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ABSTRACT 

 

IMPLEMENTATION OF FRACTIONAL ORDER VISCOELASTIC 
MODELS TO FINITE ELEMENT METHOD 

 

Hesammokri, Parnian 
Master of Science, Mechanical Engineering 
Supervisor: Assoc. Prof. Dr. Ergin Tönük 

 

September 2019, 83 pages 

 

In the latest decades, fractional calculus has been commonly used to define the 

behavior of viscoelastic materials. Real viscoelastic materials such as rubbers, 

polymers, soft biological tissues, asphalt mixtures, soils, etc. represent power law 

creep and relaxation behaviors. In Scientific literature relaxation and creep of this type 

of material has been modelled, primarily through single and/or linear combinations of 

exponential functions, in an effort to capture the contributions of both solid and fluid 

phases. This strategy does not allow experimental findings to fit correctly. In this 

study, isotropic 3-D constitutive equations are evaluated using the fractional calculus 

by means of the concept of fading memory for a single spring pot, the fractional 

Kelvin-Voigt model, and the fractional standard linear solid model to reproduce the 

actual behavior of these materials. Using the UMAT subroutine in ABAQUS / 

Standard, a finite element code is developed for each model. To reach the strain and 

stress history of all fractional models, the Boltzmann superposition concept and the 

fractional derivatives evaluated by Grünwald-Letnikov were used. Relaxation and 

creep responses have been obtained for each fractional model and these computational 

results are compared to analytical results to demonstrate the correctness of the finite 

element codes. Access to the history of strain and stress at each Gauss point of each 

component is essential for the implementation of the model in a constructive way 
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which is one of the most important aims of this study which has been reached by 

developing the finite element code using the Jacobian matrix not the strain energy 

density function which utilized widely in literature. These codes can describe the 

by changing the fractional coefficients.  

It has been shown that using this technique the process of extracting material 

parameters can be much easier as less coefficients are required compared to other 

techniques in constitutive models. This study demonstrates that 3D fractional 

viscoelastic models can be readily and effectively implemented in finite element 

software.  
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation 

In particular, materials such as polymers demonstrate behaviors which depends on 

time, like creep, relaxation, and damping. Classical viscoelastic designs often involve 

multiple parameters to properly portray the behavior of these materials. Many of the 

related research focuses first on formulating credible constitutive equations and then 

on solving boundary or initial value problems. It is not possible to carry out the 

analyzes without a proper constitutive equation and boundary and initial value 

problems cannot be solved. Therefore, it is extremely essential to formulate suitable 

constitutive relationships to agree well with the test outcomes. A considerable issue is 

the selection of the suitable model to fit the test outcomes. To correlate with the 

experimental information, these models should match all results of the experiment 

including relaxation, creep, hysteresis ... etc.  Implementing the material model to a 

finite element subroutine numerically is one of the most significant results of the 

expanding of a viscoelastic model.  

The finite element approach is one of the most effective tools to study the numerical 

solution of viscoelastic problems and it is possible to simulate and solve real-world 

problems with the advancement of computer technology. Classical viscoelastic 

models often involve multiple constants to reproduce the 

model a viscoelastic material accessing the strain or stress history is one of the issues 

which cannot be fulfilled using the classical viscoelastic material models. Also in these 

models the extraction of material parameters is another issue regarding the high 

number of parameters. In this regard, constitutive equations using non-integer 

derivatives have the privilege of involving fewer parameters and the availability of 

strain or stress history. By using fractional derivative an additional parameter to be 



 

 
 

2 
 

identified is the non-integer derivative parameter that is the order of time derivative 

of stress and/or strains in the constitutive equation, which can replace many other 

constants in integer-order models by simplifying the material model. Identifying these 

material parameters needs to cope with difficult mathematics  which is much more 

challenging if it be compared to the integer-order models. Several numerical 

algorithms are proposed in the literature to address the differentiation of non-integer 

order and integration for models of those materials. Since one of the purposes of 

evaluating constitutive equations for viscoelastic materials is identifying constants of 

the material model generated through curve-fitting to the test results utilizing the 

inverse finite element approach, the model should fit the test outcomes well with a 

small but sufficient number of constants. Another benefit in the using of the non-

integer derivatives is the inclusion of memory conduct by definition in non-integer 

operators that is unique to viscoelastic materials. Viscoelastic materials have memory 

and the fractional calculus used in the theory of viscoelasticity is the memory imitation 

(Schiessel et al., 1995). 

Only one fractional derivative operator is required for the most ordinary viscoelastic 

uniaxial fractional-order model that acts on stress and strain. For some polymers, only 

four constants are needed. Among those parameters two of them is "elastic" 

parameters, one is the relaxation time constant and the other one is the non-

dimensional non-integer order of differentiation, which the comparison of it with 

experimental results is in a good agreement (Welch et al., 1999; Bagley and Torvik 

1983). 

Researchers have been interested in using fractional viscoelastic models over the past 

decades as they are able to correctly portray both the creep and relaxation behavior of 

viscoelastic materials and the experimentally captured "fading" memory impacts. It is 

commonly demonstrated that the stress-strain relation of viscoelastic materials during 

a creep or relaxation experiment can be shown by power law which depends on time; 

examples include polymers, soft biological tissues, soil etc. In creep and relaxation a 

power law contributes to non-integer viscoelastic constitutive laws defined by the 

existence of non-integer order derivatives and integrals. The most appealing element 
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in the fractional viscoelastic constitutive models is that the stress-strain response 

depends on the prior stress-strain history, which enables consideration of the material's 

long "fading" memory. The hereditary theory is one of the bases of the linear 

viscoelasticity. Boltzmann (1876) developed a concept for the first time which uses 

an essential relationship of convolution between stress and strain. Using the concept 

of Boltzmann superposition, the hereditary theory of linear viscoelasticity developed, 

in this theory the present stress is calculated by the superposing of stress reactions to 

the whole strains.  

Non-integer derivatives are dependent on the material past, evidencing a mechanism 

of memory, and incorporating the history of a process inherently. Furthermore, the 

non-integer order parameter offers a smooth transition from elastic to Newtonian 

viscous behavior by defining a fractional coefficient which changes between zero and 

one (Alotta et al., 2018). Furthermore, it is possible to understand fractional 

relationships of viscoelastic components physically using hierarchical formations of 

dashpots and springs, in the concept of fractional calculus the dashpot will be replaced 

by a new element called spring-pot which is also called fractional element, then the 

fractional viscoelastic models will be generated (figure 1.1). The reasons listed above 

are the primary motivations in characterizing the viscoelastic behavior by using the 

fractional calculus. 

 

 

Figure 1.1. Fractional models (a) spring-pot (b) fractional Kelvin-Voigt (c) fractional Maxwell (d) 
fractional standard linear solid 1 (f) fractional standard linear solid 2 (Alotta et al., 2018). 
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1.2. Problem Definition  

To utilize these models to depict the behavior of complicated real materials, the 

application of these constitutive models into FE packages is essential. In the literature 

the number of people who have tried to implement fractional 3-D constitutive models 

into FE software is very low. Among the people who did their best to implement these 

models in an accurate way into finite element code Enelund et al. in 1999, Demirci 

and Tonuk in 2011 and Alotta et al, in 2018 can be mentioned. In 1999 Enelund et al. 

proposed a physically sound formulation for a set of internal variables for the standard 

linear solid model with integer and non-integer order rate equations. Using the 

Generalized Midpoint law a time integration method is utilized to integrate the 

constitutive response. Demirci and Tonuk developed their model using strain energy 

function and they did their analysis in MSC MARC software. In 2018 Alotta et al., 

developed fractional constitutive laws for most of the models but they did not report 

any results regarding fractional standard linear solid model for the case which the 

spring is in parallel with the fractional Maxwell model (figure 1.1 (f)). they developed 

their code in Fortran and used both ABAQUS Implicit and Explicit.  

In this study fractional 3-D constitutive models are evaluated using the concept of 

fading memory to obtain the real behavior of viscoelastic models for a single spring 

pot (figure 1.1 (a)), the fractional Kelvin-Voigt model (figure 1.1 (b)), and the 

fractional standard linear solid model (figure 1.1 (f)). Stress history and strain history 

for each model at each Gauss point of each component obtained and stored in column 

matrices during the simulation which can be reached easily to implement the model in 

a constructive method. Accessibility to these histories became possible by utilizing 

the Boltzmann superposition theory and the Jacobian matrix for each instant of time 

which is completely different from methods which used strain energy function to 

develop their finite element codes. 
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1.3. Thesis Outline 

The constitutive models for a single spring pot (figure 1.1 (a)), the fractional Kelvin-

Voigt model (figure 1.1 (b)), and the fractional standard linear solid model (figure 1.1 

(f)) have been expanded to implement in finite element code and by comparing the 

computational results with the analytical outcomes their applicability to reproduce the 

response of linear viscoelastic materials have been shown. The finite element codes 

have been written using UMAT subroutine which is one of the routines for 

ABAQUS/Standard, more details about this subroutine can be found in chapter 3. The 

major difference between this work and most of the works which have been done up 

to now is using the Jacobian matrix instead of the strain energy function which 

requires different series of steps.  

In the next chapter a literature review has been presented including fractional calculus 

theory and its application in the theory of viscoelasticity and the methods which have 

been offered by other researchers through this way like generating constitutive models 

for viscoelastic materials and finite element approaches. In the third chapter, the 

methodology which has been used in this study explained in detail including both the 

procedure which is taken to expand the constitutive equations to be used in finite 

element code and the numerical method which made this approach computationally 

efficient. In Chapter 4, the results for analytical and computational methods are 

presented and those outcomes were compared with each other and a discussion is done 

based on what has been obtained. The last chapter contains the conclusion and 

suggestions for future studies. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Linear Theory of Elasticity 

A material can be considered as linearly elastic or Hookean as long as the force 

required to stretch or compress it is proportional to that distance (Timoshenko, 1983).  

By doing the tensile testing (uniaxial loading) on a specimen the longitudinal stress 

on a small element of the sample can be calculated as: 

 

 

(2.1) 

In the equation above  is the instantaneous cross sectional area. By replacing  

which is the cross sectional area for the initial state in the equation above, the 

engineering stress ( ) will be obtained: 

 

 

(2.2) 

and the engineering strain is: 

 

 

(2.3) 

Just like true and engineering stresses in the elastic domain the engineering and true 

strains are approximately equal at this regime (infinitesimal strain). 

 

 

 

(2.4) 
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Physical constants can be obtained from 

easy studies completely characterize the mechanical response of a linearly elastic 

body. Test such as uniaxial tension or uniaxial compression, for example, produces 

both the and the Poisson  ratio. From these two constants, any other 

linear elastic constant can be acquired. In many engineering applications, the 

hypothesis that materials are linearly elastic under the small strain regime with 

potentially a geometrically nonlinear behavior is used effectively (Love, 2013).  

components are linear homogenous functions of the strain components. 

 
 

(2.5) 

 is a tensor which represents the elastic parameters. Using equation above the 

elastic strain energy  per unit volume has been defined: 

 

 

(2.6) 

 

 

(2.5) 

For the isotropic linear elastic materials the stress-strain relationship is: 

 

 

(2.8) 

 is the Kronecker, and   and  is the shear modulus. 

For small displacement stain can be determined as below neglecting the higher order 

term (Sadd, 2004): 

 
(2.9) 
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2.2. Non-Linear Theory of Elasticity 

Most of the materials require finite deformations where these deformations are 

nonlinear and the related stresses rely on the material characteristics underlying them. 

Generally speaking, it is not possible to represent the mechanical behaviors of non-

linear elastic materials using constants, but are defined by parameters that are scalar 

deformation functions (Mihai and Goriely, 2017). By considering a 3-D body in a 

domain  that is subjected to a finite strain and denoting its transformation as x, 

and by assuming X as the Lagrangian (reference configuration) and x as the Eulerian 

(current configuration) coordinates The deformation gradient will be:  

 

 

(2.10) 

 

 

(2.6) 

The displacement of a material point is: 

  

 

(2.7) 

 

 

(2.8) 

I, is the identity tensor (Ogden, 1997; Biot, 1965). 

 

2.3. Linear Theory of Viscoelasticity 

The relationship between strain and stress is time-dependent for a viscoelastic 

material. The theory of linear viscoelasticity implies that the time-dependent behavior 

is independent of strain (i.e. strain energy density can be broken down into an 

instantaneous/glassy part (which can be nonlinear) and a time-dependent part as a 

product). Figure 2.1 shows a creep test which demonstrates the typical behavior of a 

viscoelastic material to a steady load and removal of it which involves elastic and 

permanent plastic strains, and over time the strain rises. This time-dependent reaction 

is referred to as creep. 
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Figure 2.1. Creep test on a linear viscoelastic material (Lakes, 1998). 

 

Figure 2.2 shows the relaxation test and the typical behavior to a steady strain. From 

the word viscoelastic it can be conducted that a viscoelastic material has both elastic 

behavior and viscous behavior. ordinary linear mechanical components like linear 

springs and linear dashpots can be used to construct a mechanical analogue of the 

constitutive models. 

 

 

Figure 2.2. Relaxation test on a linear viscoelastic material (Lakes, 1998). 
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2.3.1. The Linear Elastic Solid (The Linear Spring) 

 

 

Figure 2.3. A linear spring (Lakes, 1998). 

 

The easiest method to generate a material model is to presume that it is a linear spring of 

stiffness  which Hooke's law is the constitutive equation it (equation 2.4). It should be 

noticed that the spring responds immediately to the load and responds immediately to the 

load removal. The response can also be written as below: 

 

 

(2.14) 

where  is the inverse of the stiffness which is called compliance. 

2.3.2. The Linear Viscous Fluid (The Linear Dashpot) 

The flow of Newtonian fluid limited by a moveable disk on top of it and a fixed disk 

in the bottom of it can be derived by the shear stress which is applied to the upper disk 

(figure 2.3). The fluid which is in touch with the upper disk moves fast since it has inhered 

to it, but it cannot push the fluid which is in touch with the lower fixed disk. Thus a 

velocity gradient will be defined which is associated with the shear applied by the fluid's 

viscosity ( ).  

 

 

(2.15) 
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Figure 2.4. An ideal incompressible viscous fluid limited by a movable upper disk and a 

fixed lower disk (Lakes, 1998). 

 
 

 

 

(2.16) 

The shear strain is: 

 

 

(2.17) 

Using equations 2.15 and 2.16: 

 

 

(2.18) 

therefore, 

 
(2.19) 

 

 

Figure 2.5. A linear dashpot (Lakes, 1998). 
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This concept of viscous fluid flow is utilized in the evaluation of viscoelastic 

materials, on the other hand, a dashpot (a piston moving in a viscous fluid with a 

viscosity of ) may constitute a viscous element (Lakes, 1998; Bland, 2016; 

Christensen, 2012). 

 

 

(2.20) 

Viscoelastic materials have some common characteristics, for instance, if they are 

stretched and then unloaded in a way they return to their original length the stress-

strain relationships become different for loading and unloading called hysteresis. On 

the other hand, the mechanical energy required to deform the material cannot be 

recovered. By combining these two elements (springs and dashpots) in different ways, 

various classical models of viscoelastic material can be created (some of which are 

presented in figure 2.6). 

 

 

Figure 2.6. Classical viscoelastic material models. (Larrabee and Wayne, 1986). 
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2.4. Introduction to Fractional Calculus 

Fractional Calculus is one of the mathematics  which came from the traditional 

definitions of the integral and derivative operators of calculus which in their non-

integer exponents is a result of exponents with an integer value. The story of the 

 asked 

Leibniz about a particular notation in his publication related to the derivative of a 

linear function . He asked what will happen if n be a non-integer number 

-day useful 

calculus where the most famous ones are the Riemann-Liouville and Grünwald-

Letnikov definitions. The last century was the turning point of the capability of 

fractional calculus in the engineering. Understanding of delimitation and utilizing 

fractional calculus will be made clearer by reviewing some mathematical definitions. 

These are the gamma function, the Laplace transform, and the Mittag-Leffler function 

which will be discussed in the following sections (Podlubny, 1999; Loverro, 2004).  

2.4.1. The Gamma Function 

Gamma function is one the most common function which is used in the fractional 

calculus. Its definition is: 

 

 

(2.21) 

There are some noble properties related to gamma function: 

 

 

(2.22) 

 

 

 

 

(2.23) 
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2.4.2. Laplace Transform and Convolution 

The Laplace transform is a function transformation to solve complicated differential 

equations. The standard definition of it is as below: 

 
(2.24) 

  

One of the important usage of Laplace transform is the Laplace convolution: 

 

 

(2.9) 

Sometimes the convolution of two functions cannot be solved easily in the domain of 

t but, in the domain of Laplace (s), the convolution comes up in the simpler product 

of functions: 

 

 

(2.10) 

2.4.3. The Mittag-Leffler Function 

The Mittag-Leffer function is one the most important functions that has been utilized 

widely in this area. The Mittag-Leffler function plays the role of exponential function 

in the solution of non-integer order differential. The formal definition for this function 

is: 

 ,  

 

(2.11) 

which is the two parameter Mittag-Leffler function, if  then it will turn into one 

parameter Mittag-Leffler function.  

If both parameters are equal to one, then the Mittag-Leffler function boils down to the 

exponential function: 

 

 

(2.28) 
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The other important topic which should be mentioned about this function is the 

integration of it: 

  

 

(2.29) 

2.4.4. Grünwald-Letkinov and Riemann-Liouville Fractional Operators 

The Grünwald Letnikov derivative is a development of the derivative to derivate a 

function a non-integer number of times. It has been proposed by Anton Karl Grünwald 

and Aleksey Vasilievich Letkinov in 1868. 

The first-order derivative of a continuous function like  is: 

 

 

(2.30) 

The second order derivative of the same function can be written as: 

 

 

(2.31) 

So if the function  be derivated  times: 

 

 

(2.32) 

 

 

(2.33) 

then by replacing  with , 

  

 

(2.34) 

For negative values of m: 
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(2.35) 

where, 

 

 

(2.36) 

 

 

(2.37) 

then, 

 

 

(2.38) 

where   indicates a certain operation performed on the function , and  

and  are the intervals related to the operator. 

At the end it comes up with the following equation: 

 
(2.39) 

 

This equation represents the fractional derivative which is equivalent to the Riemann-

Liouville fractional definition. 

For positive values of  the fractional integration will be obtained: 

 

(2.40) 
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2.4.5. Caputo Fractional Operator 

In the procedure of progress of fractional calculus, Riemann-Liouville definition had 

a noticeable role. In some special areas like the theory of viscoelasticity and hereditary 

solid mechanics, the concept of fractional derivative is very useful in terms of material 

properties characterization. The Riemann-Liouville method is an initial value 

approach. The initial value problems can be mathematically solved easily. However, 

since in the solutions of non-integer differential equations there is no known physical 

interpretation, their solutions are not studied widely. To tackle this problem, M. 

itten as:

 
(2.41) 

 

2.5. Fractional Calculus in the Theory of Viscoelasticity 

In 1921 Nutting was the first person who introduced the topic of application of 

fractional calculus in the theory of viscoelasticity. He explained that the phenomenon 

of stress relaxation can be characterized by non-integer powers of time that contradict 

the strategy that stress relaxation is best characterized by decaying exponentials. In 

1944 Scott-Blair utilized the theory of fractional calculus to model Nutting's early 

perceptions. Scott-Blair asserted the significance of studying the rheological 

characteristics of materials like rubber and plastics since they vary significantly from 

Newtonian or Hookean behavior in the rheological context. The equation below could 

describe the elasticity of an intermediate material that is neither real fluid nor perfectly 

elastic solid (Scott-Blair and Coppen, 1939): 

 

 
(2.42) 

where determines elasticity and k  is zero for an elastic solid and one for a 

Newtonian fluid. 

In fact, Scott-Blair acquired a differential expression of non-integer order for these 

"intermediate" materials as follow: 
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(2.43) 

 

He claimed that, in terms of gamma function, these kinds of functions can be solved; 

however, until that year, no one has tried to solve these equations. 

In 1936 Gemant showed that fractional-order time derivatives can be utilized to model 

the viscoelastic conduct. Gemant was the first who suggested a non-integer order 

viscoelastic model which, a semi-derivative has substituted the first-order normal 

stress derivative of "Maxwell fluid model." To elucidate the definite distinction 

between the experimental outcomes acquired from viscoelastic samples and the 

Maxwell equation which is theoretical the Maxwell equation of viscoelastic bodies 

was semi-differentiated. 

 

 

(2.44) 

In the equation above , ,  and  represent the strain, the stress, the viscousity and 

the shear modulus of elasticity respectively. 

In 1948 Gerasimov used derivatives of explicit fractional-order written as derivatives 

of Caputo to describe his viscoelastic model. Rabotnov chose to use Volterra integral 

operators in the same year with weakly unique kernels which have been explicated as 

non-integer integrals and derivatives. Moreover, Rabotnov claims that it is better to 

not mention the heredity phenomenon as a combination of Hookean elasticity and 

Newtonian viscosity, but as a main component of itself. The author therefore denies 

the rheology model depictions and stresses that the term "inherited elasticity" instead 

of word "viscoelasticity." 

defined fractional exponential operators as Abel operator . 

 

 

(2.45) 



 

 
 

20 
 

In 1984, Koeller extended some of Rabotnov's viewpoint ideas and showed the 

relationship between fractional calculus and linear viscoelasticity theory. It has been 

is the same as having that the stress is proportional to the non-integer derivative of 

strain in damper. The notation of Rabotnov is generally utilized and the fractional 

calculus is relevant to the integral equation of Abel's theory (equation 2.46).  

 
 

(2.46) 

and, 
 

 
 

(2.47) 

 
Based on what has been discussed one of the differences of non-integer derivatives 

with integer derivatives is heredity dependency of non-integer order derivatives. 

Ordinary derivatives are point functionals but since non-integer order derivatives 

possess the whole memory of past and since they are hereditary functionals, therefore, 

they are preferred to define the memory and hereditary properties of viscoelastic 

materials (Adolfsson et al., 2005). One of the privileges of this method is obtaining 

constitutive equations of viscoelastic materials with only few constants which have 

been determined from experiments (Soczkiewicz, 2002). To obtain the desired 

viscoelastic response observed through experiments, the phenomenological material 

models are developed by connecting mechanical elements such as springs and 

dashpots in various ways. Non-integer order viscoelastic models have an intermediate 

element between a linear elastic spring and a viscous dashpot termed as the spring-

pot. 

The dashpot in the classical Maxwell and Kelvin-Voigt components will be replaced 

by the spring-pot. For the fractional Maxwell, Kelvin-Voigt and three-element 

models, the creep and relaxation functions are derived using the theory of Hereditary 

Solid Mechanics which has been proposed by Rabotnov. Creep and relaxation 

functions are obtained in terms of the Mittag-Leffler function depending on the non-

integer coefficient ( ). Also it has been shown that the non-integer order constitutive 
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law is a evolution from elastic solid conduct to Newtonian viscous fluid conduct when 

the "fractional coefficient" differs from zero to one. Unless the fractional coefficient 

is equivalent to unity, it has been indicated that there is no physical significance in the 

creep and relaxation times. 

For linear models with homogeneity the Boltzmann superposition integral is available: 

 

 

(2.12) 

In this equation R is the relaxation function. 

 

 

(2.49) 

By inserting equation 2.49 into equation 2.48: 

 

 

(2.50) 

The equation 2.50 composed of two intervals, the first interval is from  to zero, 

and the other interval is from zero to t. To solve this equation, the Riemann expression 

can be utilized as follows: 

 

 

(2.51) 

For  if  then the equation turns into Riemann-Liouville formulation and if 

  

 
(2.52) 
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The models in figure 2.6 are composed of a small number of single elements (Ward, 

1983; Tschoegl, 1989). The difficulty is the limited sort of solutions which causes the 

inadequate quantification for the model. To tackle this problem, the stress and strain 

could be related using fractional equations. Using fractional calculus by varying  in 

equation 2.52 from zero to one, an intermediate behavior between viscous and elastic 

conduct can be obtained. The equation 2.52 can be represented by hierarchical 

formations of springs and dashpots (figure 2.7). A fractional element to describe such 

a hierarchical formation was proposed (figure 2.8 (c)) which schematically simulate a 

ladder such as the one drawn in figure 2.7 (Schiessel et al., 1995). 

 

 

Figure 2.7. Sequential realization of the frictional element (Schiessel et al., 1995). 
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Figure 2.8. (a) elastic, (6) viscous and (c) fractional element (Schiessel et al., 1995). 

 

The constitutive equation for a fractional element is: 

 

 

(2.53) 

 is the non-dimensional fractional coefficient. 

To be evident if  be equal to zero the material has perfect memory and shows a solid 

case and when  is equal to one the material has no memory describing a fluid case. 

Fractional coefficient  is the power-law response found on most viscoelastic 

materials. The relaxation function does not generally follow a straightforward 

exponential but is defined by an expression of power law (equation 2.54). 

 

 

(2.54) 

where  is the time constant. 

The creep compliance for a fractional element will be: 

 

 

(2.55) 

As mentioned before the dashpot in the classical viscoelastic models is replaced by 

the "spring-pot" for the linear non-integer order viscoelastic models. By changing the 

value of the fractional coefficient, an extensive domain of responses could be obtained 

using a spring-pot in classical linear viscoelastic classical. 
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Equations 2.54 and 2.55 can be derived by taking the following steps (Schiessel et al., 

1995): 

Here is the definition of Fourier transform: 

 

 

Since, 

(2.56) 

 

 

(2.57) 

Then Fourier transform of equation 2.52 will be: 

 (2.58) 

 

The complex modulus is: 

  (2.59) 

 

then, 

 

 

(2.60) 

In order to derive the relaxation modulus  two different ways can be taken: 

- Using the storage modulus:  

 
(2.61) 

 

- Using the loss modulus:  

 

 

(2.62) 

For a single fractional element, the relaxation modulus obtained as: 
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(2.63) 

For the creep compliance: 

 

 

(2.64) 

then, 

 
(2.65) 

 

2.6. The Quasi-Linear Viscoelastic Theory (QLV) 

Linear theory of viscoelasticity refers well to viscoelastic materials for infinitesimal 

strain. However, the non-linear stress-strain properties and viscoelastic response 

which is dependent on time and history are given by theory proposed by Fung in 1993 

called the quasi-linear viscoelastic (QLV) method which is provided for finite strain 

problems. In this theorem, the multiplication of a reduced relaxation function and a 

non-linear elastic response is specified as the relaxation function, where the reduced 

relaxation function and the elastic response are functions of time and strain only 

respectively. Therefore, there is a separable non-linear viscoelasticity kernel and the 

stress function is developed owing to the strain applied by using the superposition 

principle. The separable stress function is characterized by a reduced relaxation 

function ( ) and an instant elastic response ( ). 

 

 

(2.66) 

Using the superposition principle for , 

 

 

(2.67) 



 

 
 

26 
 

Therefore, at the time  the stress is a summation of all past changes contributions. 

This equation is a "hereditary integral," and stress at each moment is dependent on 

everything that has occurred in the past, on the whole history of stress. The lower limit 

of the integral supposed as which implies that the integration takes place before the 

motion starts. By replacing zero for the lower limit of integral the experimental 

condition can be represented. QLV model utilizes a continuous spectrum reduced 

relaxation function, which implies an unlimited number of series-lined standard linear 

solid models (figure 2.9). 

 

Figure 2.9. Unlimited number of series-connected standard linear solid models (Fung, 1993). 

 

For this model Fung proposed a reduced relaxation function as below: 

 

 

(2.68) 

where,  is the first exponential integral,  is the viscoelasticity degree of the 

material called the dimensionless positive constant,  and  are the short term and 

long term viscoelastic time constants respectively. In 2008 Craiem et al. stated that 

estimating the material constants of this reduced relaxation function because of the 

relatively larger number of parameters is problematic also it shows low sensitivity 

during procedures of adaptation. 
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2.7. The Fractional Order Viscoelastic Model (FOV) 

In 2005 Doehring et al. proposed a way to use a fractional order viscoelastic (FOV) 

model instead of QLV in modeling the material properties. FOV model uses a 

fractional order integral to explain the material behavior. As presented in figure 2.9 as 

well a description of the QLV model is an infinite series of standard linear solid 

models connected in series. If the all responses of those elements will be summated a 

wide and flat frequency response can be obtained, but the FOV model obeys a 

hierarchical structure to generate the connectivity between elements, which leads to a 

fractal type tree model (figure 2.10). There is an order of evolution, which is the non-

integer order of integration ( ), which determines the depth and branching of the tree. 

If  equals to 1, the model acts like a Newtonian fluid and when it is zero, the response 

will be purely elastic. Doehring et al. implemented QLV and its equivalent FOV 

constitutive models in 1-D to extract their material constants for aortic valve cusp 

tissue. They compared the results of both methods and the model with FOV 

constitutive law even was more accurate than the one with QLV. The other advantage 

of using the fractional method was extracting lower numbers of material parameters 

material response into non-linear elastic and linear viscoelastic behavior has been 

used. The only difference was using a function which includes the Mittag-Leffler 

function instead of using the relaxation function (equation 2.27). 

 

 

(2.69) 

where  and  are the short-term relaxation time constant and the long-term creep time 

constant respectively. 
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Figure 2.10. QLV (serial) and FOV (fractional) model spring and dashpot representations. (a) FOV 
may be depicted with a fractal tree model (b) varying in width and depth based on the fractional order 

 (Doehring et al., 2005). 

 

In 2005 Freed et al. had an investigation on choosing the best mechanical model 

between four elastic functions and five viscoelastic kernel functions using the 

compression and stress relaxation tests of Miller Young et al. (2002) to model the 

human calcaneal fat pad. They used the K-BKZ theory (Kaye, 1962; Bernstein et al., 

1963) which utilizes the strain energy function for providing the tensor form of the 

viscoelastic model. The best viscoelastic model has been chosen between generalized 

Maxwell model, the stretched exponential Kohlrausch-William-Watts, the QLV 

model, the FOV model, and a regularized fractional-derivative model. At the end using 
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The Akaike information criterion (AIC) information theoretic (Burnham and 

Anderson, 2002) a power law and a regularized fractional derivative is shown to have 

the best response for the elastic part and the viscoelastic kernel respectively.  

2.8. Implementing Viscoelastic Models Using Strain Energy Density Function 

Strain energy is the work to be accomplished in the reference state on the unit volume 

of the body to deform it to the current configuration (Fung, 1993). In 1975 James et 

al. proposed two analytical formulations for the strain energy function for isotropic 

and incompressible bodies having five or nine material parameters. The method of 

changing or modifying a strain energy function in accordance with a data set is a 

"three-dimensional analogue of simple curve-fitting" (Treloar, 1949). For instance, for 

materials which are isotropic, the strain energy function should be a function of both 

left and right Cauchy deformation tensors strain invariants. Known instances are 

models of materials such as Mooney in 1940, Rivlin in 1947 and Rivlin in 1965. If a 

material be perfectly elastic, there is a strain energy function , determined per unit 

volume of the body in the current configuration and the body is termed as  

"hyperelastic" or "Green elastic" when the material has a strain-energy function, which 

is in terms of a scalar function of one of the strains and deformation tensors whose 

derivative determines the stress component with respect to the strain component 

(equation 2.70) (Malvern, 1969). 

 

 

(2.70) 

where, , ,  and  are the strain energy per unit volume for the current 

configuration, the Green-Lagrange finite strain tensor, the symmetric right Cauchy-

Green deformation tensor and the symmetric second Piola-Kirchoff stress tensor 

respectively. 

For isotropic materials when they are deformed the elastic strain energy  could be 

defined as a function of the strain invariants of Green-Lagrange finite strain tensors 

,  and  (James et al., 1975). 
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(2.71) 

 
=  

 

(2.72) 

 

 

(2.73) 

 

 

(2.74) 

where,  are the material parameter constants and  is the principal stretch. 

For incompressible materials (  and ) the strain energy density 

function becomes as below: 

 

 

(2.75) 

 

The temperature is supposed to remain constant throughout these formulations, 

(isothermal mechanical behavior) and the strain energy function is dependent only on 

the end-state strain and not on the strain history (Ogden R. W., 1972). Incompressible 

materials have high effective bulk modulus, therefore, the big volumetric stresses are 

as a result of small volumetric strains, the hydrostatic part of the stress tensor is so 

sensitive to the variations in the hydrostatic strain. To tackle this difficulty, the strain 

energy function has been divided into deviatoric and volumetric parts (Malkus and 

Hughes, 1978; Liu and Choudhry, 2004). As regards volumetric and deviatoric 

deformations, the elastic and inelastic characteristics of a certain material often display 

distinct behaviors. This needs the additive splitting of the strain energy function as a 

function of principal strain invariants (equation 2.76) and principal stretch ratios 

(equation 2.77).  

 

 

(2.76) 

 (2.77) 
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 is the deviatoric part of the strain energy function which has been defined in terms 

of the tensor ( ). For incompressible materials Jacobian is equal to one. A 

time-dependent strain energy function could be described as a product of an elastic 

strain energy function which is non-linear and a stress relaxation function which is 

time-dependent (when stress is acquired from strain) or a creep compliance which is 

time-dependent (when strain is derived from stress). 

Although many Mooney material formulizations are utilized in literature to model the 

in-vivo indentation of bulk muscular soft tissue. In 2004 Tonuk and Silver-Thorn used 

the extended form of viscoelastic the James-Green-Simpson nonlinear elastic material 

formulization which is the third-order deformation Mooney, to simulate the time-

dependent mechanical behavior of residual limb soft tissues to indentation. They 

simulated their model using a generalized linear Kelvin-Voigt material model (figure 

2.11). 

 

 

Figure 2.11. A generalized linear Kelvin-Voigt material model (Tonuk and Silver-Thorn, 2004). 

 

Equation 2.73 is a strain energy density function in relaxation form.   is the instant 

strain energy density and the term in the bracket is the two terms Prony series 

representation which represents the constitutive law of the generalized Kelvin-Voigt 

linear viscoelastic material model.   and  are the short and long-term relaxation 

magnitude and  is the time constant. 
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(2.78) 

It has been shown that the viscoelastic model of three-element fractional order 

standard linear solid model fits the experimental outcomes better than the 

representation. Therefore, a correction for the above formulation is proposed so that 

three-element fractional order relaxation function can be replaced by the two term 

Prony series. Therefore, equation 2.73 turns into equation 2.74. It can be concluded 

that the number of constants to be estimated are decreased by incorporating non-

integer order derivatives in constitutive relationships since, the total number of 

constants becomes nine for this formulation (5 nonlinear elastic constants and 4 

viscoelastic constants for three elements), which is fewer than the number of constants 

used in the ten-parameter two-term Prony series representation (five nonlinear elastic 

parameters and five viscoelastic constants for each element) (Demirci and Tonuk, 

2014).  

 

 

(2.79) 

 

 

(2.80) 

In 2014 Demirci and Tonuk developed a user subroutine which was written in 

FORTRAN for equation above which have been implemented to finite element 

software MSC. MARC Using first and second principal stretch ratios, the 

instantaneous (glassy) strain energy density function was defined. The bulk modulus 

of soft tissue was modeled as 1000 times the initial tangent modulus which turned out 

to be nearly incompressible material. The user subroutine and finite element model 

using this subroutine were exhaustively checked against known responses and the 

accuracy was found to be satisfactory.  
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In order to determine the capability of non-integer order material model for simulating 

soft biological tissues, in-vivo experiments have been done on human fore-arm bulk 

soft tissues. A computer controlled custom-made indenter having a step motor and a 

loadcell to measure tissue reaction force are utilized to perform these experiments 

(Petekkaya and Tonuk, 2011). The non-integer order relaxation and creep functions 

were tested against experimental force-relaxation and creep data. Cyclic loading and 

unloading, relaxation and creep experimental data was used in inverse finite element 

modeling with non-integer order viscoelastic material model for the purpose of 

material parameter identification. 

The results showed that the optimization of material coefficients which have been 

gained using relaxation experiments with creep experimental data can simulate 

relaxation, creep and cyclic loading and unloading experiments. The non-integer order 

time dependent behavior was found to be a good candidate for simulating indentation 

experiment of the soft biological tissues. Structural or micro-structural elastic material 

models together with non-integer time dependent behavior may supply better insight 

to observed mechanical behavior of soft biological tissues however obtaining 

structural or micro-structural information of the soft tissue to be modelled might not 

be as simple as performing indentation experiments. 

In 2008 Bummo and Jung extracted the material characterization of the porcine liver. 

For the experiment part, in-vitro indentation tests have been utilized using a 

hemisphere tip indenter and an electromechanical indentation system. In order to 

model the tissue behavior, they used the quasilinear viscoelastic framework (Fung, 

1996). This hypothesis divides the mechanical behavior into a linear viscoelastic 

stress- relaxation response and a time-independent elastic response which for the 

elastic response a hyperelastic material model. By separating the material model into 

the models which were mentioned the procedure of estimating material parameters 

reduced considerably. The least squares method in MATLAB has been used in order 

to get the constants of the viscoelastic model, and then parameters related to the 

hyperelastic model were extracted using the inverse finite element approach. 
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Many methods have been proposed to derive non-integer derivative constitutive 

models. In 2015 Fukunaga and Shimizu proposed a method for finite deformation of 

viscoelastic bodies to generate the non-integer derivative constitutive equations. One 

of the potent ways in establishing 3D fractional constitutive laws is using the 

generalized Maxwell model (figure 2.12) for a viscoelastic material. Since the origin 

of dynamical conduct of the viscoelastic bodies is from different combinations of 

elastic and viscous elements, the strain energy of the elastic elements has an important 

role in deriving the non-integer derivative constitutive law. A generalization of an 

objective time rate of strain to non-integer order represents the non-integer derivative 

model. Then, the method can be used to determine a non-integer derivative model as 

a function of the second Piola Kirchhoff stress. Also, another non-integer derivative 

model is obtained as a function of the Biot stress tensor. At the end, both of those 

methods have been compared to each other and the data fitted well. 

 

 

Figure 2.12. The Generalized Maxwell Model (Fukunaga and Shimizu, 2015). 

 

2.9. Implementing Viscoelastic Models Using Boltzmann Superposition   

Utilizing the strain energy function is not the only way to implement viscoelastic 

material models into finite element codes. Another method which can be used is using 

the matrix of Jacobian. To obtain the Jacobian of the viscoelastic model for each 
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instant of time from the constitutive equation the Boltzmann superposition principle 

(equation 2.48) is a good solution since it gives the strain history for any stress 

distribution when the creep function is available and gives the stress history when 

there is relaxation function (Alotta et al., 2018). Although convolution works for linear 

functions for this specific problem by taking small time increments Boltzmann 

superposition can be utilized. 

 

 

(2.81) 

 

 

(2.82) 

where, the creep function is: 

 

 

(2.83) 

And the relaxation function is: 

 

 

(2.84) 

Then by implementing creep and relaxation functions in equations above: 

 

 

(2.85) 

 

 

(2.86) 

 is the Riemann-Liouville fractional integral and  is  

non-integer derivative of order . Where  is between zero and one and  is its 

viscosity coefficient. 
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In this study, the fractional 3-D constitutive models are evaluated using the same 

approach (Boltzmann superposition principle) and their numerical solution to 

implement in the finite element software ABAQUS/Standard have been developed. In 

the next chapter, the method used in this survey is explained in detail. 
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CHAPTER 3  

 

3. METHODOLOGY 

 

3.1. Grünwald Coefficient 

As mentioned in Chapter 2, the integer-order derivative of function  is: 

 

 

(3.13) 

where, for integer  and  and for : 

 

 

(3.14) 

and for : 

 

 

(3.3) 

By replacing  instead of  equation 3.1 becomes: 

 

 

(3.4) 

where,  

To use the equation 3.4 for non-integer m and integer  ,  can be replaced by 

(  has been replaced by ): 

 

 

(3.5) 
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for , 

 (3.6) 

 

for  

 

 

(3.7) 

Then, the Grünwald fractional derivative for non-integer  will be derived: 

 

 

(3.8) 

where, 

 

 

(3.9) 

 is the Grünwald coefficient. 

To be able to implement the fractional derivative into finite element software its 

numerical solution should be evaluated. Similar to the numerical integral assessment, 

non-integer derivatives could be calculated by approximating the infinite sum in 

Equation 3.8 by a finite sum, such that  thus,  can be roughly assessed 

as follows: 

 
(3.15) 

 

Using the property of fading memory which has been introduced by Podlubny in 1999, 

the numerical evaluation of Grünwald coefficient is equation 3.14 (Schmidt and 

Gaul,2002). 
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Since, 

 (3.16) 
 

Then, 

 
 

(3.17) 

 

 

(3.18) 

 

(3.19) 

Based on creep and relaxation experiments which were done on different materials 

like polymers, rubbers, etc. It has been found that for the simplest case where only one 

stress component (hydrostatic or deviatoric stress) is available, their creep or 

relaxation behavior can be fitted by power laws of real order, so the creep and 

relaxation functions can be defined as below (Tovrik and Bagley, 1984; Nutting, 

1921): 

 

 

(3.20) 

 

 

(3.21) 

where,  is the material parameter which can be obtained by curve fitting. 

As discussed in previous chapter in the domain of linear viscoelasticity the Boltzmann 

superposition principle is valid therefore: 

when the relaxation function is available the stress in terms of strain history is: 

 
(3.22) 
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and when the creep function is available the strain in terms of stress history is: 

 

 

(3.18) 

Equations 3.17 and 3.18 are mostly called hereditary integrals. 

3.2. Generalizing a 3-D Isotropic Constitutive Law for a FKV Model 

 

 

Figure 3.1. Fractional Kelvin-Voigt (FKV) model. 

 

For a fractional Kelvin-Voigt model the relaxation and creep functions are as below: 

 

 

(3.19) 

 

 

(3.23) 

where is the one parameter Mittag-Leffler function which can be evaluated using 

equation 2.11 by taking  as one. 
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Also, the relaxation and creep tensors for an isotropic material are as follows: 

 

 

(3.24) 

 

 

(3.25) 

Where  and  are the volumetric and deviatoric relaxation functions and 

 and  are the volumetric and deviatoric creep functions respectively. 

Here to generate the behavior of fractional Kelvin-Voigt model the relaxation function 

has been utilized. 

The tensor form of the Boltzmann superposition principle is: 

 
(3.23) 

 

By substituting equation 3.21 into Boltzmann superposition principle a constitutive 

law for the fractional Kelvin-Voigt model will be obtained. 

 

 

(3.24) 

 

 

(3.25) 

 

 

(3.26) 



 

 
 

42 
 

Equations 3.27 and 3.28 are power law functions for the volumetric and deviatoric 

relaxation functions respectively which have been derived by means of equation 3.19. 

where and are the anomalous bulk and shear relaxation moduli, respectively.  

and  are real numbers indicating the orders of bulk and shear power laws, 

respectively.  

3.3. Numerical Evaluation of the Constitutive Model of FKV 

In order to evaluate the numerical solution of the constitutive model (equation 3.24) 

there are two different equations for normal and shear stresses. 

3.3.1. Normal Stresses 

To obtain the constitutive equation for normal stresses, the procedure is as follows: 

, and also by considering  , 

 

 

(3.27) 

where, 

 

 

(3.28) 

By considering deviatoric and volumetric relaxation functions as equation 3.25 and 

equation 3.26 the constitutive equation for the  time increment is: 
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(3.29) 

Using what Podlubny has proved for fractional derivatives in his text book the 

integrals in the equation 3.29 can be solved as: 

 

 

(3.30) 

Equation 3.30 is the Caputo fractional derivative of order . 

Equation 3.10  will be evaluated numerically using equation 3.14 and the 

constitutive equation turns into the following equation: 

 

 

(3.31) 

 and  have been evaluated in the same way. 
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3.3.2. Shear Stresses 

Shear stresses are obtained in the same approach, the only difference is this time 

. 

 

 

(3.32) 

3.4. Finite Element Implementation 

3.4.1. UMAT Subroutine 

ABAQUS/Standard involves an interface that provides an environment for the user to 

implement different constitutive equations. The developed material model will be 

implemented into user subroutine UMAT in ABAQUS/Standard. This interface 

allows any constitutive model with any complexity to be developed. 

3.4.1.1. Steps Required in Writing a UMAT  

In order to develop a UMAT subroutine, the appropriate description for the 

constitutive equation is needed to be done so by the explicit description of stress or 

the description of stress rate only. To get the incremental constitutive equation three 

methods are available, depending on the type of the problem one can be selected. One 

these methods is forward Euler. Forward Euler or explicit integration approaches of 

integration are easy but have a boundary of stability where it is generally less than the 

magnitude of the elastic stress. It should be noted that the time stepping has to be 

monitored for explicit integration. The algorithm is more complex for implicit or 

midpoint integration and often needs local iteration. Usually, though, there is no limit 

to stability.  

To write the UMAT, the Jacobian matrix of the constitutive model should be 

calculated: 
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The coherent Jacobian for infinitesimal strain problems or finite strain problems with 

small volume changes.  

 
(3.26) 

 

where  stress increment and  is the strain increment. This matrix can be non-

symmetric as a result of the constitutive equation or integration procedure. The 

variables which should be passed in for information and which should be calculated 

by the user in UMAT  

3.5. Developing a UMAT Subroutine for FKV Model 

In this section, the procedure of writing a UMAT code for fractional Kelvin-Voigt 

model will be explained. Using equation 3.31, the stress increment for the  

increment will be: 

 

 

(3.34) 

where,  

 

 

(3.27) 

The other normal stress components will be evaluated in the UMAT by rotating the 

stress component indices. Consequently, only equation 3.34 was coded. 
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If , then, 

 

 

(3.36) 

 

 

(3.28) 

 

 

(3.38) 

 

 

(3.39) 

If this Jacobian matrix called ,  and  are the   and the 

 components of that matrix respectively. The Jacobian will be a symmetric matrix: 

 

 

(3.40) 

 

 

(3.41) 

The finite element software ABAQUS receives the evaluated Jacobian that has the 

meaning of tangent stiffness. By evaluating the inverse of this Jacobian matrix the 

tangent compliance will be obtained which will be used to calculate the next strain 

increment to give again to the UMAT for the next step. 

If , then, 
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(3.42) 

 

 

(3.43) 

 

 

(3.44) 

 

 

(3.45) 

 

 

(3.46) 

+

 

 

(3.47) 

If , then, 
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(3.48) 

 

 

(3.49) 

 

 

(3.50) 

 

 

(3.51) 

 

 

(3.52) 

 

then, 

(3.53) 
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(3.54) 

By increasing  the stress increment for each time step will be calculated, the 

algorithm to write the Jacobian matrix in UMAT is presented in figure 3.3. The same 

procedure has been applied for the shear stresses. The related code has been written 

using Fortran 90, the most important problem during the coding is strain history. By 

defining a matrix at the beginning of the code the stain increments for each step were 

stored in the related column of it (figure 3.2). 

 

 

Figure 3.2. Flow chart for the Jacobian matrix. 
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Figure 3.3. Flow chart for the strain history matrix. 

 

3.6. Developing a UMAT Subroutine for Fractional Standard Linear Solid Model 

 

 

Figure 3.4. Fractional Standard Linear Solid Model. 
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In 2018 Alotta et al. claimed that equations 3.55 and 3.56 are capable of describing 

the behavior of the standard linear solid model (figure 3.4), but they did not report any 

numerical and theoretical solution to prove this claim. In this section these equations 

are expanded to be able to implement them in finite element code, on the other hand, 

numerical solution for these equations will be evaluated and the UMAT code will be 

written just like previous sections. 

 

 

(3.55) 

 

 

(3.56) 

where, 

 

 

(3.29) 

 

 

(3.58) 

The equation 3.55 has been expanded in equation 3.58 for . 
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(3.59) 

where, 

 

 

(3.60) 

 

 

(3.61) 

 

 

(3.62) 

 

 

(3.63) 

The stress increment at  increment presented in equation 3.64. 

The same procedure is used for deriving the finite element code for shear stress. The 

procedure of extracting the Jacobian for each increment is as same the method which 

has been used for fractional Kelvin-Voigt model. The only difference is that for the 

FKV model only a history for strains existed but for the fractional standard linear solid 

model the constitutive equation includes both the strain and stress history. To tackle 
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this problem another matrix for stress increments were defined the same as the strain 

increments in FKV model. The results and also the analytical solutions for both 

models are presented in the next chapter. 

 

(3.30) 
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CHAPTER 4  

 

4. RESULTS AND DISCUSSION 

 

4.1. Fractional Kelvin-Voigt (FKV)Model 

The Fortran code for the equation 3.34 has been developed and linked to the finite 

element software ABAQUS/Standard. The code has been run for the relaxation and 

creep tests for a single element. The element type was C3D8 for a cube (figure 4.1), 

the size of the cube was . The code was run for 10 seconds with an adaptive 

. The duration of the analysis was about 15 minutes which was not too 

long for an ordinary laptop with the installed memory RAM of 16 GB. Also the 

computational results were compared to the analytical outcomes which will be 

explained in the following pages.   

 

 

Figure 4.1. The single element in the ABAQUS software. 
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4.1.1. Analytical Solution  

The boundary conditions applied for the analytical solution is as below: 

) 

 

(4.1) 

 

 

(4.2) 

 is the step function. 

 

 

By substituting equations 3.27 and 3.28 into the Boltzmann superposition formula, 

and using equation 4.1 the equation below for the stress in the direction which 

displacement was applied which is the relaxation function will be obtained 

(considering that the orders of bulk and shear power laws are equal ( )): 

 

 

(4.3) 

where  and the other material constants are available in table 4.1. 

Table 4.1. Material parameters which used for fractional Kelvin-Voigt model (Alotta et al., 2018). 

Material Parameter Value Unit 
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To obtain the analytical result for the fractional Kelvin-Voigt model equation 4.3, has 

been plotted using MATLAB software (figure 4.3). 

4.1.2. Computational Results 

For  the analytical results have been compared to the computational graph 

(figure 4.3). The boundary conditions applied for the finite element approach is the 

same as analytical approach in which a single element has been considered. The 

displacement which was applied to one face of the cube in the x direction was  of 

its original length and the opposite face restricted in all directions. The displacement 

was applied as a ramp for one second and then it remained constant for 9 seconds 

(figure 4.2). As shown in the figure both results fit each other very good, which is a 

verification of the UMAT code. 

The different behavior of this model by changing the value of the fractional coefficient 

is possible. In figure 4.4 those behaviors for are shown. 

As it is obvious as the amount of  increases the rubbery behavior of the model 

increases as well and as it decreases the glassy behavior of the material decreases. 

 

 

Figure 4.2. Strain history during the relaxation test (the strain in the curve is ). 
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Figure 4.3. Comparison between analytical and computational results for the relaxation test for the 
fractional Kelvin-Voigt model (the stress in the curve is ). 

 

When the fractional coefficient be one, the fractional Kelvin-Voigt model turns into 

the classical Kelvin-Voigt model (with dashpot). The behavior of the model under this 

condition is shown in figure 4.4. Another simulation which analyzed for this model 

was the creeping test. This time the total stress of 10 MPa was applied to one face of 

the cube and the opposite face was constrained in the direction which stress applied 

(figure 4.5). The computational results for the creep test for different fractional 

coefficients are shown in the figure 4.6 and figure 4.7. 
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Figure 4.4. Different behavior of the fractional Kelvin-Voigt model for relaxation test for different 
values of fractional coefficient (the stress in the curve is ). 

 

Figure 4.5. Stress history during the creep test (the stress in the curve is ). 
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Figure 4.6. Different behavior of the fractional Kelvin-Voigt model for creep test for different values 
of fractional coefficient (the strain in the curve is ). 

 

Figure 4.7. Different behavior of the fractional Kelvin-Voigt model for creep test for different values 
of fractional coefficient (the strain in the curve is ). 
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4.2. Single Fractional Element (Spring-Pot) 

By considering the relaxation function of a single spring-pot (equation 4.4) the 

deviatoric and volumetric relaxation functions will be obtained (equations 4.5 and 

4.6). 

 

 

(4.4) 

then, 

 

 

(4.5) 

 

 

(4.31) 

By substituting the deviatoric and volumetric relaxation functions in the Boltzmann 

superposition principle the following constitutive equation for a single spring-pot will 

be obtained: 

 

 

(4.7) 

By looking at equation 4.7 and equation 3.29 it can be conducted that by taking and 

, as zero in the equation 3.29 the equation 4.7 will be evaluated. 

Therefore, instead of generating a new code for the fractional element by taking  and 

 in the FORTRAN code of the fractional Kelvin-Voigt the behavior of the spring-
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pot can be simulated easily. The boundary conditions are the same as fractional 

Kelvin-Voigt model. The computational results for this model which present the 

relaxation and creep tests are shown in figures 4.8, 4.9 and 4.10. 

 

 

Figure 4.8. Different behavior of the single spring-pot for the relaxation test for different values of 
fractional coefficient (the stress in the curve is ). 
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Figure 4.9. Different behavior of the single spring-pot for creep test for different values of fractional 
coefficient (the strain in the curve is ). 

 

Figure 4.10. Different behavior of the single spring-pot for creep test for different values of fractional 
coefficient (the strain in the curve is ). 
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4.3. Fractional Standard Linear Solid Model 

4.3.1. Analytical Solution 

For a fractional standard linear solid model, the relaxation function is given as: 

 

 

(4.32) 

therefore its volumetric ( ) and deviatoric ( ) parts will be written as: 

 

 

(4.9) 

 

 

(4.10) 

a strain history (equation 4.1) for  was applied as one of the boundary conditions 

and . Using these equations and the Boltzmann superposition 

with the same procedure which has been taken for the analytical solution of the 

fractional Kelvin-Voigt model the stress at the direction which displacement applied 

will be gained (equation 4.11). 

 

 

(4.11) 
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where  is the two parameter Mittag-Leffler function. Equation 4.11 has been 

plotted in MATLAB using parameters in table 4.2 as the analytical solution for the 

fractional standard linear solid mode (figure 4.11). 

Table 4.2. Material parameters used for fractional standard linear solid model (Alotta et al., 2018). 

Material Parameter Value Unit 

   

   

   

   

   

   

 

4.3.2. Computational Results 

The equation 4.11 was plotted in MATLAB using the function which developed by 

Igor Podlubny for Mittag-Leffler function in this software (MATLAB and Statistics 

Toolbox Release 2016b). and the computational and analytical results were compared 

in Figure 4.11. The element type was C3D8 and since for this model both strain and 

stress histories are needed the duration of analysis was about 30 minutes which is 

double the analysis time needed for the fractional Kelvin-Voigt in which only the 

strain history is required. Both fractional coefficients were taken as 0.3. Based on 

figure 4.10 the results from the analytical approach and the finite element approach 

are in a good agreement with each other which is a verification for the UMAT. The 

behavior of this model for the relaxation and creep tests with the same strain and stress 

histories (figures 4.2 and 4.5) are shown in figures 4.12, 4.13 and 4.14. 
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Figure 4.11. Comparison between analytical and computational results for the relaxation test for the 
fractional standard linear solid model (the stress in the curve is ). 

 

Figure 4.12. Different behavior of the fractional standard linear solid model for the relaxation test for 
different values of fractional coefficient (the stress in the curve is ). 
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Figure 4.13. Different behavior of the fractional standard linear solid model for creep test for 
different values of fractional coefficient (the strain in the curve is ). 

 

Figure 4.14. Different behavior of the fractional standard linear solid model for creep test for 
different values of fractional coefficient (the strain in the curve is ). 
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To determine the behavior of the coded model under different circumstances a 

different strain history and stress history are applied with a different amplitude (figures 

4.15 and 4.16). The computational outcomes for relaxation and creep tests for 

fractional Kelvin-Voigt and fractional standard linear solid models are shown in 

figures 4.17 and 4.18, 4.19, 4.20, 4.21 and 4.22. 

 

 

Figure 4.15. Strain history during the relaxation test (the strain in the curve is ). 
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Figure 4.16. Stress history during the creep test (the stress in the curve is ). 

 

Figure 4.17. Different behavior of the fractional Kelvin-Voigt model for the relaxation test for 
different values of fractional coefficient (the stress in the curve is ). 
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Figure 4.18. Different behavior of the fractional standard linear solid model for the relaxation test for 
different values of fractional coefficient (the stress in the curve is ). 

 

Figure 4.19. Different behavior of the fractional Kelvin-Voigt model for creep test for different 
values of fractional coefficient (the strain in the curve is ). 



 

 
 

71 
 

 

Figure 4.20. Different behavior of the fractional Kelvin-Voigt  model for creep test for different 
values of fractional coefficient (the strain in the curve is ). 

 

Figure 4.21. Different behavior of the fractional standard linear solid model for creep test for 
different values of fractional coefficient (the strain in the curve is ). 
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Figure 4.22. Different behavior of the fractional standard linear solid model for creep test for 
different values of fractional coefficient (the strain in the curve is ). 

 

The analytical outcomes fitted the theoretical results for all material models well. It 

has been shown that stress will increase through relaxation testing by raising the strain. 

The material model starts relaxing when the strain starts to stay constant and in this 

case the real behavior of a viscoelastic model during the relaxation tests was well 

simulated. During the creep test when the stress increases the strain in the direction 

which the stress has been applied ( ) increases as well then the applied stress began 

to stay constant and the model started to creep. Due to the poisson effect the strains in 

the other directions ( and ) started to decrease by increasing the stress .There is 

one thing in common between all of the graphs represented in this chapter. In all of 

them increasing the fractional coefficient makes spring-pot less elastic and more 

viscous therefore, it is possible to see the smooth transition between elastic and 

viscous behavior just by changing the fractional coefficients. Also, it has been showed 
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that although the classical Kelvin-Voigt model (figure 4.4, when )  cannot 

demonstrate the real material behaviors but with the fractional form of it is possible to 

develop real behavior of materials (figure 4.4, when . Utilizing this 

approach viscoelastic models can be developed which demonstrates the material 

behavior for any stages of rubbery and glassy conduct which is an advantage in 

comparison to classical viscoelastic material models. On the other hand, classical 

viscoelastic material models are a special case of this approach ( ). 
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CHAPTER 5  

 

5. CONCLUSION AND RECOMMENDATIONS FOR FUTURE STUDIES 

 

5.1. Conclusion and Discussion 

In this study isotropic 3-D fractional constitutive models utilizing linear viscoelasticity 

theory have been developed for the fractional Kelvin-Voigt and the fractional standard 

linear solid models. The application of Boltzmann superposition principle has been 

demonstrated throughout this work. The discretized form of the fractional derivative 

generated by Grünwald-Letnikov were used to evaluate the numerical solutions of the 

constitutive models to be able to implement them in ABAQUS/Standard. 

The related fractional constitutive models have been implemented into FE software 

ABAQUS/Standard using the UMAT routine. Although the proposed material models 

are capable of using in simulation of finite strain but the verification has been done 

only for small strain to simplify the analytical solution. In this study the user defined 

subroutine has been generated using the Jacobian matrix not the strain energy density 

function. By comparing the results obtained using finite element approach for 

relaxation and creep tests with the analytical methods for a single element, it was 

shown that the derived constitutive models are capable of simulating the real response 

of a linear viscoelastic body successfully. Based on the results related to the fractional 

Kelvin-Voigt model the ability of this model in predicting real behavior of the 

viscoelastic materials in comparison with the classical model has been demonstrated. 

The most important difficulty during the coding was the hereditary dependency of the 

models which means the strain and stress history. It was shown that for the fractional 

Kelvin-Voigt model only the strain history is required while for the fractional standard 

linear solid model besides the strain history, a history for stresses is needed at the same 

time. This problem has been tackled by defining matrices for stresses and strains. All 
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stress and strain increments for every time step were stored in the related column of 

these matrices. The models presented in this work can simulate the response of the 

viscoelastic materials by changing the fractional coefficient from glassy to rubbery. 

Also, the behavior of a single spring pot (fractional element) was simulated using the 

constants which appeared in the constitutive equations of the standard linear solid 

model is seven parameters which is considerably lower than the proposed equations 

which evaluated using other methods (nine parameters using the strain energy density 

function), which can be so beneficial in case of extracting material parameters using 

experimental data. Also, it has been demonstrated that the stress and strain history for 

each fractional viscoelastic model at each Gauss point of each component is accessible 

as column matrices which is crucial for the positive implementation of the model. This 

research shows that it is possible to implement 3D fractional viscoelastic models into 

FE software, easily and efficiently.  

5.2. Future Studies 

There are some works which can be done in the future: 

1- The first work that can be done in the development of multi-element subroutine 

codes. It can also be done by using better workstations by using a special file 

to store the stress and stress history instead of the matrices, the amount of 

memory required can be significantly reduced.  

2- These findings can be used to obtain material parameters by fitting the 

experimental results to the relaxation and creep tests.  

3- All the assumptions taken in this research are based on the condition of 

isotropy. Another work can be an assessment of the constitutive 3-D 

anisotropic models that will be simulated by using more materials and their 

behaviors. 

4- In determining material features, temperature is a significant parameter. 

UMAT subroutines can therefore be created by taking into account this issue 
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using the matrix called , which is the variation of the 

temperature-related stress increments. 
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