of it in an IE is easy. This technol-

ogy can work at four different frequency bands which can be classified as: [27]

• Low Frequency: 125− 134kHZ.

• High Frequency: 13.56MHz.

• Ultra High Frequency: 433− 956MHz.

• Microwave frequency: 2.45GHz and 5.8GHz.

Normally RFID is transmitted through RFID tags according to their frequency range.

But 2.4GHz and 5.8GHz RFID spectrum may be combined into one RFID tag to get

the best of real time positioning info as well [28].

Systems using RFID can be categorized as passive and active. Passive RFID tags

do not require batteries solving the problem of maintenance for the dead batteries.

Passive tags have a longer time than active does, but their reading coverage distance

is limited to where they are placed. Active tags have batteries and can measure vari-

ous values like temperature, acceleration and can form a distributed wireless ad hoc

network. [29]

15



2.2.6 Frequency Modulation

Frequency modulation (FM) is a technique that encodes the data on an alternating

analog or digital signal wave by varying the instantaneous frequency of the wave. It is

developed by Edwin Howard Armstrong [30]. This modulation scheme is equivalent

to a phase modulation where the phase shift is inversely proportional to the audio

frequency. [31]

2.3 Indoor Positioning with Wireless Signals

To use wireless signals for indoor positioning, there should be devices transmitting

some wireless signals and devices receiving the transmitted signals to extract some

meaningful information from these signals. The devices transmitting the signals are

called beacons whereas the devices receiving the signals are called receivers. Some-

times, receivers are called anchor nodes or reference nodes in indoor positioning

parlance. In this section, we explain methods used for wireless indoor positioning

and problems inherent in some of the wireless signals which prevents precise indoor

positioning.

2.3.1 Methods Used

In this section, we explain multilateration and fingerprinting methods which are used

as a part of wireless indoor positioning algorithms. We also mention the relation of

these terms to this thesis.

2.3.1.1 Fingerprinting

Fingerprinting is a method where positioning in a location is carried out using a pre-

viously constructed wireless signal map where the construction of this map is made

over a time period [32]. There are different approaches and methods used for finger-

printing to make improvements [33].

We use the fingerprinting method since it captures environment information and helps

16



filtering the RSSI info in a natural way. Since making site survey, which is the acqui-

sition fingerprinting procedure, is hard due to requiring a lot of labor and time, there

are methods to fasten this process [34].

2.3.1.2 Multilateration

Multilateration is a positioning technique that is based on time difference of arrival

(TDoA) of the signal to different reference stations. This technique is also known

as hyperbolic positioning. Normally, a multilateration system requires four or more

stations to be taken as a reference. The signals coming from two different reference

stations forms the arrival time difference. For the time difference calculation to be

accurate, high-precisioned synchronization is needed for the local clocks of the refer-

ence stations [35].

As opposed to normal multilateration methods, our multilateration algorithm can

make estimates using less than three receivers, although the precision of the posi-

tioning using less then three receivers may be lower than using four or more. For

distance calculations, three approaches are often used which are time of arrival ( ToA

), TDoA and RSSI. Therefore, multilateration can also be done using RSSI instead of

TDoA. [36]. We use RSSI information for our multilateration algorithm.

2.3.2 Inherent Problems with Wireless Signals

There are some inherent problems in wireless signals like Bluetooth which prevents

precise indoor positioning. For example, Bluetooth signal attenuates as it moves in

the air and it is prone to the multipath effect. In this section, we explain wireless

signal attenuation and multipath effect focusing on Bluetooth signal.

2.3.2.1 Wireless Signal Attenuation

Bluetooth is an electromagnetic wave (EMW) operating at 2.4GHz frequency. Sig-

nals attenuate as they move in the air or when they hit an object. Different materials
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have different signal absorption and reflection coefficients and therefore, not all ob-

jects cause the same amount of attenuation for the signal.

There are more studies and tests made for signal attenuation for Wi-Fi signals than

there are for Bluetooth signals as we observe during our research. However, since

Wi-Fi and Bluetooth are both electromagnetic Waves, their waves transmit in the

same way where they differ in the way they use 2.4GHz bands. So, we think Wi-Fi

attenuation tests for the frequency of 2.4GHz gives an idea how Bluetooth signals

would attenuate for the same materials.

There are different studies on 2.4GHz electromagnetic signal wave loss. [37], [38].

According to a white paper [37], non-tinted glass causes 2dBm, human body 3dBm,

marble 5dBm and concrete wall causes 10 − 15dBm signal attenuation as everyday

objects we see around us. Besides these materials, copper and aluminum are also

known to block RF signals well [39] [40].

2.3.2.2 Multipath Effect

Multipath propagation is a phenomenon that results in EMW arriving the receiver de-

vice’s antenna by two or more paths [41]. Multipath propagation can be caused by

refraction, reflection, diffraction or scattering of EMW due to objects in the trans-

mission path [41] [42]. Multipath effect can cause −30dBm of signal strength loss

for BLE signals and the signal strength attenuation amount varies without any pattern

at any distance. [43]. There are studies which show that using multiple BLE fre-

quency channels lead to more accurate results than using a single channel since using

multiple channels help to handle different signal transmission paths. Moreover, BLE

fingerprinting method mitigates the multipath effect by taking the mean of the RSSI

of the signals over a time period [43].
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CHAPTER 3

RELATED WORK

Indoor positioning can be done using different wireless signal technologies. In this

chapter, we mention studies that use some non-Bluetooth wireless signals for indoor

positioning. Then, we explain some indoor positioning studies performed using Blue-

tooth low energy signals in detail to show how our approach differs from the other

approaches or how we contribute to these approaches.

3.1 Non-Bluetooth Solutions For Indoor Positioning

In this section, we mention studies performed using wireless signals which are Wi-

Fi, ZigBee, ultra wide band (UWB), radio frequency identification (RFID) and fre-

quency modulation (RF) radio for indoor positioning. We explain the environmental

setup, applied methods and accuracy of these studies.

3.1.1 Wi-Fi

Ma et al. (2015) [44], propose an algorithm based on traditional location finger-

printing algorithms consisting offline date acquisition (ODA) and online position-

ing (OP) phases. The authors compare their method with weighted k-nearest neigh-

bor (WKNN), WKNN with improved Euclidean distance, joint probability algorithm

(JPA) and JPA with improved joint probability. They observe that the algorithm they

propose is superior to the other algorithms with an accuracy of 1.54m in an area of

5m× 10m which is a room in Beijing Institute of Technology.

Park and Rhee (2017) [45], mention that they use Wi-Fi fingerprint data using a cus-
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tomized k-nearest neighbor (KNN) algorithm which outperforms classical KNN ap-

proaches. The authors make the experiments in an area of 5.4m×5.4m using 3 access

points (AP). The experiment area is divided into 4× 4 cells (16 cells) and accuracies

are calculated according to the POI being inside a cell or not. The proposed algo-

rithm firstly clusters 100 RSSI values collected for a while in each cell and then uses

KNN for classification, which is whether the POI is inside the cell or not. The authors

achieve an accuracy of 90% by using the right k value for the KNN algorithm.

In a study made in Korea Advanced Institute of Science and Technology (KAIST),

Sahar and Han (2018) [46], propose an algorithm which uses long short-term mem-

ory (LSTM) with fingerprinting by saying the sequence of Wi-Fi fingerprints fit for

deep recurrent neural network (DRNN) approaches and fits even better for handling

sequential data. So, they try different deep and recurrent approaches, but mainly fo-

cus on LSTM to best make use of fingerprinting data. For the evaluation, the authors

collected 860 training points and 240 testing points in a floor of a university building.

According to tests, the authors observed that 2 hidden layers with 0.005 learning rate

gave the best result for the LSTM. They got an average positioning accuracy of 1.98m

on the floor of a building.

Wang et al. (2019) [47] apply an algorithm called DBSCAN-KRF with fingerprinting

technique. DBSCAN-KRF merges Density-Based Spatial Clustering of Applications

(DBSCAN), KNN and Random Forest algorithms to achieve a greater accuracy than

using these algorithms alone. The authors perform the experiments in two offices and

corridors of a floor in a building. Both of the offices have the same plan and size

of 8.8m × 5.6m. Each room had many desks, cupboards and flow of people. The

authors placed 12 reference points in each room and 7 reference points in corridors

totaling 31 reference points. Most of the reference points are 1.5m away from each

other. The authors achieve an accuracy of 1.5m and 4m, 50% and 90% of the time

respectively and shows that their algorithm is superior to using KNN, Random Forest

or k-weighted nearest node (KWNN) algorithm [48] alone, in terms of accuracy.

In Table 3.1, we summarize the related indoor positioning studies that use Wi-Fi

signals by giving information about year, accuracy, test area size (width × height)

and the methods used. We do not always include all the studies if there are multiple
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experiments and hence multiple accuracy.

Table 3.1. Wi-Fi Indoor Positioning Related Studies

Year Accuracy Test Area Method and Reference

2015 1.54m 5m× 10m Wi-Fi fingerprinting, ODA with OP [44]

2017 Cellwise with 90% 5.4m× 5.4m Wi-Fi fingerprinting, KNN [45]

2018 1.98m Floor of a building Wi-Fi fingerprinting, LSTM, DRNN [46]

2019 1.5m / 4m with 50% / 90% 8.8m× 5.6m Wi-Fi fingerprinting, DBSCAN-KRF, KWNN [47]

3.1.2 ZigBee

Uradzinski and Guo (2017) [49] state that they prefilter the fingerprinting data and

apply different methods like Bayesian, nearest algorithm and weighted nearest neigh-

bor (WNN) algorithm for positioning and compare the results. Experiments are made

in an area of 42.5m×4.96m with 108 data sampling points (fingerprint points) where

there is 1.6m between each data point. They place 4 receivers at the corners. They

observe that filtering improves the accuracy. They observe that WNN algorithm is

the best algorithm among the algorithms they apply and get an average positioning

accuracy of 0.81m.

Ou et al. (2017) [50] design their own algorithm based on triangulation where the

minimum achievable error is 0.25m. In the proposed algorithm, there are two types of

reference nodes, decision nodes and non-decision nodes. In the proposed algorithm,

two non-decision nodes are chosen as base nodes and the third node is used to find

the intersection point using the triangulation algorithm. Then, triangulation result

(intersection point of three points) is compared with the distance results calculated

according to RSSI value at this third node (decision node). The closer the RSSI

results to the intersection result, the more likely the intersect point is closer to the

right position. For the experiments, the authors select 2 non-decision nodes as the

base reference nodes and change the third reference node among the other decision

nodes to find the most fit result. According to a figure the authors provide in their

study, they make the experiments in an area of 14m × 4m with 8 reference nodes

where 2 of these nodes are decision nodes and the others are base nodes. The authors
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get an average positioning accuracy of 0.42m.

Bianchi et al. (2019) [51] propose an algorithm and simulate a real-world envi-

ronment for the accuracy tests. The simulated experimentation area are two rooms

(roomA and roomC) of size 40m2 each and a corridor (roomB) where the roomA

and roomC are next to roomB. Five, twenty five and twenty five measurement points

are determined in roomB, roomA and roomC respectively. Totally eight beacons are

placed where four of them are in a room, two are in the other room and the other two

in the corridor. Wearable beacons are used as the transmitter devices. The authors

used a localization algorithm based on RSSI fingerprinting. Roomwise accuracy is

considered where the accuracy formula is:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

where TP is true positive, TN is true negative, FP is false positive and FN is false.

negative values. If the POI is detected in roomA correctly, then it is true positive

and if the POI is not detected in the roomA correctly, then it is true negative. So,

for the accuracy test, roomB and roomC are considered as one place and roomA is

considered as another place. Overall 98.2% accuracy is obtained.

In Table 3.2, we summarize the related indoor positioning studies that use ZigBee

signals by giving information about year, accuracy, test area size (width × height)

and the methods used.

Table 3.2. ZigBee Indoor Positioning Related Studies

Year Accuracy Test Area Method and Reference

2017 0.81m 42.5m× 4.96m Prefiltering, WNN [49]

2017 0.42m 14m× 4m A customized triangulation method [50]

2019 Roomwise with 98.2% 40m2 ZigBee fingerprinting [51]

3.1.3 Ultra-Wide Band

Yin et al. (2016) [52] propose an algorithm based on unscented Kalman filtering

(UKF). The authors apply two-way time of flight (TWTF) and trilateration algorithms

as well in addition to unscented Kalman filtering. A rectangular room of size 6m ×

22



7m is used for the experiments. The authors place 4 anchor nodes at the corners of

the room. The authors obtain an average positioning accuracy of 10cm overall even

though for some positions, average positioning accuracies are between 30− 40cm.

Dabove et al. (2018) [53] use a method called two-way time of flight (TWTF) to

compute distances. Then, inputting these distances to their multilateration algorithm,

position of the transreceiver (TAG). So, they analyze both range and positioning ca-

pabilites of system and test a commercial solution which leverages sensor information

such as inertial chipsets, altimeter and magnetometers. For positioning estimates, the

authors perform the experiments in two different environments:

• Indoor Room: 4 anchor (reference) nodes are placed at the corners in a room

of size 6.44m × 4.91m. The average accuracy in 3D is 100 ± 25mm which is

quite accurate comparing to other wireless indoor positioning methods.

• Indoor Corridor Environment: 4 anchor nodes are placed at the corners and

as another configuration 2 more additional nodes used at the middle of 2 of

the edges in a corridor of size 1.8m × 6.8m. The average horizontal error is

87.4mm.

Ling et al. (2018) [54] propose an algorithm using differential time difference of ar-

rival (DTDOA) technique for positioning estimation. The experiments are performed

in an area of 7m × 7m where 4 anchors are placed at the corners of this area. Dur-

ing the experiments, the POI stays line-of-sight with the anchor (receiver) devices for

UWB signals to be received well. As a result, the authors obtain an average accuracy

of 30cm.

In Table 3.3, we summarize the related indoor positioning studies that use ultra-

wide band (UWB) signals by giving information about year, accuracy, test area size

(width× height) and the methods used.

Table 3.3. UWB Indoor Positioning Related Studies

Year Accuracy Test Area Method and Reference

2016 30− 40cm 6m× 7m UKF, TWTF and trilateration [52]

2018 100± 25mm / 87.4mm 6.44m× 4.91m / 1.8m× 6.8m Multilateration, TWTF [53]

2018 30cm 7m× 7m DTDOA [54]
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3.1.4 Radio Frequency Identification

In a highly cited study, Bahl and N. Padmanabhan (2000) [55] present RADAR, a ra-

dio frequency (RF) based user location and tracking system in an indoor environment.

This system operates by recording and processing RSSI information at multiple base

stations. These stations are located to provide overlapping coverage in the area where

the positioning is done. They firstly summarize multiple RSSI measurement by aver-

aging them, which means that they collect RFID fingerprinting data. As a second step

they use two different approaches where one method is empirical and the other ap-

proach is signal propagation modeling. Lastly, they use their technique called nearest

neighbors in signal space (NNSS) to compare multiple locations and pick the best fit

according to RSSI measurements. The authors make the experiments on the second

floor of a three-story building where the floor is of size 43.5m× 22.5m. The authors

state that they observe an accuracy of 2− 3m using RADAR.

Ni et al. (2003) [56] present a solution called LANDMARC which is a location sens-

ing prototype system that uses RFID technology indoor positioning. This system use

active RFID tags. They propose an approach which is a usable and cost-effective in-

door positioning system to overcome the inaccurate indoor positioning capability of

active RFID which provides an accuracy of 2.65m 50% of the time and 5.97m 90%

of the time, for projects like RADAR at that time. The authors perform the experi-

ments in an area of 4m × 9m. They place 4 RF readers and 16 reference tags. The

authors follow a k-weighted nearest neighbor (KWNN) approach with a customized

weight formula for the weights which gives the least error according to authors’ mea-

surements. They use the coordinates of k-nearest reference tags of an unknown tag

to locate the unknown tag. They achieve an average positioning accuracy of 1m and

2m, 50% and 90% of the time respectively.

Saab and Nakad (2011) [57] use an iterative approach and apply Kalman filter to

preprocess their signals and then use RSSI values for positioning. They place tags

with 1.2m spacing and the distance between tag-layout path and the reader path is

2m. The authors conduct the experiments in a space with concrete columns and a

roof surrounded with a concrete wall and two glass walls from three sides where the

fourth side is open. The size of the test area is 6m × 5m where the RFID tags are
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placed at a height of 2m. The averaged absolute position error is 0.1m with their

approach.

Xu et al. (2017) [58] present BKNN, which is an indoor positioning solution based

on KNN and Bayesian probability. The authors propose an approach that can reduce

signal fluctuations and errors caused by multipath and environmental interference in

LANDMARC, which is the approach that Ni et al. [56] propose. The authors conduct

the experiments in an area of 3.6m× 4.8m where they place 117 reference tags with

45cm space between each two and 5 target tags in total. They get an accuracy of

15cm as a result of their experiments.

In Table 3.4, we summarize the related indoor positioning studies that use radio fre-

quency identification (RFID) signals by giving information about year, accuracy, test

area size (width× height) and the methods used.

Table 3.4. RFID Indoor Positioning Related Studies

Year Accuracy Test Area Method and Reference

2000 2− 3m 43.5m× 22.5m RFID fingerprinting, NNSS [55]

2003 2.65m / 5.97m with 50%/ 90% 4m× 9m. Cost effective active RFID usage, KWNN[56]

2011 0.1m 6m× 5m Kalman filter [57]

2017 15cm 3.6m× 4.8m KNN, Bayesian probability [58]

3.1.5 Frequency Modulation Radio

Chen et al. (2012) [59] propose an FM-based algorithm in which when combined

with Wi-Fi, the accuracy is improved by upto 83% using Wi-Fi only when accounting

for wireless signal temporal variation and up to 11% without accounting for temporal

variation. Temporal variation stems from authors making some of the experiments

in different days. The authors also propose an additional signal quality indicator at

the physical layer (PHY) which improves localization accuracy by 5%. The authors

utilize RSSI based fingerprinting in their algorithm as well. The authors observe that

Wi-Fi and FM signals are complementary of each other for positioning estimations

and hence, combining Wi-Fi and FM results in higher accuracies using these signals

alone. The authors make experiments in 3 buildings across the US which are resi-
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dential, office and mall buildings. We give results of residential and office buildings

for this study. For RSSI fingerprinting data, they take measurements for more than

100 rooms. For example for office building, they collect the fingerprinting data in a

hallway placing 100 measurement points along a straight line where there is 1.8cm

between each point and then using only FM signals, the authors get an average ac-

curacy of 0.3cm and 30cm for 50% and 90% of the time respectively. FM and FM

with Wi-Fi accuracies are close for office building hallway. For residential building,

roomwise accuracy is used and 100% accuracy is obtained using FM only and FM

with Wi-Fi signals whereas 90% accuracy is obtained using Wi-Fi signals only.

Yoon et al. (2016) [60] propose ACMI, an FM-based indoor localization system that

does not require a site survey. They establish a signal propagation model using the

floor plan of a building without the need to place beacons inside that building, as a

result of extensive field measurement study for FM signals. The authors construct a

fingerprinting map which purely contains FM RSSI info where signals are transmit-

ted from commercial FM radio stations. Then, with the fingerprinting map in hand,

ACMI applies parameter calibration and path matching methods at runtime. The au-

thors make the experiments in seven campus locations and three downtown buildings

where they achieve an average accuracy of 6m and 10m respectively.

Popleteev (2017) [61] performs a study to investigate the long-term behavior of FM

signals indoor positioning methods. Since the author aims to investigate the FM sig-

nal stability for indoor positioning for a longer period of time than the most studies do

as the author mentions, he collects FM RSSI samples for large-scale and small-scale

areas for at least 3 months via software-defined radio (SDR) receivers. During the

sample collection period, the author makes biweekly experiments to analyze the re-

sults where these experiments are called sessions. The author makes the experiments

in three different areas:

• floor -2, 0 and 1 of a office building of size 100m× 50m with a 9-month sam-

pling period. 16, 36 and 33 tests points are used for floors -2, 0 and 1 respec-

tively. 17 sessions are conducted.

• floor 0 and 1 of a campus building of size 80m×80m with a 9-month sampling

period. 13 tests points are used for both of the floors. 16 sessions are conducted.
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• floor 3 of a apartment building of size 14m × 7m with a 3-month sampling

period. 37 test point is used. 6 sessions are conducted.

The author chooses support vector machine (SVM) for the tests since it outperforms

kNN and random forest classifiers according to his results in terms of classification

accuracy. For evaluation, the author uses leave-one-session-out approach where a

measurement session is chosen to test and the other sessions are used to train the

proposed indoor positioning system. The author calculates localization classification

errors for every fingerprint position in each test. For apartment building test, 57.4%

of the test locations classified correctly where 90% of the estimates are within 4.1m

from the actual position of the POI. For campus test, 94.3% and 92.0% classification

accuracy is obtained for floor 0 and 1 respectively. For office building test, 60.4%,

79.3% and 89.6% classification accuracies are obtained for floor -2, 0 and 1 respec-

tively. As to time duration effect on the localization error; for instance, for the campus

test, the author observes that localization error increases from 70% to 96% for results

after two sessions and eight sessions respectively which shows that FM signals can

provide robust results for months after installation.

In Table 3.5, we summarize the related indoor positioning studies that use frequency

modulation (FM) radio signals by giving information about year, accuracy, test area

size (width× height) and the methods used.

Table 3.5. FM Indoor Positioning Related Studies

Year Accuracy Test Area Method and Reference

2012 0.3cm / 30cm with 50% / 90% Office building PHY modification, FM fingerprinting [59]

2016 6m / 10m 7 campus point / 3 buildings FM fingerprinting, parameter matching [60]

2017 Cellwise with 57.4% 14m× 7m FM fingerprinting, SVM [61]

3.2 Bluetooth Solutions For Indoor Positioning

In this section, we mention studies using Bluetooth low energy signals for indoor

positioning. We explain the environmental setup, applied methods and accuracy of

these studies. We investigate the studies chronologically by starting with older studies
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and concluding with recent study explanations. Having known that BLE is released

as a part of Bluetooth technology on June 2010 , we only look at studies made after

2010, mostly focusing on the studies published after 2016 to compare our solution

with the recent or state-of-the-art solutions.

Subhan et al. (2011) [62] follow an RSSI based approach and estimate the position by

trilateration methods. To improve the accuracy, they use a method called the gradient

filter. Using the gradient filter, the authors observe that the average error drops from

5.87m to 2.67m overall and 45% of this drop comes from the gradient filter method

they applied. But, since this study is made in 2011, having the advantage of improved

BLE technology, now we should get better accuracies.

Khan (2014) [63] makes a comparative study of existing indoor positioning methods

using BLE. The aim of the author is to find an efficient and low computationally cost

solution for positioning in an indoor environment, which is also the main aim of ours

for writing this thesis. As a result of comparing lateration based indoor positioning

approaches like trilateration, least square based approach and min-max based po-

sitioning algorithm; the author finds out that min-max based approach is better for

accuracy and its low cost. According to the article, min-max algorithm functions by

constructing a bounding box for each anchor node based on the distance. The au-

thors mean signal receiving devices by the term Anchor node. Then three boxes

are constructed according to distance information and the intersection of these boxes

determine the resulting position.

Kalbandhe and Patil (2016) [64] indicate that positioning with BLE is more accurate

than positioning with Wi-Fi. They use mobile phones as the receiver devices and use

a mobile application called IPSAPP. They indicate that they use −76dBm TX power

for experiments; however they actually use −76dBm as the RSSI at 1 meter instead

of TX Power. But, we sometimes see that, in literature, RSSI at 1 meter may be

used as a synonym to TX Power. They use two different beacons and obtain fourteen

distance vs RSSI results for both of the beacons where all of the distances used in

measurements are between 0m and 3m. The authors indicate that they are able to

classify signal sources correctly for near, immediate and far positions where these

positions represent 0− 0.5m, 0.5− 3m and above 3m respectively.
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Kriz et al. (2016) [65] follow a hybrid approach and share their results . Using only

four Wi-Fi access points, they get 1m accuracy in average and adding BLE beacons

up to seventeen increases the accuracy from 1m to 0.77m in an area of 52m × 43m.

The authors indicate that they exclude outliers from the results. Using only Wi-Fi

beacons, the max error that they get is 4.27m and this result improves to be 2.82m

using seventeen BLE beacons. However, BLE beacons that they use, transmit at a

frequency of 100ms which is pretty frequent which make this solution only suitable

where BLE beacon batteries can be replaced often.

Ozer and John (2016) [66] try to improve the accuracy of BLE solutions using Kalman

filtering. They indicate that their resulting accuracy is in the order of meters. They

use 12 BLE beacons each having 4dBm of TX power which is one of the highest

TX power levels we have seen for a BLE beacon, in general. They indicate that the

scan period of the Android application that they used is 600ms. If the transmission

period of their beacons is also 600ms, then this solution would not be applicable

for solutions where frequent battery replacement is not preferable. The test area is a

section of the second floor of Applied Engineering and Technology Building at the

University of Texas at San Antonio Main Campus.

Memon et al. (2017) [67] implement a mobile indoor positioning system to track

staff members of a university department. The authors make the experiments in a lab

environment and split the area in blocks where they do not indicate the size of the

blocks. The accuracy in terms of blocks is 94% when the transmission period of the

BLE beacons is 1000ms and is 100% when transmission period is 500ms. The range

of the beacons are 15m according to the paper. Hence, we guess TX power of the

beacons is something around −8dBm. If each block is 1m2 in the figure they have,

then the experiments are done in an area of 30m2 with a corridor partially spllitting

the room and 4 BLE beacons are used where there is a clean line of sight among only

one group of three BLE beacons.

Sie and Kuo (2017) [68] use BLE beacons transmitting with a period of 100ms.

The authors perform different experiments with two TX power levels, −30dBm and

−42dBm. They collect RSSI values every 50cm. According to results they get,

−42dBm can only be used within 0−50cm but with low accuracy and with−30dBm
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they can get accurate measurements upto 1.5m. They indicate that with BLE beacon

accuracies smaller than 1m is enough using small TX powers. However, we think

that making measurements every 50cm is not affordable and a good solution in a real

world environment.

Nguyen et al. (2017) [69] use BLE beacons using the iBeacon protocol with TX

power 4dBm and advertising interval (transmission period) of 400ms. They use

several filtering methods for preprocessing the RSSI values they collect, where some

of these filtering methods are Gaussian filter, Kalman filter and simply averaging

RSSI values collected. They use an improved least square method for positioning

and compare this method with other techniques like least square estimation (LSE)

and trilateration-centroid in 2D. They perform the experiments in a square area of

5x5 = 25m2 where 4 BLE beacons are placed at the corners at a height of 1.2m. The

authors get an accuracy of 0.192m using their improved LSE methods where classic

LSE methods result in 0.333m and trilateration-weighted centroid method result in

0.375m error with higher maximum error values.

Radoi et al. (2017) [70] perform some experiments in an office environment. The

authors analyze two methods: fingerprinting and particle filtering. According to the

experiment results, particle filtering performs better than the fingerprinting method

for a corridor of size 1.5m× 12m, with an accuracy of less than 2m with 80% confi-

dence interval. For a room of size 8m× 6m, for errors lower than 2m; fingerprinting

method performs better. For errors higher than 2m, particle filter performs better than

fingerprinting. Particle filtering get an error of 4m at maximum, 97.5% of the time,

for the room case. Hence, we can say that particle filtering performs better in general,

for this study.

Teran et al. (2017) [71] implement a solution based on internet of things (IoT). The

experimentation area is 5 × 5 = 25m2 which is further divided by 1 × 1m2 blocks

for accuracy estimations. They get an accuracy of 2m using two machine learning

classifiers.

Paterna et al. (2017) [72] use different channels of BLE technology to lower the effect

of signal degrading phenomena like reflection, refraction and loss of BLE signals due

to external objects or signals. The authors make the experiments in three different
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areas with sizes 4.8m × 6m, 9.19m × 6.18m and 17.6m × 16.5m respectively and

get accuracies of 2m, 1.82m and 4.6m with 90% confidence interval. According to

layout of the area with size 9.19m× 6.18m, this area is indeed a L-shaped room with

size 2.79m× 3m+ 8.72m× 6.18m. This article does a very good job of summariz-

ing the related works in BLE indoor positioning field in the first table of the article

[72]. In this table, the authors summarize 20 different studies by giving information

about precision of the previous studies, indoor size where the solution works and the

methods used. The best accuracy in this table belongs to a Japanese study by Kajioka

et al. (2014) [73]. In this Japanese study, 0.8m accuracy was obtained in an indoor

environment of size 10.5m× 15.6m. However, among these 20 different studies, for

large-size environments; even to obtain accuracies worse than 1.5m, at least 9 re-

ceivers are used. This shows that sub-meter accuracies or accuracies close to a meter

are unlikely without using several receivers.

Zue et al. (2018) [74] propose a graph optimization based approach which combines

fingerprinting-based methods and range-based methods. The authors perform the test

in an area of 90m× 37m with two different number of beacons which are 24 beacons

(sparse) and 48 beacons (dense) to see the effect of beacon density on positioning

estimations. With sparse beacon environment and dense beacon environment, they

get accuracies of 2.26m and 1.27m respectively.

Yanagaimoto et al. (2018) [75] propose four unsupervised methods for positioning

with two assumptions. These assumptions are low RSSI values are not reliable and

human motion is slow enough for tracking. They exclude the signal values lower

than −90dBm to have relatively more reliable signals only and they use a voting

based algorithm to make an assumption for the missing values in the dataset they

use. This dataset consists of RSSI data collected in an academic international confer-

ence. However, since they do not have any mechanism to know where a participant

really is, they do not have the ground truth position values to make error calculations.

Therefore this study is more of a theoretical study than a practical one.

Teran and Carrillo (2018) [76] implemented a hybrid system for wireless local area

network (WLAN) and BLE positioning using ML cloud services. The authors com-

pare the hybrid method with Wi-Fi only and BLE only. For positioning SVM and
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KNN classifiers are used. They get better accuries using Wi-Fi and BLE together,

75% of the time, for sub-meter ranges using KNN. However using only BLE, they

get a sub-meter accuracy, 68% of the time using KNN and 60% of the time using

SVM. They indicate that average accuracy is slightly above 2m using the hybrid ap-

proach. They make the experiments in a 8m×8m area where 4 beacons are placed at

the corners, 1m above the ground with a transmission period of 1000ms. They use 5

strongest Wi-Fi signals along with BLE signals at the campus (in measurement area)

where the higher the signal-to-noise ratio (SNR) of a Wi-Fi signal, the stronger the

signal is.

Li and Ma (2018) [77] use BLE tags and BLE/Wi-Fi repeaters. Their system makes

positioning calculations using two values: RSSI fingerprint and cell of origin (CoO).

They perform experiments in a rest area and an office area. They get accuracies of

1.2m for the resting area and 1.37m for the office area. The transmission period of

the beacons and TX power are 400ms and 4dBm respectively. The rest area is of

size 4.8m × 14.4m and covered by four access points (APs) placed 2.4m above the

ground. The office is of size 8.4m× 15m and covered by four APs.

Huang et al. (2019) [78] implement a hybrid method for a dense BLE environ-

ment. The authors use sliding window filtering, trilateration, dead reckoning (DR)

and Kalman filter (KF) for an improved performance of BLE positioning. They try

to come up with a solution for environments where a lot of Bluetooth sources exist

where these Bluetooth sources could be Bluetooth classic devices instead of BLE.

Since other Bluetooth devices would cause interference, they overcome these inter-

ferences with their methods. They call their method as hybrid due to fusing dead

reckoning and trilateration methods. The experiments are performed in an area of

5.6m × 8.8m. Yet, they place the beacons in a rectangular area of 5.6m × 4.8m ac-

cording to the layout given in the paper. In this test area, there are eighteen Bluetooth

lights incessantly transmitting Bluetooth signals and eight BLE beacons at the ceiling

at a height of 2.7m. The authors apply three methods: trilateration, dead reckoning

and hybrid method. Trilateration, dead reckoning and hybrid methods has root mean

squared errors (RMSE) of 2.33m, 0.82m and 0.76m respectively. So, Hybrid method

outperforms the other two methods.
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Mekki et al. (2019) [79] implement an IOT based solution. The authors give some

path loss exponents for different environments like free space and obstructions in

buildings and factories since in some environments signal strength loss is higher than

the others. They use beacons with different TX powers ranging from −30dBm to

4dBm. They perform the experiments in an office area of 6 × 6m2 where obstacles

like cubicles, bookcases and computers exist. They get an error of 1.5m.

In Table 3.6, we summarize the related indoor positioning studies that use Bluetooth

low energy (BLE) signals by giving information about year, accuracy, test area size

(width × height) and the methods used. This table is sorted by the accuracies of

the studies. In this table green color represents our algorithm whereas red color rep-

resents the studies where the test area is not well-defined. Our solution seems to be

close to the middle. Hence, we can say that, our solution provides similar accuracies

compared to the studies mentioned in the literature. In Table 3.6 and 3.7, NA values

mean not available. 1D refers to distance information indicating how many meters

the authors are away from the receivers at maximum.

Table 3.6. BLE Indoor Positioning Related Studies

Year Accuracy (m) Test Area (m2) Method and Reference

2017 0.192 5× 5 Kalman / Gaussian filter, trilateration-centroid [69]

2019 0.76 5.6× 8.8 Hybrid, sliding window + KF, trilateration, DR [78]

2014 0.8 10.5× 15.6 BLE fingerprinting [73]

2018 1.0 with 75% 8× 8 Hybrid (Wi-Fi+BLE), SVM, KNN, ML cloud service [76]

2018 1.27 90× 37 Graph optimization, fingerprinting + range based [74]

2018 1.37 8.4× 15 Hybrid (Wi-Fi + BLE), fingerprinting, CoO [77]

2017
√
2 with 96% 30m2 Selection of nearest BLE tag [67]

2019 1.5 6× 6 Trilateration, RSSI filtering [79]

2019 Mean: 2.29, Std: 1.67 15× 16 IP-PPFONM

2011 2.67 10× 12 Trilateration, gradient filter [62]

2017 2
√
2 with 70.2% 5× 5 Two machine learning classifiers [71]

2014 2.89 12× 14 Trilateration, min-max, least square [63]

2017 4.0 with 97.5% 8× 6 Particle filter, BLE fingerprinting [70]

2017 4.6 with 90% 16.5× 17.6 Channel diversity, weighted trilateration and KF [72]

2016 A few meters University room Kalman filter [66]

2017 1.5 with 91.4% 3 (1D) Low TX powered beacon utilization [68]

2016 0.5 3 (1D) IPSAPP (A mobile application) [73]

2018 NA Conference room Voting based algo [75]
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Table 3.7. BLE Indoor Positioning Related Studies Deployment Requirements

Year Deployment Requirements Extra Information

2017 3 beacons with 4dBm,400ms 4 beacons with 4 receivers fingerprinting | Static

2019 8 fixed beacons NA

2014 22 fixed beacons NA

2018 4 fixed beacons, 5 Wi-Fi AP NA

2018 48 fixed beacons Dynamic

2018 Some BLE tags and 4 BLE/Wi-Fi Repeater 400ms period, 4dBm TX power | Static

2017 4 fixed beacons Areawise accuracy (1m2)

2019 9 fixed beacons Dynamic (move with a mobile device)

2019 1 beacon, 3 receivers Obstructions considered | Dynamic

2011 NA NA

2017 4 fixed beacons, 1 receiver Areawise accuracy (4m2) | Fingerprinting

2014 4 fixed beacons 4 fixed target node position

2017 5 beacons 300ms period, −4dBm TX power

2017 4 receivers, 1 beacon 100ms period | Cost-effective

2016 12 fixed beacons Android app used to track

2017 1 beacon 100ms period | −30dBm/−42dBm TX power

2016 1 beacon -76dBm TX Power at 1 meter

2018 NA NA

Table 3.7 has the same entries in the same order as in Table 3.6 where last two columns

are replaced with different ones and the Accuracy column is removed. In Table 3.7,

hardwares that the other studies use are placed in the column named Deployment

Requirements. We can see that our solution uses less equipment than most of the other

approaches and our test area is larger than half of the other approaches. Moreover,

our method is unique in the way it handles the obstructions in the indoor environment

compared to the other methods.

In Table 3.6, there are cellwise accuracies besides positioning accuracies. To include

cellwise accuracies in the table, we consider the diagonal lengths of the cells as the ac-

curacies since the diagonal length represents the longest distance between two points

in the corresponding cell.

In Table 3.7, in Extra Information column, static tracking means this study positions

a static object whereas dynamic tracking means this study tracks a moving object or

person. We also added the beacon related parameters like TX power and period in

this column.
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CHAPTER 4

INDOOR POSITIONING VIA PREFILTERING AND PARTICLE

FILTERING WITH OBSTRUCTION-AWARE NO-SIGNAL

MULTILATERATION

In this chapter, we make an overview of how indoor positioning via prefiltering and

particle filtering with obstruction-aware no-signal multilateration (IP-PPFONM) al-

gorithm works and then explain IP-PPFONM steps in detail with the help of pseu-

docodes and some formulas.

The organization of this chapter can be summarized as follows:

• In Section 4.1, we explain the main algorithm with the pseudocodes. At first,

we define some constants and variables to be used in different parts of the al-

gorithm.

• In Section 4.2 section, we explain how to place receivers in the IE so that as

much coverage area as possible is achieved.

• In Section 4.3, we explain how BLE fingerprinting map is constructed prior to

execution of the IP-PPFONM algorithm. We use this fingerprinting map data

in our multilateration algorithm to locate the POI.

• In Section 4.4, we explain how we prefilter the received signal strength indica-

tor (RSSI) values received by the receivers to make sure the signals we receive

are strong enough for positioning calculations. This step is necessary since low

RSSI values are not reliable for positioning estimations.

• In Section 4.5; based on the prefiltered RSSI values, the indoor environment

layout and obstruction information, we calculate the POI position, which we

call the measured position of the POI.

• In Section 4.6, particle filtering steps are explained. This step calculates the
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predicted position of the POI using measured position, for the current time step

and provides the smooth transitions between each positioning estimation. If

we used only multilateration step for positioning, due to fluctuating nature of

the RSSI values, we would get positioning estimations apart from each other

for consecutive time steps as if the person of interest (POI) teleports from one

place to another inside the IE. This section and the previous sections explain

and conclude the main steps of the IP-PPFONM algorithm.

• In Section 4.7, we explain some common functions used by different compo-

nents of the IP-PPFONM algorithm.

• In Section 4.8 section, we explain some of the use cases of the IP-PPFONM

algorithm.

4.1 Main Algorithm

IP-PPFONM is a real-time algorithm and therefore, we make calculations periodi-

cally. The period of the calculations are chosen to be 1 second (1s) since our beacons

transmit a signal per second. We call each step we make calculations a time step, each

of which has a time difference of 1s in between. We make some distance calculations

for positioning and all of the distances in IP-PPFONM are calculated according to

Euclidean distance metric.

In IP-PPFONM, we firstly create a fingerprinting map for the IE by keeping the bea-

cons stay in the indoor environment (IE) for a while. Then, we prefilter each signal

arriving at the receivers via running average filter (RAF) algorithm. After that, we

use obstruction-aware no-signal multilateration (ONM) algorithm to find the mea-

sured position of the POI. Finally, we apply particle filtering on the arriving signals

to locate the POI with some confidence value.

To be able to adjust different environmental conditions and different situations that

may be encountered in an IE, we follow a flexible approach for the IP-PPFONM

algorithm by having parameters that can be changed for various purposes. The main

constant parameters are:

• minUsefulSignal: This parameter represents the minimum RSSI value to be
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used for our particle filtering algorithm calculations.

• minSignalValue: This parameter represents the minimum RSSI value that can

be caught by a receiver device. We do not prefilter RSSI values lower than

minSignalValue and directly reject it since we do not expect such a low signal to

be transmitted from our signal transmitting devices (beacons). minSignalValue

is always less than or equal to minUsefulSignal.

• maxSignalError: This parameter represents the maximum signal noise possi-

ble in the IE. Hence, the signal noise in the indoor environment for algorithm

is always between 0dBm and maxSignalError.

• sensitivityOfResult: This parameter represents what should be the distance

between each checkpoint for the minimization function used in our multilater-

ation algorithm.

• numberOfBlocks: This parameter represents the number of objects that may

affect the BLE signals in the IE. We know that objects causes some signal loss

when an EM signal hits them. Since there could be many obstructions in an

indoor environment, we only consider the large objects that my affect the BLE

signals as a simplification.

• numberOfRooms: This parameter represents the number of rooms in the IE.

We know if rooms exist in an IE, due to having walls around them, they cause

some signal loss when an EM signal hits them.

• blockWidths, blockLengths, roomWidths, roomLengths: blockWidths and

blockLengths parameters represent the widths and lengths of the blocks in the

IE in meters, respectively whereas roomWidths and roomLengths parameters

represent the widths and lengths of the rooms in the IE in meters, respectively.

• blockMaterials, roomMaterials: Besides the width and length of the blocks

and rooms, the material used to make these blocks or rooms should be taken

into account since different materials have different electromagnetic (EM) sig-

nal transmission, absorption and reflection values [38]. Therefore, we include

these parameters in the IP-PPFONM algorithm. blockMaterials and roomMa-

terials represent the material of the blocks and rooms respectively. Each of
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these parameter can contain multiple materials to indicate different materials

for each block or room.

• materialSignalDisturbanceCoefficients: This parameter represents the signal

disturbance coefficient of the materials as key and value pairs like a hash table

data structure. Key and value pairs are represented as key : value where keys

are materials and values are the signal disturbances for the corresponding ma-

terial. Signal disturbance here represents how much dBm of the signal is lost

for the corresponding material of 1m width.

• pastCoeff: The name of this parameter is abbreviation for past coefficient. This

parameter represents how much of the previous velocity should be used for de-

termining the current predicted velocity of the POI . We use this coefficient

parameter to take human motion into account. Since humans go along in a di-

rection for some time, they make a similar movement for most of the time. For

the other times, humans stop and turn into another direction. Hence, thinking

that POI will make the same movement as the previous motion would be more

probable than not.

Past coefficent value changes between 0 and 1. 0 means only consider the cur-

rent motion. 1 means only consider the previous motion. The values between

0 and 1 indicate how much of the previous motion we should take into account

for the magnitude and direction of the current POI motion. This past coefficient

value is ignored for the first motion since there is no previous motion before the

first one.

• NumberOfParticles: This parameter represents how many particles we should

use for the particle filtering algorithm.

• xmin, xmax, ymin, ymax: xmin and xmax represent minimum and maximum

x coordinates in the IE whereas ymin and ymax represent minimum and max-

imum y coordinates in the IE. Hence, the indoor environment is a map whose

coordinates are defined by (xmin, xmax)× (ymin, ymax).

• movingLimit: This parameter represents how many meters at most should the

POI be able to move for x and y dimensions, at each time step. In this thesis,

since each time step is assumed to be 1 second, this parameter represents the
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maximum velocity for the POI in m/s. For example, to track people driving

electric cars in an airport, this parameter can be chosen as 20m/s.

• FPbeaconPos: This parameter is an abbreviation for fingerprinting beacon po-

sitions. It represents the positions of the beacons we keep in the IE for a while

to collect RSSI values for fingerprinting.

• FPcoeff: This parameter is an abbreviation for fingerprinting coefficient. It

represents a multiplier determining the effect of fingerprinting map in the IP-

PPFONM. This parameter can take any positive value. The higher this param-

eter is the larger the fingerprinting map affects the multilateration algorithm

results. If the value of this parameter is greater than 1, then fingerprinting re-

sults would suppress the other calculations we do for minimization.

• numberOfReceivers: This parameter represents how many receiver devices

should be placed in the map.

• receiverPositions: This parameter represents the 2D positions of the receivers

installed in the IE.

• TXPower: This parameter is related to beacons. Beacons emit signal with

a certain power. This power is represented as milliwatt (mW) normally; yet,

in distance calculations, usage of decibel-milliwatts (dBm) is more common.

Therefore this parameter represent how much power the beacon transmits the

signal in terms of dBm.

• RSSIatOneMeter: This beacon-related parameter is usually stated in the web-

site of the firm where beacons are bought from. If not stated, one can measure

the RSSI value at a receiver which is 1 meter away from a beacon as this value.

We choose RSSI at 1 Meter value equal to TXPower − 65 since we generally

see that this value is (TXPower−65)±3 according to different beacon firms.

For TX Power values lower than −20dBm , like −30dBm and −40dBm ,

RSSI at 1 Meter is generally less than (TXPower − 65) ± 3. Since it is rela-

tively easy to measure signal power at 1m, this value is used as a reference to

make calculations further than 1m. For distances closer than 1m, we calculate

the RSSI as an exponential function whose resulting value change between TX

Power and RSSI at 1 meter between distances 0m and 1m respectively.
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Having finished the explanation of the parameters that we use, for better understand-

ing of the IP-PPFONM algorithm, we present some pseudocodes. In Algorithm 1, we

firstly define some global constant and variables which can be accessed by all of our

functions if necessary. Then, we use our optimum receiver positioning algorithm if

we do not prefer to determine receiver positions manually by ourselves. After that,

our algorithm starts its dynamic phase which is a set of procedures and algorithms for

positioning of the POI according to the RSSI values received at each time step.

Algorithm 1 IP-PPFONM Main Procedure
1: procedure LOCATEPOI

2: DEFINEGLOBALCONSTANTS()

3: DEFINEGLOBALVARIABLES()

4: if receiverPositions is not determined manually then

5: receiverPositions← GETRECEIVERPOSITIONSTOINSTALL()

6: end if

7: for each Time Step do . Main Loop

8: RSSIatEachRec← GETRSSIATEACHRECEIVER()

9: prefilteredRSSIs← PREFILTER(RSSIatEachRec)

10: MeasuredPOIPos← MULTILATERATION(prefilteredRSSIs)

11: PredictedPosOfThePOI ← PARTICLEFILTER()

12: end for

13: end procedure

Explanations and Comments For Algorithm 1:

• DefineGlobalConstants function initializes the constants mentioned in Table 4.1.

• DefineGlobalVariables function initializes the variables to be used throghout

the IP-PPFONM algorithm.

• Main Loop, refers to the dynamic phase of the IP-PPFONM algorithm which is

executed for each time step.

• RSSIatEachRec is a list of raw RSSIs caught by each receiver device. To ac-

cess the RSSI at receiveri, we use the access operator ([]) like this: RSSI-

atEachRec[i].

• For each time step, using Prefilter,we filter out the incoming signals. Then,

using Multilateration, we measure the POI position. After that, we apply Par-

ticleFilter on the measured position to locate the POI in a confidence region
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calculated using a probability distribution of the particles.

• PredictedPosOfThePOI represents the positioning result of the IP-PPFONM

algorithm for the current time step.

Table 4.1. Global Constant Parameter Definitions

Constant Name Default Value Unit, if available

minUsefulSignal -90 dBm

minSignalValue -100 dBm

maxSignalError 5 dBm

sensitivityOfResult 0.5 meter

numberOfBlocks 1 NA

numberOfRooms 3 NA

blockWidths 0.5 meter

blockLengths 0.5 meter

roomWidths [5.3, 4,5] x, y coordinate (meter)

roomLengths [11, 3,3] x, y coordinate (meter)

blockMaterials plastic NA

roomMaterials concrete NA

materialSignalDisturbanceCoefficients [concrete : 16dBm, glass : 6dBm] Material and dBm pairs.

pastCoeff 0.2 NA

NumberOfParticles 300 NA

xmin 0 x coordinate (meter)

xmax 15 x coordinate (meter)

ymin 0 y coordinate (meter)

ymax 16 y coordinate (meter)

movingLimit 5 meter

FPbeaconPos [(0.25, 2.25),(5, 6), (11.5, 3.5), (12.5, 9)] x,y coordinates (meter)

FPcoeff 0.2 NA

numberOfReceivers 3 NA

receiverPositions [(5,7),(10.3,8),(7.4,2)] x,y coordinates (meters)

TXPower 0 dBm

RSSIatOneMeter -65 dBm

We also have variables whose values change at each iteration like ParticleWeights,

ParticlePositions, MeasuredPOIPos, prefilteredRSSIs and slidingWindows and values

initialized at the beginning like xElems, yElems and RSSIinFP as shown in Algo-

rithm 2.
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Algorithm 2 Variables Used In Algorithms
1: procedure DEFINEGLOBALVARIABLES

2: ParticleWeights← EmptyQueue (of size NumberOfParticles)

3: ParticlePositions← EmptyQueue (of size NumberOfParticles)

4: RSSIinFP ← CREATEFPMAP()

5: xElems← EmptyQueue

6: yElems← EmptyQueue

7: for tmpElem ← xmin; tmpElem < xmax + sensitivityOfResult, tmpElem ←

tmpElem+ sensitivityOfResult do

8: Add tmpElem into xElems

9: end for

10: for tmpElem ← ymin; tmpElem < ymax + sensitivityOfResult, tmpElem ←

tmpElem+ sensitivityOfResult do

11: Add tmpElem into yElems

12: end for

13: MeasuredPOIPos← None . Initially no measurement is made

14: . Variables below are related to the receivers. Each index is for a receiver

15: prefilteredRSSIs← EmptyQueue

. Initialize parameters for each receiver

16: for each i← 0; i < numberOfReceivers; i← i+ 1 do

17: slidingWindows[i]← EmptyQueue(of size 7) . Each sliding window is a queue

18: end for

19: end procedure

Explanations and Comments For Algorithm 2:

• xElems contains x coordinate of each 2D position in the IE which is separated

by sensitivityOfResult meter from the closest x coordinate in xElems.

• yElems contains y coordinate of each 2D position in the IE which is separated

by sensitivityOfResult meter from the closest y coordinate in yElems.

• Values inside the brackets are independent from each other and each entry in-

side brackets can be indexed by [] operator. Pairs inside parantheses like (a, b)

are x and y coordinates of a 2D position and to reach first (a) and second (b)

coordinates , we can say (a, b).x and (a, b).y respectively.

• RSSIinFP is going to be filled in createFPMap function defined in Section 4.3.
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4.2 Efficient Receiver Placement

We have to install our receiver devices as much efficient as possible given the indoor

map. Efficiency here means positioning the least amount of receiver devices by still

managing to receive signals regardless of where the POI is inside the IE. Placing

lots of receiver devices does not contribute to locating the POI more accurately if all

devices installed close to each other. We apply our receiver positioning algorithm on

rectangular shaped indoor environments as it is the most commonly found shape for

an indoor store. For combined or complex shapes, human eye would be more accurate

for efficient positioning.

We consider the positioning problem as a clustering problem where each cluster con-

sists of points formed around a receiver. Therefore, finding cluster centers is equal to

finding the receiver devices. We need evenly spaced points spread across the whole

indoor environment map and get cluster centers in the map almost evenly positioned.

Therefore, we create evenly-spaced initial points spread across the map which are to

be used by our k-means algorithm as the initial data points to be clustered.

In our k-means algorithm, k is the number of receivers we want to place in the IE.

We run k-means algorithm with different initialization. Using a hundred different

runs, k-means chooses the best clusters and their centers. As a result, we use the

centers of these clusters as the receiver positions. We can see the receiver installation

implementation in Algorithm 3.

Algorithm 3 Placement of the Receivers in the IE in the most efficient way
1: procedure GETRECEIVERPOSITIONSTOINSTALL

2: initialPoints← EmptyQueue

3: for xIndex← 0 ; xIndex < 1 + stepSize; xIndex← xIndex+ stepSize do

4: for yIndex← 0 ; yIndex < 1 + stepSize; yIndex← yIndex+ stepSize do

5: Add (xIndex,yIndex) pair into initialPoints queue

6: end for

7: end for

8: stepSize← 1/(ROUNDUP(SQRT(numberOfReceivers ∗ 1000)))

9: receiverPositions← KMEANS(numberOfClusters,NumberOfRuns, initialPoints)
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10: for each receiverPosition ∈ receiverPositions do

11: receiverPosition.x← xmin+ receiverPosition.x ∗ (xmax− xmin)

12: receiverPosition.y ← ymin+ receiverPosition.y ∗ (ymax− ymin)

13: end for

14: return receiverPositions

15: end procedure

Explanations and Comments For Algorithm 3:

• roundUp function rounds the resulting floating point number to the closest in-

teger larger than itself.

• sqrt function takes the square root of the given parameter.

• kMeans returns numberOfClusters of cluster centers given points to be clustered

where these points are represented by initialPoints variable.

• NumberOfRuns represents how many times k-means algorithm should run to

choose the best result among these runs.

• initialPoints represents the initial points in a unit square that we want to cluster.

These points are evenly spaced in both x and y dimensions. The space between

each initial point is stepSize unit where stepSize is a value between 0 and 1.

• Since our initial points in in a unit square, the k-means algorithm gives result

in a unit square. Hence, after k-means algorithm is completed, we map re-

ceiver positions found in (0, 1) × (0, 1) coordinates to indoor environment’s

coordinates, that is, (xmin, xmax)× (ymin, ymax).

4.3 BLE Fingerprinting

First of all, we create a BLE fingerprint (FP) map by interpolating the signal values

at the positions where we place our fingerprint beacons for a while. For each position

(x, y), we look at the closest beacon to (x, y). We calculate the distance of the closest

beacon to all receivers and the distance of (x, y) to all receivers. Then, using the

ratio between these distances, we calculate a signal strength value at position (x, y).

We expect that if (x, y) is closer to receiver than its closest beacon is, then (x, y)

should have a higher RSSI value compared to the RSSI fingerprint value at closest

beacon’s position and vice versa. For distances between 0 and 1 and corresponding
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RSSI values for these distances - RSSI values higher than RSSIatOneMeter- instead

of making calculations according to closest beacon, we calculate the fingerprinting

values according to the distance of (x, y) to the closest receiver. In Algorithm 4 and

5, we can see the implementation of how we construct the fingerprinting (FP) map.

Algorithm 4 Preparation of the BLE Fingerprinting Map
1: procedure CREATEFPMAP

2: RSSIinFP ← EmptyHashTable

3: allPosDistancesToReceivers← EmptyHashTable

4: for i← 0; i < numberOfReceivers; i← i+ 1 do

5: for each x in xElems do

6: for each y in yElems do

7: allPosDistancesToReceivers[i, x, y]← EUCLIDEANDIST(receiverPositions[i], (x, y))

8: end for

9: end for

10: end for

11: allPosDistancesToBeacons← EmptyHashTable

12: for k ← 0; k < numberOfBeacons; k ← k + 1 do

13: for each x in xElems do

14: for each y in yElems do

15: allPosDistancesToBeacons[k, x, y]← EUCLIDEANDIST(FPbeaconPos[k],(x, y))

16: end for

17: end for

18: end for

19: for i← 0; i < numberOfReceivers; i← i+ 1 do

20: for each x in xElems do

21: for each y in yElems do

22: minDist←∞

23: mink ← 0

24: for k ← 0; k < numberOfBeacons; k ← k + 1 do

25: if allPosDistancesToBeacons[k, x, y] < minDist then

26: mink ← k

27: minDist← allPosDistancesToBeacons[k, x, y]

28: end if

29: end for

30: baseDist← EUCLIDEANDIST(FPbeaconPos[mink], receiverPositions[i])

31: targetDist← allPosDistancesToReceivers[i, x, y]

32: baseRSSI ← PositionedBeaconRSSIinFP [i][mink]

33: RSSIinFP [i, x, y]← CALCRELATIVERSSI(baseDist, targetDist, baseRSSI)

34: end for

45



35: end for

36: end for

37: return RSSIinFP

38: end procedure

Algorithm 5 Interpolation of Signal Strengths According to Relative Distances
1: function CALCRELATIVERSSI(baseDist,targetDist,baseRSSI)

2: if targetDist >= 1 then

3: return baseRSSI +−20 ∗ log10 (targetDist)/(baseDist)

4: else

5: return ZEROONEMETERDISTTORSSI(targetDist)

6: end if

7: end function

Explanations and Comments For Algorithm 4 and Algorithm 5:

• allPosDistancesToReceivers[i,x,y] represents the distance of (x, y) to receiveri

(ith receiver).

• allPosDistancesToBeacons[k,x,y] represents distance of (x, y) to fingerprinting

beaconk (kth beacon).

• PositionedBeaconRSSIinFP[i][k] is a hash table representing the averaged RSSI

value at receiveri where the RSSI is transmitted by beaconk. This hash table

consist of the values given in Table 6.3.

• mink represent the index of the fingerprinting beacon which is closest to (x, y).

• calcRelativeRSSI function calculates an RSSI value for position (x, y) using

relative distance of (x, y) to receiveri. Relativeness is according to the closest

beacon position and RSSI value at that position.

• baseRSSI represents the RSSI at the point we take as reference to interpolate

other points.

• baseDist represents the distance to the related receiver device of the point we

take as reference.

• targetDist represents the distance to the point we want to interpolate.

• RSSIinFP[i,x,y] represents the interpolated RSSI for (x, y) coordinate of the IE

where this RSSI belongs to receiveri.
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4.4 Prefiltering

We use an algorithm called running average filtering (RAF) for RSSI prefiltering. In

this algorithm, each receiver device has its own sliding window storing upto seven

most recent incoming signal strengths (RSSIs) and signal arriving times. Therefore,

for prefiltering algorithm, we use at most seven RSSI information. For each receiver,

we need at least three signals in our sliding window, so we wait for at least three

signals to arrive at the receiver.

Upon the arrival of the third signal, we sort the signals in our sliding window and

discard the signals having the minimum and maximum strength. Then, we take the

mean of the rest of the signals in the sliding window. For a window of size three, this

means that we take the median signal strength valued signal in the sliding window.

After all, we check if the mean of the RSSIs is higher than a given threshold. If the

mean is lower than this threshold, even though this signal still resides in the sliding

windows for further prefiltering calculations, we do not use this signal value for po-

sitioning estimations since we decide that this signal is not reliable. In Algorithm 6

and Algorithm 7, we can see the implementation for the prefiltering part.

Algorithm 6 Prefiltering Step
1: procedure PREFILTER(RSSIatEachRec)

2: for each i← 0; i < numberOfReceivers; i← i+ 1 do

3: if There are 7 signals in the slidingWindows[i] queue then

4: Remove the oldest RSSI from slidingWindows[i]

5: Add the new RSSI (RSSIatEachRec[i]) into slidingWindows[i]

6: else

7: Add the new RSSI (RSSIatEachRec[i]) into slidingWindows[i]

8: end if

9: if FILTERANDCHECKSIGNAL(slidingWindows[i]) = True then

10: Add new RSSI into prefilteredRSSIs[i]

11: else . Add None as if the signal is not received at all

12: Add None value into prefilteredRSSIs[i]

13: end if

14: end for

15: end procedure
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Algorithm 7 Filter Out Signal
1: function FILTERANDCHECKSIGNAL(slidingWindow)

2: mean← 0

3: sum← 0

4: if SIZE(slidingWindow) < 3 then

5: return False

6: else

7: sortedWindow ← SORT(slidingWindow)

8: sortedWindow ← REMOVEFIRSTANDLASTELEMENTS(sortedWindow)

9: end if

10: for each signalV alue ∈ sortedWindow do

11: sum← sum+ signalV alue

12: end for

13: mean← sum/ SIZE(sortedWindow)

14: return mean >= minUsefulSignal

15: end function

Explanations and Comments For Algorithm 6 and Algorithm 7:

• size(x) returns number elements in x.

• sort(x) sorts elements of x in descending or ascending order.

• RemoveF irstAndLastElements(x) remove the minimum and the maximum

elements from x to remove outlier signals.

4.5 Obstruction-Aware No-Signal Multilateration

Using the prefiltered RSSIs, positions of the receivers, obstruction information and a

loss function, we make some error minimization measurements about where the POI

is. If no RSSI value is obtained for the current time step or RSSI of the current time

step gets filtered out, we look at the RSSI values at time steps which are at most some

predefined number of before and ahead of the current time step until we find a RSSI

value. Since this is a real-time system, to obtain the next time step RSSI value, we

wait and do not make any calculations for the current time step to locate the POI.

To be able to locate the POI with high accuracy, we need to know at least three
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distance values of the POI to three different points in the map. If the signals are not

noisy, using only three reference points locates the POI with 100% correctness using

an algorithm called trilateration.

However, in real life, the signal values are noisy and the distance values to reference

points are not known 100%. Hence, if available, using more than three reference

points result in more accurate results since we would have more distance information

in the IE map.

For obstruction-aware no-signal multilateration (ONM), the values we know are re-

ceiver positions and the RSSI values arriving at these receivers. Therefore, using

RSSIs and the position of the receivers, we have to be able to predict the object lo-

cation. When the POI moves in the IE, each receiver catches some signal where the

RSSI value may differ in each of the receivers. Due to different RSSI values, we get

different distance information to different receivers. We approximately know what

the distance should be given the RSSI value. Due to the noise in the signal, in reality

, the real distance values might be different from what the RSSI value tells us. Hence,

we need to correct this RSSI value to extract the right distance information of the POI

to the receiver device having this RSSI.

Since our problem is indoor positioning, the area we investigate is limited and there-

fore, exhaustive search for discrete amount of points separated by some value is ap-

plicable in terms of time. Therefore, we follow an exhaustive search approach where

we test discrete amount of positions in the IE for the best guess. The positions to be

tested are determined by a modifiable sensitivity parameter called sensitivityOfResult

where this parameter represents the distance between each point we test for posi-

tioning. Due to this sensitivity parameter, our multilateration positioning results are

discrete points in the IE. If we want more accurate results, we set this sensitivity pa-

rameter to a lower value to decrease the distance between each test point. However,

there is a trade-off between more accurate results and the time.

To find the measured position given the prefiltered RSSIs, we check every discrete

(x, y) point separated by a distance of sensitivityOfResult meters in the IE and cal-

culate a minimization function for these points. After checking all (x, y) points, we

choose the point minimizing the error function as our measured position. For ex-
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ample, for an IE of size 1m × 2m in x and y dimensions respectively; if we have

sensitivityOfResult of 0.5m. The points that we check would be: [0, 0], [0, 0.5], [0, 1],

[0, 1.5], [0, 2], [1, 0], [1, 0.5], [1, 1], [1, 1.5], [1, 2] and we would choose a point among

these points as the resulting measured position.

For each (x, y) point, we act like the POI is on this point and postfilter the RSSI

value accordingly. For postfiltering; if there is an obstruction between point (x, y)

and a receiver, we correct the RSSI value by increasing the RSSI by how much RSSI

is lost due to this obstruction. We cannot know the exact signal loss amount caused

by the obstruction; however we calculate some loss using the obstruction material

and thickness information where the thickness is chosen as the thickness of the part

of the obstruction which stays in the way between the receiver and point (x, y). To

determine the part of the obstruction in the way, we consider a linear signal motion

from point (x, y) to the receiver as a simplification and construct a imaginary line

segment between point (x, y) and the receiver. Then, we take the intersection amount

between this line segment and the obstruction as the thickness amount of the object

we intersect and calculate the signal loss due to this obstruction accordingly. We

make this calculation for each obstruction in the way of (x, y) and the receiver.

For a point (x, y) and the receiver position (rx, ry) in 2D coordinates, we call the dis-

tance between this point and the receiver xyDistToRec as an abbreviation for xy (2D)

distance to receiver. For each time step, we get a RSSI value at receiver (rx, ry). Af-

ter applying prefiltering and postfiltering on this RSSI, we measure a distance value

from the receiver to the POI where we call this distance distToReceiverGivenRSSI.

Moreover, we know the fingerprinting RSSI on point (x, y) since we create the fin-

gerprinting map before multilateration algorithm. Using this fingerprinting RSSI,

which we call RSSIinFP, we calculate a distance called xyDistToRecInFP. To choose

the point (x, y) as the point minimizing the loss function, we want xyDistToRec and

xyDistToRecInFP to be as close as possible to the distToReceiverGivenRSSI distance

value. In our minimization algorithm, we have two cases depending on the signal

receiving situation of the receivers.

• CASE1: Receiver catches a signal for the current time step

If distToReceiverGivenRSSI is small, then the POI must be close to the re-
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ceiver since strong signals generally convey right information about the dis-

tance. Hence, we expect the xyDistToRec to be small as well if we are to choose

(x, y) as the predicted position over the other checkpoints in multilateration.

If distToReceiverGivenRSSI is large, it can be either since the POI is distant to

the receiver or there is an obstruction between the receiver and the POI causing

RSSI value to be low. Since we do not rely on low RSSI signals, we do not

punish as much as we do when distToReceiverGivenRSSI is small.

The punishment in this case is proportional to the absolute difference between

distToReceiverGivenRSSI and xyDistToRec and disproportional to distToRe-

ceiverGivenRSSI. Being disproportional to distToReceiverGivenRSSI is what

provides punishing more when distToReceiverGivenRSSI is small than it is

large. Lastly, we take the square of the punishment term so that we punish

large errors more.

To use the fingerprinting results in our minimization algorithm, we can replace

xyDistToRec parameter with xyDistToRecInFP for this case . However, we only

punish according to fingerprinting data if prefiltered RSSI value and RSSIinFP

differ more than a threshold we determine.

• CASE2: Receiver does not catch a signal for the current time step

If we have no signal value to make a calculation, the POI is most probably not

close to the receiver. However, we know our lowest signal threshold (minUse-

fulSignal), and hence the maximum distance coverage (maxCatchableSignalD-

istance) of our receiver. If no signal is received at our receiver, the probability

of the POI being more distant to the receiver than maxCatchableSignalDistance

meters is more than the POI being in this coverage. Therefore, we punish the

point (x, y) if it is in the coverage area of the receiver. The punishment is

disproportional to the xyDistToRec since the point (x, y) should be as distant

to the receiver as possible when in coverage area. Lastly, we take the square of

the punishment term so that we punish large errors more.

To use the fingerprinting results in our minimization algorithm, we can replace

each xyDistToRec parameter with xyDistToRecInFP for this case.

We call the ONM algorithm no-signal since we make calculations considering all the
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receiver positions even if some of the receivers do not get any signal. We can also

make calculations even when none of the receivers get a signal if we know that the

POI is inside the IE. We call the ONM algorithm obstruction-aware since we take

obstruction information into account. In Algorithm 8, we can see the implementation

of our multilateration algorithm.

Algorithm 8 Obstruction-Aware No-Signal Multilateration
1: function MULTILATERATION(prefilteredRSSIs)

2: mysum←∞

3: for x← 0 ; x < 1 + stepSize; x← x+ stepSize do

4: for y ← 0 ; y < 1 + stepSize; y ← y + stepSize do

5: if (x, y) on an obstacle then

6: Skip to next iteration

7: end if

8: tmpSum← 0

9: for i← 0 ; i < numberOfReceivers; i← i+ 1 do

10: strengtheningAmount← GETSIGNALLOSSAMOUNT(receiverPositions[i],(x, y))

11: xyDistToRecInFP ← RSSITODIST(RSSIinFP [i, x, y] + strengtheningAmount)

12: xyDistToRec← EUCLIDEANDIST((x, y), receiverPositions[i])

13: if prefilteredRSSIs[i] is not None then

14: distToRecGivenRSSI ← RSSITODIST(prefilteredRSSIs[i] +

strengtheningAmount)

15: tmpSum ← tmpSum + (ABS(xyDistToRec −

distToRecGivenRSSI)/distToRecGivenRSSI)2

16: if ABS(prefilteredRSSIs[i]−RSSIinFP [i, x, y]) > maxSignalError then

17: tmpSum ← tmpSum + FPcoeff ∗ (ABS(xyDistToRecInFP −

distToReceiverGivenRSSI)/distToReceiverGivenRSSI)2

18: end if

19: else . Use None info as well

20: maxCatchableSignalDist ← RSSITODIST(minUsefulSignal +

strengtheningAmount)

21: if xyDistToRec < maxCatchableSignalDist then

22: tmpSum ← tmpSum + FPcoeff ∗ (ABS(xyDistToRec −

maxCatchableSignalDist)/xyDistToRec)2

23: end if

24: if xyDistToRecInFP < maxCatchableSignalDist then

25: tmpSum ← tmpSum + (ABS(xyDistToRecInFP −

maxCatchableSignalDist)/xyDistToRecInFP )2

26: end if

27: end if
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28: end for

29: if tmpSum < mySum then

30: mySum← tmpSum

31: resultingPoint← (x, y)

32: end if

33: end for

34: end for

35: return resultingPoint

36: end function

Explanations and Comments For Algorithm 8 :

• xyDistToRecInFP represents the distance between (x, y) and receivers accord-

ing to interpolated RSSI values in fingerprinting map.

• xyDistToRec represents the real distance between (x, y) and the receiver.

• distToRecGivenRSSI represents the distance of the POI given the RSSI at the

receiver.

• maxCatchableSignalDist represents the maximum distance of the POI that the

receiver device can receive signal from. For this distance, we also consider the

obstructions’ effect on the signal.

• RSSIinFP represents the resulting interpolated and extrapolated fingerprinting

map for all (x, y) positions in the IE which is created given the RSSI values of

the beacons we kept in the IE for a while.

• strengtheningAmount represents signal correction amount we would get if the

POI were in (x, y) position. If there were an obstruction between point (x, y)

and a receiver, then we would get a lower RSSI value at our receiver than in

case there were no obstructions. We should increase the RSSI value for right

distance calculations and therefore correct the signal by strengtheningAmount.

4.6 Particle Filter

For particle filtering, we firstly initialize all particles all around the map. Then, as

time goes, the particles get close to the POI. By following the path of the mean of the

particles for each time step, we can see what path that the POI follows. In the particle

filtering algorithm, we have five main steps:
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• Initialization:

We initialize all particles randomly across the map of the IE. This step is only

done once. Then, for each time step, we repeat the prediction, weight update

and resampling steps of the particle filtering algorithm.

• Prediction:

We predict the position of the object using human motion model. It means, we

update all the particle positions considering how many meters a person could

move in one time step. We use a parameter called movingLimit to represent

the maximum amount of meters a person move in one time step. The parti-

cles make a movement in the amount between 0 and movingLimit in x and y

directions where this amount is randomly determined. If we want to adjust to

the movements of the POI faster, we can increase the value of movingLimit to

make the particles move more freely with larger movements.

• Weight Update:

We update the particle weights according to the difference between particle po-

sitions and measured position of the multilateration algorithm. We give higher

weights to the particles which are closer to the measured position of the POI.

• Resampling:

In the prediction step of the particle filtering, particles do not necessarily move

in the right direction, that is, towards to the POI. Instead, they move randomly

considering human motion relative to their current positions. However, we

need the particles to move towards the POI. Hence, in resampling step; using

Neff value, we create particles all over again in the region where the most

weighted particles reside. This step is the step where we form the probability

distribution for our particles by making particles cumulate in the regions closer

to the predicted POI position with higher probability and in other regions with

lower probability. Without this step, the weight update would not have meaning

and the particles would not be able to follow the POI.

• Positioning:

At this step, some parameters of the probability distribution function of the par-

ticles in the IE map is found. These parameters are the mean of the particles,
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max weighted particle and covariance matrix of the particles. Using the covari-

ance matrix, we determine the uncertainty areas for our positioning system and

we accept the mean of the particles as the predicted POI position.

We can see the implementation of the particle filtering in Algorithm 9. Since, particle

initialization is done only once, we make this initialization before the main loop in

Algorithm 1.

Algorithm 9 Particle Filter
1: function PARTICLEFILTER

2: IsPOIOutside← True

3: for each i← 0; i < numberOfReceivers; i← i+ 1 do

4: if prefilteredRSSIs[i] is not None then

5: IsPOIOutside← False

6: break

7: end if

8: end for

9: if IsPOIOutside = True then

10: return . No need further calculations

11: end if

12: PREDICT()

13: UPDATEPARTICLEWEIGHTS()

14: if thenNEFF() < NumberOfParticles/2

15: RESAMPLE()

16: end if

17: meanOfTheParticleWeights← FINDMEAN()

18: maxWeightedParticle← FINDMAX()

19: covMatrix← CALCCOVMATRIX()

20: return meanOfTheParticleWeights

21: end function

Explanations and Comments For Algorithm 9:

• IsPOIOutside check whether the POI is still inside the IE or not. If not inside,

there is no need for positioning inside.

• Resample function creates new particles in the area where the most weighted

old particles reside after clearing all the old particles.
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• FindMean function finds the mean of the particles which is the center of our

prediction area and our prediction about the real position of the POI. It is the

most probable result for the current real position of the POI according to the

IP-PPFONM algorithm.

• FindMax function finds the max weighted particle.

• CalcCovMatrix calculates the covariance matrix of the particles to determine

the uncertainty of our prediction about the real position of the POI.

4.6.1 Prediction Step

In this step, we update the particle positions considering human motion. Hence, we

move particles by a certain amount which is limited by human movement which can

be made in the time period between each calculation. This amount is represented by a

parameter called movingLimit. Moreover, since humans generally move with similar

velocities during their trajectories, we use a parameter called pastCoeff which deter-

mines how much we should rely on the previous velocity of the POI for determining

the current position update amount. In Algorithm 10, we can see the implementation

of the prediction step.

Algorithm 10 Prediction step of Particle Filter
1: procedure PREDICT

2: for each i← 0; i < numberOfParticles; i← i+ 1 do

3: xlow ← max(xmin, ParticlePositions[i].x−movingLimit)− ParticlePositions[i].x

4: xhigh← min(xmax, ParticlePositions[i].x+movingLimit)− ParticlePositions[i].x

5: ylow ← max(ymin, ParticlePositions[i].y −movingLimit)− ParticlePositions[i].y

6: yhigh← min(ymax, ParticlePositions[i].y +movingLimit)− ParticlePositions[i].y

7: walkingPredictionInXcoord← UNIFORMLYDRAW(xlow,xhigh)

8: walkingPredictionInY coord← UNIFORMLYDRAW(ylow,yhigh)

9: walkingPredictionIn2D ← (walkingPredictionInXcoord, walkingPredictionInY coord)

10: if xPrev[i] and xPrevOfPrev[i] are set previously then

11: pastV elocity ← xPrev − xPrevOfPrev

12: changeInPosIn2D ← (1 − pastCoeff) ∗ walkingPredictionIn2D + pastCoeff ∗

pastV elocity

13: else

14: changeInPos← walkingAmountIn2D

15: end if
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16: end for

17: ParticlePositions[i]← ParticlePositions[i] + changeInPos

18: end procedure

Explanations and Comments For Algorithm 10:

• In this step, we make a guess about the new particle positions considering hu-

man movement velocity. We make sure that particles do not go beyond the

IE.

• uniformlyDraw(a,b) randomly draws some integer valued 1D coordinate be-

tween a and b.

• xPrev[i] and xPrevOfPrev[i] represent the positions of the particle at the

previous iteration and at the position two iterations ago, respectively. pastVe-

locity gives us idea about how the POI will move in this iteration since hu-

mans would make a movement with a similar velocity according to the previous

movement, most of the time. Hence, if pastCoeff value is close to 1, we guess

that current movement will be very similar to the previous one regardless of

current RSSI values. If it is close to 0, we do not look at previous movements

when making the estimation for current POI motion.

4.6.2 Weight Update Step

We update the particle weights comparing with measured particle positions. Mea-

sured positions are calculated in our multilateration algorithm. The more a particle

is close to the measured position, the more weight the particle gets. We can see the

weight update implementation in Algorithm 11.

Algorithm 11 Weight Update step of Particle Filter
1: procedure UPDATEPARTICLEWEIGHTS

2: sumOfDist← 0

3: for each i← 0; i < numberOfParticles; i← i+ 1 do

4: particlePOIdistance← EUCLIDEANDIST(ParticlePositions[i], MeasuredPOIPos)

5: sumOfDist← sumOfDist+ particlePOIdistance

6: end for

7: for each i← 0; i < numberOfParticles; i← i+ 1 do
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8: if ParticlePositions[i] is on a obstruction then

9: ParticleWeights[i]← 0

10: else

11: particlePOIdistance← EUCLIDEANDIST(ParticlePositions[i],MeasuredPOIPos)

12: ParticleWeights[i] ← ParticleWeights[i] ∗

(sumOfDist/particlePOIdistance)

13: end if

14: end for

15: . Normalize Weights

16: sumOfWeights← 0

17: for each i← 0; i < numberOfParticles; i← i+ 1 do

18: sumOfWeights← sumOfWeights+ ParticleWeights[i]

19: end for

20: for each i← 0; i < numberOfParticles; i← i+ 1 do

21: ParticleWeights[i]← ParticleWeights[i]/sumOfWeights

22: end for

23: end procedure

Explanations and Comments For Algorithm 11:

• particlePOIdistance represents the distance between the particlei and the mea-

sured POI position according to our multilateration algorithm.

• If a particle happens to be on a obstruction as a result of prediction step ex-

plained in Section 4.6.1, then we should set that particle’s weight to zero since

the POI cannot be in the same position as an obstacle. After resampling step,

the zero weighted particles disappear.

4.6.3 Resampling Step

Resampling is the process of sampling as many particles as we have initially. This

step is also known as sampling importance resampling (SIR). In this step, we check

whether the weights of our particles are good representatives for our object by check-

ing Neff value. If Neff is low enough, we resample particles, Otherwise no resam-

pling of particles takes place. The aim of the resampling is to avoid degeneracy

problems where almost all particles diminish leaving only high-weighted particles.
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Degeneracy prevents having a PDF that explains our possible object location with

some uncertainty (variance).

We can use the mean or median of the particles to determine the POI position or the

most weighted particle’s position. We might also use only some particles according to

their weights using the PDF we form. However, that is a implementational preference

and we choose to use mean of the particles and the most weighted particles. We use

different resampling algorithms like multinomial, residual, stratified or systematic

resampling.

4.7 Common Functions

In Section 4.7.1, we explain how to calculate the value called efficient number of

samples (Neff ) which gives and idea about whether we should resample the particles

or not for the current time step. Neff value is used in the resampling step of the

particle filtering algorithm.

In Section 4.7.2, we explain how to correct signal strength values to get right distance

information from RSSIs. We should have a higher RSSI value than what we receive

if there is an obstruction between the signal source and the receiver. When we say ob-

structions, we mean blocks and rooms inside the IE in this thesis. We use obstruction

material and thickness information for the signal correction amount.

In Section 4.7.3 section, we explain how to convert RSSI to distance and vice versa

since we need to know the distance of the POI to receivers while applying multilat-

eration algorithm and we need to extract the RSSI information from the distance in

fingerprinting.

4.7.1 Efficient Number of Samples Calculation

This step is used for resampling. In this step, we calculate a value called Neff which is

useful to form a good probability distribution for the predicted POI position. If Neff is

low, it means that there are little number of particles whose weights are large (close to

1) and large number of particles whose weights are small (close to 0). Particles having
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larger weights play a larger role to predict the POI position than the particles having

smaller weights. We do not want to have only a little number of particles to determine

the position of the POI; but we want to make use of most of our particles. Hence,

we need to resample all of the particles in case Neff is lower than a threshold we

determine. Threshold for Neff is generally chosen as half of the number of particles;

but we may choose other values according to or application. We can see the Neff

formula in Equation 4.1 and the implementation of Neff in Algorithm 12.

Neff =
1∑N

i=1 (w
(i))

2 (4.1)

Algorithm 12 Neff
1: function NEFF

2: sumOfAllWeightsSquared = 0

3: for each i← 0; i < numberOfParticles; i← i+ 1 do

4: sumOfAllWeightsSquared ← sumOfAllWeightsSquared +

(ParticleWeights[i])2

5: end for

6: return 1/sumOfAllWeightsSquared

7: end function

Explanations and Comments For Equation 4.1 and Algorithm 12 :

• In Equation 4.1, w represents particle weights, i represents each particle and N

represents the total number of particles.

• In Algorithm 12, sumOfAllWeightsSquared represents the sum of all particle

weights squared.

4.7.2 Signal Strength Correction

For distance estimations, obstructions between the receiver and the beacons cause sig-

nals to lose strength and hence, make our distance estimations higher than it should

be. Therefore, we increase the RSSIs by how much signal loss caused by the ob-

structions for more accurate distance estimations. We can see the signal correction

implementation in Algorithm 13.
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Algorithm 13 Handle Signal Strength Due To Obstructions
1: function GETSIGNALLOSSAMOUNT(receiverPos, refPoint)

2: line← GETLINEBETWEEN(receiverPos, refPoint)

3: strengtheningAmount← 0

4: for each room ∈ AllRooms do

5: intersectionAmount← GETINTERSECTIONAMOUNT(ROOM, LINE)(

6: )materialOfRoom← GETMATERIAL(room)

7: signalDisturbanceOfMaterial← GETSIGNALDISTURBANCE(materialOfRoom)

8: strengtheningAmount ← strengtheningAmount +

signalDisturbanceOfMaterial ∗ intersectionAmount

9: end for

10: for each block ∈ AllBlocks do . Apply the same prodecure for the blocks

11: intersectionAmount← GETINTERSECTIONAMOUNT(block, line)

12: materialOfRoom← GETMATERIAL(block)

13: signalDisturbanceOfMaterial← GETSIGNALDISTURBANCE(materialOfBlock)

14: strengtheningAmount ← strengtheningAmount +

signalDisturbanceOfMaterial ∗ intersectionAmount

15: end for

16: return strengtheningAmount

17: end function

Explanations and Comments For Algorithm 13:

• refPoint represents a 2D position where we want to find out how much of an

obstacle is between this position and the receiver.

• getintersectionAmount(room, line) returns the length of the intersection be-

tween the room and the imaginary line between the receiverPos and the ref-

Point.

• This function used to correct signals according to the effect of all obstructions

or the portion of the obstructions which are between the receiver and the ref-

Point.

• getSignalDisturbance(materialOfRoom) represents the value of disturbance

value of materialOfRoom as indicated in materialSignalDisturbanceCoefficients

parameter.
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4.7.3 Conversions

We convert RSSI values to distances and vice versa according to the formulas used

in the literature. For distances between 0m and 1m and their corresponding RSSI

values, to the best of our knowledge, there is no generally accepted formula. Hence,

we make our own algorithm by looking at the formula used for distances higher than

or equal to 1m. Our algorithm returns RSSI values in the range [TX_Power−65, 0]

for distances less than 1m.

4.7.3.1 RSSI to Distance

We can convert RSSI to distance using Equation 4.2 for distances between 0m and

1m.

Distance = 10((RSSI−rssiAtOneMeter)/−20) (4.2)

We can see the implementation of RSSI to distance conversions in Algorithm 14 and

Algorithm 15. Algorithm 15 handles the RSSI values whose corresponding distances

are between 0m and 1m.

Algorithm 14 RSSI (dBm) to Distance (m) Conversion
1: function RSSITODIST(RSSI)

2: dist← 0

3: if RSSI <= rssiAtOneMeter then

4: dist← 10(RSSI−rssiAtOneMeter)/−20

5: else

6: dist← ZEROONEMETER_RSSITODISTANCE(RSSI )

7: end if

8: return dist

9: end function

Algorithm 15 RSSI to Distance between 0 and 1 meter
1: function ZEROONEMETER_RSSITODISTANCE

2: return 10(((RSSI−TX_Power)∗log10(2))/(rssiAtOne−TX_Power)) − 1

3: end function

Explanations and Comments For Equation 4.2 Algorithm 14 and 15:
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• In Algorithm 14, RSSI represents a value that we want to convert to a distance

in meters. rssiAtOneMeter represents the RSSI value at the receiver when the

beacon is 1m away. We use the Equation 4.2 to calculate the corresponding

distance if the RSSI is lower than RSSI value that should be received at 1m;

however for RSSIs higher than this, we follow a different approach and use

Algorithm 15 since Equation 4.2 is designed for RSSIs less than or equal to

rssiAtOneMeter.

4.7.3.2 Distance to RSSI

We can see the implementation of RSSI to distance conversions in Algorithm 16 and

Algorithm 17. Algorithm 17 handles the distance conversions for distances 0m and

1m.

We can convert distance to RSSI using Equation 4.3 for distances between 0m and

1m.

RSSI = −20 log10(distance) + rssiAtOneMeter (4.3)

Algorithm 16 Distance to RSSI Conversion
1: function DISTTORSSI(dist)

2: RSSI ← 0

3: if dist >= 1 then

4: RSSI ← −20 ∗ log10(dist) + rssiAtOneMeter

5: else

6: RSSI ← ZEROONEMETER_DISTTORSSI(dist)

7: end if

8: return RSSI

9: end function

Algorithm 17 Distance to RSSI between 0 and 1 meter
1: function ZERO_ONE_METER_DISTANCE_TO_RSSI

2: return TX_Power + (rssiAtOne− TX_Power) ∗ ((log10 dist+ 1)/(log10 2))

3: end function

Explanations and Comments For Equation 4.3, Algorithm 16 and 17 :

• In Algorithm 16, dist represents a value that we want to convert to a RSSI in
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dBm. rssiAtOneMeter represents the RSSI value at the receiver when the bea-

con is 1m away. We use the Equation 4.3 to calculate the corresponding RSSI

if the dist is lower than 1m; however for distances higher than 1m, we follow

a different approach and use Algorithm 17 since Equation 4.3 is designed for

distances less than or equal to 1m.

4.8 Use Cases of the IP-PPFONM

The IP-PPFONM algorithm is able to track a single person or multiple people in a

small or large area. Furthermore, IP-PPFONM algorithm can track people without

getting a single signal if we know that the POI is inside the IE. Hence, we can list the

use cases of the IP-PPFONM algorithm as follows:

• Single / Multiple POI Tracking: Each POI has its own unique MACID and

we use these MACIDs to distinguish each POI from the others. Calculations for

each POI is the same and hence, we can apply IP-PPFONM algorithm for each

POI on a different thread of our indoor positioning application simultaneously.

• Small / Large Area Tracking: IP-PPFONM works in both small and large

areas. However, in large areas, IP-PPFONM takes more time since we make

an exhaustive search to find the global minimum value minimizing our loss

function in the multilateration part of the particle filtering step. The time that

an exhaustive search takes also depends on the parameter sensitivityOfResult.

For instance, for a sensitivityOfResult of 0.5m and numberOfReceivers of 5;

the IP-PPFONM algorithm can process areas of 250m2, 540m2 and 800m2 in

1s, 1.5s and 2s respectively.

• Signal Usage: Normally, BLE positioning algorithms need some signal to find

out the position at each time step. Yet, in IP-PPFONM; even if we do not

get any signal at some of the receivers in an IE, we still make calculations

according to these receivers. We can even make calculations when none of the

receiver devices catch a signal if we know that the POI is inside the IE. If we

do not know whether the POI is inside the IE, getting no signal at none of our

receivers would mean that the POI is probably outside the IE.
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CHAPTER 5

SIMULATION TOOL AND PERFORMANCE ANALYSIS OF THE

THEORETICAL EXPERIMENTS

The organization of this chapter can be summarized as follows:

• In Section 5.1, we explain a simulation tool that we design to simulate and

visualize the IP-PPFONM algorithm.

• In Section 5.2, we explain some experiments performed by changing some pa-

rameters of IP-PPFONM algorithm to see how these parameters affect the po-

sitioning result in theory. For each experiment; we firstly explain how the setup

environment is. Then, in the corresponding result section, we explain what the

results are for the experiment. Lastly, in the corresponding discussion section,

we interpret the results found.

5.1 Simulation Tool

In this section, we explain how the simulation tool simulates the POI motion and the

RSSIs at receivers, how we place the initial position of the POI and obstructions and

how the simulation tool visualizes the POI, obstructions and the IP-PPFONM results

in an indoor environment.

5.1.1 Simulating the POI Motion and the RSSIs in the IE

The simulation tool moves the POI in the IE while making sure that the POI does not

hit any obstructions or go out of the boundaries of the IE. The simulation tool uses

the parameters called movingLimit and pastCoeff to determine how to move the POI.
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For positioning calculations, the IP-PPFONM algorithm requires RSSI values at re-

ceivers. Hence, the simulation tool generates RSSIs at the receivers using the ground

truth position of the POI, the distance between the ground truth and the receivers and

the obstruction information in the IE. The simulation tool decreases the RSSI values

if there are obstructions between the receiver and the POI considering the maxSig-

nalError parameter value since obstructions affect the RSSIs in the real world.

5.1.2 Placing the POI and the Obstructions

We consider two types of obstructions which are blocks and rooms. The simulation

tool firstly install blocks in the IE and make sure they do not intersect with each

other, then install rooms and make sure rooms do not intersect with any other blocks

or rooms and finally determine the initial position of the POI and make sure the POI

does not intersect with any obstructions.

5.1.3 Visualizations:

In this section, we mention the visuals we use in our simulation to represent some

objects and notions in IP-PPFONM algorithm:

• The Indoor Environment: It is drawn as the outermost rectangle which con-

tains all other objects. It is the map of the indoor environment (IE) we represent.

• The Obstructions (Rooms and Blocks): Each block or room has a different

coloring indication about the materials they are made of. Blocks are shown as

gray, aqua or beige colored filled rectangles to represent concrete, glass and

plastic materials respectively whereas rooms are either shown as gray or aqua

colored unfilled rectangles to represent concrete and glass materials.

• The Receivers: They are the devices receiving the signals that beacons trans-

mit. They are drawn as the dark blue square objects.

• The POI: It is the person we track and represented as the green circle.

• The Mean of the particles: It is the weighted average of all particles on the

map and our the result of the IP-PPFONM algorithm for each iteration. It is

represented as the purple circle.
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• The Most Weighted Particle: It is the particle having the highest weight after

the weight update step in particle filtering algorithm is completed. It is repre-

sented as the orange circle.

• Three Confidence Ellipses: We need to show our errors with some probability

since we cannot know the exact position of the POI. We use three confidence

ellipses formed around the mean of the particles to represent this probability.

We give some penalty and enlarge confidence ellipses when we need to trust

low power values.

For drawing the ellipses we use a parameter called strongSignalDistance. This

parameter represents the maximum distance threshold for accepting a signal

as a strong signal. Signals with RSSIs having correspondent distance values

higher than strongSignalDistance are accepted as weak signals whereas the oth-

ers are accepted as strong signals.

If there are no receivers receiving a signal, we do not show any ellipses. When

there are less than three receivers, as we decrease the number of receivers, we

enlarge our confidence ellipses. We enlarge confidence ellipses more in less

number of receivers case than we do in the low power signal case to show

we are more uncertain about the results when the number of receivers is less

than three. If signals are received at three or more receivers and all signals are

strong, then the inner most ellipse represents one standard deviation, middle

ellipse represents two standard deviations and the outermost ellipse represents

three standard deviation of error from the mean of the particles. If not, then the

ellipses are larger than one, two and three standard deviations for innermost,

middle and outermost ellipses respectively.

5.2 Experiments

This section shows how IP-PPFONM algorithm works in theory by performing some

experiments using our simulation tool. For each experiment, we change only one

parameter while holding the other parameters constant. We perform five performance

analysis experiments to measure the accuracy of the IP-PPFONM algorithm in this

section:
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1. Multilateration Accuracy Test

2. Effect of Number of Receivers Test

3. Effect of Signal Noise Test

4. Effect of Obstruction Material Type and Thickness Test

5. Effect of Past Coefficient Test

6. Effect of Sensitivity Test

We also make two demonstrations to show what the IP-PPFONM algorithm can do:

1. Multiple POI Tracking Demonstration

2. Efficient Receiver Placement Demonstration

Efficient receiver placement demonstration shows how we place the receivers in the

most efficient way possible whereas multiple POI tracking demonstration shows how

we can track multiple POI using the IP-PPFONM algorithm.

To visualize the results, we use bar charts and our simulation tool mentioned in Sec-

tion 5.1. For objects inside the environment created by our simulation tool, we use

the visualizations mentioned in Section 5.1.3.

The implementation of the simulation tool was explained in the algorithms given

in Chapter 4. In this chapter, we create two maps using this simulation tool where

one is of small size (5m × 3m) and the other one is of large size (14m × 11m).

In the experiments of this chapter, fingerprinting information is not used for the IP-

PPFONM algorithm since fingerprinting is an information which is only meaningful

for real world.

For material tests, we use two different materials which are concrete and glass where

their signal losses are chosen as 6dBm and 16dBm for a thickness of 1m considering

our observations and a few sources [38] [37]. These values may not represent the true

signal loss values for every glass and every concrete form, but they are representative

values which give an idea about how results differ for materials having these two

signal loss values for materials having thicknesses of 1m.

We perform the experiments in a small and large sized maps and predefine a trajectory

for both small and large sized maps for the ground truth values. Some experiments
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contain two concrete blocks and some do not contain any obstructions. The trajecto-

ries in small and large maps can be seen in the Figure 5.1 and Figure 5.2 respectively.

We normally represent the position of the POI with green filled disc. However, in

all the figures in Chapter 5, to distinguish between the starting and ending position

of the POI from the other positions; we use yellow and red colors for starting and

end positions respectively whereas all other positions are represented as green. The

numbers inside the filled circles, if any, represent the time step of the POI in the IE.

Figure 5.1. Small Map Ground Truth Trajectories

Figure 5.2. Large Map Ground Truth Trajectories

5.3 Performance Analysis Tests

For accuracy tests, we make comparisons for some parameters that we have used in

the simulation. We hold all other parameters constant to compare different values

of a parameter. For these experiments, we run our simulations for some predefined

number of time steps and positions. For number of receiver placement, signal noise
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and obstruction material type and thickness experiments, we use a map of size 14m×
11m and for the other experiments we use a map of size 5m× 3m as width×height

for visualizations.

As for accuracy tests, we use two comparison values Average Error and Number of

No Signal Reception. Average error is defined as:

AverageError = (
N∑
i=1

ei)/N (5.1)

where N is the number of time steps and where error at time stepi is the Euclidean

distance between the predicted position at time stepi and the real position of the POI

at time stepi:

ei = EuclideanDist(MeanOfTheParticlesi, RealPosi) (5.2)

Number Of No Signal Reception indicates how many times we cannot catch any valid

signal at any of the receivers and therefore we are not able to make a positioning

calculation for that time step. The lower the average error and number of no signal

reception, the better the results. We make the tests in two different sized maps since

for some of the experiments, small sized map is enough whereas for others, a larger

map is required.

Both Average Error and Number of No Signal Reception values are calculated for

each run of IP-PPFONM algorithm once and each run may contain multiple time

steps. As can be seen in Figure 5.1 and Figure 5.2, we limit the number of time steps

spent in the indoor environment by six times and sixteen times for small and large

map respectively. The reason of this limitation is just to be able to visualize definite

number of time steps spent by the POIs.

We repeat each of cases of the six performance analysis experiments explained in this

section twenty times to control the variance of the results in terms of Average Error

and Number of No Signal Reception values. After running the experiments twenty

times, we calculate the mean and the standard deviation values for each of the cases

covered in the experiments and show these results in bar charts. For each run, if

exists, the place of the blocks and initial position of the POI are randomly determined
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by our simulation. As for the simulation figures in our experiments, we only share

the resulting images of a single run for each experiment.

5.3.1 Multilateration Accuracy Test

5.3.1.1 Results

At each time step, we calculate the position of the POI according to the signal powers

we get using our multilateration algorithm. For this experiment, we use two different

TX powers and two different sized maps. Then, we add two obstructions in the maps

and check for multilateration accuracy again. We represent the starting point with

yellow color and the end point with red whereas the other positions are represented

by green. We indicate the time steps inside the circles.

We investigate eight cases for multilateration tests where each case shows multiple

positions forming a trajectory of the POI where these positions are the results of our

no-signal multilateration algorithm. These eight cases can be listed like this:

• CASE1: Trajectory of the POI on the small sized map with SignalNoise =

0dBm and no obstruction.

• CASE2: Trajectory of the POI on the small sized map with SignalNoise =

0dBm and 2 concrete blocks.

• CASE3: Trajectory of the POI on the small sized map with SignalNoise =

10dBm and no obstruction.

• CASE4: Trajectory of the POI on the small sized map with SignalNoise =

10dBm and 2 concrete blocks.

• CASE5: Trajectory of the POI on the large sized map with SignalNoise =

0dBm and no obstruction.

• CASE6: Trajectory of the POI on the large sized map with SignalNoise =

0dBm and 2 concrete blocks.

• CASE7: Trajectory of the POI on the large sized map with SignalNoise =

10dBm and no obstruction.

• CASE8: Trajectory of the POI on the large sized map with SignalNoise =

10dBm and 2 concrete blocks.
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We represent the positions for each case as numbered circles where numbers indicate

the time step in which the no-signal multilateration algorithm produce this position

result. Therefore, by following the numbers from small to large, we can see the

trajectory of the POI according to the no-signal multilateration algorithm. Since, in

the prefiltering step we wait for at least three signals, there is no position information

about the first and the second time steps for the multilateration calculations.

We can see figures showing multiltaration results (measured positions) for each small

map case in Figure 5.3 and for large map case in Figure 5.4. In these figures, multi-

lateration results are only shown for the time steps that they are not filtered out in the

prefiltering step.

As a result of twenty repetitions for each of the eight cases, we get 0.06, 0.67, 1.06,

1.00, 0.04, 1.80, 2.26, 2.66 meters as the means and 0.01, 0.50, 0.46, 0.45, 0, 0.98,

0.43, 0.98 meters as the standard deviations of average errors. The errors between

the real positions of the POI and the multilateration results are given in Figure 5.5.

Figure 5.3. All Small Map Multilateration Cases
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Figure 5.4. All Large Map Multilateration Cases

Figure 5.5. Multilateration Accuracy

We also run the IP-PPFONM algorithm for all of the eight cases to find out the final

prediction results to compare these results with the multilateration results. So, we ad-

ditionally applied particle filtering algorithm on the multilateration results to find out

the predicted positions. For final prediction results, as a result of twenty repetitions
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for each of the eight cases, we get 0.52, 0.83, 0.77, 0.71, 0.77, 1.91, 2.17, 2.33 meters

as the means and 0.15, 0.32, 0.21, 0.27, 0.22, 0.86, 0.77, 0.89 meters as the standard

deviations of average errors. The errors between the real positions of the POI and the

predicted positions according to multilateration are given in Figure 5.5.

The errors between the real positions of the POI and the predicted positions of the

IP-PPFONM algorithm are given in Figure 5.6

Figure 5.6. Final Accuracy

5.3.1.2 Discussion

For Average Error in Figure 5.5, we see that case1 is very close to the ground truth

value positions, but not exactly accurate since the ground truth position the third

ground truth position of the small map has 0.22 as x position which requires more

sensitivity than what we use, 0.1 sensitivity. However, besides all positions are ac-

curate. For case5, all positions are exactly accurate. So, case1 and case5 show that

multilateration algorithm results in 100% accuracy with right parameters when there

is no noise or obstruction in the indoor environment.

We also see that as the noise increases the multilateration accuracy decreases which

is normal since noise gives misdirects the positioning information. Generally, getting

in the coverage area of more receivers result in more accuracy as can be seen better in

large map cases. Moreover, even though we handle the obstructions in the indoor en-

vironments, the obstructions may still decrease the accuracies since we cannot know

exact signal loss we have due to the obstructions.
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If we compare Figure 5.5 and Figure 5.6, we can see that our multilateration algorithm

performs better before applying particle filtering when there are no noise or obstruc-

tions in the environments. However, when there are noise or obstructions, applying

particle filtering on the multilateration results generally improve the results.

5.3.2 Effect of Number of Receivers Test

5.3.2.1 Results

We position the receivers in a way that we reach as much coverage area as possible.

The more receiver we have, the more chance we receive a signal from the beacon of

the POI. More receiver also means possible more distance information to the POI that

we need to handle.

We analyze six cases where we experiment with six different number of receivers in

the large map for this test to see how our algorithm behaves as we increase the number

of receivers. The number of receivers we experimented are 1, 2, 3, 5, 7 and 9.

As a result of twenty repetitions for each of the cases, we get 3.18, 3.39, 3.03, 2.42,

2.69, 2.57 meters as the means and 2.58, 2.16, 2.09, 1.38, 1.15, 0.94 meters as the

standard deviations of average errors whereas we get 2.2, 2, 2.05, 2.05, 2, 2 meters

as the means and 0.4, 0, 0.22, 0.22, 0, 0 meters as the standard deviations for number

of no signal reception.

We can see an example effect of number of receivers on positioning in Figure 5.7.

and see the bar charts related to the average positioning error and the number of times

we are not able to receive any signal at any of our receivers in Figure 5.8.
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Figure 5.7. Number of Receiver Placement Effect

Figure 5.8. Number of Receiver Placement Error Info
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5.3.2.2 Discussion

For Average Error in Figure 5.8 , we see that increasing number of receivers is gen-

erally better for increasing the accuracy of the IP-PPFONM. However, since obstruc-

tions and noise in the IL may misdirect the calculations at the receivers, increasing

the number of receivers does not guarantee an increase in the accuracy as can be seen

transitioning from 2 to 3 and 5 to 7 receivers.

For Number of No Signal Reception graph in Figure 5.8, we can see that the number

of no signal reception generally decreases as the number of receivers increases as

we aim. However, the receivers in three and five receiver cases are not able to cover

the areas that the receivers in two receiver case cover. According to this graph, this

situation seems to cause an advantage in the favor of two receiver case compared to

the three and five receiver cases in terms of number of no signal reception.

5.3.3 Effect of Signal Noise Test

5.3.3.1 Results

Signal noise is an undesired phenomenon which misdirects positioning calculations.

We have six cases where we experiment with six signal noises for this test: 0dBm (

no noise at all), 5dBm, 10dBm, 15dBm, 20dBm, 30dBm.

We can see an example effect of the signal noise in the IE on positioning in Figure 5.9.

As a result of twenty repetitions for each of the cases, we get 0.77, 1.29, 2.23, 3.42,

4.24, 3.06 meters as the means and 0.19, 0.31, 0.87, 1.13, 1.28, 1.53 meters as the

standard deviations of average errors whereas we get 2, 2, 2, 2, 2, 3.75 meters as

the means and 0, 0, 0, 0, 0, 1.41 meters as the standard deviations for number of no

signal reception. We can see the bar charts related to average positioning error and

the number of times we are not able to receive any signal at any of our receivers in

Figure 5.10.
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Figure 5.9. Signal Noise Effect

Figure 5.10. Signal Noise Error Info
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5.3.3.2 Discussion

For Average Error in Figure 5.10, we see that as noise increases the algorithm deviates

from the actual location more. Even though −30dBm noise seems to cause a better

accuracy than −20dBm does, there are more cases we could not make a calculation

for −30dBm compared to −20dBm noise as can be seen in Number of No Signal

Reception graph. The reason why we have more cases that we cannot make any

calculations for −30dBm case is compared to other noise vales is, −30dBm is a

very high noise which decreases the BLE signals at the receivers to have very low

values. If none of our receivers have high RSSI values according to the calculation

in the prefiltering part of the IP-PPONM algorithm, we do not make any calculations

for these steps.

For the time step shown in Figure 5.9, we can see that, as the noise increases, we

declare a lower confidence as can be seen from the ellipse sizes. However, for the

highest noise case, we seem very confident on a wrong result since the high noise

makes the IP-PPFONM find that the POI is far away from most of the receivers and

therefore finds the right upper corner as the right position with a high confidence

(small ellipse size).

5.3.4 Effect of Obstruction Material Type and Thickness Test

5.3.4.1 Results

We analyze six cases in the small map where we experiment with three different thick-

ness which are 30cm, 50cm, 70cm and two different materials which are concrete and

glass in total:

1. 30cm-thick concrete blocks

2. 30cm-thick glass blocks

3. 50cm-thick concrete blocks

4. 50cm-thick glass blocks

5. 70cm-thick concrete blocks

6. 70cm-thick glass blocks

79



We know that as the thickness of the objects increase, the signal loss they cause

increases. As for the material type, concrete causes more signal loss than glass does.

We expect to see similar accuracies for different thickness values and materials to see

our algorithm handles obstructions correctly.

We can see an example effect of material type and thickness on positioning in Fig-

ure 5.11. As a result of twenty repetitions for each of the cases, we get 0.77, 0.76,

0.85, 0.71, 0.71, 0.74 meters as the means and 0.32, 0.34, 0.39, 0.26, 0.29, 0.32 me-

ters as the standard deviations of average errors. We can see the bar chart related to

average positioning error in Figure 5.12. In Figure 5.11 and Figure 5.12, gray color

represents the concrete blocks and the aqua blue color represents the glass blocks.

Figure 5.11. Obstruction Material Type and Thickness Effect
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Figure 5.12. Obstruction Material Type and Thickness Error Info

5.3.4.2 Discussion

We see that IP-PPFONM algorithm can compensate for the noises that stem from

obstructions regardless of their material or thickness by judging from the fact that the

results for all cases have similar accuracies which are all between 0.70m and 0.85m

as the mean errors and between 0.25m and 0.40m for the standard deviations.

5.3.5 Effect of Past Coefficient Test

5.3.5.1 Results

As explained in Section 4.1, pastCoeff parameter represents how much of the pre-

vious prediction result should be used for the prediction calculation in the particle fil-

tering. We experiment with six cases in the small map where we inspect pastCoeff

values 0, 0.2, 0.3, 0.5, 0.8 and 1.

We can see an example effect of pastCoeff on positioning in Figure 5.13. As a result

of twenty repetitions for each of the cases, we get 0.8, 0.75, 0.76, 0.75, 0.77, 0.79

meters as the means and 0.34, 0.34, 0.34, 0.35, 0.35, 0.36 meters as the standard

deviations of average errors. We can see the bar chart related to average positioning

error in Figure 5.14.
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Figure 5.13. Past Coefficient Effect

Figure 5.14. Past Coefficient Error Info
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5.3.5.2 Discussion

We see that as the pastCoeff increases, the error increases. The results do not have to

be like that all the time. This just shows that this POI, do not move along the same

direction and velocity during the walking period in the experiments.

5.3.6 Effect of Sensitivity Test

5.3.6.1 Results

This value is the distance between each of the search points in the multilateration

algorithm as mentioned in Chapter 4. The less this value, the more sensitive we are

and the more area we search for our multilateration algorithm. We experiment with

six cases with two different sensitivity and three different obstruction information

where each obstruction has 50cm width for this test:

1. 0.1m sensitivity with concrete blocks

2. 0.5m sensitivity with concrete blocks

3. 0.1m sensitivity with glass blocks

4. 0.5m sensitivity with glass blocks

5. 0.1m sensitivity with no obstructions

6. 0.5m sensitivity with no obstructions

We can see effect of sensitivity on positioning in Figure 5.15. As a result of twenty

repetitions for each of the cases, we get 0.76, 0.84, 0.67, 0.67, 0.59, 0.6 meters as

the means and 0.34, 0.41, 0.23, 0.32, 0.19, 0.18 meters as the standard deviations

of average errors. We can see the bar chart related to average positioning error in

Figure 5.16. In Figure 5.15 and Figure 5.16, gray color represents the concrete blocks

and the aqua blue color represents the glass blocks. For Figure 5.16, the black color

represents no obstruction case.
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Figure 5.15. Sensitivity Effect

Figure 5.16. Sensitivity Error Info

5.3.6.2 Discussion

As we increase the sensitivity, the accuracy generally increases. The reason why

the accuracy does not always increase shows that the multilateration algorithm does
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not always find the closest possible position about the real position of the POI and

therefore searching for more points in the IE does not always increase the accuracy.

However, as we expect, the accuracy generally increases which shows that our multi-

lateration algorithm generally finds a close position to the real position of the POI.

5.4 Demonstrations

5.4.1 Multiple POI Tracking

5.4.1.1 Results

Figure 5.17. Simultaneous BLE Tracking for Multiple POI

In this section, we show that we can track multiple people simultaneously. For this,
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we simulate six people entering into an indoor environment represented by the small

map with at most 20 seconds between the entrance time of these people. In Fig-

ure 5.17, we show the tracking results of six people. Each person is identified by a

MACID which is shown as POI MACID in Figure 5.17.

5.4.1.2 Discussion

In Figure 5.17, we can see that we track six different MACIDs where all POIs have

their own ellipses, particles and accuracy values for the current time step. Moreover,

except for the Person2 and Person3, all POIs have different dwell times as can be

seen by TimeStep indicated in the title of the simulations. Even though Person2 and

Person3 enter the IE at the same time, our algorithm does not mix up the trajectories

or particles for these people. Hence, we see that our algorithm works equally well

and correctly when tracking multiple people in real time.

5.4.2 Efficient Receiver Placement

5.4.2.1 Results

For efficient receiver placement, we position the receivers in a way that we reach as

much coverage area as possible. We choose nine placements each having different

number of receivers installed in an example area of 14m × 11m. The number of

receivers tested are 1, 2, 3, 5, 7, 9, 15, 20 and 30. The placements can be seen in

Figure 5.18.
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Figure 5.18. Efficient Receiver Placement

5.4.2.2 Discussion

In Figure 5.18, we see that all receivers are almost evenly distributed in the IE which.

Moreover, we see that receiver devices are positioned away from the walls so that

signal coverage area of the receivers are not limited by the walls. These show our

k-means approach for efficient receiver placement which is mentioned in Chapter 4

helps maximizing signal coverage area of receivers in an area.
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CHAPTER 6

PERFORMANCE EVALUATION OF THE REAL WORLD EXPERIMENTS

In this chapter we conduct two types of experiments in real world environments.

The first type of experiments are performed to show how indoor positioning via pre-

filtering and particle filtering with obstruction-aware no-signal multilateration (IP-

PPFONM) algorithm is used in a real world environment and how accurate the results

are. We call the first type of experiments the positioning accuracy experiments.

The second type of experiments are performed to understand how BLE signals behave

in general. We call the second type of experiments the behavioral experiments. To

come up with a solution using BLE signals, we need to know how BLE signals behave

and how these signals should be used in different situations. For this purpose, we

conduct the following experiments:

• Signal Blocking Material Tests: We put some signal blocking materials around

the receiver device to check if this will prevent the signal from being received.

• Antenna Role: We remove the external antenna to see the effect of the antenna

for RSSI.

• Beacon Carrying Position Test:. We check whether carrying the beacons in

hand or in pocket makes a difference with different TX powers. We try differ-

ent TX powers to see if high powered signals still get affected by the beacon

carrying position.

• BLE Chipset / Receiver Device Role: We use two receiver devices having

different BLE chipset to see the effect of the chipset on RSSI.

• Obstruction Effect: We check how obstruction affects signal penetration.

89



• Transmitter / Beacon Factor: We test different beacons from different ven-

dors where all the parameter settings of the beacons are the same to see if

vendors are important to receive a quality signal (high RSSI).

• Transmission Power and Period Factor: We test the same beacons with dif-

ferent parameter settings to see the effect of these parameters on signal stability

(constantly receiving some signal for tracking) and RSSI.

For each experiment; we firstly explain how the setup environment is. Then, in the

corresponding result section, we explain what the results are for the experiment.

Lastly, in the corresponding discussion section, we interpret the results found. To

visualize the results we use bar charts, line charts and the visualizations mentioned in

Section 5.1.3.

6.1 Positioning Accuracy Experiments

Figure 6.1. Indoor Environment for the Real World Positioning Test
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We perform the experiments in an office environment of size 15m × 16m where the

IE layout is shown in Figure 6.1. In Figure 6.1, blue dots (B) represent fingerprinting

beacons and red dots (R) represent receiver devices on the wall.

We also need sizes of blocks and rooms for our algorithm and these information

which can also be seen in Figure 6.1. All receivers are 2m above the ground and all

the fingerprinting beacons approximately 1m above from the ground. The position

of the receivers and the fingerprinting beacons in the IE are shown in Table 6.1 and

the 2D distances of the beacons to the receivers in x, y coordinates, are shown in the

Table 6.2.

Table 6.1. Fingerprinting Beacon and Receiver

Positions

Object
2D Position

x y

Beacon1 0.25 2.25

Beacon2 5 6

Beacon3 11.5 3.5

Beacon4 12.5 9

Receiver1 5 7.5

Receiver2 10.3 8

Receiver3 7.4 2

Table 6.2. Receiver-Fingerprinting Beacon Dis-

tance (m)

Rec1 Rec2 Rec3

Beacon1 7.08 11.58 7.15

Beacon2 1.5 5.66 4.66

Beacon3 7.64 4.66 4.37

Beacon4 7.65 2.42 8.66

Figure 6.2. Card Beacon Figure 6.3. Receiver Device on the Wall

We use card shaped BLE beacons that use iBeacon technology, to emit BLE signals

which is shown in Figure 6.2. The width, length and thickness of the BLE beacons

we use are approximately 86mm, 55mm and 4mm respectively. We use an embed-
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ded device with a single-board computer that has a BLE antenna which is shown in

Figure 6.3.

We know the places of the fingerprinting beacons. Therefore, RSSI values of these

beacons for different receivers give us some idea about the signal power value and the

positions on the map. To construct a fingerprinting map to be used in IP-PPFONM

algorithm, we place four beacons at certain positions in an office environment and

collect signal power results for approximately three days. We call these beacons as

fingerprinting beacons. We use MACIDs of beacons to identify each POI. The TX

powers and advertising intervals of the beacons are 0dBm and 1000ms for these

measurements.

Real world experiments are conducted in an office environment. We have three cases

where we perform the real world experiments in different conditions. We performed

the carrying in pocket case twice, but did not perform carrying in the hand case twice

since in real world people generally carry beacons in their pockets or bags, but not in

their hands. The cases can be numerated as:

1. Case1: In-pocket, crowded case (carrying the beacon in our pocket in a crowded

environment)

2. Case2: In-hand, crowded case (carrying the beacon in our hand in a crowded

environment)

3. Case3: In-pocket, non-crowded case (carrying the beacon in our pocket, in a

non-crowded hour)

For the ground truth position values when moving, we use a fish-eye lensed camera

results where we use the position values only in sight of the camera. We save each

of the three experiments’ RSSI results into csv files to read the real world results into

the IP-PPFONM algorithm. In our experiments, crowded means that the population

density changes between 0.07 people/m2 and 0.10 people/m2 whereas non-crowded

means that the density is 0.3 people/m2 where these densities are calculated over the

areas where the camera sees. We walk at average speeds of 0.41m/s, 0.61m/s and

0.80m/s with standard deviations of 0.60m/s, 0.32m/s and 0.30m/s for the case1,

case2 and case3 respectively.
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While obtaining the ground truth positions, an important issue is to match the camera

time and the time RSSI values received at all of our receivers. To that end, we use

a server to synchronize times for each of our receiver devices and the camera. We

make sure that they are perfectly synchronized in terms of seconds. Another issue is

we need to collect some data to understand the signal behavior in the IE. Hence, in

this experiment, we collect the signal power values for three days at 10 minute time

intervals and then, average them.

We apply our algorithms and methods on our receivers which are embedded devices

that has Bluetooth 4.0 chipset supporting BLE. Data is acquired via BLE antennas

and BLE chipsets that are built into our receiver devices. These BLE chipset are

built-in on a single-board computer chip, but the antennas are replaceable.

To find how realistic our simulation tool is, we perform two main experiments for the

positioning accuracy experiments for the same real world environment:

1. Real World RSSI Data Experiments: These are the experiments performed

in an office environment with real data. These experiments are the ones which

determine the accuracy of the IP-PPFONM algorithm in real life.

2. Generated RSSI Data Experiments: These are the experiments performed

in an office environment with real data except for the RSSI data acquired by

wandering around the office. These are the experiments we perform to show

how realistic is our simulation tool in terms of generating RSSI data for a real

life case.

In Real World RSSI Data Experiments, we firstly note down the obstruction informa-

tion in the office environment. Then, we wander around the IE for 50 seconds and

then collect the RSSI values at each receiver during the time of wandering. After

that, watching the recordings of a fish-eye lensed camera, we note down the ground

truth positions for each second. Lastly, before running the IP-PPFONM algorithm;

we enter the obstruction position information in the IE, ground truth positions and

the collected RSSI information to the algorithm. Using the entered information, our

algorithm predicts a position in the IE with some confidence and calculates how the

predicted position differs from the ground truth positions at each time step.
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In Generated RSSI Data Experiments; we apply the same procedure as in Real World

Data Experiment except for the RSSI collecting part. In these experiments, we use

RSSI data that our simulation tool generates by looking at the ground truth positions

resulted from wandering around the office and obstruction information in the real

world environment.

In both Real World RSSI Data Experiments and Generated RSSI Data Experiments,

we use BLE fingerprinting data that we collect for three days in the real world envi-

ronment.

6.1.1 Results

As we run the IP-PPFONM algorithm for Real World Data Experiments, we save two

images showing results for case1 results at two different time steps as can be seen in

Figure 6.4 and Figure 6.5. We also show the resulting images for case2 and case3 in

Figure 6.6 and Figure 6.7 respectively. These three images are chosen in a way that

we can show the positioning accuracy where the POI is in different positions.

Figure 6.4. Case1: 8th second Figure 6.5. Case1: 16th second
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Figure 6.6. Case2 Figure 6.7. Case3

For Real World RSSI Data Experiments, the IP-PPFONM algorithm achieves an aver-

age accuracy of 2.28m, 2.13m and 2.47m with standard deviations of 1.39m, 1.77m

and 1.92m for case1, case2 and case3 respectively as shown in Figure 6.8a. More-

over, for all cases combined, our algorithm achieves an average accuracy of 2.29m

with a standard deviation of 1.67m. We can also see the number of times we could

not make a positioning calculation as number of no signal reception in Figure 6.8b.

(a) Average Accuracy (b) Number of No Signal Reception

Figure 6.8. Real World RSSI Data Experiment Results

As a result of running IP-PPFONM algorithm for Generated Data Experiments, the

95



corresponding visual positioning results for the Figure 6.4, Figure 6.5, Figure 6.6 and

Figure 6.7 are found to be as in Figure 6.9, Figure 6.10, Figure 6.11 and Figure 6.12

respectively.

Figure 6.9. Case1 with Generated RSSIs:

8th second

Figure 6.10. Case1 with Generated RSSIs:

16th second

Figure 6.11. Case2 with Generated RSSIs Figure 6.12. Case3 with Generated RSSIs

For Generated RSSI Data Experiments, the IP-PPFONM algorithm achieves an aver-

age accuracy of 2.50m, 2.17m and 3.01m with standard deviations of 1.00m, 1.08m
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and 1.66m for case1, case2 and case3 respectively as shown in Figure 6.13a. More-

over, for all cases combined, our algorithm achieves an average accuracy of 2.58m

with a standard deviation of 1.33m. We can also see the number of times we could

not make a positioning calculation as number of no signal reception for Generated

Data Experiments in Figure 6.13b.

(a) Average Accuracy (b) Number of No Signal Reception

Figure 6.13. Generated RSSI Data Experiment Results

The resulting fingerprinting RSSIs in Table 6.3 are used in the multilateration part of

the IP-PPFONM algorithm in both of the positioning accuracy experiments. These

are the RSSI values of four fingerprinting beacons at three receivers averaged over

three days in the office environment where we make the positioning test. We use

fingerprinting information for the results of the simulation tool as well to be able to

show how realistically our simulation generates RSSI data compared to the real world

data.

Table 6.3. Receiver-Fingerprinting Beacon Signal Power (dBm)

Rec1 Rec2 Rec3

Beacon1 -76.0 -84.0 -82.0

Beacon2 -72.0 -81.0 -77.0

Beacon3 -86.0 -66.0 -85.0

Beacon4 -82.0 -73.0 -90.0
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6.1.2 Discussion

We see that we are able to reflect the effect of large objects and rooms residing in

the environment in our results. However, there is also the human factor and small

objects in the environment which can be dynamically identified and determined only.

Our algorithm takes static objects residing in the environment into account and try to

mitigate the effect of these objects for positioning calculations.

Our real world environment has a difficult plan for tracking with small number of

receivers. But, it is a good way to show how we try to handle obstructions in the way.

For positioning, normally, at least three receivers are needed for distance calculations

based on RSSI. However, our algorithm always tries to find a position even when we

have one RSSI value at only one receiver. We prevent making calculations when none

of our receivers have RSSI values in the real world experiment since it could mean

the person went out of the indoor environment. However, if we know that the POI is

always in the IE, then the IP-PPFONM algorithm can make positioning calculations

even without receiving a single RSSI value since not receiving any signal may mean

being a certain distance away from the receivers.

In positioning experiments, since our beacons do not transmit BLE signals frequently,

all of the receivers may not catch signals at each time step which may lower the

accuracy of our multilateration algorithm. Therefore, we determine a way to use

signals for the time steps we do not receive any. To that end, we firstly search for the

previous time step’s RSSI value and if not found, then wait for the next time step’s

RSSI value. We use a parameter to determine the maximum value for how many time

steps into the past or into the future we should look at until we find a RSSI value.

For our real world test, we search for at maximum two past and two future values. If

we do not find any, then we mark the signal value None. In this approach, our real

time algorithm may make the current time step’s calculations after up to two time

steps (2 seconds in our case) later to find a signal. Since this approach may use the

same signal multiple times, our sliding window size requirement for the prefiltering

step of IP-PPFONM should be increased to be more selective and hence, we set the

minimum size requirement of each sliding window to 5 instead of 3 where 3 is the

value we use in our simulation results in chapter5.
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We realize that when carrying beacons in hand or in pocket, moving affects the signal

powers. Therefore we add 4dBm to RSSIs before making the calculations for the

cases carrying in hand and add 6dBm for the cases when we carry the beacons in our

pockets. We expected carrying in hand would be much more accurate than carrying in

pocket case, but after adding these offset power values, results did not change much in

our case. We also observe that moving beacons decreases the RSSI values at receivers

compared to keeping them still.

According to our observations which will be mentioned in Section 6.2.7.1, BLE sig-

nals having <= 300ms advertising interval results in a stable signal environment. By

stable signal environment, we mean an environment where receivers can get enough

signals to update the positioning result more often to catch up with the POI motion.

However, since we use 1000ms as the BLE signal advertising interval, we often lose

the signal at our receivers which prevents making positioning calculations more often.

Also, we use low number of receivers for a large office environment where there is no

clear line of sight between any of our receivers and there are lots of wireless devices

like cell phones and Wi-Fi access points interfering with the Bluetooth signal. Yet,

since we can handle cases where we receive no signal at a receiver, our algorithm can

still achieve accuracies similar to the studies mentioned in Chapter 3.

We also use fingerprinting information in our multilateration algorithm to find the

best matching position given RSSIs. Even though, our fingerprinting results does not

seem consistent with formulas for conversions between RSSI and distance, they nat-

urally take environmental factors into account which helps us make more accurate

positioning predictions. In our case, fingerprinting does not always increase the accu-

racy for some positions and sometimes decreases the accuracy. Yet, if we have more

beacons positioned for fingerprinting, we might get better results for these positions

as well.

We play with different parameters mentioned in Chapter 4. Then, comparing dif-

ferent parameter settings, we try to find the best combination. Therefore, parameter

tuning is an important step which is better not to skip for different indoor environ-

ments having different characteristics. For example, we previously set movingLimit

parameter to 1m for simulations. However, for real world examples; we observed

99



that to easily adapt to the new positions fast, we have to increase this parameter to 5m

so that the particles make larger movements than before. Moreover, we use 0.5m for

sensitivityOfResult instead of 0.1m as we use in simulation results in Chapter 5.

As a result of 50 seconds of wandering around the office for each case separately,

IP-PPFONM achieves an average accuracy of 2.28m, 2.13m and 2.47m with stan-

dard deviations of 1.39m, 1.77m and 1.92m for case1, case2 and case3 respectively.

If we generate the RSSIs via our simulation tool, IP-PPFONM achieves an average

accuracy of 2.50m, 2.17m and 3.01m with standard deviations of 1.00m, 1.08m and

1.66m for case1, case2 and case3 respectively. We see that for case1 and case2, the

Generated RSSI Data Experiments perform better whereas for the case3, Real World

RSSI Data Experiments perform better by comparing the sum of the corresponding

means and the standard deviations. However, we have only 4 time steps that we do

not make any calculations for case3 in Generated RSSI Data Experiments whereas

we have 21 in Real World RSSI Data Experiments. Therefore, Generated RSSI Data

Experiments may have said to perform better for case3 as well. This shows us that

simulation tool is more optimistic about the results than it should be in reality. Fur-

thermore, simulation tool generally assumes to receive a signal if the beacons are in

the range; yet, we see that, in real world; the receivers do not get signals all the time

even if the receivers are in the range of the beacons according to the TX powers of

the beacons.

Even though the accuracies in Real World RSSI Data Experiments are not enough for

strict positioning applications which require sub-meter accuracy, they are accurate

enough to show which part in a room the POI is close to. These accuracies meet our

need to have a system with long battery life and low hardware costs.

6.2 Behavioral Experiments

6.2.1 Signal Blocking Material Tests:

We use two 2.4GHz Wi-Fi dongles in this experiment in which one of them is po-

sitioned at right and the other is positioned at left with 20cm space between them.
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We put two aluminum barriers having thicknesses of 0.5cm between the two dongles

where each barrier covered top, bottom and left position for the right dongle and top,

bottom and right positions for the left dongle. We use Wi-Fi signals for this test and

the results should be similar to the results below for BLE signals as well except for the

fact that BLE signals would be lower in strength. We use aluminum since aluminum

is known to block high frequency electromagnetic signals like Bluetooth well [40].

We perform this test while being approximately 50cm away from both of the dongles,

starting at the right dongle which is positioned at 0°. The degrees and positions are

determined using the coordinate system in Figure 6.14.

Figure 6.14. Reference Coordinate System Used

6.2.1.1 Results

In fig 6.15, we can see the RSSI results for a beacon that gets hold in different angles

and positions to the dongles (receiver devices) to see the effect of material just near

the receiver devices.
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(a) RSSI with Block (b) RSSI without Block

Figure 6.15. RSSI Comparison

6.2.1.2 Discussion

As can be seen in Figure 6.15, having a block in between, decreases the RSSI for

the dongle at the left preventing the beacon and the left dongle being in line of sight

with each other. But at 100◦, somehow, the right dongle has higher RSSI value in the

case with blocks than in the case without block. Hence, we can say that the position

of the beacon and the receiver devices and the angle between them is also a factor

that needs to be taken into account besides the presence of an obstruction alone. To

receive stronger signals, we should place the receivers in a position and angle that

their BLE chipset is in sight with the surrounding BLE signals as much as possible.

6.2.2 Antenna Role:

For this test, we take RSSI measurements of a beacon at a receiver. Then, we remove

the antenna of the receiver and make measurements again. We collect RSSI values

for a while and then compare for each case. The beacon we use has 0dBm as TX

power and therefore; has an expected RSSI of approximately −70dBm at 3m.
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6.2.2.1 Results

As a results of our tests, we observe that the antenna plays a huge role for receiving

the RSSI values. The receiver gets RSSI values of approximately −70dBm when

we are 3m away from the receiver and get signals after 15m easily. However, after

removing the antenna the RSSI values drop to −93dBm for 3m and we cannot get

any signal beyond 7m.

6.2.2.2 Discussion

As the results show, an antenna is a must-to-have for receiver devices. As a further

thought, we think we can still use receiver devices when the antenna is removed to

check if a beacon is near because if these types of receivers receive a signal, then it

must be due to a nearby beacon. In this way, we eliminate the need for checking RSSI

values for near proximities.

6.2.3 Beacon Carrying Position Test:

We experiment with different TX powered beacons to determine which one to use for

our tests. In our results, we find out that lower TX power beacons are not well suited

for indoor environments using signal power. However, they are still suited for indoor

environments if we just check whether we receive a signal in our receivers or not.

Low TX powered beacons could be used to find positions in indoor environments

more accurately since we would only receive the signals of these beacons within a

small proximity.

We make the tests with different beacons from different firms. All of these beacons

use the iBeacon protocol to transmit signal powers, the signal power results are more

or less the same for all of the beacons we test, therefore we do not categorize the firms

as A-Firm , B-Firm beacon and so on. Not every firm has the same signal range and

same transmission (TX) powers. In total, we investigate eight different TX powers

which are −40, −30, −20, −16, −12, −8, −4, 0dBm.

We test the beacons in two ways:
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• Carrying them in our pockets.

• Holding them in our hands without blocking the BLE chip of the beacon.

Then, we note the maximum achievable range of the beacons. Note that, when bea-

cons are carried in a pocket no other object is on top of the beacons since otherwise

the range information accuracy gets lower significantly. It shows us that if there are

objects between the beacons and the receivers and these objects are next to our bea-

cons, it affects the signal propagation considerably. We test all TX powers to see what

we can do with different TX powered beacons in the field.

6.2.3.1 Results

We expect that carrying the beacon in pocket blocks the BLE signal and therefore de-

creases the maximum range achievable by this signal whereas by carrying the beacon

in hand, BLE signal can reach a larger range range due to being in line of sight with

the receiver. The maximum ranges that can be reached by the emitted BLE signals

and the TX powers of the beacons providing these ranges can be summarized as in

the Table 6.4.

Table 6.4. TX Power vs Maximum Achievable Range

TX Power (dBm)
Range (m)

In Hand In Pocket

0 50 25

-4 27 18

-8 22 13

-12 15 9

-16 10 5

-20 7 2

-30 2 0.5

-40 1 0
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6.2.3.2 Discussion

As we expect, results show that carrying in pocket decreases the signal power a lot,

hence lowering the maximum distance coverage. Therefore, a beacon should not be

carried in a bag or next to other objects inside a pocket since carrying in this way

would prevent receiving a strong signal from the beacon. We can also see that low

powered beacons can be used for proximity solutions since their coverage is very low.

6.2.4 BLE Chipset / Receiver Device Role:

We test different receivers with two different well-known and quality chipsets. We

wander around an office environment and check the RSSI values at the receiver de-

vices having different chipsets to see whether the chipset affects the RSSIs.

6.2.4.1 Results

According to our observations, chipsets also affect the signal reception since one of

our receiver devices catches signals that the other one cannot catches most of the time.

6.2.4.2 Discussion

According to our results, BLE chipset or receiver device quality is an important factor

for accurate positioning and one should buy a quality receiver device.

6.2.5 Obstruction Effect:

For these tests, we hold the beacons when there is a 30cm wall completely blocking

the way between the receiver and the beacons. Then, we test when there is no wall

between the receiver and the beacon to see the effect of the wall for BLE signal

penetration.

105



6.2.5.1 Results

One of the receivers is able to receive signals from a beacon beyond a wall while

the other one is not. It shows signal gets severely degraded due to wall and with a

receiver having a weak chipset, it is very hard to obtain any signals when there is a

thick obstruction between the receiver and the beacons.

6.2.5.2 Discussion

According to the results, we can say that the receivers should be placed in a way that

the obstructions between the receivers and the beacons are minimal.

6.2.6 Transmitter / Beacon Factor:

We tested several beacons from different firms, but after some tests for decision mak-

ing we chose three of them each belonging to a different firm. One of the beacons has

Bluetooth 5.0 and the other two has Bluetooth 4.0.

6.2.6.1 Results

After testing signal catching frequency and number of signal signals we caught we

saw that Bluetooth 4.0 beacons were enough for us since we did not need more dis-

tance coverage and faster signals which come with Bluetooth 5.0.

6.2.6.2 Discussion

The higher the version of Bluetooth, the better the beacon is if the receivers are com-

patible with the versions of the Bluetooth. As can be seen from the results, if receivers

do not have as high Bluetooth version as the beacons, then having a higher versioned

beacon may not be necessary.
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6.2.7 Transmission Power and Period Factor:

In total, we investigate eight different TX powers which are −40, −30, −20, −16,

−12,−8,−4, 0dBm and four transmission periods which are 100ms, 300ms, 800ms

and 1000ms.

6.2.7.1 Results

According to our experiments, we observe that increasing TX power increases the

signal stability and provides more healthy decisions for positioning. However as the

transmission period decreases, the battery consumption increases which is a trade-

off that one should consider. According to our observations in general, BLE signals

having <= 300ms advertising interval (transmission period) results in a stable signal

environment for signal positioning calculations. We choose 0dBm TX power and

1000ms advertising interval for real world experiments. Since the advertising interval

we choose is lower than 300ms, our signal is not very stable. Yet, it is necessary to

make battery last longer. We do not decrease the TX power to have a higher battery

life since low TX powers fade away easily in noisy or large environments which is

against our aim to be able to track the POI in large and noisy environments.

6.2.7.2 Discussion

As expected, as the TX power increases or advertisement period decreases, the sta-

bility of the signal increases improving the indoor positioning accuracy.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Indoor positioning is getting increased attention with the improvements in wireless

signal positioning methods. Some of the use cases of indoor positioning include

redirecting people in indoor environments to find their ways just like GPS does in

outdoor environments or providing store owners the ability to give location based

services to their customers and make customer dwell time analysis.

The wireless signal positioning methods are generally cheaper compared to camera-

based positioning methods due to cheaper hardware (no camera) and software require-

ments (no image processing required). However, signals like Bluetooth low energy

(BLE) are not very reliable to make positioning estimations without processing the

signals first.

In this thesis, we explain different wireless indoor positioning technologies. Among

these technologies, we use BLE due to its low cost, low power consumption (high

battery life) and ubiquity. The BLE technology improves as the new versions of

Bluetooth provides increased speed and signal range capabilities for BLE. Hence,

now, this technology is more suitable for indoor positioning compared to previous

years.

Moreover, we mention studies performed in the field of indoor positioning with wire-

less technologies. We explain the environmental setup and accuracy information of

these studies. There are different methods and approaches using the BLE technology

which are proposed in the literature as mentioned in Chapter 3. We see that some of

these methods achieve accuracies higher than our method does. However, proposed

approaches generally rely on frequent (< 1000ms) and high-powered signals trans-
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mitted from beacons or frequent receiver placement in the indoor environment. Also,

to the best of our knowledge, the obstructional information is not taken into account

directly in the proposed methods in the literature. In the related studies mentioned,

we see that obstructional information is considered using indirect methods like fin-

gerprinting without integrating this information into the core of the positioning algo-

rithm itself. Hence, in this thesis, we propose a cost-effective algorithm which does

not rely on frequently installed receivers or frequently transmitting beacons where

obstructional information in the environment is integrated into the core of the algo-

rithm.

We propose a wireless indoor positioning algorithm IP-PPFONM that can predict

the position of a person by receiving only one signal by using the receiver posi-

tion information for the receivers not getting any signal. If we know that the POI

is inside the IE, then the IP-PPFONM algorithm can predict the position without re-

ceving any signal, hence the no-signal in the algorithm’s name. IP-PPFONM is an

obstruction-aware algorithm since it takes obstructional information in the IE envi-

ronment into consideration and uses this information to get true distance information

given the RSSI. In IP-PPFONM algorithm, to overcome the non-reliable nature of

BLE signals, we process the signals by applying prefiltering and postfiltering meth-

ods. IP-PPFONM algorithm applies the following methods in order, for positioning

the POI:

• efficient receiver placement to increase the possibility of getting BLE signals

regardless of the position of the POI in the indoor environment,

• BLE fingerprinting to mitigate multipath effect,

• prefiltering BLE signals to determine which signals should be let to pass for

positioning calculations using running average filtering (RAF) algorithm,

• obstruction-aware no-signal multilateration algorithm to find the measured po-

sition of the POI,

• particle filtering to locate the POI with some uncertainty.

We design a simulation tool to visualize the output of IP-PPFONM algorithm where

we can easily point the POI, receiver and obstruction positions in the IE. This tool also

visualize how much we are sure about the positioning result using confidence ellipses

110



formed around the POI position. We show different simulations for different scenarios

to show the theoretical accuracies of the IP-PPFONM algorithm for different cases.

We perform the real-world experiments in an office environment which is of size

15m × 16m to see the behavior of our system in a real world indoor environment.

We use a BLE fingerprinting method, running average filtering, multilateration, par-

ticle filtering and k-means algorithms in the IP-PPFONM algorithm. As a result

of 50seconds of wandering around in a real world environment, the IP-PPFONM

achieves an average accuracy of 2.29m with a standard deviation of 1.67m.

For real-world experiments, we try to use little number of receivers to reduce the

hardware cost. We try to find the appropriate beacon parameter settings like adver-

tisement interval and TX power settings to have high battery-life. Having high-battery

life means, the less need to replace the beacons with new ones which is an important

factor for easing the maintenance of an indoor positioning system.

In this thesis, we use the following materials:

• Receiver devices that support BLE technology.

• BLE beacons which transmit BLE signals.

• A fish-eye lensed camera to verify the positions resulted from our indoor posi-

tioning system.

This study can be further extended by trying different TX power and advertisement

interval values. Moreover, in this thesis we assume that BLE signals propagate lin-

early. However, in real life, BLE signals do not propagate linearly and get affected

from multipath effect. Hence, in further studies, in terms of collision detection of

signals with obstructions, suitable propagation model for BLE signals can be taken

into account as well.
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