
TELEGRAM SCHEDULING FOR THE PERIODIC PHASE OF THE
MULTIFUNCTION VEHICLE BUS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA ÇAĞLAR GÜLDİKEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2020

Approval of the thesis:

TELEGRAM SCHEDULING FOR THE PERIODIC PHASE OF THE
MULTIFUNCTION VEHICLE BUS

submitted by MUSTAFA ÇAĞLAR GÜLDİKEN in partial fulfillment of the re-
quirements for the degree of Master of Science in Electrical and Electronics En-
gineering Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Klaus Werner Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Prof. Dr. Ece Güran Schmidt
Co-supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Uğur Halıcı
Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Werner Schmidt
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Prof. Dr. Mehmet Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Orhan Gazi
Electronic and Communication Engineering,
Çankaya University

Date: January 31, 2020

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Mustafa Çağlar Güldiken

Signature :

iv

ABSTRACT

TELEGRAM SCHEDULING FOR THE PERIODIC PHASE OF THE
MULTIFUNCTION VEHICLE BUS

Güldiken, Mustafa Çağlar

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Klaus Werner Schmidt

Co-Supervisor : Prof. Dr. Ece Güran Schmidt

January 2020, 97 pages

Train communication network comprises different standards such as the Wire Train

Bus (WTB) for the data exchange among different vehicles and the Multifunction

Vehicle Bus (MVB) for the data communication within vehicles. Specifically, MVB

is a highly robust real-time field bus specifically designed for control systems built

into rail-vehicles. MVB supports both periodic process data and sporadic message

data transfers in the form of telegrams.

In order to achieve timely and efficient data exchange on MVB, the available band-

width has to be used efficiently. Accordingly, the main focus of this thesis is the

development of systematic scheduling approaches for periodic telegrams on MVB.

In this respect, the thesis provides four main contributions. First, the thesis proposes

an original integer linear programming (ILP) formulation for the schedule computa-

tion on MVB. Second, the thesis develops 5 basic heuristic algorithms for the fast

computation of feasible MVB schedules. Third, the thesis introduces several swap

operations for improving the schedules obtained from the basic heuristics. Finally,

the thesis presents a comprehensive evaluation of the developed scheduling methods.

v

This evaluation shows that, different from the proposed heuristics, the ILP formula-

tion cannot provide solution schedules for large telegram sets with reasonable run-

times. Specifically, two of the proposed heuristics and two of the developed swap

operations are found most suitable as a practical solution to the MVB scheduling

problem.

Keywords: Train Communication Network, Multifunction Vehicle Bus, scheduling,

integer linear programming, heuristics

vi

ÖZ

ÇOK FONKSİYONLU ARAÇ VERİYOLU’NUN PERİYODİK FAZI İÇİN
TELEGRAM ÇİZELGELEMESİ

Güldiken, Mustafa Çağlar

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Klaus Werner Schmidt

Ortak Tez Yöneticisi : Prof. Dr. Ece Güran Schmidt

Ocak 2020 , 97 sayfa

Tren haberleşme ağı, farklı araçlar arasındaki veri aktarımını sağlayan WTB (Wire

Train Bus) ve araç içindeki veri iletişimini sağlayan MVB (Multifunction Vehicle

Bus) gibi farklı standartları kapsamaktadır. MVB, özellikle demiryolu araçları içe-

risindeki kontrol sistemleri için tasarlanmış son derece sağlam, gerçek zamanlı bir

veriyoludur. MVB, hem periyodik işlem verilerinin hem de aperiyodik mesaj verile-

rinin aktarımını telegramlar ile yapmaktadır.

MVB için, zamanında ve verimli veri alışverisi yapabilmek amacıyla mevcut bant ge-

nişliğinin etkili kullanılması gerekmektedir. Buna göre tez, esas olarak MVB üzerin-

deki periyodik telegramlar için sistematik çizelgeleme yaklaşımlarının geliştirilme-

sine odaklanmaktadır. Bu bağlamda, tezin dört temel amacı bulunmaktadır. İlk olarak

tez, MVB çizelgeleme işlemi için özgün tamsayılı doğrusal programlama (ILP) for-

mülasyonunu sunmaktadır. İkinci katkı olarak tez, uygun MVB çizelgeleme işlemi-

nin hızlı yapılabilmesi için 5 farklı temel buluşsal algoritma geliştirmektedir. Üçüncü

olarak tez, temel buluşsal algoritmalar tarafından oluşturulan çizelgelemelerin gelişti-

vii

rilmesi için değişim işlemlerini tanıtmaktadır. Son olarak tez, geliştirilen çizelgeleme

metotları için kapsamlı değerlendirmeleri sunmaktadır. Bu değerlendirmeler, ILP for-

mülasyonunun geliştirilen buluşsal algoritmalardan farklı olarak büyük veri setleri

için makul çalışma süreleri içerisinde uygun çizelgelemeyi yapamadığını göstermek-

tedir. Özellikle, hem geliştirilen buluşsal algoritmaların hem de değişim işlemlerinden

ikisi MVB çizelgeme probleminde en uygun pratik çözümlerdir.

Anahtar Kelimeler: Tren Haberleşme Ağı, Çok Fonksiyonlu Araç Haberleşmesi, çi-

zelgeleme, tamsayılı doğrusal programlama, buluşsal algoritmalar

viii

To my wife Elif and my family

ix

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my supervisor Prof. Dr.

Klaus Schmidt and co-supervisor Prof. Dr. Ece Güran Schmidt, for their excellent

guidance and continuous support of my research. I am thankful for their encourage-

ment and helpful discussions which were very beneficial throughout the study.

I thank my company ASELSAN Inc. for giving me the opportunity of continuing my

education.

I would like to thank my team leader and my colleagues in ASELSAN Inc. for their

support. I also thank all my friends who never hesitated from giving their invaluable

supports and trust to me in any condition.

I wish to thank my parents, my brother, and my sister who never hesitated from giving

their supports to me throughout my life.

My deepest appreciation to my precious wife Elif, for her endless support, trust, pa-

tience and unconditional love during this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

2 MULTIFUNCTION VEHICLE BUS: BACKGROUND 5

2.1 Train Communication Network (TCN) 5

2.2 Multifunction Vehicle Bus (MVB) 6

3 BASIC HEURISTIC ALGORITHMS FOR TELEGRAM SCHEDULING
ON MVB . 11

3.1 Problem Statement . 11

3.2 Optimal MVB Scheduling using Integer Linear Programming 14

3.3 Basic Heuristic Algorithms . 16

3.3.1 Minimum Accumulated BP (MAB) Algorithm 18

xi

3.3.2 Cursor and Flag (CF) Algorithm 20

3.3.3 Randomized Minimum Accumulated BP (R-MAB) Algorithm 24

3.3.4 Minimum Longest BP (MLB) Algorithm 27

3.3.5 Scaled Average BP (SAB) Algorithm 30

3.4 Evaluation of the Basic Heuristic Algorithms 34

3.4.1 Environment . 34

3.4.2 Data Set For Evaluation . 35

3.4.2.1 More Frequent Telegrams 36

3.4.2.2 Normal Telegrams . 41

3.4.2.3 Less Frequent Telegrams 46

3.4.2.4 Equal Distributed Telegrams 50

3.4.3 Discussion of the Basic Heuristics 55

4 SWAP OPERATIONS FOR TELEGRAM SCHEDULING ON BASIC AL-
GORITHMS . 59

4.1 Swap Operations Definition . 59

4.1.1 Swap Operation According to Maximum Basic Period Dura-
tion (SMB) . 60

4.1.2 Swap Operation According to Sum Of Basic Period Duration
(SSB) . 64

4.1.3 Swap Operation Looking At The Next Two Telegrams (S2T) . 69

4.1.4 Swap Operation Comparing Three Telegrams (S3T) 74

4.2 Swap operations Evaluation . 78

4.2.1 More Frequent Telegrams . 78

4.2.2 Normal Telegrams . 82

xii

4.2.3 Less Frequent Telegrams . 85

4.2.4 Equal Distributed Telegrams 87

4.3 Discussion . 89

5 CONCLUSION . 93

REFERENCES . 95

xiii

LIST OF TABLES

TABLES

Table 2.1 Telegram Durations . 9

Table 3.1 Sample Telegram Set For the MVB Scheduling Problem 12

Table 3.2 Sample Telegram Data Set With Durations and Periods 17

Table 3.3 Sorted List According to MAB . 18

Table 3.4 Sorted List According to CF . 21

Table 3.5 Sorted List According to R-MAB 25

Table 3.6 Sorted List According to MLB . 27

Table 3.7 Sorted List According to SAB . 32

Table 3.8 Data Set Classification and Telegram Sets 35

Table 3.9 Average Telegram Counts and Total BUs in More Frequent Test Cases 36

Table 3.10 Fail Count for Each Algorithm in More Frequent Test Cases 36

Table 3.11 Run-Time (ms) in More Frequent Test Cases 39

Table 3.12 Total Fail Counts in More Frequent Telegrams 40

Table 3.13 Winner of Test Cases in More Frequent Telegrams 40

Table 3.14 Average Telegram Counts and Total BUs in Normal Test Cases . . . 41

Table 3.15 Fail Count for Each Algorithm in Normal Test Cases 41

xiv

Table 3.16 Run-Time (ms) in Normal Test Cases 44

Table 3.17 ILP Time Failure Count For Normal Test Cases 44

Table 3.18 Winner of Test Cases in Normal Telegrams 45

Table 3.19 Total Fail Counts in Normal Telegrams 45

Table 3.20 Average Telegram Counts and Total BUs in Less Frequent Test Cases 46

Table 3.21 Fail Count for Each Algorithm in Less Frequent Test Cases 46

Table 3.22 Run-Time (ms) in Less Frequent Test Cases 49

Table 3.23 ILP Time Failure Count For Less Frequent Test Cases 49

Table 3.24 Winner of Test Cases in Less Frequent Telegrams 50

Table 3.25 Total Fail Counts in Less Frequent Telegrams 50

Table 3.26 Telegram Count and Total BU for Equal Distributed Telegrams . . . 51

Table 3.27 Fail Count for Each Algorithm in Equal Distributed Test Cases . . . 51

Table 3.28 Run-Time (ms) in Equal Distributed Test Cases 53

Table 3.29 ILP Time Failure Count For Equal Distributed Test Cases 54

Table 3.30 Winner of Test Cases in Equal Distributed Telegrams 54

Table 3.31 Total Fail Counts in Equal Distributed Telegrams 55

Table 4.1 Telegram Set For Swap Operation 63

Table 4.2 Sorted List according to MLB for Swap Operation 63

Table 4.3 Sorted List according to MLB for SSB 68

Table 4.4 Telegram Set For S2T . 72

Table 4.5 Sorted List according to S2T . 72

Table 4.6 Fail Counts in Test Case TC-10 . 79

xv

Table 4.7 Telegrams in TC-10 . 79

Table 4.8 Run Time (in seconds) For Normal Telegrams 85

Table 4.9 Run Time (in seconds) For Less Frequent Telegrams 87

Table 4.10 Run Time (in seconds) For Normal Telegrams 89

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 TCN Architecture . 6

Figure 2.2 Basic Period . 6

Figure 2.3 Telegram Structure and Timing 7

Figure 2.4 Master Frame Format . 8

Figure 2.5 Slave Frame Format . 8

Figure 3.1 Offset Selection Importance . 12

Figure 3.2 Placement of the First Three Telegrams in MAB 20

Figure 3.3 MVB Schedule with the MAB . 20

Figure 3.4 Placement of the First Three Telegrams in CF 23

Figure 3.5 MVB Schedule with the CF . 24

Figure 3.6 Placement of the First Three Telegrams in R-MAB 26

Figure 3.7 MVB Schedule with R-MAB . 26

Figure 3.8 Placement of the First Three Telegrams in MLB 29

Figure 3.9 MVB Schedule with MLB . 29

Figure 3.10 Placement of the First Three Telegrams in SAB 32

Figure 3.11 MVB Schedule with the SAB . 33

xvii

Figure 3.12 Maximum BU in More Frequent Test Cases 37

Figure 3.13 Minimum BU in More Frequent Test Cases 38

Figure 3.14 Standard Deviation in More Frequent Test Cases 39

Figure 3.15 Maximum Utilization in Normal Test Cases 42

Figure 3.16 Minimum Utilization in Normal Test Cases 43

Figure 3.17 Standard Deviation in Normal Test Cases 43

Figure 3.18 Maximum Utilization in Less Frequent Test Cases 47

Figure 3.19 Minimum Utilization in Less Frequent Test Cases 48

Figure 3.20 Standard Deviation in Less Frequent Test Cases 48

Figure 3.21 Maximum Utilization in Equally Distributed Test Cases 52

Figure 3.22 Minimum Utilization in Equal Distributed Test Cases 52

Figure 3.23 Standard Deviation in Equal Distributed Test Cases 53

Figure 4.1 MVB Schedule with MLB for SMB 63

Figure 4.2 MLB schedule after SMB . 64

Figure 4.3 MVB Schedule with MLB for SSB 68

Figure 4.4 MLB schedule after SSB . 69

Figure 4.5 MVB Schedule with MLB for S2T 73

Figure 4.6 MLB schedule after S2T . 74

Figure 4.7 MLB schedule after S3T . 77

Figure 4.8 Performance Metrics for TC-10 81

Figure 4.9 Performance Metrics for TC-11 82

Figure 4.10 Performance Metrics for TC-22 83

xviii

Figure 4.11 Performance Metrics for TC-23 83

Figure 4.12 Performance Metrics for TC-24 84

Figure 4.13 Performance Metrics for TC-40 86

Figure 4.14 Performance Metrics for TC-41 86

Figure 4.15 Performance Metrics for TC-52 88

Figure 4.16 Performance Metrics for TC-51 89

xix

LIST OF ABBREVIATIONS

ABBREVIATIONS

BP Basic Period

MP Macro Period

MF Master Frame

SF Slave Frame

BU Bus Utilization

MVB Multifunction Vehicle Bus

WTB Wire Train Bus

TCN Train Communication Network

PP Periodic Phase

ILP Integer Linear Programming

DV Decision Variable

MAB Minimum Accumulated Basic Period

CF Cursor and Flag

R-MAB Randomized Minimum Accumulated Basic Period

MLB Minimum Longest Basic Period

SAB Scaled Average Basic Period

FFD First-Fit-Decreasing

SMB Swap Operation According to Maximum Basic Period Dura-

tion

SSB Swap Operation According to Sum Of Basic Period Duration

S2T Swap Operation Looking At The Next Two Telegrams

xx

S3T Swap Operation Comparing Three Telegrams

TO Timeout

σ Standard Deviation

IEC International Electrotechnical Committee

UIC International Railways Union

LIN Local Interconnect Network

CAN Controller Area Network

CAN DF CAN with Flexible Datarate

MOST Media Oriented Systems Transport

AVB Automotive Ethernet

xxi

xxii

CHAPTER 1

INTRODUCTION

Today’s vehicles contain numerous electronic control units (ECUs), sensors and many

other electrical/electronic components [1, 2, 3, 4, 5]. In order to perform the advanced

functions of vehicles, robust, reliable and efficient in-vehicle communication is re-

quired between these ECUs. The specific requirements of the different car domains

and vehicle types have led to the development of a large number of automotive net-

works such as LIN (Local Interconnect Network), CAN (Controller Area Network),

CAN FD (CAN with Flexible Datarate), FlexRay, MOST (Media Oriented Systems

Transport), AVB (automotive Ethernet), WTB (Wire Train Bus), MVB (Multifunc-

tion Vehicle Bus), etc. [6, 7, 8, 9].

As a particular vehicle type, trains have evolved from being the first practical forms of

mechanized land transport to the extremely complex and sophisticated transportation

systems we currently use [10]. A deterministic and robust fieldbus communication

solution is necessary for safety-sensitive systems within trains which must operate in

harsh and distributed environments [5, 11, 12]. For example, the control of railway ve-

hicles necessitates data communication with very low latencies [13, 14]. Addressing

the requirement of standardization [15], the Train Communication Network (TCN)

[16] was developed as an international standard for data communication aboard rail

vehicles with the collaboration of railway operators and manufacturers [17, 18]. TCN

consists of MVB to connect the equipment within a vehicle and WTB to connect the

vehicles [19, 14]. In this thesis, we focus on the real-time communication of low-

latency periodic data using MVB.

MVB is a highly robust real-time field bus specifically designed for control systems

1

built into rail-vehicles [12, 13, 20]. MVB supports both periodic process data and

sporadic message data transfers in the form of telegrams. There are various functional

and non-functional requirements [13] for MVB. On the one hand, non-functional

requirements are mostly concerned with the reliability of the network. For example,

it has to be the case that:

• Redundant communication lines should be used to achieve high robustness and

to prevent the single point of failure,

• Redundant bus masters should be coordinated with each other in order to pre-

vent the communication breaks down because of the device fails,

• Different media (twisted wire pair, optical fibres and RS485) should be used

for reliable communication,

• Repeaters should be used to connect the media for a transition from one medium

to another,

• The devices should be able to capture statistical information to detect the prob-

lems early.

On the other hand, functional requirements specify how and when data should be

communicated among MVB nodes. Important requirements are that:

• the bit rate should be 1.5 Mbit/s to maximize the effective data throughput,

• process data should be delivered at fixed time slots,

• synchronization should be ensured among the devices.

The recent literature mostly investigates non-functional requirements of MVB such as

robustness, reliability and security. [12] develops an algorithm for checking the health

status of MVB using anomaly detection based on experiments. A formal model-

driven design approach is proposed so as to build a secure implementation of an MVB

bus controller in [20]. The forecast and analysis of the MVB network performance

is a vital process for MVB design. Furthermore, [21] performs a simulation study

2

on Matlab/Simulink to analyze the network efficiency of MVB with respect to data

length and amount of devices.

Regarding the functional requirements, it has to be noted that MVB enables a con-

cise definition of the MVB schedule for periodic message transfers in the form of

telegrams [13]. This MVB schedule consists of consecutive basic periods (BPs) with

a fixed duration and the telegrams have to be placed into these BPs based on their

period. That is, given a telegram set to be transmitted on MVB, it is required to de-

termine an MVB schedule that defines the exact time instants where each telegram

should be transmitted.

The main focus of this thesis is the computation of MVB schedules for the trans-

mission of periodic telegrams. The only related work for this topic is given by [22],

which rather focuses on the co-design of scheduling and control on MVB without

taking a formal view on the MVB scheduling problem. Accordingly, this thesis first

formalizes the MVB scheduling problem and proposed several performance metrics

for quantifying the quality of an MVB schedule. Then, the thesis develops an integer

linear programming (ILP) formulation for computing optimal MVB schedules. This

work is also published in [23]. Since optimal schedules cannot be computed for large

telegram sets, the thesis further develops several original heuristics and swap opera-

tions for the schedule computation on MVB. A comprehensive evaluation with many

test cases shows that the heuristics compute close-to-optimal schedules for small and

medium-size telegram sets. Most importantly, feasible schedules can be determined

for very large telegram sets even in cases where an optimal schedule cannot be found.

In summary, this thesis proposes telegram scheduling algorithms for periodic data

transmitted on MVB. The main contributions of the thesis are listed as follows:

• First formalization of the MVB scheduling problem in the literature,

• ILP formulation of the optimal MVB scheduling problem,

• Development of different basic heuristic algorithms for the fast computation of

MVB schedules for large telegram sets,

• Swap operations to improve the MVB schedules obtained from the basic heuris-

tics and to generate close-to-optimal schedules,

3

• A comprehensive evaluation of the proposed algorithms based on a large num-

ber of randomly generated telegram sets with different properties.

The remainder of the thesis is organized as follows: Section 2 provides the necessary

background information about MVB. Section 3 states the problem addressed in the

thesis and proposes an ILP formulation for MVB scheduling. In addition, different

basic heuristics are developed and their suitability is evaluated based on several per-

formance metrics. Section 4 introduces different swap operations that are applied to

the proposed basic heuristics in order to improve the obtained schedules. Moreover, a

comprehensive performance comparison between the ILP solutions and the schedules

from the proposed algorithms is presented. Conclusions are given in Section 5.

4

CHAPTER 2

MULTIFUNCTION VEHICLE BUS: BACKGROUND

This chapter gives background information about the train communication network

(TCN). A general overview is presented in Section 2.1 and Section 2.2 introduces the

multifunction vehicle bus (MVB).

2.1 Train Communication Network (TCN)

The TCN was adopted as the international standard IEC 61375 in 1999 with a joint

effort by the International Railways Union (UIC), Utrecht, Netherlands, and the In-

ternational Electrotechnical Committee (IEC), Geneva, Switzerland with the deputies

from over 20 countries, including many European nations, the US, Japan, and China

representing major railways operators and manufacturers [17]. It introduces a stan-

dard form of data for train control, diagnostics, and passenger information that is

suitable for various train combinations such as metros, or suburban and international

trains. Accordingly, the purpose of standardization is to define interfaces between

programmable equipment, with the aim of achieving plug-compatibility.

The TCN architecture indicates all appropriate configurations used in rail vehicles. It

consists of the Multifunction Vehicle Bus (MVB) that connects devices inside each

vehicle and the Wire Train Bus (WTB) to connect the different vehicles as shown in

Figure 2.1.

5

Figure 2.1: TCN Architecture

2.2 Multifunction Vehicle Bus (MVB)

MVB is a serial communication bus for railway vehicles that helps to connect devices

within a vehicle for exchanging control, monitoring, and diagnosis information. Ac-

cording to [24], bus activity is divided into periods and the shortest period is denoted

as the basic period (BP). The BP is the fixed time slot that is repeated and all BPs have

the same duration TBP. Following the MVB specification, the BP cycle time shall take

a value as shown below:

1.0 ms ≤ TBP ≤ 2.50 ms. (2.1)

A BP is divided into three main phases as shown in Figure 2.2:

1. a Periodic Phase,

2. a Sporadic Phase,

3. a Guard Phase.

Figure 2.2: Basic Period

6

The Periodic Phase is reserved for periodic data and the Sporadic Phase is divided

into a supervisory phase (for supervisory data) and an event phase (for event-triggered

message data). The guard phase is introduced in order to separate consecutive BPs.

In principle, MVB supports both periodic data (for process variables) and sporadic

data (for on-demand traffic) transfers in the form of telegrams. Process variables

carry the state of the train such as the speed, motor current, and operator’s commands.

The Master polls the periodic data in sequence and periodic data are polled at their

individual period (IP). Between periodic phases, the Master continuously polls the

devices for events.

The IP is an interval between two successive transmissions of the same process data

from the same source. An IP has to be equal to the BP duration TBP multiplied by

a power of 2 with a maximum value of 1024ms. Then, the Macro Period (MP) is

the longest IP, after which the periodic traffic returns to the same pattern. In this

thesis, we denote the number of BPs in one MP as NMP and the duration of the MP as

TMP = NMP · TBP. If TBP is equal to 1 ms, there can be at most 1024 BPs in one MP.

In case that TBP = 2ms the maximum number of BPs is 512.

In MVB, data is sent via telegrams. Each telegram consists of a Master Frame (MF-

request) and a Slave Frame (SF-response). The timing of a telegram anywhere on the

bus is shown in Figure 2.3.

Figure 2.3: Telegram Structure and Timing

[25] indicates that an MF sent by the MVB Master has the format shown in Figure

2.4:

1. MF begins with the Master Start Delimiter (MSD),

7

2. MF is followed by 16 bits of frame Data,

3. MF is followed by the 8-bit Check Sequence (CS).

Figure 2.4: Master Frame Format

The length of the MF, which is 33 bits adding up the frame data, CS and MSD, is

fixed to 22µs; this represents 16 bits of transmitted data according to the signaling

speed which is defined as 1.5 Mbit/s ±0.01%.

The time between an MF and its related SF (denoted as tms) is between 2µs and

42.7µs. Any slave node has to reply within 6µs; in addition, time is allocated for

possible delays of frames traveling along the line and crossing repeaters. In this

thesis, tms = 42.7µs is used since it represents the worst-case scenario.

An SF sent by a Slave has the format shown in Figure 2.5:

1. SF begins with the Slave Start Delimiter (SSD),

2. SF is followed by 16, 32, 64, 128 or 256 bits of frame Data,

3. SF includes an 8-bit Check Sequence (CS) after each word of 64 data bits or

appended to the frame in case of few data bits.

Figure 2.5: Slave Frame Format

The length of the SF depends on the type of data being transferred and is between 16

and 256 bits. Hence, the length of the SF changes between 22µs and 198µs according

to the signaling speed which shall be 1.5 Mbit/s ±0.01%.

8

The time from the end of an SF to the beginning of the next MF (tsm) is at least 3µs if

it expects neither collision nor silence in response to its previous MF. The minimum

value (3µs) is used in this thesis.

The duration of each telegram equals the sum of the MF and SF duration, the propaga-

tion delay on the bus and possible processing delays in the MVB nodes as computed

in (2.2) and as shown in Figure 2.3:

dT = dMF + dSF + tms + tsm. (2.2)

Noting that the bit rate of MVB is 1.5 Mbit/s, using the telegram properties described

above and writing k for the number of bit of the SF, the possible telegram durations

are composed of:

dMF = (16 bits + 9 bits + 8 bits)/1.5 Mb/s = 22µs,

dSF = (k bits + 9 bits + 2× 8 bits)/1.5Mb/s,

tms = 22µs,

tsm = 42.7µs,

dT = (22 + dSF + 42.7 + 3)µs.

Using all possible bit lengths of SFs, the duration of each telegram can be directly

determined as in Table 2.1 according to (2.2).

Table 2.1: Telegram Durations

Master FS (bits) 16 16 16 16 16

Slave FS (bits) 16 32 64 128 256

Total Duration (µs) 89.7 100.37 121.7 169.7 265.7

9

10

CHAPTER 3

BASIC HEURISTIC ALGORITHMS FOR TELEGRAM

SCHEDULING ON MVB

The main objective of this thesis is the computation of telegram schedules for MVB.

In this chapter, the telegram scheduling problem is formally stated and different solu-

tion methods are proposed. Section 3.1 formulates the telegram scheduling problem

on MVB and Section 3.2 develops a suitable integer linear programming (ILP) for-

mulation in order to determine optimal MVB schedules. In addition, different basic

heuristic algorithms for solving the telegram scheduling problem on MVB are pro-

posed in Section 3.3. The different algorithms are evaluated in Section 3.4.

3.1 Problem Statement

Modern rail-vehicles exchange a large amount of periodic data over in-vehicle com-

munication buses such as MVB. In order to achieve timely data exchange and to

prevent data loss, the available bandwidth has to be used efficiently, which requires

systematic scheduling approaches.

In order to formalize the scheduling problem on MVB, we define the set of t telegrams

T = {T1, ..., Tt}. Each telegram Ti has an individual period pi and a duration di

according to Table 2.1. In addition, we define the BP repetition as

ri =
pi
TBP

. (3.1)

to describe the difference between BPs where telegram Ti is repeated. Scheduling

telegrams on MVB requires deciding about the offset oi, which is the first BP in each

MP, where Ti should be transmitted.

11

The example with five telegrams as shown in Table 3.1 helps to understand the schedul-

ing problem.

Table 3.1: Sample Telegram Set For the MVB Scheduling Problem

Ti 1 2 3 4 5

pi [ms] 1 2 2 4 4

ri 1 = 20 2 = 21 2 = 21 4 = 22 4 = 22

di [µs] 160 120 120 160 200

Figure 3.1 (a) shows a possible MVB schedule with the offsets o1 = 0, o2 = 0,

o3 = 1, o4 = 0 and o5 = 2. The required duration of the PP is TPP = 480µs.

Figure 3.1 (b) shows an alternative schedule with the offsets like o1 = 0, o2 = 0,

o3 = 0, o4 = 1 and o5 = 3. In this case, the required duration of the PP is shorter

with TPP = 400µs.

(a) Possible Schedule (b) Alternative Schedule

Figure 3.1: Offset Selection Importance

This example indicates that the choice of the offsets significantly affects the duration

of the PP and hence the efficiency of the MVB schedule.

In order to evaluate the quality of an MVB schedule, we introduce several Umax
BP is

defined as the longest BP duration among all BPs. To this end, we write Sk for the set

of telegrams that are scheduled in BP k. Then, UBP is obtained as given in (3.3) based

12

on each BP duration as stated in (3.2).

Dk =
∑
Ti∈Sk

di, k = 0, . . . , NMP − 1 (3.2)

Umax
BP = max

k=0,...,NMP−1
{Dk} (3.3)

It is desired to minimize the maximum BU Umax
BP in order to achieve an efficient sched-

ule. Specifically, decreasing Umax
BP reduces the duration of the PP TPP. That is, more

time is left for the remaining phases in each BP. In addition, minimizing Umax
BP makes

it possible to determine if a given set of telegrams is schedulable on MVB or not. In

particular, schedulability is given if and only if the minimum possible Umax
BP is smaller

than TBP.

The performance metric for the evaluation is the minimum BU Umin
BP . Unlike the

maximum BU, it is desired to maximize Umin
BP because a small value of UBP indicates

that some BPs are not utilized well. In particular, a large difference between Umax
BP and

Umin
BP means the MVB schedule is not balanced. The minimum BU is computed as

Umin
BP = min{Dk} . (3.4)

The standard deviation σBP of the BP durations is the third performance metric. It is

the second most important performance metric for the evaluation after the maximum

BU since it directly shows the balance of an MVB schedule. This performance metric

is introduced based on the observation that an "ideal" MVB schedule would achieve

equal BP durations.

Dav
BP =

∑
i=1,...,t

di
pi
· 1

NMP
(3.5)

Since such ideal MVB schedule is generally not possible since telegrams have differ-

ent durations and periods, σBP quantifies the deviation from Dav
BP as

σBP =

NMP−1∑
k=0

(Dk −Dav
BP)

2

NMP
. (3.6)

Finally, the run-time of each proposed algorithm until finding a solution schedule is

recorded to see which of the algorithms can produce a suitable MVB schedule in

a practical time. Here, we note that MVB schedules are computed offline (that is,

before system operation) such that run-times in the order of minutes are acceptable.

13

3.2 Optimal MVB Scheduling using Integer Linear Programming

In this section, we formulate the MVB telegram scheduling problem as an integer

linear programming (ILP). That is, the objective function and constraints are linear

also the variables are restricted to be integers. Hereby, we want to find optimal MVB

schedules that minimize Umax
BP . ILP solution is the optimal solution if CPLEX termi-

nates and is only the best solution until this point if CPLEX times out. We further

note that the work in this section was published in [23].

The requirement for scheduling on MVB is to find a suitable offset oi for each tele-

gram Ti. In this context, it must hold that

1. oi ≤ ri − 1, that is, the offset is smaller than the repetition,

2. telegram Ti is transmitted in all BP oi + k · ri for k = 0, . . . ,
NMP

ri
− 1.

In order to represent the offset of each telegram Ti, we introduce binary decision

variables xi,0, . . . , xi,ri−1 such that the offset oi has the value j if xi,j = 1. That is,

the selected offset for each telegram Ti is evaluated as

oi = xi,0 · 0 + xi,1 · 1 + ...+ xi,ri−1 · (ri − 1). (3.7)

Hereby, it must hold that exactly one of the decision variables for telegram Ti has the

value 1, which is represented by the equality constraint:

ri−1∑
j=0

xi,j = 1. (3.8)

In addition, the integer decision variable (DV) TPP is introduced for the duration of

the PP. Any feasible schedule should have a maximum BU below the duration of the

TBP as a hard constraint so we get the following inequality constraint for all BPs:

t∑
i=1

di · xi,kmod ri ≤ TBP , 0 ≤ k ≤ NMP − 1. (3.9)

In (3.9), it is respected that a telegram which is scheduled with offset oi = j (implying

that xi,j = 1) appears in all BP k such that j = kmod ri. The duration of each BP

(TPP) is then given by the sum of all telegrams that appear in that BP.

14

The decision vector x is given by the collection of all decision variables as shown

below.

x =

x1,0
...

x1, r1−1
...

xt,0
...

xt, rt−1

TBP

Here, we recall that the variables xi,j for i = 1, . . . , t and j = 0, . . . , ri−1 are binary,

whereas TBP is an integer variable that represents the used duration of the BP.

Since it is desired to minimize the duration of the PP, the objective function is given

by:

J = min
x
{TPP}. (3.10)

Since, the duration of the PP must be smaller than the duration of the BP, we introduce

the additional constraint:

TPP ≤ TBP. (3.11)

Together, the optimization problem can be formulated in the following vector/matrix

form that can be used:

min
x
f · x (3.12)

such that

Aeq · x = beq, (3.13)

A · x ≤ b. (3.14)

We next illustrate the ILP formulation using the telegram set in Table 3.1. For ex-

ample the four decision variables x4,0, x4,1, x4,2, x4,3 are needed for telegram T4 with

repetition r4 = 4 and the decision vector is

x = [x1,0, x2,0, x2,1, x3,0, x3,1, x4,0, ..., x4,3, x5,0, ..., x5,3, TBP]
T . (3.15)

15

Then, the equality and inequality constraints in (3.13) and (3.14) are given as shown

below.

min
x

[
0 0 0 0 0 0 0 0 0 0 0 0 0 1

]
· x

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0

· x =

1

1

1

1

1

160 120 0 120 0 160 0 0 0 200 0 0 0 −1
160 0 120 0 120 0 160 0 0 0 200 0 0 −1
160 120 0 120 0 0 0 160 0 0 0 200 0 −1
160 0 120 0 120 0 0 0 160 0 0 0 200 −1

·x ≤

0

0

0

TBP

Hereby, we note that the solution of the ILP is the decision vector x which needs to

be translated to an actual schedule for MVB as in Figure 3.1. This task is performed

by showing each telegram Ti with selected offset oi in all the BP oi + k · ri for

k = 0, . . . ,
NMP

ri
− 1, where the telegram appears.

3.3 Basic Heuristic Algorithms

As will be shown in the evaluation in Section 3.3, the ILP in the previous section

cannot be solved when there is a large number of variables and a high BU. Because

of this reason, a heuristic solution is required in order to be able to schedule such tele-

gram sets. The defined problem in this work is similar to the bin packing problem.

According to [26], this kind of problem can be solved by online and offline algo-

rithms. Online algorithms, such as First Fit, Best Fit, etc. focus on the cases where

items arrive back to back and each of them must be placed immediately, whereas the

whole input is known before the placement process in the offline scheduling problem.

Therefore, offline algorithms are investigated to achieve the scheduling goal in MVB.

16

In this context, the first-fit decreasing (FFD) algorithm operates by first sorting the

items to be placed in decreasing order by their sizes and then inserting each item into

the first available bin in the list with sufficient remaining space [27]. While FFD puts

the incoming item in only one place, the item (that is, telegram) has to be placed to

multiple places in the MVB scheduling problem as described in Section 3.1. This

makes it much more difficult to solve the MVB scheduling problem since not only

a single bin (that is, BP) but all BPs where a given telegram Ti will appear have to

be evaluated. All the heuristics proposed in this thesis are constructed based on FFD

but substantial modifications are made on the sorting of telegrams and the placement

operations because each telegram has to be placed in different BPs. Instead of putting

the item to the bin which has sufficient remaining space, the bins which have the

maximum remaining space or which produce the most balanced schedule are searched

in our heuristics.

All of the algorithms aim to decrease the maximum BU, to minimize the difference

between the maximum and minimum BU in order to obtain a balanced and close-

to-optimal MVB schedule. There are five different basic heuristic algorithms are

proposed and each of them will be explained in detail.

For each algorithm, the same data set as shown in Table 3.2 will be used for illustra-

tion in order to compare their performance. Each telegram Ti has a unique number,

the duration di in microseconds is specified according to the frame size and the period

is pi in milliseconds.

Table 3.2: Sample Telegram Data Set With Durations and Periods

Ti 1 2 3 4 5 6 7 8 9

pi [ms] 1 2 2 2 4 4 4 4 4

ri 1 = 20 2 = 21 2 = 21 2 = 21 4 = 22 4 = 22 4 = 22 4 = 22 4 = 22

di [µs] 89.7 121.7 265.7 169.7 169.7 100.37 265.7 89.7 100.37

As the common feature, all the algorithms take the set of t of telegrams T = {T1, . . . , Tt}
as input and produce an MVB schedule with the offsets oi for each telegram Ti as an

output.

17

3.3.1 Minimum Accumulated BP (MAB) Algorithm

As the main idea, the minimum accumulated BP (MAB) algorithm tries to minimize

the accumulated duration of the BPs occupied by the current telegram Ti to be sched-

uled. At the beginning of the MAB, all BP durations are set to zero and offsets are

cleared as initial settings. MAB sorts the telegrams in the list L according to increas-

ing pi and decreasing di in case of equal pi. That is, it is desired to first schedule

the telegrams which have a smaller pi. The reason is that such telegrams have a con-

siderable effect on the BP durations since they appear in many BPs. Less frequent

telegrams are placed more easily without too much change in the whole schedule

since they take place in a few BPs. Each telegram Ti from top of the sorted list is

picked up and removed from L. Starting from the first offset, oi = 0, the summation

of BP durations in the MP is calculated, for each offset. Here, BP duration is checked

whether it exceeds total allowed BP duration which is equal to TBP. If one of them

exceeds the allowed duration the current offset oi is marked as a fail. Otherwise, the

offset with the smallest sum Cj is selected and the telegram Ti is scheduled with that

offset. Furthermore, Dj’s and O are updated. The same procedure is repeated until

there are no telegrams in the array, in sequence as in Algorithm 1.

In order to show the algorithm’s ability in scheduling, consider the example with the

9 telegrams in Table 3.2. Each telegram Ti has individual period pi and a duration di.

Looking at the duration and individual period of the telegrams, the sorted list L turns

out as shown in Table 3.3, for the given telegram set.

Table 3.3: Sorted List According to MAB

L[i] 1 2 3 4 5 6 7 8 9

Ti 1 3 4 2 7 5 6 9 8

di 89.7 265.7 169.7 121.7 265.7 169.7 100.37 100.37 89.7

pi 1 2 2 2 4 4 4 4 4

18

Algorithm 1 MAB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = ∅; Dj = 0 for j = 0, . . . , NMP − 1

4: Generate sorted list L of telegrams according to increasing pi and decreasing di

in case of equal pi

5: while L is not empty do

6: Pick telegram Ti from top of the list and remove Ti from L

7: for 0 ≤ j ≤ ri − 1 do

8: Cj =
∑NMP/ri−1

k=0 Dj+k·ri

9: for 0 ≤ k ≤ NMP
ri
− 1 do

10: if Dj+k·ri + di > TBP then

11: Cj =∞
12: if min0≤j≤ri−1{Cj} <∞ then

13: Select oi as the offset with the minimum Cj

14: for 0 ≤ k ≤ NMP
ri
− 1 do

15: Dj+k·ri = Dj+k·ri + di

16: else

17: Mark the algorithm as failed

Assuming the MP with 4 BPs, Figure 3.3, we next explain the first iterations of Algo-

rithm 1 for the given telegram set. Firstly, the telegram T1 is selected from L because

it has the smallest pi. Since the IP of the current telegram is equal to one, the tele-

gram is placed to all BPs as shown in Figure 3.2 (left). All BPs are updated with the

duration of the telegram. Secondly, MAB picks the telegram T3 from L since it has

the longest duration among the telegrams with pi = 2. Since there are two possible

offsets, o3 = 0 and o3 = 1, the algorithm calculates BP0 + BP2 and BP1 + BP3 back

to back in order to find the minimum one. The sum of BUs are equal so MAB picks

the smaller offset, o3 = 0, which means T3 is placed to BP0 and BP2 as shown in

Figure 3.2 (middle). Again, the BP durations are updated. After that, the telegram T4

is selected from L because it has the longest duration among the remaining telegrams

that have pi = 2. The offsets o4 = 0 and o4 = 1 are tried looking at the current BP

durations. The smallest summation of BUs is achieved with offset o4 = 1, hence T4 is

19

placed to BP1 and BP3 as shown in Figure 3.2 (right). All BP durations are updated.

MAB continues for the remaining telegrams in the same way and the overall schedule

shown in Figure 3.3 is obtained. For convenience, each telegram is assigned a color

code for color representation in the graph. The resulting offsets are o1 = 0, o2 = 1,

o3 = 0, o4 = 1, o5 = 2, o6 = 1, o7 = 0, o8 = 1 and o9 = 3. The required duration of

the periodic phase, TPP, is equal to 621.1µs.

Figure 3.2: Placement of the First Three Telegrams in MAB

Figure 3.3: MVB Schedule with the MAB

3.3.2 Cursor and Flag (CF) Algorithm

CF sorts the telegrams in the listL according to increasing pi and decreasing di in case

of equal pi. When a telegram Ti is picked up with period pi, CF also picks the first two

telegrams on the list Tx and Ty (if exist) which have the period 2×pi in order to make

the comparison between two telegrams depending on the duration. If (dx+dy) is larger

than di and smaller than 2.1 × di, it holds that Tx and Ty together occupy a similar

20

duration as Ti. In that case, starting from the first offset, oi = 0, the summation of BP

durations in the MP for each offset is calculated. Here, it is always checked if the BP

duration exceeds the BP duration which is equal to TBP. If one of them exceeds the

allowed duration it is marked as a fail. Otherwise, the offset with the smallest value

of the sums Cj is selected as the offset and the corresponding telegram(s), either Ti or

Tx and Ty are scheduled with this offset. The same procedure is repeated until there

are no telegrams in the array updating the Dj’s and O, in sequence. If dx + dy is

smaller than di or larger than 2.1 · di, CF directly picks Ti from L and schedules it as

in Algorithm 1.

In order to show the algorithm’s ability in scheduling, consider the example with the

9 telegrams in Table 3.2. Each telegram Ti has IP pi and a duration di. Looking at

the duration and IP of the telegrams, the sorted list L is as shown in Table 3.4, for the

mentioned telegram set.

Table 3.4: Sorted List According to CF

L[i] 1 2 3 4 5 6 7 8 9

Ti 1 3 4 2 7 5 6 9 8

di 89.7 265.7 169.7 121.7 265.7 169.7 100.37 100.37 89.7

pi 1 2 2 2 4 4 4 4 4

Assuming the MP with 4 BPs, we next describe the first three iterations of the CF

algorithm. Firstly, the telegram T1 is selected from L because it has the smallest pi.

Then, the first two telegrams, T3 and T4, that have 2×pi as IP are picked up. Because

the sum of d3 and d4 is bigger than 2.1 × di, T1 is directly selected as the telegram

to be placed. Since the IP of the current telegram is equal to one, T1 is placed to all

BPs as shown in Figure 3.4 (left). BPs are updated with the duration of the telegram.

Secondly, CF picks the telegram T3 from L since it has the longest duration among

the telegrams with pi = 2. Then, the first two telegrams, T7 and T5, that have 2×pi as

IP are picked up. Since the sum of d7 and d5 is smaller than 2.1 × di, T1 and greater

than di, T7 and T5 are selected as the telegrams to be placed.

21

Algorithm 2 CF Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = ∅; Dj = 0 for j = 0, . . . , NMP − 1

4: Generate sorted list L of telegrams according to increasing pi and decreasing di

in case of equal pi

5: while L is not empty do

6: Pick telegram Ti from top of the list and Tx, Ty with px = py = 2 · pi
7: if Ti < (Tx + Ty) < 2.1× Ti then

8: for 0 ≤ j ≤ rx − 1 do

9: Cj =
∑NMP

rx
−1

k=0 Dj+k·rx

10: for 0 ≤ k ≤ NMP

rx
− 1 do

11: if Dj+k·rx + dx + dy > TBP then

12: Cj =∞
13: if min0≤j≤rx−1{Cj} <∞ then

14: Select oi as the offset with the minimum Cj , remove Tx and Ty from L

15: for 0 ≤ k ≤ NMP

rx
− 1 do

16: Dj+k·rx = Dj+k·rx + dx + dy

17: else

18: Mark the algorithm as failed

19: else

20: for 0 ≤ j ≤ ri − 1 do

21: Cj =
∑NMP

ri
−1

k=0 Dj+k·ri

22: for 0 ≤ k ≤ NMP

ri
− 1 do

23: if Dj+k·ri + di > TBP then

24: Cj =∞
25: if min0≤j≤ri−1{Cj} <∞ then

26: Select oi as the offset with the minimum Cj , remove Ti from L

27: for 0 ≤ k ≤ NMP

ri
− 1 do

28: Dj+k·ri = Dj+k·ri + di

29: else

30: Mark the algorithm as failed

22

Because there are two possible offsets, which are o5 = o7 = 0 and o5 = o7 = 1,

the CF calculates BP0 + BP2 and BP1 + BP3 back to back in order to find the offset

with the smallest sum of BPs. In this example, BP1 + BP3 is equal to BP0 + BP2.

Hence, the selected telegrams are placed to o5 = o7 = 0, which means that T7 and

T5 are placed to BP0 and BP2 as shown in Figure 3.4 (middle) also BP durations

are updated. After that, the telegram T3 is selected again from L because it was not

placed in the previous placement. This time, the remaining two telegrams, T6 and T9,

that have 2 × pi as IP are picked up. Because the sum of d6 and d9 is smaller than

di, T3 is selected as the telegram to be placed.There are two possible offsets, o3 = 0

and o3 = 1, the algorithm calculates BP0 +BP2 and BP1 +BP3 back to back in order

to find the offset with the smallest sum of BP durations. Since sum of BP1 + BP3 is

smaller than BP0 + BP2, T3 obtains o3 = 1 as shown in Figure 3.4 (right). Finally, all

BP durations are updated.

The algorithm continues for the remaining telegrams in the same way and the sched-

ule shown in Figure 3.5 is obtained. For convenience, each telegram is assigned a

color code for color representation in the graph. The resulting offsets are o1 = 0,

o2 = 0, o3 = 1, o4 = 1, o5 = 0, o6 = 2, o7 = 0, o8 = 2 and o9 = 2. The required

duration of the periodic phase is TPP = 646.8µs.

Figure 3.4: Placement of the First Three Telegrams in CF

23

Figure 3.5: MVB Schedule with the CF

3.3.3 Randomized Minimum Accumulated BP (R-MAB) Algorithm

The randomized minimum accumulated BP (R-MAB) algorithm applies the same

ideas as the MAB algorithm in Section 3.3.1 with a random organization of the list

L. First, all telegrams in the data set are randomly shuffled and R-MAB puts them

to the list L. It picks the first m telegrams in L, they are removed from the list and

the algorithm sorts the m telegrams according to increasing pi and decreasing di in

case of equal pi. The sorted telegrams are put on the list Lshuffled back to back. This

process is repeated until there is no telegram in L. R-MAB tries to construct small

sorted lists and combines all of the lists one after another. As a result, it is expected

that scheduling will be more balanced. In light of this information, the algorithm is

evaluated for m = 5 in this work.

MAB in Algorithm 1 is applied to Lshuffled as shown in Algorithm 3 and telegrams are

scheduled according to that.

In order to show the algorithm’s ability in scheduling, consider the example with the

9 telegrams in Table 3.2. Each telegram Ti has IP pi and a duration di. Looking at the

duration and IP of the telegrams sorted list Lshuffled occurs as shown in Table 3.5, for

the mentioned telegram set.

24

Table 3.5: Sorted List According to R-MAB

Lshuffled[i] 1 2 3 4 5 6 7 8 9

Ti 3 4 2 5 9 1 7 6 8

di 265.7 169.7 121.7 169.7 100.37 89.7 265.7 100.37 89.7

pi 2 2 2 4 4 1 4 4 4

Algorithm 3 R-MAB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = ∅; Dj = 0 for j = 0, . . . , NMP − 1

4: Generate sorted list L by randomly shuffling the telegrams and Lshuffled

5: for 1 ≤ j ≤ d t
5
e do

6: Get first five telegrams and remove all from L

7: Sort the telegrams according to increasing pi and decreasing di in case of equal

pi

8: Put sorted telegrams to Lshuffled

9: Apply the MAB to Lshuffled

Assuming an macro period with 4 BPs, we illustrate the first steps of Algorithm 3. R-

MAB sorts the telegrams after shuffling according to increasing pi and decreasing di

in case of equal pi. R-MAB picks up each telegram in order. Firstly, the telegram T3

is selected from L because it is the first telegram. Since the IP of the current telegram

is equal to two, there are two possible offsets, o3 = 0 and o3 = 1. R-MAB calculates

BP0 + BP2 and BP1 + BP3 back to back in order to find the offset with the smallest

BP duration. Since all BP durations are initially equal to 0, R-MAB picks the smaller

offset, o3 = 0, which means T3 is placed to BP0 and BP2 as shown in Figure 3.6 (left).

Also, the BP durations are updated. Secondly, R-MAB picks the second telegram in

L which is T4. from L since it has the longest duration among the telegrams with

pi = 2. Because there are two possible offsets, o4 = 0 and o4 = 1, the algorithm

calculates BP0 + BP2 and BP1 + BP3 back to back in order to find the offset. Since

BP1 + BP3 is smaller than BP0 + BP2, the algorithm schedules T4 with the offset

25

o4 = 1. It indicates that T4 is placed to BP1 and BP3 as shown in Figure 3.6 (middle)

also BP durations are updated. After that, the third telegram T2 in the L is picked up.

Because the smallest sum of BUs is achieved with offset o2 = 0, T2 is placed to BP0

and BP2 as shown in Figure 3.6 (right) and all BP durations are updated. R-MAB

continues for the remaining telegrams in the same way and the schedule shown in

Figure 3.7 is obtained. For convenience, each telegram is assigned a color code for

color representation in the graph. The resulting offsets are o1 = 0, o2 = 1, o3 = 0,

o4 = 1, o5 = 0, o6 = 3, o7 = 1, o8 = 2 and o9 = 2. The required duration of the

periodic phase is TPP = 646.8µs.

Figure 3.6: Placement of the First Three Telegrams in R-MAB

Figure 3.7: MVB Schedule with R-MAB

26

3.3.4 Minimum Longest BP (MLB) Algorithm

The previous algorithms decided on the most suitable offset based on the sum of the

corresponding BP durations. Differently, the Minimum Longest BP (MLB) algorithm

selects the offset that minimizes the maximum BP duration. Initially, MLB sorts the

telegrams taking into account the value di / pi from biggest to smallest and puts all

of them into the list L. The reasoning is that the larger values of di / pi occupy more

space in the schedule looking at the overall duration. Hence, they affect the balance

and required BP duration in the schedule more compared to smaller ones. Because of

this reason, it is desired to place telegrams with a larger di / pi when there is plenty

of space in the schedule. Each telegram Ti from top of the sorted list is picked up.

The maximum BP duration, Dj , is found in where the telegram should be repeated

looking at the MP and repetition rate ri for each offset. During the placement of each

telegram, all the previous telegrams on the list are already scheduled. That is, each BP

already can have telegrams and the duration of BPs varies depending on the duration

of each telegram. At the end of the iteration, the offset oi with the minimum Dj is

selected and the telegram Ti is placed to this offset, Dj’s and O are updated. The

pseudo-code of the defined algorithm is shown in Algorithm 4.

In order to illustrate the algorithm’s ability in scheduling, consider the example with

the 9 telegrams in Table 3.2. Each telegram Ti has IP pi and a duration di. Looking

at the duration and IP of the telegrams sorted list L occurs as shown in Table 3.6, for

the mentioned telegram set.

Table 3.6: Sorted List According to MLB

L[i] 1 2 3 4 5 6 7 8 9

Ti 3 1 4 7 2 5 6 9 8

Value [
di
pi

] 132.85 89.70 84.85 66.43 60.85 42.43 25.09 25.09 22.43

27

Algorithm 4 MLB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = ∅; Mj = Dj = 0 for j = 0, . . . , NMP
ri
− 1

4: Generate sorted list L of telegrams according to decreasing
di
pi

5: while L is not empty do

6: Pick telegram Ti from top of the list and remove Ti from L

7: for 0 ≤ j ≤ ri − 1 do

8: Mj = Dj

9: for 0 ≤ k ≤ NMP
ri
− 1 do

10: if Dj+k·ri > Mj then

11: if Dj+k·ri + di ≤ TBP then

12: Mj = Dj+k·ri

13: else

14: Mj =∞
15: if min0≤j≤ri−1{Mj} <∞ then

16: Select oi as the offset with the minimum Mj

17: for 0 ≤ k ≤ NMP
ri
− 1 do

18: Dj+k·ri = Dj+k·ri + di

19: else

20: Mark the algorithm as failed

Assuming the MP with 4 BPs, we describe the first steps of Algorithm 4. Firstly, the

telegram T3 is selected from L because it has the biggest di / pi ratio. Due to the

IP of the current telegram, there are two possible offsets, o3 = 0 and o3 = 1. The

algorithm calculates the BPs durations; D0 = D2 = 0µs for o3 = 0, D1 = D3 = 0µs

for o3 = 1. It picks the maximum BPs for each offsets as D0, D1 and o3 = 0 is

selected because of the maximum BP duration equality. So, T3 is placed as shown in

Figure 3.8 (left). BPs are updated with the duration of the telegram. Secondly, MLB

picks the telegram T1 from L since it has the second largest di / pi ratio among the

telegrams. Because the IP of T1 is equal to one, the telegram is placed to all base

cycles as shown in Figure 3.8 (middle). BPs are updated with the duration of the

28

telegram. After that, the telegram T4 is selected from L because it has third largest di

/ pi ratio. Due to pi = 2, the telegram can be scheduled with either o4 = 0 or o4 = 1.

The algorithm calculates D0 = D2 = 354.4µs for o4 = 0, D1 = D3 = 89.7µs for

o3 = 1. It picks the maximum values for each offsets as D0 (354.4µs), D1 (89.7µs)

and selects the offset o4 = 1 which has the minimum BP duration between D0 and

D1. Therefore, T4 is placed to BP1 and BP3 as shown in Figure 3.8 (right) and all BP

durations are updated.

MLB continues for the remaining telegrams in the same way and the schedule shown

in Figure 3.9 is obtained. For convenience, each telegram is assigned a color code for

color representation in the graph. The resulting offsets are o1 = 0, o2 = 0, o3 = 0,

o4 = 1, o5 = 3, o6 = 3, o7 = 1, o8 = 2 and o9 = 0. The required duration of the

periodic phase is TPP = 577.47µs.

Figure 3.8: Placement of the First Three Telegrams in MLB

Figure 3.9: MVB Schedule with MLB

29

3.3.5 Scaled Average BP (SAB) Algorithm

The previous algorithms allow placing telegrams in BPs as long as the BP duration

remains below the bound TBP. Nevertheless, it was already observed in Section 3.1

that an ideal schedule for a given telegram set would fill all BPs up to an "average"

duration of Dav
BP in (3.5). Different from the other algorithms, SAB uses Dav

BP as the

target BP duration. Initially, SAB sorts all telegrams taking into account the value di

/ pi from biggest to smallest with the same argument as before. Then, it puts all of

them into a list L. Then, SAB performs operations according to a scaled average BP

duration Tav, which is calculated with different coefficients γ in order to get the most

balanced schedule as shown in the equation 3.16.

Tav =
Dav

BP

γ
, γ ∈ {0.75, 0.76, . . . , 1.50} (3.16)

Telegram Ti from top of the sorted list L is picked up. Starting from the first offset,

where Tav is not exceeded for all BPs where the selected telegram is repeated, the

telegram is placed to that offset and the algorithm awaits the next telegram. If the SAB

is not able to put the incoming telegram because of the average duration constraint,

it does not place the telegram to the schedule and places it in another array L2 that

keeps the not-placed telegrams. After all the telegrams have gone through in the list

L, SAB sorts the remaining telegrams in L2. The telegrams in that list are sorted

according to the smallest pi, in the case of period equality the SAB checks di and the

biggest duration takes the first place. After that, the algorithm calculates the sum of

BP durations, where the incoming telegram is repeated for each offset option. The

selected telegram is placed to the offset that has the minimum sum.

The algorithm is repeated for all values of Tav and the value that gives a more bal-

anced schedule is selected as ideal value and the algorithm runs one more time with

that value. SAB checks the schedule balance, calculating the standard deviation ac-

cording to each BP duration for each scenario. The pseudo-code of SAB is shown in

Algorithm 5.

30

Algorithm 5 SAB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = ∅; Tav = 0, B, γ, Dj = 0 for j =

0, . . . , NMP − 1

4: Generate sorted list L of telegrams according to decreasing
di
pi

5: Tav = (
∑t

i=1
pi
di·γ)

6: while L is not empty do

7: Pick telegram Ti from top of the list and remove Ti from L

8: for 0 ≤ j < ri do

9: B = true

10: for 0 ≤ k ≤ NMP
ri
− 1 do

11: if Dj+k·ri + di > Tav then

12: B = false

13: break

14: if B = true then

15: break

16: if B = false then

17: Put telegram Ti to another list L2 and pick next telegram

18: else

19: Place telegram to current offset oi = j and pick the next telegram

20: for 0 ≤ k ≤ NMP
ri
− 1 do

21: Dj+k·ri = Dj+k·ri + di

22: if L2 is not empty then

23: Apply the MAB with L2

In order to show the SAB ability in scheduling, consider the example with the 9

telegrams in Table 3.2. Each telegram Ti has IP pi and a duration di. Looking at the

duration and IP of the telegrams sorted list L occurs as shown in Table 3.7, for the

mentioned telegram set.

31

Table 3.7: Sorted List According to SAB

L[i] 1 2 3 4 5 6 7 8 9

Ti 3 1 4 7 2 5 6 9 8

[
di
pi

] 132.85 89.7 84.85 66.43 60.85 42.43 25.09 25.09 22.43

Assuming the MP with 4 BPs, we show for steps of Algorithm 5. Firstly, the telegram

T3 is selected from L because it has the biggest di / pi ratio. p3 is equal to 2 therefore

there are two possible offsets, o3 = 0 and o3 = 1. SAB starts from the smaller one,

and checks if the BP duration exceeds Tav or not. When d3 is added to both BP0 and

BP2, Tav is not exceeded for any BP. Then, T3 is scheduled with the offset o3 = 0 as

shown in Figure 3.10 (1). BPs are updated with the duration of the telegram.

Figure 3.10: Placement of the First Three Telegrams in SAB

Secondly, SAB picks the telegram T1 from L since it has the biggest di / pi ratio

among the remaining telegrams. Because the IP of T1 is equal to one and none of the

32

BP duration exceeds Tav, the telegram is placed to all base cycles as shown in Figure

3.10 (2) also BP durations are updated. Third, SAB picks the telegram T4 from L

since it has the biggest di / pi ratio among the remaining telegrams. Because the IP of

T4 is equal to two, SAB tries the two possible offsets back to back. For the first choice,

o4 = 0, the BP duration does not exceed Tav. Hence, the telegram is placed as shown

in Figure 3.10 (3) also BP durations are updated. Fourth, SAB picks the telegram T7

from L since it has the biggest di / pi ratio among the remaining telegrams. Because

the IP of T7 is equal to four, SAB Tries the four possible offsets starting from the first

one. When T7 is placed with the offset o7 = 0, BP0 exceeds Tav. Then, SAB tries

o7 = 1 to schedule T7. Because BP1 does not exceed Tav, T7 is placed as shown in

Figure 3.10 (4) with the offset o7 = 1.

Figure 3.11 shows the resulting MVB schedule that is constructed by Algorithm 5

with the offsets o1 = 0, o2 = 1, o3 = 0, o4 = 0, o5 = 3, o6 = 1, o7 = 1, o8 = 2 and

o9 = 3. The required duration of the periodic phase is TPP = 577.47µs.

Figure 3.11: MVB Schedule with the SAB

For the given data set in Table 3.2, the best value of Tav is found for γ = 0.9. It gives

the best σBP between all coefficient values γ from 0.75 to 1.50. Here, the Tav value is

equal to 610.79µs and it can be seen from Fig. 3.11 that none of the BPs exceeds Tav.

33

3.4 Evaluation of the Basic Heuristic Algorithms

There are five different basic heuristic algorithms as defined in Section 3.3. In this

part of the thesis, the algorithms will be compared with each other in terms of the

defined performance metrics in Section 3.1. Based on this evaluation, the algorithms

with the best performance will be further refined in Chapter 4.

3.4.1 Environment

During this work, experiments are done on an HP ZBook 15 G3 workstation. The

properties of the workstation are given below:

• Intel Core i7-6820HQ CPU @ 2.70GHz,

• 32 GB RAM,

• Windows 10 Pro OS, x64.

All the algorithms are written using MATLAB R2017a [28]. During the evaluation

part, the ILP in Section 3.2 is solved by CPLEX and the performance of the basic

heuristic algorithms will be compared with the optimal schedules obtained from the

ILP formulation. ILOG CPLEX Optimization Studio, which is the product of IBM

provides the fastest way to build efficient optimization models and state-of-the-art

applications for the full range of planning and scheduling problems [29]. CPLEX

v12.8 is used throughout the work. In CPLEX, the configurations below are applied

as shown below:

• options.MaxTime which limits the run time is set to 1800 seconds,

• options.Algorithm is set to dual which is generally used for difficult problems.

The cplexmilp function, which is offered by CPLEX Optimization Studio is used for

the evaluation. If the run time of CPLEX is equal to 1800 seconds, this test trial is

counted as a time-out fail, since an optimal solution could not be found in a practical

time. When the algorithm is not able to schedule the telegrams in the data set, the fail

count is increased by one.

34

3.4.2 Data Set For Evaluation

Our test scenarios are based on randomly generated telegram sets that are constructed

with the properties in Table 3.8. Telegram sets with different properties are obtained

by taking into account the frequency of telegrams with certain individual periods.

Four different frequency ranges are determined and results are obtained with refer-

ence to these.

Table 3.8: Data Set Classification and Telegram Sets

TS-1 More Frequent (ri = 1, 2, 4)

TS-2 Normal (ri = 8, 16, 32, 64)

TS-3 Less Frequent (ri = 128, 256, 512, 1024)

TS-4 Equally distributed (according to percentage)

11 test cases for the more frequent telegrams, 13 test cases for the normal telegrams,

19 test cases for the less frequent telegrams and 9 test cases for the equally distributed

telegrams are generated according to different values of the bandwidth utilization

UMVB are constructed. For each test case, there are twenty trials with the same BU

but different telegrams looking at di and pi. Hereby, the BU represents the part of

the available duration that is used for transmitting periodic telegrams on MVB. For a

given set of telegrams T = {T1, . . . , Tt}, BU is computed as

UMVB =
t∑
i=1

di
ri
. (3.17)

The performance of each algorithm will be evaluated according to data set classifica-

tion. For each test case and every trial of it, maximum BU, minimum BU, average

BU, standard deviation (σBP) and run-time parameters are recorded in order to use

them in the evaluation.

All algorithms aim to schedule the telegrams in an optimal way but also they should

not exceed TBP for any basic period. If any of them is exceed the TBP, it is assumed

that the algorithm is not able to schedule telegrams for that trial according to test case

parameters. In these test cases, the algorithm is marked as "failed" in the evaluation.

35

3.4.2.1 More Frequent Telegrams

The telegrams that have a small value of ri are called More Frequent Telegrams. This

concerns the telegrams with a small period such that a small number of telegrams

already leads to a very high BU. Since the ILP formulation in this case only has to

allocate a small number of telegrams, it is possible to determine an optimal solution

despite the high BU.

In Table 3.9, the average telegram count and total BU for the different test cases (TC)

is given.

Table 3.9: Average Telegram Counts and Total BUs in More Frequent Test Cases

TC-i 1 2 3 4 5 6 7 8 9 10 11

T Count 4 10 9 9 10 12 13 16 14 17 15

BU [%] 26.3 55.7 64.5 73.9 69.0 88.1 82.7 89.1 90.4 91.3 93.2

Table 3.10 shows the number of failed trials for the different algorithms and test

cases. Minimizing the number of failed scheduling attempts is the second important

goal after maximum BU reduction since a failed attempt means that no feasible MVB

schedule could be found. Here, we note that a failed attempt of solving the ILP

means that no solution exists for these test cases. In contrast, failed attempts of the

heuristics potentially indicate the failure of finding a solution even a feasible MVB

schedule exists.

Table 3.10: Fail Count for Each Algorithm in More Frequent Test Cases

Algorithm ↓ / TC→ 1 2 3 4 5 6 7 8 9 10 11

ILP 0 0 0 0 0 0 0 0 2 0 1

MAB 0 0 0 0 0 0 0 0 3 7 5

CF 0 0 0 0 0 2 0 0 6 4 6

R-MAB 0 0 0 0 0 3 0 1 7 13 11

SAB 0 0 0 0 0 0 0 0 3 1 3

MLB 0 0 0 0 0 0 0 0 4 9 7

36

After TC 5, both CF and R-MAB show failed attempts at a BU of approximately %88.

When the BU is increased a little more, all algorithms including the ILP show fails

in different trials although there are a few telegrams. Naturally, the ILP schedules the

telegrams with a high rate of success according to results. Moreover, SAB schedules

the telegram with a high rate of success. It performs the most similar performance

among the basic heuristic algorithms to the ILP.

The maximum BU for each algorithm based on the TCs is given in Figure 3.12. The

horizontal black lines in the plot show the lower bound for the maximum BP duration

for each test case which is desired to be achieved in order to obtain the optimal MVB

schedule. If at least one algorithm fails, all results in that trial are discarded among

the twenty trials while calculating performance metrics.

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8 TC-9 TC-10 TC-11

TEST CASES

0

10

20

30

40

50

60

70

80

90

100

M
A

X
IM

U
M

 U
T

IL
IZ

A
T

IO
N

 (
in

 p
er

ce
n

ta
g

e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.12: Maximum BU in More Frequent Test Cases

CF, MAB and R-MAB were never able to achieve the smallest maximum BU in any

test case among the basic heuristics. Apart from the fact that these algorithms lead to

a large number of failed attempts at high BUs, the also produced the worst maximum

BU results compared to MLB and SAB. Here, it has to be noted that, in many cases,

both MLB and SAB produce maximum BUs very close to the optimal ILP solution.

Especially, SAB performs similar to or better than the ILP. For example, in TC 6, it

can be seen that SAB has a smaller maximum BP duration than the ILP solutions.

37

This means that the ILP terminates without computing an optimal MVB schedule.

The minimum BU should be close to the maximum BU in order to obtain a balanced

schedule. Minimum BU that is desired to be maximized for each algorithm based

on the test cases is given in Figure 3.13. As seen in the figure, MLB schedules the

telegrams as well as the ILP looking at the minimum BU. In some test cases, it is

seen that this algorithm produced better results compared to ILP. The remaining four

algorithms except for MLB schedule the test cases with smaller minimum BU but

still, there is not too much difference between them.

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8 TC-9 TC-10 TC-11

TEST CASES

0

10

20

30

40

50

60

70

80

90

100

M
IN

IM
U

M
 U

T
IL

IZ
A

T
IO

N
 (

in
 p

er
ce

n
ta

g
e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.13: Minimum BU in More Frequent Test Cases

σBP directly states the balance of the schedule. If the duration of the BPs is close

to each other, this parameter becomes smaller and σBP = 0 is the best result for the

schedule. In Figure 3.14, it is seen that CF, MAB and R-MAB have large values

of σBP, which is not desired. SAB schedules the telegrams with the smallest σBP

among heuristics and it produces balanced schedules similar to or better than the ILP.

Additionally, MLB also gives good results compared to the remaining three heuristics

even so it is not as successful as SAB.

38

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8 TC-9 TC-10 TC-11

TEST CASES

0

10

20

30

40

50

60

70

80

S
T

A
N

D
A

R
D

 D
E

V
I
A

T
I
O

N
 A

C
C

O
R

D
I
N

G
 T

O
 A

V
E

R
A

G
E

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.14: Standard Deviation in More Frequent Test Cases

The run-time is another important parameter that should be reduced by algorithms

as one of the main goals. It is desired to minimize the run-time while decreasing the

maximum BP and σBP. Depending on the combination of high BU and a large number

of telegrams, the ILP starts to spend much more time to find an optimal solution. As

seen in Table 3.11, all heuristic algorithms complete the scheduling in approximately

the same run-time because of the small number of telegrams.

Table 3.11: Run-Time (ms) in More Frequent Test Cases

TEST CASES

TC-1 TC-2 TC-3 TC-4 TC-5 TC-6 TC-7 TC-8 TC-9 TC-10 TC-11

ILP 2.7 38.8 36.5 63.7 43.5 92.0 395.0 119.0 76.2 173.0 54.7

MAB 0.9 0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.3 0.3 0.3

CF 1.6 0.4 0.4 0.4 0.3 0.4 0.5 0.3 0.3 0.5 0.3

R-MAB 11.4 0.5 0.5 0.5 0.3 0.5 0.5 0.4 0.4 0.4 0.4

SAB 11.9 9.8 11.2 11.6 10.0 13.0 17.7 12.4 10.3 10.8 9.2

MLB 0.7 0.2 0.2 0.2 0.2 9.2 0.3 0.2 0.2 0.2 0.1

Total fail counts for each algorithm are also given in Table 3.12.

39

Table 3.12: Total Fail Counts in More Frequent Telegrams

Algorithm Fail Count

MAB 15

CF 18

R-MAB 35

SAB 7

MLB 20

The winners for each test case according to different performance metrics are noted

and the sum of them are given in Table 3.13 according to each heuristic.

Table 3.13: Winner of Test Cases in More Frequent Telegrams

Performance Metrics

min{Umax
BP − Umin

BP } σBP Run-Time minUmax
BP

MAB 0 0 0 0

CF 1 1 0 1

R-MAB 0 0 0 0

SAB 10 10 0 10

MLB 0 0 11 0

Investigating Table 3.13 and 3.12, it is seen that SAB performs best and produces

results closest to the ILP (sometimes better than the ILP). Except for run-time, it

gets the highest score among the heuristics and for the run-time, it produces similar

results as MLB. The remaining three algorithms show a considerably larger number of

failed attempts and do not perform as well when looking at the different performance

metrics.

40

3.4.2.2 Normal Telegrams

Normal telegrams are considered as telegrams with a medium period. Hence, a rel-

atively large number of telegrams are needed to obtain a high BU. Nevertheless, the

number of telegrams is still limited such that the ILP can be solved in many instances.

In Table 3.14, the average telegram count and total BU is given according to the 13

test cases for this test scenario.

Table 3.14: Average Telegram Counts and Total BUs in Normal Test Cases

TC-i 12 13 14 15 16 17 18 19 20 21 22 23 24

T Count 16 47 53 50 37 88 99 102 113 151 155 175 216

BU [%] 11.2 22.1 24.0 25.1 27.2 48.1 68.1 60.1 60.2 63.2 82.1 74.0 84.1

The count of the failed trials for each algorithm is given according to each test case in

Table 3.15. Since the number of telegrams is still limited, most of the basic heuristics

and the ILP can schedule all test instances. Only R-MAB shows unsuccessful trials

in case of a high BU.

Table 3.15: Fail Count for Each Algorithm in Normal Test Cases

Algorithm ↓ / TC→ 12 13 14 15 16 17 18 19 20 21 22 23 24

ILP 0 0 0 0 0 0 0 0 0 0 0 0 0

MAB 0 0 0 0 0 0 0 0 0 0 0 0 0

CF 0 0 0 0 0 0 0 0 0 0 0 0 0

R-MAB 0 0 0 0 0 0 0 0 0 0 6 3 16

SAB 0 0 0 0 0 0 0 0 0 0 0 0 0

MLB 0 0 0 0 0 0 0 0 0 0 0 0 0

CF and R-MAB produce the highest maximum BU for most of the test cases as shown

in Figure 3.15 which is not desired. MAB produces better results when the number

of telegrams is increased to 150 and above. SAB and MLB are superior to the other

algorithms looking at the results. These algorithms produce performance parameters

41

very close to the ILP solution and they require only short run-times, which are neg-

ligible compared to the run-time of ILP as stated in Table 3.16.In particular, Umax
BP

for SAB in TC-24 is smaller than the corresponding value of the ILP solution, which

indicates that the ILP cannot produce an optimal solution in case of a high BU.

TC-12 TC-13 TC-14 TC-15 TC-16 TC-17 TC-18 TC-19 TC-20 TC-21 TC-22 TC-23 TC-24

TEST CASES

0

10

20

30

40

50

60

70

80

90

100

M
A

X
IM

U
M

 U
T

IL
IZ

A
T

IO
N

 (
in

 p
er

ce
n

ta
g

e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.15: Maximum Utilization in Normal Test Cases

Looking at the minimum BU, all of the basic heuristic algorithms and ILP produce

results that are very close to each other as shown in Figure 3.16.

42

TC-12 TC-13 TC-14 TC-15 TC-16 TC-17 TC-18 TC-19 TC-20 TC-21 TC-22 TC-23 TC-24

TEST CASES

0

10

20

30

40

50

60

70

80

90

M
IN

IM
U

M
 U

T
IL

IZ
A

T
IO

N
 (

in
 p

er
ce

n
ta

g
e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.16: Minimum Utilization in Normal Test Cases

Because the minimum BU results are similar between all algorithms, σBP results for

each test cases are directly related to maximum BU which is clearly seen looking at

Figure 3.17.

TC-12 TC-13 TC-14 TC-15 TC-16 TC-17 TC-18 TC-19 TC-20 TC-21 TC-22 TC-23 TC-24

TEST CASES

0

20

40

60

80

100

120

S
T

A
N

D
A

R
D

 D
E

V
I
A

T
I
O

N
 A

C
C

O
R

D
I
N

G
 T

O
 A

V
E

R
A

G
E

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.17: Standard Deviation in Normal Test Cases

43

As can be seen in Table 3.16, the basic heuristic algorithms run in a very short time,

which is negligible compared to the ILP run-time. After TC-17, the run-time of the

ILP is shown as timeout for the remaining test cases because the solver times out

after 1800 seconds according to Table 3.17. When the run-time equals this value

it indicates that an optimal solution is not found in the specified duration and it is

counted as time failure. In the time-failure scenario, the trial is discarded in the

evaluation for run-time. As the main result, Fig. 3.15 together with Table 3.16 indicate

that the basic heuristic algorithms produce results close to the ILP solution in a much

shorter time.

Table 3.16: Run-Time (ms) in Normal Test Cases

TEST CASES

TC-12 TC-13 TC-14 TC-15 TC-16 TC-17 TC-18 TC-19 TC-20 TC-21 TC-22 TC-23 TC-24

ILP 1·103 6 ·103 2·103 66·103 75·103 380·103 TO TO TO TO TO TO TO

MAB 0.7 0.7 0.7 0.7 0.7 0.9 0.9 0.9 1.1 1.5 1.4 4.5 2.6

CF 0.7 0.8 0.8 0.8 0.7 1.0 1.1 1.1 1.3 1.5 1.4 5.4 3.4

R-MAB 0.8 0.9 1.0 0.9 0.8 1.3 1.3 1.4 1.6 1.9 1.9 8.4 4.3

SAB 33.3 33.4 35.0 34.0 32.7 43.8 46.1 46.1 49.2 59.1 59.0 131.0 138.9

MLB 0.6 0.6 0.5 0.5 0.5 0.7 0.7 0.7 0.8 0.9 0.9 2.7 2.1

Results show that ILP could not find the optimal solution when the BU is higher

than %50 and telegram count is bigger than 100 according to test cases. Except for

R-MAB which is failed for some test cases, other basic heuristics are very good at

run-time performance compared to ILP.

Table 3.17: ILP Time Failure Count For Normal Test Cases

TC 12 13 14 15 16 17 18 19 20 21 22 23 24

Failures 0 0 7 8 2 13 20 20 20 20 20 20 20

The winners for each test case according to different performance metrics are noted

and summation of them are given in Table 3.18 according to each heuristics.

44

Table 3.18: Winner of Test Cases in Normal Telegrams

Performance Metrics

min{Umax
BP − Umin

BP } σBP Run-Time minUmax
BP

MAB 1 0 0 2

CF 0 0 0 0

R-MAB 0 0 0 0

SAB 8 9 0 8

MLB 3 2 11 2

Total fail counts for each algorithm are also given in Table 3.19.

Table 3.19: Total Fail Counts in Normal Telegrams

Algorithm Fail Count

MAB 0

CF 0

R-MAB 25

SAB 0

MLB 0

Using Table 3.18 and Table 3.19, it is seen that SAB performs best and produces

results closest to ILP as in Section 3.4.2.1. In addition, most of the cases, the ILP

could not find an optimal solution and times out. On the other hand, MLB and SAB

can always find a feasible schedule and they produce results close to ILP in a very

short time. Except for the run-time, SAB gets the highest score. While MAB and CF

do not fail, they could not produce results close to the ILP. R-MAB shows too many

failed trials and performs the worst for the Normal Telegram Data Sets.

45

3.4.2.3 Less Frequent Telegrams

Less frequent telegrams consider telegrams with a small period such that a very large

number of telegrams is needed to obtain a bus utilization above %20 as seen in Table

3.20, that gives the average telegram count and total BU. It is expected that finding

an optimal MVB schedule is difficult for telegram sets with a very large number

of telegrams with large periods since a large number of DVs are needed in the ILP

formulation.

Table 3.20: Average Telegram Counts and Total BUs in Less Frequent Test Cases

TC-i 25 26 27 28 29 30 31 32 33 34

T Count 45 94 91 83 79 257 274 281 333 368

BU [%] 2.2 3.6 4.0 4.0 4.2 10.5 16.0 14.0 14.0 13.0

TC-i 35 36 37 38 39 40 41 42 43

T Count 532 601 669 685 716 1931 2313 2571 3343

BU [%] 21.0 22.0 23.0 24.0 25.0 60.0 72.0 80.0 70.0

Table 3.21: Fail Count for Each Algorithm in Less Frequent Test Cases

Algorithm ↓ / TC→ 25 26 27 28 29 30 31 32 33 34

ILP 0 0 0 0 0 0 0 0 0 0

MAB 0 0 0 0 0 0 0 0 0 0

CF 0 0 0 0 0 0 0 0 0 0

R-MAB 0 0 0 0 0 0 0 0 0 0

SAB 0 0 0 0 0 0 0 0 0 0

MLB 0 0 0 0 0 0 0 0 0 0

Algorithm ↓ / TC→ 35 36 37 38 39 40 41 42 43

ILP 0 0 0 0 0 0 0 0 0

MAB 0 0 0 0 0 0 0 0 0

CF 0 0 0 0 0 0 0 0 0

R-MAB 0 0 0 0 0 0 0 14 0

SAB 0 0 0 0 0 0 0 0 0

MLB 0 0 0 0 0 0 0 0 0

46

The fail count for each algorithm is given according to each test case in Table 3.21.

Because the total BU is less than %25 for the test cases between TC-25 and TC-39

depending on the high ri, no algorithm fails, although there is a large number of

telegrams. After TC-39, the total BU is increased and all of the algorithms scheduled

the telegrams in data set without any fail except R-MAB.

Between TC-40 and TC-43, ILP produces the worst result for the maximum BU min-

imization because it could not find an optimal solution in the selected maximum time

because of the large number of telegrams (and hence DVs) as shown in Table 3.23.

Discarding these test cases, CF and R-MAB produce worse schedules than the other

algorithms, looking at the variables that are given in Figure 3.18. The remaining three

algorithms schedule the telegrams close to ILP in terms of maximum BU.

TC-25 TC-26 TC-27 TC-28 TC-29 TC-30 TC-31 TC-32 TC-33 TC-34 TC-35 TC-36 TC-37 TC-38 TC-39 TC-40 TC-41 TC-42 TC-43

TEST CASES

0

10

20

30

40

50

60

70

80

90

100

M
A

X
IM

U
M

 U
T

IL
IZ

A
T

IO
N

 (
in

 p
er

ce
n

ta
g

e)

ILP

MAB

CF

R-MAB

MLB

SAB

Figure 3.18: Maximum Utilization in Less Frequent Test Cases

Considering that a high minimum BU is desired, all of the basic heuristic algorithms

perform better than ILP as seen in Figure 3.19. The basic heuristics schedule the

telegrams very similar to each other in terms of minimum BU.

47

TC-25 TC-26 TC-27 TC-28 TC-29 TC-30 TC-31 TC-32 TC-33 TC-34 TC-35 TC-36 TC-37 TC-38 TC-39 TC-40 TC-41 TC-42 TC-43

TEST CASES

0

10

20

30

40

50

60

70

80
M

IN
IM

U
M

 U
T

IL
IZ

A
T

IO
N

 (
in

 p
er

ce
n

ta
g

e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.19: Minimum Utilization in Less Frequent Test Cases

Since ri is high, the difference between the maximum and minimum BU is large.

As a result of this, relatively large values of σBP are obtained as demonstrated in

Figure 3.20. Depending on this difference, σBP is decreased as the test case number is

increased. σBP for the ILP solution is getting significantly larger after TC-39 because

the optimal solution is not found in the allocated time.

TC-25 TC-26 TC-27 TC-28 TC-29 TC-30 TC-31 TC-32 TC-33 TC-34 TC-35 TC-36 TC-37 TC-38 TC-39 TC-40 TC-41 TC-42 TC-43

TEST CASES

0

50

100

150

S
T

A
N

D
A

R
D

 D
E

V
I
A

T
I
O

N
 A

C
C

O
R

D
I
N

G
 T

O
 A

V
E

R
A

G
E

ILP(1:5)

MAB

CF

R-MAB

SAB

MLB

Figure 3.20: Standard Deviation in Less Frequent Test Cases

48

As seen in Table 3.22, the ILP consumes too much time when the BU is high and

there is a large number of telegrams. Indeed, it can not find an optimal solution after

some point. The described basic heuristics perform the schedule computation in a

short time, below a second except for SAB whose run time can rise to 20 seconds,

and their scheduling performances are better than or similar to the ILP.

Table 3.22: Run-Time (ms) in Less Frequent Test Cases

TEST CASES

TC-25 TC-26 TC-27 TC-28 TC-29 TC-30 TC-31 TC-32 TC-33 TC-34

ILP 6·103 18 ·103 17·103 15·103 9·103 23·103 19 ·103 19 ·103 25 ·103 57 ·103

MAB 7.0 8.2 7.9 7.7 7.7 11.0 10.9 11.4 12.9 14.1

CF 6.9 8.1 8.1 8.0 7.4 11.2 11.5 12.2 13.7 14.7

R-MAB 7.4 8.7 8.3 8.1 7.9 12.3 12.4 13.6 14.4 15.7

SAB 390 571 558 554 513 740 627 647 762 900

MLB 5.7 6.6 6.6 6.6 6.2 9.0 9.1 9.2 10.5 11.4

TC-35 TC-36 TC-37 TC-38 TC-39 TC-40 TC-41 TC-42 TC-43

ILP 112·103 334 ·103 527·103 TO TO TO TO TO TO

MAB 18.5 104.6 149.8 217.7 55.9 155.2 176.2 220.1 325.9

CF 19.9 77.3 99.5 154.0 59.1 181.5 214.2 268.1 355.7

R-MAB 20.7 173.3 181.9 201.5 62.4 166.5 193.5 244.3 315.7

SAB 1·103 1·103 2 ·103 2 ·103 3 ·103 11 ·103 12 ·103 15 ·103 21 ·103

MLB 15.0 24.3 71.5 101.4 43.7 135.3 152.2 187.9 314.0

Table 3.23: ILP Time Failure Count For Less Frequent Test Cases

TC 25 26 27 28 29 30 31 32 33 34

Failures 0 0 0 0 0 0 0 0 0 0

TC 35 36 37 38 39 40 41 42 43

Failures 0 1 0 20 20 20 20 20 20

It is observed that finding an optimal MVB schedule is difficult for telegram sets with

a very large number of telegrams with large periods for ILP. The winners for each

test case according to different performance metrics are noted and their summation is

given in Table 3.24 according to each heuristic.

49

Table 3.24: Winner of Test Cases in Less Frequent Telegrams

Performance Metrics

min{Umax
BP − Umin

BP } σBP Run-Time minUmax
BP

MAB 11 4 0 9

CF 0 0 0 0

R-MAB 5 1 0 5

SAB 7 6 0 10

MLB 16 10 19 14

The total fail counts for each algorithm are also given in Table 3.25.

Table 3.25: Total Fail Counts in Less Frequent Telegrams

Algorithm Fail Count

MAB 0

CF 0

R-MAB 14

SAB 0

MLB 0

Using Table 3.24 and Table 3.25, it is seen that MLB performs best and produces

results closest to ILP. In addition, it does not show any unsuccessful trials, whereas

the ILP has too many time outs because of a large number of telegrams. The re-

maining heuristics also performs well and schedule the telegrams similar according

to performance metrics. Except for R-MAB none of them fails in this test scenario.

3.4.2.4 Equal Distributed Telegrams

Equally distributed telegrams according to the percentage of occurrence consider tele-

gram sets with telegrams of all possible periods and a similar BU per period. In Table

3.26, average telegram count and total BU is given for each test case.

50

Table 3.26: Telegram Count and Total BU for Equal Distributed Telegrams

TC-i 44 45 46 47 48 49 50 51 52

T Count 68 135 203 272 543 686 819 956 1095

BU [%] 2.7 6.4 11.2 14.9 33.9 47.7 57.0 66.8 75.8

Except for R-MAB and CF, all of the basic heuristics were able to schedule the tele-

grams sets in this test scenario without any failed attempt as stated in Table 3.27.

Table 3.27: Fail Count for Each Algorithm in Equal Distributed Test Cases

Algorithm ↓ / TC→ 44 45 46 47 48 49 50 51 52

ILP 0 0 0 0 0 0 0 0 0

MAB 0 0 0 0 0 0 0 0 0

CF 0 0 0 0 0 0 0 3 17

R-MAB 0 0 0 0 0 0 0 5 18

SAB 0 0 0 0 0 0 0 0 0

MLB 0 0 0 0 0 0 0 0 0

Even though the ILP solver could not find an optimal solution in most of the test cases

according to Table 3.28, it still gives comparable results for the maximum BU as long

as the BU is limited. MAB, MLB, and SAB give close BU to ILP and they achieve it

in a significantly shorter run-time. CF and R-MAB produce much higher maximum

BU which is an undesirable situation as shown in Figure 3.21.

51

TC-44 TC-45 TC-46 TC-47 TC-48 TC-49 TC-50 TC-51 TC-52

TEST CASES

0

10

20

30

40

50

60

70

80

90

100
M

A
X

IM
U

M
 U

T
IL

IZ
A

T
IO

N
 (

in
 p

er
ce

n
ta

g
e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.21: Maximum Utilization in Equally Distributed Test Cases

Figure 3.22 shows that all of the basic algorithms perform better than ILP in all of the

test cases. Because of the time out of the ILP, it produces relatively small minimum

BU values.

TC-44 TC-45 TC-46 TC-47 TC-48 TC-49 TC-50 TC-51 TC-52

TEST CASES

0

10

20

30

40

50

60

70

80

M
IN

IM
U

M
 U

T
IL

IZ
A

T
IO

N
 (

in
 p

er
ce

n
ta

g
e)

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.22: Minimum Utilization in Equal Distributed Test Cases

52

Except for R-MAB and CF, the remaining three basic heuristic algorithms give a

smaller σBP compared to the ILP solution, which is desired. Especially SAB gives

good results under high BU and a large number of telegrams with reference to TC-48

and later.

TC-44 TC-45 TC-46 TC-47 TC-48 TC-49 TC-50 TC-51 TC-52

TEST CASES

0

20

40

60

80

100

120

140

160

180

200

S
T

A
N

D
A

R
D

 D
E

V
I
A

T
I
O

N
 A

C
C

O
R

D
I
N

G
 T

O
 A

V
E

R
A

G
E

ILP

MAB

CF

R-MAB

SAB

MLB

Figure 3.23: Standard Deviation in Equal Distributed Test Cases

Until TC-48, the total BU is smaller than %15 and under the small number of tele-

grams, the ILP solver can find the optimal solution in short run-time. When the total

BU and number of telegrams increase, the ILP is not able to find an optimal solution

in 1800 seconds (Timeout - TO) as shown in Table 3.28.

Table 3.28: Run-Time (ms) in Equal Distributed Test Cases

TEST CASES

TC-44 TC-45 TC-46 TC-47 TC-48 TC-49 TC-50 TC-51 TC-52

ILP 7 ·103 13 ·103 20·103 32·103 TO TO TO TO TO

MAB 7.3 7.9 9.5 11.4 19.5 28.8 26.8 33.6 106.3

CF 7.5 8.2 10.0 11.8 21.4 29.9 29.7 35.8 75.2

R-MAB 7.8 8.7 10.6 12.6 21.5 31.0 29.7 36.6 75.0

SAB 520 569 640 681 1 ·103 2 ·103 2 ·103 2 ·103 3·103

MLB 6.1 6.7 8.1 9.3 15.7 21.0 21.2 25.8 46.1

53

As given in Table 3.29, ILP could not find an optimal solution in scheduling for

the test cases between TC-48 and TC-53 whereas run-time of all the basic heuristic

algorithms is smaller than 5 seconds as stated in Table 3.28. Besides the run-time

efficiency, looking at the maximum BU, minimum BU and σBP metrics SAB and

MLB produce a result similar to or better than ILP.

Table 3.29: ILP Time Failure Count For Equal Distributed Test Cases

TC 44 45 46 47 48 49 50 51 52

Failures 0 0 0 0 20 20 20 20 20

The winners for each test case according to different performance metrics are noted

and the sum of them is given in Table 3.30 according to each heuristic.

Table 3.30: Winner of Test Cases in Equal Distributed Telegrams

Performance Metrics

min{Umax
BP − Umin

BP } σBP Run-Time minUmax
BP

MAB 3 2 0 3

CF 0 0 0 0

R-MAB 1 0 0 1

SAB 5 5 0 5

MLB 4 3 9 4

The total fail counts for each algorithm are also given in Table 3.31.

54

Table 3.31: Total Fail Counts in Equal Distributed Telegrams

Algorithm Fail Count

MAB 0

CF 20

R-MAB 23

SAB 0

MLB 0

Using Table 3.30 and Table 3.31, it is seen that MLB and SAB perform best and pro-

duce results closest to the ILP solution. In addition, they do not get any fail whereas

the ILP has too many time outs because of the large number of telegrams. CF and

R-MAB could not win in any test cass and they could not schedule the telegrams in

many cases.

3.4.3 Discussion of the Basic Heuristics

As explained in detail in the previous subsections, the different scheduling algorithms

were studied according to defined performance metrics. Here, it is most important to

minimize each BP duration in telegram scheduling. Besides, the run-time should be

small to find an optimal solution fast.

Because of the small number of telegrams in TS-1, the ILP solver can find an opti-

mal solution in all the test cases. According to the results, especially SAB performs

similarly to the ILP, taking into account the maximum BUs and standard deviation

σBP. In addition, the run-time is smaller than the ILP looking at Table 3.11. The

remaining four heuristics perform faster than SAB and give results close to it for the

maximum BUs. Further, all algorithms show a similar performance according to min-

imum BUs. In addition, according to σBP, MLB is the closest performing algorithm

to SAB among the basic heuristics but the fail count of the MLB under high BUs is

higher than SAB which makes it inferior to SAB as given in Table 3.10. Because

MAB, CF and R-MAB show more failed trials, SAB is the best algorithm for the

55

TS-1 and produces schedules close to or better than ILP.

In TS-2, there are telegrams with a medium period and a relatively large number of

telegrams are required to achieve high BUs compared to TS-1. Since the number of

telegrams is still limited in TS-2, the ILP solver can find an optimal solution in most

test cases when it does not time out. Despite time outs, the ILP still produces suitable

results. According to the fail count, all the algorithms except for R-MAB do not

show failed attempts. In general, R-MAB gives the worst results among the algorithm

taking into account all the performance metrics. Looking at the maximum BUs, both

MLB and SAB perform close to ILP as shown in Figure 3.15. Comparing σBP, SAB

achieves a smaller σBP than ILP and MLB performs close to the ILP. CF and MAB

approach MAB and SAB for the minimum BUs but they are inferior regarding the

remaining performance metrics. Most importantly, MLB and SAB generate schedules

close to or better than ILP but with a significantly reduced run-time. Specifically, the

ILP times out for the test cases with more than 100 telegrams and 60% BUs.

TS-3 considers telegrams with a small period such that a very large number of tele-

grams is needed to obtain a BU above 20%. Because of the very large number of

telegrams, an optimal solution cannot be obtained by the ILP solver. Different from

TS-2, when the ILP times out, it does not produce suitable results according to maxi-

mum BU and σBP. Both SAB and MLB make the schedule close to or better than ILP

in different cases according to the maximum BU as given in Figure 3.18. Looking

at the minimum BU, all algorithms perform similar or better than ILP. When σBP is

examined, the ILP performs much better than the heuristic algorithms if it does not

time out as shown in Figure 3.20. MLB and MAB produce the closest results in cases

where the ILP finds an optimal solution. When the ILP times out, all the heuristics

perform better than the ILP, whereby SAB and MLB are superior to the other heuris-

tics. Even the run-time of SAB is longer than for MLB and MAB, it is much shorter

than the run-time of the ILP solver as given in Table 3.22.

Telegram sets with all possible periods and a similar BU per period exist in TS-4. As

in the TS-3, it can be seen that the ILP cannot be solved if the number of telegrams

is large. For the maximum BUs, MLB and SAB give better results than the ILP for

the different test cases as seen in Figure 3.21. According to σBP, SAB gives more

56

balanced schedules compared to ILP in all the test cases. In addition, MLB shows the

closest performance to SAB and it is better than ILP in most of the cases. When the

run-times are examined, all of the heuristics are much faster than the ILP.

The main and major difference between MLB-SAB and the remaining three heuristics

is the telegram sorting approach in L. While MLB-SAB sort the telegrams according

to di / pi, the other algorithms consider the increasing pi and decreasing di. CF,

MAB, and R-MAB look at the value of Cj for placement. On the other hand, MLB

checks Dj and SAB checks Tav. Therefore, it is seen that SAB performs the best and

MLB follows SAB among the basic heuristics according to all test scenarios. These

algorithms produce results that are very close to ILP according to all performance

metrics. Even the ILP could not find an optimal solution in case of a large number

of telegrams or a high BU, these two algorithms schedule the telegrams very fast and

with high performance. Therefore, SAB and MLB will be used in Chapter 4 and

improved with different swap operations.

The basic heuristics give suitable schedules but there is still some gap to the ILP,

which leaves room for improvement. For the test cases that have a small number of

telegrams, schedules are compared between heuristics and ILP. Here, it is seen that

the heuristics place the larger telegrams to the longest BPs in some cases because

they generally pick up telegrams in that order from L. As a result, it is possible

that the schedules are not as balanced as desired, leading to longer BP durations.

To overcome this shortcoming, different swap operations are developed in the next

chapter in order to exchange the locations of telegrams in the schedule in case the

maximum BP duration can be reduced.

57

58

CHAPTER 4

SWAP OPERATIONS FOR TELEGRAM SCHEDULING ON

BASIC ALGORITHMS

This chapter develops different procedures for improving the schedules obtained by

the basic heuristics in the previous chapter. Hereby, improvements include shorten-

ing the maximum BP duration, making schedules more balanced as well as making

infeasible schedules feasible. Section 4.1 defines the different swap operations de-

veloped in this thesis and Section 4.2 performs a comprehensive evaluation of these

swap operations.

4.1 Swap Operations Definition

We assume that an initial schedule is determined using one of the basic heuristics in

Chapter 3 before applying any of the swap operations. Hereby, the constraint in (3.11)

is discarded for the basic heuristic algorithms in order to always obtain a schedule that

includes all the telegrams. This means that there can be infeasible schedules with BP

durations greater than TBP. The goal of the swap operations is then to reduce the BP

durations in order to obtain a feasible schedule with the shortest possible maximum

BP duration. If the constraint in (3.11) is still not satisfied, the algorithm is marked

as unsuccessful.

Assume that we computed offsets oi for all telegrams Ti ∈ T . Then, we define the

parameters as shown below.

Umax
BP = max{Dk}, according to (3.3) (4.1)

59

Umin
BP = min{Dk}, according to (3.4) (4.2)

Di,max = max{Di,k}, Di,k = Doi + k · ri , where k = 0, . . . ,
NMP

ri
− 1 (4.3)

Umax
BP and Umin

BP characterize the maximum and minimum duration of a BP in the com-

puted schedule, respectively. Di,max is the maximum duration of a BP, where telegram

Ti is scheduled and σBP is the standard deviation of the BP durations which is calcu-

lated as shown in (3.6).

Since the swap operations update an existing schedule, we further use two sets of

offsets. One set that is used for the currently assigned telegrams which are expressed

with O and the other one is used to keep changes after the swap operations that is

expressed by Ô.

Since SAB and MLB were determined as the basic heuristics with the best perfor-

mance, the swap operations are separately applied to these basic heuristics. We next

define four different swap operations.

4.1.1 Swap Operation According to Maximum Basic Period Duration (SMB)

The main idea of the swap operation in this section is to exchange the offset values

of two telegrams with the same period and different durations. Hereby, the aim is to

reduce the maximum BP duration after swapping the telegrams.

The detailed procedure is given in Algorithm 6. After the initial schedule is con-

structed omitting the constraint control (3.11), the swap operation is applied sepa-

rately for each possible repetition rk = 2k back to back where k = 0, . . . , 10. In each

iteration, the operation counts the telegrams whose repetition is rk = 2k, as |Tk|. If

there is no telegram or only one telegram (that is, there is nothing to be swapped), the

operation proceeds to the next rk. When at least two telegrams are found, it starts to

check if swapping will be beneficial. The algorithm compares any two telegrams Ti

and Tj with the offsets oi and oj bi-directional which means that both Ti-Tj and Tj-Ti

are compared.

60

If the offsets of the two telegrams are equal to each other or di < dj , Ti and Tj are not

swapped. The reason is that there will be no gain when the two telegrams with the

same offsets are exchanged. Otherwise, Di,max, Dj,max, Umax
BP , and Umin

BP are calculated

by the algorithm in order to use them in comparison according to NMP.

If Di,max is greater than Dj,max and the difference between di and dj is smaller than

or equal to the difference between Di,max and Dj,max, the offsets are exchanged for i

and j in order not to exceed Di,max after the swap. The new offsets are put in Ô and

the basic periods are updated, while the algorithm keeps the parameters before the

exchange until the iteration is complete. Otherwise, telegrams are discarded and the

algorithm continues taking the next telegram.

When the offsets are exchanged, the algorithm calculates D̂i,max, D̂j,max, Ûmax
BP , and

Ûmin
BP for the modified offset assignment Ô. Here, it is desired to decrease the maxi-

mum BP duration and to increase the minimum BP duration after the swap operation.

That is, the algorithm accepts Ô if (i) Ûmax
BP is smaller than or equal to Umax

BP , (ii) Ûmin
BP

is bigger than or equal to Umin
BP and (iii) the absolute value of the difference between

D̂i,max, D̂j,max is smaller than Di,max and Dj,max. Otherwise, the swap operation is can-

celled. If the conditions are satisfied, it is checked if Ô leads to a balanced schedule

by computing σBP for both O and Ô as σBP and σ̂BP, respectively. If σ̂BP is smaller

than σBP − 0.01, and none of BP durations D̂l is greater than TBP, the swap operation

is completed successfully and the modified values are assigned: O = Ô andDl = D̂l.

Here, it is desired that σ̂ is smaller than σBP in order to increase the run-time and per-

formance. If the conditions are not satisfied, the swap operation is cancelled and the

previous values of the variables are used.

61

Algorithm 6 SMB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = Ô = ∅; define list Tk ⊆ T of telegrams

with repetition 2k; Dl = D̂l = 0 for j = 0, . . . , NMP − 1

4: Apply basic heuristic without 3.9 constraint; obtain offset oi for each telegram Ti

and Dl for each basic period

5: for 0 ≤ k ≤ 10 do

6: if |Tk| == 1 then

7: continue

8: for 1 ≤ i ≤ |Tk| do

9: for 1 ≤ j ≤ |Tk|, j 6= i do

10: Take telegrams Ti and Tj

11: if oi 6= oj and di > dj then

12: Compute Di,max, Dj,max, Umax
BP , Umin

BP

13: if (Di,max > Dj,max) and (di +Dj,max ≤ dj +Di,max) then

14: Exchange oi and oj in Ô for Ti and Tj

15: Compute D̂i,max, D̂j,max, Û
max
BP , Ûmin

BP , σ̂, σBP, D̂l for 0 ≤ l ≤ NMP− 1

16: if Ûmax
BP ≤ Umax

BP and Ûmin
BP ≥ Umin

BP and |D̂j,max − D̂i,max| < |Dj,max −
Di,max| and σ̂BP < (σBP − 0.01) and D̂l ≤ TBP for 0 ≤ l ≤ NMP − 1

then

17: Swap operation is successfully completed, O = Ô and Dl = D̂l

18: else

19: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

20: else

21: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

22: else

23: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

In order to show how swap operation proceeds and what is the result of it, consider

the example with the 9 telegrams in Table 4.1. Each telegram Ti has individual period

pi and a duration di.

62

Table 4.1: Telegram Set For Swap Operation

Ti 1 2 3 4 5 6 7 8 9

di 89.7 265.7 89.7 121.7 89.7 265.7 100.37 265.7 121.7

pi 1 2 2 2 2 4 4 4 4

Looking at the duration and individual period of the telegrams, the sorted list L is as

shown in Table 4.2. Using MLB, the resulting initial schedule is shown in Figure 4.1.

Table 4.2: Sorted List according to MLB for Swap Operation

L[i] 1 2 3 4 5 6 7 8 9

Ti 2 1 6 8 4 3 5 9 7

di 265.7 89.7 265.7 265.7 121.7 89.7 89.7 121.7 100.37

pi 2 1 4 4 2 2 2 4 4

Figure 4.1: MVB Schedule with MLB for SMB

According to Figure 4.1, BP0 = 598.8µs, BP1 = 534.8µs, BP2 = 577.47µs and

BP3 = 534.8µs. When T4 and T3 are compared, it is seen that o4 = 0, o3 = 1.

Since d4 is larger than d3 and the offsets of the two telegrams are not equal, the swap

63

operation continues. The operation finds D4,max = 598.8µs and D3,max = 534.8µs.

Also, Umax
BP = 598.8µs and Umin

BP = 534.8µs are noted. Due to the fact that D3,max =

534.8µs is smaller than D4,max = 598.8µs and d4 − d3 = 32µs is smaller than

D4,max − D3,max = 64µs, the algorithm exchanges the offsets like o4 = 1, o3 = 0 in

Ô and D̂1, D̂2, D̂3 and D̂4 updated.

After that, the algorithm finds D̂3,max = 566.8µs and D̂4,max = 566.8µs. Also

Ûmax
BP = 566.8µs and Ûmin

BP = 545.47µs are noted. Since | D4,max − D3,max| = 64µs

is larger than |D̂3,max − D̂4,max| = 0, Umax
BP = 598.8µs is larger than Ûmax

BP = 566.8µs

and Umin
BP = 534.8µs is smaller than Ûmin

BP = 545.47µs, the algorithm continues and

calculates σBP = 7.68µs and σ̂BP = 0.85µs, respectively. Due to the fact that σ̂BP is

smaller than the σ̂BP - 0.01, the swap operation is successfully completed and the up-

dated schedule is obtained as shown in Figure 4.2. That is, the maximum BP duration

can be decreased from 598.8µs to 566.8µs in this example.

Figure 4.2: MLB schedule after SMB

4.1.2 Swap Operation According to Sum Of Basic Period Duration (SSB)

The difference of the swap operation in this section to the one in the previous section

is to use the sum of the BP durations instead of the maximum BP duration. Assume

64

that we computed offsets oi for all telegrams Ti ∈ T . Then, we define the parameter

Cj =

NMP/ri−1∑
k=0

Dj+k·ri , where j = 0, . . . , ri − 1. (4.4)

Cj characterizes the summation of the basic period durations in the computed sched-

ule, where Ti transmitted according to oi = j.

After the schedule is constructed omitting the constraint in (3.11), this process is

run separately for each ri back to back. In each iteration, the algorithm counts the

telegrams that have the current ri. If there is no telegram or only one telegram, the

algorithm proceeds to the next ri. When at least two telegrams are found, the algo-

rithm starts to attempt the swap operation. The algorithm compares the two telegrams

with each other bi-directional which means that both Ti-Tj and Tj-Ti are compared

differently.

The operation finds the offset of the two telegrams, oi and oj , from O for relocation.

If offsets of the two telegrams are equal to each other or di is smaller than dj , these

are discarded, the operation continues taking the next telegram. Because there will be

no gain when the two telegrams with the same offsets are exchanged. Otherwise, Coi
and Coj are computed by the algorithms in order to use them in comparison according

to NMP.

If Coi is larger than Coj + 10, 10 is added to Coj in order to eliminate the small

difference according to experimental results for run-time performance, the operation

continues and simulates the swap operation taking into account the di and dj with

changing oi and oj . As shown below, temporary summations are computed.

Ĉoi = Coi +
NMP

ri
− 1 · (di − dj) (4.5)

Ĉoj = Coj +
NMP

ri
− 1 · (dj − di) (4.6)

The operation goes on if the summation difference is decreased. It checks F and F̂

that is calculated as shown below.

F = Coi − Coj (4.7)

65

F̂ = |Ĉoj − Ĉoi | (4.8)

If F̂ is smaller than F , the operation proceeds to the new control mechanism because

the difference should be decreased in order to get a more balanced schedule. Other-

wise, a swap operation is canceled. When the condition is satisfied, Umax
BP and Umin

BP

are computed by the algorithm. D̂j is updated according to the offsets oi and oj using

the definition:

D̂oi + k · · · ri = Doi + k · ri − di + dj, for k = 0, . . . ,
NMP

ri
− 1, (4.9)

D̂oj + k · rj = Doj + k · rj − dj + di, for k = 0, . . . ,
NMP

rj
− 1. (4.10)

Also, Ô and is updated. Ûmax
BP and Ûmin

BP are computed according to D̂j . If Ûmax
BP is

smaller than or equal to Umax
BP and Ûmin

BP is greater or equal than Umin
BP , the algorithm

calculates σBP according toDj , O and σ̂BP according D̂j , Ô. If the difference between

σ̂BP is smaller than σBP−0.01, the algorithm checks all BP durations. If none of them

is greater than TBP, a swap operation is completed successfully and BPs are updated.

A smaller σBP is desired after the operation in order to avoid unnecessary swaps. If

the conditions are not satisfied, the swap operation is canceled and the variables are

returned to the pre-processed state as recorded before.

66

Algorithm 7 SSB Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = Ô = ∅; define list Tk ⊆ T of telegrams

with repetition 2k; Dl = D̂l = 0 for j = 0, . . . , NMP − 1

4: Apply basic heuristic without the constraint in (3.9); obtain offset oi for each

telegram Ti and Dl for each basic period

5: for 0 ≤ k ≤ 10 do

6: if |Tk| == 1 then

7: continue

8: for 1 ≤ i ≤ |Tk| do

9: for 1 ≤ j ≤ |Tk|, j 6= i do

10: Take telegrams Ti and Tj

11: if oi 6= oj and di > dj then

12: Compute Ci and Cj

13: if (Ci − Cj) < 10 then

14: Compute Ĉi, Ĉj , F and F̂

15: if F̂ < F then

16: Exchange oi and oj in Ô for Ti and Tj

17: Compute Umax
BP , Umin

BP , Ûmax
BP , Ûmin

BP and D̂l for 0 ≤ l ≤ NMP − 1

18: if Ûmax
BP ≤ Umax

BP and Umin
BP ≤ Ûmin

BP then

19: Compute σBP and σ̂BP

20: if σ̂BP < σBP − 0.01 and D̂l ≤ TBP for 0 ≤ l ≤ NMP − 1 then

21: Swap operation is successfully completed, O = Ô and Dl =

D̂l

22: else

23: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

24: else

25: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

26: else

27: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

28: else

29: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

67

Looking at the duration and individual periods of the telegrams, the sorted list L for

the example telegram set is shown in Table 4.3 and the initial schedule using MLB is

as shown in Figure 4.3

Table 4.3: Sorted List according to MLB for SSB

L[i] 1 2 3 4 5 6 7 8 9 10 11

Ti 2 1 3 5 4 9 11 6 10 7 8

di 265.7 89.7 121.7 121.7 89.7 169.7 169.7 121.7 121.7 100.37 100.37

pi 2 1 2 2 2 4 4 4 4 4 4

Figure 4.3: MVB Schedule with MLB for SSB

According to Figure 4.3, BP0 = BP2 = 625.47µs, BP1 = BP3 = 544.5µs. When

T9 and T6 are compared, it is seen that o9 = 0, o6 = 1. Because d9 is greater than

d6 and offsets are not equal for the two telegrams, the swap operation continues. The

algorithm finds C0 = 625.47µs and C1 = 544.5µs. Since C0 is greater than C1+10,

the offsets are exchanged and become o6 = 0, o9 = 1. Ĉ0 is computed as 577.47µs

and Ĉ1 is computed as 592.5µs. Ô is updated according to the offsets and D̂l is

updated for 0 ≤ l ≤ 3. Then, F = 80.97µs and F̂ = 15.03µs are obtained.

Because F̂ < F the condition for swapping is satisfied. Hence, Ûmax
BP , Ûmin

BP , Umax
BP ,

Umin
BP are calculated. Umax

BP = Ûmax
BP is noted as 625.47µs and Umin

BP = Ûmin
BP is noted

68

as 544.5µs. Due to Ûmax
BP = Umax

BP and Ûmin
BP = Umax

BP , the algorithm calculates σBP =

16.39µs and σ̂BP = 8.48µs. Since σ̂BP is smaller than σ̂BP - 0.01, the swap operation

is successfully completed and an updated schedule is obtained as shown in Figure 4.4.

In this example, the maximum BP duration cannot be decreased, but a more balanced

schedule is achieved after the swap operation.

Figure 4.4: MLB schedule after SSB

4.1.3 Swap Operation Looking At The Next Two Telegrams (S2T)

Different from the swap operations in the previous sections, that compare telegrams

with the same period, the swap operation in this section looks at telegrams with neigh-

boring periods. After the schedule is constructed omitting the constraint in (3.11), the

swap operation counts the telegrams that have the current repetition ri, as |Tk|, and

counts the telegrams that have the repetition 2 · ri, as |Tm|. For each telegram Ti with

repetition ri, the algorithm picks up the two telegrams Tj and Tn with 2 · ri. Here,

each Ti is compared with Tj and Tn bi-directional.

The swap operation computes oj and on for the selected telegrams. If on is different

from oj and |oj − on| mod ri is equal to 0, the algorithm continues. The reason is

that, in order to swap Tj and Tn with Ti, the offset difference should be equal to ri

according to the repetition of Ti. Otherwise, Ti with ri is not placed correctly, replac-

ing the telegrams Tj and Tn in different BPs. If oi is equal to oj or on, oi + ri is equal

69

to oj or on the operation stops to work for these telegrams and takes new telegrams.

The reason is that any two telegrams should not be in the same BP for successful and

meaningful exchange. Otherwise, Coj and Con are computed according to oj and on

and their sum is assigned to Csum. Also, Coi is computed and compared with Csum.

The absolute value of the difference between Csum and Coi is assigned to F , which is

described in (4.7) and σBP is calculated at the same time. If Csum is greater than Coi ,

dj + dn is greater than 2 · di or Csum is smaller than Coi and dj + dn is smaller than

2 ·di, the algorithm goes on. In order to decrease σBP the algorithm makes the defined

control, because at the end of this comparison Csum and Coi are decreased. Because

the Tj and Tn are repeated with 2 · ri, in the comparison the algorithm checks 2 · di.
Otherwise, the swap operation is canceled.

When the conditions are satisfied, Ĉsum and Ĉoi are computed assuming that Ti and

Tj , Tn are switched. According to this hypothesis, F̂ is computed as given in (4.8)

using Ĉsum and Ĉoi . If F̂ is smaller than F , the algorithm updates Ô with O and D̂j

with Dj . The algorithm places Ti to the smaller offset between oj and on instead

of oi because ri is equal to the difference between oj and on, Ô and Dj is updated

according to that process.

The algorithm computes the Di,max according to ri and finds the value k that gives

Di,max. If dj is greater than dn, the algorithm puts Tn to the offset where Di,max is

computed and Tj is placed with the offset oi + ri or oi − ri and according to Di,max.

If the offset where Di,max is computed is greater than ri, the offset oi − ri is selected

for Tj because it is desired to put the smallest telegram to Di,max in order to get a

balanced schedule. Ô and D̂j are updated according to the changed offsets.

Otherwise, if dj is smaller than dn, the algorithm puts Tj to the offset where Di,max is

computed and Tn is placed with the offset oi + ri or oi − ri and according to Di,max.

If the offset, where Di,max is computed is greater than ri, the offset oi − ri is selected

for Tn. Ô and D̂j according to the changed offsets.

Then, the algorithm computes σ̂BP using D̂j and Ô. If σ̂BP is smaller than σBP, the

swap operation completed successfully. If the condition is not satisfied, the swap

operation is canceled and the variables are returned to their previous state as recorded.

70

Algorithm 8 S2T Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = Ô = ∅; define list Tk ⊆ T of telegrams

with repetition 2k; Dl = D̂l = 0 for j = 0, . . . , NMP − 1

4: Apply basic heuristic without 3.9 constraint; obtain offset oi for each telegram Ti

and Dl for each basic period

5: for 0 ≤ k ≤ 10 do

6: if not |Tk| == 1 and |Tk+1| == 2 then

7: continue

8: for 1 ≤ i ≤ |Tk| do

9: for 1 ≤ j ≤ |Tk+1| do

10: for 1 ≤ n ≤ |Tk+1|, n 6= j do

11: Take telegrams Ti, Tj and Tn

12: if oi 6= oj and oi 6= on and oj 6= on and |oj − on| = 2k then

13: Compute Csum, Coi , F , σBP

14: if Csum > Coi and dj + dn > 2 · di or Csum < Coi and dj + dn < 2 · di
then

15: Compute Ĉsum, Ĉoi , F̂

16: if F̂ < F then

17: Exchange oi, oj , on in Ô for Ti, Tj , Tn

18: Compute σ̂BP, D̂l for 0 ≤ l ≤ NMP − 1

19: if σ̂BP < σBP and D̂l ≤ TBP for 0 ≤ l ≤ NMP − 1 then

20: Swap operation is successfully completed, O = Ô and Dl =

D̂l

21: else

22: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

23: else

24: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

25: else

26: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

27: else

28: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

71

In order to show how the swap operation is run, consider the example with the 14

telegrams in Table 4.4. Each telegram Ti has individual period pi and a duration di.

Table 4.4: Telegram Set For S2T

Ti 1 2 3 4 5 6 7

di 89.7 89.7 89.7 265.7 169.7 169.7 89.7

pi 1 1 1 2 2 2 2

Ti 8 9 10 11 12 13 14

di 100.37 265.7 265.7 265.7 100.37 100.37 89.7

pi 4 4 4 4 4 4 4

Looking at the duration and individual periods of the telegrams, the sorted list L is as

shown in Table 4.5. The resulting schedule for the example telegram set using MLB

is shown in Figure 4.5.

Table 4.5: Sorted List according to S2T

L[i] 1 2 3 4 5 6 7

Ti 4 1 2 3 5 6 9

di 265.7 89.7 89.7 89.7 169.7 169.7 265.7

pi 2 1 1 1 2 2 4

L[i] 8 9 10 11 12 13 14

Ti 10 11 7 8 12 13 14

di 265.7 265.7 89.7 100.37 100.37 100.37 89.7

pi 4 4 2 4 4 4 4

72

Figure 4.5: MVB Schedule with MLB for S2T

According to Figure 4.5, BP0 = 890.2µs, BP1 = 963.9µs, BP2 = 890.2µs and

BP3 = 909.6µs.

S2T picks T7 with the offset o7 = 0 and r7 = 2. Then, the algorithm looks for

two telegrams with 2 · r7. According to that, S2T picks up T8 with o8 = 3 and

T14 with the offset o14 = 1. Because of their offsets are different from each other and

|o14−o8| = r7, Csum is calculated summing up C3 and C1 which is equal to 1873.5µs.

C0 is computed as 1780.4µs and F is found as 93.1µs from Csum − C0 and σBP is

calculated as 9.10µs. Since Csum is greater than C0 and d14 + d8 is greater than 2 · d7,

S2T computes Ĉsum = 1862.8µs assuming that T8 and T14 exchanged their offsets

with T7. Ĉ0 is also calculated as 1791.1µs and F̂ is obtained as 71.77µs. Because F̂

is smaller than F , the offset of T7 is changed to o7 = 1. Because d8 is smaller than

d14 and BP0 is equal to BP2, T8 is scheduled with offset o8 = 0 and T14 is scheduled

with offset o14 = 2. After the swap operation, σ̂BP is calculated as 8.64µs. The swap

operation is completed successfully because σ̂BP is smaller than σBP. The resulting

schedule is shown in Figure 4.6. The maximum BP is not decreased but the schedule

become more balanced bringing duration of basic periods closer together. This is

achieved since the standard deviation σBP is decreased after the swap operation.

73

Figure 4.6: MLB schedule after S2T

4.1.4 Swap Operation Comparing Three Telegrams (S3T)

The main idea of this swap operation is to select three telegrams with the same rep-

etition and to check if one of the telegrams can be replaced by the other two tele-

grams. After the schedule is constructed omitting the constraint in (3.11), the algo-

rithm counts the telegrams whose repetition rate is 2k, as |Tk|. The algorithm picks

three telegrams, Ti, Tj and Tn, at the same time with ri. If |Tk| is smaller than three,

the algorithm stops and proceeds to the next repetition ri.

If oi and oj are different, the algorithm continues and picks a third telegram with on.

If on is equal to oj and di is greater than dj + dn, the swap operation proceeds to next

step. Coi and Coj (or Con) are computed, which indicate the summation of the BP

duration for the different offsets. Also, Umax
BP and Umin

BP are calculated as done in (4.1)

and (4.2).

If Coi is greater than Coj +50 and di− (dj+dn) is smaller than or equal to Coi −Coj ,

the swap operation continues. Because di is greater than dj + dn, it is desired to

evaluate Coi greater than Coj to decrease the maximum BP duration. Coj + 50 is

used to eliminate unnecessary swaps. When the conditions are satisfied, Ĉoi , Ĉoj , F

and F̂ are computed back to back by the algorithm. Otherwise, the swap operation

cancelled and next telegrams are examined.

74

If F̂ is smaller than F , D̂l is updated for the offset oi and oj . Then, Ûmax
BP and Ûmin

BP

are computed according to D̂l. If Ûmax
BP is smaller than Umax

BP and Ûmin
BP is greater than

Umin
BP , the offsets are exchanged among oi and oj , on. Then, Ô is updated. After that,

σBP and σ̂BP are calculated. If σ̂BP is smaller than σBP, the swap operation completed

successfully and the assignments Ô = O and D̂l = Dl are done.

75

Algorithm 9 S3T Pseudo Code
1: Input: T

2: Output: offset oi for each telegram Ti

3: Initialize: Set of assigned offsets O = Ô = ∅; define list Tk ⊆ T of telegrams

with repetition 2k; Dl = D̂l = 0 for j = 0, . . . , NMP − 1

4: Apply basic heuristic without 3.9 constraint; obtain offset oi for each telegram Ti

and Dl for each basic period

5: for 0 ≤ k ≤ 10 do

6: if |Tk| < 3 then

7: continue

8: for 1 ≤ i ≤ |Tk| do

9: for i ≤ j ≤ |Tk| do

10: for j ≤ n ≤ |Tk|, i 6= j, j 6= n, i 6= n do

11: Take telegrams Ti and Tj

12: if oi = oj then

13: continue

14: Take the telegram Tn

15: if oj = on and di > dj + dn then

16: Compute Umax
BP , Umin

BP , Coi and Coj (Con)

17: if Coi > Coj + 50 and di − (dj + dn) ≤ Coi − Coj then

18: Compute Ĉoi , Ĉoj , F and F̂

19: if F̂ < F then

20: σBP, σ̂BP, Ûmax
BP and Ûmin

BP

21: if σ̂BP < σBP and Ûmax
BP ≤ Umax

BP and Umin
BP ≤ Ûmin

BP then

22: Swap operation is successfully completed, O = Ô and Dl =

D̂l

23: else

24: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

25: else

26: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

27: else

28: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

29: else

30: Don’t swap. No change in O and Dl for 0 ≤ l ≤ NMP − 1

76

For illustration, the same data set is used as in 4.1.2. The sorted list L is shown in

Table 4.3 and the resulting initial schedule using MLB for the example telegram set

using MLB is shown in Figure 4.3.

We consider that some iterations were already performed and the algorithm picks up

the telegrams T2 and T3. o2 = 0 is different than o3 = 1 so the algorithm continues

and picks the third telegram T5 with o5 = 1. Due to o3 = o5 = 1 and d2(265.7µs)

is greater than d3 + d5 = 211.4µs, the swap operation proceeds to the next step. C0

for o2 and C1 for o3 = o5 are computed as 1250.94µs and 1089µs respectively. Also,

Umax
BP and Umin

BP are calculated as 625.47µs and 544.5µs.

Since C0 is greater than C1 + 50 and d2 − d3 − d5 = 54.3µs is smaller than C0 −
C1 = 161.94µs, the offsets are exchanged and Ô is updated. o2 becomes 1 and

o3 = o5 becomes 0, also Dl is updated. Then, Ĉ0 and Ĉ1 is calculated according

to Ô, as Ĉ0 = 1194.64µs and Ĉ1 = 1143.3µs. According to that, F = 161.94µs

and F̂ = 55.27µs is obtained. Because F̂ is smaller than F , the algorithm calculates

Ûmax
BP = 603.17µs and Ûmin

BP = 566.8µs.

Because the conditions are satisfied, the algorithm calculates σBP, σ̂BP as 16.39µs and

1.91µs respectively. Due to σ̂BP is smaller than the σ̂BP - 0.01, the swap operation is

successfully completed and the schedule is obtained as shown in Figure 4.7. In this

case, it is possible to reduce the maximum BP duration to 603.17µs.

Figure 4.7: MLB schedule after S3T

77

4.2 Swap operations Evaluation

The defined swap operations help to obtain schedules close to or better than the ILP

solution, improving the performance metrics BUs and σBP. Besides, the swap oper-

ations help to decrease the number of unsuccessful scheduling attempts of the basic

heuristics.

For the evaluation of the swap operations, different algorithm combinations will be

compared and the following terms will be used to define each of them.

MLB* = MLB + SMB

MLB+ = MLB + SSB

MLB++ = MLB + SSB + S2T

MLB+++ = MLB + SSB + S2T + S3T

SAB* = SAB + SMB

SAB+ = SAB + SSB

SAB++ = SAB + SSB + S2T

SAB+++ = SAB + SSB + S2T + S3T

4.2.1 More Frequent Telegrams

In this section, we evaluate the improvement achieved when applying the proposed

swap operations to selected test cases with more frequent telegrams. We recall that

these test cases have a small number of telegrams such that the optimal solution can

always be found using the ILP formulation in Section 3.2. Hence, the first aim of this

section is to evaluate the possible reduction of the number of unsuccessful (failed)

instances of the heuristics in case of a very high bandwidth utilization close to 100%.

The second aim of this section is to determine the quality of the proposed heuristics

with respect to the known optimal solution.

When the more frequent telegrams are scheduled by the basic heuristics at a very

high bandwidth utilization as in TC-10, the fail count per test case is as shown in

Table 3.10.

78

Table 4.6: Fail Counts in Test Case TC-10

Algorithm Fail Count

MLB 9

MLB* 3

MLB+ 3

MLB++ 3

MLB+++ 3

According to the result of TC-10, SAB and MLB get 1 and 9 fails respectively while

there is no fail when using the ILP. Because of the high BU and more frequent tele-

grams, MLB fails too much compared to SAB. When the swap operations are applied

to MLB, the fail count is decreased drastically as stated in Table 4.6.

Consider the second test trial in TC-10 with the defined telegrams.

Table 4.7: Telegrams in TC-10

Ti 1 2 3 4 5 6 7 8 9

pi [ms] 1 1 2 2 2 2 2 4 4

di [µs] 100.37 89.7 121.7 169.7 265.7 100.37 121.7 89.7 169.7

Ti 10 11 12 13 14 15 16 17 18

pi [ms] 4 4 4 4 4 4 4 4 4

di [µs] 169.7 100.37 121.7 100.37 265.7 100.37 169.7 169.7 121.7

When the telegrams of TC-10 are scheduled by MLB, the last telegram T8 in the

ordered list L could not be placed by MLB because of the constraint defined in (3.11).

The resulting basic period durations are shown below just before the placement of T8

79

(recall that the maximum BP duration is 1000µs):

BP0 = 969.23µs,

BP1 = 947.90µs,

BP2 = 969.23µs,

BP3 = 921.23µs.

If the swap operations are applied during the schedule computation, the basic heuristic

algorithms discard the maximum BP duration constraint in (3.11) and schedule all

telegrams, potentially violating (3.11). When MLB is used with SMB or SSB, T8

is placed with offset o8 = 3 and the resulting basic period durations are as shown

below:

BP0 = 969.23µs,

BP1 = 947.90µs,

BP2 = 969.23µs,

BP3 = 1010.93µs.

Since BP3 exceeds TBP, it is considered as a failed scheduling attempt for the basic

heuristic algorithm. Nevertheless, when the SMB is applied to that schedule, the

algorithm first swaps T9 (d9 = 169.7µs) and T12 (d12 = 121.7µs) which have the

offsets o9 = 3 and o12 = 1. After swapping these telegrams, the resulting basic period

durations are as shown below:

BP0 = 969.23µs,

BP1 = 995.90µs,

BP2 = 969.23µs,

BP3 = 962.93µs.

That is, for this example, both SMB and SSB are able to determine a feasible sched-

ule. In general, it holds that SMB and SSB help to decrease the fail counts from 9

to 3 for this test case. With the help of S2T and S3T, the fail counts could not be

decreased anymore. When the swap operations are applied to SAB, fail count which

already equals 1 is not changed.

Comparing SAB and MLB, it turns out that SAB still performs better than MLB even

after implementing the swap operation. This can be observed looking at the perfor-

80

mance metrics as shown in Figure 4.8 and Figure 4.9. When the MLB and SAB are

supported by SSB, SMB and S2T, the maximum BU is decreased and the minimum

BU is increased approaching the ILP which computes the optimal solution. It is seen

that, despite the S3T operation, no further improvement is seen in the schedule.

94.59
90.89

94.31
90.99

94.33
90.99

94.29
91.08

94.29
91.08

96.45

88.97

94.96
90.49

94.96
90.49

94.63
90.63

94.63
90.63

93.28 91.55

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

(%
)

Max

Min

2.50
2.16 2.17 1.96 1.96

8.68

3.58 3.58

2.75 2.75

0.81

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

2

4

6

8

10

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.8: Performance Metrics for TC-10

When the swap operations are applied to basic heuristics MLB and SAB, σBP is im-

proved with SMB, SSM, and S2T. Especially in TC-11, almost the same σBP obtained

by SAB with the swap operations. As in BUs, S3T does not make any improvement

according to σBP.

81

95.01
90.83

95.02
91.02

95.02
91.02

94.95
91.09

94.95
91.09

96.91

89.33

96.31

90.23

96.31

90.23

96.14

90.23

96.14

90.23
94.29

90.63

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100
A

V
E

R
A

G
E

 M
A

X
 -

 M
IN

 B
U

s

(%
)

Max

Min

 3.02 2.91 2.92 2.84 2.84

10.51

 6.92 6.92 6.53 6.53

 2.83

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

5

10

15

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.9: Performance Metrics for TC-11

4.2.2 Normal Telegrams

In this section, we evaluate the improvement achieved when applying the proposed

swapping operations to selected test cases with normal telegrams that have medium ri.

We recall that despite these test cases that do not have a large number of telegrams,

the optimal solution cannot always be found using the ILP formulation within the

limited time in Section 3.2. While basic heuristics find a solution in a short time, ILP

performs better according to performance metrics although timed out. Hence, the aim

of this section is to see how basic heuristics are improved and approach the ILP best

result when the swap operations are applied according to performance metrics.

As given in Table 3.17, ILP could not find an optimal solution in 30 minutes for the

test cases TC-18 to 24 in any trial although the number of telegrams is not too high

as shown in Table 4.8. ILP gives the best result within a limited time.

For TC-22, without any swap operation, SAB produces a better minimum BU and σBP

as given in 4.10 compared to ILP. After all swap operations are applied, both MLB

and SAB are improved and produce closer results to the best result of ILP for the BUs

and σBP.

82

85.85

77.83

85.10

78.13

85.04

78.13

85.01

78.11

84.89

78.11

86.86

77.54

85.73

77.58

85.97

77.64

86.18

77.33

86.13

77.31

83.81

75.27

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

[%
]

Max

Min

2.70

1.96 1.91 1.90 1.83

7.10

4.06 3.89
3.60 3.59 3.54

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

2

4

6

8

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.10: Performance Metrics for TC-22

Regarding the TC-23, the number of telegrams is not too large and BU is around %74.

ILP could not find an optimal solution in any trial. Nevertheless, it still performs

results well enough according to performance metrics as shown in Figure 4.11.

78.30

71.11

76.93

71.35

76.96

71.49

76.85

71.39

76.85

71.39

79.47

70.71

77.95

71.23

77.87

71.23

77.81

71.23

77.78

71.23

76.18

67.87

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

[%
]

Max

Min

1.91
1.41 1.37 1.37 1.37

8.33

2.30 2.31 2.24 2.22

3.83

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

2

4

6

8

10

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.11: Performance Metrics for TC-23

On the other hand, MLB and SAB with the help of swap operations give close results

83

for the maximum BU and better results for minimum BU compared to ILP. When σBP

is examined, with the help of swap operations MLB and SAB schedules the telegrams

more balanced. Especially in MLB, SMB and SSB help to reduce σBP drastically.

In TC-24, the total BU is increased to %84 and the number of telegrams is increased

to 216. The ILP could not find an optimal solution but still makes the scheduling well-

performed. MLB and SAB produce better σBP and minimum BU results compared to

ILP without any swap operations. When SSB and SMB are implemented to SAB and

MLB, the maximum BU value for SAB becomes better than ILP and MLB approaches

the ILP as shown in Figure 4.12.

87.68

80.66

86.20
81.59

86.21
81.62

86.21
81.62

86.21
81.62

87.53

78.65

86.91

79.55

86.90

79.57

86.91

79.71

86.91

79.71

86.65

77.31

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

[%
]

Max

Min

1.62
1.02 1.01 1.01 1.01

7.55

2.54 2.39 2.31 2.26

5.33

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

2

4

6

8

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.12: Performance Metrics for TC-24

The numbers in Table 4.8 indicate the algorithms as given in Figure 4.12 with the

same order. Although the ILP times out for all the test cases, MLB and SAB schedules

the telegram less than a second. Even if the swap operations are applied, the run time

does not exceed 3 seconds, which is negligible compared to the ILP run time.

84

Table 4.8: Run Time (in seconds) For Normal Telegrams

1 2 3 4 5 6 7 8 9 10 11

TC-22 0.03 0.07 0.07 0.09 0.5 0.001 0.05 0.04 0.7 0.48 TO

TC-23 0.03 0.1 0.09 0.1 1.1 0.001 0.09 0.08 0.09 1.09 TO

TC-24 0.04 0.15 0.13 0.14 2.81 0.002 0.13 0.12 0.12 2.79 TO

4.2.3 Less Frequent Telegrams

In this section, we evaluate the improvement achieved when applying the proposed

swap operations to selected test cases with less frequent telegrams. We recall that

these test cases have a large number of telegrams despite the low BU such that the

optimal solution cannot be found using the ILP formulation in Section 3.2 when the

BU above 20% and a number of telegrams is approximately higher than 600. Conse-

quently, σBP becomes large, which means that the schedule is not balanced. Hence,

the aim of this section is to evaluate the performance of the swap operations how they

improve the basic heuristics which already find good results with respect to the best

ILP solution according to performance metrics as in Section 4.2.2.

For TC-40 and TC-41, MLB and SAB produce much better schedules compared to

the ILP looking at both BUs and σBP because of the large number of telegrams. In

order to show results more comprehensible in graphs, σBP value for ILP is divided by

100.

85

65.26

56.23

64.46

56.23

64.46

56.23

64.62

55.65

64.62

55.70

63.13

52.75

62.83

52.96

62.86

53.17

63.03

53.17

63.03

53.17

99.58

6.37

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100
A

V
E

R
A

G
E

 M
A

X
 -

 M
IN

 B
U

s

[%
]

Max

Min

2.70
2.47 2.47 2.43 2.38

4.05

3.31 3.20 3.16 3.12

4.48

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP(1:100)

ALGORITHMS

0

1

2

3

4

5

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.13: Performance Metrics for TC-40

In TC-40, the average telegram count is 1931 and BU is approximately %60. Swap

operations help to improve the performance metrics but run time is increased when

S2T and S3T are applied which is not desired as stated in Table 4.9. When the SSB

is applied to both MLB and SAB, the best schedule is obtained according to the

performance metrics.

75.56

65.71

74.98

65.71

74.98

65.71

75.08

65.52

75.08

65.52

75.77

66.78

75.60

66.78

75.65

66.78

76.06

65.86

76.02

65.91

99.75

6.08

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

[%
]

Max

Min

1.39
0.96 0.96 0.95 0.94

6.19

4.80 4.68 4.57 4.56 4.56

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP(1:100)

ALGORITHMS

0

2

4

6

8

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.14: Performance Metrics for TC-41

86

Under a large number of telegrams (2313) and high BU (%72), MLB and SAB sched-

ule the telegrams in a short time. When the swap operations are applied, small im-

provements are seen in maximum BU and σBP. If either S2T or S3T is applied, the

run time is increased drastically as shown in Table 4.9.

Table 4.9: Run Time (in seconds) For Less Frequent Telegrams

1 2 3 4 5 6 7 8 9 10 11

TC-40 2.62 211 74 561 850 0.3 185 111 505 792 TO

TC-41 3.12 253 137 1517 2052 0.04 434 370 1109 1645 TO

4.2.4 Equal Distributed Telegrams

In this section, we evaluate the improvement achieved when applying the proposed

swap operations to selected test cases with equal distributed telegrams. We recall that

these test cases consider the telegram sets with all possible BPs and a similar BU per

period. Similar to Section 4.2.3, ILP cannot be solved if the number of telegrams

is too large. Consequently, the schedule that is produced by ILP shows poor per-

formance according to the performance metrics. The basic heuristics already find a

solution in a short time but the aim of this section is to see how basic heuristics are

improved when the swap operations are applied according to performance metrics.

A large number of telegrams causes a high BU and prolongs the run-time of the al-

gorithms. As mentioned in Table 3.29 ILP could not find an optimal solution after

TC-47 in 30 minutes. Consequently, the maximum utilization increased and mini-

mum utilization decreased. As a result, σBP is increased due to the balance between

basic periods.

When TC-52 with 1095 telegrams is scheduled by the algorithms, the results are

obtained as shown in Figure 4.15. Both MLB and SAB produce better schedules

than ILP but SAB makes the schedule more balanced compared to MLB in a short

time as given in Table 4.10. When SSB and SMB are applied to MLB and SAB, the

maximum BU is decreased and the minimum BU is increased as desired also σBP is

improved. In this case, S2T and S3T are not able to improve the schedule.

87

81.66

70.82

81.38

71.06

81.39

71.17

81.39

71.17

81.39

71.17

83.73

69.96

83.12

70.01

83.12

70.01

83.12

70.01

83.12

70.01

92.20

28.93

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

100
A

V
E

R
A

G
E

 M
A

X
 -

 M
IN

 B
U

s

[%
]

Max

Min

 2.31 2.03 1.99 1.99 1.93

15.33

 9.17 8.89 8.89 8.89

17.47

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP(1:10)

ALGORITHMS

0

5

10

15

20

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.15: Performance Metrics for TC-52

In TC-51, the ILP could not find an optimal solution in 30 minutes for any trials

whereas MLB and SAB schedule the telegrams in the set within 2 seconds achiev-

ing small values of σBP and maximum BU. When SMB and SSB are applied after

the basic heuristics, the performance metrics are improved as shown in Figure 4.16.

Although S2T and S3T are applied to basic heuristics, performance metrics are not

improved any more.

88

73.10

62.34

72.50

62.34

72.50

62.34

72.50

62.34

72.50

62.34

75.90

61.06

75.29

61.18

75.36

61.25

75.36

61.25

75.36

61.25

78.39

27.66

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP

ALGORITHMS

0

20

40

60

80

A
V

E
R

A
G

E
 M

A
X

 -
 M

IN
 B

U
s

[%
]

Max

Min

 5.30 4.58 4.55 4.55 4.53

16.13

12.22 11.85 11.85 11.85

 7.64

SAB SAB* SAB+ SAB++ SAB+++ MLB MLB* MLB+ MLB++ MLB+++ ILP(1:10)

ALGORITHMS

0

5

10

15

20

S
T

A
N

D
A

R
D

 D
E

V
IA

T
IO

N

Figure 4.16: Performance Metrics for TC-51

The numbers in Table 4.10 indicate the algorithms as given in Figure 4.16 with the

same order. While ILP times out, basic heuristics and swap operations schedule the

telegrams in less than 2 minutes.

Table 4.10: Run Time (in seconds) For Normal Telegrams

1 2 3 4 5 6 7 8 9 10 11

TC-51 1.39 45 33 33 56 0.02 66 41 41 64 TO

TC-52 1.58 37 23 23 58 0.02 105 68 68 103 TO

4.3 Discussion

In this section, we summarize the obtained results. As discussed in Section 3.4.3,

SAB and MLB performed better than other basic heuristics in almost all the test

cases according to the defined test scenarios and performance metrics. In addition,

these heuristics generally find a schedule that is close to or better than the ILP solu-

tion taking into account the maximum BUs and standard deviation. Moreover, these

heuristics generally have a much smaller run-time than the ILP.

89

According to our experiments, MLB performs well because it sorts the telegrams

according to the di/pi. Telegrams with a larger value of di/pi occupy more space in

the schedule looking at the overall duration and hence affect the balance and required

BP duration more compared to telegrams with smaller values. SAB uses the same

sorting of telegrams as MLB. In addition, it fills each basic period until a scaled

average value that is calculated with different coefficient γ in order to get the most

balanced schedule.

Although our evaluation shows that the basic heuristics can find schedules for large

telegram sets, our results for small numbers of telegrams indicate that the basic heuris-

tics can be improved in order to find close-to-optimal solutions. Since the basic

heuristics place telegrams one-by-one picking up from the L, the following issues

arise in the solution schedules:

1. Telegrams with a small duration can be scheduled in BP with a small duration,

whereas telegram with a larger duration and the same ri are scheduled in BP

with a larger duration,

2. Two telegrams with the same offset are scheduled in a short BP while a telegram

with the same ri and a duration that is greater than the summation of the two

telegram durations are scheduled in a longer BP.

For these situations, it would be beneficial to swap the positions of these telegrams

in the schedule in order to obtain a better schedule with a smaller maximum BP

duration. In order to address the states issues, four different swap operations are

defined as mentioned. In addition to improving the performance metrics, these swap

operations also help to convert unsuccessful test trials of the basic heuristic algorithms

to successful test trials.

Regarding the swap operations, it is seen that SMB and SSB show a similar perfor-

mance when applied to initial schedules from SAB or MLB for all the test scenarios.

Hereby, SSB works faster than SMB if there is a very large number of telegrams as

shown in Table 4.9 and Table 4.8. Both SMB and SSB are able to produce feasible

schedules from infeasible initial schedules as shown in Table 4.6. While swap oper-

ations provide moderate improvements for SAB (which already produces very good

90

schedules), they manage to bring MLB closer to SAB. As a result, the combination

of SAB or MLB with the swap operations quickly computes schedules that are better

than the schedules from the ILP for very large telegram sets. Finally, we note that

SMB and SSB achieve greater improvements compared to S2T and S3T according to

maximum BU and σBP as shown in Figure 4.15. The main reason for this observation

is that SMB and SSB are directly applied to the initial solution of the basic heuristics,

whereas S2T and S3T are applied to the resulting schedules from SMB or SSB. That

is, according to our comprehensive evaluation it is sufficient to apply swap operations

with only two telegrams.

91

92

CHAPTER 5

CONCLUSION

The Multifunction Vehicle Bus (MVB) is a highly robust real-time field bus for the

data communication of control systems in rail-vehicles. MVB supports both periodic

process data and sporadic message data transfers in the form of telegrams. Hereby,

the schedule is organized in the form of basic periods (BPs) with a fixed length. The

main focus of this thesis is on periodic telegrams. These periodic telegrams occur in

the periodic phase (PP) of the MVB schedule and are scheduled in BPs according to

their period starting from given offset. As a result, the fraction of a certain BP that is

occupied for periodic data transmission is determined by summing up the duration of

the telegrams that appear in that BP. Furthermore, the length of the PP is given by the

duration of the maximum BP in the MVB schedule.

When computing an MVB schedule for a given set of telegrams, it is desired to min-

imize the longest BP duration in order to get a short PP and to leave sufficient time

for the transmission of sporadic telegrams. In addition, MVB schedules should be

balanced in the sense that the durations of different BPs should be close to each other.

That is, the standard deviation σBP of the BP durations should be small. Finally, prac-

tical methods should be able to compute MVB schedules with run-times in the order

of seconds or minutes.

The main objective of this thesis is the computation of MVB schedules for periodic

telegrams. To this end, the first contribution of the thesis is the formulation of the

optimal MVB scheduling problem for the PP of MVB as an integer linear program-

ming problem (ILP). In addition, the schedules produced by ILP are investigated with

respect to performance metrics such as the maximum BP duration and σBP. Hereby,

93

different test scenarios are constructed according to the telegram periods. This eval-

uation shows that the ILP cannot be solved in cases with a large number of telegrams

and a large bandwidth utilization. That is, it is not always possible to obtain an opti-

mal MVB schedule based on the ILP formulation.

Consequently, as the second contribution of the thesis, five basic heuristics that sched-

ule the telegrams in the cases that ILP could not find the optimal solution are devel-

oped. Moreover, the ILP solution and the schedules generated by the basic heuristics

are evaluated, taking into account the described performance metrics. As a result

of this evaluation, two basic heuristics, which are denoted as Scaled Average BP

(SAB) and Minimum Longest BP (MLB) are found as the algorithms with the best

performance. In particular, these algorithms determine MVB schedules with a small

run-time even in cases where the ILP cannot be solved. Nevertheless, it is also ob-

served that these heuristics cannot always find an optimal solution and might fail for

very high bandwidth utilizations.

As the third contribution of the thesis, we proposed additional swap operations in

order to find better schedules and to decrease the fail count. To this end, four differ-

ent swap operations, Swap Operation According to Maximum BP Durations (SMB),

Swap Operation According to Sum of BP Durations (SSB), Swap Operation Looking

at the Next Two Telegrams (S2T) and Swap Operation Comparing Three Telegrams

(S3T) are defined and evaluated. The comparison between ILP, basic heuristic algo-

rithms and swap operations shows that especially SSB and SMB help to decrease the

maximum BU and σBP. Besides, the number of fails is decreased. In summary, our

comprehensive computational evaluation shows that the proposed basic heuristics and

heuristics with swap operations outperform the ILP based optimal scheduling algo-

rithm, that times out in the case of large telegram sets.

94

REFERENCES

[1] Insup Lee, Joseph YT Leung, and Sang H Son. Handbook of real-time and

embedded systems. CRC Press, 2007.

[2] Ugur Keskin. In-vehicle communication networks: a literature survey. Com-

puter Science Report, 10, 2009.

[3] Shane Tuohy, Martin Glavin, Edward Jones, Mohan Trivedi, and Liam Kil-

martin. Next generation wired intra-vehicle networks, a review. In 2013 IEEE

Intelligent Vehicles Symposium (IV), pages 777–782. IEEE, 2013.

[4] Shane Tuohy, Martin Glavin, Ciarán Hughes, Edward Jones, Mohan Trivedi,

and Liam Kilmartin. Intra-vehicle networks: A review. IEEE Transactions on

Intelligent Transportation Systems, 16(2):534–545, 2014.

[5] Richard Zurawski. Embedded Systems Handbook: Embedded systems design

and verification. CRC press, 2018.

[6] Steve C Talbot and Shangping Ren. Comparision of fieldbus systems can, ttcan,

flexray and lin in passenger vehicles. In 2009 29th IEEE International Confer-

ence on Distributed Computing Systems Workshops, pages 26–31. IEEE, 2009.

[7] Nicolas Navet and Françoise Simonot-Lion. In-vehicle communication

networks-a historical perspective and review. Technical report, University of

Luxembourg, 2013.

[8] Computer Network & Telematics. Introduction to in-vehicle networking:

Generic protocols. 2007.

[9] Weiying Zeng, Mohammed AS Khalid, and Sazzadur Chowdhury. In-vehicle

networks outlook: Achievements and challenges. IEEE Communications Sur-

veys & Tutorials, 18(3):1552–1571, 2016.

95

[10] Xabier Iturbe, Jaime Jiménez, Aitzol Zuloaga, Jesús Lázaro, and José Luis

Martín. The train communication network: Standardization goes aboard. In

2010 IEEE International Conference on Industrial Technology, pages 1667–

1672. IEEE, 2010.

[11] Mathieu Grenier, Lionel Havet, Nicolas Navet, et al. Scheduling messages with

offsets on controller area network-a major performance boost. In The automo-

tive embedded systems handbook. Taylor & Francis, 2008.

[12] Z. Li, L. Wang, Y. Yang, X. Du, and H. Song. Health evaluation of MVB based

on SVDD and sample reduction. IEEE Access, 7:35330–35343, 2019.

[13] G. A. zur Bonsen. The multifunction vehicle bus (MVB). In Proceedings 1995

IEEE International Workshop on Factory Communication Systems, pages 27–

34, Oct 1995.

[14] D. Ludicke and A. Lehner. Train communication networks and prospects. IEEE

Communications Magazine, 57(9):39–43, Sep. 2019.

[15] Richard Zurawski. Industrial communication technology handbook. CRC

Press, 2014.

[16] British-Standard-Institution. Iec std. iec 61 375-1:2012-06: Electronic railway

equipment — train communication network (tcn) — part 1: General architec-

ture. Technical report, British-Standard-Institution, June, 2012.

[17] Hubert Kirrmann and Pierre A Zuber. The iec/ieee train communication net-

work. IEEE Micro, 21(2):81–92, 2001.

[18] Philip Koopman and Tridib Chakravarty. Analysis of the train communication

network protocol error detection capabilities. Institute for Software Research,

2001.

[19] Train communication network - kunbus gmbh.

[20] Y. Jiang, H. Liu, H. Song, H. Kong, R. Wang, Y. Guan, and L. Sha. Safety-

assured model-driven design of the multifunction vehicle bus controller. IEEE

Transactions on Intelligent Transportation Systems, 19(10):3320–3333, Oct

2018.

96

[21] Zhu Jun, Li Fang, Wang Lifang, and Li Yong. Study on network dynamic per-

formance of multifunction vehicle bus based on simulation model. In 2014

IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC

Asia-Pacific), pages 1–5, Aug 2014.

[22] Yizhao Wang, Lide Wang, Xiang Yan, and Ping Shen. Fuzzy immune particle

swarm optimization algorithm and its application in scheduling of MVB peri-

odic information. Journal of Intelligent & Fuzzy Systems, 32(6):3797–3807,

2017.

[23] Mustafa Çağlar Güldiken, Klaus Werner Schmidt, and Ece Güran Schmidt. Op-

timal telegram scheduling for the periodic phase of mvb. In Digital Transfor-

mation & Smart Systems, pages 1–5, Oct. 2019.

[24] British-Standard-Institution. Electronic railway equipment — train communi-

cation network (tcn) part 3-1: Multifunction vehicle bus (mvb). Technical re-

port, British-Standard-Institution, August, 2012.

[25] Schlage. MVB System User’s Guide. Duagon.

[26] Kalpana Rajagopal. Simulation of online bin packing in practice. UNLV THE-

SES, DISSERTATIONS, PROFESSIONAL PAPERS, AND CAPSTONES, 2016.

[27] Nurul Afza Hashim, Faridah Zulkipli, Siti Sarah Januri, and S Sarifah Radiah

Shariff. An alternative heuristics for bin packing problem. In Proceedings of

the International Conference on Industrial Engine, page 1560, 2014.

[28] The Mathworks, Inc., Natick, Massachusetts. MATLAB version 9.2.0.538062

(R2017a), 2017.

[29] IBM. Cplex optimization studio v12.8, 2018.

97

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	MULTIFUNCTION VEHICLE BUS: BACKGROUND
	Train Communication Network (TCN)
	Multifunction Vehicle Bus (MVB)

	BASIC HEURISTIC ALGORITHMS FOR TELEGRAM SCHEDULING ON MVB
	Problem Statement
	Optimal MVB Scheduling using Integer Linear Programming
	Basic Heuristic Algorithms
	Minimum Accumulated BP (MAB) Algorithm
	Cursor and Flag (CF) Algorithm
	Randomized Minimum Accumulated BP (R-MAB) Algorithm
	Minimum Longest BP (MLB) Algorithm
	Scaled Average BP (SAB) Algorithm

	Evaluation of the Basic Heuristic Algorithms
	Environment
	Data Set For Evaluation
	More Frequent Telegrams
	Normal Telegrams
	Less Frequent Telegrams
	Equal Distributed Telegrams

	Discussion of the Basic Heuristics

	SWAP OPERATIONS FOR TELEGRAM SCHEDULING ON BASIC ALGORITHMS
	Swap Operations Definition
	Swap Operation According to Maximum Basic Period Duration (SMB)
	Swap Operation According to Sum Of Basic Period Duration (SSB)
	Swap Operation Looking At The Next Two Telegrams (S2T)
	Swap Operation Comparing Three Telegrams (S3T)

	Swap operations Evaluation
	More Frequent Telegrams
	Normal Telegrams
	Less Frequent Telegrams
	Equal Distributed Telegrams

	Discussion

	CONCLUSION
	REFERENCES

