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ABSTRACT 

 

DEVELOPMENT OF DISPUTE PREDICTION AND RESOLUTION 

METHOD SELECTION MODELS FOR CONSTRUCTION DISPUTES 

 

Ayhan, Murat 
Doctor of Philosophy, Civil Engineering 

Supervisor: Prof. Dr. Mustafa Talat Birgönül 
Co-Supervisor: Prof. Dr. İrem Dikmen Toker 

 

December 2019, 376 pages 

 

Construction industry is overwhelmed by increasing number and severity of disputes 

proving  that current practices are insufficient in avoidance. This research argues that 

in order to forestall and mitigate construction disputes, prediction models should be 

developed by utilizing machine learning algorithms. The research suggests developing 

three distinct models; (1) dispute occurrence prediction model, (2) potential 

compensation prediction model, and (3) resolution method selection model. For this 

reason, an extensive literature review is conducted to identify input variables that 

impact dispute occurrence, compensation, and resolution method selection. Findings 

of the literature review is used to develop a conceptual model that involves attributes 

related to project, parties, dispute, and resolution method characteristics along with 

attributes related to changes, delays, and knowledge on resolution methods. Then, a 

questionnaire is designed based on the conceptual model to collect empirical data from 

decision-making authorities. Chi-Square tests of association is performed on collected 

datasets to reveal the significance of associations between inputs and outputs. 

Insignificant attributes are eliminated and finalized prediction models are developed. 

These models are tested by using alternative single and ensemble machine learning 

algorithms to obtain the best classifiers. 10-fold cross-validation results with ten 
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repeats showed that dispute occurrence prediction model achieved 91.11% average 

prediction accuracy while potential compensation prediction model achieved 80.61% 

average accuracy and resolution method selection model has 89.44% average 

classification accuracy. These promising results show that proposed models can be 

beneficial for management personnel by supporting the decision-making process in 

future disputes based on data from past disputes.  

 

 

Keywords: Dispute Prediction, Resolution Method Selection, Machine Learning, Data 

Classification  
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ÖZ 

 

İNŞAAT PROJELERİNDE UYUŞMAZLIK TAHMİNİ VE ÇÖZÜM 

YÖNTEMİ SEÇİMİ MODELLERİNİN GELİŞTİRİLMESİ 

 

Ayhan, Murat 
Doktora, İnşaat Mühendisliği 

Tez Danışmanı: Prof. Dr. Mustafa Talat Birgönül 
Ortak Tez Danışmanı: Prof. Dr. İrem Dikmen Toker 

 

Aralık 2019, 376 sayfa 

 

İnşaat sektöründe uyuşmazlıkların sayısı ve şiddetindeki artış, sektörü ciddi sıkıntılara 

sokarken mevcut uygulamaların uyuşmazlıkların önüne geçmekte yetersiz kaldığını 

da ortaya koymaktadır. Bu araştırmada inşaat projelerindeki uyuşmazlıkların önüne 

geçilmesi için makine öğrenmesi tekniklerine dayanan tahmin modellerinin 

geliştirilmesi önerilmektedir. Buna göre üç farklı model önerilmiştir: (1) uyuşmazlık 

oluşumu tahmin modeli, (2) potansiyel tazminat tahmin modeli ve (3) uyuşmazlık 

çözüm yöntemi seçim modeli. Bu nedenle, uyuşmazlık oluşumunu, tazminatları ve 

çözüm yöntemlerini etkileyen değişkenlerin belirlenebilmesi için kapsamlı bir 

literatür taraması yapılmıştır. Literatür taramasından elde edilen bulgular kavramsal 

bir model geliştirilmesinde kullanılmıştır. Geliştirilen kavramsal model proje, taraflar, 

değişiklikler, gecikmeler, uyuşmazlıklar, çözüm yöntemleri ve çözüm yöntemi bilgi 

seviyeleri hakkında değişkenler içermektedir. Tahmin modellerinin geçmiş inşaat 

projelerinden alınan verilere dayalı olması için kavramsal modele dayanan bir anket 

hazırlanarak karar vericilere uygulanmıştır. Toplanan veri setleri üzerinde Ki-Kare 

testleri uygulanarak model girdileri ile çıktıları arasındaki ilişkiler test edilmiştir. 

Çıktılar üzerindeki etkisi istatistiksel olarak anlamlı olmayan değişkenler modelden 

elenerek tahmin modellerinin son haline ulaşılmıştır. Bu modeller, en iyi 
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sınıflandırıcıyı tespit etmek için alternatif tekli ve grup (çoklu) makine öğrenmesi 

algoritmaları ile test edilmiştir. On kez tekrarlanan 10 katlı çapraz doğrulama 

sonuçlarına göre uyuşmazlık oluşumu tahmin modeli %91.11 ortalama tahmin 

doğruluğu yakalamıştır. Bu oran, potansiyel tazminat tahmin modeli için %80.61 ve 

uyuşmazlık çözüm yöntemi seçim modeli için %89.44 olmuştur. Bu sonuçların 

ışığında, araştırmada önerilen modellerin gelecekte çıkacak uyuşmazlıkların karar 

verme süreçlerinde karar vericileri destekleyebileceği görülmektedir. 

 

Anahtar Kelimeler: Uyuşmazlık Tahmini, Uyuşmazlık Çözüm Yöntemi Seçimi, 

Makine Öğrenmesi, Veri Sınıflandırması 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Construction projects are carried out by several teams and contractors of various 

expertise in a continuously changing and complex environment plagued with high 

levels of risks and uncertainties. Resulting in unique products, construction projects 

also need to satisfy a wide variety of stakeholder requirements while dealing with 

geography, site conditions, communities, challenging physical environments, and 

existing infrastructure at the same time. Moreover, they generally require usage of 

high-end technology and sophisticated equipment besides integration of diverse 

engineering disciplines such as civil, structural, electrical, mechanical, geotechnical, 

etc. (Project Management Institute (PMI), 2016). Thus, multiple discrete parties 

having different specialties come together temporarily to work in a coordinated 

manner with the main goal of completing the project successfully within the planned 

schedule and budget (Harmon, 2003). However, these parties also have varying goals 

and expectations as well as they seek to maximize their own benefits simultaneously, 

which cause perception differences and conflicting goals (Cheung and Suen, 2002). 

The primary goal of the client is usually to get the maximum quality and functionality 

at the minimum cost, while contractors expect to achieve financial goals and client 

satisfaction (Howard et al., 1997). In addition to these differences, stemming from 

their large and complex nature, construction projects involve large number of 

uncertainty sources (i.e. ground conditions) that makes encountering conflicting 

situations in the construction industry more common than many other domain (Dalton 

and Shehadeh, 2003). Because of these conflicts, the relationship between parties of a 

construction project is inherently adversarial, which derails projects from the main 

goal of successful completion (Jones, 2006; Harmon, 2003; Fenn et al., 1997). 

Conflicts do not only cause adversarial relationships, but also disrupts the success of 
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construction projects by potentially creating additional costs for all parties (Thompson 

et al., 2000). When a conflict is not satisfactorily settled, it can quickly escalate to 

become a claim and ultimately a dispute (Cheung and Suen, 2002). 

In the literature, construction disputes are characterized as unwanted, unpleasant, time 

consuming, and expensive (Harmon, 2003). It is emphasized that construction 

disputes cause waste of scarce resources and damage participant relationships (i.e. 

client-supplier relationship), which are built up in many years with difficulty (Fenn, 

2007). Disputes may also result in significant delays and additional costs that 

contradict the goals of successful project completion, which are completing the project 

on time, within the budget and with the desired quality (Office of Government 

Commerce (OGC), 2002; Chen and Hsu, 2007). In other words, with a potential to 

result in delayed schedules, budget overruns, poor quality and performance, increased 

tension, and damaged long-term business relationships, construction disputes can be 

detrimental (Cheung and Suen, 2002).  

The severity of disputes in construction has been well understood and documented 

(Gebken and Gibson, 2006). However, the construction industry still struggles to find 

methods to resolve them justly and economically. Parallel to this, the industry has 

acquired a bad reputation for being contentious and is overwhelmed by increasing 

number of dispute occurrences (Arditi et al., 1998; Cheng et al., 2009). Moreover, the 

increasing complexity of construction projects causes an additional increment in the 

complexity and number of disputes (Cheung and Suen, 2002; Harmon, 2003; Acharya 

et al., 2006). Corroborative data can be found in the literature. In a study analyzing 

the application of dispute review boards (DRB) in construction projects covering the 

period 1975-2007 in the United States (U.S.), it is revealed that the number of projects 

with DRB panel per year is increasing rapidly (Menassa and Peña Mora, 2009). 

Moreover, among the 60 billion U.S. Dollars spent every year on lawsuits in the U.S., 

nearly 5 billion is related solely to construction industry and litigation expenses are 

steadily increasing (Pulket and Arditi, 2009a). A more recent study is taken from the 

American Arbitration Association (AAA) that shows the number of construction cases 
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submitted to the AAA in 2017 were up by 4%, which involves 12% increase in the 

number of cases with claim amounts of at least 0.5 million U.S. Dollars and 13% 

increase with amounts of at least 1 million U.S. Dollars (AAA, 2018). Examples from 

other countries are also similar. In the period of 2002-2009, the dispute rate in public-

private partnership (PPP) projects undertaken by the Taiwan Public Construction 

Commission (TPCC) was 23.6% (Chou et al., 2013a). According to annual reports of 

Hong Kong International Arbitration Centre (HKIAC), of the 429 cases handled by 

HKIAC in 2009, there were 93 cases of construction disputes covering 21.6% of all 

cases (HKIAC, 2009). More recently, between 2015 and 2017, the average rate of 

construction disputes was as high as 20.2% among all HKIAC registered cases 

(HKIAC, 2018). In Turkey, there is approximately 12% increase annually in the 

number of litigious cases related to construction, expropriation, demolition and related 

works (Yılmaz and Dikbaş, 2013). Considering all these examples, it can be concluded 

that there is an increase in the number of construction disputes worldwide with 

disputed projects covering a significant portion in the industry.  

The financial consequences of construction disputes should also be highlighted. The 

estimated additional direct costs of disputes range from 0.5% to 5% of the contract 

value (Love et al., 2010). On the other hand, there are also indirect costs due to 

decreased productivity, strained business relationships, loss of future business 

opportunities, damaged reputation of parties, etc. that amplify damages caused by 

disputes (İlter, 2012). 

Supported by the statistical data, successful construction projects are not achieved as 

often as participants would like (Harmon, 2003). Disputes being one of the main 

reasons behind this, it is no surprise that the research on construction dispute drew 

significant attention. Any attempt to forestall possible disputes may have significant 

contributions to the industry in terms of time and cost savings, especially in the public 

projects (Yılmaz and Dikbaş, 2013). It is commonly accepted in the construction 

industry that the best solution against disputes is to avoid them (Fenn, 2007). 

Therefore, it is expected that attempts and efforts should be directed to avoid disputes 
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before occurrence. However, there is a prevalent tendency in the current literature to 

perceive disputes as inevitable. (Cheung and Suen, 2002; Cheung et al., 2002; Yates, 

2003; Gebken and Gibson, 2006; Kassab et al., 2006; Fenn, 2007; Ellis and Baiden, 

2008; İlter and Dikbaş, 2009). Consequently, although there are limited research on 

identification of dispute likelihood of projects (Diekmann and Girard, 1995; Molenaar 

et al., 2000) and dispute prediction (Dalton and Shehadeh, 2003; Chou and Lin, 2012; 

Chou et al., 2013a; Chou et al., 2014), studies mainly focus on mitigation of impacts 

of disputes and determination of appropriate management and resolution methods. In 

addition, there are many researchers attempting to reduce the number of claims and 

disputes before the dispute reaches its final resort, the courthouse. Subjects of such 

studies involve, but not limited to, identification and classification of reasons, causes, 

sources, and types of claims and disputes (Revay, 1993; Watts and Scrivener, 1993; 

Kumaraswamy, 1997; Cheung and Pang, 2013); justification, quantification, and 

impact/outcome analysis of claims, disputes and resolution methods (Alshawi and 

Hope, 1989; Alkass et al., 1993; Arditi and Pattanakitchamroon, 2006; Gebken and 

Gibson, 2006; Chau, 2007; Chen and Hsu, 2007; Cheng et al., 2009; Arditi and Pulket, 

2009; Pulket and Arditi, 2009b); investigation and selection of appropriate dispute 

management and resolution methods (Cheung, 1999; Cheung et al., 2002; Jones, 2006; 

Kassab et al., 2006; Kassab et al., 2010; İlter, 2010a; Marzouk et al., 2011; Chou, 

2012; Chou et al., 2013b; Yılmaz and Dikbaş, 2013). 

The above-mentioned studies provide valuable theoretical frameworks and practical 

models. However, as the number and impact of disputes increasing continuously, it 

can be said that these efforts are not sufficient to satisfy the needs of the construction 

industry. Therefore, new decision-support technologies are needed (Kassab et al., 

2006). Considering the fact that developing deterministic mathematical models to 

solve construction management problems is difficult and costly, the research interest 

moves towards approximate inference as a fast and cost efficient alternative (Cheng 

and Wu, 2009). Consequently, the use of artificial intelligence (AI) is accepted as a 

strongly effective method for determining numerous complex and interconnected 
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factors related to construction disputes along with hidden relationships that are 

difficult to rationalize (Chou and Lin, 2012). Establishment of dispute libraries using 

AI applications can have significant contributions to the construction industry (İlter 

and Dikbaş, 2009). Among various AI applications, data mining via machine learning 

(ML) techniques form an important research branch since 1960’s as they enable 

gathering valuable information from large volumes of data that is difficult to 

understand and interpret (Liao et al., 2012). In addition to these, as a data mining 

subdomain, supervised learning in ML (i.e. classification and regression problems) is 

a potential tool in management domain (Chou et al., 2014). Such tools can be used for 

forecasting dispute occurrence and supporting resolution process. 

Prediction of potential disputes using ML techniques will be valuable for management 

personnel as early planning to take necessary precautions will be possible, which may 

reduce the effort, time, and cost of dispute management actions considerably 

(Marzouk et al., 2011; Chou et al., 2014). 

Dispute management is one of the main determinants of the performance of 

construction projects and consequently, the industry (İlter and Dikbaş, 2009). 

However, achieving successful dispute management is a complex and challenging 

problem (Chou et al., 2013b). This is because the best way to deal with construction 

disputes does not exist since disputes often vary in scale, complexity, and nature due 

to the fragmented and complex status of construction projects. Adding complexity of 

technical and financial matters related to disputes, various external (i.e. political) and 

internal factors (i.e. personnel related attributes) as well as their interrelations should 

be carefully considered in dispute management decision-making (Cheung and Suen, 

2002; Harmon, 2003). The current tendency in the construction industry is to make 

these challenging decisions intuitively based on the experience of the decision-maker 

with limited available information of questionable quality (Chou et al., 2013b). 

Moreover, a research on Turkish construction industry revealed that majority of 

professionals characterizes their decision-making rationale for resolution processes 

and resolution method selection as unconscious, while pointing out the need for tools 
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to make informed and logical decisions at the same time (İlter, 2010b). In other words, 

instead of depending on a systematical process, the current decision-making practice 

in dispute management is prone to subjectivity. AI applications, on the other hand, has 

the potential to minimize this subjectivity (Cheung et al., 2004a). Utilization of AI 

techniques enables to systematically select the resolution strategy (Cheung and Suen, 

2002). Although dispute resolution methodology is usually chosen before occurrence 

of a dispute via contract documents, considering the nature of the dispute and factors 

such as the relationship between disputed parties, the methodology that best suits the 

needs of the participants should be selected (Harmon, 2003). While performing such 

a selection, experience and knowledge are invaluable. The merits of AI techniques 

include extraction of such tacit knowledge in an articulable and presentable way to the 

relevant personnel. As a result, an informed decision-making can be achieved during 

resolution method selection via appropriate decision-support systems based on AI 

techniques (Cheung et al., 2004a). Development of AI based models can also enable 

early warning of potential dispute resolutions (Chou et al., 2014). 

In the light of these, the AI, specifically ML, based applications have drawn attention 

in the literature. As they yielded promising results, these methods are being used 

soundly in establishing decision-support systems (Pulket and Arditi, 2009a). 

However, the literature has proven that it is not possible to solve all data mining 

problems using a single ML technique because of the varying characteristics of real 

world datasets. Instead, in order to obtain accurate results, the bias due to learning 

technique should be compatible with the dynamics of the problem domain, which 

makes data mining an experimental process (Witten et al., 2016). In other words, the 

effectiveness of ML techniques depend on characteristics of the application domain 

and dataset, along with various enhancements that increase their performance. An 

accurate model that is proven to be well performing on a certain dataset does not 

necessarily have to perform well on another (Pulket and Arditi, 2009b). Therefore, the 

ML technique that performs best on construction dispute problems with the available 

data should be experimentally determined.  
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With the aim of demonstrating that models to predict dispute occurrence and to 

support decision-making for resolution processes can be generated, this thesis study 

compares the strengths and weaknesses of similar studies that utilize ML techniques. 

This detailed literature review will be given in Chapter 2 of the thesis study.  

In short, people interested in construction dispute domain should aim to reduce the 

number of potential disputes to a minimum as well as to manage them in the most 

effective way upon inevitable occurrence. In doing this, they can benefit from AI 

applications, specifically ML techniques. Thus, this thesis study will focus on the ML 

techniques in the dispute management domain in order to perform dispute prediction 

and to support the decision-making during resolution processes. 

1.1. PROBLEM STATEMENT 

Producing numerous valuable theoretical and practical outcomes, the topics in 

construction dispute domain were discussed intensively. However, the number of 

disputes are still increasing worldwide along with disruptive effects on the 

construction industry. This is a clear proof that shows current avoidance, management, 

and resolution efforts do not meet industry’s requirements. The high frequency of 

occurrence in the industry and the consensus on the inevitable nature should not 

necessarily imply that disputes cannot be avoided (Revay, 1993). Contrarily, the 

industry requires development and employment of adequate decision-support 

technologies in order to forestall and mitigate disputes.  

It is commonly accepted in the construction industry that the best solution against 

disputes is to avoid them. Necessary actions to avoid disputes can only be achieved 

by prediction (Fenn, 2007). Therefore, in order to decrease the number of construction 

disputes, dispute prediction is an important research area. AI based applications, 

especially new technologies and algorithms available in the ML domain, makes 

developing data-specific prediction models possible. When the output variable is a 

categorical variable, prediction problems become data classification problems (Chou 

and Lin, 2012). For example, in the case of dispute occurrence prediction, the output 
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variable is dispute occurrence, where ‘undisputed cases’ can be categorized as ‘0’ and 

‘disputed cases’ as ‘1’. ML algorithms are well equipped to solve such data 

classification problems. A similar situation is also present in resolution method 

selection, where the resolution method as the output variable can again be categorical. 

For example, litigation can be categorized as one group, arbitration as another, 

mediation as another, and so on. Thus, it can be said that ML techniques are also 

suitable for decision-support systems in resolution method selection. Therefore, 

among various AI applications, this research will focus on establishment of prediction 

models via data classification by employing adequate ML techniques on construction 

dispute data. 

Data classification problems model relationships between various input variables to 

an output, but it is not an easy task to determine which input variables affect the output 

variable. In pursuit of achieving this, the literature on dispute management focuses on 

diverse areas such as identification of dispute causes, factors affecting disputes and 

their resolution, analysis of resolution methods and alternative dispute resolution 

(ADR) techniques, and decision-support models and systems in dispute resolution, 

etc. However, there is no consensus in the literature. Instead of sharing a common 

wisdom, studies are conducted based on different causes and factors with varying 

levels of inclusion and detailing, which cause understanding and perspective 

differences. In addition, there is a confusion in the related terminology due to 

overlapping concepts and the distinction between causes, factors, types of disputes, 

etc. may not be very clear (İlter, 2012). Moreover, as the research progresses, scholars 

detect importance of new variables that should update the upcoming research efforts. 

In order to tackle these problems, a common ground should be established that 

involves findings of previous studies as distinct input variables.  

Another problem of dispute management models and systems is the level of 

representation. Although global-scaled research can be found to some extent, studies 

are mainly based on local industries. Thus, they are not capable of representing the 

construction industry as a whole. Moreover, instead of a general approach, it is 
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observed that the main preference is to conduct the research for public or PPP projects 

only. Despite the fact that there are various parties from many domains in a 

construction project, most of the studies also fail to represent or target these various 

professions since they merely review certain groups. The results of a study analyzing 

the literature on dispute resolution is parallel. Another important highlight of that 

study was the tendency of the current literature to produce general insights and 

statistical outcomes rather than establishing supporting models or systems (İlter and 

Dikbaş, 2008). 

Considering all these problems, this thesis study will focus on ML techniques in the 

dispute management domain in order to perform dispute prediction and to support the 

decision-making process during dispute resolution. However, prediction problems are 

complex to model since these problems contain substantial uncertainty and vagueness 

besides the questionable quality of the available data (Chou et al., 2014). In addition, 

it is difficult to select the best single or combined ML algorithms that suit the 

prediction problem at hand. The conventional approach in ML domain is to 

experimentally compare the classification performances of promising single ML 

algorithms with each other as base classifiers and select the best performing one in 

that dataset. In addition to this, enhancements to these base classifiers can be pursued 

by creating ensemble classification schemes systematically, which are basically 

adding or combining base classifiers to improve classification (prediction) 

performance (Arditi and Pulket, 2009). Therefore, such problems require an 

experimental data mining approach. 

In the light of all these, it is claimed that in dispute prediction and resolution method 

selection, there is a need for sound decision-support technologies that are capable of 

representing the industry inclusively with a general approach that can be benefited by 

various project participants. The research at the core of this thesis study addresses 

these needs systematically by collecting and processing data from various construction 

projects and classifying them by models derived from utilizing ML algorithms. 

Performing numerous experiments on the collected data with several alternative ML 
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algorithms, the aim is to present models with best prediction (classification) 

performances in order to fill the mentioned gaps in the construction dispute literature.  

1.2. SCOPE, OBJECTIVES AND LIMITATIONS 

Based on defined problems, the primary objective of this research is to utilize state-

of-the-art ML techniques on real-world construction project data to extract the 

invaluable tacit knowledge of previous dispute cases and to present the results to 

relevant personnel beforehand. By doing this, for new cases, it would be possible to 

achieve dispute prediction (occurrence and potential compensation prediction) and 

appropriate resolution method selection that will function as an early-warning 

mechanism. Such an achievement may be beneficial to management personnel in 

avoiding or mitigating possible disputes by highlighting the complex interrelations 

between disputes and projects as well as helping them to take necessary precautions. 

In short, this research argues that in order to forestall and mitigate construction 

disputes, prediction models should be developed via utilizing alternative ML 

techniques on datasets capable of representing variations in the construction industry. 

For this purpose, the research suggests developing three different prediction models: 

(1) a model for predicting dispute occurrence, (2) a model to help the decision-maker 

in understanding what compensation can be acquired out of the disputed case, and (3) 

a model for supporting the decision-making process during resolution method 

selection.  

All prediction models will link several input variables related to a construction project 

to an output. In the case of dispute occurrence prediction, input variables will have 

impact on the dispute occurrence as an output such that projects in the dataset will be 

classified as “disputed projects” and “undisputed projects”. In the case of potential 

compensation prediction, input variables will have impact on the type of compensation 

that can be acquired out of the disputed case as an output such that “no compensation”, 

“cost compensation only”, “time compensation only”, and “time and cost 

compensation”. In the case of resolution method selection, input variables will have 
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impact on the method to be chosen as an output variable such that “litigation” should 

be preferred, “arbitration” should be preferred, etc.  

The lack of a common ground in disputes domain should also be tackled during 

development of prediction models. As stated earlier, instead of sharing a common 

wisdom, the literature is composed of studies that are conducted based on different 

causes and factors with varying levels of inclusion and detailing, which cause 

understanding and perspective differences. The research will address this problem by 

establishing a conceptual model firstly. The conceptual model will be developed as a 

result of an extensive literature survey with an aim to identify causes of disputes, 

factors affecting dispute development and potential compensations, mechanisms of 

resolution strategies and alternative resolution methods. As a result of the literature 

survey, numerous variables will be identified that can be used in prediction models.  

Following the literature survey, empirical data is collected via questionnaires in order 

to establish a construction project dataset. All prediction models are based on data 

from construction projects collected specifically for this research. The questionnaire 

is designed according to the developed conceptual model. In other words, empirical 

data on variables identified in the conceptual model are collected via questionnaires. 

The dispute occurrence prediction model utilizes a dataset composed of 108 

construction projects (38 undisputed projects and 70 disputed projects), while the 

potential compensation model utilizes 82 cases (12 cases with no compensation, 38 

cases with only cost compensation, 5 cases with only time compensation, and 27 cases 

with both cost and time compensation) out of the 108 cases collected. Notice that 

compensation model utilizes 82 cases, which is more than the number of disputed 

projects (70 disputed projects) in the dataset. However, some projects experienced 

more than one disputed issue. This is the reason why there are more disputed cases 

than disputed projects in the dataset. These 82 cases are the cases in which participants 

declared satisfaction with the compensation. Finally, the resolution method model 

utilizes 54 cases coming from 82 disputed cases. These 54 disputed cases are the ones 

that are resolved satisfactorily according to participants. 
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Subsequent to collecting empirical data for development of prediction models, the 

next objective is to determine which input variables affect the output variable for each 

prediction model. For this purpose, the data is analyzed in terms of significance. In 

other words, the significance of associations between input variables and the output 

variable are analyzed for all input variables in all prediction models. The insignificant 

input variables are removed from the original conceptual model and three different 

prediction models are established with fewer input variables. This kind of variable 

elimination is known as attribute or feature selection/elimination in practice and it 

helps achieving better algorithm generalization in ML applications (Drucker et al., 

1999). Another reason for attribute elimination by significance analysis is that the 

performance of ML algorithms is generally affected negatively by the irrelevant or 

insignificant attributes (variables) (Pulket and Arditi, 2009b). Therefore, elimination 

of insignificant attributes and selection of the ones impacting the model outcomes 

improve generalization performance of ML algorithms (Arditi and Pulket, 2009; 

Sönmez and Sözgen, 2017).  

At the end of attribute elimination, experiments are conducted using alternative ML 

algorithms to determine the ML algorithm that gives the highest prediction 

performance. Each model is tested using its own dataset with the same set of ML 

algorithms and the best performing classifier is determined as the final prediction 

model.  

To summarize objectives of this research so far; the primary goals are establishing a 

dispute occurrence prediction model, a potential compensation prediction model, and 

a resolution method selection model. However, in order to achieve these primary 

goals, a conceptual model involving findings of previous studies in the literature as 

distinct input variables should be established initially as a secondary objective. Then, 

empirical data is collected according to input variables identified in the conceptual 

model and insignificant variables are eliminated to establish the prediction models. 

Various alternative ML algorithms are tested to come out with the best prediction 

performance for all three models. However, the scope of this research does not include 
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determining the best method (i.e. not all ensemble model combinations are 

experimented) but instead; the aim is to demonstrate that models using alternative ML 

techniques can be generated for purposes of dispute prediction and decision-support 

during dispute resolution. 

The data specific nature of this research is regarded as its main limitation. In other 

words, the research is based on data from a finite number of construction projects. 

Although collected datasets can said to be quite representative, the number and variety 

of projects are still limited due to limitations on access to such information, research 

duration, and budget. The number and variety of projects can be increased so that the 

level of representation of the construction industry and generalization capabilities of 

presented models will be improved. In addition, further research can be performed to 

establish a combined decision-support system utilizing presented models via a user 

interface. 

1.3. RESEARCH METHODOLOGY 

In accordance with research objectives that aim to resolve defined problems in the 

literature about construction dispute management, the research methodology can be 

summarized in three steps (Figure 1.1).  

Step 1 – Conceptual Model Development: There is no consensus in the literature 

about causes of disputes or factors that affect them. A similar case is also valid about 

factors that affect the dispute resolution decision-making. Instead of sharing a 

common wisdom, studies are conducted based on different causes and factors with 

varying levels of inclusion and detailing, which cause understanding and perspective 

differences. In addition, there is a confusion in the related terminology due to 

overlapping concepts and the distinction between causes, factors, types of disputes, 

etc. may not be very clear (İlter, 2012). In order to overcome these problems with a 

systematical approach, the first step involves an extensive analysis of literature on 

construction conflicts, claims, disputes, compensations, and resolution methods with 

the aim of synthesizing findings of the previous research. Findings of the literature 
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survey will be used to develop a conceptual model (Chapter 2). The conceptual model 

will be composed of input and output variables identified in accordance with the 

literature survey. In other words, the conceptual model is developed to identify input 

and output variables for prediction models. Although there are numerous input 

variables, only three output variables are identified. These output variables are (1) 

dispute occurrence, (2) potential compensation, and (3) resolution method.  

 

 

Figure 1.1. Research Methodology 

Step 2 – Development of Prediction Models: The second step is the development of 

prediction models as (1) dispute occurrence prediction model, (2) potential 

compensation prediction model, and (3) resolution method selection model. For this 

purpose, empirical data on construction projects are needed. In order to collect 

construction project data, a questionnaire is designed (Chapter 3) based on identified 

variables in the conceptual model. With the goal of reflecting variations in 

construction types, contract documents, participants, delivery systems, business 
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environments, etc., the data is collected from a wide variety of construction projects. 

The collected dataset involves data related to all variables identified in the conceptual 

model. However, the impact of input variables on outputs are not the same. Some 

variables may impact the outcome more than the others, while the impact of some 

variables can even be statistically insignificant. Therefore, the significance of 

association between input and output variables should be analyzed. Firstly, the 

collected data is processed and variables are turned into categorical variables (i.e. 

nominal and ordinal). Then, in order to understand whether there is a statistically 

significant relationship between input and output variables, Chi-Square statistics is 

utilized. Chi-Square statistics is a useful way of testing the existence of association 

relationship between categorical variables (Weisburd and Britt, 2007). The Chi-

Square tests are performed in IBM SPSS Statistics version 22.0. Finally, according to 

contingency tables resulting from the Chi-Square tests, statistically insignificant 

variables are eliminated and prediction models are developed with significant 

variables only. In short, variable (attribute) elimination is performed on variables of 

the conceptual model via the Chi-Square tests to establish three prediction models. 

Step 3 – Finalization of Prediction Models: The third step is finalizing prediction 

models via data classification. When the output variable is a categorical variable, 

prediction problems become data classification problems (Chou and Lin, 2012). This 

is the case in dispute occurrence prediction, potential compensation prediction, and 

resolution method selection. Thus, using established prediction models, the 

classification performance of alternative ML algorithms are tested. In these tests, 

various single and ensemble ML algorithms are experimented. The utilized single 

algorithms, which are also known as base classifiers, are (1) Naïve Bayes; (2) k-

nearest neighbor (kNN); (3) J48, which is an algorithm that generates C4.5 decision 

trees; (4) multilayer perceptron (MLP), which is an enhanced artificial neural network 

(ANN) algorithm; and (5) support vector machines (SVM). Meanwhile, the ensemble 

models are developed by using (1) voting technique, (2) stacked generalization, and 

(3) the AdaBoost algorithm. Containing a collection of numerous inbuilt ML 
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algorithms, Waikato Environment for Knowledge Analysis (WEKA) version 3.8.3, 

which is an open-source Java application produced by the University of Waikato in 

New Zealand (Frank et al., 2016), is used in data classification tests. The algorithm 

that produced the best classification performance is presented as the final prediction 

model. 

In the light of these, Figure 1.2 summarizes the detailed research overview. 

 

 

Figure 1.2. Detailed Research Overview 

 

1.4. STRUCTURE OF THE RESEARCH 

The order of contents of this research follows the steps in the detailed research 

overview (Figure 1.2). Chapter 2 starts with an introduction to research background 
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on construction disputes. The basic terminology is explained from the research’s point 

of view. Previous studies on construction disputes are highlighted and it is followed 

by a literature review on dispute prediction. Then, the research moves onto research 

background on dispute resolution methods and ADR techniques starting with an effort 

to generate an understanding of these techniques via comprehensive explanations of 

conventional resolution methods, which are litigation and arbitration, and ADR 

methods, which involve DRB, mediation, senior executive appraisal (SEA), and 

negotiation. This is followed by an investigation of previous studies on this domain 

and a literature review on decision-support systems for resolution method selection. 

Finally, resulting from this extensive analysis of literature, a conceptual model will be 

developed that will be used during data collection. 

In Chapter 3, firstly, a questionnaire to collect empirical data is designed according to 

the conceptual model developed in Chapter 2. Secondly, empirical data is collected, 

processed, and initial findings are presented. Thirdly, attribute elimination is 

performed by using Chi-Square tests to identify the association relationship between 

input and output variables. Insignificant attributes, which may negatively affect the 

performance of ML algorithms, are eliminated from the conceptual model. Finally, 

utilizing the remaining significant attributes, established models for dispute 

occurrence and potential compensation prediction along with resolution method 

selection are given.  

Chapter 4 starts with a detailed explanation of concepts in the ML domain. Differences 

in binary data classification and multiclass classification are emphasized. Once again, 

the importance of attribute selection before utilizing ML techniques is highlighted. 

Then, properties, characteristics, advantages, and disadvantages of the utilized single 

and ensemble ML techniques for data classification are reviewed. In addition, efforts 

for enhancing the performance of utilized techniques are explained.  

In Chapter 5, results of binary data classification using ML techniques are given based 

on evaluations considering several performance metrics. According to these results, 
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the final classifier for dispute occurrence prediction is selected. Similarly, results of 

multiclass data classification are presented and final classifiers for potential 

compensation prediction and resolution method selection are determined.  

Chapter 6 includes concluding remarks, findings, contributions, and limitations along 

with recommendations for future research. 
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CHAPTER 2  

 

2. RESEARCH BACKGROUND 

 

In this chapter, research background on construction disputes will be given with 

explanation of the basic terminology and investigation of previous studies. It will be 

followed by a literature review on dispute prediction with a special emphasis on AI 

based applications and ML techniques. Then, research background on dispute 

resolution methods and ADR techniques will be given starting with an effort to 

generate an understanding of these techniques via comprehensive explanations of 

conventional resolution methods, which are litigation and arbitration, and ADR 

methods, which involve DRB, mediation, SEA, and negotiation. This is followed by 

an investigation of previous studies on this domain and a literature review on decision-

support systems for resolution method selection with special emphasis on AI based 

applications. Finally, resulting from this extensive analysis of literature on 

construction conflicts, claims, disputes, and resolution methods, a conceptual model, 

which will be used for development of prediction models, is established. 

2.1. RESEARCH BACKGROUND ON CONSTRUCTION DISPUTES 

Before moving into details, the basic terminology related to construction disputes 

should be explained. Therefore, at this point, the perception of the terms “conflict”, 

“claim”, and “dispute” in this research should be identified, as there are variations in 

definitions of these terms in the literature and there is a tendency to use them in pairs 

or interchangeably without clear explanation of their meanings (Yates, 2003; Acharya 

et al., 2006; Younis et al., 2008; Ellis and Baiden, 2008). 

2.1.1. The Basic Terminology – Conflicts, Claims, and Disputes 

Project participants naturally have different expectations from a construction project 

and consequently, they have varying goals. For example, the client’s goal is usually 
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to get the maximum quality and functionality at the minimum cost, while the 

contractor’s goal is to fulfill its own financial expectations (Howard et al., 1997). 

Thus, goals of project parties are at conflict. In fact, conflict is a general behavioral 

concept that is common in every part of our lives. In general view, conflicts are serious 

disagreements or differences between two or more beliefs, ideas or interests 

(Kumaraswamy, 1997). Similarly, in construction domain, conflict refers to the clash 

of interests, values, or actions and if a party feels its position is threatened, conflicts 

arise (Love et al., 2011). Conflicts cause adversarial relationships among participants 

and may disrupt the success of a project (Thompson et al., 2000). When a conflict is 

not satisfactorily settled, it escalates further to become a claim and ultimately a dispute 

(Cheung and Suen, 2002). 

In Project Management Body of Knowledge (PMBoK), a construction claim is defined 

as; “a demand for something due or believed to be due, usually as a result of a change 

in basis in the project execution; a variation or deviation in risk allocation; an action, 

direction, or requested change order against the agreed-upon terms and conditions of 

a contract or a part of the construction, which has failed or is not performing properly 

and cannot be economically resolved between the parties” (PMI, 2016). Resulting 

from contractual issues, claims on construction projects usually occur as an assertion 

for additional payment or extension of time (Kumaraswamy, 1997). 

A construction dispute, on the other hand, is a rejected claim (Marzouk et al., 2011); 

a form of conflict that is made public and requires resolution (Cheung and Suen, 

2002); an unreached agreement on a change occurrence or compensation claim that 

negatively affects the project and the participant relationships (PMI, 2016); a 

disagreement over issues that could have been resolved through resolution methods 

(Brown and Marriot, 1993); or simply any unsettled contractual difference or 

disagreement (Love et al., 2011). For a dispute to occur, conflicts between participants 

should exist and there has to be a claim by one party while the other is rejecting it 

(Younis et al., 2008). 
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In simple form, basic relationships between the terms “conflict”, “claim”, and 

“dispute” used in this research is based on Figure 2.1 (Kumaraswamy, 1997). 

 

 

Figure 2.1. Conceptual Model for Basic Relationships between “Conflict”, “Claim”, 
and “Dispute” (Kumaraswamy, 1997) 

Another important distinction between construction claims and disputes is that; a 

construction claim does not always indicates negativity or a bad situation. Upon 

satisfactory agreement on the claim, necessary modifications to contract are made and 

the problem is solved without further escalation. However, when parties cannot reach 

a satisfactory settlement on the claim, it proceeds to resolution methods such as 

negotiation, mediation, arbitration, litigation, etc. and becomes a construction dispute 

that negatively influences the construction project and the participant relationships. In 

construction industry, although it is a frequent practice to satisfactorily settle claims, 

disputes are also frequent (PMI, 2016). 

2.1.2. Previous Research on Construction Disputes 

In the introduction chapter, disputes and their negative impacts have been discussed 

in details along with statistical data proving that the number and severity of disputes 
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are increasing in the industry. Moreover, the tendency in the current literature to 

perceive dispute occurrence as inevitable is mentioned. As a summary, if conflicts and 

claims are not satisfactorily settled, construction disputes may arise and resulting 

disputes are unwanted, time-consuming, and expensive as they can cause delays, 

budget overruns, tense relationships, decreased performance and quality, damaged 

long-term business relationships, etc. that damage the success of the construction 

project (Cheung and Suen, 2002; Harmon, 2003; Chen and Hsu, 2007).  

In the light of foregoing observations, various topics on construction disputes research 

has attracted significant attention. As an initial step to understand mechanisms of 

dispute development, researchers tried to identify causes of disputes and project 

characteristics or attributes that impact dispute occurrence. Revay (1993) tried to find 

frequently re-occurring reasons for claims and ways to avoid those by analyzing 175 

projects from the North American continent and highlighting seven different reasons. 

Common features of analyzed projects were their fast-track nature, incomplete bid 

documents, change orders, extra works, quantity fluctuations, and costs and extensions 

related to these. Kumaraswamy (1997) conducted an extensive research on conflicts, 

claims, and disputes in construction by establishing valuable frameworks. In this 

research, potential sources of conflicts, various time and cost related claim categories, 

and common sources of claims and disputes are identified. In a review on disputes 

settled by litigation in Australia, 117 different sources of disputes under 59 categories 

are discovered and the most frequent sources are highlighted as target areas for further 

research (Watts and Scrivener, 1993). Dalton and Shehadeh (2003) developed a 

statistically derived mathematical model based on past project data that links 14 

independent variables to 3 dependent variables, which are cost overrun, time overrun, 

and number of claims. Cheng et al. (2009) indexed dispute cases based on eight 

attributes. Fenn et al. (1997) reviewed the literature to identify 46 sources of disputes, 

while Marzouk et al.'s (2011) literature review highlighted 44 causes. İlter and Dikbaş 

(2009) analyzed the frequency of disputes under 12 project related attributes, while 

İlter (2012) identified relationships between dispute factors and categories using 21 
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variables. Cheung and Pang (2013) developed an anatomy, which groups disputes in 

a five-leveled structure, linking 46 different attributes with dispute occurrence. In a 

study explaining the development of disputes, 24 construction disputes between states 

and contractors are comparatively analyzed to develop a process model and the 

proposed model examines the combined effect of project uncertainties, contractual 

aspects, business relationships, and problem solving effectiveness in order to develop 

a classification of problems while identifying resolution requirements and the 

potential dispute in each situation at the same time. Moreover, the study involves 

several recommendations to the construction industry within the light of the results 

that indicate dispute prevention is dependent on planning and problem solving 

capabilities of participants rather than contractual terms (Mitropoulos and Howell, 

2002). In a similar research based on the case of Hong Kong’s airport core program, 

the contract incompleteness, opportunism, and asset-specificity concepts are 

considered as root causes of disputes and it is claimed that actual extent of disputes is 

governed by the client through selection of procurement system, client organization, 

consultants, contracting team, and the time and cost prioritization (Yates, 2003).  

There are many other studies identifying causes and attributes not as a primary goal, 

but as a secondary goal. For example, in an effort to predict the dispute proneness of 

projects, researchers categorized project characteristics, which affect dispute 

occurrence, under three main classes as people, project, and process related 

characteristics. People related characteristics involve participant related issues such as 

management capabilities, experience, etc. and their relationships with each other, 

while project related characteristics are composed of external and internal factors (i.e. 

site limitations, design complexity) and process related ones include planning and 

contract related aspects (i.e. financial planning, adequacy of technical plans) 

(Diekmann and Girard, 1995; Molenaar et al., 2000). Such an effort can be guiding as 

objective and subjective project characteristics that affect dispute occurrence are 

investigated at the same time. In another series of studies on dispute prediction and 

resolution method selection, researchers identified that 13 different attributes have an 
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impact on dispute occurrence. While in resolution method selection, dispute category 

and occurring phase are also added as impacting factors to make 15 variables (Chou 

and Lin, 2012; Chou, 2012; Chou et al., 2013a; Chou et al., 2013b; Chou et al., 2014). 

In an effort to classify influential information to discover rule sets for construction 

disputes and resolutions, 13 input variables are linked with four output variables as 

dispute occurrence, dispute type, resolution method, and dispute stage (Chou et al., 

2016). In pursue of finding a method to predict occurrence, frequency, and level of 

possible claims in Iran construction industry, 60 primary causes of claims are grouped 

under nine different categories based on their nature (Yousefi et al., 2016). 

Another group of studies can be found in research aiming to analyze the outcome of 

claims, disputes, litigation, etc. There are studies focusing on dispute causes and 

project characteristics that affect court rulings. In another perspective, these efforts 

can be viewed as identification of causes and characteristics that influence dispute 

development. Chau (2007) declared 13 distinct project characteristics affect court 

rulings, while Chen and Hsu (2007) and Chen (2008) discovered 17 dispute causes 

and six project characteristics. In a series of studies to predict the outcome of 

construction litigation, researchers identified that 38 attributes have impact on 

litigation rulings (Arditi and Pulket, 2009; Pulket and Arditi, 2009a; Pulket and Arditi, 

2009b). In a system that generates legal arguments for change order disputes based on 

past cases, El-adaway and Kandil (2009) utilized 12 different impacting factors to 

classify arbitration and litigation cases. Kilian and Gibson (2005) examined primary 

causes of litigation associated with construction contracts of the U.S. Naval Facilities 

and linked seven claim causes and 17 project characteristics with litigation rulings. In 

a review on disputes handled by the Turkish Public Procurement Authority (TPPA), 

rulings of the Authority are classified under attributes such as applicants’ 

organizational structure, type of government agency in charge, and phase of 

occurrence (Gencer, 2005). 

All these mentioned causes, reasons, characteristics, and attributes are reviewed and 

similar items are merged. Resulting items are used in order to establish a conceptual 
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model that is composed of a pool of input variables, which will be used for the design 

of a questionnaire to collect empirical data and the development of prediction models 

proposed in this thesis study. 

The research on construction dispute domain is not limited to identification of causes 

of disputes and attributes affecting dispute development. For example, Gebken and 

Gibson (2006) grouped the research on dispute management domain under three main 

areas; (1) dispute identification, which focuses on causes and identification methods; 

(2) dispute assessment, which addresses studies on determination and quantification 

of dispute frequency and severity; (3) dispute control, which deals with ADR methods 

and other management strategies. Unfortunately, the scope of this thesis study is 

limited to dispute prediction (occurrence and potential compensation) and resolution 

method selection. Therefore, the thesis study will skip several topics related to 

construction disputes and continue with the literature review on dispute prediction.  

2.1.3. Literature Review on Dispute Prediction  

One of the earliest studies on predicting the dispute likelihood of construction projects 

is conducted by Diekmann and Girard (1995). They developed a ‘dispute potential 

index (DPI)’ using Logistic Regression (LR) analysis on a dataset of 159 construction 

projects with dispute predictors categorized under project, people, and process related 

aspects. An improvement is achieved by analyzing the same dataset by the Structural 

Equation Modeling (SEM), a technique that creates surrogate variables integrating 

several qualitative and quantitative input variables in order to reveal undiscovered 

relationships between pairs of input variables via regression operations (Molenaar et 

al., 2000). Both studies aimed to predict dispute propensity of construction projects at 

early stages. However, construction disputes require consideration of numerous 

complex and interrelated factors that are difficult to rationalize (Chou, 2012). 

Therefore, results from techniques like LR and SEM, which have limited capability of 

modeling multiple correlations between variables, can be misguiding.  
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Dalton and Shehadeh (2003) claimed that knowing various factors related to a 

construction project, it is possible to forecast the number (occurrence) and value of 

claims (compensation). For this reason, they developed a statistically derived 

mathematical model based on past project data. However, their methodology also 

lacks an approach for mapping complex relationships among their variables. In 

addition, even with the best available information, it is impossible to quantify claims 

precisely due to uncertainties on factors such as quantity of impacts, indirect costs, 

cumulative effects (i.e. loss of productivity), etc. (Ren et al., 2001). In another 

statistical based study, the frequently re-occurring reasons for claims are presented by 

analyzing 175 construction projects to investigate if disputes can be avoided or not, 

especially when there is a change order (Revay, 1993). Analyzed projects are 

categorized based on various attributes such as type of the project, value of the 

contract, location, etc. in order to link some project attributes and dispute reasons with 

time and cost overruns. Although the scope does not include a model or a system, the 

study is valuable by giving statistical insights about associations among various 

project attributes and dispute reasons with dispute occurrence and potential 

compensations. 

There are studies for assessing the occurrence likelihood of a dispute by utilizing AI 

applications. One of these studies developed an anatomy of construction disputes 

using fuzzy sets and fault tree analysis. The proposed anatomy identifies critical 

dispute related factors and assesses the occurrence likelihood of causes of disputes, 

which will gradually lead to dispute occurrence likelihood evaluation (Cheung and 

Pang, 2013). Specific to Iran construction industry, Yousefi et al. (2016) benefited 

from advantages of the Analytical Hierarchy Process (AHP) and MLP neural networks 

to predict the occurrence of claims along with estimations of time and cost 

compensations related to them. 

A series of studies on a dispute dataset of 584 PPP projects undertaken by the TPCC 

prove the efficiency and effectiveness of ML techniques in dispute prediction 

problems. The first of these studies utilizes kNN, MLP, Naïve Bayes, SVM, and C4.5 
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algorithms as single (base) classifiers. Then, in pursuit of enhanced classification 

performance, ensemble classifiers are established combining k-means clustering 

technique, MLP classifier, and C4.5 algorithm, respectively, with the mentioned base 

classifiers one by one. Classification performances are compared with each other 

considering metrics such as accuracy, false positive (FP) and false negative (FN) rates, 

and the area under the receiver operating characteristic curve (AUROC). It is 

highlighted that the prediction performance of ensemble models outperformed the 

classification performance of single classifiers (Chou et al., 2013a). In the second 

study, the same dataset is analyzed by several techniques involving LR, discriminant 

analysis (DA), ANN, SVM, decision list (DL) algorithm, tree augmented Naïve Bayes 

(TAN) classifier, classification and regression trees (CART), quick-unbiased-efficient 

statistical trees (QUEST), C5.0 algorithm, and exhaustive Chi-Squared automatic 

interaction detection (exhaustive CHAID) algorithm. Then, combining these single 

classifiers, several ensemble models are established and their classification 

performances are experimented. According to 10-fold cross-validation performances, 

the highest dispute prediction accuracy rate was 84.33% resulted from the ensemble 

model that combines SVM, ANN, and C5.0 classifiers (Chou and Lin, 2012). The 

third study focuses on SVM algorithm in specific by trying to optimize its parameters 

utilizing genetic algorithm (GA) in order to enhance the prediction performance. The 

GA based SVM model resulted in a dispute prediction rate of 89.30% (Chou et al., 

2014). Finally, in the fourth study, the dispute occurrence and the dispute type are 

predicted by C5.0 algorithm with an average 10-fold cross-validation accuracy of 

83.92% and 77.00%, respectively, and the dispute stage with an average 10-fold cross-

validation accuracy of 79.77% by ANN classifiers (Chou et al., 2016). Although these 

studies are project and industry specific, they are pioneering studies in dispute 

prediction research. 

Similar to predicting the dispute likelihood of construction projects, there are studies 

predicting the litigation likelihood. Based on 340 litigated cases from the period 1972-

2002 in the U.S., a hybrid model is developed combining ANN and case-based 
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reasoning (CBR) techniques in order to classify construction projects with change 

orders according to their litigation likelihood. The ANN part of the model achieved a 

classification accuracy rate of 84.61% on possible litigation likelihood, while the CBR 

part presented similar past litigious cases as examples (Chen and Hsu, 2007). The 

same dataset of change order related litigious cases is classified by a kNN-based model 

that achieved 84.38% accuracy of predicting the litigation likelihood (Chen, 2008). 

Although both studies can be used as early warning systems for change order related 

disputes, datasets are composed of litigious cases only, which ignores valuable 

knowledge that could have come from cases solved by other resolution methods. In 

addition, the research is specific to the U.S. construction industry and change order 

related disputes.  

Respecting the state of the mentioned existing research on dispute prediction in 

construction industry, it can be observed that studies have limitations such as being 

industry, project type, dispute type, and contracting strategy specific. In other words, 

datasets are composed of projects from a certain construction industry (i.e. cases from 

the U.S. only), exhibiting a certain project characteristic (i.e. public projects only), 

focusing on certain dispute types (i.e. change order related disputes), and having a 

certain contracting strategy. Global-scaled models that consider various project, 

dispute, and contract types do not exist in the literature. Although considering the 

differences between various construction industries such as law systems, etc., a local 

or characteristic-specific modeling approach may seem appropriate. However, a 

global-scaled model with considerations on such variations would definitely be a 

better approach.  

Due to their limited capabilities in discovering complex and interrelated factors 

between input variables, prediction studies that do not utilize ML techniques can be 

viewed as insufficient. Considering the multitude of participants, various sources of 

uncertainties, and numerous variables in construction industry, the utilization of ML 

techniques in construction dispute domain is a necessity. Leaving the studies that do 

not utilize ML techniques aside, another observation on the dispute prediction research 
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is that there are only few studies experimenting the usage of various ensemble models. 

Instead, majority of results are based on single algorithms or specific combinations of 

algorithms. However, ML is an experimental science that requires diverse experiments 

to find models with better generalization performance (Arditi and Pulket, 2009; Witten 

et al., 2016). Moreover, performances of such algorithms should be evaluated 

considering many performance metrics such as TP and TN rates, AUROC, kappa 

statistics, etc. Contrarily, the current trend in the literature is to evaluate the 

performance of an algorithm depending on the accuracy measure only. Chou et al. 

(2013) supports all these ideas by stating that previous research is generally focused 

either on specific change order disputes or on conventional contracting projects, which 

means ignoring variations in the project environment and characteristics, using a 

single accuracy performance measure. Therefore, this thesis study aims to fill the 

mentioned gaps of the research by developing ML based dispute prediction models 

that utilizes construction project data from various construction industries. Moreover, 

projects in the dataset will be diverse in terms of project types, contracting strategies, 

dispute types, etc. Finally, not only performances of several single algorithms will be 

experimented using various performance measures in the ML domain, but also various 

ensemble models combining these single classifiers will be experimented. 

2.2. RESEARCH BACKGROUND ON DISPUTE RESOLUTION METHODS 

AND ADR TECHNIQUES 

Resources in construction projects are limited and disputes divert them from the 

primary goal, which is successful project completion (Harmon, 2003; Fenn, 2007). 

Considering these scarce resources, construction projects should pursue effective 

dispute management (Cheung et al., 2010). This is because dispute management is one 

of the main determinants of the performance of construction projects and consequently 

the industry (İlter and Dikbaş, 2009). The current complex state of the construction 

industry requires project managers to be equipped with necessary skills to enforce 

effective dispute management and resolving disputes has become an inevitable duty 

for managers (Cheung, 1999). The content of this duty involves diverse activities 
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ranging from the selection of a resolution method to active participation in 

negotiations; thus, a manager is obliged to have a comprehensive understanding of 

various dispute resolution methods (Cheung et al., 2010). Therefore, this section will 

start with an effort to generate an understanding of resolution methods with special 

emphasis on ADR techniques. Besides the conventional resolution methods, which 

are litigation and arbitration, a comprehensive explanation of ADR techniques, which 

involve DRB, mediation, SEA, and negotiation, will be given. The ADR techniques 

to be reviewed in this thesis study is limited to the techniques used in the projects from 

the collected dataset. 

2.2.1. Conventional Dispute Resolution Methods 

In construction industry, litigation is the traditional form of dispute resolution (Jones, 

2006). However, besides litigation, this research will consider arbitration process as 

another method of conventional dispute resolution. Although arbitration is available 

in the industry since the late 1800’s as an ADR method, with the growing 

dissatisfaction on arbitration processes, its perception as an ADR technique is under 

discussion (Harmon, 2003; McGeorge et al., 2007). The recent consensus in the 

literature is to regard arbitration as a replicate of litigation due to increased procedural 

complexity over the years (Cheung et al., 2002). Similarly, in Construction Extension 

to PMBOK Guide, it is stated that arbitration is one-step short of litigation (PMI, 

2016). Therefore, arbitration can said to be like the private enterprise version of the 

court system (Jones, 2006). 

2.2.1.1. Litigation 

Litigation is the process that involves the determination of the dispute in a court, 

generally, before a judge. Regardless of resolution processes defined in a construction 

contract, if the parties do not comply with these procedures, they have a right to appeal 

to courts ultimately (Jones, 2006). Litigation is a rigid process that is subject to formal 

rules and procedures set out by courts (Cheung, 1999). It is the final destination to 

settle disputes and known as the most formal way (Çevikbaş and Köksal, 2018). 
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Although litigation is usually perceived as the final resort that is preferred after failing 

to achieve desired outcomes from previous methods, in some cases, parties may prefer 

proceeding to courts directly with a perception of litigation as the best-defense 

mechanism (McGeorge et al., 2007). In other words, upon not satisfactorily resolving 

a conflicting situation or a dispute and remaining inconclusive after exhausting the 

non-binding options, litigation, which is the traditional form of reaching binding 

solutions, can be employed as a compulsory form of dispute resolution (Jones, 2006). 

Among various attributed advantages, being a formal process and having a binding 

nature are the main advantages of litigation process (Mahfouz and Kandil, 2011). 

There are serious criticisms on litigation processes, but it can still be claimed that it is 

the most effective way of resolving a dispute when a party is not willing to achieve a 

resolution. The same claim applies when there are substantial legal implications and 

allegations of dishonesty (McGeorge et al., 2007). As details will be explained in 

upcoming sections, although benefits of ADR techniques are clear, they generally 

require a negotiated agreement between disputant and disputed parties. However, 

there can be frustrations in reaching such agreements that will lead the way to 

litigation (Lipsky and Seeber, 1998). Litigation is one of the most common methods 

used to resolve disputes (Çevikbaş and Köksal, 2018). In addition, it is a sensible 

resolution method for parties pursuing binding and enforceable solutions (Jones, 

2006). Another advantage is its usefulness in determination of the right and wrong in 

a formalized way that is dependent to facts and laws instead of emotions (Cheung, 

1999; McGeorge et al., 2007). 

Despite mentioned advantages of litigation, researchers highlighted numerous 

shortcomings of the process in the literature. To begin with, litigation is a complex 

process that requires usage of significant resources and, generally, legal 

representations (McGeorge et al., 2007). These legal representatives generally use 

every tactic available to them, usually in an adversarial way, with the primary concern 

to win the case, which may damage relationships between plaintiff and defendant 

parties (Harmon, 2003). Moreover, characteristics and structure of judicial justice vary 
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from country to country due to differences in judicial systems, enforcing laws, and 

organizational structures (Çevikbaş and Köksal, 2018). This may cause problematic 

issues specifically in international construction projects, as parties may not be familiar 

with the legal system of the host country. Another disadvantage of litigation is the lack 

of confidentiality. Litigation is not a confidential process, which is open for public and 

media viewing (Harmon, 2003). In addition, when litigation is preferred, parties 

delegate their controls over the case entirely to a third party, generally a judge, who 

will enforce the outcomes of the hearings to both parties (Cheung, 1999; Gebken and 

Gibson, 2006). 

Unsettled disputes from large and complex construction projects usually cause 

complex construction litigation due to factors such as the high technical and financial 

complexity of matters related to these disputes, numerous parties involved and 

affected in such projects, thousands of activities, documents, and facts associated with 

such cases, etc. (Harmon, 2003). These technical and complex engineering disputes 

are being resolved by judges (Jones, 2006). In order to review disputes in this nature 

appropriately, people with combined expertise and experience both in legal and 

construction domains are needed. However, lawyers competent in engineering 

subjects or engineers with legal expertise are not easy to find (Cheng et al., 2009). 

This skill set combination can rarely be found and experts of this nature require high 

salaries (Mahfouz and Kandil, 2011). Thus, the nature of the construction litigation 

can be characterized as specialized, complex, and expensive (Arditi and Pulket, 2009). 

Besides these negative characteristics associated with litigation, another negative 

aspect of the process is the increased hostilities between parties (Gebken and Gibson, 

2006). The ruling of the court will declare a winner and a loser to a dispute and such 

a situation will make parties compete with each other, which will result in an 

adversarial process. This adversarial environment can eliminate job profits and the 

possibility of future work by damaging good working relationships with the counter 

party and the long-term business relationships. As a result, unrecoverable costs may 
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be generated even if the outcome of the litigation was in favor, which turns the winner 

of the case into a loser in reality (Harmon, 2003).  

Among all these disadvantages, the most striking negative aspects are the costs 

associated with the litigation process and the length of the duration required for the 

hearings in the court. Litigation is usually the most expensive and time-consuming 

solution (Chen, 2008). Besides the indirect costs, the direct costs associated with 

litigation process is also high that makes it an expensive process (Kassab et al., 2006; 

Chau, 2007). Although there may be situations where avoiding litigation is more 

costly than preferring it, this preference is usually purchased at great costs (Arditi and 

Pulket, 2009). In addition, when the case comes to the court, a protracted period for 

discovery is required due to the great volume of documents involved in a typical 

construction dispute to be heard (Harmon, 2003; Jones, 2006). Corroborative 

statistical data can be found in the literature. For example, in a study on Turkish 

construction litigation, it is revealed that the average duration of the proceedings is 

almost equal to the duration required to complete an average construction project 

(İlter, 2010a). In another research, it is claimed that depending on the jurisdiction, the 

proceedings of a complex construction dispute may take between two to six years 

(Mahfouz and Kandil, 2011).  

Litigation is generally viewed as the worst resolution method in most countries due to 

mentioned disadvantages (PMI, 2016). There is a consensus in the literature on 

litigation avoidance and several researchers recommended to avoid litigation (Chen 

and Hsu, 2007; Chau, 2007; Chen, 2008; Pulket and Arditi, 2009b; Cheung et al., 

2010). However, it may be the only way to resolve a dispute in some cases. 

Nevertheless, it can be said that instead of hoping for a favorable judgment through 

litigation, it is usually better to resort to other resolution methods even when the 

alternative method is not the most fruitful one for the disputant party (PMI, 2016). 

In short, positive aspects of construction litigation can be listed as (1) bindingness and 

enforceability, (2) being just, and (3) reaching a solution regardless of the willingness 
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of parties. On the other hand, negative aspects associated with litigation can be listed 

as (1) high costs, (2) low resolution speed, (3) adversarial nature (not preserving 

relationships between parties), (4) having no confidentiality in the process, (5) no 

flexibility in rulings, and (6) no control over the process or proceedings. 

Subsequent to giving an understanding on overall concepts related to construction 

litigation along with its advantages and disadvantages, the thesis study will continue 

with the second conventional dispute resolution method, which is the arbitration.  

2.2.1.2. Arbitration 

The OGC (2002) defines arbitration as a formal, private, and binding process where 

the dispute is resolved by the decision of a nominated third party, which can be an 

arbitrator or a panel of arbitrators. According to the AAA, arbitration is the binding 

resolution of a dispute outside the court by the decision of an impartial third party and 

this method is faster and less costly compared to litigation (AAA, 2019a). In litigation, 

a judge reviews the case. Contrarily, in arbitration, an expert or a panel of experts, 

which generally include construction experts, attorneys, or retired judges, review the 

dispute as a judge and jury to receive arguments and testimony, assess facts and 

documents, and reach an impartial judgment based on facts and evidences (PMI, 

2016). In a typical construction arbitration, a panel of three arbitrators are involved; 

both parties select one arbitrator each and the third one is selected either by mutual 

agreement of parties or by the administrative organization. However, parties can 

determine issues related to arbitration processes such as the number of arbitrators, 

administrative organization, location, regulations to be followed, etc. in their contracts 

(Peña-Mora et al., 2003). In order to be able to use arbitration as a resolution method, 

parties should agree on the terms of arbitration via contract documents (İlter, 2010a). 

Arbitration clauses are involved in standard forms of contracts and they are being 

widely used in both private and public construction contracts (Harmon, 2003). Rules 

of arbitration are generally set out by international courts or administrative 

organizations (PMI, 2016). 
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Similar to litigation, arbitration is generally preferred as a final option that is employed 

upon exhausting the non-binding resolution methods. Another similarity is that the 

judgments resulting from arbitration processes are binding on both parties. In addition, 

outcomes are enforceable both domestically via host country’s law system and 

internationally via New York Convention, which is an accepted agreement by a large 

number of countries (Jones, 2006). There are other international organizations (i.e. 

International Center for Settlement of Investment Disputes (ICSID)) and agreements 

(i.e. Geneva Convention) that contributes to domestic and international arbitration 

(İlter, 2010a).  

High costs and prolonged proceeding durations associated with litigation encouraged 

the construction industry to utilize the less formal adjudicatory process, the binding 

arbitration (Mitropoulos and Howell, 2002). Indeed, it is a faster and cost-effective 

alternative to litigation (Peña-Mora et al., 2003). Moreover, instead of resorting to 

local law system of the host country, arbitration is a more attractive preference in 

international construction projects as it can form a common ground for international 

parties of different law systems (Jones, 2006). In addition, the arbitration process is 

superior to litigation in terms of confidentiality since arbitral proceedings can be kept 

confidential (OGC, 2002; Harmon, 2003) 

Despite mentioned advantages, arbitration process also has several shortcomings. To 

begin with, the conventional resolution methods are characterized as costly and time 

consuming (Cheung et al., 2010). Although simplifying arbitral proceedings 

contributes to mitigate the time and cost related criticisms, cost and speed are still the 

main disadvantages of arbitration, especially in complex disputes (Jones, 2006). 

Moreover, the current state of the arbitration is no different from litigation with regard 

to confrontational and adversarial processes involved. There is a declaration of a 

winner and a loser upon judgments of a third party, which eliminates the possibility to 

achieve constructive remedies for the disputed case (Harmon, 2003). Within the light 

of these, it can be said that while litigation is generally viewed as the worst resolution 

method in most countries, it is followed closely by arbitration (PMI, 2016). 
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In short, positive aspects of construction arbitration can be listed as (1) being a more 

attractive preference for international construction projects, (2) bindingness and 

enforceability, (3) experienced experts with combined skill sets in engineering and 

law can review the cases (4) confidentiality, (5) impartiality, (6) relatively low cost 

compared to litigation, and (7) relatively fast resolution compared to litigation. On the 

other hand, negative aspects associated with arbitration can be listed as (1) high costs 

compared to ADR techniques, (2) low resolution speed compared to ADR techniques, 

(3) adversarial nature (not preserving relationships between parties), (4) no flexibility 

in the rulings, and (5) very little control over the process or proceedings (i.e. selection 

of arbitrators, administrative organization, location, etc.). 

As a final remark, primary shortcomings of conventional resolution methods, which 

are high costs, prolonged resolution durations, and adversarial environment, 

encouraged a rapid growth in ADR processes (Cheung et al., 2002). To give an insight 

of these processes, the thesis study will continue with details on the ADR methods. 

2.2.2. Alternative Dispute Resolution (ADR) Methods 

In the literature, there are several different definitions with little variations for ADR 

methods. These variations result from the perception of the researcher on resolution 

methods. For example, Gebken and Gibson (2006) defines ADR as any binding or 

non-binding method of resolving disputes, which involves both self-deterministic and 

third party intervened methods, other than litigation. According to this definition, 

ADR methods involve all methods excluding litigation only. This is compatible with 

the definition by the Construction Extension to PMBoK Guide, which defines ADR 

methods as less expensive alternative techniques to litigation in a court of law (PMI, 

2016). With another perspective, Marzouk et al. (2011) defines ADR as any binding, 

non-binding, and preventive process or procedure contributed by an impartial third 

party excluding adjudication by a judge. Thus, this definition excludes self-

deterministic methods in addition to litigation. Jones (2006) considers non-binding 

and less formal (compared to litigation and arbitration) administrative resolution 
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processes as ADR techniques where parties reach a solution by themselves or by the 

help of a third party. The perception of ADR in this definition is the same as Cheung 

(1999), who categorizes all methods as ADR except formalized methods, which are 

litigation and arbitration. Considering all these differences, this thesis study should 

state its own perception of ADR.  

In this thesis study, ADR techniques refer to all non-adversarial processes that aim to 

allow parties to apply their own applicable solutions without establishing formal 

frameworks so that good business relationships can be preserved. While applying 

ADR techniques, third party assistance can be acquired if it is necessary. More simply, 

any dispute resolution method will be referred as an ADR method in this thesis study 

other than the conventional ones, which are arbitration and litigation. In other words, 

ADR methods involve techniques ranging from self-deterministic methods such as 

negotiation and SEA to third party intervened methods such as mediation and DRB. 

Conventional dispute resolution methods in construction industry are characterized as 

inefficient in terms of cost and duration (Cheung et al., 2010). Besides the associated 

high costs and long durations, conventional methods also cause adversarial 

relationships between project participants (Gebken and Gibson, 2006). Moreover, in 

order to avoid a bad reputation, construction companies will try to avoid involvement 

in prolonged disputes, especially in public projects. In such a case, resolving disputes 

by ADR techniques without resorting to conventional methods would be more 

advantageous for companies (Jones, 2006). Based on a research conducted by Günay 

and Birgönül (2001) on Turkish construction industry, it is revealed that contractors 

to public projects do not prefer to solve disputes in courts due to the fear of damaging 

their reputations and the possibility of future works (İlter et al., 2007). Therefore, 

although conventional methods are well-developed formal techniques for construction 

dispute resolution, the industry is in search of methods to solve disputes equitably, 

economically, and quickly without damaging the relationships (Cheung, 1999; Arditi 

and Pulket, 2009). Although prevention techniques do not guarantee total dispute 

avoidance (Cheung, 1999), this search can be addressed by ADR techniques.  
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ADR is composed of contractual dispute resolution mechanisms. This means that there 

should be a contractual agreement between parties to apply ADR methods in dispute 

resolution (Harmon, 2003). Such an agreement before occurrence of a dispute 

indicates the good will and the commitment of parties to achieve cooperative project 

success. In addition, unlike the conventional resolution methods, ADR techniques are 

generally not binding and the parties can leave these methods to resort to conventional 

ones without losing their legal rights any time they feel uncomfortable or inconclusive. 

ADR outcomes can only be enforceable upon signing a settling agreement (Cheung et 

al., 2002). Thus, parties’ willingness to reach a settlement is an important determinant 

of success in resolution through ADR methods.  

The driving force in establishing ADR methods was to develop cost efficient and fast 

alternatives to conventional resolution methods (Harmon, 2003). Similarly, studies 

that recommend utilization of ADR techniques claim that ADR can overcome 

shortcomings of conventional methods by offering the chance to reach prompt and 

economic resolutions (Cheung et al., 2010). Legal fees, management resources to be 

used, and costs of resolution will be decreased in ADR methods compared to 

conventional ones. Moreover, ADR techniques do not require strict procedural rules 

and involvement of legal professionals that result in considerable timesaving (Cheung, 

1999). Another time related advantage is that they enable discussion of disputes 

without interrupting the course of construction and delaying the works (Rubin and 

Quintas, 2003). 

There are several other benefits of ADR methods. To begin with, ADR processes tend 

to be less formal than conventional resolution methods (Jones, 2006). Moreover, 

unlike the case in conventional methods where the right and wrong parties in a dispute 

are declared along with consequences to be enforced, the goal of ADR techniques is 

to assist parties in reaching their own workable, agreeable, and commercial solutions 

in a cooperative way (Jones, 2006). ADR techniques can provide tailor-made solutions 

that suit best to the dispute at hand and consequently, they can enable flexibility in 

dispute resolution (Rubin and Quintas, 2003). They enhance the communication, 
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teamwork, and harmony between parties so that hostilities and grievances resulting 

from the adversarial environment of conventional resolution methods are avoided 

(Cheung, 1999). In addition, the control of parties over the process is increased in 

ADR methods compared to conventional ones that delegate the control entirely to a 

third party judgment (Gebken and Gibson, 2006). Users of ADR methods can also 

benefit from confidentiality and privacy in resolution processes (Cheung et al., 2002; 

Gebken and Gibson, 2006). 

In the light of foregoing observations, ADR methods can be associated with greater 

efficiency, lower costs, fewer formal procedures, and improved relationships built on 

consensus rather than conflict (Rubin and Quintas, 2003). In addition, research has 

proven that upon prompt and appropriate utilization of ADR methods, relationships 

and trust between parties can be strengthened and, more importantly, win-win 

outcomes can be generated (Kassab et al., 2010). 

In upcoming sections, ADR techniques that are utilized in projects from the collected 

dataset will be introduced. These techniques are DRB, mediation, SEA, and 

negotiation. Figure 2.2 is the review of dispute resolution techniques from this 

research’s point of view. 
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2.2.2.1. Dispute Review Boards (DRB) 

DRB is a unique, proactive, and non-adversarial contractual dispute resolution method 

that mitigates or resolves disputes during the course of construction by the decision of 

a board, which is established at the beginning of the project before any dispute 

occurrence (Harmon, 2003). In other words, DRB is a resolution process in which 

parties submit summarized versions of their cases to a preselected panel of experts 

with the authority to settle disputes (PMI, 2016). Starting first in major infrastructure 

projects in the U.S., DRB has been extensively used since 1970’s as an ADR technique 

in construction industry (Menassa and Peña Mora, 2009). The method gained attention 

especially after being presented as the principle method of dispute resolution within 

the ‘International Federation of Consulting Engineers (FIDIC) Standard Forms of 

Contract’ and becoming mandatory in the ‘Procurement of the Works’ by the World 

Bank in 1999 (McGeorge et al., 2007). The most common usage of DRB is in the 

FIDIC Conditions of Contract for Construction under the ‘Clause 20 (Claims, 

Disputes and Arbitration)’, which is named as ‘dispute adjudication board (DAB)’, 

and under sub-clauses ‘Sub-Clause 20.2 (Appointment of the DAB)’, ‘Sub-Clause 

20.3 (Failure to Agree DAB)’, and ‘Sub-Clause 20.4 (Obtaining DAB’s Decision)’. 

The World Bank contracts employ DRB under the name of ‘dispute resolution boards’ 

(İlter, 2010a). 

Project participants set details of the DRB, the scope of its authority, and its procedural 

rules via contracts according to their needs and project requirements (Jones, 2006). A 

typical DRB is composed of three independent and neutral experts with no financial 

or business relationships with project participants (PMI, 2016). Typically, each party 

selects one expert and selected experts determine the third one. There can be more 

experts in the panel if required (İlter, 2010a). There should be no questions with regard 

to DRB’s integrity and impartiality among project participants. Therefore, the panel 

of experts is chosen by mutual agreements of parties. The DRB is established before 

the start of the construction and their duration of work generally covers the entire 
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project duration unless otherwise is stated in the contract (Harmon, 2003). Generally, 

both parties equally share the associated costs (Peña-Mora et al., 2003). 

DRB regularly visits the construction site and project participants regardless of dispute 

occurrence. By doing this, DRB keeps itself updated with a good understanding of the 

project, progress, and parties. Depending on the desired level of involvement and the 

rules set by the contracts, DRB can organize meetings periodically (Peña-Mora et al., 

2003). Additionally, they are informed regularly by documents from both parties such 

as written progress reports, minutes of meetings, etc. and they are present on site upon 

request of any party or at times of critical construction events; thus, the major strength 

of DRB method is its always up-to-date informed nature (Harmon, 2003). As a result, 

the DRB not only responds to disputed issues, but also identifies emerging problems 

and conflicts by making recommendations, facilitating negotiations, etc. that makes it 

a dispute prevention method (Jones, 2006). Upon inevitable occurrence of a dispute, 

both parties can request a confidential hearing where either party is given a reasonable 

opportunity to present their cases. These hearings are not formally structured, but in 

order to be able to present the case to the DRB, parties should exhaust resolution 

procedures defined in the contract and remain inconclusive (Harmon, 2003). 

There are three main approaches with regard to bindingness of DRB decisions. In the 

first approach, the DRB can serve in an advisory role with no bindingness (PMI, 

2016). In the second one, judgments of the DRB are binding, but objection and further 

review are possible through arbitral or court proceedings. In other words, DRB 

decisions are binding unless it is overturned by arbitration or litigation. However, 

objection to DRB decisions are not common as they are based on informed decisions 

of highly experienced and qualified experts. Finally, in the third approach, decisions 

made by the DRB is final and binding on parties (Jones, 2006). The selection of 

bindingness of the DRB is regulated in contract agreements. 

The driving force in establishment of DRB was the requirement of timely resolution 

of the issue of responsibility in complex disputes and projects. DRB is the prime 
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candidate to fulfill this requirement thanks to its rapid determination of responsibility 

and cooperative problem solving assistance (Mitropoulos and Howell, 2002). Another 

goal is the early response to conflicts before they turn into disputes or the early 

response to disputes for timely settlement. When a conflict or a dispute arise, the DRB 

simultaneously responds to the problem and its success is considered as having no 

unresolved issue at the project completion (Harmon, 2009). In addition, as 

construction disputes involve complex technical issues rather than legal ones, the 

usage of DRB is advantageous since experts can provide complex engineering 

solutions on these technical issues (Peña-Mora et al., 2003). As stated earlier, DRB 

method is a non-adversarial and cooperative one that facilitates good working 

relationships and future business opportunities by avoiding hostilities (Harmon, 

2003). Moreover, DRB is a less formal process and even hearings can be held in the 

form of site meetings that aim to have an investigating approach rather than being 

adversarial (Jones, 2006). DRBs usually search for commercially viable, acceptable, 

and workable solutions to problems. In addition, research has proven the effectiveness 

of DRB method. In a study analyzing the application of DRB in construction projects 

covering the period 1975-2007 in the U.S., it is revealed that the number of projects 

with DRB panel per year is increasing rapidly with a considerable prevention and 

resolution effectiveness. Among DRB utilizing projects, 51% ended up with no 

disputes, which is a statistic proving the prevention effectiveness. On the other hand, 

among the dispute occurred projects, DRB decisions settled disputes in more than 90% 

of all cases (Menassa and Peña Mora, 2009). 

In short, positive aspects associated with the DRB method can be listed as (1) almost 

simultaneous timely response, (2) domestically and internationally applicable nature, 

(3) informed decisions by experienced experts, (4) flexibility in the process and 

procedures depending on needs of the parties and the project, (5) adjustable degree of 

bindingness, (6) dispute preventive mechanisms, (7) confidentiality, (8) impartiality, 

and (9) associated high costs can be recovered by dispute prevention or mitigation.  
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Despite mentioned advantages, the DRB method is also criticized in the literature. In 

a case study reviewing the effectiveness of the DRB method, it is revealed that barriers 

to DRB effectiveness can be listed as (1) elongations in the resolution process, (2) 

viewing the DRB process as adversarial, (3) length of time required to get prepared 

for DRB hearings, and (4) receiving unconvincing recommendations. Although, in the 

literature, there are assertions that presence of DRBs as a resolution method reduces 

bid prices due to better risk allocations, the same research also claims that bid prices 

are generally not reduced as a result of DRB inclusion (Harmon, 2009). Indeed, the 

process is expensive and corroborative data is present in Jones (2006), which gives 

the estimation of American Society of Civil Engineers (ASCE) on DRB costs being 

between 0.04% and 0.51% of the project costs. However, increased costs due to 

inclusion of the DRB can save substantial amounts later depending on problematic 

issues during the construction. 

2.2.2.2. Mediation 

According to the AAA, mediation is an informal form of negotiation in which a third 

party encourages participants in a dispute to reach their own solutions in order to 

preserve business relationships (AAA, 2019b). The third party is known as the 

mediator and although it is common to mediate disputes by one mediator, more 

mediators can be involved in the process if required (Arıcı, 2012). In a more 

comprehensive definition, mediation is defined as non-binding negotiation sessions 

facilitated by an impartial third party in pursue of mutual agreements of participants 

for dispute settlement (Harmon, 2003).  

Mediation is a very common method of ADR in construction industry. Construction 

professionals have been utilizing mediation technique since 1980’s and it is the most 

rapidly growing form of ADR (Harmon, 2003). This method is especially attractive in 

industries like construction industry where preserving continuous business 

relationships are important (Özer, 2012). Indeed, construction attorneys also perceive 
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mediation as the most effective method for achieving a wide variety of goals ranging 

from preserving relationships to enhancing communication (Peña-Mora et al., 2003). 

Mediation is generally the last step before resorting to arbitration or litigation (Peña-

Mora et al., 2003). Unlike the conventional dispute resolution methods, mediation is 

a voluntary and non-binding process (Cheung et al., 2004b). Thus, the initial condition 

of mediation is the agreement between parties to resort to a mediator (Arıcı, 2012). 

The most important actor in mediation process is naturally the mediator and the 

mediator is nominated by mutual agreement of parties or by a nominating organization 

(McGeorge et al., 2007). The mediator helps to overcome difficulties faced during 

disputes by facilitating negotiations between parties, evaluating alternatives, and 

guiding parties to develop their own creative solutions with the purpose of mutual 

agreement (Yiu et al., 2006). While doing this, the mediator should be impartial. 

Parties should not suspect the impartiality of the mediator, otherwise the trust cannot 

be established and the process will be inconclusive (Jones, 2006). Therefore, the 

mediator should be objective, convincing, trustworthy, and respected at all times 

during the process (Özer, 2012). For this reason, mediators are usually from the field 

of law or social working industries with a training in communications and negotiation 

skills, instead of being an expert in the dispute-relevant field (McGeorge et al., 2007).  

Another important point is the role of the mediator in the process. Researchers claim 

that if mediators offer opinions, they will distort the process; therefore, a good 

mediator does not offer opinions on ways to settle the dispute, instead guides the 

parties to a mutual agreement (Harmon, 2003). Unlike conventional techniques that 

depend on judgments of third parties and limit the control of participants over the 

process, mediation establishes a flexible environment depending on consensual 

agreements and parties can control the process at the same time (Özer, 2012). A 

mediator has no binding authority to make or enforce a decision on any matter and its 

only role is to guide the parties through the process (Peña-Mora et al., 2003). In other 

words, mediator is not an advisor making suggestions, but an assistant in negotiations 
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by encouraging parties in identification of issues and solutions (McGeorge et al., 

2007). 

One of the primary concerns in development of the mediation technique was to present 

a speedy and low-cost alternative to conventional resolution methods. Indeed, 

mediation is a fast resolution method thanks to its informal nature and decreased 

procedural rules. Resulting from being a speedy process that does not require formal 

representations, mediation is a cheap undertaking (Cheung et al., 2004b). 

Corroborative data can be found in the literature. In Jones (2006), based on the 

Australian Commercial Disputes Centre, the cost of mediation is estimated as 5% of 

the cost of arbitration or litigation. Peña-Mora et al. (2003) reveals that among 

mediations reported to the AAA, more than 50% costs 3,000 U.S. Dollars or less, 

while less than 10% costs more than 20,000 U.S. Dollars. In addition, 50% of 

mediations are conducted in 2 days and less than 10% lasted longer than 6 days. İlter 

(2010a) stated that majority of mediations are settled in one day by only one session. 

Therefore, it can be said that mediation is a wise alternative to conventional methods 

in terms of cost and resolution duration when parties are willing to reach a settlement. 

Mediation is appropriate when the parties pursue an informal, objective, and analytical 

assessment of their cases and there is a continuing business relationship (Jones, 2006). 

Despite the informal nature, mediation process has become more formalized and 

structured in recent years with the introduction of guidelines and codes of practice. 

There is a surge of efforts in establishing dispute resolution clauses in construction 

contracts to define and regulate mediation recently; but the actual mediation process 

is not strictly defined in any system (McGeorge et al., 2007). 

In short, positive aspects of mediation can be listed as (1) low costs compared to 

conventional methods and DRB, (2) speedy resolutions compared to conventional 

methods and DRB, (3) informal nature, (4) creative solutions and win-win outcomes, 

(5) consensual and flexible agreements, (6) increased control of parties over the 
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process, (7) enhanced communication between parties, (8) preserved business 

relationships and reputations, (9) decreased hostilities, and (10) confidentiality.  

Considering all these advantages, the rapid growth in preference of mediation 

technique around the world can be understood (Cheung et al., 2004b). However, 

similar to other resolution methods, criticisms are also present. Firstly, the method is 

a voluntary and non-binding one that depends on willingness of participants to settle 

(McGeorge et al., 2007). Mediation can be successful only if parties are eagerly 

willing to settle (Jones, 2006). Secondly, parties can perceive compromising 

agreements as weakness and consequently, they are not eligible to find solutions 

through mediation. Therefore, the process can remain inconclusive that generates a 

waste of time and money. Finally, qualifications of the mediator is a key factor in 

successful mediation. An unqualified or incapable mediator may distort the process 

causing more problems (Peña-Mora et al., 2003). Despite these criticisms, mediation 

is still one of the first alternatives to conventional resolution methods (PMI, 2016). 

Organizations like the AAA encourage parties to mediate before taking their cases to 

arbitration or litigation (Harmon, 2003). 

2.2.2.3. Senior Executive Appraisal (SEA) 

According to National Alternative Dispute Resolution Advisory Council (NADRAC) 

of Australia, SEA is a form of case appraisal presentation where the facts of a case are 

presented to senior executives of organizations in dispute (NADRAC, 2011). This 

method has been defined under various names in the domain such as executive board 

appraisal, etc. Regardless of the name, the primary goal of this method is to include 

top-level management of disputed parties to resolution process. 

The driving force in establishment of SEA method is problems arising from handling 

dispute negotiations by middle management. In such a case, senior executives make 

decisions without being fully informed as the accuracy, timeliness, and completeness 

of the information on the progress of negotiations they receive from middle 

management is questionable. Thus, this method involves senior executives in 
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resolution process in order to avoid information related problems and to make 

informed negotiation decisions (Jones, 2006). In addition, resolution process can 

benefit from presence of unprejudiced and amicable senior executives with authority, 

instead of unauthorized, prejudiced, and tense middle management personnel (İlter, 

2010a).  

In SEA method, a panel of senior executives are established. In a typical panel, both 

parties select one (or more for larger panels) senior executive each, who is not 

involved in the resolution process of the dispute under review. These selected 

executives can invite an impartial expert as a third party if required. The impartial 

member is usually an experienced expert on technical and/or legal issues related with 

the reviewed dispute (İlter, 2010a). This panel reviews presentations of the parties’ 

cases, documents, evidences, and testimonies at a desired level of formality ranging 

from hearings resembling mini-trials to informal sessions. Accordingly, the position 

of the impartial third party ranges from a judge-like role to a mediator-like role. 

Regardless of these, the impartial expert assists senior executives of both parties in 

reaching creative and agreeable solutions. This method enables early action in addition 

to speedy, economic and confidential resolution (Cheung and Yeung, 1998). Other 

advantages can said to be the decreased procedural formality and commercial 

pressure. However, the bindingness of decisions of the panel depends on agreements 

between parties. In addition, the method relies on willingness of parties to settle 

(Jones, 2006). 

2.2.2.4. Negotiation 

In general view, negotiation is a basic human activity that is performed in situations 

ranging from solving daily problems to international diplomacy (Kassab et al., 2006). 

In dispute management point of view, negotiation is a consensual process where 

parties willingly attempt to arrive a solution themselves (Bruce et al., 2004). It is a 

method encouraged by numerous law systems and organizations in which parties or 

their representatives conduct meetings upon dispute occurrence to search for solutions 
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to their problems (İlter, 2010a). It is the most common method of ADR (OGC, 2002). 

Indeed, negotiation is usually the first attempt in dispute resolution (Marzouk et al., 

2011). Settling through negotiation is a necessity considering the current state of the 

constantly shifting business environment in construction industry (Kassab et al., 

2006). 

Among all conventional and ADR methods, negotiation is the one with least 

procedural complexity. The actual process is not defined by any strict rules and parties 

come together directly or via representatives in an unstructured way (Arıcı, 2012). In 

a typical negotiation, there is no need for third party intervention. Thus, unlike 

mediation and DRBs, there is generally no third party to facilitate the negotiation and 

since there is no third party, participants can schedule and structure the course of 

negotiations according to their needs and requirements, which give them maximum 

level of control over the process (Bruce et al., 2004). This kind of negotiation is known 

as the direct negotiation, which helps parties in retaining their confidentiality and 

independence. Direct negotiation starts at the project level among project team and if 

they cannot reach a settlement, it can be terminated or continued at higher 

management levels (Mitropoulos and Howell, 2002). Upon continuation of 

negotiation in the next level of management, the process is called a stepped 

negotiation. In stepped negotiation, vertical and lateral management levels must be 

identified to guarantee the rapid escalation of issues in the right direction so that 

unresolved problems are escalated to the next level of management until a higher level 

resolves it (McGeorge et al., 2007). Ultimately, if parties cannot solve the dispute 

within themselves, they can acquire the assistance of a third party, in other words, a 

negotiator (Mitropoulos and Howell, 2002). This kind of negotiation is known as third 

party negotiation and its success depends on skills of the negotiator. An effective 

negotiator adopts required strategies and styles that suit best to the situation (Cheung 

et al., 2006). Similarly, the success of direct and stepped negotiations depend on skills 

of individuals involved in the process. Therefore, all construction professionals, 

especially the ones in the managerial positions, should have the necessary negotiation 
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and communication skills (Cheung et al., 2006). With the increasing demand in these 

skills among construction professionals, negotiation has become a popular research 

area and decision-support systems to enhance the process are commercially available 

(Kassab et al., 2006). People lacking negotiation skills can benefit from such systems. 

Negotiations for a predefined duration are often required before starting formal 

resolution methods (Bruce et al., 2004). Most standard forms of contracts involve 

negotiation as a first step in dispute resolution (McGeorge et al., 2007). In general, 

parties should mutually agree on resorting to negotiation as an initial step in order to 

start the process (Arıcı, 2012). In addition, it is a non-binding method unless parties 

establish a legally binding agreement at the end (İlter, 2010a). Therefore, the success 

of negotiation in settling disputes is relying on participants’ willingness and 

motivations to settle (Jones, 2006). Besides the willingness in resolving the issues, 

negotiation requires participant openness to understand the standpoint of the other 

party through continuous communication. Therefore, if there are hostilities among 

parties, negotiation may not be the ideal resolution method, because such an 

adversarial environment will be a barrier in front of effective communication and 

understanding (McGeorge et al., 2007). Consequently, negotiation efforts in 

adversarial environments cause waste of time and this wasted time will cause 

additional financial loses while parties remain inconclusive (Marzouk et al., 2011). 

Thus, the relationship between parties is another critical factor in achieving successful 

negotiation (Mitropoulos and Howell, 2002). Unsuccessful negotiation will result in a 

business environment with increased hostilities and less chance of early settlement, 

which will lead to more expensive methods of resolution such as the conventional 

ones (Cheung et al., 2006). Another factor in achieving successful negotiation is the 

level of authority of the individuals. These individuals are less likely to make 

compromises, as they have to clarify their concessions to senior management (Jones, 

2006). This lack of authority will threaten the success of the negotiation process. With 

involvement of authorized management personnel, chances of settlement will be 
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higher. Finally, there can be individuals who perceive negotiation as a sign of 

weakness, which will cause an inconclusive process (Mackie et al., 2011). 

In short, barriers in front of successful negotiation are (1) adversarial environment 

among negotiating parties, (2) lack of communication and negotiation skills of 

participants, (3) lack of authority of involved individuals, (4) being not motivated and 

willing to resolve the dispute, and (5) perception of negotiation as a weakness. If these 

barriers can be removed, negotiation will become an effective dispute resolution 

method, especially when failing to settle will have serious consequences to both 

parties. Moreover, if the process can be appropriately carried out, it will reduce costs 

of resolution and enhance the communication between parties. In addition, the current 

and long-term business relationships will be preserved (Jones, 2006).  

There are several other advantages of negotiation process. To begin with, it is the most 

cost efficient method of dispute resolution in construction industry due to its informal, 

less complex, and fast nature (Cheung et al., 2006). In addition, as there are generally 

no third party, the process is free of additional costs associated with third party 

involvement. The OGC (2002) also states that negotiation is the most efficient form 

of ADR in terms of resolution cost and duration, while giving a range of possible 

solutions instead of being stuck to definite judgments. Thus, favorable outcomes can 

be achieved for all parties (Bruce et al., 2004). Finally, as mentioned earlier, the 

process can be controlled and regulated flexibly according to the needs of parties and 

issues under review. 

In short, benefits of negotiation process can be listed as (1) lowest cost of resolution 

among all techniques, (2) speedy resolution, (3) flexibility, (4) degree of control over 

the process, (5) confidentiality, (6) wide range of possible solutions, (7) preserved 

business relationships, (8) enhanced communication and relationships, (9) informal 

nature, and (10) least procedural complexity among resolution methods.  
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All conventional and ADR methods used in projects in the dataset collected for this 

thesis study have been reviewed. Now, previous studies on dispute resolution method 

selection will be examined.  

2.2.3. Previous Studies on Dispute Resolution Method Selection  

The thesis study reviewed preventive actions, especially based on predicting dispute 

occurrence and potential compensations, so far. However, prevention techniques do 

not guarantee dispute avoidance completely and upon inevitable occurrence of 

disputes, these problems should be resolved (Cheung, 1999). Consequently, the 

construction industry has utilized several resolution techniques to solve these 

problems and therefore, the research continued with the introduction of these methods 

to the reader to highlight properties of each technique along with their advantages and 

disadvantages. Besides the level of knowledge on resolution methods, successful 

dispute resolution management also depends on the level of comprehension of factors 

affecting the dispute development. Although there are numerous studies on dispute 

resolution domain in the literature, there are only a few studies focusing on 

interrelations between disputes and various project characteristics based on empirical 

data (İlter and Dikbaş, 2009). Moreover, researchers argue that parties in a dispute fail 

to analyze possible gains and losses associated with each resolution method in a case-

based approach (İlter, 2010b). Thus, it is claimed that the literature is insufficient to 

provide methods on how to systematically determine which dispute resolution strategy 

to adopt depending on the case characteristics (Cheung and Suen, 2002).  

The dispute resolution method and strategy selection literature involves numerous 

efforts in order to decrease the number of disputes while avoiding inefficient 

resolution techniques, which are generally the court involved ones (Pulket and Arditi, 

2009a). However, the systematic selection of the most appropriate resolution 

methodology is a difficult task because of its dependence on project and dispute 

characteristics, disputed parties’ relationships with each other, and other factors that 

are not known prior to dispute occurrence (Harmon, 2003). Although such 
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characteristics can significantly shape the resolution method selection, there are only 

few studies with such considerations. Thus, the remaining limited studies that identify 

mentioned characteristics are reviewed in this section to find out which of them 

influence resolution processes. This review will be used later in generation of the 

conceptual model that involves a pool of input variables comprised of project 

characteristics affecting dispute development and resolution strategies. Data related to 

these input variables will be collected via questionnaires in order to develop the 

resolution method selection model proposed in this thesis study. 

Before reviewing previous studies on resolution method selection, some common 

studies should be highlighted. Some of the studies mentioned earlier in Section 2.1.2 

of this thesis study focused on relationships between various factors, characteristics, 

and attributes with dispute prediction and resolution strategies simultaneously (e.g., 

studies aiming to predict the litigation outcomes and understand the mechanisms of 

court rulings, etc.). Therefore, findings of these studies are reviewed for both dispute 

prediction and resolution method selection models (Dalton and Shehadeh, 2003; Watts 

and Scrivener, 1993; Mitropoulos and Howell, 2002; Chau, 2007;Cheng et al., 2009; 

Arditi and Pulket, 2009; Pulket and Arditi, 2009a; Pulket and Arditi, 2009b; Marzouk 

et al., 2011). Besides these studies that generate common variables for both dispute 

prediction (occurrence and potential compensation) and resolution method selection 

models, there are various studies focusing on factors affecting resolution method 

selection only.  

One of the first studies focusing on critical factors related to dispute resolution 

strategies is conducted by York (1996) and 17 factors are associated with strategic 

decision-making. Cheung (1999) identified 12 critical ADR attributes influencing 

resolution processes, which are bindingness, economy, confidentiality, control over 

process, creative solutions, enforceability, fairness, flexibility, privacy, speed, 

relationships, and width of remedy. Cheung and Suen (2002) reviewed the literature 

to collect 16 critical dispute resolution method selection criteria. In Cheung et al.'s 

(2002) literature review, 19 ADR attributes that are important in determination of the 
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resolution strategy are identified. In Harmon (2003), various factors (i.e. magnitude 

of work, future work together, etc.) are associated with resolution methods and 

strategies. İlter and Dikbaş (2008) reviewed the literature to come up with 32 key ADR 

attributes, while İlter (2010a) used 56 criteria for a decision-support system to enhance 

resolution method selection. In addition, İlter (2010b) interviewed legal professionals 

in Turkish construction industry to highlight 16 factors they consider during resolution 

method selection. In a CBR-based decision-support system that retrieves similar 

dispute cases and presents to decision-makers, 11 project attributes, such as contract 

sum, type of contract, involvement of a claim consultant, etc., are utilized in similarity 

measurements (Cheung et al., 2004a). Moreover, there are studies using text-mining 

techniques to retrieve similar dispute cases that can be used as examples showing what 

can happen upon utilization of a specific resolution technique. These studies involve 

numerous attributes to perform text-mining operations (Yılmaz and Dikbaş, 2013; Fan 

and Li, 2013). Kassab et al. (2010) developed a decision-support system using the 

graph model to suggest resolution strategies and the system makes decisions based on 

attributes such as project delays, cost increase, contractor reputation, and presence of 

continuing projects. In a series of studies aiming to forecast dispute resolutions, 15 

project and dispute characteristics have been associated with the method selection 

(Chou, 2012; Chou et al., 2013b). Mahfouz and Kandil (2011) reviewed links between 

15 project related legal factors and litigation rulings. Çevikbaş and Köksal (2018) 

reviewed litigious cases from Turkish construction industry and investigated 

judgments on these cases by focusing on characteristics namely dispute types, project 

types, scope of construction, and specific articles in the contract. Cheung et al. (2010) 

claimed that with satisfactory dispute resolution, the industry would be less 

adversarial; thus, by focusing on factors affecting resolution method satisfaction, their 

study indicated that 14 variables under four categories are determinants of the 

resolution method satisfaction.  

All these mentioned factors, characteristics, and attributes are reviewed and similar 

items are merged. Resulting items are used in order to establish a conceptual model 
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that is composed of a pool of input variables, which will be used for the design of a 

questionnaire to collect empirical data and the development of prediction models 

proposed in this thesis study. 

2.2.4. Literature Review on Decision-Support Systems for Resolution Method 

Selection 

An appropriate resolution process can lead the project to success and as a result, 

selection of the resolution strategy is crucial (Cheung et al., 2004a). Although dispute 

resolution methodology is usually chosen by contract documents before occurrence of 

a dispute, considering the nature of the dispute and factors such as the relationship 

between disputed parties, the methodology that best suits the needs of the participants 

should be selected (Harmon, 2003). The decision-making approach should involve 

consideration of various interrelated factors such as technical, financial, social, 

contractual, etc. However, there is a lack of an approach of this nature and current 

processes depend on experience and qualitative assessments that cause subjectivity 

problem (Cheung and Suen, 2002). While performing such a selection, experience and 

knowledge are invaluable. The merits of AI techniques include extraction of such tacit 

knowledge in an articulable and presentable way to decision-makers resulting an 

informed decision-making process that is free of subjectivity during resolution method 

selection. Thus, developing dispute databases based on AI applications should be a 

primary goal in the domain (İlter and Dikbaş, 2009). Moreover, development of AI 

based models can also enable early warning of potential dispute resolutions (Chou et 

al., 2014). Therefore, in this section, decision-support systems, especially the ones 

based on AI techniques, will be reviewed.  

There is a tendency in the resolution method related research to focus on the litigation 

technique specifically, because if parties can know the decision of the court 

beforehand with some certainty, they might be more likely to settle out of the court 

rather than facing undesired outcomes with serious financial consequences and 

damaged business relationships (Pulket and Arditi, 2009a). Therefore, there are 
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various efforts to predict outcomes of litigation processes and court rulings. Chau 

(2007) developed a combined model using Particle Swarm Optimization (PSO) based 

ANN to predict the outcome of construction claims if they were taken to courts for 

projects in Hong Kong. By using 13 attributes for classification, 550 litigious cases 

covering the period of 1991-1995 are used to train the ANN model, 275 cases covering 

the period of 1996-1997 are used to test the trained ANN model, and finally, 280 cases 

covering the period of 1998-2000 are used to validate the model. The validated model 

resulted in a prediction accuracy of 80.00%. Cheng et al. (2009) enhanced the CBR 

technique by integrating with fuzzy set theory based on a new similarity measurement 

approach that combines Euclidean distance and cosine angle distance. Then, in order 

to retrieve similar litigated cases via CBR model, a dataset involving 153 dispute cases 

is analyzed based on eight attributes as similarity measures. El-adaway and Kandil 

(2009) established a multi-agent system for resolution of change order related 

disputes. The proposed system simulates legal proceedings and provides similar past 

cases including their supporting and counter arguments based on an algorithm that 

derives logic rules considering 12 factors related to change order disputes. In a series 

of studies to predict court rulings and litigation outcomes, various AI techniques are 

applied on a dataset composed of cases from Illinois Appellate Court. In these studies, 

the litigation outcome is predicted by an ANN model that achieved an accuracy rate 

of 66.67% (Arditi et al., 1998), by CBR with 83.33% (Arditi and Tokdemir, 1999), by 

boosted decision trees (BDT) with 89.59% (Arditi and Pulket, 2005), by their 

integrated prediction model (IPM) with 91.15% (Arditi and Pulket, 2009), and finally, 

by their universal prediction model (UPM) with 96.02% accuracy rate (Pulket and 

Arditi, 2009b). In a more recent study, litigation outcomes of differing site condition 

related disputes are predicted using ML techniques that involve polynomial SVM, 

Naïve Bayes, J48 decision trees, ADTree BDT, and Projective Adaptive Resonance 

Theory (PART). All algorithms achieved significant classification accuracy success 

(minimum 93.00%) along with other successful measures such as precision, recall, 

etc. (Mahfouz and Kandil, 2011). Although knowing litigation outcomes with some 

certainty can avoid parties from resorting to courts, these studies do not suggest which 
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resolution method to use as an alternative. Thus, the need for a systematical approach 

that will suggest the most appropriate resolution method is not addressed through these 

studies. 

There are several other efforts aiming to develop decision-support systems for 

resolution method selection besides studies predicting the litigation outcome and 

forecasting court rulings. Cheung (1999) evaluated critical factors affecting the use of 

ADR techniques using scale rating, percentage rating, and Factor Analysis methods to 

find attribute importance ratings with the aim of discovering the concerns of decision-

makers during their resolution method selection. In a similar study, all attributes 

related to ADR processes are identified from the literature, a hierarchical model of 

ADR processes are developed using AHP method, and critical attributes are 

determined through prioritization (Cheung et al., 2002). Another decision-making 

model combining AHP and Multi-Attribute Utility Technique (MAUT) is developed 

with the same purpose (Cheung and Suen, 2002). Cheung et al. (2004a) proposed a 

CBR based model to select a resolution method by resorting to previous similar cases. 

Gebken and Gibson (2006) investigated impacts of cost of resolution methods, 

disputing party, and dispute complexity on resolution method selection via ANOVA 

analysis. Based on case studies, a systematical approach for conflict resolution 

utilizing graph model theory, named graph model for conflict resolution (GMCR II), 

is developed that considers possible decision-makers, decision options, feasible 

actions, and outcomes at a dispute negotiation (Kassab et al., 2006). Abilities of 

GMCR II are further improved in a new decision-support system, which is capable of 

performing uncertainty analysis when preferences of decision-makers are not certain. 

In addition, the new system can suggest possible solutions (Kassab et al., 2010). 

However, both tools are developed to enhance the decision-making process during 

negotiations and the scope does not cover entire options of resolution methods. In 

another study, based on results of a survey on decision-makers to highlight factors 

affecting their decision-making rationale, a dispute resolution method selection tool is 

developed using AHP and rule based algorithm for construction disputes in Egypt 
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(Marzouk et al., 2011). A more sophisticated decision-making model for resolution 

method selection is established using multi-criteria decision-making method 

(MCDM). Through validation of the model with industry professionals, it is observed 

that suggestions resulting from this model is highly compatible with decisions of the 

professionals (İlter, 2010a). MCDM is an appropriate method for decision-making 

especially when there are conflicting criteria. However, MCDM models require 

criteria weights and rankings to be externally determined by the developer. On the 

other hand, AI applications, specifically ML techniques, are easier to establish, as they 

do not require significant preprocesses. In addition, ML algorithms can model 

relationships of numerous variables and their impacts on the resolution method 

selection objectively with a comparable performance to MCDM method.  

Considering benefits of ML techniques, studies utilizing these algorithms can be found 

recently among efforts of developing decision-support systems for resolution method 

selection. The effectiveness of ML algorithms has already been observed in studies 

aiming to predict the dispute occurrence and to forecast litigation outcomes.  

A previously analyzed dataset of 584 PPP projects undertaken by the TPCC for dispute 

prediction is analyzed again to forecast resolution method selection. For this reason, 

disputed projects among the dataset (152 disputed cases) are extracted and a multiclass 

classification is performed on these cases to forecast the resolution method in both the 

project initiation and the dispute occurred phases depending on 15 project and dispute 

related characteristics. Various single algorithms, which involve SVM, ANN, TAN, 

CART, QUEST, Exhaustive CHAID, and C5.0 algorithms, are trained and tested. The 

best test set accuracy of 83.82% is achieved through Exhaustive CHAID algorithm for 

project initiation phase, while 69.05% accuracy is achieved through CART algorithm 

for dispute occurred phase. In addition, several ensemble models are also 

experimented. The best ensemble model was the triple combination of QUEST, 

Exhaustive CHAID, and C5.0 algorithms with an accuracy of 84.65% on the test set 

for project initiation phase. For dispute occurred phase, the best test set accuracy was 

obtained as 69.05% from three ensemble models, which are CART and Exhaustive 
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CHAID, SVM and CART, and the triple combination of SVM, CART, and Exhaustive 

CHAID (Chou, 2012). In another study, the performance of single SVM is enhanced 

by integrating with fast and messy genetic algorithm (fmGA) and then, enhancing the 

integrated algorithm even more by combining it with fuzzy logic. The average test set 

classification accuracy for resolution method forecasts is 61.75% with single SVM, 

69.21% with fmGA based SVM, and 77.04% with the combination of SVM, fmGA, 

and fuzzy logic (Chou et al., 2013b). In a final attempt for selecting the most 

appropriate resolution method, the same dataset is experimented with the ANN, SVM, 

Naïve Bayes, CART, CHAID, QUEST, and C5.0 algorithms. The best average 10-

fold cross-validation accuracy result is obtained from the SVM classifier with 81.12% 

(Chou et al., 2016). Although all three of these studies are specific to an industry and 

a project type, they are still valuable as the proposed classification approaches can 

enable early warning of potential dispute resolutions.  

Cheung et al. (2010) claimed that resolution method selection should be based on the 

satisfaction with the method. Therefore, their study predicted the dispute resolution 

satisfaction on a dataset of 48 construction projects from Hong Kong using LR 

technique and results are compared with a previous Multi Discriminant Analysis 

(MDA) model. In another effort to classify past projects with respect to their dispute 

resolution satisfaction, an MLP model is developed. With this model, it is possible to 

distinguish adverse and favorable ADR methods (Cheung et al., 2002).  

Finally, there are studies using text-mining techniques to retrieve similar dispute cases 

that can be used as examples showing what can happen upon utilization of a specific 

resolution technique. Among these studies, Yılmaz and Dikbaş (2013) compared 

classification performances of kNN, Naïve Bayes, SVM, and decision tree algorithms 

on a dataset of 49 documents received from Directorate of High Technics Board of 

Turkish Ministry of Environment and Urbanization. In another text mining effort in 

construction industry, Fan and Li (2013) tried to retrieve similar cases of ADR use in 

construction accidents using text-mining techniques. However, these text-mining 

based studies aim to call similar cases upon request to be used as examples and leave 
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the decision-making process to the decision-maker. Instead of a text-mining based 

approach, a more enhanced decision-making process considering various project and 

dispute related characteristics would be more beneficial for decision-makers. 

Respecting the state of the mentioned existing research on decision-support systems 

for dispute resolution method selection in construction industry, it can be observed 

that studies have limitations such as being industry, project type, dispute type, and 

contracting strategy specific. Global-scaled models that consider various projects, 

dispute types, contract types, and judicial systems during resolution method selection 

do not exist in the literature. This problem is similar to the problem that was previously 

observed in dispute prediction research. Development of a global-scaled model that 

considers various resolution methods along with considerations on variations in 

characteristics related to dispute, project, judicial system, etc. would be a better 

approach. For this reason, firstly, the dataset that will be used in such decision-support 

systems should involve projects reflecting these variations. Secondly, these systems 

should be based on ML techniques as these techniques can said to be containing the 

most appropriate approaches for such systems considering their superiority in 

modeling problems with complex and interrelated attributes. Finally, in order to 

achieve better classification performance with ML techniques, single and ensemble 

algorithms should be experimented on the dataset with respect to measures such as 

accuracy, TP rates, etc. Therefore, this thesis study aims to fill the mentioned gaps of 

the research by developing an ML based decision-support model for dispute resolution 

method selection that is using construction project data from various construction 

industries. Moreover, projects in the dataset will be diverse in terms of project types, 

contracting strategies, dispute types, etc. Finally, not only performances of several 

single algorithms will be experimented using various significant performance 

measures in the ML domain, but also various ensemble models combining these single 

classifiers will be experimented. 
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2.3. CONCEPTUAL MODEL DEVELOPMENT  

Various research studies on construction conflicts, claims, disputes, and resolution 

methods are reviewed along with their contributions, strengths and weaknesses so far.  

In this section, findings from these reviews will be assessed in order to develop a 

conceptual model with the purpose of identifying and determining input and output 

variables (attributes) for prediction models. The efforts will start with determination 

of output variables. The number of prediction models that should be established is 

equal to the number of output variables. Therefore, studies are grouped with respect 

to their output variables or contribution potentials to an output variable. Then, 

according to these output variables, predictors will be identified as input variables.  

2.3.1. Determination of Output Variables for Prediction Models 

Previous studies from construction dispute domain are grouped with respect to their 

output variables or contribution potentials to an output variable (Table 2.1). These 

studies are summarized in Table 2.2, where they are organized in chronological order. 

There are short remarks in the table explaining each study briefly. According to this 

grouping, it is observed that the literature mainly focuses directly or indirectly on three 

outputs: (1) Dispute Occurrence (Dispute Likelihood), (2) Potential Compensation 

(categorical or quantitative), and (3) Resolution Method. 

Table 2.1. Number of Publications per Output 

Output Variable Output ID Identified Publication Number 

Dispute Occurrence O1 15 
Compensation O2 19 

Resolution Method O3 24 
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Table 2.2. Literature Review According to Output Variable(s) 

Year 

 

Author(s) Remarks Output(s) 

1993 Revay Can construction claims be avoided? 
 
Identification of frequently reoccurring 
reasons for claims and investigation of 
ways to avoid those considering their 
financial consequences 

Dispute Occurrence & 
Compensation 

1995 Diekmann & 
Girard 

Are some construction projects more 
prone to contract disputes than others? 
 
If so, can these projects be identified 
before construction begins? 

Dispute Occurrence 

1997 Fenn,  
Lowe & 
Speck 

Do certain contract types cause more 
disputes than others? 

Dispute Occurrence 

1998 Arditi,  
Oksay &  
Tokdemir 

Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court rulings 
using neural networks 

Compensation & 
Resolution Method 
Selection 

1999 Arditi & 
Tokdemir 

Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court rulings 
using CBR 

Compensation & 
Resolution Method 
Selection 

1999 Cheung Identification of critical factors that 
affect resolution method selection in 
construction disputes 

Resolution Method 
Selection 

2000 Molenaar,  
Washington &  
Diekmann 

Are some construction projects more 
prone to contract disputes than others? 
 
If so, can these projects be identified 
before construction begins? 

Dispute Occurrence 

2002 Cheung &  
Suen 

A decision-making model that 
combines AHP and MAUT for dispute 
resolution method selection 

Resolution Method 
Selection 
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Table 2.2. Literature Review According to Output Variable(s) (Continued) 

Year 

 

Author(s) Remarks Output(s) 

2002 Cheung,  
Suen &  
Lam 

Identification of critical factors that 
affect selection of ADR techniques in 
construction dispute resolution 

Resolution Method 
Selection 

2002 Cheung,  
Tam &  
Harris 

Analysis of factors affecting the 
outcome of resolution processes in 
Hong Kong using ANN method so that 
the decision-maker can decide on the 
method to use 

Resolution Method 
Selection 

2002 Mitropoulos 
&  
Howell 

Development of a process model that 
classifies potential problematic 
situations and identifies resolution 
requirements by analyzing potential for 
dispute occurrence, possible 
compensations, and factors affecting 
dispute resolution 

Dispute Occurrence 
& 
Compensation & 
Resolution Method 
Selection 

2003 Dalton & 
Shehadeh 

Knowing various factors for a project 
and using statistical models, it is 
possible to predict the number and 
value of claims. 

Dispute Occurrence 
& 
Compensation 

2004a Cheung,  
Au-yeung & 
Wong 

Establishment of a CBR based model 
for resolution method selection 

Resolution Method 
Selection 

2005 Arditi & 
Pulket 

Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court 
rulings using boosted decision trees 

Compensation & 
Resolution Method 
Selection 

2005 Kilian &  
Gibson 

Identification of primary causes of 
litigation associated with the U.S. 
Naval Facilities construction contracts 
and analysis of root causes of disputes 
with the aim of avoiding occurrence 

Dispute Occurrence 
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Table 2.2. Literature Review According to Output Variable(s) (Continued) 

Year 

 

Author(s) Remarks Output(s) 

2006 Gebken &  
Gibson 

Quantification of costs for dispute 
resolution procedures in the 
construction industry with the aim of 
achieving quantitative comparisons of 
various resolution methods during 
selection 

Resolution Method 
Selection 

2006 Kassab,  
Hipel & 
Hegazy 

Development of a decision support tool 
based on graph model that can predict 
the outcomes of negotiations between 
parties  

Compensation 

2007 Chau Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court rulings 

Compensation 

2007 Fenn Are disputes predictable? Dispute Occurrence 

2007 Chen & 
Hsu 

Constructing an early warning model to 
prevent potential litigation due to 
project changes by using a hybrid ANN 
and CBR model  
 
(The ANN model predicts the litigation 
likelihood and the CBR model presents 
similar litigious cases) 

Dispute Occurrence & 
Compensation 

2008 Chen Constructing a kNN based model to 
identify the litigation likelihood of 
change order disputes 

Dispute Occurrence 

2009 Arditi &  
Pulket 

Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court rulings 
using an integrated AI model 

Compensation & 
Resolution Method 
Selection 

2009 Cheng,  
Tsai & 
Chiu 

Establishment of a fuzzy CBR model 
that identifies similar construction 
disputes resolved by litigation to 
present the possible outcomes to 
decision-makers 

Compensation 
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Table 2.2. Literature Review According to Output Variable(s) (Continued) 

Year 

 

Author(s) Remarks Output(s) 

2009 El-adaway &  
Kandil 

Development of a system that presents 
the user similarities, differences, 
strengths, and weaknesses of the 
disputed case and previous arbitrated 
cases with the aim to support defense 
preparations for acquiring possible 
compensations 

Compensation 

2009 Pulket & 
Arditi 

Prediction of outcomes of construction 
litigation according to the 
characteristics of the individual dispute 
and the corresponding past court 
rulings using ant colony optimization 

Compensation & 
Resolution Method 
Selection 

2009 Pulket & 
Arditi 

Prediction of outcomes of construction 
litigation according to characteristics 
of the individual dispute and 
corresponding past court rulings using 
ML based universal prediction model 

Compensation & 
Resolution Method 
Selection 

2010 Cheung,  
Yiu & 
Chan 

Identification of favorable resolution 
methods based on logistic regression 
analysis by predicting the potential 
satisfaction with the resolution method  

Resolution Method 
Selection 

2010a İlter Establishment of a multi-criteria 
decision support model using MAUT 
in selecting the most appropriate 
dispute resolution method at various 
construction stages 

Resolution Method 
Selection 

2010 Kassab,  
Hegazy & 
Hipel 

Development of a computerized 
decision support system to forecast 
possible compensation(s) that can be 
acquired out of the negotiation process 

Compensation 

2011 Mahfouz & 
Kandil 

Prediction of outcomes of construction 
litigation of differing site condition 
disputes according to the 
characteristics of the individual dispute 
and the corresponding past court 
rulings using ML algorithms 

Compensation & 
Resolution Method 
Selection 
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Table 2.2. Literature Review According to Output Variable(s) (Continued) 

Year 

 
Author(s) Remarks Output(s) 

2011 Marzouk, 
El-
Mesteckawi 
& 
El-Said 

Development of a computerized 
model to support the decision-
making process during resolution 
method selection for construction 
projects in Egypt 

Resolution Method 
Selection 

2012 Arıcı Identification of factors affecting 
resolution method selection based 
on empirical data with special 
emphasis on ADR techniques 

Resolution Method 
Selection 

2012 Chou & 
Lin 

Proactively forecasting dispute 
occurrence in the initiation phase of 
PPP projects using ML techniques 
on empirical project data 

Dispute Occurrence 

2012 Chou Early forecasting of potential 
dispute resolutions using ML 
techniques for PPP projects 

Resolution Method 
Selection 

2012 İlter Identification of impacts of various 
dispute factors through empirical 
analysis of the associations between 
dispute factors and categories (may 
highlight possible compensations) 

Compensation 

2013 Cheung &  
Pang 

Evaluation of dispute occurrence 
likelihood of construction projects by 
identifying factors that contribute to 
disputes based on an anatomy of 
disputes 

Dispute Occurrence 

2013 Chou,  
Tsai &  
Lu 

Proactively forecasting dispute 
occurrence of PPP projects using ML 
techniques on empirical project data 

Dispute Occurrence 

2013 Chou,  
Cheng & 
Wu 

Early forecasting of potential dispute 
resolutions using ML techniques for 
PPP projects 

Resolution Method 
Selection 
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Table 2.2. Literature Review According to Output Variable(s) (Continued) 

Year 

 
Author(s) Remarks Output(s) 

2013 Fan &  
Li 

Development of a text mining 
approach that presents the user similar 
past cases of construction accidents 
(can be used to understand 
compensations and potential 
resolutions) 

Compensation & 
Resolution Method 
Selection 

2013 Yılmaz & 
Dikbaş 

Development of a text mining 
approach that presents the user similar 
past cases from Directorate of High 
Technics Board of Turkey database 
with the aim to support defense 
preparations for acquiring possible 
compensations and to decide whether 
to resort to the board or not 

Compensation & 
Resolution Method 
Selection 

2014 Chou, 
Cheng, 
Wu & 
Pham 

Proactively forecasting dispute 
occurrence of PPP projects using ML 
techniques on empirical project data 

Dispute Occurrence 

2016 Chou, 
Hsu, 
Li & 
Chang 

Proactively forecasting dispute 
occurrence of PPP projects, 
Identification of type of dispute, 
Identification of phase of dispute 
occurrence, 
Early forecasting of potential 
resolutions 

Dispute Occurrence 
& Resolution Method 
Selection 

2016 Yousefi,  
Yakhchali, 
Khanzadi, 
Mehrabanfar& 
Saparauskas 

Proposal of an NN model that predicts 
time and cost claims in construction 
projects 

Compensation 

 

In short, the literature can be categorized under three output variables (O1, O2, and 

O3) that will lead the research to development of three distinct prediction models 

namely: (1) Dispute Occurrence Prediction Model, (2) Potential Compensation 

Prediction Model, and (3) Resolution Method Selection Model. For this purpose, 
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predictors (input variables) related to each output should be identified from the 

literature as well. The next section will present findings of these efforts. 

2.3.2. Determination of Input Variables for Prediction Models 

Reviewed studies from the literature pointed out that numerous factors have been 

associated with dispute occurrence, potential compensations, and resolution method 

selection. However, level of inclusion and detailing of these factors are different in 

these studies. In addition, there is a confusion in the related terminology due to 

overlapping concepts and the distinction between causes, factors, types of disputes, 

etc. may not be very clear (İlter, 2012). In order to tackle these problems, this research 

identified its own set of input variables related to defined outputs, which are ‘O1-

Dispute Occurrence’, ‘O2 – Potential Compensation’, and ‘O3 – Resolution Method’. 

The findings of the literature survey are assessed further to identify input variables 

that impact the mentioned outputs. Firstly, variables are grouped under different 

categories. Variables related to project and contract related characteristics of a 

construction project are categorized as ‘Project Characteristics’. As the details will be 

given in following pages, ‘Project Characteristics’ involve variables such as project 

location, contract value, planned project duration, etc. Variables depending on parties 

involved in the project and their organizational characteristics are categorized as 

‘Skills’. This category involves variables such as working culture, communication 

skills, project management and coordination skills, etc. The third category is the 

‘Changes’ that involves occurrence of variations, changes, or unexpected events in a 

construction project and the fourth category is the ‘Delay’ category. Variables related 

to characteristics of the dispute are categorized as ‘Dispute Characteristics’. ‘Dispute 

Characteristics’ involve variables such as disputant party, financially disputed 

amount, presence of EoT claim, etc. Common causes of disputes are collected under 

the ‘Dispute Sources’ sub-category. Finally, variables of resolution strategy related 

characteristics are categorized as ‘Resolution Method Characteristics’. This category 

is composed of variables related to expectations from the resolution method (i.e. 
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importance of preserving relationships between parties) and consequences of the 

selected method (i.e. cost of resolution). The level of knowledge of the decision-maker 

about specific resolution methods are also collected as variables under the category of 

‘Level of Knowledge on Resolution Method’. Following the categorization, input 

variables for each category are identified. In the literature, same or similar factors can 

be observed under different names. Therefore, while assigning variables to each 

category, attributes with similar names and descriptions are merged. 

2.3.2.1. ‘Project Characteristics’ Attributes 

The first category of input variables is the ‘Project Characteristics’ that involves 

attributes related to project and contract related characteristics of a construction 

project. There are 11 attributes in this category according to the findings of the 

literature survey. These attributes are; 

 PC1 – Project Location 

 PC2 – Project or Contract Value 

 PC3 – Planned Project Duration 

 PC4 – Type of Construction 

 PC5 – Type of Contractor (i.e. joint venture, consortium) 

 PC6 – Type of Employer (i.e. public, private, PPP) 

 PC7 – Type of Contract  

 PC8 – Payment Method (i.e. unit price, fixed price) 

 PC9 – Project Delivery System (i.e. DBB, DB) 

 PC10 – Level of Design Complexity 

 PC11 – Level of Construction Complexity  

Table 2.3 involves ‘Project Characteristics’ attributes, studies highlighting the 

importance of these attributes in the literature and the number of publications 

mentioning them. Studies are given in chronological order. 
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Table 2.3. ‘Project Characteristics’ Attributes 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

PC1 
Project 
Location 

1993 Revay 2013a Chou et al. 

9 

1995 Diekmann & Girard 2013b Chou et al. 
2000 Molenaar et al. 2014 Chou et al. 
2012 Chou 2016 Chou et al. 
2012 Chou & Lin   

PC2 
Project or 
Contract 
Value 

1993 Revay 2009 Cheng et al. 

26 

1995 Diekmann & Girard 2009 İlter & Dikbaş 

1998 Arditi et al.  2010a İlter 
1999 Arditi & Tokdemir 2010b İlter 
2000 Molenaar et al. 2010 Love et al. 
2003 Harmon 2012 İlter 
2003 Yates 2012 Chou 

2004a Cheung et al. 2012 Chou & Lin 

2005 Arditi & Pulket 2013a Chou et al. 
2005 Kilian & Gibson 2013b Chou et al. 
2007 Chau 2014 Chou et al. 
2007 Chen & Hsu 2016 Chou et al. 
2008 Chen 2018 Çevikbaş & Köksal 

PC3 
Planned 
Project 
Duration 

2005 Kilian & Gibson 2012 Chou 

14 

2007 Chen & Hsu 2012 Chou & Lin 

2008 Chen 2013a Chou et al. 
2009 İlter & Dikbaş 2013b Chou et al. 
2010a İlter 2014 Chou et al. 
2011 Marzouk et al. 2016 Chou et al. 
2012 İlter 2016 Yousefi et al. 

PC4 Type of 
Construct. 

1993 Revay 2010a İlter 

25 

1995 Diekmann & Girard 2010 Love et al. 
2000 Molenaar et al. 2011 Mahfouz & Kandil 
2005 Arditi & Pulket 2011 Marzouk et al. 
2005 Kilian & Gibson 2012 İlter 
2006 Acharya et al. 2012 Chou 
2007 Chen & Hsu 2012 Chou & Lin 

2008 Chen 2013a Chou et al. 
2009 Arditi & Pulket 2013b Chou et al. 
2009 Cheng et al. 2014 Chou et al. 
2009 İlter & Dikbaş 2016 Chou et al. 
2009a Pulket & Arditi 2018 Çevikbaş & Köksal 
2009b Pulket & Arditi   

PC5 Type of 
Contractor 

1993 Watts & Scrivener 2007 Chau 

19 

1995 Diekmann & Girard 2007 Chen & Hsu 

1997 Kumaraswamy 2008 Chen 

1998 Arditi et al. 2009 Arditi & Pulket 
1999 Arditi & Tokdemir 2009 İlter & Dikbaş 

2000 Molenaar et al. 2009a Pulket & Arditi 
2003 Harmon 2009b Pulket & Arditi 
2005 Arditi & Pulket 2010a İlter 
2005 Gencer 2012 İlter 
2005 Kilian & Gibson   
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Table 2.3. ‘Project Characteristics’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

PC6 Type of  
Employer 

1993 Watts & Scrivener 2008 Chen 

26 

1995 Diekmann & Girard 2009 Arditi & Pulket 
1997 Kumaraswamy 2009 İlter & Dikbaş 

1998 Arditi et al. 2009a Pulket & Arditi 
1999 Arditi & Tokdemir 2009b Pulket & Arditi 
2000 Molenaar et al. 2010a İlter 
2003 Dalton & Shehadeh 2012 Chou 

2003 Harmon 2012 Chou & Lin 

2005 Arditi & Pulket 2012 İlter 
2005 Gencer 2013a Chou et al. 
2005 Kilian & Gibson 2013b Chou et al. 
2007 Chau 2014 Chou et al. 
2007 Chen & Hsu 2016 Chou et al. 

PC7 Type of 
Contractor 

1997 Fenn et al. 2009 İlter & Dikbaş 

26 

1997 Kumaraswamy 2009a Pulket & Arditi 
2002 Mitropoulos & Howell 2009b Pulket & Arditi 
2003 Dalton & Shehadeh 2011 Mahfouz & Kandil 
2003 Harmon 2011 Marzouk et al. 
2003 Yates 2012 Chou 

2004a Cheung et al. 2012 Chou & Lin 

2005 Kilian & Gibson 2013a Chou et al. 
2007 Chau 2013b Chou et al. 
2007 Chen & Hsu 2014 Chou et al. 
2008 Chen 2016 Chou et al. 
2009 Arditi & Pulket 2016 Yousefi et al. 
2009 Cheng et al. 2018 Çevikbaş & Köksal 

PC8 
Payment 
Method of 
Contract 

1995 Diekmann & Girard 2007 Chau 

12 

1997 Fenn et al. 2009 Cheng et al. 
1997 Kumaraswamy 2009 Arditi & Pulket 
2000 Molenaar et al. 2009a Pulket & Arditi 
2003 Revay 2009b Pulket & Arditi 
2005 Kilian & Gibson 2010a İlter 

PC9 
Project 
Delivery 
System 

1995 Diekmann & Girard 2012 Chou 

13 

2000 Molenaar et al. 2012 Chou & Lin 

2005 Kilian & Gibson 2013a Chou et al. 
2006 Acharya et al. 2013b Chou et al. 
2007 Chau 2014 Chou et al. 
2009 İlter & Dikbaş 2016 Chou et al. 
2010a İlter   

PC10 
Level of 
Design 
Complex. 

1995 Diekmann & Girard 2003 Harmon 

7 2000 Cheung et al. 2003 Yates 

2000 Molenaar et al. 2011 Marzouk et al. 
2002 Cheung et al.   

PC11 
Level of 
Construct. 
Complex. 

1995 Diekmann & Girard 2003 Harmon 

7 2000 Cheung et al. 2003 Yates 

2000 Molenaar et al. 2011 Marzouk et al. 
2002 Cheung et al.   
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2.3.2.2. ‘Skills’ Attributes 

‘Skills’ category involves attributes depending on parties involved in the construction 

project and their organizational characteristics. There are eight attributes in this 

category according to the findings of the literature survey. These attributes are; 

 S1 – Relationship between Parties / Individuals 

 S2 – Previous Experience with Each Other or Reputation (Credibility) 

 S3 – Dispute Avoidance Incentives 

 S4 – Communication between Parties 

 S5 – Working Culture & Skills of Parties 

 S6 – Response Rate & Communication Skills of Parties 

 S7 – Experience of Parties (with the type of project) 

 S8 – Project Management & Coordination Skills of Parties 

Table 2.4 involves ‘Skills’ attributes, studies highlighting the importance of these 

attributes in the literature and the number of publications mentioning them.  

Table 2.4. ‘Skills’ Attributes 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

S1 
Relation. 
btw. 
Parties /  
Individuals 

1995 Bristow&Vasilopoulos 2006 Acharya et al. 

22 

1995 Diekmann & Girard 2008 İlter & Dikbaş 

1997 Fenn et al. 2010 Cheung et al. 
1997 Kumaraswamy 2010a İlter 
2000 Cheung et al. 2010b İlter 
2000 Molenaar et al. 2010 Kassab et al. 
2002 Cheung et al. 2010 Love et al. 
2002 Mitropoulos & Howell 2011 Marzouk et al. 
2003 Dalton & Shehadeh 2012 İlter 
2003 Harmon 2013 Cheung & Pang 

  2003 Yates 2016 Yousefi et al.  

S2 
Prev. Exp. 
or 
Reputation 

1995 Diekmann & Girard 2002 Mitropoulos & Howell 

7 2000 Cheung et al. 2008 İlter & Dikbaş 
2000 Molenaar et al. 2010 Cheung et al. 
2002 Cheung et al.   

S3 
Dispute 
Avoidance 
Incentives 

1995 Diekmann & Girard 2004a Cheung et al. 

7 2000 Molenaar et al. 2010 Cheung et al. 
2002 Cheung et al. 2016 Yousefi et al. 
2003 Yates   
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Table 2.4. ‘Skills’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

S4 
Commun. 
btw 
Parties 

1994 Rhys-Jones 2006 Acharya et al. 

21 

1995 Bristow&Vasilopoulos 2008 İlter & Dikbaş 

1995 Diekmann & Girard 2008 Younis et al. 
1997 Fenn et al. 2010 Cheung et al. 
1997 Kumaraswamy 2010a İlter 
2000 Molenaar et al. 2010b İlter 
2002 Cheung et al. 2010 Love et al. 
2002 Mitropoulos & Howell 2012 İlter 
2003 Harmon 2013 Cheung & Pang 

2003 Yates 2016 Yousefi et al. 
2005 Kilian & Gibson   

S5 

Working 
Culture & 
Skills of 
Parties 

1994 Rhys-Jones 2003 Yates 

15 

1995 Diekmann & Girard 2008 İlter & Dikbaş 

1997 Fenn et al. 2008 Younis et al. 
1997 Kumaraswamy 2010 Love et al. 
2000 Molenaar et al. 2011 Marzouk et al. 
2002 Mitropoulos & Howell 2013 Cheung & Pang 

2003 Dalton & Shehadeh 2016 Yousefi et al. 
2003 Harmon   

S6 

Response 
Rate &  
Commun. 
Skills of 
Parties 

1995 Diekmann & Girard 2002 Mitropoulos & Howell 

12 

1997 Fenn et al. 2003 Yates 
1997 Kumaraswamy 2008 Younis et al. 
1998 Cheung & Yeung 2010 Cheung et al. 
2000 Molenaar et al. 2012 İlter 
2002 Cheung et al. 2016 Yousefi et al. 

S7 Experience 
of Parties 

1995 Diekmann & Girard 2008 Younis et al. 

18 

2000 Cheung et al. 2009 İlter & Dikbaş 

2000 Molenaar et al. 2010 Cheung et al. 
2002 Cheung et al. 2010a İlter 
2003 Dalton & Shehadeh 2010 Love et al. 
2003 Rubin & Quintas 2011 Love et al. 
2006 Acharya et al. 2011 Marzouk et al. 
2007 McGeorge et al. 2012 İlter 
2008 İlter & Dikbaş 2016 Yousefi et al. 

S8 

Project 
Manage. 
& 
Coord. 
Skills of 
Parties 

1995 Diekmann & Girard 2005 Arditi & Pulket 

15 

1997 Fenn et al. 2008 Younis et al. 
1997 Kumaraswamy 2009 Arditi & Pulket 
1998 Arditi et al. 2009a Pulket & Arditi 
1999 Arditi & Tokdemir 2009b Pulket & Arditi 
2000 Molenaar et al. 2010 Cheung et al. 
2003 Dalton & Shehadeh 2016 Yousefi et al. 
2003 Yates   
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2.3.2.3. ‘Changes’ 

The third category of input variables is the ‘Changes’ category that involves 

occurrence of variations, changes, or unexpected events in a construction project. 

Table 2.5 involves studies mentioning the impact of changes on construction disputes 

and resolution strategies as well as highlighting the importance of these changes in the 

literature with the total number of publications mentioning them. 

Table 2.5. Studies in the Literature Highlighting the Importance of Changes 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

C1 Changes 

1993 Revay 2006 
Arditi & 
Pattanakitchamroon 

37 

1993 Watts & Scrivener 2007 Chau 

1994 Heath et al. 2007 Chen & Hsu 

1995 Bristow&Vasilopoulos 2008 Chen 

1995 Diekmann & Girard 2008 Younis et al. 
1997 Fenn et al. 2009 Arditi & Pulket 
1997 Kumaraswamy 2009 Cheng et al. 
1998 Arditi et al. 2009 El-adaway & Kandil 
1999 Arditi & Tokdemir 2009a Pulket & Arditi 
2000 Cheung et al. 2009b Pulket & Arditi 
2000 Molenaar et al. 2010 Cheung et al. 
2001 Ren et al. 2010 Love et al. 
2002 Cheung et al. 2011 Love et al. 
2002 Mitropoulos & Howell 2011 Mahfouz & Kandil 
2003 Yates 2011 Marzouk et al. 
2004a Cheung et al. 2012 İlter 
2005 Arditi & Pulket 2013 Cheung & Pang 

2006 Acharya et al.   

 

2.3.2.4. ‘Delays’  

This category considers the impact of delays on construction disputes. In order to 

reflect the effect of delays in construction projects, this category will be utilized. 

Although there is a distinct research area focusing on identification, quantification, 

and mitigation of delays in construction literature, this research will focus on delays 

as an impacting factor on dispute occurrence, potential compensations, and resolution 

strategies. Table 2.6 involves such studies mentioning the impact and importance of 

delays on construction disputes and resolution strategies in chronological order. 
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Table 2.6. Studies in the Literature Highlighting the Importance of Delays 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

D1 Delays 

1989 Alshawi & Hope 2007 Yiu & Cheung 

35 

1993 Revay 2008 Chen 

1993 Watts & Scrivener 2008 Younis et al. 
1997 Fenn et al. 2009 Arditi & Pulket 
1997 Kumaraswamy 2009 Cheng et al. 
1998 Arditi et al. 2009 El-adaway & Kandil 
1999 Arditi & Tokdemir 2009a Pulket & Arditi 
2001 Ren et al. 2009b Pulket & Arditi 
2002 Mitropoulos & Howell 2010 Kassab et al. 
2003 Dalton & Shehadeh 2010 Love et al. 
2003 Pena-Mora et al. 2011 Marzouk et al. 
2004a Cheung et al. 2012 Chou 

2005 Arditi & Pulket 2012 İlter 
2005 Kilian & Gibson 2013 Cheung & Pang 

2006 Acharya et al. 2013 Chou et al. 
2006 Arditi & 

Pattanakitchamroon 

2016 Yousefi et al. 

2006 Gebken & Gibson 2018 Çevikbaş & Köksal 
2007 Chen & Hsu   

 

2.3.2.5. ‘Dispute Characteristics’ Attributes 

The fifth category of input variables involves attributes related to characteristics of a 

dispute and it is named as ‘Dispute Characteristics’. There are 11 attributes in this 

category according to the findings of the literature survey. These attributes are; 

 DC1 – Disputant Party 

 DC2 – Phase of Occurrence 

 DC3 – Dispute Sources 

 DC4 – Suspension of Works due to Disputes 

 DC5 – Disputed Amount (Financially) 

 DC6 – Settled Amount (Financially) 

 DC7 – Success Rate (Financially) 

 DC8 – Presence of EoT Claim 

 DC9 – Disputed EoT Amount 

 DC10 – Settled EoT Amount 
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 DC11 – Success Rate (EoT) 

Table 2.7 involves ‘Dispute Characteristics’ attributes, studies highlighting the 

importance of these attributes in the literature and the number of publications 

mentioning them. Studies are given in chronological order. Among these attributes, 

success rates in financial and EoT claims are not taken from the literature, but they are 

included to give another perspective to claimed and settled amount variables. 

Table 2.7. ‘Dispute Characteristics’ Attributes 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

DC1 
Disputant 
Party 

1993 Watts & Scrivener 2008 Chen 

15 

1997 Kumaraswamy 2009 Arditi & Pulket 
1998 Arditi et al. 2009 Cheng et al. 
1999 Arditi & Tokdemir 2009 El-adaway & Kandil 
2005 Arditi & Pulket 2009a Pulket & Arditi 
2006 Acharya et al. 2009b Pulket & Arditi 
2007 Chau 2016 Yousefi et al. 
2007 Chen & Hsu   

DC2 Phase of 
Occurrence 

2004a Cheung et al. 2012 Chou 

9 
2005 Gencer 2012 İlter 
2009 Cheng et al. 2013 Chou et al. 
2010a İlter 2016 Chou et al. 
2010b İlter   

DC3 Dispute 
Sources 

1993 Watts & Scrivener 2008 Chen 

38 

1995 Diekmann & Girard 2008 Ellis & Baiden 

1997 Fenn et al. 2008 Younis et al. 
1997 Kumaraswamy 2009 Arditi & Pulket 
1998 Arditi et al. 2009 Cheng et al. 
1999 Arditi & Tokdemir 2009 El-adaway & Kandil 
2000 Molenaar et al. 2009a Pulket & Arditi 
2002 Cheung et al. 2009b Pulket & Arditi 
2002 Mitropoulos & Howell 2010a İlter 
2003 Dalton & Shehadeh 2010b İlter 
2003 Harmon 2010 Love et al. 
2004a Cheung et al. 2011 Marzouk et al. 
2005 Arditi & Pulket 2012 Chou 

2005 Kilian & Gibson 2012 İlter 
2006 Acharya et al. 2013 Cheung & Pang 

2006 Gebken & Gibson 2013 Chou et al. 
2007 Chau 2016 Chou et al. 
2007 Chen & Hsu 2016 Yousefi et al. 
2007 McGeorge et al. 2018 Çevikbaş & Köksal 

D4 
Suspension 
Of Works 
due to 
Disputes 

1997 Kumaraswamy 2006 Arditi & 
Pattanakitchamroon 6 1998 Arditi et al. 2008 Younis et al. 

2006 Acharya et al. 2016 Yousefi et al. 
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Table 2.7. ‘Dispute Characteristics’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

DC5 

Disputed 
Amount 
 
Financial. 

1993 Revay 2009 Arditi & Pulket 

27 

1993 Watts & Scrivener 2009 Cheng et al. 
1995 Diekmann & Girard 2009 Harmon 

1997 Kumaraswamy 2009a Pulket & Arditi 
1998 Arditi et al. 2009b Pulket & Arditi 
1999 Arditi & Tokdemir 2010a İlter 
2000 Molenaar et al. 2010b İlter 
2002 Mitropoulos & Howell 2010 Love et al. 
2003 Dalton & Shehadeh 2011 Marzouk et al. 
2004a Cheung et al. 2012 Chong & Zin 

2005 Arditi & Pulket 2012 İlter 
2006 Gebken & Gibson 2016 Lee et al. 
2007 Chen & Hsu 2016 Yousefi et al. 
2008 Chen   

DC6 

Settled 
Amount 
 
Financial. 

1995 Diekmann & Girard 2009 Harmon 

13 

1997 Kumaraswamy 2010a İlter 
2000 Molenaar et al. 2010b İlter 
2002 Mitropoulos & Howell 2010 Love et al. 
2006 Gebken & Gibson 2011 Marzouk et al. 
2007 Chen & Hsu 2016 Yousefi et al. 
2008 Chen   

DC8 
Presence 
Of EoT 
Claim 

1989 Alshawi & Hope 2007 Chen & Hsu 

12 

1994 Heath et al. 2008 Chen 

1997 Kumaraswamy 2009 Cheng et al. 
2001 Ren et al. 2010 Kassab et al. 
2002 Cheung & Suen 2012 İlter 
2004a Cheung et al. 2016 Yousefi et al. 

DC9 
Disputed  
EoT 
Amount 

1993 Revay 2008 Chen 

13 

1997 Kumaraswamy 2009 Cheng et al. 
2001 Ren et al. 2009 El-adaway & Kandil 
2002 Mitropoulos & Howell 2010 Kassab et al. 
2003 Dalton & Shehadeh 2012 İlter 
2004a Cheung et al. 2016 Yousefi et al. 
2007 Chen & Hsu   

DC 
10 

Settled 
EoT 
Amount 

1997 Kumaraswamy 2008 Chen 

7 2003 Dalton & Shehadeh 2010 Kassab et al. 
2004a Cheung et al. 2016 Yousefi et al. 
2007 Chen & Hsu   

 

2.3.2.6. ‘Resolution Method Characteristics’ Attributes 

The sixth category of input variables involves attributes related to resolution method 

of a dispute and therefore, the category is named as ‘Resolution Method 

Characteristics’. According to the findings of the literature survey, there are 13 
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attributes in this category and they reflect the expectations from the resolution method 

and consequences of the selected method. These attributes are; 

 RM1 – Resolution Cost 

 RM2 – Resolution Duration 

 RM3 – Level of Satisfaction with the Resolution Method  

 RM4 – Importance of Preserving Relationships between Parties 

 RM5 – Importance of Speed of Resolution 

 RM6 – Importance of Cost of Resolution 

 RM7 – Importance of Bindingness of the Process 

 RM8 – Importance of Confidentiality of the Process 

 RM9 – Importance of Fairness in the Process 

 RM10 – Importance of Flexibility in Procedures 

 RM11 – Importance of Control Over the Process 

 RM12 – Importance of Reaching Creative or Remedying Solutions 

 RM13 – Importance of Willingness of Parties in Reaching a Solution 

Table 2.8 involves resolution method characteristic attributes, studies highlighting the 

importance of these variables in the literature and the number of publications 

mentioning them. Studies are given in chronological order. 

Table 2.8. ‘Resolution Method Characteristics’ Attributes 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

RM1 Resolution 
Cost 

1996 York 2008 İlter & Dikbaş 

10 
2002 Cheung & Suen 2010a İlter 
2002 Cheung et al. 2012 Arıcı 
2002 Mitropoulos & Howell 2012 Chong & Zin 
2006 Gebken & Gibson 2016 Lee et al. 

RM2 Resolution 
Duration 

1996 York 2008 İlter & Dikbaş 

10 
1999 Cheung 2010a İlter 
2002 Cheung & Suen 2012 Arıcı 
2002 Cheung et al. 2012 Chong & Zin 

2005 Kilian & Gibson 2016 Lee et al. 
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Table 2.8. ‘Resolution Method Characteristics’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

RM3 Level of 
Satisfaction 

2000 Cheung et al. 2006 Yiu et al. 

7 2002 Cheung et al. 2010 Cheung et al. 
2002 Mitropoulos & Howell 2011 Marzouk et al. 
2003 Pena-Mora et al.   

RM4 

Importance
of 
Preserving  
Relations 
btw. 
Parties 

1996 York 2007 Fenn  

22 

1998 Lipsky & Seeber 2007 McGeorge et al. 
1999 Cheung 2008 İlter & Dikbaş 

2000 Cheung et al. 2010 Cheung et al. 
2002 Cheung et al. 2010a İlter 
2002 Cheung & Suen 2010b İlter 
2002 Mitropoulos & Howell 2010 Kassab et al. 
2002 OGC 2011 Mackie et al. 
2003 Harmon 2011 Marzouk et al. 
2003 Pena-Mora et al. 2012 Arıcı 
2003 Yates 2016 Lee et al. 

RM5 
Importance 
of Speed of 
Resolution 

1996 York 2003 Pena-Mora et al. 

17 

1998 Lipsky & Seeber 2006 Yiu et al. 
1998 Cheung & Yeung 2008 İlter & Dikbaş 
1999 Cheung 2010a İlter 
2000 Thompson et al. 2011 Marzouk et al. 
2002 Cheung & Suen 2012 Arıcı 
2002 Mitropoulos & Howell 2012 Chong & Zin 
2002 OGC 2016 Lee et al. 
2003 Harmon   

RM6 
Importance 
of Cost of 
Resolution 

1996 York 2003 Harmon 

15 

1998 Lipsky & Seeber 2006 Gebken & Gibson 
1998 Cheung & Yeung 2008 İlter & Dikbaş 
1999 Cheung 2010a İlter 
2002 Cheung & Suen 2012 Arıcı 
2002 Cheung et al. 2012 Chong & Zin 
2002 Mitropoulos & Howell 2016 Lee et al. 
2002 OGC   

RM7 
Importance 
of Binding. 
of the 
Process 

1996 York 2006 Jones 

20 

1997 Fenn et al. 2007 İlter et al. 
1998 Lipsky & Seeber 2008 İlter & Dikbaş 
1999 Cheung 2009 Harmon 
2002 Cheung & Suen 2010a İlter 
2002 Cheung et al. 2010b İlter 
2003 Harmon 2011 Mackie et al. 
2003 Pena-Mora et al. 2012 Arıcı 
2003 Rubin & Quintas 2012 Chong & Zin 
2006 Gebken & Gibson 2016 Lee et al. 
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Table 2.8. ‘Resolution Method Characteristics’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

RM8 

Importance 
of 
Confident. 
of the 
Process 

1996 York 2006 Yiu et al. 

18 

1998 Cheung & Yeung 2007 McGeorge et al. 
1999 Cheung 2008 İlter & Dikbaş 

2002 Cheung & Suen 2010a İlter 
2002 Cheung et al. 2010b İlter 
2002 OGC 2011 Mackie et al. 
2003 Harmon 2012 Arıcı 
2003 Pena-Mora et al. 2012 Chong & Zin 
2003 Rubin & Quintas 2016 Lee et al. 

RM9 
Importance 
of Fairness 
in the 
Process 

1996 York 2007 McGeorge et al. 

17 

1998 Cheung & Yeung 2008 İlter & Dikbaş 
1999 Cheung 2009 Harmon 

2002 Cheung & Suen 2010a İlter 
2002 Cheung et al. 2011 Mackie et al. 
2003 Harmon 2012 Arıcı 
2003 Pena-Mora et al. 2012 Chong & Zin 

2003 Rubin & Quintas 2016 Lee et al. 
2006 Jones   

RM10 

Importance 
of 
Flexibility 
in 
Procedures 

1996 York 2006 Yiu et al. 

20 

1998 Cheung & Yeung 2007 İlter et al. 
1999 Cheung 2007 McGeorge et al. 
2000 Thompson et al. 2008 İlter & Dikbaş 
2002 Cheung & Suen 2010a İlter 
2002 Cheung et al. 2010b İlter 
2003 Harmon 2011 Mackie et al. 
2003 Pena-Mora et al. 2012 Arıcı 
2003 Rubin & Quintas 2012 Chong & Zin 
2006 Jones 2016 Lee et al. 

RM11 

Importance 
of Control 
Over the 
Process 

1996 York 2008 İlter & Dikbaş 

17 

1998 Lipsky & Seeber 2009 Harmon 
1999 Cheung 2010a İlter 
2002 Cheung & Suen 2010b İlter 
2002 Cheung et al. 2011 Mackie et al. 
2003 Harmon 2012 Arıcı 
2003 Pena-Mora et al. 2012 Chong & Zin 
2003 Rubin & Quintas 2016 Lee et al. 
2007 McGeorge et al.   

RM12 

Importance 
of Creative 
or 
Remedying 
Solutions 

1996 York 2006 Cheung et al. 

17 

1998 Lipsky & Seeber 2006 Jones 
1999 Cheung 2008 Ellis & Baiden 
2002 Cheung & Suen 2008 İlter & Dikbaş 
2002 Cheung et al. 2010a İlter 
2002 Mitropoulos & Howell 2011 Mackie et al. 
2003 Harmon 2012 Arıcı 
2003 Pena-Mora et al. 2016 Lee et al. 
2003 Rubin & Quintas   
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Table 2.8. ‘Resolution Method Characteristics’ Attributes (Continued) 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

RM13 
Importance 
of Willing. 
of Parties 

1996 York 2007 McGeorge et al. 

15 

1998 Lipsky & Seeber 2008 İlter & Dikbaş 

1999 Cheung 2010a İlter 
2001 Ren et al. 2010b İlter 
2002 Cheung & Suen 2011 Mackie et al. 
2002 Cheung et al. 2012 Arıcı 
2003 Pena-Mora et al. 2016 Lee et al. 
2006 Yiu et al.   

 

2.3.2.7. ‘Level of Knowledge on Resolution Method’  

This category focuses on the impact of the level of knowledge of the decision-maker 

about specific resolution methods on selection of resolution strategy or method. In 

chronological order, Table 2.9 involves studies mentioning the impact and importance 

of the level of resolution method knowledge on strategical decision-making related to 

dispute resolution. 

Table 2.9. Studies in the Literature Highlighting the Importance of Resolution 

Method Knowledge 

Attr. 

ID 

Attribute 

Definition 

Year Author(s) Year Author(s) Number of 

Publications 

K1 
Level of 
Resolution 
Method 
Knowledge 

1998 Lipsky & Seeber 2008 İlter & Dikbaş 

16 

1999 Cheung 2010a İlter 
2002 Cheung et al. 2010b İlter 
2002 Cheung & Suen 2011 Mackie et al. 
2003 Pena-Mora et al. 2012 Arıcı 
2004b Cheung et al. 2016 Lee et al. 
2005 Kilian & Gibson 2016 Yousefi et al. 
2007 İlter et al. 2018 Çevikbaş & Köksal 

 

2.3.3. Finalization of the Conceptual Model 

Following the determination of output and input variables for prediction models, the 

conceptual model can be finalized. For this reason, input variables associated with 

each output variable will be given in separate tables. Table 2.10 shows the dispute 
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occurrence framework along with input variables associated with the output, ‘O1 – 

Dispute Occurrence’. 

Table 2.10. Dispute Occurrence Framework 

Output 

Variable 
Predictor Input Variables 

 ID Attribute 

O1 – Dispute 

Occurrence 

P
ro

je
ct

 C
h

a
r
a
ct

er
is

ti
c
s 

PC1 Project Location 
PC2 Project or Contract Value 
PC3 Planned Project Duration 
PC4 Type of Construction 
PC5 Type of Contractor 
PC6 Type of Employer 
PC7 Type of Contract 
PC8 Payment Method of Contract 
PC9 Project Delivery System 
PC10 Level of Design Complexity 
PC11 Level of Construction Complexity 

S
k

il
ls

 

S1 Relationship between Parties / Individuals 
S2 Previous Experience with Each Other or Reputation 
S3 Dispute Avoidance Incentives 
S4 Communication between Parties 
S5 Working Culture & Skills of Parties 
S6 Response Rate & Communication Skills of Parties 
S7 Experience of Parties 
S8 Project Management & Coordination Skills of Parties 

C
h

a
n

g
es

 

C1 
Occurrence of Variations  
Occurrence of Changes 
Occurrence of Unexpected Events 

D
el

a
y

 

D1 Ratio of Extensions to Total Planned  
Project Duration 

 

As it can be seen from Table 2.10, dispute occurrence is associated with attributes 

related to project characteristics, skills, changes, and delay. These attributes will be 

tested further in order to achieve attribute elimination through Chi-Square tests so that, 

only the attributes that significantly impact the output (dispute occurrence) will 

remain.  
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The next table (Table 2.11) shows the potential compensations framework, which 

includes input variables associated with the output, ‘O2 – Potential Compensation’. 

Table 2.11. Potential Compensation Framework 

Output 

Variable 
Predictor Input Variables 

 ID Attribute 

O2 – Potential 

Compensation 

P
ro

je
ct

 C
h

a
r
a
ct

er
is

ti
c
s 

PC1 Project Location 
PC2 Project or Contract Value 
PC3 Planned Project Duration 
PC4 Type of Construction 
PC5 Type of Contractor 
PC6 Type of Employer 
PC7 Type of Contract 
PC8 Payment Method of Contract 
PC9 Project Delivery System 
PC10 Level of Design Complexity 
PC11 Level of Construction Complexity 

S
k

il
ls

 

S1 Relationship between Parties / Individuals 
S2 Previous Experience with Each Other or Reputation 
S3 Dispute Avoidance Incentives 
S4 Communication between Parties 
S5 Working Culture & Skills of Parties 
S6 Response Rate & Communication Skills of Parties 
S7 Experience of Parties 
S8 Project Management & Coordination Skills of Parties 

C
h

a
n

g
es

 

C1 
Occurrence of Variations  
Occurrence of Changes 
Occurrence of Unexpected Events 

D
el

a
y

 

D1 Ratio of Extensions to Total Planned  
Project Duration 

D
is

p
u

te
 C

h
a

ra
ct

er
is

ti
cs

 DC1 Disputant Party 
DC2 Phase of Occurrence 
DC3 Dispute Sources 
DC4 Suspension of Works due to Disputes 
DC5 Disputed Amount (Financially) 
DC8 Presence of EoT Claim 
DC9 Disputed EoT Amount 
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As it can be seen from Table 2.11, potential compensation to a dispute is associated 

with attributes related to project characteristics, skills, changes, delay, and dispute 

characteristics. However, it should be noted that not all dispute characteristics 

attributes are included in this prediction model. The variables that cannot be known 

prior to selection of a resolution method (i.e. settled amount) are not included in the 

model. Similar to the dispute occurrence prediction model, given attributes will be 

tested further in order to end up with attributes significantly affecting the output 

(potential compensation).  

The next table (Table 2.12) shows the resolution method framework along with input 

variables associated with the output, ‘O3 – Resolution Method’. 

Table 2.12. Resolution Method Framework 

Output 

Variable 
Predictor Input Variables 

 ID Attribute 

O3 – 

Resolution 

Method 

P
ro

je
ct

 C
h

a
r
a
ct

er
is

ti
c
s 

PC1 Project Location 
PC2 Project or Contract Value 
PC3 Planned Project Duration 
PC4 Type of Construction 
PC5 Type of Contractor 
PC6 Type of Employer 
PC7 Type of Contract 
PC8 Payment Method of Contract 
PC9 Project Delivery System 
PC10 Level of Design Complexity 
PC11 Level of Construction Complexity 

S
k

il
ls

 

S1 Relationship between Parties / Individuals 
S2 Previous Experience with Each Other or Reputation 
S3 Dispute Avoidance Incentives 
S4 Communication between Parties 
S5 Working Culture & Skills of Parties 
S6 Response Rate & Communication Skills of Parties 
S7 Experience of Parties 
S8 Project Management & Coordination Skills of Parties 
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Table 2.12. Resolution Method Framework (Continued) 

Output 

Variable 
Predictor Input Variables 

 ID Attribute 

O3 – 

Resolution 

Method 

C
h

a
n

g
es

 

C1 
Occurrence of Variations  
Occurrence of Changes 
Occurrence of Unexpected Events 

D
el

a
y

 

D1 Ratio of Extensions to Total Planned  
Project Duration 

D
is

p
u

te
 C

h
a

ra
ct

er
is

ti
cs

 

DC1 Disputant Party 
DC2 Phase of Occurrence 
DC3 Dispute Sources 
DC4 Suspension of Works due to Disputes 
DC5 Disputed Amount (Financially) 
DC6 Settled Amount (Financially) 
DC7 Success Rate (Financially) 
DC8 Presence of EoT Claim 
DC9 Disputed EoT Amount 
DC10 Settled EoT Amount 
DC11 Success Rate (EoT) 

R
es

o
lu

ti
o
n

 M
et

h
o

d
 C

h
a

ra
ct

er
is

ti
cs

 

RM1 Resolution Cost 
RM2 Resolution Duration 
RM3 Level of Satisfaction with the Resolution Method 
RM4 Importance of Preserving Relationships btw. Parties 
RM5 Importance of Speed of Resolution 
RM6 Importance of Cost of Resolution 
RM7 Importance of Bindingness of the Process 
RM8 Importance of Confidentiality of the Process 
RM9 Importance of Fairness in the Process 
RM10 Importance of Flexibility in Procedures 
RM11 Importance of Control Over the Process 
RM12 Importance of Reaching Creative or Remedying Soln. 
RM13 Importance of Willingness in Reaching Soln. 

L
ev

el
 o

f 
R

es
. 

M
et

h
o
d

 K
n

o
w

. K1 Level of Knowledge on Litigation 
K2 Level of Knowledge on Arbitration 
K3 Level of Knowledge on DRB 
K4 Level of Knowledge on Mediation 
K5 Level of Knowledge on Senior Executive Appraisal 
K6 Level of Knowledge on Negotiation 
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As it can be seen from Table 2.12, dispute resolution method selection is associated 

with attributes related to project characteristics, skills, changes, delay, dispute 

characteristics, resolution method characteristics, and level of resolution method 

knowledge. As details will be given in following chapters, level of resolution method 

knowledge includes information about six methods only. This is because the collected 

dataset is composed of dispute cases resolved by these six methods. Similar to dispute 

occurrence and potential compensation prediction models, given attributes will be 

tested further in order to end up with attributes significantly affecting the output 

(resolution method).  

 

 

Figure 2.3. The Conceptual Model 

The finalized conceptual model is shown in Figure 2.3. The model shows the dispute 

occurrence is associated with project characteristics, skills, changes, and delays 

attributes. Then, dispute characteristics are added to these attributes and they are 

linked to potential compensations all together. Finally, resolution method selection is 

O
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associated with all the previous attributes in addition to the remaining dispute 

characteristics, resolution method characteristics and level of resolution method 

knowledge attributes. 

In short, the conceptual model that will be used for development of prediction models 

is finalized. The conceptual model is based on findings of an extensive literature 

survey on construction dispute domain. According to these findings, firstly, the output 

variables are identified as ‘O1 – Dispute Occurrence’, ‘O2 – Potential Compensation’, 

and ‘O3 – Resolution Method’. This means that this thesis study should focus on 

development of three distinct prediction models as (1) Dispute Occurrence Prediction 

Model, (2) Potential Compensation Prediction Model, and (3) Resolution Method 

Selection Model. Following the determination of output variables for prediction 

models, input variables associated with each output are identified. In other words, the 

conceptual model is composed of identified input and output variables from the 

literature and the resulting conceptual model will be used for designing a questionnaire 

to collect empirical data related to these variables. Subsequent to empirical data 

collection, attributes of each prediction model will be tested further in order to identify 

the variables that have significant impact on outputs and to eliminate the insignificant 

ones. Starting with the next chapter, details related to questionnaire design depending 

on the developed conceptual model, empirical data collection, and tests of associations 

between inputs and outputs will be given. 
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CHAPTER 3  

 

3. DEVELOPMENT OF PREDICTION MODELS 

 

This chapter focuses on development of prediction models as (1) Dispute Occurrence 

Prediction Model, (2) Potential Compensation Prediction Model, and (3) Resolution 

Method Selection Model. In order to develop the mentioned prediction models, the 

following steps need to be accomplished: 

1) Design of a questionnaire based on the conceptual model to collect past 

construction project data, 

2) Empirical data collection via questionnaires, 

3) Establishment of the dispute database by processing the collected data, 

4) Performing attribute elimination by identifying input variables that are 

significantly associated with the outputs via Chi-Square statistics to achieve 

better generalization performance from ML algorithms. 

In accordance with these steps, this chapter starts with the questionnaire design and 

explains the efforts for empirical data collection via designed questionnaires along 

with the general profile of the collected data. Then, data processing efforts will be 

explained such as data type conversions. Finally, Chi-Square tests of association will 

be performed on variables in order to eliminate the insignificant attributes. As a result 

of these activities, three distinct prediction models will be developed.  

3.1. DESIGN OF THE QUESTIONNAIRE 

There are numerous studies on construction dispute and resolution domains in the 

literature. However, there are only few studies focusing on interrelations between 

disputes and various project characteristics based on empirical data (İlter and Dikbaş, 

2009). Thus, in order to fulfill this gap, this research aims to collect past project data 
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via questionnaires conducted on decision-making authorities. The collected data will 

be used in development of prediction models later. 

To collect the empirical data, this research designed its own questionnaire. The 

designed questionnaire aims to collect information related to input and output 

variables identified in the conceptual model (Section 2.3.3). Thus, the designed 

questionnaire will have questions related to three outputs (dispute occurrence, 

potential compensations, and resolution methods) and the associated impacting input 

attributes (attributes related to project characteristics, skills, changes, delays, dispute 

characteristics, resolution method characteristics, and level of knowledge on 

resolution methods).  

The full version of the questionnaire can be found in Appendix A of this thesis study. 

Mainly, there are nine sections in the questionnaire. The first section aims to gather 

information about the participant. In order to obtain opinions of decision-making 

authorities from different professions, questionnaires are conducted with legal 

representatives (i.e. legal advisors, attorneys), architects, and engineers. Moreover, to 

understand the standing point of various management levels, authorized project 

participants with different roles ranging from the owner of the company to the project 

engineer are selected. Participants’ experience in the construction industry and in their 

current position are also noted. In the second section, information related to project 

and contract characteristics are compiled. According to the conceptual model, there 

are 11 project characteristics related attributes and questions aiming to collect data 

about these 11 attributes are in the second section of the questionnaire. In the third 

section, data related to characteristics of parties and their organizational structures 

(eight attributes from the ‘Skills’ category of the conceptual model) are collected. In 

the fourth section, information related to changes are collected. In the fifth section, 

information related to dispute characteristics are compiled. According to the 

conceptual model, there are 11 dispute characteristics related attributes and questions 

aiming to collect data about these attributes are in the fifth section of the questionnaire. 

In the sixth section, information related to delays are collected. The seventh section 
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contains questions related to resolution method characteristics. According to the 

conceptual model, there are 13 resolution method characteristics related attributes that 

should be collected in this section of the questionnaire. The eighth section identifies 

the level of knowledge of participants on various resolution methods. Finally, the ninth 

section identifies participants’ interest in using prediction models that will be 

developed in this research.  

Table 3.1 shows the list of attributes and the corresponding question(s) from the 

questionnaire.  

Table 3.1. Attributes and Corresponding Question(s) 

Attribute 

ID 

Corresponding 

Question(s) 

Attribute 

ID 

Corresponding 

Question(s) 

Attribute 

ID 

Corresponding 

Question(s) 

PC1 Q7 S7 Q26 - Q27 RM3 Q48 
PC2 Q8 S8 Q28 - Q29 RM4 Q49a 
PC3 Q9 - Q9a - Q9b C1 Q30a-30b-Q30c RM5 Q49b 
PC4 Q10 D1 Q44a - Q44b RM6 Q49c 
PC5 Q11 DC1 Q33 RM7 Q49d 
PC6 Q12 DC2 Q34 RM8 Q49e 
PC7 Q13 DC3 Q35 RM9 Q49f 
PC8 Q14 DC4 Q36 RM10 Q49g 
PC9 Q15 DC5 Q37 RM11 Q49h 
PC10 Q16 DC6 Q38 RM12 Q49i 
PC11 Q17 DC7 Q39 RM13 Q49j 
S1 Q18 DC8 Q40 K1 Q50 
S2 Q19 DC9 Q41” K2 Q51 
S3 Q20 DC10 Q42 K3 Q52 
S4 Q21 DC11 Q43 K4 Q53 
S5 Q22 - Q23 RM1 Q46 K5 Q54 
S6 Q24 - Q25 RM2 Q47 K6 Q55 

 

3.2. EMPIRICAL DATA COLLECTION VIA QUESTIONNAIRES 

Questionnaires are conducted via face-to-face and online meetings with construction 

professionals that have decision-making authority in order to collect empirical data 

related to past construction projects. With the goal of reflecting variations in 

construction types, contract documents, participants, delivery systems, business 

environments, etc., the data is collected from a wide variety of construction projects. 
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The collected dataset involves data related to all variables identified in the conceptual 

model. 

Data related to 108 construction projects are collected via questionnaires. The dispute 

prediction model utilizes a dataset composed of all 108 construction projects (38 

undisputed projects and 70 disputed projects), while the compensation model utilizes 

82 cases (12 cases with no compensation, 38 cases with only cost compensation, 5 

cases with only time compensation, and 27 cases with both cost and time 

compensation) out of the 108 cases collected. Notice that compensation model utilizes 

82 cases, which is more than the number of disputed projects (70 disputed projects) in 

the dataset. However, some projects experienced more than one dispute. This is the 

reason why there are more disputed cases than disputed projects in the dataset. These 

82 cases are the cases in which participants declared satisfaction with the 

compensation. Finally, the resolution method model utilizes 54 disputed cases coming 

from 82 disputes. These 54 disputed cases are the ones that are resolved satisfactorily 

according to participants. 

3.2.1. Profile of Participants in the Dataset 

As stated above, the dataset for this research involves 108 construction projects, which 

are executed in 19 different countries. These projects are obtained from 75 different 

construction companies from six different nationalities via face-to-face and online 

meetings with 78 individuals. Among these 75 companies, 16 of them (21.3%) are 

placed in the Engineering News-Record (ENR) Top 250 International Contractors List 

in 2018, which is an international index ranking the contractors all around the world 

according to their contracting revenues, and 21 project data (19.4%) is obtained from 

these companies (ENR, 2018). Thus, approximately 20% of the dataset reflects the 

top-level construction companies in the world (Figure 3.1). 

In order to obtain opinions of different professions, participants are chosen from three 

groups of professions, which involve legal representatives (i.e. legal advisors, 

attorneys), architects, and engineers. The inner doughnut chart in Figure 3.2 shows 
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that among 78 individuals, 58 of them were engineers (74.4%), 15 of them were legal 

representatives (19.2%), and 5 of them were architects (6.4%). 

 

Figure 3.1. Overview of Companies and Projects in the Dataset 

The outer doughnut chart in Figure 3.2 shows that the dataset is composed of 82 

construction projects (75.9%) obtained from engineers, 20 projects (18.5%) from legal 

representatives, and 6 projects (5.6%) from architects.  

 

 

Figure 3.2. Overview of Professions of Participants in the Dataset 
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Dispute rates with respect to professions of participants are given in Figure 3.3. It can 

be observed that when the decision-maker is a legal representative, construction 

projects tend to experience more disputes with a rate of 80%. It is followed by 

engineers with 62% dispute rate and architects with 50%. 

 

 

Figure 3.3. Dispute Rates with respect to Professions 
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management levels and their decision-making rationale should be understood. For this 

reason, the data is collected from participants having a wide variety of roles ranging 

from the owner of the company to the project engineer. Figure 3.4 shows the number 

of projects obtained from each role on the top and the distribution of roles of 

participants on the bottom. 

 

 

Figure 3.4. Overview of Roles of Participants in the Dataset 
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Dispute rates with respect to roles of participants are given in Figure 3.5. Regardless 

of the role in the industry, dispute rates are significantly high for all positions. 

Specifically, claim or dispute managers tend to arise disputes more than any other 

participants do (100%). 

 

 

Figure 3.5. Dispute Rates with respect to Roles 
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participants in the construction industry quantitywise on the top and percentagewise 

on the bottom. 

 

 

 

Figure 3.6. Level of Experience of Participants 
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Figure 3.7. Overview of Projects with respect to Dispute Occurrence 
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Figure 3.8. Overview of Projects with respect to Compensations 
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litigation process in 9 cases, arbitration in 6 cases, DRB in 5 cases, mediation in 5 

cases, SEA in 10 cases, and negotiation in 19 cases. Figure 3.9 shows the overview of 

projects in the dataset with respect to utilized resolution method. According to this, 

the most preferred method of resolution is the negotiation that achieved successful 

resolution in 35% of all cases. Considering this and advantages of negotiation 

mentioned in Section 2.2.2.4, it can be claimed that it is beneficial for the construction 

industry to utilize negotiation processes. Moreover, the SEA method, which can be 

viewed as a form of negotiation performed under supervision of senior executives of 

parties, is the second most preferred method of resolution. However, participants 

resorted to litigation in 17% of cases in the dataset, which makes it the third most 

preferred resolution method. Considering the claim that litigation should be avoided 

even with the best outcomes (PMI, 2016) and the consensus in the literature on 

litigation avoidance (Chen and Hsu, 2007; Chau, 2007; Chen, 2008; Pulket and Arditi, 

2009b; Cheung et al., 2010), the situation in the dataset poses a contradiction. 

Similarly, another traditional method, the arbitration, follows these three methods with 

a preference rate of 11%. Other ADR techniques utilized for disputed cases are DRB 

(9%) and mediation (9%). Their preference rates are relatively low considering the 

need for utilizing ADR techniques in the construction industry. 

 

 

Figure 3.9. Overview of Projects with respect to Utilized Resolution Method 
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3.2.3. Profile of Projects in the Dataset with respect to Input Variables 

Categorical labels and frequencies of each input variable (attribute) in the dataset will 

be given in this section. When these frequencies are reviewed, it can be seen that the 

dataset is capable of representing various characteristics. Thus, categorical labels and 

frequencies for each attribute category will be given in separate tables for further 

investigation.  

Table 3.2 shows categorical labels and frequencies of project characteristics attributes 

in the dataset. Frequencies are given for all three models separately in the same table. 

Categorical labels for some of the attributes are organized. Firstly, project location 

attribute is divided into two categories as domestic and international projects. 

Domestic projects are the ones that are constructed in the home country of the 

construction company, while international ones involve parties from distinct 

countries. Secondly, although the project value attribute is numeric, it is converted 

into categorical values. Such a data type conversion is performed for computational 

reasons. In order to understand whether there is a statistically significant relationship 

between input and output variables, Chi-Square statistics will be utilized. Chi-Square 

statistics is a useful way of testing the existence of association between categorical 

variables (Weisburd and Britt, 2007) and it is one of the most effective methods in 

testing the hypothesis between two categorical variables (McHugh, 2013). 

Remembering that output variables in this research are all categorical variables, 

numeric input variables should also be converted into categorical values to be able to 

apply the Chi-Square tests. However, if the discretization process removes 

distinguishing features, the data type conversion may harm accuracy of classification 

algorithms. For this reason, special care should be given in such data type conversions. 

Projects in the dataset have values ranging from 172 thousand to 2.9 billion U.S. 

Dollars; however, they are discretized as (1) small projects with values less than 10 

million U.S. Dollars, (2) medium sized projects with values between 10 to 100 million 

U.S. Dollars, and (3) large projects with values greater than 100 million U.S. Dollars.  
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Table 3.2. Project Characteristics Attributes - Categorical Labels & Frequencies 

Attr. 

ID Attribute Categorical Label 

Frequency in the Dataset 

Dispute 

Occurrence 

Potential 

Compensation 

Resolution 

Method 

PC1 Project 
Location 

1 Domestic 80 (74.1%) 50 (61.0%) 30 (55.6%) 
2 International 28 (25.9%) 32 (39.0%) 24 (44.4%) 

PC2 
Project or 
Contract 
Value 

1 < 10 million $ 44 (40.7%) 21 (25.6%) 13 (24.1%) 
2 10 - 100 million $ 35 (32.4%) 27 (32.9%) 19 (35.2%) 
3 > 100 million $ 29 (26.9%) 34 (41.5%) 22 (40.7%) 

PC3 
Planned 
Project 
Duration 

1 < 1 year 31 (28.7%) 13 (15.9%) 8 (14.8%) 
2 1 - 2 years 37 (34.3%) 25 (30.5%) 17 (31.5%) 
3 2 - 3 years 21 (19.4%) 16 (19.5%) 14 (25.9%) 
4 > 3 years 19 (17.6%) 28 (34.1%) 15 (27.8%) 

PC4 Type of 
Construct. 

1 Housing 18 (16.7%) 16 (19.5%) 11 (20.4%) 
2 Commercial 10 (9.3%) 13 (15.9%) 6 (11.1%) 
3 Industrial 12 (11.1%) 7 (8.5%) 6 (11.1%) 
4 Transportation 17 (15.7%) 16 (19.5%) 13 (24.1%) 
5 Pow.Plants&Lines 8 (7.4%) 3 (3.7%) 2 (3.7%) 
6 WaterSupp.&Reser. 10 (9.3%) 9 (11.0%) 4 (7.4%) 
7 Sport&Cult.&Edu. 11 (10.2%) 8 (9.8%) 5 (9.3%) 
8 Medical 7 (6.5%) 3 (3.7%) 3 (5.6%) 
9 Public 6 (5.6%) 4 (4.9%) 3 (5.6%) 
10 Soil Works 9 (8.3%) 3 (3.7%) 1 (1.9%) 

PC5 Type of 
Contractor 

1 Single 88 (81.5%) 65 (79.3%) 43 (79.6%) 
2 Joint Venture 11 (10.2%) 11 (13.4%) 7 (13.0%) 
3 Consortium 9 (8.3%) 6 (7.3%) 4 (7.4%) 

PC6 Type of 
Employer 

1 Public 52 (48.1%) 42 (51.2%) 25 (46.3%) 
2 Private 43 (39.8%) 31 (37.8%) 22 (40.7%) 
3 PPP 13 (12.0%) 9 (11.0%) 7 (13.0%) 

PC7 Type of 
Contract 

1 Private Contracts 53 (49.1%) 43 (52.4%) 29 (53.7%) 
2 Public Procurement 36 (33.3%) 18 (22.0%) 8 (14.8%) 
3 FIDIC Red 10 (9.3%) 15 (18.3%) 11 (20.4%) 
4 FIDIC Silv./Yellow 9 (8.3%) 6 (7.3%) 6 (11.1%) 

PC8 Payment 
Method 

1 Fixed (Lump-Sum) 58 (53.7%) 44 (53.7%) 25 (46.3%) 
2 Unit Price 50 (46.3%) 38 (46.3%) 29 (53.7%) 

PC9 
Project 
Delivery 
System 

1 DBB 67 (62.0%) 49 (59.8%) 34 (63.0%) 
2 DB 26 (24.1%) 22 (26.8%) 10 (18.5%) 
3 EPC 15 (13.9%) 11 (13.4%) 10 (18.5%) 

PC10 
Level of 
Design 
Complex. 

1 Very Low 13 (12.0%) 14 (17.1%) 9 (16.7%) 
2 Low 16 (14.8%) 8 (9.8%) 6 (11.1%) 
3 Moderate 20 (18.5%) 14 (17.1%) 10 (18.5%) 
4 High 37 (34.3%) 28 (34.1%) 19 (35.2%) 
5 Very High 22 (20.4%) 18 (22.0%) 10 (18.5%) 

PC11 
Level of 
Construct. 
Complex. 

1 Very Low 9 (8.3%) 9 (11.0%) 5 (9.3%) 
2 Low 15 (13.9%) 9 (11.0%) 7 (13.0%) 
3 Moderate 19 (17.6%) 13 (15.9%) 8 (14.8%) 
4 High 38 (35.2%) 30 (36.6%) 20 (37.0%) 
5 Very High 27 (25.0%) 21 (25.6%) 14 (25.9%) 
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A similar discretization is also performed for planned project duration attribute. This 

numeric attribute has values between 36 days to 2160 days. However, it is converted 

into a categorical variable as (1) very short projects with planned project duration less 

than 1 year, (2) short projects with duration between 1 to 2 years, (3) long projects 

with duration between 2 to 3 years, and (4) very long projects with planned project 

duration more than 3 years. All other project characteristics attributes are categorical 

variables and no further data type conversion is needed.  

Some input variables reveal their patterns in the dataset at first glance. For example, 

the increase in the contract values cause a proportional increase in dispute rates (Figure 

3.10). The highest dispute rate is observed for the group of projects with the highest 

contract values (86%), while projects with the lowest contract values have the lowest 

dispute occurrence rate (48%). The medium sized projects encounter disputes with a 

rate of 69%. Thus, it can be claimed that as the contract value increases, the dispute 

occurrence rate also increases for this dataset.  

 

 

Figure 3.10. Dispute Rates with respect to Contract Values 
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dispute rate. The highest dispute occurrence rate is observed for the group of projects 

with the longest planned project duration (100%) and this rate decreases with the 

decreasing project duration. Long projects with planned duration between 2 and 3 

years exhibit 71% dispute rate, short projects with planned duration between 1 and 2 

years encounter 62% dispute occurrence, and very short projects with planned 

duration less than 1 year have the lowest dispute rate with 42%.  

 

 

Figure 3.11. Dispute Rates with respect to Planned Project Duration 
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Figure 3.12. Dispute Rates with respect to Project Location 

Table 3.3 shows categorical levels and frequencies of skills attributes in the dataset. 

Frequencies are given for all three models in the same table. For each attribute, Level 

1 corresponds to weakest (worst) level and Level 5 to strongest (best) level. 

Table 3.3. Skills Attributes – Levels & Frequencies 

Attr. 

ID Attribute Levels 

Frequency in the Dataset 

Dispute 

Occurrence 

Potential 

Compensation 

Resolution 

Method 

S1 
Relationship 
between 
Parties / Individuals 

Level 1  10 (9.3%) 11 (13.4%) 3 (5.6%) 
Level 2 14 (13.0%) 15 (18.3%) 9 (16.7%) 
Level 3 12 (11.1%) 14 (17.1%) 11 (20.4%) 
Level 4 48 (44.4%) 35 (42.7%) 25 (46.3%) 
Level 5 24 (22.2%) 7 (8.5%) 6 (11.1%) 

S2 
Previous Experience 
with Each Other or 
Reputation 

Level 1  2 (1.9%) 3 (3.7%) 1 (1.9%) 
Level 2 7 (6.5%) 9 (11.0%) 5 (9.3%) 
Level 3 20 (18.5%) 16 (19.5%) 11 (20.4%) 
Level 4 42 (38.9%) 31 (37.8%) 21 (38.9%) 
Level 5 37 (34.3%) 23 (28.0%) 16 (29.6%) 

S3 Dispute Avoidance 
Incentives 

Level 1  46 (42.6%) 37 (45.1%) 26 (48.1%) 
Level 2 3 (2.8%) 4 (4.9%) 4 (7.4%) 
Level 3 16 (14.8%) 15 (18.3%) 7 (13.0%) 
Level 4 21 (19.4%) 10 (12.2%) 9 (16.7%) 
Level 5 22 (20.4%) 16 (19.5%) 8 (14.8%) 

S4 Communication 
between Parties 

Level 1 7 (6.5%) 7 (8.5%) 2 (3.7%) 
Level 2 18 (16.7%) 18 (22.0%) 10 (18.5%) 
Level 3 25 (23.1%) 24 (29.3%) 16 (29.6%) 
Level 4 34 (31.5%) 22 (26.8%) 16 (29.6%) 
Level 5 24 (22.2%) 11 (13.4%) 10 (18.5%) 

S5-1 
Working Culture & 
Skills of 
Represented Party 

Level 1 1 (0.9%) 1 (1.2%) 1 (1.9%) 
Level 2 7 (6.5%) 7 (8.5%) 4 (7.4%) 
Level 3 20 (18.5%) 21 (25.6%) 16 (29.6%) 
Level 4 45 (41.7%) 25 (30.5%) 17 (31.5%) 
Level 5 35 (32.4%) 28 (34.1%) 16 (29.6%) 

 

59%

82%

0%
20%
40%
60%
80%

100%

D
is

pu
te

d 
Pr

oj
ec

ts
 %

Project Location
Domestic International



 

 
 

103 
 

Table 3.3. Skills Attributes – Levels & Frequencies (Continued) 

Attr. 

ID Attribute Levels 

Frequency in the Dataset 

Dispute 

Occurrence 

Potential 

Compensation 

Resolution 

Method 

S5-2 
Working Culture & 
Skills of Counter 
Party 

Level 1 18 16.7% 22 26.8% 11 20.4% 
Level 2 17 15.7% 15 18.3% 8 14.8% 
Level 3 29 26.9% 21 25.6% 16 29.6% 
Level 4 27 25.0% 17 20.7% 14 25.9% 
Level 5 17 15.7% 7 8.5% 5 9.3% 

S6-1 

Response Rate & 
Communication 
Skills of 
Represented Party 

Level 1 3 2.8% 4 4.9% 4 7.4% 
Level 2 6 5.6% 5 6.1% 3 5.6% 
Level 3 24 22.2% 18 22.0% 12 22.2% 
Level 4 42 38.9% 26 31.7% 19 35.2% 
Level 5 33 30.6% 29 35.4% 16 29.6% 

S6-2 

Response Rate & 
Communication 
Skills of  
Counter Party 

Level 1 19 17.6% 22 26.8% 11 20.4% 
Level 2 21 19.4% 15 18.3% 14 25.9% 
Level 3 24 22.2% 19 23.2% 12 22.2% 
Level 4 26 24.1% 18 22.0% 15 27.8% 
Level 5 18 16.7% 8 9.8% 2 3.7% 

S7-1 Experience of 
Represented Party 

Level 1 1 0.9% 1 1.2% 1 1.9% 
Level 2 3 2.8% 3 3.7% 3 5.6% 
Level 3 15 13.9% 14 17.1% 8 14.8% 
Level 4 33 30.6% 25 30.5% 19 35.2% 
Level 5 56 51.9% 39 47.6% 23 42.6% 

S7-2 Experience of 
Counter Party 

Level 1 11 10.2% 10 12.2% 5 9.3% 
Level 2 16 14.8% 16 19.5% 13 24.1% 
Level 3 22 20.4% 16 19.5% 9 16.7% 
Level 4 30 27.8% 25 30.5% 20 37.0% 
Level 5 29 26.9% 15 18.3% 7 13.0% 

S8-1 

Project 
Management & 
Coordination Skills 
of  
Represented Party 

Level 1 1 0.9% 1 1.2% 0 0.0% 
Level 2 4 3.7% 5 6.1% 5 9.3% 
Level 3 22 20.4% 21 25.6% 13 24.1% 
Level 4 50 46.3% 33 40.2% 21 38.9% 
Level 5 31 28.7% 22 26.8% 15 27.8% 

S8-2 

Project 
Management & 
Coordination Skills 
of  
Counter Party 

Level 1 10 9.3% 9 11.0% 4 7.4% 
Level 2 26 24.1% 23 28.0% 15 27.8% 
Level 3 32 29.6% 31 37.8% 21 38.9% 
Level 4 31 28.7% 18 22.0% 13 24.1% 
Level 5 9 8.3% 1 1.2% 1 1.9% 

 

Table 3.4 shows categorical labels and frequencies of changes. Frequencies are given 

for all three models separately in the same table. In this attribute category, changes, 

variations, and unexpected events are considered as indicators for changes. 

Occurrence of any one these events is considered as occurrence of a change and if 

none of them occurred, it is considered as no change. 
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Table 3.4. Changes – Categorical Labels & Frequencies 

Attr. 

ID Attribute Categorical Label 

Frequency in the Dataset 

Dispute 

Occurrence 

Potential 

Compensation 

Resolution 

Method 

C1 Changes 0 No 67 (62.0%) 30 (36.6%) 22 (40.7%) 
1 Yes 41 (38.0%) 52 (63.4%) 32 (59.3%) 

 

As stated earlier, the ratio of extensions to total planned project duration is considered 

as delay indicator. However, this numeric attribute should be converted into a 

categorical one. Thus, the delay attribute is categorized as (1) ratio equals to 0% (no 

extension), (2) ratio between 0% and 20%, (3) ratio between 20% and 40%, and (4) 

ratio greater than 40%. Table 3.5 shows categorical labels and frequencies related to 

delays. Frequencies are given for all three models separately in the same table. 

Table 3.5. Delays – Categorical Labels & Frequencies 

Attr. 

ID Attribute Categorical Label 

Frequency in the Dataset 

Dispute 

Occurrence 

Potential 

Compensation 

Resolution 

Method 

D1 Delays 

1 Ratio = 0% 44 (40.7%) 21 (25.6%) 15 (27.8%) 
2 Ratio 0% - 20% 24 (22.2%) 21 (25.6%) 11 (20.4%) 
3 Ratio 20%  40% 17 (15.7%) 17 (20.7%) 9 (16.7%) 
4 Ratio > 40% 23 (21.3%) 23 (28.1%) 19 (35.2%) 

 

Figure 3.13 is dispute rates with respect to delays (ratio of time extensions to planned 

project duration), which shows that the higher the delay, the higher the dispute rate in 

general. The highest dispute rate (94%) is observed for the group of projects with 

delay ratio between 20% and 40%, while the second highest dispute rate is observed 

for projects with delay ratio greater than 40% (78%). The dispute occurrence rate 

drops to 63% for projects with delay ratio between 0% and 20%. For projects with no 

extensions, the dispute occurrence rate is 48%.  
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Figure 3.13. Dispute Rates with respect to Delays 

Table 3.6 shows categorical labels and frequencies of dispute characteristics attributes 

in the dataset. Dispute characteristics attributes are not taken as inputs in dispute 

occurrence models. Therefore, frequencies are given for potential compensation and 

resolution method models only. In addition, DC6 – Settled Amount (Financially), DC7 

– Success Rate (Financially), DC10 – Settled EoT Amount, and DC11 – Success Rate 

(EoT) are not used as inputs in potential compensation model. Therefore, 

corresponding cells in Table 3.6 are empty. Finally, numeric dispute characteristics 

attributes (disputed amount (financially), settled amount (financially), success rate 

(financially), disputed EoT amount, settled EoT amount, success rate (EoT)) are 

converted to categorical variables. 

The lowest financial dispute amount in the dataset is 22 thousand U.S. Dollars and the 

highest one is 330 million U.S. Dollars. Meanwhile, the settlement amount is between 

0 and 170 million U.S Dollars. The success rate in acquiring the disputed amount 

varies from 0% to 100%. Similarly, the shortest EoT dispute is 60 days and the longest 

is 1100 days, while EoT settlement is between 0 and 800 days. The success rate in 

acquiring the disputed EoT varies from 0% to 100%. All these numeric attributes are 

converted to categorical values for computational reasons explained earlier. 
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Table 3.6. Dispute Characteristics Attributes – Categorical Labels & Frequencies 

Attr.

ID Attribute Categorical Label 

Frequency in the Dataset 

Potential 

Compensation 

Resolution 

Method 

DC1 Disputant 
Party 

1 Owner / Employer  11 13.4% 9 16.7% 
2 Contractor 71 86.6% 45 83.3% 

DC2 Phase of 
Occurrence 

1 Planning&Design&Tender&Procurement 2 2.4% 0 0.0% 
2 Construction 69 84.1% 47 87.0% 
3 Transfer & Repair & Maintenance 11 13.4% 7 13.0% 

DC3 Dispute 
Source 

1 Cost compensation of change orders 7 8.5% 3 5.6% 
2 Time & Cost compensation of change orders 21 25.6% 17 31.5% 
3 Measurement & valuation of contracted works 6 7.3% 6 11.1% 
4 Extended overhead due to extensions 1 1.2% 0 0.0% 
5 Delay in site handover & possession 4 4.9% 3 5.6% 
6 Defects, errors and poor quality 8 9.8% 6 11.1% 
7 Contractor fails to act as a prudent merchant 8 9.8% 6 11.1% 
8 Delays in payments 7 8.5% 3 5.6% 
9 Errors or substantial changes in BoQ 4 4.9% 4 7.4% 
10 Inadequate site or soil investigation 8 9.8% 5 9.3% 
11 Interpretation of contract clauses 8 9.8% 1 1.9% 

DC4 Suspension 
of Works 

0 No 52 63.4% 33 61.1% 
1 Yes 30 36.6% 21 38.9% 

DC5 
Disputed 
Amount 
(Financially) 

1 < 5 million $ 39 47.6% 24 44.4% 
2 5 - 25 million $ 22 26.8% 15 27.8% 
3 25 - 75 million $ 9 11.0% 8 14.8% 
4 > 75 million $ 12 14.6% 7 13.0% 

DC6 
Settled 
Amount 
(Financially) 

1 0 $ 

- - 

3 5.6% 
2 < 1 million $ 15 27.8% 
3 1 - 5 million $ 15 27.8% 
4 5 - 25 million $ 9 16.7% 
5 > 25 million $ 12 22.2% 

DC7 
Success 
Rate 
(Financially) 

1 0% 

- - 

1 1.9% 
2 0% - 25% 1 1.9% 
3 25% - 50% 14 25.9% 
4 50% - 75% 19 35.2% 
5 > 75% 19 35.2% 

DC8 Presence of 
EoT Claim 

0 No 46 56.1% 28 51.9% 
1 Yes 36 43.9% 26 48.1% 

DC9 
Disputed 
EoT 
Amount 

1 0 days 46 56.1% 28 51.9% 
2 0 - 6 months 13 15.9% 10 18.5% 
3 6 months - 1 year 11 13.4% 6 11.1% 
4 > 1 year 12 14.6% 10 18.5% 

DC10 
Settled  
EoT 
Amount 

1 0 days 

- - 

29 53.7% 
2 0 - 6 months 9 16.7% 
3 6 months - 1 year 8 14.8% 
4 > 1 year 8 14.8% 

DC11 
Success 
Rate  
(EoT) 

1 0% 

- - 

29 53.7% 
2 0% - 25% 0 0.0% 
3 25% - 50% 0 0.0% 
4 50% - 75% 4 7.4% 
5 > 75% 21 38.9% 
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Table 3.7 shows categorical labels and frequencies of resolution method 

characteristics attributes in the dataset. Resolution method characteristics attributes 

are not taken as inputs in dispute occurrence and potential compensation models. 

Therefore, frequencies are given for resolution method model only. Moreover, as 

stated earlier, the resolution method model utilizes 54 disputes coming from 82 

disputed cases. These 54 disputed cases are the ones that are resolved satisfactorily 

according to participants. In other words, 54 cases in this dataset are the cases that 

have level of satisfaction with the resolution method (attribute RM3) higher than Level 

3. Here, Level 1 corresponds to the weakest (worst) level and Level 5 corresponds to 

the strongest (best) level. In addition, 10 resolution method characteristics are ranked 

according to their importance for the decision-maker. These 10 characteristics are; (1) 

RM4 – Preserving relationships between parties, (2) RM5 – Speed of resolution, (3) 

RM6 – Cost of resolution, (4) RM7 – Bindingness of the process, (5) RM8 – 

Confidentiality of the process, (6) RM9 – Fairness in the process, (7) RM10 – 

Flexibility in procedures, (8) RM11 – Control over the process, (9) RM12 – Reaching 

creative or remedying solution, and (10) RM13 – Willingness in reaching solutions. 

Same importance value cannot be given to two different attributes (each importance 

ranking can be given just once for an attribute). Here, Rank 1 corresponds to the most 

important attribute and Rank 10 corresponds to the least important attribute. Finally, 

numeric attributes (RM1 – Resolution Cost and RM2 – Resolution Duration) are 

converted to categorical variables for computational reasons. Costs of resolution for 

the cases in the dataset varies from 0 to 28 million U.S. Dollars. Meanwhile, the 

shortest resolution duration in the dataset is 3 days and the longest is 3650 days. These 

two numeric attributes are converted to categorical values as can be observed from 

Table 3.7. 
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Table 3.7. Resolution Method Characteristics Attributes – Categorical Labels & 

Frequencies 

Attr. 

ID Attribute 

Categorical Label  

(Level or Rank) 

Frequency in the Dataset 

Resolution Method 

RM1 Resolution 
Cost 

1 0 $ 29 53.7% 
2 0 - 100 000 $ 5 9.3% 
3 100 000 - 350 000 $ 7 13.0% 
4 350 000 - 1 000 000 $ 8 14.8% 
5 > 1 000 000 $ 5 9.3% 

RM2 Resolution 
Duration 

1 < 2 weeks 11 20.4% 
2 2 - 4 weeks 10 18.5% 
3 1 - 3 months 16 29.6% 
4 3 - 6 months 2 3.7% 
5 6 months - 2.5 years 8 14.8% 
6 > 2.5 years 7 13.0% 

RM3 

Level of 
Satisfaction 
with the 
Resolution 
Method 

Level 1 0 0.0% 
Level 2 0 0.0% 
Level 3 26 48.1% 
Level 4 13 24.1% 
Level 5 15 27.8% 

RM4 

Importance 
of Preserving 
Relationships 
between 
Parties 

Rank 1 18 33.3% 
Rank 2 3 5.6% 
Rank 3 3 5.6% 
Rank 4 4 7.4% 
Rank 5 9 16.7% 
Rank 6 5 9.3% 
Rank 7 3 5.6% 
Rank 8 0 0.0% 
Rank 9 3 5.6% 
Rank 10 6 11.1% 

RM5 
Importance 
of Speed of 
Resolution 

Rank 1 12 22.2% 
Rank 2 11 20.4% 
Rank 3 6 11.1% 
Rank 4 12 22.2% 
Rank 5 3 5.6% 
Rank 6 3 5.6% 
Rank 7 5 9.3% 
Rank 8 2 3.7% 
Rank 9 0 0.0% 
Rank 10 0 0.0% 

RM6 
Importance 
of Cost of 
Resolution 

Rank 1 5 9.3% 
Rank 2 8 14.8% 
Rank 3 9 16.7% 
Rank 4 9 16.7% 
Rank 5 3 5.6% 
Rank 6 3 5.6% 
Rank 7 9 16.7% 
Rank 8 6 11.1% 
Rank 9 2 3.7% 
Rank 10 0 0.0% 
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Table 3.7. Resolution Method Characteristics Attributes – Categorical Labels & 

Frequencies (Continued) 

Attr. 

ID Attribute 

Categorical Label  

(Level or Rank) 

Frequency in the Dataset 

Resolution Method 

RM7 
Importance of 
Bindingness  
of the Process 

Rank 1 0 0.0% 
Rank 2 5 9.3% 
Rank 3 5 9.3% 
Rank 4 2 3.7% 
Rank 5 8 14.8% 
Rank 6 11 20.4% 
Rank 7 4 7.4% 
Rank 8 10 18.5% 
Rank 9 8 14.8% 
Rank 10 1 1.9% 

RM8 
Importance of 
Confidentiality 
of the Process 

Rank 1 1 1.9% 
Rank 2 2 3.7% 
Rank 3 2 3.7% 
Rank 4 2 3.7% 
Rank 5 0 0.0% 
Rank 6 7 13.0% 
Rank 7 3 5.6% 
Rank 8 3 5.6% 
Rank 9 11 20.4% 
Rank 10 23 42.6% 

RM9 
Importance of 
Fairness in the 
Process 

Rank 1 12 22.2% 
Rank 2 7 13.0% 
Rank 3 4 7.4% 
Rank 4 5 9.3% 
Rank 5 1 1.9% 
Rank 6 4 7.4% 
Rank 7 9 16.7% 
Rank 8 3 5.6% 
Rank 9 5 9.3% 
Rank 10 4 7.4% 

RM10 
Importance of 
Flexibility in 
Procedures 

Rank 1 1 1.9% 
Rank 2 1 1.9% 
Rank 3 9 16.7% 
Rank 4 7 13.0% 
Rank 5 6 11.1% 
Rank 6 3 5.6% 
Rank 7 8 14.8% 
Rank 8 10 18.5% 
Rank 9 4 7.4% 
Rank 10 5 9.3% 

RM11 
Importance of 
Control Over 
the Process 

Rank 1 0 0.0% 
Rank 2 2 3.7% 
Rank 3 4 7.4% 
Rank 4 2 3.7% 
Rank 5 8 14.8% 
Rank 6 9 16.7% 
Rank 7 7 13.0% 
Rank 8 9 16.7% 
Rank 9 7 13.0% 
Rank 10 6 11.1% 
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Table 3.7. Resolution Method Characteristics Attributes – Categorical Labels & 

Frequencies (Continued) 

Attr. 

ID Attribute 

Categorical Label  

(Level or Rank) 

Frequency in the Dataset 

Resolution Method 

RM12 

Importance of 
Reaching 
Creative or 
Remedying 
Solutions 

Rank 1 2 3.7% 
Rank 2 9 16.7% 
Rank 3 1 1.9% 
Rank 4 8 14.8% 
Rank 5 11 20.4% 
Rank 6 6 11.1% 
Rank 7 5 9.3% 
Rank 8 5 9.3% 
Rank 9 6 11.1% 
Rank 10 1 1.9% 

RM13 

Importance of 
Willingness in 
Reaching 
Solutions 

Rank 1 3 5.6% 
Rank 2 6 11.1% 
Rank 3 11 20.4% 
Rank 4 3 5.6% 
Rank 5 5 9.3% 
Rank 6 3 5.6% 
Rank 7 1 1.9% 
Rank 8 6 11.1% 
Rank 9 8 14.8% 
Rank 10 8 14.8% 

 

Besides the SEA and negotiation techniques that do not have additional resolution 

costs, other methods are further examined in terms of resolution costs and details are 

given in Figure 3.14.  

In the dataset, there are 9 litigated cases with an average resolution cost of 1 million 

U.S. Dollars approximately. The maximum litigation cost was as high as 3 million 

U.S. Dollars approximately. The resolution cost is higher than 350,000 U.S. Dollars 

in 78% of litigated cases.  

Although litigation processes commonly associated with high costs, their costs are 

lower compared to arbitration for this dataset. Arbitration is the most expensive 

method of resolution in the dataset with all arbitrated cases having a cost greater than 

350,000 U.S. Dollars. The minimum arbitration cost was 0.5 million U.S. Dollars and 

the maximum was 27.7 million U.S. Dollars.  
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The average resolution cost associated with DRB is 252,000 U.S. Dollars that makes 

the technique the most expensive ADR method behind the traditional ones. DRB costs 

are variable depending on factors such as the size of the board, the degree of 

involvement, the number of disputed issues the board listened, etc. In the dataset, all 

cases resolved by DRB technique have costs between 100,000 and 350,000 U.S. 

Dollars.  

Mediation seems to be an economic ADR method with an average resolution cost of 

18,652 U.S. Dollars. The maximum amount associated with a mediated case is 50,000 

U.S. Dollars.  

 

 

Figure 3.14. Resolution Methods with respect to Resolution Costs 

All resolution methods are also examined in terms of resolution duration and details 

are given in Figure 3.15. For this dataset, litigated cases have an average resolution 

duration of 1620 days, where the shortest litigated case is 720 days and the longest 

one is 3650 days. The resolution duration is longer than 2.5 years in 78% of litigated 

cases. Meanwhile, arbitrated cases have an average resolution duration of 637 days. 
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The shortest arbitrated case lasted for 365 days and the longest one for 900 days. The 

average resolution duration is 55 days for DRB cases and 13 days for mediated cases. 

None of the DRB cases have lasted longer than 3 months and 80% of the mediated 

cases are resolved in less than 2 weeks. The average resolution duration associated 

with cases resolved by SEA technique is 78 days with the longest case settled in 180 

days. Meanwhile, the average resolution duration associated with negotiated cases is 

23 days with the longest case settled in 45 days. Thus, it can be claimed that this 

dataset proves the importance of ADR techniques in terms of resolution costs and 

durations. ADR techniques have significantly lower resolution cost and shorter 

resolution duration compared to traditional methods of litigation and arbitration.  

 

 

Figure 3.15. Resolution Methods with respect to Resolution Durations 

Participants rated their own level of knowledge using 5-point Likert scale based on 

their theoretical and practical level of knowledge on processes related to resolution 

methods in the dataset. Table 3.8 shows levels and frequencies of resolution method 

knowledge of participants in the dataset. Level of resolution method knowledge is not 
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taken as input in dispute occurrence and potential compensation models. Therefore, 

frequencies are given for resolution method selection model only. For each attribute, 

Level 1 corresponds to the weakest (worst) level and Level 5 corresponds to the 

strongest (best) level. 

Table 3.8. Level of Resolution Method Knowledge –Levels & Frequencies 

Attr. 

ID Attribute Levels 

Frequency in the 

Dataset 

Resolution Method 

K1 
Level of 
Knowledge 
on Litigation 

Level 1 4 7.4% 
Level 2 6 11.1% 
Level 3 9 16.7% 
Level 4 18 33.3% 
Level 5 17 31.5% 

K2 

Level of 
Knowledge 
on 
Arbitration 

Level 1 6 11.1% 
Level 2 7 13.0% 
Level 3 10 18.5% 
Level 4 21 38.9% 
Level 5 10 18.5% 

K3 
Level of 
Knowledge 
on DRB 

Level 1 14 25.9% 
Level 2 3 5.6% 
Level 3 11 20.4% 
Level 4 11 20.4% 
Level 5 15 27.8% 

K4 
Level of 
Knowledge 
on Mediation 

Level 1 3 5.6% 
Level 2 3 5.6% 
Level 3 10 18.5% 
Level 4 17 31.5% 
Level 5 21 38.9% 

K5 
Level of 
Knowledge 
on SEA 

Level 1 2 3.7% 
Level 2 3 5.6% 
Level 3 6 11.1% 
Level 4 11 20.4% 
Level 5 32 59.3% 

K6 

Level of 
Knowledge 
on 
Negotiation 

Level 1 0 0.0% 
Level 2 1 1.9% 
Level 3 3 5.6% 
Level 4 22 40.7% 
Level 5 28 51.8% 

 

The average level of knowledge of participants on resolution methods are given in 

Figure 3.16. According to average values, participants are least familiar with the DRB 

method and most familiar with the negotiation technique. As they tend to perceive 
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SEA technique as a form of negotiation that is performed with the top-level 

management and owners, the second most familiar technique is SEA. Participants’ 

familiarity to mediation can said to be moderate. Leaving ADR techniques aside, 

although traditional methods (litigation and arbitration) exist in the construction 

industry for quite long time, the level of knowledge about them can said to be low.  

 

 

Figure 3.16. Participants’ Average Knowledge Levels on Resolution Methods 

Subsequent to collecting empirical data for development of prediction models, the 

next objective is to determine which input variables affect output variables of 

prediction models. For this purpose, the data is analyzed in terms of significance. In 

other words, the significance of associations between input and output variables are 

analyzed for all prediction models. The insignificant input variables are removed from 

the original conceptual model and three different prediction models are established 

with fewer input variables. In this research, the Chi-Square tests of association is 

utilized for attribute elimination and details will be given in the next section. 
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3.3. THE CHI-SQUARE TESTS ON DATASETS 

The performance of ML algorithms is generally affected negatively by irrelevant or 

insignificant attributes (Pulket and Arditi, 2009b). Therefore, elimination of 

insignificant attributes and selection of the ones impacting the model outcomes 

improve generalization performance of ML algorithms (Arditi and Pulket, 2009; 

Sönmez and Sözgen, 2017). Such an elimination is known as attribute/variable/feature 

selection/elimination in practice and it helps achieving better algorithm generalization 

(Drucker et al., 1999). Thus, attribute selection has become an important research area 

with the following benefits; (1) enhanced prediction capability, (2) faster solutions, 

(3) improved data visualization and understanding, (4) reduced measurement, data 

collection, and storage requirements, (5) lower computational costs via reduced 

training and utilization times, and (6) avoiding problems caused by data 

dimensionality (Guyon and Elisseeff, 2003). 

Among numerous attribute selection methods in the literature, the Chi-Square 

statistics is preferred in this research. In the literature, the Chi-Square test of 

independence (Pearson Chi-Square test) is known as one of the most effective methods 

in testing the hypothesis between two categorical variables (McHugh, 2013). In other 

words, the Chi-Square statistics is a useful way of testing the existence of a statistically 

significant relationship between categorical variables. Moreover, the Chi-Square 

statistics is a non-parametric method that is robust to distribution of the data and 

unequal variances among study groups (Weisburd and Britt, 2007). This means the 

Chi-Square results can compensate the problematic issues due to data distribution (i.e. 

skewed data) unlike many other methods that require data with almost normal 

distribution and equality of variances. In addition, the method can handle both 

dichotomous variables and variables with multiple categories (McHugh, 2013). 

Considering that, the dataset in this research is composed of dichotomous and multiple 

categorical input and output variables with various distributions, the Chi-Square 

statistics is an appropriate evaluation technique for attribute elimination. As 

previously given in Section 3.2.3, input variables in this research are either categorical 
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(nominal or ordinal) or numeric. However, numeric attributes are further processed 

according to certain predefined threshold values and they are converted to ordinal 

categorical variables so that the dataset can be analyzed by the Chi-Square tests. In 

addition, dispute occurrence as an output variable is a categorical one (0 = undisputed 

projects and 1 = disputed projects). Similarly, potential compensation (1 = no 

compensation, 2 = cost compensation only, 3 = time compensation only, 4 = both cost 

and time compensation) and resolution method as output variables are also categorical 

(1 = litigation, 2 = arbitration, 3 = DRB, 4 = mediation, 5 = SEA, 6 = negotiation). 

At this point, it might be convenient to explain categorical variables in detail. 

Categorical variables can be divided into two groups based on their measurement 

scales as (1) nominal variables and (2) ordinal variables. Categorical variables with an 

ordered scale is called ordinal variables and results of statistical analysis depend on 

that order. However, for nominal variables, the order of categories is not important 

and it does not change results of statistical analysis. Similarly, statistical methods for 

nominal variables can be used with nominal and ordinal variables as the only 

requirement is to have categories. However, when used with ordinal variables, the 

information related to the ordering is lost. Thus, it is better to apply nominal statistical 

methods to nominal variables only. In addition, methods for ordinal variables can only 

be used with ordinal variables as they require an ordered scale (Agresti, 2007). 

Therefore, in the Chi-Square statistical tests, nominal and ordinal variables should be 

analyzed accordingly. 

Besides mentioned advantages of the Chi-Square tests, there are also limitations and 

assumptions of this statistics. Firstly, as mentioned earlier, the Chi-Square statistics 

can only be used with categorical (nominal and ordinal) variables. Secondly, the Chi-

Square tests are based on data counts or frequencies only and they cannot work with 

percentages or other forms of data. Thirdly, categories of variables should be mutually 

exclusive with each instance contributing to one category only. In addition, large 

number of categories for a variable should be avoided due to difficulties in 

interpretation of results. Large number of categories corresponds to 20 or more 
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generally (McHugh, 2013). Finally, as a rule of thumb, the expected value in a 

category cannot be less than ‘5’ in more than 80% of the categories. In addition, an 

expected value cannot be less than ‘1’. Consequently, the sample size should be 

compatible with these limitations (Mehta and Patel, 2012). 

In short, advantages of utilizing the Chi-Square tests can be listed as (1) robustness 

against data distribution, unequal sizes and variances, (2) capability of handling 

dichotomous and multiple category variables, and (3) computational ease (McHugh, 

2013). Therefore, the Chi-Square tests are used for evaluating the statistical 

significance in this research. According to results of the Chi-Square tests, the 

insignificant attributes on outcomes will be eliminated and prediction models will be 

developed using the remaining significant attributes. Instead of explaining technical 

details and equations related to the Chi-Square statistics, the attention will be on 

performing the analysis appropriately by focusing on important points such as how to 

use the technique appropriately for nominal and ordinal variables, how to determine 

the strength of association between variables, etc. 

3.3.1. Strength of Relationships in the Chi-Square Tests 

The Chi-Square test of independence reveals the significance of dependence between 

categorical independent (input) and dependent (output) variables. However, it does 

not reveal the strength of the relationship (Agresti, 2007). Consequently, it should be 

followed with a statistic showing the strength of the relationship (McHugh, 2013). For 

this purpose, numerous measures of strength are available in the literature to help 

evaluating the strength of the relationship between independent and dependent 

variables. Although there are strength measures based on the Chi-Square value 

directly, many other measures do not use this value and just transform results and 

frequencies to interpret the strength (Weisburd and Britt, 2007). Regardless of the 

measure, for nominal variables, the strength measures output a value between “0” and 

“1”, where “0” represents no relationship and “1” represents perfect relationship. The 

higher this value is, the stronger the relationship between two nominal variables. For 
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ordinal variables, the strength measure is between “-1” and “+1”, where “-1” 

represents the perfect negative relationship, “0” represents no relationship, and “+1” 

represents the perfect positive relationship (Mehta and Patel, 2012). 

Phi and Cramer’s V are two of the measures for evaluating the strength of association 

between nominal variables. Phi measure transforms the Chi-Square value according 

to the sample size to calculate a strength value only for 2x2 tables (Weisburd and Britt, 

2007). In a 2x2 table, both independent and dependent variables on rows and columns 

of a table should have two possible categories. However, the real world data and 

variables generally do not suit this kind of limitation. For this reason, there is another 

measure called Cramer’s V, which has a capability of handling tables with varying 

number of rows and columns (Weisburd and Britt, 2007). Therefore, although 

Cramer’s V can calculate low correlation values for highly significant results, it 

became the most commonly preferred strength test for nominal variables (McHugh, 

2013). Consequently, in order to handle the changing number of rows and columns 

between variables of the dataset in this thesis study, Cramer’s V is preferred.  

As stated earlier, methods for nominal and ordinal variables should not be applied to 

each other. Therefore, besides Cramer’s V that is used in strength tests for nominal 

attributes, measures for ordinal attributes should also be investigated. IBM SPSS 

Statistics version 22.0 that is used to perform the Chi-Square tests presents four 

measures of association for ordinal variables. These are Gamma, Somers’ d, Kendall’s 

tau-b, and Kendall’s tau-c.  

Strength values obtained from Gamma, Somers’ d, and Kendall’s tau measures are 

generally different from each other due to differences in handling tied pairs of 

observations. In Gamma measure, tied pairs of observations are not considered and 

consequently, there is a problem of overestimating the strength of the relationship 

between two ordinal variables. On the other hand, Somers’ d takes tied pairs of 

observations into account for independent variables only and Kendall’s tau measures 

do it for both independent and dependent variables. Thus, Somers’ d and Kendall’s 
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measures are superior to Gamma measure. However, Kendall’s tau-b is more adequate 

when the number of columns and rows, or in other words, the number of categories of 

independent and dependent variables are equal. For unequal number of rows and 

columns, Kendall’s tau-c is more adequate. When the number of rows and columns 

are not equal, Somers’ d can be considered as a better measure than Kendall’s tau-c. 

Somers’ d is superior when the independent and dependent variables are clearly 

defined (Weisburd and Britt, 2007). In the light of these, Somers’ d will be preferred 

as a strength measure of association for ordinal variables. 

Table 3.9. Summary of Reviewed Measures of Strength 

Measure of 

Association 

Scale of 

Measurement 

Dimensions 

(Rows x Columns) 

Preferred Measure 

in this Research 

Phi Nominal 2 x 2 No 
Cramer’s V Nominal Any Size Yes 

Gamma Ordinal Any Size No 
Kendall’s tau b Ordinal Number of rows = Number of columns No 
Kendall’s tau c Ordinal Number of rows ≠ Number of columns No 
Somer’s d Ordinal Any Size Yes 

 

3.3.2. Results of the Chi-Square Tests 

The Chi-Square tests are performed in IBM SPSS Statistics version 22.0 using the 

Crosstabs menu under the Analyze section.  

Before giving results of the Chi-Square tests, basic examples will be given and 

explained in detail to highlight what have been done for various cases during the tests. 

The first example is based on the attribute “PC1 – Project Location” as input and “O3 

– Resolution Method” as output. Both attributes are nominal categorical attributes. 

The ordering of categories does not change results of the analysis. Thus, the impact of 

“PC1 – Project Location” on “O3 – Resolution Method” is tested via nominal Chi-

Square methods. The SPSS output is given in Table 3.10. 

The upper section of the SPSS output in Table 3.10 is a cross-tabulation of frequencies 

tabulating the outcome of resolution method by project location, which is called a 

contingency table.  
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Table 3.10. SPSS Output for the Chi-Square Test of “Project Location” and 

“Resolution Method” Attributes 

 

 

The lower section of the SPSS output shows results of the Chi-Square tests. The null 

hypothesis in this test is that there is no relationship between project location and 

resolution method selection. On the other hand, the alternative hypothesis is that there 

is an association between project location and resolution method selection. Below the 

results of the Chi-Square tests, there are two explanations. The first explanation states, 

“8 cells (66.7%) have expected count less than ‘5’. The minimum expected count is 

2.22”. Remembering limitations of the Chi-Square tests, there were two rules of 

thumb; one stating that the minimum expected value in a cell should be at least ‘5’ in 

80% of the categories (cells) and the other one stating that the expected count cannot 

be equal to ‘0’ in any category (Mehta and Patel, 2012). Thus, there is a contradiction 

in the SPSS output as in 66.7% (>20%) of the categories, the expected count is below 

‘5’. Normally, in the Chi-Square tests, asymptotic probability values are the 

considered values. However, the expected count assumption is violated and 

asymptotic results cannot be used. In such cases, by using the true sampling 
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distribution of the Chi-Square, an exact probability value should be calculated (Mehta 

and Patel, 2012). SPSS contains several exact tests such as the exact Pearson Chi-

Square statistics and the Fisher’s Exact Test. However, the Fisher’s Exact Test is 

designed for 2x2 contingency tables only (Mehta and Patel, 2012). Therefore, in cases 

that violates the minimum expected value assumption with a contingency table larger 

than 2x2, the exact Pearson Chi-Square statistic should be calculated (Bal et al., 2009). 

For this example, the probability value obtained from the exact Pearson Chi-Square 

test is equal to ‘0.236’. This value is higher than the alpha level 0.05 for 95% 

confidence level and it is not statistically significant. Therefore, we should accept the 

null hypothesis stating that there is no relationship between project location and 

resolution method selection for this dataset. Consequently, “PC1 – Project Location” 

attribute is eliminated from the resolution method selection model. If project location 

were a significant attribute, the strength of relationship would be calculated by the 

nominal strength measure of Cramer’s V. 

The second example is based on “PC2 – Project or Contract Value” as input and “O1 

– Dispute Occurrence” as output. “PC2 – Project or Contract Value” is a numeric 

attribute normally. However, it is converted to a categorical variable using predefined 

threshold values. The ordering of categories for this attribute is important as they 

indicate an order. Simply, the contract value is an ordinal attribute. The ordering 

changes results of the analysis and consequently, it should be considered. For ordinal 

variables, SPSS performs the Mantel-Haenszel Linear-by-Linear Association Chi-

Square Test, which calculates a probability value with one degree of freedom. The 

null hypothesis here states that there is no relationship between contract value and 

dispute occurrence, while the alternative hypothesis is that these two variables are 

associated. Thus, the impact of “PC2 – Project or Contract Value” on “O1 – Dispute 

Occurrence” is tested via ordinal Chi-Square methods. The SPSS output is given in 

Table 3.11. 
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Table 3.11. SPSS Output for the Chi-Square Test of “Project or Contract Value” and 

“Dispute Occurrence” Attributes 

 

 

The upper section of the SPSS output is the contingency table for the tested attributes 

and the middle section shows results of the Chi-Square tests. This time “0 cells (0%) 

have expected count less than ‘5’. The minimum expected count is 10.20”. Therefore, 

the assumption is not violated and asymptotic results can be used. However, in order 

to achieve more accurate results, this research will use exact results whenever they 

can be calculated. The probability value obtained from the Mantel-Haenszel Linear-

by-Linear Association Test is equal to ‘0.001’. This value is smaller than the alpha 

level at 0.05 for 95% confidence interval and it is statistically significant. Therefore, 

null hypothesis is rejected and alternative hypothesis that associates contract value 

with dispute occurrence is accepted. Therefore, “PC2 – Project or Contract Value” is 
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a significant attribute that should be kept in the final prediction model for dispute 

occurrence. 

The analysis for these two attributes has not been completed yet. Since there is a 

relationship between contract value and dispute occurrence, the strength of this 

relationship should be determined. As discussed in Section 3.3.1, Somers’ d measure 

of association will be preferred for ordinal variables. The lower section in Table 3.11 

shows the Somers’ d value, which is equal to ‘0.259’ when the dependent variable is 

dispute occurrence. This value indicates a moderately strong relationship between 

contract value and dispute occurrence in a positive direction.  

So far, an example on the Chi-Square test for nominal variables that violates the 

expected count assumption and an example for an ordinal variable that does not violate 

the expected count assumption have been reviewed. In both examples, it was possible 

to perform exact tests and reasons of using exact results are explained. In addition, the 

attribute in nominal case was insignificant that required no more action, while the 

attribute in ordinal case was significant that required a strength of relationship test. 

Thus, calculation of the strength of relationship in an ordinal variable is explained.  

When contingency tables have too many rows and columns, calculations become 

costly, if not impossible, with current technologies. In such cases, SPSS resorts to the 

Monte Carlo method that calculates an unbiased estimate of the exact probability value 

(the Monte Carlo probability value) in a very short duration. Although SPSS calculates 

99% accurate estimates by default, the user can increase or decrease the accuracy by 

sampling more or less outcomes from the reference set. The Monte Carlo algorithm is 

useful when exact results cannot be computed due to size of the dataset or when 

asymptotic results are not reliable. The Monte Carlo estimates are calculated within a 

specified confidence interval guaranteeing to contain the exact probability value at 

that level (Mehta and Patel, 2012). The Monte Carlo estimates are within 99% 

confidence interval based on 10,000 sampled tables with starting seed 2,000,000. In 

this research, the Monte Carlo method is always used with this configuration. 
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3.3.2.1. Chi-Square Results for Dispute Occurrence Prediction Model 

Following details of the Chi-Square calculations, results of the tests can now be given. 

Firstly, input variables will be analyzed for dispute occurrence (as the output). In other 

words, attributes identified in Table 2.10 (attributes in the conceptual model) are tested 

for dispute occurrence prediction model. The Chi-Square test results of project 

characteristics attributes with respect to dispute occurrence are given in Table 3.12. In 

this table, exact probability values are obtained from the exact Pearson Chi-Square 

statistics for nominal attributes and the Mantel-Haenszel Linear-by-Linear 

Association Test for ordinal ones. Probability values are compared to the alpha level 

at 0.05 for 95% confidence interval. In addition, if a statistically significant association 

is discovered, the strength of this association is determined by the Cramer’s V measure 

for nominal attributes and the Somers’ d measure for ordinal attributes. 

Table 3.12. The Chi-Square Test Results of Project Characteristics Attributes for 

Dispute Occurrence Prediction Model 

Attributes & Categories p-value 

Dispute 

Occurred (%) 

Selected for 

Final Model 

Strength of 

Association 

PC1 – Project Location 0.037  YES Cramer’s V 
Domestic  67.1%  0.215 
International  32.9%   

PC2 – Project or Contract Value 0.003  YES Somers’ d 
< 10 million $  30.0%  0.259 
10 – 100 million $  34.3%   
> 100 million $  35.7%   

PC3 – Planned Project Duration 0.000  YES Somers’ d 
< 1 year  18.6%  0.286 
1 - 2 years  32.9%   
2 - 3 years  21.4%   
> 3 years  27.1%   

PC4 – Type of Construction 0.157  NO - 
Housing  21.4%   
Commercial  11.4%   
Industrial  10.0%   
Transportation  18.6%   
Pow.Plants&Lines  4.3%   
WaterSupp.&Reser.  10.0%   
Sport&Cult.&Edu.  10.0%   
Medical  4.3%   
Public  5.7%   
Soil Works  4.3%   
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Table 3.12. The Chi-Square Test Results of Project Characteristics Attributes for 

Dispute Occurrence Prediction Model (Continued) 

Attributes & Categories p-value 

Dispute 

Occurred (%) 

Selected for 

Final 

Model 

Strength of 

Association 

PC5 – Type of Contractor 0.749  NO - 
Single  81.4%   
Joint Venture  11.4%   
Consortium  7.1%   

PC6 – Type of Employer 0.961  NO - 
Public  47.1%   
Private  40.0%   
PPP  12.9%   

PC7 – Type of Contract 0.074  NO - 
Private Contracts  52.8%   
Public Procurement  25.7%   
FIDIC Red  12.9%   
FIDIC Silver/Yellow  8.6%   

PC8 – Payment Method 0.842  NO - 
Fixed (Lump-Sum)  52.9%   
Unit Price  47.1%   

PC9 – Project Delivery System 0.957  NO - 
DBB  62.9%   
DB  22.9%   
EPC  14.3%   

PC10 – Level of Design Comp. 0.938  NO - 
Very Low  14.3%   
Low  11.4%   
Moderate  18.6%   
High  34.3%   
Very High  21.4%   

PC11 – Level of Constr. Comp. 1.000  NO - 
Very Low  11.4%   
Low  10.0%   
Moderate  17.1%   
High  35.7%   
Very High  25.7%   

 

The Chi-Square test results of skills attributes with respect to dispute occurrence are 

given in Table 3.13. All attributes in skills category are ordinal categorical variables. 

Therefore, exact probability values are obtained from the Mantel-Haenszel Linear-by-

Linear Association Test and they are compared to the alpha level at 0.05 for 95% 

confidence interval. The statistically significant attributes (attributes that are 

associated with each other) are selected for the final dispute occurrence prediction 
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model. Since skills attributes are ordinal variables, the Somers’ d measure is used for 

determining the strength of association. 

Table 3.13. The Chi-Square Test Results of Skills Attributes for Dispute Occurrence 

Prediction Model 

Attributes p-value 

Selected for 

Final Model Strength of Association 

S1 – Relationship between Parties / 
Individuals 

0.000 YES Somers’ d 
-0.406 

    
S2 – Previous Experience with Each Other or 
Reputation 

0.007 YES Somers’ d 
-0.185 

    
S3 – Dispute Avoidance Incentives 0.158 NO - 
    
S4 – Communication between Parties 0.000 YES Somers’ d 

-0.370 
    
S5-1 – Working Culture & Skills of 
Represented Party 

0.012 YES Somers’ d 
-0.162 

    
S5-2 – Working Culture & Skills of Counter 
Party 

0.000 YES Somers’ d 
-0.303 

    
S6-1 – Response Rate & Communication 
Skills of Represented Party 

0.228 NO - 

    
S6-2 – Response Rate & Communication 
Skills of Counter Party 

0.000 YES Somers’ d 
-0.280 

    
S7-1 – Experience of Represented Party 0.085 NO - 
    
S7-2 – Experience of Counter Party 0.001 YES Somers’ d 

-0.233 
    
S8-1 – Project Management & Coordination 
Skills of Represented Party 

0.006 YES Somers’ d 
-0.199 

    
S8-2 – Project Management & Coordination 
Skills of Counter Party 

0.000 YES Somers’ d 
-0.321 

 

The Chi-Square test result of changes attribute with respect to dispute occurrence is 

given in Table 3.14. Both attributes are nominal categorical attributes. Therefore, the 

exact probability value is obtained from the exact Pearson Chi-Square statistics and it 

is compared to the alpha level at 0.05 for 95% confidence interval. The association 
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between changes and dispute occurrence is statistically significant (p-value = 0.000 < 

0.05). As both attributes are nominal categorical variables, the Cramer’s V measure is 

used for determining the strength of association. 

Table 3.14. The Chi-Square Test Result of Changes Attribute for Dispute 

Occurrence Prediction Model 

Attributes & Categories p-value 

Dispute 

Occurred (%) 

Selected for 

Final Model 

Strength of 

Association 

     
C1 – Changes 0.000  YES Cramer’s V 

Yes  58.6%  0.576 
No  41.4%   
     

 

The Chi-Square test result of delays attribute with respect to dispute occurrence is 

given in Table 3.15. Although the delays attribute is a numeric attribute normally, it 

is converted into an ordinal categorical variable using predefined threshold values. 

Therefore, the exact probability value is obtained from the Mantel-Haenszel Linear-

by-Linear Association Test and it is compared to the alpha level at 0.05 for 95% 

confidence interval. The association between delays and dispute occurrence is 

statistically significant (p-value = 0.002 < 0.05). The Somers’ d measure is used for 

determining the strength of association. 

Table 3.15. The Chi-Square Test Result of Delays Attribute for Dispute Occurrence 

Prediction Model 

Attributes & Categories p-value 

Dispute 

Occurred (%) 

Selected for 

Final Model 

Strength of 

Association 

     
D1 – Delays 0.002  YES Somers’ d 

Ratio = 0%  30.0%  0.232 
Ratio 0% - 20%  21.4%   
Ratio 20%  40%  22.9%   
Ratio > 40%  25.7%   
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3.3.2.2. Chi-Square Results for Potential Compensation Model 

Following the analysis for dispute occurrence prediction model, input variables will 

be analyzed for potential compensation type (as the output) this time. In other words, 

attributes identified in Table 2.11 (attributes in the conceptual model) are tested for 

potential compensation prediction model. The Chi-Square test results of project 

characteristics attributes with respect to potential compensation type are given in 

Table 3.16. The exact probability values and the strength of association are determined 

using the same methodology in dispute occurrence prediction model and values are 

compared to the alpha level 0.05 for 95% confidence interval again. 

Table 3.16. The Chi-Square Test Results of Project Characteristics Attributes for 

Potential Compensation Prediction Model 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

PC1 – Project Location 0.068     NO - 
Domestic  41.7% 73.7% 80.0% 48.1%   
International  58.3% 26.3% 20.0% 51.9%   

PC2 – Project or Contract Value 0.291     NO - 
< 10 million $  25.0% 31.6% 20.0% 18.5%   
10 – 100 million $  16.7% 39.5% 60.0% 25.9%   
> 100 million $  58.3% 28.9% 20.0% 55.6%   

PC3 – Planned Project Duration 0.716     NO - 
< 1 year  8.3% 18.4% 0.0% 18.5%   
1 - 2 years  25.0% 34.2% 60.0% 22.2%   
2 - 3 years  8.3% 31.6% 0.0% 11.1%   
> 3 years  58.3% 15.8% 40.0% 48.2%   

PC4 – Type of Construction 0.237     NO - 
Housing  0.0% 34.2% 20.0% 7.4%   
Commercial  33.3% 10.5% 0.0% 18.5%   
Industrial  8.3% 10.5% 0.0% 7.4%   
Transportation  16.7% 15.8% 0.0% 29.6%   
Pow.Plants & Lines  0.0% 5.3% 0.0% 3.7%   
WaterSupp. & Reser.  25.0% 5.3% 40.0% 7.4%   
Sport&Cult. & Edu.  16.7% 5.3% 20.0% 11.1%   
Medical  0.0% 5.3% 0.0% 3.7%   
Public  0.0% 2.6% 20.0% 7.4%   
Soil Works  0.0% 5.3% 0.0% 3.7%   
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Table 3.16. The Chi-Square Test Results of Project Characteristics Attributes for 

Potential Compensation Prediction Model (Continued) 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

PC5 – Type of Contractor 0.010     YES Cramer’sV 
Single  100.0% 84.2% 60.0% 66.7%  0.327 
Joint Venture  0.0% 15.8% 0.0% 18.5%   
Consortium  0.0% 0.0% 40.0% 14.8%   

PC6 – Type of Employer 0.075     NO - 
Public  58.3% 39.5% 100.0% 55.6%   
Private  41.7% 50.0% 0.0% 25.9%   
PPP  0.0% 10.5% 0.0% 18.5%   

PC7 – Type of Contract 0.010     YES Cramer’sV 
Private Contracts  50.0% 68.4% 0.0% 40.7%  0.297 
Public Procurement  25.0% 18.4% 80.0% 14.8%   
FIDIC Red  25.0% 7.9% 20.0% 29.6%   
FIDIC Silv./Yellow  0.0% 5.3% 0.0% 14.8%   

PC8 – Payment Method 0.335     NO - 
Fixed (Lump-Sum)  66.7% 44.7% 80.0% 55.6%   
Unit Price  33.3% 55.3% 20.0% 44.4%   

PC9 – Project Delivery Syst. 0.680     NO - 
DBB  58.3% 57.9% 100.0% 55.6%   
DB  33.3% 26.3% 0.0% 29.6%   
EPC  8.3% 15.8% 0.0% 14.8%   

PC10 – Lvl of Dsgn. Comp. 0.689     NO - 
Very Low  16.7% 18.4% 20.0% 14.8%   
Low  8.3% 13.2% 0.0% 7.4%   
Moderate  8.3% 18.4% 40.0% 14.8%   
High  25.0% 39.5% 0.0% 37.0%   
Very High  41.7% 10.5% 40.0% 25.9%   

PC11 – Lvl of Constr Comp. 0.275     NO - 
Very Low  16.7% 13.2% 0.0% 7.4%   
Low  8.3% 13.2% 0.0% 11.1%   
Moderate  0.0% 23.7% 20.0% 11.1%   
High  33.3% 39.5% 20.0% 37.0%   
Very High  41.7% 10.5% 60.0% 33.3%   

 

The Chi-Square test results of skills attributes with respect to potential compensation 

type are given in Table 3.17. Since attributes in skills category are ordinal categorical 

variables, exact probability values are obtained from the Mantel-Haenszel Linear-by-

Linear Association Test. Probability values are compared to the alpha level at 0.05 for 

95% confidence interval. However, none of the skills attributes managed to has a place 

in the final prediction model for potential compensation type.  
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Table 3.17. The Chi-Square Test Results of Skills Attributes for Potential 

Compensation Prediction Model 

Attributes 

p-

value 

Selected for 

Final 

Model 

Strength of 

Association 

S1 – Relationship between Parties / Individuals 0.082 NO - 
    
S2 – Previous Experience with Each Other or 
Reputation 

0.647 NO - 

    
S3 – Dispute Avoidance Incentives 0.417 NO - 
    
S4 – Communication between Parties 0.390 NO - 
    
S5-1 – Working Culture & Skills of Represented Party 0.280 NO - 
    
S5-2 – Working Culture & Skills of Counter Party 0.443 NO - 
    
S6-1 – Response Rate & Communication Skills of 
Represented Party 

0.193 NO - 

    
S6-2 – Response Rate & Communication Skills of 
Counter Party 

0.105 NO - 

    
S7-1 – Experience of Represented Party 0.061 NO - 
    
S7-2 – Experience of Counter Party 0.562 NO - 
    
S8-1 – Project Management & Coordination Skills of 
Represented Party 

0.160 NO - 

    
S8-2 – Project Management & Coordination Skills of 
Counter Party 

0.795 NO - 

 

The Chi-Square test result of changes attribute with respect to potential compensation 

type is given in Table 3.18. Both attributes are nominal categorical attributes. 

Therefore, the exact probability value is obtained from the exact Pearson Chi-Square 

statistics and it is compared to the alpha level at 0.05 for 95% confidence interval. The 

association between changes and potential compensation type is statistically 

significant (p-value = 0.000 < 0.05). Thus, changes attribute should be kept as an input 

variable in the final prediction model for potential compensation type. As both 
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attributes are nominal categorical variables, the Cramer’s V measure is used for 

determining the strength of association. 

Table 3.18. The Chi-Square Test Result of Changes Attribute for Potential 

Compensation Prediction Model 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

        
C1 – Changes 0.000     YES Cramer’sV 
Yes  91.7% 65.8% 60.0% 92.6%  0.585 
No  8.3% 34.2% 40.0% 7.4%   
        

 

The Chi-Square test result of delays attribute with respect to potential compensation 

type is given in Table 3.19. Although the delays attribute is a numeric attribute 

normally, it is converted into an ordinal categorical variable using predefined 

threshold values. Therefore, the exact probability value is obtained from the Mantel-

Haenszel Linear-by-Linear Association Test and it is compared to the alpha level at 

0.05 for 95% confidence interval. The association between delays and potential 

compensation type is statistically significant (p-value = 0.000 < 0.05). Thus, delays 

attribute should be kept as an input variable in the final prediction model. The Somers’ 

d measure is used for determining the strength of association.  

Table 3.19. The Chi-Square Test Result of Delays Attribute for Potential 

Compensation Prediction Model 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

        
D1 – Delays 0.000     YES Somers’d 

Ratio = 0%  16.7% 50.0% 0.0% 0.0%  0.232 
Ratio 0% - 20%  58.3% 7.9% 40.0% 33.3%   
Ratio 20%  40%  16.7% 21.1% 40.0% 18.5%   
Ratio > 40%  8.3% 21.1% 20.0% 48.2%   
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The Chi-Square test results of dispute characteristics attributes with respect to 

potential compensation type are given in Table 3.20. In this table, exact probability 

values are obtained from the exact Pearson Chi-Square statistics for nominal attributes 

and the Mantel-Haenszel Linear-by-Linear Association Test for ordinal ones. 

Probability values are compared to the alpha level at 0.05 for 95% confidence interval. 

In addition, if a statistically significant association is discovered, the strength of this 

association is determined by the Cramer’s V measure for nominal attributes and the 

Somers’ d measure for ordinal attributes.  

Table 3.20. The Chi-Square Test Results of Dispute Characteristics Attributes for 

Potential Compensation Prediction Model 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

DC1 – Disputant Party 0.017     YES Cramer’sV 
Client  91.7% 73.7% 100.0% 100.0%  0.361 
Contractor  8.3% 26.3% 0.0% 0.0%   

DC2 – Phase of Occurrence 0.069     NO - 
Plan. & Design  0.0% 2.6% 20.0% 0.0%   
Construction  83.3% 76.3% 80.0% 96.3%   
Transfer & Repair   16.7% 21.1% 0.0% 3.7%   

DC3 – Dispute Sources 0.000     YES Cramer’sV 
   Cost compensation of 
change orders 

 25.0% 10.5% 0.0% 0.0%  0.584 

   Time & Cost compensation 
of change orders 

 8.3% 2.6% 40.0% 63.0%   

   Measurement & valuation 
of contracted works 

 0.0% 15.8% 0.0% 0.0%   

   Extended overhead due to 
extensions 

 0.0% 2.6% 0.0% 0.0%   

   Delay in site handover & 
possession 

 0.0% 0.0% 0.0% 14.8%   

   Defects, errors & quality  8.3% 15.8% 20.0% 0.0%   
   Contractor fails to act as a 
prudent merchant 

 0.0% 15.8% 20.0% 3.7%   

   Delays in payments  0.0% 18.4% 0.0% 0.0%   
   Errors or substantial 
changes in BoQ 

 0.0% 10.5% 0.0% 0.0%   

   Inadequate site or soil 
investigation 

 25.0% 2.6% 0.0% 14.8%   

   Interpretation of contract 
clauses 

 33.3% 5.3% 20.0% 3.7%   

DC4 – Suspension of works 0.622     NO - 
Yes  41.7% 28.9% 40.0% 44.4%   
No  58.3% 71.1% 60.0% 55.6%   
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Table 3.20. The Chi-Square Test Results of Dispute Characteristics Attributes for 

Potential Compensation Prediction Model (Continued) 

Attributes & Categories 

p-

value 

Compensation Type 

Selected 

in Final 

Model 

Str. of 

Assoc. 

No 

Comp. 

Cost 

Only 

Time 

Only 

Cost 

& 

Time 

DC5 – Disputed Amount 0.019     YES Somers’ d 
< 5 million $  50.0% 65.8% 40.0% 22.2%  0.248 
5 - 25 million $  16.7% 21.1% 60.0% 33.3%   
25 - 75 million $  0.0% 10.5% 0.0% 18.5%   
> 75 million $  33.3% 2.6% 0.0% 25.9%   

DC8 – Presen. of EoT Claim 0.000     YES Cramer’sV 
Yes  25.0% 2.6% 0.0% 0.0%  0.917 
No  75.0% 97.4 100.0% 100.0%   

DC9 – Disp. EoT Amount 0.000     YES Somers’ d 
0 days  75.0% 97.4% 0.0% 0.0%  0.659 
0 - 6 months  0.0% 2.6% 40.0% 37.0%   
6 months - 1 year  8.3% 0.0% 60.0% 25.9%   
> 1 year  16.7% 0.0% 0.0% 37.0%   

 

3.3.2.3. Chi-Square Results for Resolution Method Selection Model 

Following the analysis for dispute occurrence and potential compensation type 

prediction models, input variables will be analyzed for resolution method (as the 

output) finally. In other words, attributes identified in Table 2.12 (attributes in the 

conceptual model) are tested for resolution method selection model.  

The Chi-Square test results of project characteristics attributes with respect to 

resolution methods are given in Table 3.21. The exact probability values and the 

strength of association are determined using the same methodology as in previous 

prediction models and values are compared to the alpha level 0.05 for 95% confidence 

interval again. In other words, exact probability values are obtained from the exact 

Pearson Chi-Square statistics for nominal attributes and the Mantel-Haenszel Linear-

by-Linear Association Test for ordinal attributes. The only project characteristics 

related attribute that is found to be associated with resolution method selection is “PC5 

– Type of Contractor”, which is a nominal categorical attribute. Thus, the Cramer’s V 

measure is used for determining the strength of association.  
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Table 3.21. The Chi-Square Test Results of Project Characteristics Attributes for 

Resolution Method Selection Model 

Attributes & 

Categories 

p-

value 

Resolution Method Selected 

in Final 

Model 

Str. of 

Assoc. LIT ARB DRB MED SEA NEG 

PC1 - Prj. Location 0.236       NO - 
   Domestic  77.8% 33.3% 60.0% 80.0% 30.0% 57.9%   
   International  22.2% 66.7% 40.0% 20.0% 70.0% 42.1%   
PC2 - Contr. Value 0.349       NO - 
   < 10 million $  33.3% 0.0% 0.0% 100.0% 10.0% 21.1%   
   10-100 million $  22.2% 16.7% 40.0% 0.0% 40.0% 52.6%   
   > 100 million $  44.4% 83.3% 60.0% 0.0% 50.0% 26.3%   
PC3 - Plan.Prj.Dur. 0.221       NO - 
   < 1 year  33.3% 0.0% 0.0% 40.0% 20.0% 5.3%   
   1 - 2 years  33.3% 16.7% 20.0% 60.0% 30.0% 31.6%   
   2 - 3 years  33.3% 16.7% 80.0% 0.0% 10.0% 26.3%   
   > 3 years  0.0% 66.7% 0.0% 0.0% 40.0% 36.8%   
PC4 - Const. Type 0.131       NO - 
   Housing  44.4% 16.7% 20.0% 0.0% 0.0% 26.3%   
   Commercial  0.0% 16.7% 0.0% 0.0% 20.0% 15.8%   
   Industrial  22.2% 16.7% 0.0% 20.0% 20.0% 0.0%   
   Transportation  11.1% 33.3% 60.0% 0.0% 40.0% 15.8%   
   Pow.Plants&Line  0.0% 0.0% 0.0% 40.0% 0.0% 0.0%   
   WaterSup.&Res.  0.0% 16.7% 0.0% 0.0% 0.0% 15.8%   
   Sprt&Cult.&Edu.  11.1% 0.0% 0.0% 20.0% 10.0% 10.5%   
   Medical  0.0% 0.0% 20.0% 0.0% 10.0% 5.3%   
   Public  11.1% 0.0% 0.0% 20.0% 0.0% 5.3%   
   Soil Works  0.0% 0.0% 0.0% 0.0% 0.0% 5.3%   
PC5 - Contractor 0.003       YES Cramer’sV 
   Single  88.9% 83.3% 20.0% 80.0% 80.0% 89.5%  0.514 
   Joint Venture  0.0% 0.0% 80.0% 20.0% 0.0% 10.5%   
   Consortium  11.1% 16.7% 0.0% 0.0% 20.0% 0.0%   
PC6 - Employ.Typ. 0.581       NO - 
   Public  44.4% 50.0% 80.0% 20.0% 40.0% 47.4%   
   Private  55.6% 16.7% 20.0% 60.0% 50.0% 36.8%   
   PPP  0.0% 33.3% 0.0% 20.0% 10.0% 15.8%   
PC7 - ContractTyp. 0.540       NO - 
   Private Contracts  66.7% 33.3% 40.0% 60.0% 50.0% 57.9%   
   Public Procure.  33.3% 0.0% 0.0% 20.0% 10.0% 15.8%   
   FIDIC Red  0.0% 33.3% 40.0% 20.0% 20.0% 21.1%   
   FIDICSilv./Yel.  0.0% 33.3% 20.0% 0.0% 20.0% 5.3%   
PC8 - Pay. Method 0.354       NO - 
   Fixed Price  44.4% 66.7% 0.0% 60.0% 50.0% 47.4%   
   Unit Price  55.6% 33.3% 100.0% 40.0% 50.0% 52.6%   
PC9 - Dlvry. Syst. 0.172       NO - 
   DBB  66.7% 50.0% 20.0% 60.0% 60.0% 79.0%   
   DB  22.2% 16.7% 20.0% 0.0% 20.0% 21.0%   
   EPC  11.1% 33.3% 60.0% 40.0% 20.0% 0.0%   
PC10 - Des.Comp. 0.601       NO - 
   Very Low  22.2% 16.7% 20.0% 0.0% 20.0% 15.8%   
   Low  11.1% 16.7% 0.0% 0.0% 10.0% 15.8%   
   Moderate  11.1% 0.0% 20.0% 40.0% 30.0% 15.8%   
   High  33.3% 16.7% 60.0% 40.0% 10.0% 47.4%   
   Very High  22.2% 50.0% 0.0% 20.0% 30.0% 5.3%   
PC11 -Cons.Comp. 0.342       NO - 
   Very Low  11.1% 0.0% 20.0% 0.0% 0.0% 15.8%   
   Low  0.0% 16.7% 0.0% 0.0% 30.0% 15.8%   
   Moderate  11.1% 16.7% 40.0% 20.0% 10.0% 10.5%   
   High  55.6% 16.7% 40.0% 40.0% 30.0% 36.8%   
   Very High  22.2% 50.0% 0.0% 40.0% 30.0% 21.1%   
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The Chi-Square test results of skills attributes with respect to resolution methods are 

given in Table 3.22. Since attributes in skills category are ordinal categorical variables, 

exact probability values are obtained from the Mantel-Haenszel Linear-by-Linear 

Association Test. Probability values are compared to the alpha level at 0.05 for 95% 

confidence interval. However, none of the skills attributes managed to have a place in 

the final model for resolution method selection. 

Table 3.22. The Chi-Square Test Results of Skills Attributes for Resolution Method 

Selection Model 

Attributes 

p-

value 

Selected for 

Final 

Model 

Strength of 

Association 

S1 – Relationship between Parties / Individuals 0.356 NO - 
    
S2 – Previous Experience with Each Other or 
Reputation 

0.445 NO - 

    
S3 – Dispute Avoidance Incentives 0.321 NO - 
    
S4 – Communication between Parties 0.799 NO - 
    
S5-1 – Working Culture & Skills of Represented Party 0.862 NO - 
    
S5-2 – Working Culture & Skills of Counter Party 0.577 NO - 
    
S6-1 – Response Rate & Communication Skills of 
Represented Party 

0.526 NO - 

    
S6-2 – Response Rate & Communication Skills of 
Counter Party 

0.144 NO - 

    
S7-1 – Experience of Represented Party 0.520 NO - 
    
S7-2 – Experience of Counter Party 0.954 NO - 
    
S8-1 – Project Management & Coordination Skills of 
Represented Party 

0.735 NO - 

    
S8-2 – Project Management & Coordination Skills of 
Counter Party 

0.547 NO - 

 

The Chi-Square test result of changes attribute with respect to resolution methods is 

given in Table 3.23. Both attributes are nominal categorical attributes. Therefore, the 
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exact probability value is obtained from the exact Pearson Chi-Square statistics and it 

is compared to the alpha level at 0.05 for 95% confidence interval. The association 

between changes and resolution method selection is statistically significant (p-value = 

0.018 < 0.05). Thus, changes attribute should be kept as an input variable in the final 

model for resolution method selection. As both attributes are nominal categorical 

variables, the Cramer’s V measure is used for determining the strength of association. 

Table 3.23. The Chi-Square Test Result of Changes Attribute for Resolution Method 

Selection Model 

Attributes & 

Categories 

p-

value 

Resolution Method Selected 

in Final 

Model 

Str. of 

Assoc. LIT ARB DRB MED SEA NEG 

          
C1 – Changes 0.018       YES Cramer’sV 
   Yes  22.2% 100.0% 60.0% 80.0% 80.0% 47.4%  0.491 
   No  77.8% 0.0% 40.0% 20.0% 20.0% 52.6%   
          

 

The Chi-Square test result of delays attribute with respect to resolution methods is 

given in Table 3.24. Although the delays attribute is a numeric attribute normally, it 

is converted into an ordinal categorical variable using predefined threshold values. 

Therefore, the exact probability value is obtained from the Mantel-Haenszel Linear-

by-Linear Association Test and it is compared to the alpha level at 0.05 for 95% 

confidence interval. The association between delays and resolution method selection 

is not statistically significant (p-value = 0.088 > 0.05). Therefore, it is eliminated from 

the final resolution method selection model. 

Table 3.24. The Chi-Square Test Result of Delays Attribute for Resolution Method 

Selection Model 

Attributes & 

Categories 

p-

value 

Resolution Method Selected 

in Final 

Model 

Str. of 

Assoc. LIT ARB DRB MED SEA NEG 

          
D1 – Delays 0.088       NO - 
   Ratio = 0%  66.7% 16.7% 40.0% 20.0% 0.0% 26.3%   
   Ratio 0% - 20%  0.0% 50.0% 0.0% 20.0% 30.0% 21.1%   
   Ratio 20%  40%  22.2% 0.0% 20.0% 20.0% 10.0% 21.1%   
   Ratio > 40%  11.1% 33.3% 40.0% 40.0% 60.0% 31.6%   
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The Chi-Square test results of dispute characteristics attributes with respect to 

resolution methods are given in Table 3.25. In this table, exact probability values are 

obtained from the exact Pearson Chi-Square statistics for nominal attributes and the 

Mantel-Haenszel Linear-by-Linear Association Test for ordinal ones. Probability 

values are compared to the alpha level at 0.05 for 95% confidence interval. The only 

dispute characteristics related attribute that is found to be associated with resolution 

method selection is “DC3 – Dispute Sources”, which is a nominal categorical attribute. 

Thus, the Cramer’s V measure is used for determining the strength of association. 

Table 3.25. The Chi-Square Test Results of Dispute Characteristics Attributes for 

Resolution Method Selection Model 

Attributes & 

Categories 

p-

value 

Resolution Method Selected 

in Final 

Model 

Str. of 

Assoc. LIT ARB DRB MED SEA NEG 

DC1 - Disputant  0.390       NO - 
   Client  33.3% 0.0% 20.0% 20.0% 0.0% 21.1%   
   Contractor  66.7% 100.0% 80.0% 80.0% 100.0% 78.9%   
DC2 -Phase Occur. 0.406       NO - 
   Plan.&Design  0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   
   Construction  66.7% 100.0% 100.0% 80.0% 90.0% 89.5%   
   Transfer&Repair  33.3% 0.0% 0.0% 20.0% 10.0% 10.5%   
DC3 – Disp.Source 0.014       YES Cramer’sV 
   Cost compens. 
of change orders 

 0.0% 0.0% 0.0% 0.0% 20.0% 5.3%  0.498 

   Time&Cost 
comp. of change 
orders 

 11.1% 66.7% 20.0% 60.0% 40.0% 21.1%   

   Measurement & 
valuation of 
contracted works 

 33.3% 0.0% 20.0% 0.0% 20.0% 0.0%   

   Extended 
overheads due to 
extensions 

 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   

   Delay in site 
handover & 
possession 

 0.0% 0.0% 0.0% 0.0% 0.0% 15.8%   

   Defects, errors 
and poor quality 

 22.2% 0.0% 0.0% 20.0% 0.0% 15.8%   

   Contractor fails 
to act as a prudent 
merchant 

 11.1% 0.0% 0.0% 0.0% 0.0% 26.3%   

   Delays in 
payments 

 11.1% 0.0% 0.0% 0.0% 10.0% 5.3%   

   Errors or 
substantial changes 
in BoQ 

 0.0% 16.7% 60.0% 0.0% 0.0% 0.0%   

   Inadequate site or 
soil investigation 

 11.1% 16.7% 0.0% 20.0% 0.0% 10.5%   

   Interpretation of 
contract clauses 

 0.0% 0.0% 0.0% 0.0% 10.0% 0.0%   
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Table 3.25. The Chi-Square Test Results of Dispute Characteristics Attributes for 

Resolution Method Selection Model (Continued) 

Attributes & 

Categories 

p-

value 

Resolution Method Selected 

in Final 

Model 

Str. of 

Assoc. LIT ARB DRB MED SEA NEG 

DC4 - Suspension 0.778       NO - 
   Yes  44.4% 16.7% 40.0% 20.0% 40.0% 47.4%   
   No  55.6% 83.3% 60.0% 80.0% 60.0% 52.6%   
DC5-Disp. Amount 0.485       NO - 
   < 5 million $  44.4% 0.0% 40.0% 100.0% 30.0% 52.6%   
   5 - 25 million $  33.3% 16.7% 20.0% 0.0% 50.0% 26.3%   
   25 - 75 million $  22.2% 66.7% 20.0% 0.0% 10.0% 0.0%   
   > 75 million $  0.0% 16.7% 20.0% 0.0% 10.0% 21.1%   
DC6-Sett. Amount 0.668       NO - 
   0 $  11.1% 0.0% 0.0% 20.0% 0.0% 5.3%   
   < 1 million $  22.2% 0.0% 40.0% 80.0% 20.0% 26.3%   
   1 - 5 million $  33.3% 16.7% 20.0% 0.0% 30.0% 36.8%   
   5 - 25 million $  22.2% 33.3% 0.0% 0.0% 30.0% 10.5%   
   > 25 million $  11.1% 50.0% 40.0% 0.0% 20.0% 21.1%   
DC7-Success(Fnc.) 0.910       NO - 
   0%  0.0% 0.0% 0.0% 0.0% 0.0% 5.3%   
   0% - 25%  0.0% 0.0% 0.0% 0.0% 10.0% 0.0%   
   25% - 50%  22.2% 50.0% 40.0% 20.0% 30.0% 15.8%   
   50% - 75%  22.2% 50.0% 40.0% 20.0% 30.0% 42.1%   
   > 75%  55.6% 0.0% 20.0% 60.0% 30.0% 36.8%   
DC8 – Presen. EoT 0.202       NO - 
   Yes  22.2% 83.3% 20.0% 60.0% 50.0% 52.6%   
   No  77.8% 16.7% 80.0% 40.0% 50.0% 47.4%   
DC9 -EoT Amount 0.976       NO - 
   0 days  77.8% 16.7% 80.0% 40.0% 50.0% 47.4%   
   0 - 6 months  11.1% 0.0% 0.0% 40.0% 30.0% 21.1%   
   6 months - 1 year  0.0% 16.7% 0.0% 20.0% 10.0% 15.8%   
   > 1 year  11.1% 66.7% 20.0% 0.0% 10.0% 15.8%   
DC10-Sett. EoT 0.709       NO - 
   0 days  88.9% 16.7% 80.0% 40.0% 50.0% 47.4%   
   0 - 6 months  0.0% 0.0% 0.0% 40.0% 30.0% 21.1%   
   6 months - 1 year  0.0% 50.0% 0.0% 20.0% 10.0% 15.8%   
   > 1 year  11.1% 33.3% 20.0% 0.0% 10.0% 15.8%   
DC11-Succes(EoT) 0.129       NO - 
   0%  88.9% 16.7% 80.0% 40.0% 50.0% 47.4%   
   0% - 25%  0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   
   25% - 50%  0.0% 0.0% 0.0% 0.0% 0.0% 0.0%   
   50% - 75%  0.0% 33.3% 20.0% 20.0% 0.0% 0.0%   
   > 75%  11.1% 50.0% 0.0% 40.0% 50.0% 52.6%   

 

The Chi-Square test results of resolution method characteristics attributes with respect 

to resolution methods are given in Table 3.26. Since all attributes in resolution method 

characteristics category are ordinal categorical variables, the Mantel-Haenszel Linear-

by-Linear Association Test would have been used to obtain exact probability values. 

However, it was not possible to obtain the exact values due to computational 

limitations (except for RM1 and RM2). Therefore, the Monte Carlo method is used to 

calculate an unbiased estimate of exact probability values. The Monte Carlo estimates 
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are within 99% confidence interval based on 10,000 sampled tables with starting seed 

2,000,000. Probability values are compared to the alpha level at 0.05 for 95% 

confidence interval. “RM3 – Level of Satisfaction with the Resolution Method” is not 

tested since this attribute is only used for determining which cases will be in the dataset 

for resolution method selection model. The only resolution method characteristics 

related attributes that are found to be associated with resolution method selection are 

“RM1 – Resolution Cost” and “RM2 – Resolution Duration”, which are ordinal 

categorical attributes. Thus, the Somers’ d measure is used for determining the 

strength of association. 

Table 3.26. The Chi-Square Test Results of Resolution Method Characteristics 

Attributes for Resolution Method Selection Model 

Attributes 

p-

value 

Selected for 

Final 

Model 

Strength of 

Association 

RM1 – Resolution Cost 0.000 YES Somers’ d 
   -0.909 
RM2 – Resolution Duration 0.000 YES Somers’ d 
   -0.667 
RM4 – Importance of Preserving Relation. btw. Parties 0.943 NO - 
    
RM5 – Importance of Speed of Resolution 0.823 NO - 
    
RM6 – Importance of Cost of Resolution 0.687 NO - 
    
RM7 – Importance of Bindingness of the Process 0.571 NO - 
    
RM8 – Importance of Confidentiality of the Process 0.521 NO - 
    
RM9 – Importance of Fairness in the Process 0.069 NO - 
    
RM10 – Importance of Flexibility in Procedures 0.308 NO - 
    
RM11 – Importance of Control Over the Process 0.468 NO - 
    
RM12 – Importance of Reaching Creative or 
Remedying Solutions 

0.387 NO - 

    
RM13 – Importance of Willingness in Reaching Soln. 0.759 NO - 
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Finally, the Chi-Square test results of attributes that measure the level of knowledge 

on resolution methods with respect to resolution method selection are given in Table 

3.27. Since all level of knowledge related attributes are ordinal categorical variables, 

exact probability values are obtained from the Mantel-Haenszel Linear-by-Linear 

Association Test. Probability values are compared to the alpha level at 0.05 for 95% 

confidence interval. The only knowledge level related attributes that are found to be 

associated with resolution method selection are “K1 – Level of Knowledge on 

Litigation” and “K2 – Level of Knowledge on Arbitration”, which are ordinal 

categorical attributes. Thus, the Somers’ d measure is used for determining the 

strength of association. 

Table 3.27. The Chi-Square Test Results of Level of Knowledge on Resolution 

Methods Attributes for Resolution Method Selection Model 

Attributes 

p-

value 

Selected for 

Final 

Model 

Strength of 

Association 

K1 – Level of Knowledge on Litigation 0.005 YES Somers’ d 
   -0.309 
K2 – Level of Knowledge on Arbitration 0.016 YES Somers’ d 
   -0.283 
K3 – Level of Knowledge on DRB 0.699 NO - 
    
K4 – Level of Knowledge on Mediation 0.480   
    
K5 – Level of Knowledge on SEA 0.899 NO - 
    
K6 – Level of Knowledge on Negotiation 0.879 NO - 

 

In the light of test results, all three models will be finalized. In these finalized models, 

insignificant attributes will be removed and classifications will be based on the models 

that are composed of only the significant input variables determined in the Chi-Square 

tests. Thus, the finalized models will have less input variables that will enhance the 

classification performance of ML algorithms later. The details related to the 

finalization of prediction models will be given in the next section. 
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3.4. FINALIZATION OF PREDICTION MODELS 

According to the Chi-Square results, the insignificant attributes (alpha level at 0.05) 

are eliminated. All significant attributes are in either moderately strong or strong 

relationship with the outputs. Therefore, all significant attributes are kept for the final 

prediction models.  

In the conceptual model for dispute occurrence prediction, there were 25 input 

variables associated with the dispute occurrence. However, according to results of the 

Chi-Square tests, 14 of them are found to be associated with dispute occurrence in a 

statistically significant manner. These remaining attributes for dispute occurrence 

prediction model are: 

1) PC1 – Project Location 

2) PC2 – Project or Contract Value 

3) PC3 – Planned Project Duration 

4) S1 – Relationship between Parties / Individuals 

5) S2 – Previous Experience with Each Other or Reputation 

6) S4 – Communication between Parties 

7) S5-1 – Working Culture & Skills of Represented Party 

8) S5-2 – Working Culture & Skills of Counter Party 

9) S6-2 – Response Rate & Communication Skills of Counter Party 

10) S7-2 – Experience of Counter Party 

11) S8-1 – Project Management & Coordination Skills of Represented Party 

12) S8-2 – Project Management & Coordination Skills of Counter Party 

13) C1- Changes 

14) D1 – Delays 

Figure 3.17 shows the finalized dispute occurrence prediction model with all attribute 

categories and significant input variables. 
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Figure 3.17. Finalized Dispute Occurrence Prediction Model 

In the conceptual model for potential compensation prediction model, there were 32 

input variables associated with potential compensation type. However, according to 
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results of the Chi-Square tests, 9 of them are found to be associated with potential 

compensation in a statistically significant manner. The remaining attributes for 

potential compensation prediction model are: 

1) PC5 – Type of Contractor 

2) PC7 – Type of Contract 

3) C1 – Changes 

4) D1 – Delays 

5) DC1 – Disputant Party 

6) DC3 – Dispute Sources 

7) DC5 – Disputed Amount (Financially) 

8) DC8 – Presence of EoT Claim 

9) DC9 – Disputed EoT Amount 

 

 

Figure 3.18. Finalized Potential Compensation Prediction Model 
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Figure 3.18 shows the finalized potential compensation prediction model with all 

attribute categories and significant input variables. 

In the conceptual model for resolution method selection model, there were 55 input 

variables associated with resolution method selection. However, according to results 

of the Chi-Square tests, only 7 of them are found to be associated with resolution 

method selection in a statistically significant manner. The remaining attributes for 

resolution method selection model are: 

1) PC5 – Type of Contractor 

2) C1 – Changes 

3) DC3 – Dispute Sources 

4) RM1 – Resolution Cost 

5) RM2 – Resolution Duration 

6) K1 – Level of Knowledge on Litigation 

7) K2 – Level of Knowledge on Arbitration 

 

 

Figure 3.19. Finalized Resolution Method Selection Model 

Output

O3 - Resolution Method

Project 
Characteristics

PC5
Type of 

Contractor

C1
Changes

Dispute 
Characteristics

DC3
Dispute 
Sources

Res. Method 
Characteristics

RM1
Resolution 

Cost

RM2
Resolution 
Duration

Level of 
Knowledge

K1
Litigation

K2
Arbitration



 

 
 

145 
 

Figure 3.19 shows the finalized resolution method selection model with all attribute 

categories and significant input variables. 

In short, this chapter started with the design of a questionnaire based on the conceptual 

model (Chapter 2) to collect empirical data on past construction projects. Initially, the 

collected dataset is analyzed to understand the nature of the data and to reveal initial 

findings. Then, the dataset is processed (i.e. data type conversions) to be prepared for 

attribute elimination and ML classification tasks. Remembering that the objective in 

this research is to develop three distinct prediction models (Chapter 2), there are three 

prediction problems. Prediction problems become data classification problems when 

the output variable is a categorical variable, which is the case in all prediction 

problems that are considered in this thesis study. In this research, data classification 

problems are handled by ML algorithms. In addition, attribute elimination is required 

to decrease the number of attributes used in ML algorithms and to enhance the 

generalization performance of these algorithms. For this purpose, attribute elimination 

on prediction models are performed based on the results from Chi-Square tests of 

association on attributes. In other words, insignificant attributes are eliminated from 

prediction models developed in Chapter 2 and all three models are finalized having 

significant attributes only. Subsequent to the mentioned efforts in Chapter 3 and 

finalization of three prediction models, in the fifth chapter, data classification via 

alternative ML algorithms will be performed on the finalized prediction models. In 

other words, finalized dispute occurrence prediction, potential compensation 

prediction, and resolution method selection models will be experimented by 

alternative ML algorithms in order to reveal the best classification performance for 

the corresponding dataset. Prior to this, the concept of data classification using ML 

algorithms and utilized algorithms in this thesis study will be explained in the next 

(fourth) chapter. 
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CHAPTER 4  

 

4. DATA CLASSIFICATION USING MACHINE LEARNING TECHNIQUES 

 

Construction professionals have to make challenging decisions while trying to achieve 

goals of the project. The current tendency in the construction industry is to make these 

challenging decisions intuitively based on the experience of the decision-maker with 

limited available information of questionable quality (Chou et al., 2013b). Therefore, 

current decision-making practices in dispute management domain are subjective 

instead of relying on systematical processes. AI applications, on the other hand, have 

the potential to minimize this subjectivity. In addition, construction professionals may 

benefit from decision-support systems in making informed decisions (Cheung et al., 

2004a). Such systems can be developed by AI techniques that already yielded 

promising results in the literature and as a result, they are being soundly used in 

establishing decision-support systems (Pulket and Arditi, 2009a). 

The superiority of AI techniques results from relying on empirical data via models and 

systems to justify the theories, test the insights, and interpret the results (İlter and 

Dikbaş, 2008). However, many researchers stated that there is a lack of empirical 

studies in disputes literature (Fenn et al., 1997; Love et al., 2010; İlter, 2012). In other 

words, despite the popularity of AI applications in construction, the attention to these 

applications is not reflected to construction dispute resolution domain. Leaving 

limited number of studies aside, more attention should be paid to utilization of AI 

techniques in construction dispute domain (Cheung et al., 2004a). Although AI 

techniques are not common in legal field (Chau, 2007), utilization of these techniques 

would have several benefits such as systematical selection of the resolution strategy 

(Cheung and Suen, 2002). 
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Among various AI applications, data mining via ML techniques form an important 

research branch since 1960’s as they enable gathering valuable information from large 

volumes of data that is difficult to understand and interpret (Liao et al., 2012). Simply, 

data mining is the process of discovering useful structural patterns automatically or 

semi-automatically in large volumes of data with the aim of explaining the data and 

making predictions from it about new examples (Witten et al., 2016). Data mining is 

the application of ML methods to large databases and ML can be simply defined as 

programming of computers to optimize a performance criterion using past example 

data (Alpaydın, 2010). Proactive modeling by supervised ML as in classification and 

regression problems, clustering and association by unsupervised learning, evolution, 

pattern matching, data visualization, rule guided mining, etc. are among the data 

mining methods and the use of ML techniques is a potential data mining tool to deal 

with classification problems in construction management domain (Chou et al., 2014).  

The intent of this thesis study is not to focus on all areas in data mining and ML but 

instead, the primary concern is data classification via ML techniques. For this purpose, 

general concepts related to ML techniques will be explained starting with the 

following section. 

4.1. CONCEPTS RELATED TO MACHINE LEARNING  

This section will introduce the necessary concepts in ML domain starting with the 

basic terms.  

The primary goal of this research in utilizing ML techniques is to determine the 

patterns in the collected data so that prediction models can be developed, which can 

classify future cases. Each case in the dataset is called an instance and instances are 

defined by values of their attributes. These attributes are also called features and they 

are the observed variables. Each instance may have several attributes however; they 

can only have one target value that is called the class value or the class of the instance 

(Hsu et al., 2003). 
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4.1.1. Data Classification Problems 

Data classification problems are problems of associating an instance (a case), which 

is defined by values of its attributes, with a class among predefined classes (Pulket 

and Arditi, 2009a). When the output variable is a categorical variable, prediction 

problems become data classification problems (Chou and Lin, 2012). In the case of 

dispute occurrence prediction, the output variable is dispute occurrence, where 

‘undisputed projects’ can be categorized as ‘0’ and ‘disputed projects’ as ‘1’. This 

kind of classification is known as ‘binary data classification’ since there are only two 

classes that instances can be assigned. ML algorithms are well equipped to solve 

binary data classification problems.  

A similar situation is also present in potential compensation prediction and resolution 

method selection, where the potential compensation type and the resolution method as 

output variables can again be categorical. For example, in potential compensation 

prediction, no compensation cases can be categorized as one group, cost compensation 

only cases as another, time compensation only cases as another, and both cost and 

time compensation cases as another. Similarly in resolution method selection, 

litigation can be categorized as one group, arbitration as another, mediation as another, 

and so on. This kind of classification is known as ‘multiclass data classification’ since 

there are more than two classes (multiple classes) that instances can be assigned. 

Although not all ML techniques can handle multiclass classification problems, several 

techniques with multiclass classification capabilities are available in the literature. 

These techniques are solving multiclass classification problems either naturally by 

extending their binary classification capabilities or artificially by decomposing the 

problem into several binary classification tasks (i.e. one-versus-all, one-versus-one, 

error correcting output coding, etc.) (Aly, 2005). Thus, it can be said that ML 

techniques are well equipped to solve multiclass data classification problems observed 

in potential compensation type prediction and resolution method selection. 
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In short, data classification tasks are handled by data mining and ML techniques that 

is used to predict class labels (categories, group memberships) of instances in a dataset 

(Patel et al., 2014). In other words, classification involves the process of developing a 

model depending on training set instances with known class labels in pursue of 

predicting unknown class labels of each instance in the test set (Sobhana, 2014). 

4.1.2. Training, Testing and Validation Sets 

In classification tasks, data is usually separated into training and testing sets. The 

training set is composed of instances with several attributes and one assigned class. 

The goal of the ML algorithm is to search for structural patterns in the training set 

using these attributes and develop a model that links attributes of instances to their 

assigned classes. On the other hand, classes of instances in the test set are unknown to 

the algorithm. The algorithm tries to predict the class of the test set instance based on 

test instance’s attributes using the developed model (Hsu et al., 2003).  

ML algorithms generate classifiers resulting from the learning process using the 

training data. The performance of the classifier is measured in terms of error rate, 

where correct predictions of classes of instances are counted as success and incorrect 

ones as errors. The error rate of the classifier during prediction of classes of training 

set instances is the training set error rate. However, researchers are generally interested 

in future performance of classifiers on new data, not on the training data. Therefore, 

the error rate on a dataset that played no part in the learning process is required, which 

corresponds to the test set. In other words, the performance of the classifier is tested 

using error rate in the test set, which is called the test set error rate. It is important that 

both training and test sets should be capable of representing the dataset adequately and 

test set is not used in any way during establishment of the classifier (Witten et al., 

2016).  

The true error rate of a classifier that is determined by the test set depends on the size 

of the test set. Therefore, to eliminate the effect of the test set size, confidence intervals 

are used. Confidence intervals indicate the range of true error rate or true success rate 
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(Witten et al., 2016). This thesis study utilized 95% confidence level in the assessment 

of classification results. 

If a classifier can neither perform well on training data nor generalize to new data, the 

classifier is under-fitting. Such models are not suitable. On the other hand, there is a 

problem of overfitting a model. Overfitting refers to a model that generalizes data too 

well, especially on the training set, so that the model’s generalization capabilities are 

negatively affected. Overfitting results in poor classification performance during 

classification of new data. Overfitting is a common problem in applied ML domain. 

To avoid overfitting, one can hold back a validation dataset or use a resampling 

technique to estimate model accuracy such as cross-validation (Brownlee, 2018a). 

In some cases, a third independent set can be used, which is the validation set. In such 

applications, training data is used by one or more algorithms to develop classifiers; 

and then, validation set is used to optimize parameters of these classifiers or to select 

a specific classifier among others. Finally, test set is used to determine the 

performance of the optimized classifier. Training, validation, and test sets should be 

completely different from each other with no common instances (Witten et al., 2016). 

Validation sets are good for checking the generalization ability of the classifier 

(Alpaydın, 2010). 

4.1.3. Cross-Validation and Stratification 

When limited amount of data is available, splitting the dataset into training and test 

sets may cause loss of information. Instead, researchers may prefer using all the data 

for knowledge extraction. However, this leaves no unseen instances, or in other words, 

test set. In such cases, cross-validation technique can be used, which is a procedure 

using all the data for learning and estimating the accuracy of the classifier by 

resampling the dataset (Vanwinckelen and Blockeel, 2012). K-fold cross-validation is 

the most common resampling technique. This technique is based on training and 

testing the model k-times on different subsets of training data to generate an estimate 

of the performance of a classifier on new data (Brownlee, 2018a).  



 

 
 

152 
 

In k-fold cross-validation, the dataset is divided randomly into k equally sized parts 

that are called folds (Alpaydın, 2010). One of the k folds is selected as a test set to test 

the trained classifier and the remaining k-1 folds are defined as training sets. This 

enables predicting each instance once and the cross-validation accuracy is directly 

equal to the correctly classified data percentage (Hsu et al., 2003). In short, in k-fold 

cross-validation, data is divided into k equal parts with each part being used for testing 

in turn, while the remaining parts are used for training.  

In addition to the advantage of benefiting from all instances in the dataset, another 

advantage of cross-validation technique is that it can avoid overfitting (Hsu et al., 

2003; Brownlee, 2018a). Besides the advantages, k-fold cross-validation has two 

primary shortcomings that should be considered. Firstly, the random sampling of k 

equally sized folds causes a risk related to data representation. Remembering training 

and test sets should be representative of the dataset; random sampling may cause 

uneven representation in training and test sets. In order to overcome such a problem, 

there is a procedure called stratification and cross-validation using this procedure is 

called stratified cross-validation. Stratification guarantees that during random 

sampling, each class is properly represented in both training and test sets (Witten et 

al., 2016). Thus, resorting to stratified cross-validation technique is beneficial in 

achieving representative training and test sets. Secondly, if two different k-fold cross-

validations are performed using the same algorithm and dataset, but with different 

random sampling, there will most likely be two quite different classification 

performances. This is due to the high variance associated with results obtained from 

k-fold cross-validation. Results of a single k-fold cross-validation with high variance 

can be restored by repeating the cross-validation several times with different random 

samples of the same dataset (repeated cross-validation) and taking the average of 

results obtained from each cross-validation (Vanwinckelen and Blockeel, 2012). As a 

result, the variance associated with cross-validation technique will be decreased.  

The k number in k-fold cross-validation is typically 10 (Alpaydın, 2010). Although 

this number can be adjusted depending on the size of the dataset and the desired level 
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of analysis, literature has proven that 10-folds is the right number of folds based on 

experiments using various datasets and algorithms (Witten et al., 2016).  

In the light of these, this thesis study will utilize ‘10 times repeated stratified 10-fold 

cross-validation’ in evaluating classifier performances.  

4.1.4. Measures of Classifier Performance  

Numerous measures that can be used when evaluating an ML algorithm are developed 

to serve for various domains with changing goals and considerations (Brownlee, 

2018b). Therefore, measures to evaluate a classifier’s performance should be 

determined depending on the reviewed problem and desired outcomes. This is because 

usable evaluation measures change according to the type of data classification problem 

(i.e. binary or multiclass classification) and distribution of classes (i.e. balanced or 

unbalanced), (Sokolova and Lapalme, 2009). 

In order to understand the performance of classification algorithms, (1) classification 

accuracy, (2) accuracy by class labels, and (3) confusion matrix should be considered. 

Other measures can be derived from these three items (Brownlee, 2018b). The 

classification accuracy, which is also known as the prediction accuracy, is the 

percentage of instances predicted correctly by a classifier divided by the total number 

of instances in the dataset and it is the primary evaluation criterion (Chou et al., 

2013a). As this percentage increases, the success of the classifier increases. Although 

prediction accuracy is a primary evaluation criterion, making decisions solely by 

looking at this value can be misleading. If class distributions are unbalanced in 

reviewed datasets, other evaluation measures should also be checked such as Kappa 

statistic, precision, recall, etc. to take the class balance into account (Brownlee, 

2018b). Therefore, consideration of accuracies by class labels can be beneficial in 

understanding the class breakdown for uneven datasets and multiclass classification 

problems. The confusion matrix can summarize such information and it is an 

appropriate tool to reveal the performance of the classifier for different classes. Thus, 

in ML domain, confusion matrices are commonly used to evaluate the performance of 
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classifiers (Sönmez and Sözgen, 2017). This matrix is useful in calculating the 

accuracy (or error rates), especially in binary classification problems (Chou et al., 

2013a). Basically, confusion matrix is a table that contains the number of predictions 

for each class compared to the actual number of instances that belongs to each class 

(Brownlee, 2018b). Table 4.1 is a typical confusion matrix for a binary classification 

problem.  

Table 4.1. Confusion Matrix for Binary Classification 

Class 
Predicted Class: 
Positive 

Predicted Class: 
Negative 

Actual Class: Positive True Positive (TP) False Negative (FN) 

Actual Class: Negative False Positive (FP) True Negative (TN) 

 

In Table 4.1, it can be observed that the confusion matrix is composed of four counts 

as (1) true positive (TP), (2) true negative (TN), (3) false positive (FP), and (4) false 

negative (FN). If the prediction of an actually positive instance is positive, it is called 

a true positive classification. The TP rate is calculated according to Eq. [1]. If the 

prediction of an actually negative instance is negative, it is called a true negative 

classification. The TN rate is calculated according to Eq. [2]. If the prediction of an 

actually negative instance is positive, it is called a false positive classification. The FP 

rate is calculated according to Eq. [3]. If the prediction of an actually positive instance 

is negative, it is called a false negative classification. The FN rate is calculated 

according to Eq. [4]. (Alpaydın, 2010). The correctness of a classifier can be evaluated 

using these four counts (Sokolova and Lapalme, 2009). 

 

𝑇𝑃 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          [1] 
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𝑇𝑁 𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
        [2] 

𝐹𝑃 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑇𝑁 𝑅𝑎𝑡𝑒           [3] 

𝐹𝑁 𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
= 1 − 𝑇𝑃 𝑅𝑎𝑡𝑒          [4] 

 

In the confusion matrix, the total of TP and TN classifications is equal to the correctly 

classified instances. In other words, the diagonal of the matrix represents correct 

classifications. Consequently, the classification (or prediction) accuracy is equal to the 

number of correctly classified instances divided by the total number of instances in 

the dataset as stated in Eq. [5] (Witten et al., 2016): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
= (1 − 𝑒𝑟𝑟𝑜𝑟)          [5] 

 

In the ideal case, diagonal elements of the confusion matrix should be large and off-

diagonal elements should be low (preferably ‘0’) for achieving high accuracy values 

(Witten et al., 2016). Besides correct classifications, remaining terms, which are FP 

and FN classifications, represent the two types of errors in the confusion matrix. 

(Alpaydın, 2010). 

As mentioned earlier, the classification accuracy can be a misleading criterion in case 

of unbalanced datasets and there are other measures that can be resorted for this 

purpose. One of these measures is the precision measure that gives the positive 

predictive power of a classifier. Precision is the number of correctly classified positive 

instances (TP) divided by the number of instances predicted as positive by the 

classifier (TP + FP) and it is given by Eq. [6]. (Sokolova and Lapalme, 2009): 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
          [6] 

 

Another widely used performance measure is the recall, which is also called the 

sensitivity. Recall is the number of correctly classified positive instances (TP) divided 

by the number of actually positive instances in the dataset (TP+FN) and it shows the 

power of a classifier in identifying positive labeled instances (Sokolova and Lapalme, 

2009). Thus, recall (sensitivity) is equal to the TP rate and it is given by Eq. [7] as 

follows:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝑇𝑃 𝑅𝑎𝑡𝑒          [7] 

 

Similar to the recall measure, a classifier’s power in identifying negative labeled 

instances can be determined by a measure called the specificity. It is the number of 

correctly classified negative instances (TN) divided by the number of actually negative 

instances (FP+TN) as given in Eq. [8] (Sokolova and Lapalme, 2009): 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
= 1 − 𝐹𝑃 𝑅𝑎𝑡𝑒          [8] 

 

There is a combined measure called the receiver operating characteristic (ROC) curve 

that characterizes the trade-off between the TP rate (or recall or sensitivity) and the 

FP rate (or ‘1 – specificity’) by visualization. Thus, it is a combined measure of 

sensitivity and specificity (Park et al., 2004). The ROC curve depicts the performance 

of a classifier regardless of class distributions and error costs (Witten et al., 2016). The 

ROC curve is plotted with the TP rate (or precision or sensitivity) on the vertical axis 
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and the FP rate on the horizontal axis. In ideal case, a TP rate of ‘1’ and an FP rate of 

‘0’ is desired. Meanwhile, the reference case is the diagonal line representing the worst 

possible case where the number of correct classifications is equal to the number of 

incorrect ones. Consequently, the closer the ROC curve is to the upper-left corner, the 

better the performance of a classifier (Alpaydın, 2010). In other words, as the distance 

between the ROC curve and the reference line increases, the test accuracy increases 

(Chou et al., 2013a). Figure 4.1 represents sample ROC curves where curve A is the 

ideal form and Curve D is the diagonal (worst case) (Park et al., 2004). As curves 

move towards Curve A, better classifier performances are achieved.  

 

 

Figure 4.1. Sample ROC curves (Park et al., 2004) 

Basically, the ROC curve indicates the ability of a classifier to avoid misclassifications 

(Chou and Lin, 2012). These curves are valuable as they enable visual analysis 

(Alpaydın, 2010). Moreover, ROC curves can be summarized in a single quantity that 

is called the area under the ROC curve (AUROC) and it can be said that the larger the 

area, the better the model (Witten et al., 2016). The ideal AUROC value is ‘1’ and 

AUROC values can be used to compare a general performance averaged over different 
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loss conditions (Alpaydın, 2010). The AUROC values can be simply calculated using 

the following formula (Sokolova and Lapalme, 2009): 

 

𝐴𝑈𝑅𝑂𝐶 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
) =

1

2
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)          [9] 

 

The final measure to be mentioned is the Cohen’s Kappa coefficient, or in short, the 

Kappa statistic. It is a value that is used to measure the agreement between predicted 

and actual values in a dataset with a correction for agreements by chance (Witten et 

al., 2016). The Kappa statistic takes values between ‘-1’ and ‘+1’, where ‘+1’ 

represents the perfect agreement, ‘0’ represents the agreement is equal to chance, and 

‘-1’ represents the perfect disagreement. Kappa statistic can be calculated using Eq. 

[10], where P(A) is the observed agreement between actual and predicted values that 

is equal to the accuracy and P(E) is the expected agreement that is equal to the 

probability of agreement by chance (Eugenio and Glass, 2004): 

 

𝐾𝑎𝑝𝑝𝑎 =
𝑃(𝐴) − 𝑃(𝐸)

1 − 𝑃(𝐸)
          [10] 

 

In ML terms, the Kappa statistic is another view of classification accuracy that is 

rescaled by comparing to the accuracy of a random classifier. Let C be the 

classification accuracy of the tested ML classifier and R be the classification accuracy 

of a classifier that randomly assigns instances to classes. Here, both C and R should 

assign the same number of instances to each class. In such a case, the Kappa statistic 

will be equal to: 
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𝐾𝑎𝑝𝑝𝑎 =
𝐶 − 𝑅

1 − 𝑅
          [11] 

 

Thus, if the classification accuracy of the tested classifier (C) does not improve on the 

classification accuracy of the random classifier (R), the Kappa value will be equal to 

‘0’. If C improves on R perfectly, the Kappa value will be equal to ‘1’. In other words, 

the Kappa value is ‘1’ when the tested classifier is 100% accurate, which is the ideal 

case. Thus, the higher the Kappa statistic value, the better the performance of a 

classifier. 

Among positive values of the Kappa statistic, Cohen suggested that results can be 

interpreted as: (1) values between ‘0.01-0.20’ indicate none to slight agreement, (2) 

values between ‘0.21-0.40’ indicate fair agreement, (3) values between ‘0.41-0.60’ 

indicate moderate agreement, (4) values between ‘0.61-0.80’ indicate substantial 

agreement, and (5) values between ‘0.81-1.00’ indicate almost perfect agreement 

(Mchugh, 2012).  

For multiclass classification problems, the class distribution dependent performance 

evaluation measures, which are precision, recall (TP rate or sensitivity), specificity, 

and AUROC, are calculated for each class separately. Then, weighted average values 

for these measures are taken as the final value. Moreover, in multiclass classification 

problems, the confusion matrix should be adjusted so that there is a row and a column 

for each class (Witten et al., 2016). Thus, when there are K classes with (K > 2), there 

should be a KxK confusion matrix. In such a matrix, an entry of {i,j} will represent 

the number of instances that belong to class i (Ci) but assigned to class j (Cj). Similar 

to the binary case, correct classifications are located on the diagonal of the matrix and 

in the ideal case, off-diagonal elements should be equal to ‘0’ for no misclassifications 

(Alpaydın, 2010).  



 

 
 

160 
 

Table 4.2 shows a sample confusion matrix for multiclass classification with 3 classes. 

In this table, true positives are on the diagonal and remaining elements are 

misclassifications.  

Table 4.2. Confusion Matrix for Multiclass Classification 

Class 
Predicted Class:  
Ci 

Predicted Class:  
Cj 

Predicted Class:  
Ck 

Actual Class: Ci 
True Positive  
Cii 

Misclassification 
Cij 

Misclassification 
Cik 

Actual Class: Cj 
Misclassification 
Cji 

True Positive  
Cjj 

Misclassification 
Cjk 

Actual Class: Ck 
Misclassification 
Cki 

Misclassification 
Ckj 

True Positive  
Ckk 

 

As mentioned earlier, this thesis study will utilize stratified 10-fold cross-validation 

by repeating the process 10 times in order to mitigate impacts resulting from variance 

in cross-validation process. As a result, each experiment with a specific configuration 

of an algorithm will generate 10 different cross-validation results. These results will 

be averaged to identify the final performance of the experimented classifier. For 

example, consider experimenting the Naïve Bayes algorithm for the binary 

classification problem of dispute occurrence prediction. The Naïve Bayes algorithm 

will be run 10 times using stratified 10-fold cross-validation. Consequently, there will 

be 10 different Naïve Bayes classifiers with 10 different accuracy values. The final 

accuracy for the Naïve Bayes algorithm on this problem is the average of these 10 

accuracy values. Therefore, a 95% confidence interval (CI) is constructed around 

average accuracy value so that the consistency of classifiers among cross-validation 

sets can be revealed.  

A summarizing table for utilized measures of classifier performance can be seen in 

Table 4.3. 
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Table 4.3. Measures of Classifier Performance 

Measure Formula Evaluation Focus 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 Primary evaluation criterion 

Kappa 
Statistic 

𝑃(𝐴) − 𝑃(𝐸)

1 − 𝑃(𝐸)
 

Agreement between predicted 
and actual values, 
Correction for agreements by 
chance 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Positive predictive power of a 

classifier. 

Recall 
Sensitivity 
TP Rate 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Power of a classifier in 
identifying positive labeled 
instances 

Specificity 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Power of a classifier in 
identifying negative labeled 
instances 

AUROC 
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
) 

Ability of a classifier to avoid 
misclassification 

 

4.1.5. Attribute Elimination in Machine Learning 

As stated in Section 3.3, the performance of ML algorithms is generally affected 

negatively by the irrelevant or insignificant attributes (Pulket and Arditi, 2009b). As 

a rule of thumb, the number of attributes used in ML algorithms should be low (Arditi 

and Pulket, 2009). Therefore, for datasets containing large number of attributes, a 

process called attribute elimination (selection) should be performed so that 

insignificant or irrelevant attributes can be eliminated and the ones impacting the 

model performance are selected (Arditi and Pulket, 2009; Sönmez and Sözgen, 2017). 

Attribute elimination maintains better algorithm generalization (Drucker et al., 1999). 
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There are numerous techniques in the ML literature that can be used in attribute 

elimination such as correlation-based attribute subset selection, evaluating the worth 

of an attribute depending on the information gain with respect to class labels, etc. 

However, they require additional training time for determination of best attributes. 

Moreover, the level of complexity of an attribute elimination algorithm is at least 

quadratic times the level of complexity of the utilized ML algorithm (Drucker et al., 

1999). Therefore, it can be beneficial if the attribute elimination is performed 

automatically or previously by external methods so that the complexity and the 

computation time would be lower. In the light of these observations, the Chi-Square 

statistics is preferred in this research among various alternatives. Details of the Chi-

Square analysis has  already given in Section 3.3. In short, the Chi-Square test is used 

as an attribute elimination tool before ML algorithms start to perform. In other words, 

insignificant attributes are eliminated according to results obtained from the Chi-

Square tests. 

4.2. SINGLE MACHINE LEARNING ALGORTIHMS 

It is difficult to select the best performing ML algorithm that suit the prediction 

problem at hand. The literature has proven that it is not possible to solve all data 

mining problems using a single ML technique because of the varying characteristics 

of real world datasets. Instead, in order to obtain accurate results, the bias due to 

learning technique should be compatible with the dynamics of the problem domain, 

which makes data mining an experimental process (Witten et al., 2016). An accurate 

model that is proven to be well performing on a certain dataset does not necessarily 

have to perform well on another (Pulket and Arditi, 2009b). The conventional 

approach in ML domain is to experimentally compare classification performances of 

promising single ML algorithms with each other as base classifiers and select the best 

performing one in that dataset. (Arditi and Pulket, 2009).  

In the light of these, it can be claimed that classification problems of dispute 

occurrence in construction projects, potential compensation type prediction, and 
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resolution method selection require an experimental data mining approach. In other 

words, the ML technique that generates the best classification performance with 

available datasets should be experimentally determined. For this reason, several single 

ML algorithms will be considered as potential tools in this thesis study. In this section, 

only the single classifiers that are used in this thesis study will be introduced.  

The reviewed single ML algorithms for data classification are taken from Witten et al. 

(2016) that lists the top 10 data mining algorithms based on results of a poll (Table 

4.4). Among these algorithms, the ones that can be used in data classification are 

experimentally tested on collected dispute datasets. These algorithms are C4.5 (J48 in 

WEKA tool), SVM, kNN, and Naïve Bayes. The only data classification algorithm 

that is not experimentally tested from Table 4.4 is the CART algorithm. This is 

because both C4.5 and CART algorithms are decision tree based algorithms and only 

one of them is selected. C4.5 algorithm is preferred in this research as it is more 

popular in data mining domain. Besides selected algorithms, the MLP algorithm is 

also included in experiments since it is a commonly used technique in construction 

research. In short, the final 5 single data classification algorithms used in this thesis 

study are; (1) Naïve Bayes, (2) kNN, (3) C4.5 (or J48), (4) MLP, and (5) SVM.  

In the following sections, selected ML algorithms will be introduced one by one. 

Table 4.4. The Top 10 Algorithms in Data Mining (Witten et al., 2016) 

No. Algorithm Category 

1 C4.5 (J48 in WEKA) Classification 
2 K-means Clustering 

3 SVM Statistical Learning 
(both binary classification and regression) 

4 Apriori Association Analysis 
5 Expected Maximization Statistical Learning 
6 PageRank Link Mining 
7 AdaBoost Ensemble Learning 
8 KNN Classification 
9 Naïve Bayes Classification 
10 CART Classification 

 



 

 
 

164 
 

4.2.1. Naïve Bayes Algorithm 

The Naïve Bayes algorithm, which is a simple but powerful technique with 

comparable performance to many sophisticated algorithms for predictive modeling 

(Patel et al., 2014), is introduced in this section.  

The Naïve Bayes is a simple probabilistic method that predicts the class label of an 

instance based on probabilistic calculations (Farid et al., 2014). In order to do this, the 

Naïve Bayes algorithm estimates conditional probabilities of classes given an 

observation by using joint probabilities of sample observations and classes based on 

the Bayes Theorem assuming conditional independence between classes (Li et al., 

2004).  

The Bayes Theorem can be applied when an observed event E occurs with any one of 

k mutually exclusive and exhaustive events such as A = {A1, A2,…, Ak}. The formula 

for finding conditional probabilities P(Ai | E), for i = {1, 2,…,k}, is (Mendenhall and 

Sinchic, 2016):  

 

𝑃(𝐴𝑖|𝐸) =
𝑃(𝐴𝑖 ∩ 𝐸)

𝑃(𝐸)
=

𝑃(𝐴𝑖) 𝑃(𝐸|𝐴𝑖)

𝑃(𝐴1) 𝑃(𝐸|𝐴1) + 𝑃(𝐴2) 𝑃(𝐸|𝐴2) + ⋯ + 𝑃(𝐴𝑘) 𝑃(𝐸|𝐴𝑘)
       [12] 

 

In ML point of view, given data (d), the best hypothesis (h) should be selected and in 

a classification problem, hypothesis (h) is the class label to assign for a new data 

instance (d). Thus, Eq. [12] can be converted to Eq. [13] from the ML point of view 

(Brownlee, 2018a): 

 

𝑃(ℎ|𝑑) =
𝑃(ℎ)𝑃(𝑑|ℎ)

𝑃(𝑑)
             [13] 
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In Eq. [13], P (h | d) is the probability of hypothesis (h) given the data (d) (posterior 

probability), P (d | h) is the probability of data (d) given the hypothesis (h) was true, 

and P (h) is the probability of (h) being true regardless of the data (prior probability 

of h). Finally, P (d) is the probability of the data regardless of the hypothesis (prior 

probability of d).  

In order to calculate the posterior probability of P (h | d), the posterior probability for 

various hypothesis P (d | h) are calculated and the hypothesis with the highest 

probability is selected as the maximum probable hypothesis, which is called the 

‘maximum a posteriori (MAP) hypothesis’ (Brownlee, 2018a).  

 

𝑀𝐴𝑃 (ℎ) = max( 𝑃(ℎ|𝑑)) = max (
𝑃(ℎ)𝑃(𝑑|ℎ)

𝑃(𝑑)
) = max ( 𝑃(𝑑|ℎ)  × 𝑃(ℎ))        [14] 

 

In Eq. [14], P (d) can be omitted since it is a constant value that is only used to 

normalize the term for calculating the probability. 

To explain these in more details, equations given above will be further reviewed. 

Firstly, the Naïve Bayes algorithm calculates class probabilities for each class in the 

training set. For example, the class probability of an instance belonging to ‘class 1’ 

among k classes can be calculated by Eq. [15]:  

 

𝑃 (𝑐𝑙𝑎𝑠𝑠 = 1) =
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑐𝑙𝑎𝑠𝑠 = 1)

𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 1) + 𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 2) + ⋯ + 𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 𝑘)
     [15] 

 

Secondly, conditional probabilities of each attribute value (frequencies of each 

attribute value), given the class labels are calculated. For example, given a categorical 
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attribute with 2 categories (values) and 2 categorical class labels (binary), conditional 

probabilities are calculated by operations in Eq. [16]: 

 

𝑃 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒 1 | 𝑐𝑙𝑎𝑠𝑠 = 1) =
𝑓𝑟𝑒𝑞. (𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 1 ∩ 𝑐𝑙𝑎𝑠𝑠 = 1)

𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 1)
          

𝑃 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒 2 | 𝑐𝑙𝑎𝑠𝑠 = 1) =
𝑓𝑟𝑒𝑞. (𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 2 ∩ 𝑐𝑙𝑎𝑠𝑠 = 1)

𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 1)
          

𝑃 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒 1 | 𝑐𝑙𝑎𝑠𝑠 = 2) =
𝑓𝑟𝑒𝑞. (𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 1 ∩ 𝑐𝑙𝑎𝑠𝑠 = 2)

𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 2)
          

𝑃 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑣𝑎𝑙𝑢𝑒 2 | 𝑐𝑙𝑎𝑠𝑠 = 2) =
𝑓𝑟𝑒𝑞. (𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 2 ∩ 𝑐𝑙𝑎𝑠𝑠 = 2)

𝑓𝑟𝑒𝑞. (𝑐𝑙𝑎𝑠𝑠 = 2)
     [16] 

 

Remembering Eq. [14], in order to make a prediction for the class of a new instance, 

choose the largest value obtained from Eq. [17]: 

(𝑐𝑙𝑎𝑠𝑠 = 1) = 𝑃(𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 1 | 𝑐𝑙𝑎𝑠𝑠 = 1) × 𝑃(𝑐𝑙𝑎𝑠𝑠 = 1)                 

(𝑐𝑙𝑎𝑠𝑠 = 2) = 𝑃(𝑎𝑡𝑡𝑟. = 𝑣𝑎𝑙𝑢𝑒 1 | 𝑐𝑙𝑎𝑠𝑠 = 2) × 𝑃(𝑐𝑙𝑎𝑠𝑠 = 2)          [17] 

 

If the value obtained for ‘class = 1’ is greater than the value obtained for ‘class = 2’, 

the new instance belongs to ‘class = 1’, and otherwise, it belongs to ‘class = 2’. Thus, 

the new instance belongs to the class with the highest posterior probability. 

In the light of the given simple probabilistic calculation process, the Naïve Bayes 

classifier is commonly used for data classification problems due to its simplicity and 

high performance classification accuracy. Moreover, the classifier is easy to use and 

probability values are generated in one iteration through the training set (Farid et al., 

2014). Although the algorithm is very simple, it can outperform many sophisticated 

algorithms in terms of classification performance (Witten et al., 2016). In addition, the 

Naïve Bayes algorithm can be naturally extended to solve multiclass data 
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classification problems (Thakkar et al., 2011). Therefore, it can be used both for the 

binary data classification problem in dispute occurrence prediction and for multiclass 

classification problems in potential compensation type prediction and resolution 

method selection. Another advantage of the Naïve Bayes algorithm is its capability of 

handling missing values easily by simply omitting corresponding probabilities for 

missing attributes during calculation of class probabilities (Farid et al., 2014). 

The Naïve Bayes algorithm has some limitations. To start with, the algorithm can use 

categorical variables only. Thus, numeric input variables can only be used if they are 

converted to categorical variables or an adjusted version of the algorithm, which is 

called the Gaussian Naïve Bayes, is utilized. However, in the Gaussian Naïve Bayes, 

numeric attributes are assumed to have Gaussian distributions. Therefore, the data 

distribution should be processed by removing the outliers, etc. (Brownlee, 2018a). In 

addition, the Naïve Bayes algorithm can use kernel density functions to handle 

numeric attributes and upon satisfying the normality assumption, better performance 

can be achieved using kernel estimators (Amin and Habib, 2015). The most crucial 

assumptions in the Naïve Bayes technique is that it assumes attributes do not interact 

and they are independent in terms of probability. In other words, the impact of an 

attribute value on a given class is independent of values of other attributes, which is 

called conditional independence (Patel et al., 2014). This is a very simplifying 

assumption that is unlikely to happen in real datasets, but the classification accuracy 

of the algorithm can still has comparable performance to other algorithms (Thakkar et 

al., 2011). 

Considering the simplicity and mentioned advantages, the Naïve Bayes algorithm is 

considered as a potential ML algorithm to be experimentally tested in this research.  

4.2.2. K-Nearest Neighbor (KNN) Algorithm 

In this section, the kNN algorithm for data classification will be introduced. The kNN 

is a conventional non-parametric classification technique that classifies an unknown 

instance represented with some feature vectors as a point in a feature space by 
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calculating distances between the point and other points in the training set (Chou et 

al., 2013a). Here, the term non-parametric refers to methods that do not involve strong 

assumptions about functions, which are used to map inputs to outputs. For example, 

in the Linear Regression method, a line is assumed as a function to map input variables 

to the output. On the other hand, non-parametric techniques are capable of learning 

any functional form from training instances. As non-parametric methods depend on 

training sets, they have high variance compared to parametric ones. However, the bias 

in non-parametric methods are lower as assumptions made by the model about the 

target function are less strong (Brownlee, 2018a). 

The kNN algorithm has been widely used in various problems of information retrieval 

(Li et al., 2004). The algorithm is considered as an inductive method as it performs a 

search through all instances of a training set to classify a new instance (Chou et al., 

2013a). It does not learn a model and instead, predictions are made by calculating a 

similarity distance between the new instance and every training instance (Brownlee, 

2018a). Thus, it is categorized as an instance-based (case-based) learning technique 

and sometimes called a lazy-learner. 

Basically, the kNN classifier assigns the new instance, which is a point in the feature 

space, to the class with the most instances among k neighbors in the feature space. 

The k value is an integer determining the number of neighboring instances to be 

evaluated. All neighbors have equal vote in determination of the class of the new 

instance and upon ties, an arbitrary selection is made for the class label or a weighted 

voting is performed. The k value can be taken as an odd number to avoid ties 

(Alpaydın, 2010). In short, the algorithm finds the k number of closest training data 

points to the new instance and predicts the class label of the new instance based on the 

majority of class labels of neighboring points (instances) (Li et al., 2004). 

While considering the closest training instances, the algorithm utilizes a distance 

measure. The distance between the new instance and every other training instances are 

calculated, k smallest distances are identified, and the most occurring class label in 
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these k instances are assigned to the new instance as the class label (Thakkar et al., 

2011). One of the most common distance measures utilized in the kNN algorithms is 

the Euclidean distance function that calculates the distance as the square root of the 

sum of the squared differences between two points across all attributes (Altun and 

Polat, 2008). There are several other distance measures in the literature, which 

involves the Hamming distance functions for calculating distances between binary 

vectors, the Manhattan distance functions for measurements using the sum of absolute 

differences, and the Minkowski distance function that combines the Euclidean and the 

Manhattan measures. However, the most suitable distance measure should be selected 

according to the dataset. The Euclidean distance measure is more appropriate when 

attributes are similar in types (i.e. all numeric) and the Manhattan distance measure is 

more suitable when attributes are not similar in types (i.e. nominal, ordinal, and 

numeric attributes together) (Brownlee, 2018a). Considering that datasets in this 

research have varying attribute types, the Manhattan distance measure seems to be a 

more appropriate measure. Indeed, the best classification performance is obtained 

from the kNN classifier when the Manhattan distance measure is utilized as proven in 

Chapter 5.  

Another important parameter that should be considered is the k value in kNN 

classifiers. The k value that gives the best performance on a test set by matching 

characteristics of the data should be determined. Although there are studies suggesting 

to take the k value as ‘1’ will be enough to achieve considerable classification 

performance in most applications (Jain et al., 2000), the value of k should normally be 

determined using a validation set for parameter optimization or using cross-validation 

(Thakkar et al., 2011). As a rule of thumb, if the number of training instances were 

large, it would be more accurate to use more than one nearest neighbor. However, for 

datasets with few instances, using a large k value might be problematic. When the 

ratio of the k value to the number of instances approaches ‘0’, the probability of error 

approaches the theoretical minimum for the dataset (Witten et al., 2016). Therefore, 

selection of the k value should be carefully performed.  
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The kNN algorithm can handle multiclass data classification problems in addition to 

binary classification problems (Altun and Polat, 2008). Thus, kNN classifier is eligible 

for use in all problems reviewed in this thesis study.  

Besides advantages, the kNN algorithm contains limitations. One major problem is 

that the kNN is more suitable for classification problems with lower dimensionality. 

This means less dimensionality in the feature space, or in other words, less number of 

attributes (input variables) should be used. The increasing number of attributes causes 

an exponential volume increase in the feature space and as a result, the distance 

between similar instances may be calculated as if they have large distances between 

each other. In addition, the algorithm performs poorly in case of missing values 

(Brownlee, 2018a). Finally, the user of this algorithm has to identify the best distance 

measure suitable for the dataset and the optimum k value for the best classification 

performance (Brownlee, 2018b). This requires extra effort in computations unlike the 

case in the Naïve Bayes algorithm. 

Considering the popularity of the kNN algorithm in the data mining domain and 

mentioned advantages, the algorithm is worthy of a try for classification problems 

reviewed in this thesis study. 

4.2.3.  J48 Decision Tree Algorithm 

In this section, the C4.5 decision tree algorithm (Quinlan, 1993) for data classification 

will be introduced. The WEKA version of the C4.5 algorithm is called the J48 decision 

tree algorithm. The decision tree is a powerful classification technique and the most 

commonly used versions are the CART and the C4.5 decision trees (Thakkar et al., 

2011).  

Decision trees are algorithms that display the classification process of instances 

graphically using a tree-like structure (Drazin and Montag, 2012). The tree structure 

of decision trees is top-to-down structure, where internal nodes represent a test of an 

attribute, branches represent a test outcome, and leaf nodes represent classes or class 

distributions. The top-most node is the root node and it is the node with the highest 
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information gain. After partitioning the samples using the root node, the second 

attribute with the highest information gain is used as an internal node to partition the 

data further. Partitioning is terminated when all attributes are used and data cannot be 

partitioned anymore (Chou et al., 2013a). The representation of a typical decision tree 

structure can be seen from Figure 4.2.  

 

 

Figure 4.2. Representation of a Typical Decision Tree Structure 

The information gain process will be briefly explained. Consider a training dataset 

with a definite number of instances and these instances can belong to several classes 

with labels {C1, C2, …, Cn}. For example, the probability of an instance belonging to 

a certain class (let’s say class label ‘1’ for this case), which is denoted as P1, is: 

 

𝑃1 =
𝑓𝑟𝑒𝑞. 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠 1 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡
     [18] 

 

Consequently, the probability of an instance belonging to class ‘2’ is denoted by P2, 

and so on. Thus, there is a probability distribution such that P = {P1, P2, …, Pn}. The 
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information associated with these probabilities are called entropy of P, which is equal 

to (Chou et al., 2013a): 

 

𝐼𝑛𝑓𝑜 (𝑃) = ∑ −𝑝𝑖𝑙𝑜𝑔2𝑝𝑖    

𝑛

𝑖=1

  [19] 

 

Consider a set A composed of instances partitioned according to an attribute X to 

generate sets such that {A1, A2, …, Am}. The information required to determine the 

class label of an instance belonging to set A will be the weighted average of the 

information needed to identify the class of an element Ai, that is, the weighted average 

of Info (Ai) (Chou et al., 2013a): 

 

𝐼𝑛𝑓𝑜 (𝑋, 𝐴) = ∑
|𝐴𝑖|

𝐴

𝑚

𝑖=1

× 𝐼𝑛𝑓𝑜(𝐴𝑖)     [20] 

 

The information gain, which is denoted as Gain (X, A), represents the difference 

between the information required to identify an element of A and the information 

required to identify an element of A after the threshold value of attribute X is 

determined (Chou et al., 2013a). In other words, it is the information gain resulting 

from the attribute X. The equation is: 

 

𝐺𝑎𝑖𝑛 (𝑋, 𝐴) = 𝐼𝑛𝑓𝑜 (𝐴) − 𝐼𝑛𝑓𝑜 (𝑋, 𝐴)     [21] 

 

Returning back to the philosophy behind decision trees, the tree splits the training 

dataset based on a threshold value of an attribute at a node. The attribute selected for 
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splitting the data is the attribute that gives the highest information gain. When a new 

instance should be classified, a test is performed according to attribute values of the 

instance following a path starting from the root node and ending at a leaf node. The 

final leaf node that is reached depending on test results will be the class label of the 

tested instance (Thakkar et al., 2011). 

Decision trees are usually followed by a process called pruning. Pruning is a process 

that optimizes the computational efficiency and the classification accuracy of decision 

trees. Moreover, the size of the pruned tree is reduced so that the complexity of 

generated results are also reduced (Drazin and Montag, 2012). Decision tree 

algorithms are generally associated with overfitting and the resulting tree can be 

subjected to a post-pruning process in order to avoid overfitting. Post-pruning is 

performed on a generated tree by removing statistically insignificant nodes and 

consequently, reducing the size of the tree (Li et al., 2004). There are various types of 

pruning strategies utilized in decision trees and subtree raising is one of the most 

common pruning techniques available. Subtree raising is a post-pruning process that 

raises a subtree out of the most popular branch, which is the branch with the highest 

number of training instances, in a decision tree (Lavesson and Davidsson, 2006). 

There are many advantages associated with decision trees that can be listed as (1) 

resulting trees are easy to understand, (2) the algorithm is capable of handling various 

attribute types such as categorical and numeric, (3) the algorithm is capable of 

handling missing values, (4) the algorithm has high performance compared to the 

number of iterations, (5) it is easy to implement, and (6) it is easy to generate rules of 

classification (Girja Sharma et al., 2013). Besides these advantages, the algorithm is a 

powerful technique that can naturally handle both binary and multiclass data 

classification problems (Thakkar et al., 2011). Thus, the decision tree algorithm, 

specifically the C4.5 (J48 in WEKA tool) is considered as a candidate technique for 

this research. However, disadvantages should not be underestimated. The size of trees 

increases linearly with the number of instances in the dataset and consequently, the 

algorithm performs poorly in large and noisy datasets. In addition, decision trees 
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require large storage spaces as attribute values are stored repeatedly in arrays (Girja 

Sharma et al., 2013). 

4.2.4.  Multilayer Perceptron (MLP) 

In this section, an ANN algorithm that is called the MLP neural network will be 

introduced. The ANN is composed of information-processing units that mimic 

synaptic processes in biological neurons of the brain in order to reveal relationships in 

input datasets through iterative operations so that new data can be generalized. The 

resulting network is a collection of interconnected adaptive processing elements 

(Cheung et al., 2002). The primary goal of the ANN is to establish a brain-like 

computational system that performs various tasks (i.e. classification, optimization, 

clustering, etc.) using parallel processing elements to achieve faster solutions than 

competing systems (Sobhana, 2014). In a typical ANN, brain neurons are represented 

by a group of neural and weighted nodes, while synapses between brain neurons are 

represented by interconnections between these nodes (Chou et al., 2013a). The 

connection strength between nodes (or processing elements) is network weights that 

can be adjusted in order to achieve an output that matches a desired response such 

that; each input is multiplied by a weight and the sum of all weighted inputs reveal the 

degree of activation level, which is processed further by an activation function to 

produce an output (Cheung et al., 2002).  

The rationale behind ANNs can be more simply explained as follows: Each node in 

the input layer represents an attribute and is accompanied by an additional constant 

bias unit (Witten et al., 2016). All nodes in the network are fully connected to every 

node in the following layer via connection weights and an operation is performed on 

the inputs, the connection weights, and the bias term all together to calculate values 

for the next layer. The activation function propagates in the forward direction from 

input layer to reach the hidden layer. (Alpaydın, 2010). There are several activation 

functions in the literature including binary step, bipolar step, identity, and sigmoid 

functions (Sobhana, 2014). The MLP uses a nonlinear (sigmoid) function as the 
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activation function to calculate values of the hidden layer (Alpaydın, 2010). If there 

are more than one hidden layers, values of the predecessor hidden layers are 

considered as inputs and values for the successor hidden layers are calculated with a 

similar approach. This process is repeated until the output layer is reached. Each node 

in the output layer represents a class and values of the output nodes are calculated as 

the weighted sum of its inputs (from the hidden layer) through an activation function 

(Sobhana, 2014).  

The MLP neural networks are the most common form of feed forward neural networks 

that are trained by back propagation algorithm (Sobhana, 2014). They are now 

considered as the standard ANN models in the literature that is composed of an input 

layer containing a set of sensory input nodes, one or more hidden layers and an output 

layer containing computational nodes (Chou et al., 2013a). Other than input nodes, all 

nodes in the MLP network are neurons, or processing elements, with a nonlinear 

activation function (Patel et al., 2014). Indeed, the name perceptron refers to the basic 

processing element that has inputs coming from a dataset or from other perceptrons’ 

(i.e. hidden layers) outputs (Alpaydın, 2010). The MLP generates output values at the 

end and the difference between these calculated outputs and target outputs are defined 

as the mean-squared error function. In MLP networks, the aim is to minimize this error 

function. In order to minimize the error function, weighted connections between 

neurons are optimized. The optimization in the MLP can be performed by back 

propagation algorithm (Altun and Polat, 2008).  

A typical MLP network structure with one hidden layer can be seen in Figure 4.3 that 

shows the nonlinear mapping from inputs to an output (Witten et al., 2016). However, 

this representation omits the bias terms in the input layer. In this representation, inputs 

{ao, a1, …, ak} represent attributes in the input layer, weights {w00, w10, …, wik} 

represent connection weights between the input layer and the hidden layer, hidden 

units {0, 1, …, l} represent hidden neurons, functions {f(x1), f(x2), …, f(xn)} represent 

nonlinear activation functions, weights {w1, w2, …, wl} represent connection weights 
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between the hidden layer and the output layer, and finally, f(x) represents the output 

activation function. 

 

 

Figure 4.3. A Typical MLP Network with One Hidden Layer Omitting the Bias 

Terms (Witten et al., 2016) 

The MLP can distinguish data that are not linearly separable (Patel et al., 2014) and it 

is a non-parametric estimator that can be used for classification problems (Alpaydın, 

2010). This non-parametric nature of the MLP is associated by an advantage and a 

disadvantage at the same time. The advantage is that there are no prior assumptions 

about the distribution of the data so that, the bias due to the algorithm decreases 

(Sobhana, 2014). However, when the error function is expressed as the mean-squared 

error, which is the case in the MLP, the distribution of the dataset cannot be controlled 

by the algorithm and the literature has proven that the distribution of the data 

significantly affects the training performance of MLP networks (Altun and Polat, 

2008). Other determinants of performance of the MLP are the structure of the network 

and the utilized training algorithm (Sobhana, 2014). As mentioned earlier, a 
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supervised learning technique that is called back propagation is used for training the 

MLP network (Patel et al., 2014). In back propagation, the error propagates from 

outputs to inputs (Alpaydın, 2010). Thus, connection weights in MLP networks are 

continuously modified, or optimized, to reduce errors until the total error from all 

training instances is lower than a predefined threshold value (Chou et al., 2013a). 

One final advantage of the MLP is that it can be naturally adapted to multiclass data 

classification problems. In binary classification problems, the MLP network will only 

have one neuron in the output layer. On the other hand, in multiclass classification 

problems, if there are ‘n’ classes, there will be ‘n’ output neurons (Thakkar et al., 

2011). Therefore, the MLP technique can be used appropriately for the binary data 

classification problem in dispute occurrence prediction as well as for multiclass data 

classification problems in potential compensation prediction and resolution method 

selection.  

4.2.5.  Support Vector Machines (SVM) 

In this section, the SVM algorithm, which was developed by Cortes and Vapnik (1995) 

for binary classification problems, will be introduced. The SVM algorithm  uses linear 

models to implement nonlinear class boundaries by transforming the input space into 

a higher-dimensional feature space using a nonlinear mapping that generates a linear 

model in the new space to represent a nonlinear decision boundary in the original one 

(Witten et al., 2016). The theoretical background of the SVM algorithm will be 

explained in Section 4.2.5.1. During transformation of input space to a higher-

dimensional space, the SVM utilizes kernel functions, which will be explained in 

Section 4.2.5.2. 

The SVM is a popular supervised learning technique containing many favorable 

properties (Moraes et al., 2013). The algorithm has gained attention due to its 

outstanding generalization capability in cases with limited training data, which is the 

situation in most real world applications (Belousov et al., 2002a). It is now among the 

most powerful tools for classification and regression problems (Cheng and Wu, 2009). 
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It is claimed that the generalization performance of the SVM algorithm is either 

matching or significantly better than competing methods (Burges, 1998). Resulting 

from its solid theoretical background, the SVM classifies instances more accurately 

than most of the other algorithms in the literature (Moraes et al., 2013). Moreover, 

experimental results prove that the SVM algorithm achieves good performance on 

classification problems and outperforms competing methods substantially (Joachims, 

1998). Consequently, the SVM algorithm has been successfully applied to many real 

world classification problems including the ones in the construction management 

domain such as contractor qualification decision, project success prediction, 

contractor default prediction, cash flow prediction, conceptual cost estimation, bid-no 

bid decision-making, litigation outcome prediction, dispute prediction, etc. (Sönmez 

and Sözgen, 2017). 

The SVM algorithm learns a classifier from attributes and class labels of the training 

data in order to predict unknown class labels of the test data (new data) using attributes 

of the test data only (Hsu et al., 2003). During classification, a subset of training 

instances, which are called the support vectors, are used to derive a hyperplane that 

separates instances from each other according to their class labels in a feature space 

(Cheng and Wu, 2009). In other words, the SVM algorithm utilizes support vectors to 

parametrize functions during derivation of a separating hyperplane in a higher-

dimensional feature space with the aim of achieving linear classification (Belousov et 

al., 2002b). This separating hyperplane forms the decision boundary in class 

assignments and maximizes the margin between the two classes. For linearly non-

separable cases and cases with nonlinear decision boundaries, the SVM resorts to 

kernel functions that map the input space into a higher-dimensional feature space 

during the training process (Cheng and Wu, 2009). An extensive explanation of the 

theoretical background will be given in Section 4.2.5.1. Instead, advantages and 

favorable features of the SVM algorithm will be highlighted at this point. 

As mentioned earlier, the generalization performance of the SVM is outstanding in 

most applications. While the generalization performance is maximized, training errors 
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are minimized (An et al., 2007). Moreover, considering the current nature of data 

mining applications in which it is required to measure large number of variables 

simultaneously with limited amount of training samples due to time and cost 

constraints on data gathering processes, the importance of the SVM algorithm can be 

better realized. This is because the SVM algorithm can produce flexible classifiers 

automatically and systematically to achieve outstanding generalization performance 

on datasets with numerous attributes and limited amount of instances (Belousov et al., 

2002a). Therefore, the SVM can solve classification problems in datasets with high 

input dimensionality (too many attributes). In addition, the SVM algorithm does not 

require the estimation of parameters of class distributions and consequently, all 

instances can be assigned to a class including the clear outliers (Belousov et al., 

2002b). Thus, it can be said that the generalization ability of the SVM is robust against 

datasets that have high input dimensionality with problematic distributions. 

Similar to all ML techniques, the SVM has its own drawbacks. Firtsly, the algorithm 

is designed for binary classification problems (Cortes and Vapnik, 1995). For 

multiclass classification problems, methods such as “one-versus-one (OVO)”, “one-

versus-all (OVA)”, etc. should be externally used (An et al., 2007). Secondly, the 

utilized kernel function should be carefully selected as the learning performance of 

the SVM depends on the choice of kernel function (Friedrichs and Igel, 2005). Thirdly, 

besides SVM parameters, kernel function parameters should also be optimized. In 

other words, the success of the SVM classification depends on selected parameters of 

the algorithm and for this purpose, external methods should be used for parameter 

optimization (Chou et al., 2014). This process is known as hyperparameter 

optimization in practice. 

In order to give a better insight on the SVM rationale, the theoretical background of 

the algorithm is explained in the next section. 
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4.2.5.1. Theoretical Background of SVM Algorithm 

Basically, the SVM is a supervised classification technique originated from statistical 

learning theory (Sönmez and Sözgen, 2017). The main principle is to find an optimal 

hyperplane that separates two classes and for this purpose, the SVM algorithm 

searches for the hyperplane that maximizes the distance to the closest training instance 

from either class in order to achieve better classification performance on test instances 

(Moraes et al., 2013). This hyperplane is the optimal separating hyperplane with the 

maximal margin, where the margin is the distance from the hyperplane to closest 

instances on both sides of the hyperplane (Alpaydın, 2010). Both the optimal 

hyperplane and the associated optimal margin are determined by a small portion of 

the training data that is called the support vectors. These support vectors impact the 

generalization ability of the SVM. If the number of support vectors needed to derive 

the optimal hyperplane is small, the resulting SVM will have better generalization 

(classification) performance (Sönmez and Sözgen, 2017).  

In more simple terms, the SVM finds the optimal hyperplane, which separates training 

instances with the maximum margin according to their class labels, by using closest 

instances to the hyperplane as support vectors (Joachims, 1998). An example linearly 

separable problem can be seen in Figure 4.4 (Cortes and Vapnik, 1995). In this 

representation, there is a linearly separable problem in a 2-dimensional space with 

instances of one class is shown by crosses and the other with circles. Instances in grey 

squares represent the support vectors that define the maximal margin, which is the 

largest separation between these two classes. 
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Figure 4.4. Representation of a Separable Binary Classification Problem in 2-

Dimensional Space by the SVM (Cortes and Vapnik, 1995) 

The SVM rationale is explained following the notation of Burges (1998) based on 

Cortes and Vapnik (1995). Suppose there is a binary classification problem with a 

training set containing L elements belonging to two separate classes. Each element 

consists of a pair as xi and yi such as {xi, yi} and yi ϵ {-1, 1} with i = {1, …, L}. Here, 

xi represents input vectors and yi represents the associated class label of xi. In the light 

of these, the training set can be expressed as follows: 

 

(𝑦1, 𝑥1), … , (𝑦𝐿 , 𝑥𝐿),      𝑦𝑖 ∈ {−1, 1}          [22] 

 

The equation of a hyperplane is defined by: 

 

𝑤. 𝑥 + 𝑏 = 0          [23] 

 

In the hyperplane equation, w is the normal vector to the hyperplane (weight vector), 

x is the input vector, and b is the bias term.  
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Figure 4.5. Linear Separating Hyperplanes for Separable Case (Burges, 1998) 

The representation of linear separating hyperplanes for a separable case can be seen 

in Figure 4.5 (Burges, 1998). In this case, there are two hyperplanes H1 and H2 such 

as: 

𝐻1 ∶  𝑥𝑖 . 𝑤 + 𝑏 = 1          [24]   

𝐻2 ∶  𝑥𝑖 . 𝑤 + 𝑏 = −1     [25] 

 

Points on the hyperplanes H1 and H2 are the support vectors. There is another 

hyperplane that is in the middle of H1 and H2. This hyperplane is defined as: 

 

𝐻0 ∶  𝑥𝑖 . 𝑤 + 𝑏 = 0     [26] 

 

The hyperplane H0 represents the decision boundary that separates the two classes. 

The distance between H0 and H1 is given by (Burges, 1998): 
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|𝑥𝑖 . 𝑤 + 𝑏|

‖𝑤‖
=

1

‖𝑤‖
     [27] 

 

In Eq. [27], the term ||w|| represents the Euclidean norm of vector w. Since H0 is placed 

at the same distance from both H1 and H2, the total distance is (2 / ||w||). This is the 

margin between separating hyperplanes (Burges, 1998). In other words, this is the 

shortest distance between the optimal separating hyperplane H0 and the closest 

positive and negative instances.  

For a linearly separable binary classification case, the SVM finds the optimal 

separating hyperplane with the largest margin according to the following constraints 

(Burges, 1998): 

𝑥𝑖 . 𝑤 + 𝑏 ≥ +1          𝑤ℎ𝑒𝑛 𝑦𝑖 = +1          [28] 

𝑥𝑖 . 𝑤 + 𝑏 ≤ −1          𝑤ℎ𝑒𝑛 𝑦𝑖 = −1          [29] 

 

The constraints in Eq. [28] and Eq. [29] can be combined in one constraint as follows: 

 

𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) ≥ 1          ∀𝑖          [30] 

 

To summarize the procedure up to this point, the summation of the shortest distances 

from the separating hyperplane to the closest positive and negative instances will be 

equal to the margin. Hyperplanes H1 and H2 are parallel to each other with no training 

instances between them. In this case, there are instances at a distance (1 / ||w||) on both 

sides of the separating hyperplane according to Eq. [27]. Therefore, the summation 

giving the margin is (2 / ||w||). Consequently, the hyperplane that gives the maximal 

margin can be determined by maximizing (2 / ||w||), which is the same thing as 
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minimizing the Euclidean norm ||w||, and it is subject to the constraint given in Eq. 

[30] (Burges, 1998). 

In more simple terms, the task for determining the maximal margin can be expressed 

by Eq.[31] as a standard quadratic optimization problem (Cortes and Vapnik, 1995): 

 

min
1

2
‖𝑤‖2          𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) ≥ 1          ∀𝑖          [31] 

 

The optimization problem in Eq. [31] is known as a constrained optimization problem 

that can be solved by introducing positive Lagrangian multipliers such as (αi ≥ 0) with 

i = {1, …, L}. Therefore, the problem can be reformulated into an equivalent 

unconstrained optimization problem (Burges, 1998): 

 

𝐿𝑃 =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖

𝐿

𝑖=1

𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) + ∑ 𝛼𝑖

𝐿

𝑖=1

          [32] 

 

According to Eq. [32], the task is to minimize the primal Lagrangian problem LP and 

it can be achieved by minimizing w and b such that (Dibike et al., 2001): 

 

∂𝐿𝑃

𝜕𝑏
= 0 →                ∑ 𝛼𝑖

𝐿

𝑖=1

𝑦𝑖 = 0            [33] 

∂𝐿𝑃

𝜕𝑤
= 0 →           𝑤 = ∑ 𝛼𝑖

𝐿

𝑖=1

𝑦𝑖𝑥𝑖            [34] 
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Substituting Eq. [33] and Eq. [34] into Eq. [32], the following dual Lagrangian 

formula LD is obtained: 

 

𝐿𝐷 = ∑ 𝛼𝑖 −

𝐿

𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 . 𝑥𝑗)

𝐿

𝑖,𝑗=1

         [35] 

 

According to Eq. [35], the task is to maximize the dual Lagrangian problem LD and it 

can be achieved by maximizing αi subject to the constraint of positive Lagrangian 

multipliers (αi ≥ 0) and the constraint in Eq. [33] with the solution obtained from Eq. 

[34] (Burges, 1998). 

Points where the Lagrangian multiplier are greater than ‘0’ (αi ≥ 0), are the support 

vectors of the solution (Alpaydın, 2010). These are the vectors on hyperplanes H1 and 

H2 in Figure 4.5. Remaining points have Lagrangian multipliers equal to ‘0’ (αi = 0) 

and they are located on either side of hyperplanes H1 and H2.  

The solution can be found in the form of α = {α1, α2, …, αL} by maximizing the LD 

and weights are given by (Burges, 1998): 

 

𝑤 = ∑ 𝑦𝑖𝛼𝑖𝑥𝑖          [36]

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

 

 

In the light of all these, the class label of a new instance x is determined using the 

following decision function (Burges, 1998): 
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𝑓(𝑥) = 𝑠𝑖𝑔𝑛. (𝑤. 𝑥 + 𝑏) = 𝑠𝑖𝑔𝑛. ( ∑ 𝑦𝑖𝛼𝑖(𝑥𝑖 . 𝑥) + 𝑏

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

) [37] 

 

The mentioned rationale of the SVM algorithm is valid for the linear and separable 

cases. However, real data is generally more complex and cannot be separated perfectly 

with a hyperplane (Brownlee, 2018a). When the training data is not separable without 

errors, the SVM algorithm needs some adjustments to find a solution. It is known as 

the soft margin hyperplane for non-separable cases (Alpaydın, 2010). In such cases, 

the training set should be separated with the minimum number of misclassified 

instances, or errors (Cortes and Vapnik, 1995). Figure 4.6 demonstrates the non-

separable linear SVM classifier in 2-dimensional feature space (Burges, 1998) with 

the slack variable and the constraint violation (soft margin classifier).  

 

 

Figure 4.6. Linear Separating Hyperplanes for Non-Separable Case (Burges, 1998) 
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The soft margin classifier allows some training instances to violate the separation 

between the two classes. For this reason, an additional set of coefficients are utilized 

that are called the slack variables (Brownlee, 2018a). In other words, the constraint 

given in Eq. [30] should be violated for non-separable cases using the slack variables 

ξi with i = {1, …, L} that determine the amount of violation of the constraint 

(Alpaydın, 2010). Then, the constraint becomes (Cortes and Vapnik, 1995): 

 

𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) ≥ 1 − ξ𝑖          𝑓𝑜𝑟 ∀𝑖          [38] 

ξ𝑖 ≥ 0                                       𝑓𝑜𝑟 ∀𝑖           [39] 

 

Then, a penalty parameter C is introduced to the optimization problem and the 

problem becomes (still subject to constraints in [Eq. 38] and [Eq. 39]) (Cortes and 

Vapnik, 1995): 

 

min
1

2
‖𝑤‖2 + 𝐶 ∑ ξ𝑖          [40]

𝐿

𝑖=1

 

 

The penalty parameter C is selected beforehand and it determines the cost of violating 

the constraint (Dibike et al., 2001). This time, the primal Lagrangian formulation is 

given by: 

 

𝐿𝑃 =
1

2
‖𝑤‖2 + 𝐶 ∑ ξ𝑖 − ∑ 𝛼𝑖

𝐿

𝑖=1

𝐿

𝑖=1

(𝑦𝑖(𝑥𝑖 . 𝑤 + 𝑏) − 1 + ξ𝑖) − ∑ 𝜇𝑖ξ𝑖 

𝐿

𝑖=1

    [41] 
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In Eq. [41], the term μi represents the Lagrangian multiplier enforcing the positivity 

of ξi. Similar to the linearly separable case, this primal Lagrangian problem is 

converted to the dual form such that (Alpaydın, 2010): 

 

∂𝐿𝑃

𝜕𝑏
= 0 →                ∑ 𝛼𝑖

𝐿

𝑖=1

𝑦𝑖 = 0            [42] 

∂𝐿𝑃

𝜕𝑤
= 0 →           𝑤 = ∑ 𝛼𝑖

𝐿

𝑖=1

𝑦𝑖𝑥𝑖            [43] 

∂𝐿𝑃

𝜕𝜉
= 0 →          𝐶 − 𝛼𝑖 − 𝜇𝑖 = 0            [44] 

As the term (μi ≥ 0), the Eq. [44] implies that: 

 

0 ≤ α𝑖 ≤ 𝐶          [45] 

 

According to these, the dual Lagrangian problem, which is subject to Eq. [42] and Eq. 

[45] (different than the separable case), becomes: 

 

𝐿𝐷 = ∑ 𝛼𝑖 −

𝐿

𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 . 𝑥𝑗)

𝐿

𝑖,𝑗=1

         [46] 

 

Up to this point, the linear SVM for separable and non-separable cases are considered. 

One final case is the nonlinear SVMs, which are mentioned in the next section. 
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4.2.5.2. Kernel Functions in SVM 

Besides the abilities to classify instances in linearly separable and non-separable cases, 

the SVM algorithm is also capable of classifying instances with classes that cannot be 

linearly separated. In order to do this, the input data is transformed into a higher-

dimensional space, where the data is linearly separable in this new space. The 

nonlinear decision boundary in the original feature space (original input space) can be 

determined easily because it is linear in the higher dimensional feature space. 

Moreover, there is no need to compute the parameters of the optimal hyperplane in 

the feature space with high dimensionality. Instead, the solution is computed as a 

weighted sum of values obtained from utilized kernel function that is evaluated at the 

support vectors only. The transformation of a 2-dimensional input space, which cannot 

be linearly separated, into a 3-dimensional space is illustrated in Figure 4.7 (Moraes 

et al., 2013). The 3-dimensional version can be linearly separated as shown by the 

shaded hyperplane.  

 

 

Figure 4.7. Representation of the Transformation of Input Space to a Higher-

Dimensional Feature Space using Kernel Functions (Moraes et al., 2013) 

The mapping of input space to a higher-dimensional feature space by a kernel function 

K is expressed as follows (Cortes and Vapnik, 1995): 
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𝐾(𝑥𝑖 , 𝑥𝑗) = 𝛷(𝑥𝑖) . 𝛷(𝑥𝑗)          [47] 

 

The goal of the SVM in cases such as the one in Figure 4.7 is to map the nonlinear 

problem in input space into a linear problem in higher-dimensional feature space using 

a nonlinear mapping Φ, which is an unknown term that computes the inner product of 

input data points in a feature space created by Φ (Wang et al., 2003). Due to Eq. [47], 

the dual Lagrangian problem in Eq. [46] becomes (still subject to constraints in Eq. 

[42] and Eq. [45]): 

 

𝐿𝐷 = ∑ 𝛼𝑖 −

𝐿

𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 . 𝑥𝑗)

𝐿

𝑖,𝑗=1

         [48] 

 

The SVM algorithm is characterized by the utilized kernel function (Burges, 1998). 

Therefore, in order to achieve reasonable performance from SVM classifiers, it is 

necessary to select the appropriate kernel function that suits to the reviewed problem 

and dataset (Dibike et al., 2001). The learning performance of the SVM is dependent 

to the choice of kernel function (Friedrichs and Igel, 2005). Although there are various 

kernel functions in the literature, the three commonly used kernel functions are the 

polynomial kernel, the Gaussian radial basis function (RBF) kernel, and the sigmoid 

kernel (An et al., 2007). 

4.2.5.3. Polynomial Kernel SVM 

The polynomial kernel is expressed as follows (Cortes and Vapnik, 1995): 

 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝐾𝑒𝑟𝑛𝑒𝑙 ∶  𝐾(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖 . 𝑥𝑗 + 1)𝑑          [49] 
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In Eq. [49], the term ‘d’ of the polynomial kernel function determines the degree 

(order) of the polynomial with ‘d’ always taking positive integer values. As can be 

seen from the equation, the polynomial kernel computes dot products of two vectors 

(xi and xj) and raises the result to the power ‘d’. While using polynomial kernel 

functions, the task is to use the best value for parameter ‘d’ that gives the best 

generalization performance. For this purpose, it is suggested to start with a linear 

model, which means the ‘d’ parameter is equal to ‘1’, and increase it until the 

performance criteria is met (Witten et al., 2016).  

4.2.5.4. Gaussian Radial Basis Function (RBF) Kernel SVM 

The RBF kernel, which is also known as the Gaussian kernel, can be expressed as 

follows (Burges, 1998): 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖 − 𝑥𝑗‖   2

2𝜎2
) = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗‖

2
)           𝑓𝑜𝑟 𝛾 > 0          [50] 

 

Among all kernel functions for the SVM algorithm, the most commonly used function 

is the Gaussian RBF kernel, where the parameter ‘σ’, which is always positive, is the 

spread parameter that affects the generalization performance of the algorithm by 

determining the characteristic width of the function in Eq. [50] (Belousov et al., 

2002b). In RBF kernel SVM algorithm, only two parameters are required as ‘C’ and 

‘γ’, which should be optimized (Hsu et al., 2003). 

The literature has proven that the Gaussian kernel SVM algorithm exhibits good 

features and strong learning capability in classification problems (Wang et al., 2003). 

Indeed, the RBF kernel is suggested by researchers as a reasonable first choice in 

attempt to classify instances using the SVM algorithm (Hsu et al., 2003; Cheng and 

Wu, 2009). The RBF kernel is claimed to be superior to linear, polynomial, and 

sigmoid kernels. Unlike the linear kernel, the RBF kernel can handle a dataset that is 
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composed of attributes and associated class labels with nonlinear relationships. In fact, 

the linear kernel is a special case of RBF kernel where the performance of the linear 

kernel SVM with a parameter ‘C’ is the same as the performance of the RBF kernel 

SVM with a parameter pair as ‘C’ and ‘γ’ (Hsu et al., 2003). Therefore, compared to 

linear kernel, there is an observation that RBF kernel produces better accuracy for 

nonlinear cases (Hsu and Lin, 2002). Similarly, the sigmoid kernel mimics the RBF 

kernel for certain parameters and moreover, in a study comparing the sigmoid and 

RBF kernels, it is revealed that the sigmoid kernel is not better than the RBF (Lin and 

Lin, 2003). In addition, the sigmoid kernel function is not valid under certain 

parameters (Cheng and Wu, 2009). Finally, the RBF has fewer parameters than the 

polynomial kernel that makes it numerically and computationally less complex 

(Sönmez and Sözgen, 2017). 

Although RBF kernels are superior to linear, polynomial, and sigmoid counterparts, it 

might not be appropriate to use them in some cases, especially when the number of 

features (attributes) are very large compared to available instances in the dataset (Hsu 

et al., 2003). In addition, the number of support vectors can be relatively high in the 

RBF kernel SVM algorithm. Considering that computations are made only for support 

vectors during determination of the optimal hyperplane, the large number of support 

vectors in the RBF kernel SVM may result in a higher computational time while 

developing the classifier (Dibike et al., 2001). 

In the light of all, the RBF kernel SVM is experimented in datasets of this research. 

On the other hand, considering the amount of instances and attributes in reviewed 

datasets, the polynomial kernel SVM is also experimented.  

4.3. ENSEMBLE MACHINE LEARNING ALGORITHMS 

The classification performances (prediction accuracies) of single ML algorithms (base 

classifiers) can be enhanced further by creating ensemble classification schemes 

systematically (Arditi and Pulket, 2009). In a series of studies on dispute prediction 

and resolution method selection, it is highlighted that the prediction performance of 
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ensemble models can outperform the classification performance of single classifiers 

(Chou, 2012; Chou and Lin, 2012; Chou et al., 2013a; Chou et al., 2013b; Chou et al., 

2014). This is mainly because misclassified instances by various single ML algorithms 

do not overlap (Kittler et al., 1996). Therefore, ensemble approaches, which are simply 

adding or combining base classifiers, can compensate errors of base classifiers and 

improve the classification accuracy. 

There are various approaches to develop ensemble models. One approach is to 

combine classification results of two or more classifiers into a single ensemble score 

using voting techniques such as majority voting, average of probabilities, etc. (Chou 

and Lin, 2012). The voting technique is explained in Section 4.3.1. Another approach 

is based on combining single classifiers sequentially so that the first classifier can be 

used to reduce the amount of data for following classifiers (Chou et al., 2013a). This 

thesis study utilized the stacked generalization, in which different classifiers are 

combined, and the AdaBoost algorithm, in which the performance of a weak classifier 

is enhanced. The stacked generalization is explained in Section 4.3.2 and the 

AdaBoost algorithm is in Section 4.3.3.  

4.3.1. Voting Technique 

The voting technique is utilized in generation of ensemble models and Figure 4.8 

shows the rationale behind the technique. Firstly, several base classifiers classify 

instances on their own. Then, results of the models are combined by voting techniques 

to develop the ensemble model that will make the final classification decision of 

instances. 
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Figure 4.8. Generation of Ensemble Models using the Voting Technique 

Among various voting strategies in the literature, the majority voting and the average 

of probabilities techniques are experimented. In majority voting, the class assigned to 

an instance by the majority of single classifiers is accepted as the final class label 

decision (Kittler et al., 1996). When base classifiers have comparably well 

classification performances, equal (unweighted) voting would be the sensible choice 

(Witten et al., 2016). For this reason, this research considered votes as equally 

important and they are not weighted.  

Classification models obtained from single ML algorithms can output probability 

estimates of class labels of instances. In other words, they do not only generate class 

predictions and instead, they can generate probabilistic outcomes on class 

assignments. The average of probabilities voting technique uses advantage of this by 

taking probabilistic outcomes of each single classifier and averaging them to make the 

final class assignment decision. Such an approach may improve the classification 

accuracy (Witten et al., 2016). 

In this research, results of the top three base classifiers in terms of classification 

accuracy out of six experimented single algorithms are considered during voting. For 
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dispute occurrence prediction, these algorithms are (1) Gaussian RBF kernel SVM, 

(2) polynomial kernel SVM, and (3) C4.5 (J48). For potential compensation 

prediction, these algorithms are (1) Naïve Bayes, (2) kNN, and (3) C4.5 (J48). For 

resolution method selection, these algorithms are (1) C4.5 (J48), (2) Naïve Bayes, and 

(3) MLP.  

4.3.2. Stacked Generalization 

Stacked generalization (or in short, stacking) is a technique for minimizing the 

generalization error by combining two or more classifiers and the error reduction is 

achieved by reducing biases of classifiers with respect to a provided learning set 

(Wolpert, 1992).  

In more simple terms, a classifier is trained and tested using a dataset that contains L 

instances with some classification performance; inevitably, there will be classification 

errors and incorrectly classified instances are removed from the original dataset to 

obtain a smaller dataset with L’ instances (L’ < L), which is the subset of the first 

dataset with L elements. These, L’ instances are correctly classified instances by the 

first classifier. Then, the second classifier is trained and tested using this new dataset. 

The resulting classifier, which combines performances of two classifiers, will be the 

ensemble classifier that might achieve better classification performance than each 

single classifier (Chou et al., 2013a). In other words, correct predictions of an initial 

base classifier are used as inputs in a secondary classifier to form the combined 

ensemble model. Here, the initial base classifier is called the base-learner and the 

secondary classifier is called the meta-learner, where most of the work is done by the 

base-learner and the meta-learner is like an arbiter. Therefore, it would be better to 

select a simpler algorithm as a meta-learner considering the computational complexity 

associated with stacking (Witten et al., 2016). Figure 4.9 shows the rationale in 

ensemble model generation using stacked generalization. 
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Figure 4.9. Generation of Ensemble Models using Stacked Generalization 

Upon using multiple classifiers, the strategy of the stacking can said to be more 

sophisticated and sound compared to the voting (Wolpert, 1992). In voting, it is not 

clear which classifiers to trust during the voting process. This is a major drawback as 

some algorithms may be more suitable to certain datasets than others, but they still 

might be voted out. For example, suppose two of the three classifiers in voting make 

incorrect classifications. In such a case, the final classification would be incorrect. In 

stacking, the meta-learner replaces the voting mechanism and it identifies base 

classifiers that can be trusted (Witten et al., 2016). As a result, the bias is reduced; 

however, stacking adds extra parameters to be dealt with, extra variance due to having 

more than one training set (reduced training sets), and consequently, extra 

computational time (Alpaydın, 2010). However, in general, the stacked generalization 

is claimed to be a more suitable approach than voting (Witten et al., 2016). 

When the classification accuracy of single classifiers contained in the ensemble model 

is as high as possible and classifiers are selected as diverse as possible, the ensemble 

model can outperform performances of single classifiers it contains. As it can be seen 
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from Figure 4.9, the stacked generalization should not be used to combine classifiers 

of the same type (i.e. if the base-learner is Naïve Bayes, the meta-learner should not 

be Naïve Bayes) and instead, it should be applied to combine different classification 

techniques so that different classifiers can complement to each other (Alpaydın, 2010). 

Considering this, the best performing three single ML techniques are used as base-

learners one by one and remaining algorithms are used as meta-learners in turns while 

same classifiers cannot be base-learner and meta-learner at the same time; such that, 

the algorithm with the best performance will be the base-learner and remaining 

algorithms (other than the base-learner) will be meta-learners one by one to generate 

five models. Then, the second best performing algorithm will be the base-learner and 

remaining algorithms will again be meta-learners one by one to generate five more 

models. This procedure will continue until all combinations are experimented, which 

means 15 ensemble models are experimented for dispute occurrence prediction, 15 

ensemble models are experimented for potential compensation prediction, and 15 

ensemble models are experimented for resolution method selection using the stacked 

generalization. 

4.3.3. AdaBoost Algorithm 

Boosting is an ensemble method that is based on generating a strong classifier from a 

number of sequentially iterated weak classifiers (Brownlee, 2018a). Boosting is a 

general method that can be used to improve the classification performance of any ML 

algorithm by reducing the error of the weak algorithm that generates classifiers with a 

performance little better than random chance (Freund and Schapire, 1996). This is 

achieved by generating base-learners that complement each other by training the 

algorithm with a special emphasis on misclassified instances of the previous learner 

(Alpaydın, 2010). More simply, an initial model is trained with the unweighted 

(initial) training set; then, a second model is trained in attempt to correct 

misclassifications of the first model with assigning weights to instances on the initial 

training set. This process continues until the training set has no errors or a predefined 

value for maximum number of classifiers is reached (Brownlee, 2018a). During this 
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process, the weak learner is repeatedly trained on various distributions of the training 

data and resulting classifiers are combined to generate a single and stronger classifier 

(Freund and Schapire, 1996). 

The AdaBoost, which is the short form of adaptive boosting, is a boosting algorithm 

that can combine an arbitrary number of base-learners by using the same training set 

repeatedly (Alpaydın, 2010). In original version, ‘AdaBoost.M1’ algorithm, which is 

developed by Freund and Schapire (1996), is the one for classification tasks 

specifically. 

The AdaBoost algorithm assigns equal weights to all instances in the training set at 

the beginning. Then, an ML algorithm is used as a classifier (base-learner) for this 

training set with some classification errors. The classification error is calculated using 

instance weights such that the sum of weights of misclassified instances is divided by 

the total weight of all instances (Witten et al., 2016).  

The AdaBoost algorithm adjusts weights of instances according to classification errors 

such that weights are increased for misclassified instances and decreased for correctly 

classified ones. As a result, instances that are correctly classified by the classifier are 

assigned lower weights and considered as easy instances. Meanwhile, misclassified 

instances by the classifier are assigned higher weights and considered as hard 

instances (Freund and Schapire, 1996).  

Resulting from the weighting rationale, the AdaBoost algorithm can focus on the 

correct classification of misclassified instances (Freund and Schapire, 1996). In 

weight assignments, the AdaBoost algorithm uses the following formula that 

generates a value between ‘0’ and infinity (Witten et al., 2016): 

 

𝑤𝑒𝑖𝑔ℎ𝑡 = −𝑙𝑜𝑔
(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑒𝑟𝑟𝑜𝑟)

(1 − 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑒𝑟𝑟𝑜𝑟)
          [51] 
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After adjusting the weights, a new classifier is developed for this new weighted 

training set. Similarly, there will be classification errors again. Then, the weighting 

process is repeated and the new training set is classified again. After each iteration, 

weights are changed for achieving correct classifications and each developed classifier 

complements to each other for this purpose (Witten et al., 2016).  

At the end of training process, the AdaBoost acts like a voting method using a 

weighted voting strategy with assigned weights being proportional to the classification 

accuracy of base-learners on the training set (Alpaydın, 2010). In other words, the 

AdaBoost algorithm combines weak classifiers by summing their probabilistic 

predictions (Freund and Schapire, 1997). 

In short, the advantage of the AdaBoost algorithm is to derive a strong classifier out 

of several weak classifiers (Freund and Schapire, 1996). However, the boosting 

process might perform poorly on test set (new instances) if individual classifiers are 

too complex for the amount of available training data (Witten et al., 2016). An 

experimental study proved that when the weak algorithm creates simple classifiers, 

the boosting method performs significantly better than bagging (Freund and Schapire, 

1996). Unfortunately, if classifiers are complex, the AdaBoost model may have an 

overfitting problem (Alpaydın, 2010) and an overfitted AdaBoost model may generate 

a classification performance worse than the single classifier built from the same 

training set (Witten et al., 2016). In addition, boosting is vulnerable to noise and 

outliers (Alpaydın, 2010). 

In the light of these, this research utilized the AdaBoost algorithm to generate 

ensemble models with the aim of enhancing classification performances of the single 

algorithms used. 

In short, with an aim to generate an understanding, this chapter reviewed binary and 

multiclass data classification problems, basic concepts in ML domain, theoretical 

background related to utilized single and ensemble ML techniques in this research 

along with reasons of selecting these algorithms, measures of classification 



 

 
 

200 
 

performance, and importance of attribute elimination in ML domain. Following this 

explanatory chapter, in the next (fifth) chapter, data classification via alternative ML 

algorithms will be performed on the finalized prediction models developed in Chapter 

3. In other words, finalized dispute occurrence prediction, potential compensation 

prediction, and resolution method selection models will be experimented by 

alternative ML algorithms in order to reveal the best classification performance for 

the corresponding dataset.  
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CHAPTER 5  

 

5.  RESULTS OF DATA CLASSIFICATION EXPERIMENTS 

 

Results obtained from binary data classification for dispute occurrence prediction as 

well as multiclass data classification for potential compensation prediction and 

resolution method selection are given in this chapter. The analysis are performed by 

using the WEKA workbench version 3.8.3 and the tool is introduced in the next 

section. Then, configurations in WEKA to test utilized single ML algorithms and 

detailed binary classification results for dispute occurrence prediction are given. It will 

be followed by configurations and results of ensemble ML algorithms for the same 

dataset. Similarly, configurations of utilized single and ensemble ML algorithms and 

detailed multiclass classification results are given for potential compensation 

prediction and resolution method selection respectively. Moreover, adjustments to 

algorithms to enable multiclass classification is explained. Finally, best classifiers will 

be selected among numerous tested algorithms by comparing them with respect to 

various measures of classifier performance. The selected classifier for binary 

classification will be the final model for dispute occurrence prediction. Similarly, 

classifiers with the best performance will be determined as final models for potential 

compensation prediction and resolution method selection based on results of 

multiclass classification experiments. 

5.1. THE WEKA WORKBENCH 

The WEKA workbench is an open-source Java based application for data mining that 

is produced by the University of Waikato in New Zealand (Drazin and Montag, 2012). 

The name stands for Waikato Environment for Knowledge Analysis and the software 

is under the GNU General Public License as freely available (Girja Sharma et al., 

2013).  
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The WEKA workbench is a collection of ML algorithms for data mining tasks that 

contain tools for data preprocessing, classification, regression, clustering, association 

rule mining, and visualization (Frank et al., 2016). WEKA is the state-of-the-art tool 

for applying ML algorithms to real world problems. Besides numerous algorithms it 

contains, it is also possible to develop new ML schemes using this tool (Patel et al., 

2014). Moreover, it can be used in various operating systems such as Windows, Linux, 

and Mac (Sobhana, 2014). 

WEKA can be used to apply an ML algorithm to a dataset for analyzing the data to 

obtain more insight. It can also be used for making predictions using generated 

classifiers. Moreover, it is possible to apply various algorithms on a dataset to compare 

performances and to select the most appropriate one for predictions (Witten et al., 

2016). 

Algorithms available in WEKA can be applied directly to datasets (Patel et al., 2014). 

This can be achieved by using a graphical-user-interface (GUI) or by calling the Java 

code using the Java library for WEKA (Sobhana, 2014). The WEKA GUI presents 

several applications; (1) the Explorer, (2) the Experimenter, (3) the Knowledge Flow, 

(4) the Workbench, and (5) the Simple Command Line Interface (CLI).  

 

 

Figure 5.1. WEKA GUI Chooser and the Available Applications 
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The Explorer GUI, which gives access to all available facilities via menu selections 

and form filling, is the easiest way to use WEKA (Sobhana, 2014). However, due to 

memory limitations, the Explorer can be used for small to medium sized problems 

(Witten et al., 2016). The Experimenter GUI can be used to identify which algorithms 

and parameter settings give the best performance for the reviewed problem thanks to 

the capability of experimenting a wide variety of algorithms and settings 

simultaneously on the same dataset. The Knowledge Flow GUI, which is the best 

option for large datasets, is designed for developing a data stream by connecting 

components such as datasets, preprocessing tools, ML algorithms, evaluation 

methods, and visualization modules. The Workbench GUI is the combination of the 

Explorer, the Experimenter, and the Knowledge Flow in one application. The Simple 

CLI gives access to users for calling Java codes using the Java Library for WEKA 

(Witten et al., 2016).  

The data is uploaded into WEKA in attribute-relation file format (ARFF), which is 

composed of pre-labeled diverse parts for attribute names, attribute types, values 

(categories), and the data itself (Patel et al., 2014). Datasets in other formats (i.e. MS 

Excel) should be converted to ARFF to be used in WEKA. An example ARFF file is 

given in Figure 5.2 that has various parts including dataset preprocessing part 

(‘relation’ part), attribute names and categories (‘attribute’ part), and data part. 

In short, the WEKA workbench can be used for data preprocessing (i.e. filtering, 

standardization, normalization), attribute elimination (i.e. information gain, subset 

evaluation), data classification (i.e. Naïve Bayes, SVM, decision trees), regression (i.e. 

LR, SVM), clustering (i.e. k-means), association rules (i.e. Apriori algorithm), and 

data visualization (Sobhana, 2014).  

In this thesis study, WEKA version 3.8.3, which is the latest stable version of the tool, 

is used for data classification tasks in dispute occurrence and potential compensation 

prediction problems along with resolution method selection problem. 
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Figure 5.2. An Example ARFF File Format used in WEKA 

5.2. BINARY CLASSIFICATION PROBLEM OF DISPUTE OCCURRENCE 

PREDICTION 

The binary classification problem of dispute occurrence prediction is solved by single 

and ensemble ML algorithms. The utilized single algorithms are (1) Naïve Bayes, (2) 

kNN, (3) J48, (4) MLP, (5) Polynomial kernel SVM, and (6) Gaussian RBF kernel 

SVM. Meanwhile, utilized ensemble techniques are (1) voting, (2) stacked 

generalization, and (3) AdaBoost algorithm. Configurations for each algorithm in 

WEKA and corresponding classification results are given in this section. 

The dataset for dispute occurrence prediction involves 108 instances obtained from 

real construction projects. The classification problem here is whether the project will 
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encounter disputes or not. In pursue of such a classification, this thesis study classifies 

the dataset using stratified 10-fold cross-validation with 10 repeats. Results for each 

run will be given. Then, the average accuracy for 10 runs are presented as the final 

classifier performance with a 95% CI constructed around average values. Thus, 

average accuracy values with upper and lower bounds will represent the final 

performance of each classifier under review.  

5.2.1. Binary Classification for Dispute Occurrence Prediction Using Single ML 

Algorithms 

The WEKA configuration details of each single ML algorithm and the obtained binary 

classification results are given in this section starting with the Naïve Bayes algorithm, 

which will be followed by the kNN, J48, MLP, polynomial kernel SVM, and Gaussian 

RBF kernel SVM, in the given order. 

5.2.1.1. The Naïve Bayes Algorithm and its Configuration in WEKA 

In WEKA version 3.8.3, the Naïve Bayes algorithm is contained in 

‘weka.classifiers.bayes.NaiveBayes’ class. This class can handle binary and 

categorical attributes along with missing values (Frank et al., 2016). This classifier 

can also handle numeric attributes by assuming a distribution (Brownlee, 2018b) 

The Naïve Bayes algorithm in WEKA has several options that can be adjusted. 

Options that gave the best classification performance are selected. The WEKA 

configuration for the Naïve Bayes is given in Figure 5.3. Critical settings here are the 

‘useKernelEstimator’ setting and the ‘useSupervisedDiscretization’ setting. Both 

options can be enabled by setting it to ‘True’ or disabled by setting it to ‘False’. For 

remaining settings, default values in WEKA are utilized. 

The Naïve Bayes classifier can assume complex distributions such as kernel density 

functions rather than assuming a Gaussian distribution for the numeric data. Kernel 

estimators may result in a better match with the distribution of attributes in the dataset 

(Brownlee, 2018b). Consequently, the Naïve Bayes algorithm can achieve better 
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classification performance using kernel estimators (Amin and Habib, 2015). However, 

this option does not change the classification performance since numeric attributes in 

reviewed datasets in this research were previously converted to categorical variables 

for computational reasons due to utilization of the Chi-Square tests. Therefore, in 

order to decrease computational complexity, this option is ‘False’ and disabled. The 

‘useSupervisedDiscretization’ option can be ‘True’ when numeric attributes are used. 

This option will automatically convert numeric attributes to categorical ones in 

WEKA (Brownlee, 2018b). However, there are no numeric attributes in reviewed 

datasets and therefore, there is no need for enabling this option. 

 

 

Figure 5.3. The Naïve Bayes Classifier Configuration in WEKA 

Naïve Bayes classification results using the mentioned configuration are given in the 

next section. 
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5.2.1.2. Results from the Naïve Bayes Algorithm 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.1), Naïve Bayes classifiers have an average classification accuracy of ‘87.50%’ with 

lower and upper bounds (86.60% - 88.40%) within 95% CI. In other words, the Naïve 

Bayes algorithm predicts the dispute occurrence in construction projects with an 

average success rate of ‘87.50%’.  

The average for Kappa statistic value is ‘0.728’ that can be interpreted as a substantial 

agreement between predicted and actual values in the dataset. Disputed projects are 

considered as positive instances and undisputed projects are considered as negative 

instances. The average precision value that indicates the positive predicting power of 

Naïve Bayes classifiers is ‘0.912’. The average sensitivity (recall) value is ‘0.893’. In 

other words, the success of the Naïve Bayes algorithm in identifying disputed 

(positive) projects is ‘89.3%’. Similarly, the average specificity value is ‘0.843’ that 

indicates the Naïve Bayes algorithm achieved ‘84.3%’ success in identifying 

undisputed (negative) projects. The average AUROC value is ‘0.953’ that indicates 

the ability of the Naïve Bayes algorithm to avoid misclassifications. Considering that 

the ideal AUROC value is ‘1’, the obtained AUROC value is almost perfect. 

Table 5.1. 10-Times 10-Fold Cross-Validation Results for the Naïve Bayes  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

            
Accuracy(%) 87.04 87.96 87.04 88.89 87.96 88.89 88.89 85.19 86.11 87.04 87.50 
Kappa 0.716 0.741 0.719 0.756 0.738 0.759 0.759 0.679 0.697 0.719 0.728 
Precision 0.900 0.925 0.912 0.914 0.913 0.926 0.926 0.897 0.899 0.912 0.912 
Recall 0.900 0.886 0.886 0.914 0.900 0.900 0.900 0.871 0.886 0.886 0.893 
Specificity 0.816 0.868 0.857 0.842 0.842 0.868 0.868 0.816 0.816 0.842 0.843 
AUROC 0.945 0.957 0.950 0.955 0.956 0.954 0.956 0.954 0.950 0.953 0.953 

             

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 625 75 
Undisputed 60 320 
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The corresponding confusion matrix can be seen under the results. Although the 

dataset involves 108 instances, the confusion matrix involves 1080 instances since 

there are 10 repeats with the same algorithm. 

5.2.1.3. The KNN Algorithm and its Configuration in WEKA 

In WEKA version 3.8.3, the kNN algorithm is contained in ‘weka.classifiers.lazy.IBk’ 

class. This class can handle binary, categorical, and numeric attributes. However, 

numeric attributes should be rescaled by normalization. Moreover, if the data has a 

Gaussian distribution, it should be standardized (Frank et al., 2016). 

The kNN algorithm in WEKA has several settings that can be adjusted. Settings that 

gave the best classification performance are selected. The WEKA configuration for 

the kNN is given in Figure 5.4.  

 

  

Figure 5.4. The KNN Classifier Configuration in WEKA 
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As mentioned earlier (Section 4.2.2), the value of k should normally be selected using 

cross-validation (Thakkar et al., 2011). Therefore, the ‘crossValidate’ setting, which 

is set to ‘False’ by default, should be adjusted as ‘True’.  

The algorithm has a ‘distanceWeighting’ setting that can adjust distance values 

between instances with a factor (1 / distance) or (1 – distance). There is also an option 

for no distance setting. The best performance is obtained from (1 / distance) weighting 

that assigns weights (votes) for k neighboring instances during classification of a new 

instance. 

The ‘meanSquared’ setting determines whether to use the mean squared error rather 

than the mean absolute error when doing cross-validation for regression problems. 

Thus, it should be considered for regression problems only. For classification 

problems, this configuration is set as ‘False’. 

The ‘nearestNeighborSearchAlgorithm’ involves distance measurement functions. 

Among these functions ‘LinearNNSearch’ option involves distance measures such as 

Chebyshev, Euclidean, Manhattan, and Minkowski distance measures. As mentioned 

in Section 4.2.2, the Manhattan distance measure should be selected in this research. 

Indeed, among various trials, the Manhattan distance measure gave the best 

classification performance.  

The most important parameter is the k value that can be adjusted by changing the value 

in the ‘KNN’ setting. In this thesis study, the k parameter is optimized using an 

external algorithm from the WEKA library. This algorithm is the ‘cross-validation 

parameter selection’ algorithm that is capable of determining the optimum value for a 

parameter using cross-validation. The cross-validation parameter selection algorithm 

is contained in ‘weka.classifiers.meta.CVParameterSelection’ class. The WEKA 

configuration for this algorithm is given in Figure 5.5. The two settings that should be 

organized for determination of the optimum k parameter are the ‘CVParameters’ 

setting and the ‘classifier’ setting. In the ‘classifier’ setting, the kNN algorithm should 

be selected as the classifier with the configuration in Figure 5.4. The ‘CVParameters’ 
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setting is empty by default that is shown as ‘0.java.lang.String’. The user should enter 

the search range for the k value manually. The search range for the optimum k value 

for dispute occurrence prediction problem is between ‘1’ and ‘100’. Remembering 

that there are 108 instances in dispute occurrence prediction dataset, larger k values 

are not considered. By clicking on the ‘CVParameters’ option, a new tab opens for 

defining the parameter that will be searched by the algorithm. The user defines the 

parameter to be searched and in this case, it is ‘K’. Then, the range to be searched is 

defined for this case between ‘1’ and ‘100’. In order to try all integer values in this 

range, the number of steps is defined as ‘100’. Thus, the algorithm will divide the 

range into ‘100’ steps and try all values one by one to perform the classification. The 

k value that gives the best classification performance will be presented to the user as 

the optimum k value. 

 

 

Figure 5.5. The CVParameterSelection Configuration for the KNN in WEKA 
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5.2.1.4. Results from the kNN Algorithm 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.2), the optimum k value is identified as ‘k = 3’. KNN classifiers have an average 

classification accuracy of ‘87.69%’ with lower and upper bounds (86.65% - 88.72%) 

within 95% CI. In other words, the kNN algorithm predicts the dispute occurrence in 

construction projects with an average success rate of ‘87.69%’.  

The average for Kappa statistic value is ‘0.737’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of kNN 

classifiers is ‘0.931’. The average sensitivity (recall) value is ‘0.874’ that means the 

success of the kNN algorithm in identifying disputed projects is ‘87.4%’. Similarly, 

the average specificity value is ‘0.881’ showing the kNN algorithm achieved ‘88.1%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.928’ that 

is very close to the ideal value. 

Table 5.2. 10-Times 10-Fold Cross-Validation Results for the KNN Algorithm 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

            
Accuracy(%) 87.96 88.89 86.11 87.96 86.11 90.74 87.04 87.96 86.11 87.96 87.69 
Kappa 0.741 0.762 0.708 0.744 0.704 0.802 0.723 0.741 0.704 0.741 0.737 
Precision 0.925 0.939 0.937 0.938 0.923 0.955 0.924 0.925 0.923 0.925 0.931 
Recall 0.886 0.886 0.843 0.871 0.857 0.900 0.871 0.886 0.857 0.886 0.874 
Specificity 0.868 0.895 0.895 0.895 0.868 0.921 0.868 0.868 0.868 0.868 0.881 
AUROC 0.883 0.922 0.940 0.930 0.925 0.948 0.922 0.937 0.934 0.935 0.928 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 612 88 
Undisputed 45 335 

 

5.2.1.5. The J48 Algorithm and its Configuration in WEKA 

In WEKA version 3.8.3, the J48 algorithm is contained in ‘weka.classifiers.trees.J48’ 

class. This class can generate pruned or unpruned decision trees and it can work with 

binary, categorical, and numeric attributes. Moreover, it is capable of handling missing 

values (Frank et al., 2016). 
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Settings in the J48 algorithm involve the type of pruning, the confidence threshold for 

pruning, and the minimum number of instances in leaf nodes. In default configuration 

of the J48 algorithm, the pruning is on and subtree raising is the preferred pruning 

technique. These settings are kept as default values such that the ‘unpruned’ option is 

set to ‘False’, the ‘subtreeRaising’ option is set to ‘True’, and the 

‘reducedErrorPruning’ option is set to ‘False’. When reduced error pruning is set to 

‘False’, the ‘numFolds’ option, which determines the number of folds for reduced 

error pruning, becomes unnecessary. In addition, the ‘useLaplace’ option is set to 

‘True’ that smoothed the counts at leaves based on Laplace (Lavesson and Davidsson, 

2006). The configuration for the J48 algorithm in WEKA can be seen in Figure 5.6. 

As it can be seen from Figure 5.6, the J48 decision tree has numerous parameters. 

However, only two of them affects the amount of pruning, which are the 

‘confidenceFactor’ and the ‘minNumObj’ settings. The ‘confidenceFactor’ setting 

determines the confidence factor for pruning, or in other words, the size of the tree. 

(Molina et al:, 2012). The confidence factor parameter is associated with the 

effectiveness of the post-pruning. The lower confidence factor corresponds to a lesser 

confidence to the training data such that the error estimate for each node increases. 

Error estimates are increased by penalizing the nodes with few instances since 

confident assumptions related to classification errors on these nodes cannot be made. 

Consequently, the likelihood of pruning of such nodes increases in pursue of a more 

stable tree structure (Drazin and Montag, 2012). In short, the smaller confidence factor 

values result in more pruning and the default value for the confidence factor in WEKA 

is ‘0.25’ (Witten et al., 2016). On the other hand, the ‘minNumObj’ setting determines 

the minimum number of instances in leaf nodes and the default value is ‘2’ (Molina et 

al., 2012). Considering that the pruning process is a main determinant on the 

performance of the J48 algorithm, the optimum pruning should be performed 

(Lavesson and Davidsson, 2006). The confidence factor should be tested with different 

values when developing trees and the most appropriate value for the reviewed dataset 
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should be determined (Drazin and Montag, 2012). This also applies for the minimum 

number of instances in leaf nodes.  

 

 

Figure 5.6. The J48 Classifier Configuration in WEKA 

In order to perform an optimum pruning process, both parameters should be optimized 

simultaneously. It is not known which confidence factor and minimum number of 

instances in leaf nodes values generate the best results for the reviewed data 

classification problem. For this reason, an external algorithm, which is called the ‘Grid 

Search Algorithm’, is utilized in the WEKA tool as suggested in Hsu et al. (2003). 
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The grid search algorithm is capable of optimizing values of two different parameters 

at the same time by trying various value pairs of these parameters until the best cross-

validation accuracy is achieved (Hsu et al., 2003). In grid search, parameters are varied 

with a fixed step size through a wide range of values and the cross-validation 

classification performance of every combination couple is assessed (Friedrichs and 

Igel, 2005). Although grid search is an exhaustive parameter search that requires 

significant computational time, this time requirement is not much more than 

requirements of other advanced methods. Moreover, grid search can be parallelized 

when search parameters are independent, while many advanced methods are hard to 

parallelize as they depend on iterative processes (Hsu et al., 2003). However, as stated 

earlier, grid search is only suitable for the search of two parameters in WEKA. When 

the best combination of parameters is determined, the whole training set is trained for 

one final time in order to develop the final classifier.  

In WEKA, the grid search algorithm is contained under the class 

‘weka.classifiers.meta.GridSearch’. Configuration details of the grid search algorithm 

is given in Figure 5.7. In grid search, the J48 classifier should be selected under the 

‘classifier’ setting. Then, the two parameters that will be optimized should be entered 

to ‘XProperty’ and ‘YProperty’ options using the names in WEKA tool such that 

‘confidenceFactor’ and ‘minNumObj’ should be written to ‘XProperty’ and 

‘YProperty’, respectively. The search range for both parameters should be determined. 

There are various suggestions in the literature for confidence factor and minimum 

number of instances in leaf nodes value search ranges. Lavesson and Davidsson (2006) 

suggested an extensive search in a small range between ‘0.02’ and ‘0.5’ with a step 

size of ‘0.02’ for confidence factor and a range between ‘1’ and ‘4’ with a step size of 

‘1’ for minimum number of instances in leaf nodes. Meanwhile, Reif et al. (2011) 

suggested a less extensive search in a wide range between ‘0.05’ and ‘5’ to be searched 

in ‘10’ steps for confidence factor and a range between ‘1’ and ‘100’ to be searched 

in ‘10’ steps for minimum number of instances in leaf nodes.  
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Figure 5.7. The Grid Search Configuration for the J48 Algorithm in WEKA 
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In this thesis study, a moderately wide range for confidence factor is selected between 

‘0.1’ and ‘1’ with a step size of ‘0.1’. Considering the limited amount of instances in 

reviewed datasets in this research, the minimum number of instances in leaf nodes 

have a search range between ‘1’ and ‘10’ with a step size of ‘1’. The evaluation metric 

for parameter selection is the classification accuracy as stated in the ‘evaluation’ 

option as ‘Accuracy’. 

5.2.1.6. Results from the J48 Algorithm 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.3), J48 classifiers have an average classification accuracy of ‘88.98%’ with lower 

and upper bounds (87.26% - 90.70%) within 95% CI. In other words, the J48 

algorithm predicts the dispute occurrence in construction projects with an average 

success rate of ‘88.98%’.  

The average for Kappa statistic value is ‘0.761’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of J48 

classifiers is ‘0.927’. The average sensitivity (recall) value is ‘0.901’ that means the 

success of the J48 algorithm in identifying disputed projects is ‘90.1%’. Similarly, the 

average specificity value is ‘0.868’ showing the J48 algorithm achieved ‘86.8%’ 

success in identifying undisputed projects. The average AUROC value is close to the 

ideal case as it is equal to ‘0.947’. 

Table 5.3. 10-Times 10-Fold Cross-Validation Results for the J48 Algorithm 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

            
Accuracy(%) 87.96 85.19 87.96 90.74 92.59 90.74 86.11 91.67 87.96 88.89 88.98 
Kappa 0.731 0.687 0.741 0.799 0.841 0.799 0.704 0.816 0.738 0.756 0.761 
Precision 0.890 0.922 0.925 0.941 0.970 0.941 0.923 0.930 0.913 0.914 0.927 
Recall 0.929 0.843 0.886 0.914 0.914 0.914 0.857 0.943 0.900 0.914 0.901 
Specificity 0.789 0.868 0.868 0.895 0.947 0.895 0.868 0.868 0.842 0.842 0.868 
AUROC 0.936 0.952 0.951 0.952 0.949 0.959 0.927 0.967 0.931 0.948 0.947 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 631 69 
Undisputed 50 330 
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5.2.1.7. The MLP and its Configuration in WEKA 

In WEKA version 3.8.3, MLP networks are contained in 

‘weka.classifiers.functions.MultilayerPerceptron’ class. This class can work with 

binary, categorical, and numeric attributes. Moreover, it is capable of handling missing 

values (Frank et al., 2016). The MLP configuration in WEKA tool involves numerous 

properties to be adjusted. Controlling parameters that affect the MLP performance 

significantly are discussed in this section. These controlling parameters are the number 

of epochs, momentum, learning rate, and the number of hidden layers. Other settings 

are used with default values. The configuration for the MLP network in WEKA can 

be seen in Figure 5.8. 

During the training process, the training data is repeatedly presented to perceptrons in 

the MLP network in order to adjust connection weights until the error becomes lower 

than a predefined threshold value or a predetermined number of epochs is reached. 

Each cycle of calculations through all training instances is called an epoch (Chau, 

2007). The number of epochs to train through is adjusted by the ‘trainingTime’ setting 

in WEKA. The default value for the number of epochs in WEKA is ‘500’. The 

classification is performed by increasing the number of epochs to ‘1000’; however, 

results showed that the computation time increased to more than double of the 

previous computation time without remarkable improvements in the performance. 

Therefore, the research adhered to the default number of epochs value of WEKA. 

The determination of weights in the MLP tends to be a slow process with long 

durations required for computations. Considering the need to update weights 

repeatedly, MLP models are associated with slow convergence (Alpaydın, 2010). 

However, the momentum term can help in achieving better performances in terms of 

duration when updating the weights. This is done by associating a small proportion of 

the previous update value from the previous iteration with the current (new) weight 

change (Witten et al., 2016). Thus, momentum is the term that increases the speed of 

learning (Sözgen, 2009). The MLP in WEKA tool presents a ‘momentum’ setting for 
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this purpose with the default value of ‘0.2’. The momentum can take values greater 

than ‘0’ and smaller than ‘1’ (Goodfellow et al., 2016).  

 

  

Figure 5.8. The MLP Classifier Configuration in WEKA 

MLP networks are not limited to having one hidden layer, and more hidden layers 

with their own weights can be placed following the first hidden layer. However, as the 

number of hidden layers increases, it becomes more complex to analyze the MLP 

network and in practice, more than one hidden layers are rarely preferred (Alpaydın, 

2010). In addition, as the number of layers increases, the number of perceptrons and 

the number of connections between these perceptrons increases. Consequently, the 
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computational cost of the MLP network significantly increases. Therefore, in this 

thesis study, MLP networks with ‘0’, ‘1’, ‘2’, and ‘a’ number of hidden layers are 

experimented. In WEKA, the default value of hidden layers is ‘a’, which corresponds 

to the total number of inputs and outputs divided by ‘2’. For the dispute occurrence 

classification, the number of attributes are ‘14’ and the number of outputs is ‘1’ (only 

one output neuron for binary classification problems). According to this calculation, 

there should be ‘(14 + 1) / 2 = 7.5 ≈ 8’ hidden layers for the dispute occurrence 

prediction MLP classifier. According to experiments with the mentioned number of 

hidden layers, the network giving the best classification performance is selected as the 

optimum number of hidden layers.  

The amount of updates in the model at each epoch can be adjusted by determining the 

learning rate of the network (Brownlee, 2018b). The learning rate parameter 

determines the learning curve of the model with values between ‘0’ and ‘1’ (Sözgen, 

2009). If the learning rate parameter is too large and the error function has several 

minima, the search may miss a minimum value; on the other hand, if this parameter is 

too small, the progress may be slow (Witten et al., 2016). For this reason, learning rate 

values are searched by an external cross-validation parameter selection algorithm 

(CVParameterSelection) to identify the model with the best cross-validation accuracy 

(the default is ‘0.3’). The configuration of the ‘CVParameterSelection’ for the MLP 

network can be seen in Figure 5.9. The two settings that should be organized for 

determination of the optimum learning rate parameter are the ‘CVParameters’ setting 

and the ‘classifier’ setting. In the ‘classifier’ setting, the MLP algorithm should be 

selected with the configuration in Figure 5.8. The user should enter the search range 

for the learning rate parameter manually to the ‘CVParameters’ setting. By clicking 

on the ‘CVParameters’ option, a new tab opens for defining the parameter that will be 

searched by the algorithm. The user defines the parameter to be searched and in this 

case, it is ‘L’. Then, the range to be searched is defined for this case between ‘0.1’ and 

‘1’ within ‘10’ steps. The learning rate parameter that gives the best classification 

performance will be presented to the user as the optimum learning rate value.  
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Figure 5.9. The CVParameterSelection Configuration for the MLP in WEKA 

5.2.1.8. Results from the MLP 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.4), the best classification performance from MLP classifiers are obtained from the 

one with ‘a’ hidden layers (in this case ‘a = 8’). MLP classifiers with ‘a’ hidden layers 

have an average classification accuracy of ‘83.52%’ with lower and upper bounds 

(82.06% - 84.98%) within 95% CI. In other words, the MLP algorithm predicts the 

dispute occurrence in construction projects with an average success rate of ‘83.52%’. 

The average for Kappa statistic value is ‘0.641’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of MLP 

classifiers is ‘0.879’. The average sensitivity (recall) value is ‘0.866’ that means the 

success of the MLP algorithm in identifying disputed projects is ‘86.6%’. Similarly, 

the average specificity value is ‘0.779’ showing the MLP achieved ‘77.9%’ success 

in identifying undisputed projects. The average AUROC value is ‘0.894’. 
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Table 5.4. 10-Times 10-Fold Cross-Validation Results for the MLP  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

            
Accuracy(%) 86.11 80.56 84.26 84.26 82.41 84.26 84.26 79.63 84.26 85.19 83.52 
Kappa 0.690 0.571 0.657 0.653 0.621 0.661 0.665 0.553 0.657 0.679 0.641 
Precision 0.877 0.845 0.884 0.873 0.881 0.896 0.908 0.843 0.884 0.897 0.879 
Recall 0.914 0.857 0.871 0.886 0.843 0.857 0.843 0.843 0.871 0.871 0.866 
Specificity 0.763 0.711 0.789 0.763 0.789 0.816 0.842 0.711 0.789 0.816 0.779 
AUROC 0.910 0.879 0.895 0.901 0.878 0.915 0.906 0.853 0.908 0.894 0.894 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 606 94 
Undisputed 84 296 

 

5.2.1.9. The Polynomial Kernel SVM and its Configuration in WEKA 

In WEKA version 3.8.3, the class ‘weka.classifiers.functions.SMO’ is used for the 

polynomial kernel SVM algorithm. The SMO algorithm, which is the short version of 

Sequential Minimal Optimization, refers to the optimization algorithm utilized in the 

SVM. This class can work with binary, categorical, and numeric attributes. Moreover, 

it is capable of handling missing values (Brownlee, 2018b).  

The polynomial kernel SVM algorithm in WEKA has several settings that can be 

adjusted. Configuration that gave the best classification performance is selected. The 

WEKA configuration for the polynomial kernel SVM is given in Figure 5.10.  

The first setting is the ‘buildCalibrationModels’ setting that can be ‘True’ or ‘False’. 

When it is set to ‘True’, the final SVM classifier generates probability estimates of 

class labels that is normally not available in the algorithm. 

The most important settings for the polynomial kernel SVM are ‘c’ and ‘exponent’ 

settings. The ‘exponent’ setting is located inside the ‘kernel’ option after selecting 

‘PolyKernel’ function. The default kernel function in SMO is the polynomial kernel. 

By clicking on the ‘kernel’ setting, a new window opens that enables selecting other 

kernel functions. In the SMO algorithm of WEKA, the kernel function can be either 
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polynomial or RBF (Lavesson and Davidsson, 2006). In this case, the ‘PolyKernel’ 

option will be used.  

 

 

Figure 5.10. The Polynomial Kernel SVM Classifier Configuration in WEKA 

The problem with the SVM algorithm is how to set the optimal penalty parameter C 

and the optimal kernel hyperparameters so that the prediction accuracy of the SVM 

classifier is maximized. As stated earlier, the penalty parameter C is selected 

beforehand and it determines the cost of violating the constraint (Dibike et al., 2001). 

In other words, penalty parameter C, which is also known as the soft margin constant, 

determines the trade-off between strictness of classification constraints and tolerated 

misclassifications (Lavesson and Davidsson, 2006). A penalty parameter C value of 

‘0’ means there will be no violations of the margin and more violation is allowed as 

this value increases (Brownlee, 2018a). In general, there is an optimum value for C 
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hyperparameter (Drucker et al., 1999). Thus, the optimum value for the soft margin 

constant hyperparameter C should be determined. Similarly, the most appropriate 

kernel function along with optimum settings for kernel hyperparameters should also 

be identified beforehand (Cheng and Wu, 2009). In polynomial kernel SVM, the 

kernel hyperparameter to be optimized is the degree of the polynomial function, which 

is located in the ‘exponent’ setting. Therefore, there are two hyperparameters to be 

optimized simultaneously, which can be handled by the grid search algorithm, similar 

to the case in the J48 algorithm.  

In practice, parameters for ML algorithms are usually determined by the grid search 

algorithm that searches a range of predefined values for two parameters at the same 

time with a fixed step size to present the best couple of values in terms of cross-

validated classification accuracy (Friedrichs and Igel, 2005). Grid search is the 

simplest method for determining the penalty parameter C and kernel hyperparameters 

(Lin et al., 2008). Because of its simplicity and success in previous studies, the grid 

search algorithm is often preferred to other deterministic techniques (Mantovani et al., 

2015). Moreover, Hsu et al. (2003) recommended using grid search algorithm to 

identify the optimal pair of C and kernel hyperparameters as the algorithm enables 

trials on various C and kernel hyperparameter pairs to reveal the pair that gives the 

best cross-validation accuracy.  

In WEKA, the grid search algorithm is contained under the class 

‘weka.classifiers.meta.GridSearch’. Configuration details of the grid search algorithm 

is given in Figure 5.11. In grid search, the SMO classifier with the configuration 

mentioned in Figure 5.10 should be selected under the ‘classifier’ setting. Then, the 

two hyperparameters that will be optimized should be entered to ‘XProperty’ and 

‘YProperty’ options using the names in WEKA tool such that ‘C’ and 

‘kernel.exponent’ should be written to ‘XProperty’ and ‘YProperty’, respectively.  
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Figure 5.11. The Grid Search Configuration for the Polynomial Kernel SVM 

Algorithm in WEKA 



 

 
 

225 
 

The search range for both hyperparameters should be determined. There are various 

search range suggestions in the literature for penalty parameter C and polynomial 

kernel function degree. An excessively large range of values may waste computational 

power and on the other hand, a too small range can make it impossible to find the 

optimal solution (Lin et al., 2008). In an experimental study, it is revealed that in order 

to identify good parameters, trials with exponentially growing sequences, such that 

values of {2-5, 2-3, …, 215} for C hyperparameter, can be beneficial (Hsu et al., 2003). 

In another study, the range for C hyperparameter values is determined as {2-2, …, 212} 

(Reif et al., 2011). In another experimental study on SVM tuning, the range for C 

hyperparameter is given as{2-2, …, 215} (Mantovani et al., 2015). In the light of these, 

by combining suggested ranges, the search range for penalty parameter C is selected 

as an exponentially growing sequence of {2-2, …, 215} in this thesis study. 

Consequently, the mentioned search range for the C hyperparameter is defined in 

WEKA by setting the ‘XMax’ option to ‘15’, the ‘XMin’ option to ‘-2’, the ‘XBase’ 

option to ‘2’, the ‘XExpression’ option to ‘pow(BASE,I)’, and the ‘XStep’ option to 

‘1’.  

There are no strict suggestions for the search range of polynomial kernel function 

degree. The simplest polynomial kernel function is the linear form that separates the 

data with a straight line and as the degree of the function increases, an increasingly 

meandering separation will be obtained (Brownlee, 2018a). Increasing the degree too 

much may result in an overfitted model. Thus, the polynomial kernel function degree 

search range is selected as {1, 2, …, 10}. The mentioned search range for the degree 

of the polynomial kernel function is defined in WEKA by setting the ‘YMax’ option 

to ‘10’, the ‘YMin’ option to ‘1’, the ‘YBase’ option to ‘10’, the ‘YExpression to ‘I’, 

and the ‘YStep’ option to ‘1’. 

Finally, the evaluation metric for hyperparameter selection is the classification 

accuracy as stated in the ‘evaluation’ option as ‘Accuracy’. Default values of WEKA 

are kept for remaining settings.  
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5.2.1.10. Results from the Polynomial Kernel SVM 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.5), polynomial kernel SVM classifiers have an average classification accuracy of 

‘89.91%’ with lower and upper bounds (88.85% - 90.96%) within 95% CI. In other 

words, the polynomial kernel SVM algorithm predicts the dispute occurrence in 

construction projects with an average success rate of ‘89.91%’.  

The average for Kappa statistic value is ‘0.777’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of polynomial 

kernel SVM classifiers is ‘0.917’. The average sensitivity (recall) value is ‘0.929’ that 

means the success of the polynomial kernel SVM algorithm in identifying disputed 

projects is ‘92.9%’. Similarly, the average specificity value is ‘0.845’ showing the 

polynomial kernel SVM achieved ‘84.5%’ success in identifying undisputed projects. 

The average AUROC value is ‘0.887’. 

Table 5.5. 10-Times 10-Fold Cross-Validation Results for Poly. Kernel SVM  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

            
Accuracy(%) 89.81 91.67 89.81 87.96 89.81 89.81 90.74 90.74 91.67 87.04 89.91 
Kappa 0.778 0.816 0.775 0.738 0.775 0.773 0.795 0.795 0.818 0.712 0.777 
Precision 0.928 0.930 0.915 0.913 0.915 0.904 0.917 0.917 0.942 0.889 0.917 
Recall 0.914 0.943 0.929 0.900 0.929 0.943 0.943 0.943 0.929 0.914 0.929 
Specificity 0.868 0.868 0.842 0.842 0.842 0.816 0.842 0.842 0.895 0.789 0.845 
AUROC 0.891 0.906 0.885 0.871 0.885 0.879 0.892 0.892 0.912 0.852 0.887 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 650 50 
Undisputed 59 321 

 

5.2.1.11. The RBF Kernel SVM and its Configuration in WEKA 

In WEKA version 3.8.3, the class ‘weka.classifiers.functions.LibSVM’ is used for the 

Gaussian RBF kernel SVM algorithm. The LibSVM library for SVM applications is 

currently one of the most widely used tools that is capable of solving binary and 

multiclass classification problems with the goal of helping users to use SVM 
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applications easily. Moreover, it can generate probability estimates of predictions 

(Chang and Lin, 2011). It is an enhancement to the SMO algorithm available in 

WEKA especially in terms of computational costs. The LibSVM package should be 

externally loaded into WEKA via package manager. This class can work with binary, 

categorical, and numeric attributes. Moreover, it is capable of handling missing values 

(Frank et al., 2016). The Gaussian RBF kernel SVM algorithm in WEKA has several 

settings that can be adjusted. The configuration that gave the best classification 

performance is selected. The WEKA configuration for the Gaussian RBF kernel SVM 

is given in Figure 5.12. 

 

 

 

Figure 5.12. The RBF Kernel SVM Classifier Configuration in WEKA 
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In the LibSVM panel, the first setting is the ‘SVMType’ setting that should be set to 

‘C-SVC’ for data classification problems. Secondly, the ‘kernelType’ should be set to 

RBF. After determining the kernel function as RBF kernel, using SVM means solving 

the problem of determining the optimal penalty parameter C (cost of constraint 

violation) and optimal kernel hyperparameters. These hyperparameter settings 

determine the classification performance of the SVM algorithm (Cheng and Wu, 

2009). Hyperparameters to be optimized in the case of RBF kernel SVM are the 

penalty parameter C (here, cost) and the RBF kernel hyperparameter ‘gamma’ (Hsu 

et al., 2003). Similar to the case in the polynomial kernel SVM, the grid search 

algorithm is an appropriate tool to identify the best C and gamma for the RBF kernel 

SVM (Cheng and Wu, 2009). In their guideline study for support vector classification, 

Hsu et al. (2003) recommended using cross-validated grid search for determining C 

and gamma values by experimenting various pairs simultaneously to obtain the best 

cross-validation accuracy. When the best pair is identified, the whole training set is 

trained for the last time with identified values to present the final classifier.  

Configuration details of the grid search algorithm is given in Figure 5.13. In grid 

search, the LibSVM classifier with the configuration mentioned in Figure 5.12 should 

be selected under the ‘classifier’ setting. Then, the two hyperparameters that will be 

optimized should be entered to ‘XProperty’ and ‘YProperty’ options using the names 

in WEKA tool such that ‘cost’ and ‘gamma’ should be written to ‘XProperty’ and 

‘YProperty’, respectively.  

The search range for both hyperparameters should be determined. There are various 

search range suggestions in the literature for penalty parameter C (cost) and RBF 

kernel function sigma (or gamma) value. The Gaussian RBF kernel hyperparameter 

sigma (please refer to Eq. [50]) is the spread parameter that affects the generalization 

performance of SVM classifiers significantly. Experimental studies proved that both 

large and small sigma values could cause poor generalization performances. When 

sigma goes to zero, all training instances are considered as support vectors. This will 

separate the problem perfectly for the training data however, new instances cannot be 
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separated as the SVM classifier is overfitted to the training data. On the other hand, 

when sigma goes to infinity, the SVM cannot recognize new data points. Experiments 

proved that the classification accuracy is low at first and gets higher with the 

increasing sigma values however, the accuracy drops again as the sigma continues to 

increase. This shows that there is an optimum sigma (consequently, gamma) value for 

the classification task (Wang et al., 2003). The simulation of Wang et al. (2003) 

showed that sigma values between ‘0.1’ and ‘20’ is an appropriate search range. Hsu 

et al. (2003) recommended using a sequentially growing range for the gamma 

hyperparameter such that {2-15, 2-13, …, 23}. Similar to this, Reif et al. (2011) used 

values of {2-10, 2-9, …, 24} for gamma hyperparameter. The common point in all these 

suggestions is that large gamma values are not preferred for trails. In the light of these, 

this thesis study searched the range of {2-15, 2-14, …, 24} for the gamma 

hyperparameter. Consequently, the mentioned search range for the RBF kernel gamma 

hyperparameter is defined in WEKA by setting the ‘YMax’ option to ‘4’, the ‘YMin’ 

option to ‘-15’, the ‘YBase’ option to ‘2’, the ‘YExpression’ option to ‘pow(BASE,I)’, 

and the ‘YStep’ option to ‘1’. 

In RBF kernel SVM, the C hyperparameter controls the maximal distance of a support 

vector for significant contribution to the decision function for a given width 

hyperparameter gamma. Lower values for C means a larger portion of instances are 

considered as support vectors. Considering that the algorithm only uses support 

vectors for computations, the increasing number of support vectors will correspond to 

more computations for evaluating the decision function and an RBF structure with 

more nodes (Belousov et al., 2002a). As explained in Section 5.2.1.9, the search range 

for penalty parameter C is selected as an exponentially growing sequence of {2-2, …, 

215} in this thesis study. However, empirical studies revealed that when the RBF 

kernel width hyperparameter gamma is adjusted accordingly, lower C values 

generated good generalization performance and C values between ‘50’ and ‘100’ are 

recommended for parsimonious solutions (Belousov et al., 2002a). Considering this 

new recommendation, an additional range between ‘1’ and ‘100’ for C values are also 



 

 
 

230 
 

searched. Consequently, the mentioned search range for the C hyperparameter is 

defined in WEKA by setting the ‘XMax’ option to ‘15’, the ‘XMin’ option to ‘-2’, the 

‘XBase’ option to ‘2’, the ‘XExpression’ option to ‘pow(BASE,I)’, and the ‘XStep’ 

option to ‘1’. For the additional search range, the ‘XMax’ option is set to ‘100’, the 

‘XMin’ option is set to ‘1’, the ‘XBase’ option is set to ‘10’, the ‘XExpression’ option 

is set to ‘I’, and the ‘XStep’ option is set to ‘1’.  

 

 

 

Figure 5.13. The Grid Search Configuration for the Gaussian RBF Kernel SVM 

Algorithm in WEKA 
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Finally, the evaluation metric for hyperparameter selection is the classification 

accuracy as stated in the ‘evaluation’ option as ‘Accuracy’. Default values of WEKA 

are kept for remaining settings.  

5.2.1.12. Results from the Gaussian RBF Kernel SVM 

According to results obtained from 10-fold cross-validation with 10 repeats (Table 

5.6), Gaussian RBF kernel SVM classifiers have an average classification accuracy of 

‘90.46%’ with lower and upper bounds (89.17% - 91.75%) within 95% CI. In other 

words, the Gaussian RBF kernel SVM algorithm predicts the dispute occurrence in 

construction projects with an average success rate of ‘90.46%’.  

The average for Kappa statistic value is ‘0.790’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of Gaussian 

RBF kernel SVM classifiers is ‘0.925’. The average sensitivity (recall) value is ‘0.929’ 

that means the success of the Gaussian RBF kernel SVM algorithm in identifying 

disputed projects is ‘92.9%’. Similarly, the average specificity value is ‘0.861’ 

showing the Gaussian RBF kernel SVM achieved ‘86.1%’ success in identifying 

undisputed projects. The average AUROC value is ‘0.894’. 

Table 5.6. 10-Times 10-Fold Cross-Validation Results for RBF Kernel SVM  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

            
Accuracy(%) 90.74 94.44 89.81 91.67 89.81 91.67 89.81 89.81 87.96 88.89 90.46 
Kappa 0.795 0.878 0.773 0.818 0.778 0.818 0.778 0.773 0.738 0.756 0.790 
Precision 0.917 0.957 0.904 0.942 0.928 0.942 0.928 0.904 0.913 0.914 0.925 
Recall 0.943 0.957 0.943 0.929 0.914 0.929 0.914 0.943 0.900 0.914 0.929 
Specificity 0.842 0.921 0.816 0.895 0.868 0.895 0.868 0.816 0.842 0.842 0.861 
AUROC 0.891 0.939 0.879 0.912 0.891 0.912 0.891 0.879 0.871 0.878 0.894 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 650 50 
Undisputed 53 327 
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5.2.2. Comparison of Results from Single Classifiers 

Table 5.7 shows the 10-times 10-fold cross-validation results of single classifiers with 

their best parameter settings. This table is used for comparing performances of single 

classifiers with each other.  

Table 5.7. 10-Times 10-Fold Cross-Validation Performance of All Single Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 

Avg. 

Kappa 

Avg. 

Precision 

Avg. 

Recall 

(TPR) 

Avg. 

Specificity 

Avg. 

AUROC 
Rank 

Naïve Bayes 87.50 [86.60 – 88.40] 0.728 0.912 0.893 0.843 0.953 5 
KNN 87.69 [86.65 – 88.72] 0.737 0.931 0.874 0.881 0.928 4 
J48 88.98 [87.26 – 90.70] 0.761 0.927 0.901 0.868 0.947 3 

MLP 83.52 [82.06 – 84.98] 0.641 0.879 0.866 0.779 0.894 6 
Poly. Kernel SVM 89.91 [88.85 – 90.96] 0.777 0.917 0.929 0.845 0.887 2 

RBF Kernel SVM 90.46 [89.17 – 91.75] 0.790 0.925 0.929 0.861 0.894 1 

 

The best average classification accuracy is obtained from the Gaussian RBF kernel 

SVM algorithm that achieved ‘90.46%’ average classification accuracy. It is followed 

by the polynomial kernel SVM algorithm that achieved ‘89.91%’ average 

classification accuracy. The third place belongs to J48 classifiers with ‘88.98%’ 

average classification accuracy.  

The best average Kappa statistic value is obtained from the Gaussian RBF kernel SVM 

algorithm as ‘0.790’. 

The best average precision value comes from the kNN algorithm as ‘0.931’. This is 

slightly better than the RBF kernel SVM that has the second best average precision 

value as ‘0.925’.  

Best algorithms in identification of disputed projects are the two versions of the SVM 

algorithm. They both have an average recall (sensitivity) value of ‘0.929’. In other 

words, they achieved ‘92.9%’ average success in identifying positive instances.  

The best classifier in identification of undisputed projects is the kNN classifier with 

an average specificity value of ‘0.881’. In other words, kNN classifiers achieved 

‘88.1%’ average success in identifying negative instances.  
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The best average AUROC value is obtained from the Naïve Bayes algorithm as 

‘0.953’. This is an almost ideal AUROC value. All algorithms produced impressing 

AUROC values with the lowest value as ‘0.887’. 

In the light of these comparisons, it is observed that the Gaussian RBF kernel SVM is 

superior to others in terms of average classification accuracy, average Kappa, and 

average true positive rate (recall) measures. In addition, it is the second best algorithm 

with a slightly worse performance behind the kNN algorithm in terms of precision 

measure.  

Since all evaluation metrics have close values compared to each other, it is decided to 

rank algorithms according to the primary evaluation criterion, which is the average 

classification accuracy. Thus, the top three algorithms for the dispute occurrence 

prediction are (1) Gaussian RBF kernel SVM, (2) polynomial kernel SVM, and (3) 

J48 decision trees. The average classification accuracy of all single classifiers within 

95% CI can be seen in Figure 5.14.  

 

 

Figure 5.14. Average Classification Accuracies of Single Classifiers within 95% CI 

Naive
Bayes KNN J48 MLP Poly.

SVM RBF SVM

Avg. Accuracy 87.50% 87.69% 88.98% 83.52% 89.91% 90.46%
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5.2.3. Binary Classification for Dispute Occurrence Prediction Using Ensemble 

ML Algorithms 

Configuration details of each ensemble ML technique and obtained binary 

classification results are given in this section starting with the voting technique, which 

will be followed by the stacked generalization technique and the AdaBoost algorithm, 

in the given order. 

5.2.3.1. The Voting Technique and its Configuration in WEKA 

In WEKA version 3.8.3, the voting technique is contained in 

‘weka.classifiers.meta.Vote’ class. The WEKA configuration for the voting technique 

is given in Figure 5.15.  

 

  

Figure 5.15. The Voting Technique Configuration in WEKA 
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In this research, results of the top three base (single) classifiers in terms of 

classification accuracy out of six experimented single algorithms are considered 

during voting. For dispute occurrence prediction, these algorithms are (1) Gaussian 

RBF kernel SVM, (2) polynomial kernel SVM, and (3) J48 decision trees. These three 

algorithms are defined in the voting technique using the ‘classifiers’ option with their 

corresponding configurations. 

Among various voting strategies in the literature, the majority voting and the average 

of probabilities techniques are experimented in this research. The voting strategy can 

be selected by adjusting the ‘combinationRule’ setting. For this dataset, the majority 

voting generated better results than the average of probabilities technique. In the 

majority voting, a project is classified as ‘disputed’ if two out of three algorithms 

classify the project as a disputed project and similarly, a project is classified as 

‘undisputed’ if two out of three algorithms classify the project as an undisputed project 

(Witten et al., 2016). For remaining settings, default values of WEKA are used. 

5.2.3.2. Results from the Voting Technique 

10-fold cross-validation results with 10 repeats obtained from the majority voting 

technique are given in Table 5.8. Ensemble classifiers obtained from majority voting 

have an average classification accuracy of ‘91.11%’ with lower and upper bounds 

(89.93% - 92.29%) within 95% CI. In other words, ensemble classifiers predict the 

dispute occurrence in construction projects with an average success rate of ‘91.11%’.  

The average for Kappa statistic value is ‘0.806’ that shows a perfect agreement. The 

average precision value that indicates the positive predicting power of the voting 

technique is ‘0.937’. The average sensitivity (recall) value is ‘0.926’ that means the 

success of ensemble classifiers in identifying disputed projects is ‘92.6%’. Similarly, 

the average specificity value is ‘0.884’ showing ensemble classifiers achieved ‘88.4%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.905’. 
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Table 5.8. 10-Times 10-Fold Cross-Validation Results for the Majority Voting 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Majority 

Voting 

            
Accuracy(%) 90.74 94.44 90.74 90.74 91.67 91.67 89.81 91.67 91.67 87.96 91.11 
Kappa 0.795 0.880 0.795 0.802 0.821 0.818 0.778 0.816 0.821 0.735 0.806 
Precision 0.917 0.971 0.917 0.955 0.955 0.942 0.928 0.930 0.955 0.901 0.937 
Recall 0.943 0.943 0.943 0.900 0.914 0.929 0.914 0.943 0.914 0.914 0.926 
Specificity 0.842 0.947 0.842 0.921 0.921 0.895 0.868 0.868 0.921 0.816 0.884 
AUROC 0.892 0.945 0.892 0.911 0.918 0.912 0.891 0.906 0.918 0.865 0.905 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 648 52 
Undisputed 44 336 

 

10-fold cross-validation results with 10 repeats obtained from the average of 

probabilities voting technique are given in Table 5.9. Ensemble classifiers obtained 

from the average of probabilities voting have an average classification accuracy of 

‘90.83%’ with lower and upper bounds (89.98% - 91.69%) within 95% CI. In other 

words, ensemble classifiers predict the dispute occurrence in construction projects 

with an average success rate of ‘90.83%’.  

Table 5.9. 10-Times 10-Fold Cross-Validation Results for the Average of 

Probabilities Voting  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Average 

of 

Prob. 

Voting 

            
Accuracy(%) 88.89 90.74 89.81 90.74 92.59 89.81 90.74 90.74 92.59 91.67 90.83 
Kappa 0.759 0.802 0.783 0.799 0.841 0.778 0.799 0.792 0.840 0.821 0.801 
Precision 0.926 0.955 0.954 0.941 0.970 0.928 0.941 0.905 0.956 0.955 0.943 
Recall 0.900 0.900 0.886 0.914 0.914 0.914 0.914 0.957 0.929 0.914 0.914 
Specificity 0.868 0.921 0.921 0.895 0.947 0.868 0.895 0.816 0.921 0.921 0.897 
AUROC 0.965 0.976 0.967 0.978 0.980 0.973 0.973 0.973 0.974 0.969 0.973 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 640 60 
Undisputed 39 341 
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The average for Kappa statistic value is ‘0.801’ that shows a perfect agreement. The 

average precision value that indicates the positive predicting power of ensemble 

classifiers is ‘0.943’. The average sensitivity (recall) value is ‘0.914’ that means the 

success of ensemble classifiers in identifying disputed projects is ‘91.4%’. Similarly, 

the average specificity value is ‘0.897’ showing ensemble classifiers achieved ‘89.7%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.973’. 

5.2.3.3. The Stacked Generalization and its Configuration in WEKA 

In WEKA version 3.8.3, the Stacked Generalization is contained in 

‘weka.classifiers.meta.Stacking’ class. In stacked generalization, the primary 

algorithm, which is the base-learner, is defined in the ‘classifiers’ setting by selecting 

the relevant algorithm. The secondary algorithm, which is the meta-learner, is defined 

in the ‘metaClassifier’ setting by selecting the relevant algorithm. Figure 5.16 shows 

an example configuration of the ensemble algorithm obtained by combining the kNN 

algorithm as base-learner and the Naïve Bayes algorithm as meta-learner. 

 

 

Figure 5.16. The Stacked Generalization Configuration in WEKA 



 

 
 

238 
 

In this thesis study, the top three single classifiers are combined with remaining 

experimented ML algorithms during stacking. For dispute occurrence prediction, the 

top three algorithms are (1) Gaussian RBF kernel SVM, (2) polynomial kernel SVM, 

and (3) J48 decision trees. These top three algorithms will be experimented as base-

learners one by one and they will be combined with remaining five ML algorithms as 

meta-learners in turns. This is because; in stacking, same algorithms should not be 

stacked together. Therefore, the top three classifiers are combined with the remaining 

five algorithms so that ‘15’ ensemble classifiers are obtained.  

5.2.3.4. Results from the Stacking Technique 

When the classification accuracy of single classifiers contained in the ensemble model 

is as high as possible and classifiers are selected as diverse as possible, the ensemble 

model can outperform performances of single classifiers it contains (Alpaydın, 2010). 

However, experiments showed that not all stacked ensemble classifiers achieved 

better classification accuracies than single ones. Therefore, results of all 15 stacked 

classifiers are not given. Instead, results of ensemble models that outperformed single 

algorithms they contain are given. For this purpose, the classification accuracy of the 

ensemble model is compared with accuracies of both single classifiers they contain.  

When the base-learner is the polynomial kernel SVM algorithm, none of the ensemble 

classifiers achieved better classification accuracy than single algorithms they contain. 

Therefore, classification results of ensemble models ‘Polynomial kernel SVM + Naïve 

Bayes’, ‘Polynomial kernel SVM + KNN’, ‘Polynomial kernel SVM + J48’, 

‘Polynomial kernel SVM + MLP’, and ‘Polynomial kernel SVM + Gaussian RBF 

kernel SVM’ are not considered. 

Similarly, when the base-learner is the J48 algorithm, none of the ensemble classifiers 

achieved better classification accuracy than single algorithms they contain. Therefore, 

classification results of ensemble models containing the J48 algorithm as base-learner 

are not considered.  
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When the base-learner is the Gaussian RBF kernel SVM, all ensemble models 

achieved better classification accuracies than single algorithms they contain. 

However, all combinations made with the Gaussian RBF kernel SVM algorithm gave 

the exact same classification results except AUROC values. This is because of the 

base-learner algorithm. As stated in Section 4.3.2, the base-learner does the most of 

the work and the meta-learner is like an arbiter (Witten et al., 2016). Here, the 

performance of the Gaussian RBF kernel SVM as the base-learner dominates the 

stacked classifier performance. In all five stacked classifiers obtained by combining 

RBF kernel SVM with remaining algorithms, the average classification accuracy, the 

average Kappa, the average precision, the average recall, and the average specificity 

values are the same. Thus, they also generate exact confusion matrices. Consequently, 

results of these five stacked classifiers will not be given separately. Instead, the 

stacked classifier that generated the best AUROC value is given. Among the five 

stacked classifiers, the best AUROC value is obtained from the ensemble classifier 

that combined ‘Gaussian RBF kernel SVM + Polynomial kernel SVM’. Classification 

results of this stacked ensemble classifier can be seen from Table 5.10. 

Table 5.10. 10-Times 10-Fold Cross-Validation Results for the ‘RBF Kernel SVM + 

Poly. Kernel SVM’ Stacked Ensemble Classifier  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Stacking 

 

RBF 

SVM 

+ 

Poly. 

SVM 

            
Accuracy(%) 91.67 93.52 93.52 91.67 90.74 90.74 89.81 90.74 91.67 87.04 91.11 
Kappa 0.816 0.859 0.857 0.821 0.797 0.799 0.778 0.795 0.818 0.709 0.805 
Precision 0.930 0.957 0.944 0.955 0.929 0.941 0.928 0.917 0.942 0.878 0.932 
Recall 0.943 0.943 0.957 0.914 0.929 0.914 0.914 0.943 0.929 0.929 0.931 
Specificity 0.868 0.921 0.895 0.921 0.868 0.895 0.868 0.842 0.895 0.763 0.874 
AUROC 0.906 0.932 0.926 0.918 0.898 0.905 0.891 0.892 0.912 0.846 0.903 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 652 48 
Undisputed 48 332 

 

According to 10-fold cross-validation results with 10 repeats obtained from stacked 

ensemble classifiers that combined ‘RBF kernel SVM + Polynomial kernel SVM’, the 



 

 
 

240 
 

average classification accuracy is ‘91.11%’ with lower and upper bounds (89.78% - 

92.44%) within 95% CI. In other words, ensemble classifiers predict the dispute 

occurrence in construction projects with an average success rate of ‘91.11%’. 

The average for Kappa statistic value is ‘0.805’ that shows a perfect agreement. The 

average precision value that indicates the positive predicting power of ensemble 

classifiers is ‘0.932’. The average sensitivity (recall) value is ‘0.931’ that means the 

success of ensemble classifiers in identifying disputed projects is ‘93.1%’. Similarly, 

the average specificity value is ‘0.874’ showing ensemble classifiers achieved ‘87.4%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.903’. 

5.2.3.5. The AdaBoost Algorithm and its Configuration in WEKA 

In WEKA version 3.8.3, the AdaBoost algorithm is contained in 

‘weka.classifiers.meta.AdaBoostM1’ class. The AdaBoost algorithm is used to 

develop a strong classifier out of several weak classifiers of a specific learning 

algorithm (Freund and Schapire, 1996). Figure 5.17 shows the configuration for the 

AdaBoost algorithm. 

The weak learner for the AdaBoost algorithm is selected by using the ‘classifiers’ 

setting. All six single ML algorithms are selected as the weak classifier one by one. 

Another important setting is the ‘useResampling’ setting that determines whether to 

use resampling technique instead of the reweighting mechanism in the AdaBoost 

algorithm (Witten et al., 2016). It is observed that resampling did not improve the 

classification accuracy in experiments. Default values of WEKA are used for 

remaining settings. 
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Figure 5.17. The AdaBoost Algorithm Configuration in WEKA 

5.2.3.6. Results from the AdaBoost Algorithm 

In this thesis study, all six single ML algorithms are boosted by the AdaBoost 

algorithm. However, as explained in Section 4.3.3, the boosting process might perform 

poorly if single classifiers are too complex for the amount available training data 

(Witten et al., 2016). In this thesis study, among all AdaBoost experiments, the 

performance of the classifier is improved in the Naïve Bayes and the MLP algorithms 

only. Indeed, these two algorithms were the weakest ones in all six single ML 

algorithms. The AdaBoost results of remaining algorithms are not taken into account, 

as they do not enhance the performance.  

10-fold cross-validation results with 10 repeats obtained from the AdaBoost algorithm 

that combined Naïve Bayes classifiers to form an ensemble classifier are given in 

Table 5.11. Boosted ensemble Naïve Bayes classifiers have an average classification 

accuracy of ‘88.06%’ with lower and upper bounds (87.20% - 88.91%) within 95% 
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CI. In other words, boosted ensemble Naïve Bayes classifiers predict the dispute 

occurrence in construction projects with an average success rate of ‘88.06%’. 

Table 5.11. 10-Times 10-Fold Cross-Validation Results for the AdaBoost Algorithm 

with Ensemble Naïve Bayes Classifiers  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

AdaBoost 

 

Naïve 

Bayes 

            
Accuracy(%) 87.04 88.89 88.89 87.04 88.89 88.89 86.11 89.81 87.96 87.04 88.06 
Kappa 0.719 0.759 0.759 0.716 0.753 0.753 0.697 0.775 0.735 0.716 0.738 
Precision 0.912 0.926 0.926 0.900 0.903 0.903 0.899 0.915 0.901 0.900 0.908 
Recall 0.886 0.900 0.900 0.900 0.929 0.929 0.886 0.929 0.914 0.900 0.907 
Specificity 0.842 0.868 0.868 0.816 0.816 0.816 0.816 0.842 0.816 0.816 0.832 
AUROC 0.953 0.964 0.959 0.957 0.961 0.964 0.947 0.952 0.933 0.954 0.954 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 635 65 
Undisputed 64 316 

 

The average for Kappa statistic value is ‘0.738’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of ensemble 

classifiers is ‘0.908’. The average sensitivity (recall) value is ‘0.907’ that means the 

success of ensemble classifiers in identifying disputed projects is ‘90.7%’. Similarly, 

the average specificity value is ‘0.832’ showing ensemble classifiers achieved ‘83.2%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.954’, 

which is an almost ideal value. 

10-fold cross-validation results with 10 repeats obtained from the AdaBoost algorithm 

that combined MLP classifiers to form an ensemble classifier are given in Table 5.12. 

Boosted ensemble MLP classifiers have an average classification accuracy of 

‘83.70%’ with lower and upper bounds (81.68% - 85.73%) within 95% CI. In other 

words, boosted ensemble MLP classifiers predict the dispute occurrence in 

construction projects with an average success rate of ‘83.70%’. 

The average for Kappa statistic value is ‘0.651’ that shows a substantial agreement. 

The average precision value that indicates the positive predicting power of ensemble 
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classifiers is ‘0.895’. The average sensitivity (recall) value is ‘0.849’ that means the 

success of ensemble classifiers in identifying disputed projects is ‘84.9%’. Similarly, 

the average specificity value is ‘0,816’ showing ensemble classifiers achieved ‘81.6%’ 

success in identifying undisputed projects. The average AUROC value is ‘0.908’. 

Table 5.12. 10-Times 10-Fold Cross-Validation Results for the AdaBoost Algorithm 

with Ensemble MLP Classifiers  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

AdaBoost 

 

MLP 

            
Accuracy(%) 84.26 82.41 77.78 86.11 83.33 82.41 88.89 84.26 84.26 83.33 83.70 
Kappa 0.661 0.630 0.530 0.704 0.643 0.626 0.759 0.649 0.661 0.643 0.651 
Precision 0.896 0.905 0.859 0.923 0.894 0.892 0.926 0.863 0.896 0.894 0.895 
Recall 0.857 0.814 0.786 0.857 0.843 0.829 0.900 0.900 0.857 0.843 0.849 
Specificity 0.816 0.842 0.763 0.868 0.816 0.816 0.868 0.737 0.816 0.816 0.816 
AUROC 0.918 0.871 0.898 0.930 0.895 0.901 0.933 0.905 0.916 0.912 0.908 
            

 
Confusion Matrix 

 Predicted 

Actual Disputed Undisputed 
Disputed 594 106 
Undisputed 70 310 

 

5.2.4. Comparison of Results from Ensemble Classifiers 

Table 5.13 shows the 10-times 10-fold cross-validation results of ensemble classifiers 

that performed better than their single counterparts did. This table is used for 

comparing performances of ensemble classifiers with each other.  

Ensemble classifiers obtained from the majority voting technique and the stacked 

generalization method (combining the Gaussian RBF kernel SVM as base-learner and 

the polynomial kernel SVM as meta-learner) generated the best average classification 

accuracies as ‘91.11%’. 

The improvement in average classification accuracy by using the majority voting 

technique is ‘+0.65%’ to the best single classifier (RBF kernel SVM), ‘+1.20%’ to the 

second best single classifier (polynomial kernel SVM), and ‘+2.13%’ to the third best 

single classifier (J48). The improvement in average classification accuracy by using 
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the stacked generalization method is ‘+0.65%’ to base-learner (RBF kernel SVM) and 

‘+1.20%’ to meta-learner (polynomial kernel SVM). 

Although both ensemble classifiers gave the same average classification accuracy 

values, ensemble classifiers obtained from the majority voting technique can said to 

be better than ensemble classifiers obtained from the stacked generalization method 

considering the remaining evaluation metrics. Indeed, the majority voting technique 

is superior in terms of average Kappa, average precision, average specificity, and 

average AUROC values compared to the stacking method. Stacking is stronger than 

the majority voting in only identification of disputed projects (recall value). 

Ensemble classifiers obtained from the AdaBoost algorithm improved their single 

counterparts. Boosted Naïve Bayes classifiers improved the average classification 

accuracy of the single Naïve Bayes algorithm by ‘0.56%’. Similarly, boosted MLP 

classifiers improved the average accuracy of the single MLP algorithm by ‘0.18%’. 

However, both ensemble models obtained from the AdaBoost algorithm performed 

worse than the majority voting technique and the stacking method.  

Table 5.13. 10-Times 10-Fold Cross-Validation Performance of Ensemble 

Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy 

(%) 

Avg. 

Kappa 

Avg. 

Prec. 

Avg. 

Recall 

(TPR) 

Avg. 

Spec. 

Avg. 

AUROC 

Improve. 

Base 

Learner 

Accuracy 

Improve. 

Meta 

Learner 

Accuracy 

Majority  
Voting 91.11 [89.93-92.29] 0.806 0.937 0.926 0.884 0.905 

+0.65% 
to best 
base 

learner 

NA 

 
Stacking 
RBF SVM + 
Poly. SVM 
 

91.11 [89.78-92.44] 0.805 0.932 0.931 0.874 0.903 +0.65% +1.20% 

 
AdaBoost 
Naïve Bayes 
 

88.06 [87.20-88.91] 0.738 0.908 0.907 0.832 0.954 +0.56% NA 

 
AdaBoost 
MLP 
 

83.70 [81.68-85.73] 0.651 0.895 0.849 0.816 0.908 +0.18% NA 
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5.2.5. Comparison of All Classifiers for Dispute Occurrence Prediction 

Table 5.14 shows the 10-times 10-fold cross-validation results of all classifiers (single 

and ensemble) for dispute occurrence prediction together for comparison.  

Table 5.14. Comparison of All Dispute Occurrence Prediction Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 

Avg. 

Kappa 

Avg. 

Precision 

Avg. 

Recall 

(TPR) 

Avg. 

Specificity 

Avg. 

AUROC 
Rank 

Majority Voting 91.11 [89.93 – 92.29] 0.806 0.937 0.926 0.884 0.905 1 
Stacking 
RBF SVM + 
Poly.SVM 

91.11 [89.78 – 92.44] 0.805 0.932 0.931 0.874 0.903 2 

RBF Kernel SVM 90.46 [89.17 – 91.75] 0.790 0.925 0.929 0.861 0.894 3 
Poly. Kernel SVM 89.91 [88.85 – 90.96] 0.777 0.917 0.929 0.845 0.887 4 
J48 88.98 [87.26 – 90.70] 0.761 0.927 0.901 0.868 0.947 5 
KNN 87.69 [86.65 – 88.72] 0.737 0.931 0.874 0.881 0.928 6 
AdaBoost 
Naïve Bayes 88.06 [87.20 – 88.91] 0.738 0.908 0.907 0.832 0.954 7 

Naïve Bayes 87.50 [86.60 – 88.40] 0.728 0.912 0.893 0.843 0.953 8 
AdaBoost 
MLP 83.70 [81.68 – 85.73] 0.651 0.895 0.849 0.816 0.908 9 

MLP 83.52 [82.06 – 84.98] 0.641 0.879 0.866 0.779 0.894 10 

 

As it can be seen from Table 5.14, ensemble classifiers outperformed single classifiers 

in terms of average prediction accuracy. The first two best performing algorithms are 

the ensemble ones. The best single algorithm (Gaussian RBF kernel SVM) has the 

third rank in overall comparison. The average classification accuracy of all classifiers 

for dispute occurrence prediction within 95% CI can be seen in Figure 5.18.  

The ensemble classifier obtained from the majority voting technique gave the best 

performance in every measure other than the average recall and the average AUROC. 

The best classifier in terms of recall is another ensemble classifier, which is obtained 

from the stacking method combining Gaussian RBF kernel SVM as base-learner and 

polynomial kernel SVM as meta-learner. The AdaBoost algorithm on Naïve Bayes 

classifiers generates the best AUROC value. 
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Figure 5.18. Avg. Classification Accuracies of All Classifiers within 95% CI 

In the light of foregoing observations, the final model for dispute occurrence 

prediction is the ensemble classifier obtained from the majority voting technique 

combining classification decisions of Gaussian RBF kernel SVM, polynomial kernel 

SVM, and J48 decision trees. 

5.3. MULTICLASS CLASSIFICATION PROBLEMS 

The binary classification problem of dispute occurrence prediction is handled by six 

different single ML algorithms so far. These algorithms are well equipped to solve 

binary data classification problems. However, potential compensation prediction and 

the problem of resolution method selection should be treated differently than the 

dispute occurrence prediction problem. This is because potential compensation 

prediction and resolution method selection problems have more than two classes. As 

mentioned earlier, when there are more than two class labels that can be assigned to 

an instance, the problem is a multiclass classification problem. Multiclass 

classification problems are solved either naturally by extending the binary 

classification capabilities of algorithms or artificially by decomposing the problem 
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into several binary classification tasks (i.e. one-versus-one (OVO), one-versus-all 

(OVA), random correction code (RCC), exhaustive correction code(ECC)) (Li et al., 

2004; Aly, 2005). Experiments by using both approaches are performed in this thesis 

study and results are compared.  

Among experimented single ML algorithms, the Naïve Bayes algorithm is naturally 

extensible for multiclass problems and literature has shown that it can achieve 

significantly good classification performance (Thakkar et al., 2011). 

In the kNN algorithm, the distance between the new instance and every other training 

instances are calculated using a distance measure (i.e. Manhattan distance), the k 

number of smallest distances are identified, and the most represented class in these k 

instances are assigned to the new instance as the class label (Aly, 2005). Therefore, 

the kNN algorithm can naturally handle multiclass classification problems.  

Similarly, in the C4.5 decision tress (the J48 algorithm), there are leaf nodes that 

represent class labels. If there are K classes, there will be K leaf nodes (Aly, 2005). 

When a new instance should be classified, the decision tree structure is followed from 

the root node to the leaf node according to tests on attribute values of the new instance. 

The final leaf node that is reached is the class label of the new instance. Thus, the J48 

algorithm is also capable of naturally handling multiclass classification problems 

(Thakkar et al., 2011). 

MLP networks can also handle multiclass classification problems naturally by 

increasing the number of output neurons to K in case of K class problems instead of 

using ‘1’ output neuron like the case in binary classification (Thakkar et al., 2011). 

Unlike other single ML algorithms mentioned so far, the SVM algorithm is designed 

for binary classification problems only (Cortes and Vapnik, 1995). Therefore, the 

SVM algorithm or the multiclass classification problem should be adjusted to reach a 

solution. However, the problem in the literature is how to effectively extend the SVM 

algorithm for multiclass classification problems and it should be determined 

experimentally (Hsu and Lin, 2002). One method is to use all classes in a single 
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optimization formulation (Mayoraz and Alpaydin, 1999). However, it is 

computationally more expensive to solve a multiclass problem than to solve a binary 

problem of the same size (Hsu and Lin, 2002). Another method is based on using 

external methods such as OVO, OVA, etc. and decomposing the multiclass problem 

into several binary problems (An et al., 2007). In this thesis study, it is preferred to 

convert the multiclass problem into several binary classification problems for the 

SVM algorithm.  

The WEKA workbench supports four multiclass problem decomposition techniques. 

These are (1) one-vs-one (OVO), (2) one-vs-all (OVA), (3) random correction code 

(RCC), and (4) exhaustive correction code (ECC). All these techniques will be 

explained briefly.  

The ‘one-vs-one’ (OVO) method, which is also called the pairwise classification, is a 

multiclass solution technique that is based on training classifiers for each pair of 

classes (Li et al., 2004). Thus, in case of a dataset composed of k classes, this method 

will generate a total of [k (k - 1) / 2] independent classifiers with each classifier trained 

on data from two classes (Hsu and Lin, 2002). For potential compensation prediction, 

there are ‘4’ class labels representing compensation types and consequently, there will 

be ‘6’ binary classifiers. Similarly, for resolution method selection problem, there are 

‘6’ class labels and consequently, there will be ‘15’ binary classifiers. Then, the 

prediction of each classifier for the class label of a new instance will have a vote and 

the class that gets the majority of votes is assigned to the new instance (Raziff et al., 

2017). Although this technique requires constructing several binary classifiers, it still 

has low computational cost. This is because each pairwise learning problem only 

involves instances of the two classes under consideration (Witten et al., 2016).  

For a problem with K classes (K > 2), the ‘one-vs-all’ (OVA) method defines K binary 

problems with each problem separating one class from all other classes combined 

(Alpaydın, 2010). This method is also called ‘one-vs-rest’ and it produces several 

binary datasets by discriminating each class against the union of remaining classes 
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(Witten et al., 2016). Thus, if there are K classes, this method constructs K classifiers 

and unlike the OVO method that pairs each class with another class one by one, every 

class is paired with remaining classes at once in the OVA technique (Raziff et al., 

2017). In other words, instances belonging to class i are considered as positive 

instances and remaining instances that do not belong to class i are considered as 

negative instances (Hsu and Lin, 2002). During classification with the OVA 

technique, each classifier will produce a confidence figure of their predictions and the 

prediction of the classifier that has the highest confidence for a new instance is 

assigned as the final class label (Witten et al., 2016). This method may perform poorly 

if the number of classes is excessively large (Raziff et al., 2017). On the other hand, it 

has been proven empirically that the OVA technique is a competitive method when 

parameters of the base classifier are tuned appropriately (Witten et al., 2016).  

Practically, both OVO and OVA techniques are special cases of a method called the 

error-correcting output codes (Alpaydın, 2010). The method is proposed by Dietterich 

and Bakiri (1994) where the multiclass problem is decomposed into a set of binary 

problems and classes are represented by bits of code words in pursue of enhancing the 

classification performance. In more simple terms, the error-correcting output codes 

method changes the representation of classes by using an ensemble of binary 

classifiers to decide individual bits of the code word for the output class where each 

bit can take a value of ‘0’ or ‘1’. In error-correcting output codes method, an initial 

matrix of code words are constructed depending on the number of classes and then, 

ensemble classifiers are trained depending on the code word so that it follows binary 

classification rules. For a test dataset, each code word classifier is evaluated and the 

classifier that is closest to the test dataset is presented as the final classifier (Raziff et 

al., 2017). 

The WEKA workbench has two extensions of the original error-correcting output 

codes. These are the random correction code (RCC) and the exhaustive correction 

code (ECC) techniques. The ECC technique often generates accurate classifiers for 

multiclass problems. However, as the number of classes increases, the number of 
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classifiers that should be constructed increases exponentially (Li et al., 2004). In other 

words, when the number of classes is large, this technique becomes infeasible as too 

many classifiers have to be generated and in such cases, RCC technique can be 

preferred (Witten et al., 2016). The difference between ECC and RCC techniques is 

that in RCC, the code word matrix can be randomized at the initial construction (Raziff 

et al., 2017). 

Multiclass classification problems of potential compensation prediction and resolution 

method selection in this thesis study are solved without converting the problem into 

binary tasks whenever it is possible. Meanwhile, all techniques that can be used to 

decompose the problem into binary problems are also experimented whenever it is 

possible. Thus, both the natural approach and approaches using OVO, OVA, RCC, 

and ECC techniques are experimented and results are given in following sections for 

each of the six single ML algorithms.  

5.3.1. Multiclass Classification Using Single ML Algorithms 

WEKA configuration details of each single ML algorithm and obtained multiclass 

classification results are given in this section starting with the Naïve Bayes algorithm, 

which will be followed by the kNN, J48, MLP, polynomial kernel SVM, and Gaussian 

RBF kernel SVM, in the given order.  

It should be noted that unlike the case in binary classification where average values 

for evaluation metrics are given, in multiclass classification average values are used 

only for classification accuracy and Kappa statistic values. Other performance metrics 

are given in weighted average values so that class populations are reflected to the 

performance of classifiers.  

5.3.1.1. The Naïve Bayes Algorithm and its Configuration in WEKA 

The Naïve Bayes algorithm can naturally solve multiclass classification problems of 

potential compensation prediction and resolution method selection. The configuration 

of the Naïve Bayes algorithm in WEKA for binary classification can be used exactly 
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the same way to obtain multiclass solutions. In addition to this, both multiclass 

classification problems can be solved by decomposing them into several binary 

problems. In order to do this, the class ‘weka.classifiers.meta.MultiClassClassifier’ 

should be selected. Configuration details for the Naïve Bayes algorithm using 

decomposition techniques in WEKA can be seen in Figure 5.19. 

To select the Naïve Bayes algorithm, the ‘classifier’ setting should be set to Naïve 

Bayes with the configuration used in binary classification task (Figure 5.3). The 

‘method’ setting allows the user to select the decomposition technique among OVO, 

OVA, RCC, and ECC. Upon selecting the OVO technique, the ‘use PairwiseCoupling’ 

setting can set to ‘True’ for better performance. This setting is only applicable for the 

OVO technique. Default values in WEKA are used for remaining settings.  

 

 

Figure 5.19. The Multiclass Naïve Bayes Classifier Configuration in WEKA 
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5.3.1.2. Results from the Naïve Bayes Algorithm for Potential Compensation 

Prediction 

The solution without using decomposition techniques for Naïve Bayes is exactly equal 

to the solution obtained from using OVO technique with pairwise coupling. Thus, the 

classification obtained by 10-fold cross-validation with 10 repeats is given as results 

from the Naïve Bayes algorithm using OVO technique in Table 5.15. 

According to these results, Naïve Bayes classifiers using OVO technique with 

pairwise coupling have an average classification accuracy of ‘79.27%’ with lower and 

upper bounds (78.26% - 80.28%) within 95% CI. In other words, the Naïve Bayes 

OVO algorithm predicts the potential compensation type that can be acquired in a 

dispute with an average success rate of ‘79.27%’.  

Table 5.15. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

OVO  

 

Pairwise 

Coupling 

            
Accuracy(%) 80.49 80.49 76.83 79.27 79.27 79.27 80.49 76.83 80.49 79.27 79.27 
Kappa 0.692 0.692 0.640 0.674 0.674 0.674 0.695 0.640 0.692 0.675 0.675 
Precision 0.788 0.788 0.757 0.776 0.776 0.776 0.794 0.757 0.788 0.777 0.778 
Recall 0.805 0.805 0.768 0.793 0.793 0.793 0.805 0.768 0.805 0.793 0.793 
Specificity 0.903 0.903 0.899 0.902 0.902 0.902 0.908 0.899 0.903 0.901 0.902 
AUROC 0.924 0.923 0.915 0.921 0.921 0.916 0.920 0.922 0.918 0.920 0.920 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 50 40 0 30 
Cost Comp. Only 33 337 0 10 
Time Comp. Only 0 0 11 39 
Cost & Time Comp. 0 0 18 252 

 

The average for Kappa statistic value is ‘0.675’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes OVO classifiers is ‘0.778’. The 

weighted average sensitivity (recall) value is ‘0.793’ that means the success of Naïve 

Bayes OVO classifiers in identifying true positive instances is ‘79.3%’. Similarly, the 

weighted average specificity value is ‘0.902’ showing the algorithm achieved ‘90.2%’ 
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success in identifying true negative instances. The weighted average AUROC value 

is ‘0.920’, which is the highest AUROC value among all experimented Naïve Bayes 

classifiers for potential compensation prediction.  

In the second experiment with the Naïve Bayes algorithm, the OVA technique is 

utilized. According to 10-fold cross-validation results with 10 repeats (Table 5.16), 

Naïve Bayes classifiers using OVA technique have an average classification accuracy 

of ‘80.61%’ with lower and upper bounds (80.11% - 81.10%) within 95% CI. In other 

words, the Naïve Bayes OVA algorithm predicts the potential compensation type that 

can be acquired in a dispute with an average success rate of ‘80.61%’. 

Table 5.16. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using OVA Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

OVA 

            
Accuracy(%) 80.49 81.71 80.49 80.49 79.27 80.49 81.71 80.49 80.49 80.49 80.61 
Kappa 0.688 0.709 0.688 0.692 0.670 0.688 0.709 0.688 0.685 0.688 0.691 
Precision 0.765 0.803 0.765 0.788 0.770 0.765 0.803 0.765 0.752 0.765 0.774 
Recall 0.805 0.817 0.805 0.805 0.793 0.805 0.817 0.805 0.805 0.805 0.806 
Specificity 0.899 0.905 0.899 0.903 0.892 0.899 0.905 0.899 0.885 0.899 0.899 
AUROC 0.919 0.918 0.911 0.915 0.918 0.911 0.920 0.916 0.917 0.916 0.916 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 49 41 0 30 
Cost Comp. Only 22 348 0 10 
Time Comp. Only 0 1 4 45 
Cost & Time Comp. 0 1 9 260 

 

The average for Kappa statistic value is ‘0.691’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes OVA classifiers is ‘0.774’. The 

weighted average sensitivity (recall) value is ‘0.806’ that means the success of Naïve 

Bayes OVA classifiers in identifying true positive instances is ‘80.6%’. Similarly, the 

weighted average specificity value is ‘0.899’ showing the algorithm achieved ‘89.9%’ 

success in identifying true negative instances. The weighted average AUROC value 
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is ‘0.916’, which is a remarkably high AUROC value showing the success of the 

algorithm.  

In the third experiment with the Naïve Bayes algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.17), Naïve 

Bayes classifiers using RCC technique have an average classification accuracy of 

‘78.54%’ with lower and upper bounds (77.16% - 79.91%) within 95% CI. In other 

words, the Naïve Bayes RCC algorithm predicts the potential compensation type that 

can be acquired in a dispute with an average success rate of ‘78.54%’.  

Table 5.17. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using RCC Technique for Potential Compensation Prediction  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

RCC 

            
Accuracy(%) 79.27 78.05 80.49 81.71 79.27 74.39 78.05 78.05 78.05 78.05 78.54 
Kappa 0.667 0.654 0.689 0.705 0.663 0.592 0.641 0.653 0.649 0.654 0.657 
Precision 0.748 0.753 0.771 0.781 0.736 0.704 0.717 0.757 0.763 0.770 0.750 
Recall 0.793 0.780 0.805 0.817 0.793 0.744 0.780 0.780 0.780 0.780 0.785 
Specificity 0.888 0.891 0.904 0.897 0.874 0.870 0.864 0.892 0.884 0.893 0.886 
AUROC 0.869 0.857 0.856 0.905 0.896 0.879 0.877 0.891 0.888 0.883 0.880 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 41 48 1 30 
Cost Comp. Only 20 350 0 10 
Time Comp. Only 1 6 4 39 
Cost & Time Comp. 1 4 16 249 

 

The average for Kappa statistic value is ‘0.657’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes RCC classifiers is ‘0.750’. The 

weighted average sensitivity (recall) value is ‘0.785’ that means the success of 

classifiers in identifying true positive instances is ‘78.5%’. Similarly, the weighted 

average specificity value is ‘0.886’ showing the algorithm achieved ‘88.6%’ success 

in identifying true negative instances. The weighted average AUROC value is ‘0.880’. 

In the light of these, it can be said that the RCC technique performed slightly worse 

than other decomposition techniques in all performance measures. 
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In the final experiment with the Naïve Bayes algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.18), Naïve 

Bayes classifiers using ECC technique have an average classification accuracy of 

‘80.00%’ with lower and upper bounds (79.26% - 80.74%) within 95% CI. In other 

words, the Naïve Bayes ECC algorithm predicts the potential compensation type that 

can be acquired in a dispute with an average success rate of ‘80.00%’. 

Table 5.18. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using ECC Technique for Potential Compensation Prediction  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

ECC 

            
Accuracy(%) 80.49 80.49 79.27 79.27 78.05 80.49 79.27 80.49 81.71 80.49 80.00 
Kappa 0.688 0.687 0.667 0.667 0.646 0.687 0.663 0.684 0.703 0.688 0.678 
Precision 0.765 0.762 0.748 0.747 0.720 0.762 0.736 0.769 0.771 0.765 0.755 
Recall 0.805 0.805 0.793 0.793 0.780 0.805 0.793 0.805 0.817 0.805 0.800 
Specificity 0.899 0.894 0.888 0.892 0.872 0.894 0.874 0.891 0.887 0.899 0.889 
AUROC 0.920 0.918 0.914 0.920 0.920 0.912 0.920 0.918 0.918 0.916 0.918 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 46 44 0 30 
Cost Comp. Only 20 350 0 10 
Time Comp. Only 0 6 0 44 
Cost & Time Comp. 0 3 7 260 

 

The average for Kappa statistic value is ‘0.678’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes ECC classifiers is ‘0.755’. The 

weighted average sensitivity (recall) value is ‘0.800’ that means the success of 

classifiers in identifying true positive instances is ‘80.0%’. Similarly, the weighted 

average specificity value is ‘0.889’ showing the algorithm achieved ‘88.9%’ success 

in identifying true negative instances. The weighted average AUROC value is ‘0.918’, 

which is a remarkably high AUROC value showing the success of the algorithm.  

Considering performance of experiments using the Naïve Bayes algorithm are very 

close to each other, the primary evaluation criterion (average prediction accuracy) can 

be used for determining the best Naïve Bayes classifier for potential compensation 
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prediction. Thus, it can be said that the best performing Naïve Bayes classifier is 

obtained from the OVA technique that achieved ‘80.61%’ average prediction 

accuracy. 

5.3.1.3. Results from the Naïve Bayes Algorithm for Resolution Method Selection 

In the first experiment with the Naïve Bayes algorithm, the OVO technique with 

pairwise coupling is utilized. According to 10-fold cross-validation results with 10 

repeats (Table 5.19), Naïve Bayes classifiers using OVO technique with pairwise 

coupling have an average classification accuracy of ‘80.37%’ with lower and upper 

bounds (78.95% - 81.79%) within 95% CI. In other words, the Naïve Bayes OVO 

algorithm predicts the resolution method to be used in construction disputes with an 

average success rate of ‘80.37%’.  

Table 5.19. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using OVO Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

OVO  

 

Pairwise 

Coupling 

            
Accuracy(%) 83.33 79.63 77.78 79.63 81.48 79.63 81.48 77.78 83.33 79.63 80.37 
Kappa 0.785 0.738 0.710 0.735 0.760 0.735 0.760 0.710 0.782 0.739 0.745 
Precision 0.848 0.808 0.800 0.812 0.837 0.813 0.837 0.794 0.855 0.807 0.821 
Recall 0.833 0.796 0.778 0.796 0.815 0.796 0.815 0.778 0.833 0.796 0.804 
Specificity 0.937 0.929 0.912 0.923 0.932 0.917 0.932 0.913 0.931 0.935 0.926 
AUROC 0.959 0.949 0.949 0.953 0.955 0.953 0.954 0.952 0.953 0.956 0.953 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 70 13 7 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 42 0 8 0 
Mediation 0 0 0 31 0 19 
SEA 1 0 0 0 61 38 
Negotiation 0 0 0 0 20 170 

 

The average for Kappa statistic value is ‘0.745’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes OVO classifiers is ‘0.821’. The 

weighted average sensitivity (recall) value is ‘0.804’ that means the success of Naïve 

Bayes OVO classifiers in identifying true positive instances is ‘80.4%’. Similarly, the 
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weighted average specificity value is ‘0.926’ showing the algorithm achieved ‘92.6%’ 

success in identifying true negative instances. The weighted average AUROC value 

is ‘0.953’, which is an almost perfect value. 

In the second experiment with the Naïve Bayes algorithm, the OVA technique is 

utilized. According to 10-fold cross-validation results with 10 repeats (Table 5.20), 

Naïve Bayes classifiers using OVA technique have an average classification accuracy 

of ‘83.15%’ with lower and upper bounds (81.44% - 84.85%) within 95% CI. In other 

words, the Naïve Bayes OVA algorithm predicts the resolution method to be used in 

construction disputes with an average success rate of ‘83.15%’. 

Table 5.20. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using OVA Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

OVA 

            
Accuracy(%) 83.33 79.63 81.48 85.19 81.48 85.19 87.04 81.48 81.48 85.19 83.15 
Kappa 0.785 0.738 0.759 0.807 0.760 0.807 0.830 0.758 0.758 0.809 0.781 
Precision 0.842 0.803 0.829 0.870 0.823 0.884 0.900 0.839 0.839 0.858 0.849 
Recall 0.833 0.796 0.815 0.852 0.815 0.852 0.870 0.815 0.815 0.852 0.832 
Specificity 0.937 0.923 0.919 0.933 0.925 0.935 0.937 0.921 0.921 0.946 0.930 
AUROC 0.959 0.953 0.952 0.960 0.958 0.958 0.959 0.956 0.959 0.958 0.957 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 75 9 6 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 49 0 1 0 
Mediation 0 0 0 34 0 16 
SEA 1 0 0 0 55 44 
Negotiation 0 0 0 0 14 176 

 

The average for Kappa statistic value is ‘0.781’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes OVA classifiers is ‘0.849’. The 

weighted average sensitivity (recall) value is ‘0.832’ that means the success of Naïve 

Bayes OVA classifiers in identifying true positive instances is ‘83.2%’. Similarly, the 

weighted average specificity value is ‘0.930’ showing the algorithm achieved ‘93.0%’ 
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success in identifying true negative instances. The weighted average AUROC value 

is ‘0.957’, which is an almost perfect value. 

In the third experiment with the Naïve Bayes algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.21), Naïve 

Bayes classifiers using RCC technique have an average classification accuracy of 

‘78.33%’ with lower and upper bounds (75.75% - 80.91%) within 95% CI. In other 

words, the Naïve Bayes RCC algorithm predicts the resolution method to be used in 

construction disputes with an average success rate of ‘78.33%’. 

Table 5.21. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using RCC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

RCC 

            
Accuracy(%) 79.63 83.33 75.93 77.78 75.93 77.78 72.22 75.93 83.33 81.48 78.33 
Kappa 0.739 0.785 0.692 0.712 0.690 0.712 0.645 0.692 0.784 0.760 0.721 
Precision 0.802 0.846 0.760 0.797 0.765 0.784 0.737 0.755 0.843 0.845 0.793 
Recall 0.796 0.833 0.759 0.778 0.759 0.778 0.722 0.759 0.833 0.815 0.783 
Specificity 0.932 0.945 0.924 0.922 0.919 0.919 0.917 0.927 0.934 0.929 0.927 
AUROC 0.941 0.926 0.926 0.931 0.932 0.924 0.910 0.926 0.952 0.931 0.930 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 76 10 3 0 0 1 
Arbitration 4 52 0 0 4 0 
DRB 1 0 49 0 0 0 
Mediation 0 1 0 31 0 18 
SEA 4 6 3 1 51 35 
Negotiation 1 3 2 4 16 164 

 

The average for Kappa statistic value is ‘0.721’ that shows a substantial agreement. 

The weighted average precision value of Naïve Bayes RCC classifiers is ‘0.793’. The 

weighted average sensitivity (recall) value is ‘0.783’ that means the success of 

classifiers in identifying true positive instances is ‘78.3%’. Similarly, the weighted 

average specificity value is ‘0.927’ showing the algorithm achieved ‘92.7%’ success 

in identifying true negative instances. The weighted average AUROC value is ‘0.930’. 
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In the light of these, it can be said that the RCC technique performed slightly worse 

than other decomposition techniques in all performance measures. 

In the final experiment with the Naïve Bayes algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.22), Naïve 

Bayes classifiers using ECC technique have an average classification accuracy of 

‘85.93%’ with lower and upper bounds (84.50% - 87.35%) within 95% CI. In other 

words, the Naïve Bayes ECC algorithm predicts the resolution method to be used in 

construction disputes with an average success rate of ‘85.93%’. 

Table 5.22. 10-Times 10-Fold Cross-Validation Results of the Naïve Bayes 

Algorithm Using ECC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Naïve 

Bayes 

ECC 

            
Accuracy(%) 87.04 83.33 83.33 85.19 87.04 87.04 87.04 83.33 87.04 88.89 85.93 
Kappa 0.832 0.784 0.784 0.807 0.831 0.831 0.831 0.782 0.831 0.856 0.817 
Precision 0.874 0.839 0.839 0.870 0.881 0.900 0.900 0.855 0.900 0.896 0.875 
Recall 0.870 0.833 0.833 0.852 0.870 0.870 0.870 0.833 0.870 0.889 0.859 
Specificity 0.941 0.929 0.929 0.933 0.935 0.937 0.937 0.923 0.937 0.952 0.935 
AUROC 0.962 0.959 0.955 0.961 0.963 0.960 0.963 0.957 0.963 0.963 0.961 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 83 7 0 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 50 0 0 0 
Mediation 0 0 0 37 0 13 
SEA 1 0 0 0 54 45 
Negotiation 0 0 0 0 10 180 

 

The average for Kappa statistic value is ‘0.817’ that shows a perfect agreement. The 

weighted average precision value of Naïve Bayes ECC classifiers is ‘0.875’. The 

weighted average sensitivity (recall) value is ‘0.859’ that means the success of 

classifiers in identifying true positive instances is ‘85.9%’. Similarly, the weighted 

average specificity value is ‘0.935’ showing the algorithm achieved ‘93.5%’ success 

in identifying true negative instances. The weighted average AUROC value is ‘0.961’, 

which is the highest AUROC value among all experimented Naïve Bayes classifiers. 
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Considering results of experiments using the Naïve Bayes algorithm, it can be said 

that the best performing Naïve Bayes classifier is obtained from the ECC technique 

that achieved ‘85.93%’ average prediction accuracy for resolution method selection. 

In addition, this classifier is superior to other experimented Naïve Bayes classifiers in 

all remaining performance measures. 

5.3.1.4. The KNN Algorithm and its Configuration in WEKA 

The kNN algorithm can naturally solve multiclass classification problems of potential 

compensation prediction and resolution method selection. The configuration of the 

kNN algorithm in WEKA for binary classification can be used exactly the same way 

to obtain multiclass solutions. In addition to this, both multiclass classification 

problems can be solved by decomposing them into several binary problems using the 

class ‘weka.classifiers.meta.MultiClassClassifier’. Configuration details for the kNN 

algorithm using decomposition techniques in WEKA can be seen in Figure 5.20. 

 

 

Figure 5.20. The Multiclass KNN Classifier Configuration in WEKA 

To select the kNN algorithm, the ‘classifier’ setting should be set to kNN with the 

configuration used in binary classification task (‘CVParameterSelection’) (Figure 5.4 
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and Figure 5.5). The only difference from binary case is that the k parameter search 

range is between ‘1’ and ‘82’ for potential compensation prediction and ‘1’ and ‘54’ 

for resolution method selection. The ‘method’ setting allows the user to select the 

decomposition technique. Other than the natural solution obtained from the kNN 

algorithm, results from using decomposition techniques of OVO, OVA, RCC, and 

ECC are compared to each other. Default values in WEKA are used for remaining 

settings. 

5.3.1.5. Results from the KNN Algorithm for Potential Compensation Prediction 

In the first experiment, 10-fold cross-validation results with 10 repeats obtained from 

using the kNN algorithm without any decomposition technique (natural solution) are 

given in Table 5.23.  

Table 5.23. 10-Times 10-Fold Cross-Validation Results of KNN Algorithm without 

Using Decomposition Techniques for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

 

No 

Decomp. 

            
Accuracy(%) 80.49 76.83 76.83 79.27 76.83 80.49 80.49 74.39 80.49 80.49 78.66 
Kappa 0.689 0.636 0.635 0.671 0.636 0.688 0.688 0.597 0.688 0.689 0.661 
Precision 0.753 0.723 0.725 0.742 0.723 0.752 0.750 0.701 0.750 0.753 0.737 
Recall 0.805 0.768 0.768 0.793 0.768 0.805 0.805 0.744 0.805 0.805 0.787 
Specificity 0.898 0.891 0.888 0.896 0.891 0.898 0.893 0.880 0.893 0.898 0.893 
AUROC 0.911 0.915 0.908 0.913 0.915 0.903 0.916 0.905 0.921 0.916 0.912 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 49 42 0 29 
Cost Comp. Only 37 333 0 10 
Time Comp. Only 0 3 0 47 
Cost & Time Comp. 5 0 2 263 

 

The optimum k parameter is determined as k=3 by the cross-validation parameter 

selection algorithm. Similar to previous experiments with the kNN, the best results are 

obtained from using (1 / weight) distance weighting method with the Manhattan 

distance measure. According to these results, kNN classifiers have an average 

multiclass classification accuracy of ‘78.66%’ with lower and upper bounds (77.05% 
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- 80.26%) within 95% CI. In other words, the kNN algorithm without using 

decomposition techniques predicts the potential compensation type that can be 

acquired in a dispute with an average success rate of ‘78.66%’. 

The average for Kappa statistic value is ‘0.661’ that shows a substantial agreement. 

The weighted average precision value is ‘0.737’. The weighted average sensitivity 

(recall) value is ‘0.787’ that means the success of classifiers in identifying true positive 

instances is ‘78.7%’. Similarly, the weighted average specificity value is ‘0.893’ 

showing the algorithm achieved ‘89.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.912’, which is the highest 

AUROC value among all experimented kNN classifiers for potential compensation 

prediction. 

In the second experiment with the kNN algorithm, the OVO technique is utilized. This 

time, using pairwise coupling generated worse results than using no pairwise coupling. 

Thus, the OVO technique is used with no pairwise coupling. The kNN OVO algorithm 

generates six distinct classifiers and according to 10-fold cross-validation results with 

10 repeats (Table 5.24), kNN classifiers using OVO technique with no pairwise 

coupling have an average classification accuracy of ‘77.68%’ with lower and upper 

bounds (76.67% - 78.69%) within 95% CI. In other words, the kNN OVO algorithm 

predicts the potential compensation type that can be acquired in a dispute with an 

average success rate of ‘77.68%’. 

The average for Kappa statistic value is ‘0.644’ that shows a substantial agreement. 

The weighted average precision value is ‘0.728’. The weighted average sensitivity 

(recall) value is ‘0.777’ that means the success of classifiers in identifying true positive 

instances is ‘77.7%’. Similarly, the weighted average specificity value is ‘0.886’ 

showing the algorithm achieved ‘88.6%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.888’. 
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Table 5.24. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

OVO 

 

No 

Pairwise 

Coupling 

            
Accuracy(%) 79.27 78.05 76.83 78.05 78.05 78.05 78.05 74.39 76.83 79.27 77.68 
Kappa 0.671 0.648 0.638 0.650 0.645 0.644 0.649 0.597 0.631 0.671 0.644 
Precision 0.751 0.729 0.737 0.722 0.714 0.714 0.732 0.707 0.719 0.751 0.728 
Recall 0.793 0.780 0.768 0.780 0.780 0.780 0.780 0.744 0.768 0.793 0.777 
Specificity 0.897 0.882 0.898 0.885 0.877 0.877 0.886 0.881 0.884 0.897 0.886 
AUROC 0.899 0.888 0.891 0.893 0.883 0.874 0.887 0.878 0.883 0.900 0.888 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 41 49 0 30 
Cost Comp. Only 33 337 1 9 
Time Comp. Only 0 1 0 49 
Cost & Time Comp. 3 0 8 259 

 

In the third experiment with the kNN algorithm, the OVA technique is utilized. The 

kNN OVA algorithm generates four distinct classifiers (since there are four output 

classes) and according to 10-fold cross-validation results with 10 repeats (Table 5.25), 

kNN classifiers using OVA technique have an average classification accuracy of 

‘76.34%’ with lower and upper bounds (74.59% - 78.10%) within 95% CI. In other 

words, the kNN OVA algorithm predicts the potential compensation type that can be 

acquired in a dispute with an average success rate of ‘76.34%’. 

The average for Kappa statistic value is ‘0.629’ that shows a substantial agreement. 

The weighted average precision value is ‘0.732’. The weighted average sensitivity 

(recall) value is ‘0.763’ that means the success of classifiers in identifying true positive 

instances is ‘76.3%’. Similarly, the weighted average specificity value is ‘0,893’ 

showing the algorithm achieved ‘89.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.904’. 
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Table 5.25. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using OVA Technique for Potential Compensation Prediction  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

OVA 

            
Accuracy(%) 79.27 78.05 73.17 78.05 73.17 78.05 75.61 74.39 74.39 79.27 76.34 
Kappa 0.671 0.654 0.584 0.653 0.584 0.655 0.619 0.599 0.598 0.672 0.629 
Precision 0.751 0.739 0.714 0.748 0.712 0.746 0.732 0.715 0.717 0.748 0.732 
Recall 0.793 0.780 0.732 0.780 0.732 0.780 0.756 0.744 0.744 0.793 0.763 
Specificity 0.897 0.895 0.889 0.896 0.885 0.900 0.897 0.887 0.878 0.901 0.893 
AUROC 0.907 0.915 0.911 0.900 0.902 0.902 0.905 0.908 0.904 0.890 0.904 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 49 41 0 30 
Cost Comp. Only 38 332 4 6 
Time Comp. Only 0 1 1 48 
Cost & Time Comp. 6 0 16 248 

 

In the fourth experiment with the kNN algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.26), kNN 

classifiers using RCC technique have an average classification accuracy of ‘76.59%’ 

with lower and upper bounds (74.95% - 78.22%) within 95% CI.  

Table 5.26. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using RCC Technique for Potential Compensation Prediction  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

RCC 

            
Accuracy(%) 79.27 74.39 74.39 79.27 75.61 75.61 76.83 73.17 79.27 78.05 76.59 
Kappa 0.671 0.591 0.601 0.670 0.614 0.618 0.634 0.582 0.673 0.653 0.631 
Precision 0.751 0.695 0.716 0.741 0.704 0.726 0.732 0.706 0.773 0.738 0.728 
Recall 0.793 0.744 0.744 0.793 0.756 0.756 0.768 0.732 0.793 0.780 0.766 
Specificity 0.897 0.863 0.890 0.896 0.881 0.892 0.889 0.885 0.898 0.895 0.889 
AUROC 0.859 0.846 0.856 0.874 0.866 0.862 0.843 0.860 0.884 0.875 0.863 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 47 43 0 30 
Cost Comp. Only 36 333 4 7 
Time Comp. Only 0 0 1 49 
Cost & Time Comp. 9 4 10 247 
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The average for Kappa statistic value is ‘0.631’ that shows a substantial agreement. 

The weighted average precision value is ‘0.728’. The weighted average sensitivity 

(recall) value is ‘0.766’ that means the success of classifiers in identifying true positive 

instances is ‘76.6%’. Similarly, the weighted average specificity value is ‘0.889’ 

showing the algorithm achieved ‘88.9%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.863’. 

In the final experiment with the kNN algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.27), kNN 

classifiers using ECC technique have an average classification accuracy of ‘76.59%’ 

with lower and upper bounds (75.59% - 77.58%) within 95% CI.  

The average for Kappa statistic value is ‘0.631’ that shows a substantial agreement. 

The weighted average precision value is ‘0.730’. The weighted average sensitivity 

(recall) value is ‘0.766’ that means the success of classifiers in identifying true positive 

instances is ‘76.6%’. Similarly, the weighted average specificity value is ‘0.892’ 

showing the algorithm achieved ‘89.2%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.896’. 

Table 5.27. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using ECC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

ECC 

            
Accuracy(%) 78.05 76.83 76.83 78.05 74.39 75.61 76.83 74.39 78.05 76.83 76.59 
Kappa 0.652 0.631 0.636 0.653 0.597 0.618 0.637 0.604 0.654 0.633 0.631 
Precision 0.735 0.717 0.737 0.738 0.707 0.719 0.743 0.725 0.745 0.729 0.730 
Recall 0.780 0.768 0.768 0.780 0.744 0.756 0.768 0.744 0.780 0.768 0.766 
Specificity 0.890 0.880 0.894 0.895 0.881 0.891 0.899 0.895 0.900 0.893 0.892 
AUROC 0.904 0.906 0.905 0.888 0.889 0.896 0.896 0.890 0.893 0.892 0.896 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 48 42 0 30 
Cost Comp. Only 37 333 3 7 
Time Comp. Only 0 2 0 48 
Cost & Time Comp. 9 0 14 247 
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Considering results of experiments using the kNN algorithm, it can be said that the 

best performing kNN classifier is obtained from the natural solution (no 

decomposition technique used) that achieved ‘78.66%’ average prediction accuracy 

for potential compensation prediction. In addition, this classifier is superior to other 

experimented kNN classifiers in all remaining performance measures. However, as 

given in Section 5.3.1.2, the Naïve Bayes OVA technique outperformed the kNN 

algorithm for potential compensation prediction. 

5.3.1.6. Results from the kNN Algorithm for Resolution Method Selection 

In the first experiment, 10-fold cross-validation results with 10 repeats obtained from 

using the kNN algorithm without any decomposition technique (natural solution) are 

given in Table 5.28. The optimum k parameter is determined as k=3 by the cross-

validation parameter selection algorithm. Similar to previous experiments with the 

kNN, the best results are obtained from using (1 / weight) distance weighting method 

with the Manhattan distance measure. According to these results, kNN classifiers have 

an average multiclass classification accuracy of ‘73.52%’ with lower and upper 

bounds (70.79% - 76.24%) within 95% CI. In other words, the kNN algorithm without 

using decomposition techniques predicts the resolution method to be used in 

construction disputes with an average success rate of ‘73.52%’. 

The average for Kappa statistic value is ‘0.661’ that shows a substantial agreement. 

The weighted average precision value is ‘0.760’. The weighted average sensitivity 

(recall) value is ‘0.735’ that means the success of classifiers in identifying true positive 

instances is ‘73.5%’. Similarly, the weighted average specificity value is ‘0.913’ 

showing the algorithm achieved ‘91.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.894’. 
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Table 5.28. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

without Using Decomposition Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

 

No 

Decomp. 

            
Accuracy(%) 81.48 70.37 70.37 72.22 77.78 74.07 74.07 68.52 72.22 74.07 73.52 
Kappa 0.764 0.624 0.620 0.646 0.714 0.669 0.668 0.598 0.643 0.671 0.661 
Precision 0.822 0.744 0.734 0.741 0.802 0.772 0.759 0.716 0.738 0.769 0.760 
Recall 0.815 0.704 0.704 0.722 0.778 0.741 0.741 0.685 0.722 0.741 0.735 
Specificity 0.937 0.912 0.896 0.914 0.914 0.910 0.917 0.900 0.907 0.922 0.913 
AUROC 0.903 0.880 0.879 0.894 0.897 0.888 0.916 0.892 0.900 0.888 0.894 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 72 10 3 0 0 5 
Arbitration 6 54 0 0 0 0 
DRB 0 0 42 0 8 0 
Mediation 0 1 0 32 0 17 
SEA 0 0 7 0 61 32 
Negotiation 0 0 0 0 54 136 

 

In the second experiment with the kNN algorithm, the OVO technique is utilized. 

However, the resolution method selection model learns from a dataset composed of 

54 instances and the kNN algorithm using OVO decomposition technique cannot 

output classification results due to lack of enough instances. Therefore, the kNN OVO 

algorithm is not considered in comparisons.  

In the third experiment with the kNN algorithm, the OVA technique is utilized. The 

kNN OVA algorithm generates six distinct classifiers (since there are six output 

classes) and according to 10-fold cross-validation results with 10 repeats (Table 5.29), 

kNN classifiers using OVA technique have an average classification accuracy of 

‘73.89’ with lower and upper bounds (71.60% - 76.18%) within 95% CI. In other 

words, the kNN OVA algorithm predicts the resolution method to be used in 

construction disputes with an average success rate of ‘73.89%’. 

The average for Kappa statistic value is ‘0.665’ that shows a substantial agreement. 

The weighted average precision value is ‘0.758’ showing the positive predicting 

power of the algorithm. The weighted average sensitivity (recall) value is ‘0.739’ that 
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means the success of classifiers in identifying true positive instances is ‘73.9%’. 

Similarly, the weighted average specificity value is ‘0.911’ showing the algorithm 

achieved ‘91.1%’ success in identifying true negative instances. The weighted average 

AUROC value is ‘0.888’. 

Table 5.29. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using OVA Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

OVA 

            
Accuracy(%) 81.48 74.07 72.22 74.07 74.07 72.22 74.07 70.37 70.37 75.93 73.89 
Kappa 0.764 0.667 0.644 0.664 0.666 0.643 0.668 0.621 0.621 0.691 0.665 
Precision 0.822 0.767 0.736 0.756 0.751 0.745 0.759 0.745 0.725 0.772 0.758 
Recall 0.815 0.741 0.722 0.741 0.741 0.722 0.741 0.704 0.704 0.759 0.739 
Specificity 0.937 0.910 0.907 0.903 0.911 0.898 0.917 0.900 0.902 0.921 0.911 
AUROC 0.888 0.909 0.864 0.902 0.906 0.869 0.882 0.876 0.887 0.901 0.888 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 75 9 1 0 0 5 
Arbitration 9 51 0 0 0 0 
DRB 0 0 42 0 8 0 
Mediation 0 1 0 33 0 16 
SEA 0 0 5 0 58 37 
Negotiation 0 0 0 0 50 140 

 

In the fourth experiment with the kNN algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.30), kNN 

classifiers using RCC technique have an average classification accuracy of ‘73.15%’ 

with lower and upper bounds (70.87% - 75.42%) within 95% CI. In other words, the 

kNN RCC algorithm predicts the resolution method to be used in construction disputes 

with an average success rate of ‘73.15%’. 

The average for Kappa statistic value is ‘0.657’ that shows a substantial agreement. 

The weighted average precision value is ‘0.749’ showing the positive predictive power 

of the algorithm. The weighted average sensitivity (recall) value is ‘0.732’ that means 

the success of classifiers in identifying true positive instances is ‘73.2%’. Similarly, 

the weighted average specificity value is ‘0.913’ showing the algorithm achieved 
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‘91.3%’ success in identifying true negative instances. The weighted average AUROC 

value is ‘0.874’. 

Table 5.30. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using RCC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

RCC 

            
Accuracy(%) 77.78 75.93 74.07 72.22 72.22 72.22 70.37 66.67 75.93 74.07 73.15 
Kappa 0.718 0.693 0.668 0.646 0.643 0.645 0.622 0.574 0.691 0.667 0.657 
Precision 0.785 0.773 0.767 0.748 0.738 0.738 0.723 0.689 0.769 0.760 0.749 
Recall 0.778 0.759 0.741 0.722 0.722 0.722 0.704 0.667 0.759 0.741 0.732 
Specificity 0.931 0.923 0.910 0.916 0.907 0.902 0.908 0.896 0.923 0.913 0.913 
AUROC 0.869 0.870 0.860 0.883 0.888 0.861 0.871 0.863 0.890 0.888 0.874 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 69 10 5 0 0 6 
Arbitration 4 56 0 0 0 0 
DRB 0 0 42 0 8 0 
Mediation 0 1 1 32 0 16 
SEA 1 3 6 0 56 34 
Negotiation 0 1 0 3 46 140 

 

In the final experiment with the kNN algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.31), kNN 

classifiers using ECC technique have an average classification accuracy of ‘74.63%’ 

with lower and upper bounds (72.46% - 76.80%) within 95% CI. In other words, the 

kNN ECC algorithm predicts the predicts the resolution method to be used in 

construction disputes with an average success rate of ‘74.63%’.  

The average for Kappa statistic value is ‘0.674’ that shows a substantial agreement. 

The weighted average precision value is ‘0.769’ showing the positive predictive power 

of the algorithm. The weighted average sensitivity (recall) value is ‘0.746’ that means 

the success of classifiers in identifying true positive instances is ‘74.6%’. Similarly, 

the weighted average specificity value is ‘0.910’ showing the algorithm achieved 

‘91.0%’ success in identifying true negative instances. The weighted average AUROC 
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value is ‘0.908’, which is the highest AUROC value among experimented kNN 

algorithms for resolution method selection. 

Table 5.31. 10-Times 10-Fold Cross-Validation Results of the KNN Algorithm 

Using ECC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

KNN 

ECC 

            
Accuracy(%) 79.63 74.07 74.07 72.22 75.93 75.93 74.07 68.52 74.07 77.78 74.63 
Kappa 0.739 0.667 0.668 0.645 0.690 0.690 0.664 0.593 0.667 0.715 0.674 
Precision 0.804 0.767 0.774 0.755 0.776 0.783 0.754 0.719 0.759 0.797 0.769 
Recall 0.796 0.741 0.741 0.722 0.759 0.759 0.741 0.685 0.741 0.778 0.746 
Specificity 0.927 0.910 0.910 0.906 0.915 0.906 0.906 0.885 0.910 0.925 0.910 
AUROC 0.898 0.921 0.901 0.915 0.909 0.899 0.917 0.880 0.915 0.920 0.908 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 72 7 6 0 0 5 
Arbitration 2 58 0 0 0 0 
DRB 0 0 42 0 8 0 
Mediation 0 1 0 33 0 16 
SEA 0 0 4 0 55 41 
Negotiation 0 0 0 0 47 143 

 

Considering results of experiments using the kNN algorithm, it can be said that the 

best performing kNN classifier is obtained from the ECC technique that achieved 

‘74.63%’ average prediction accuracy for resolution method selection. In addition, 

this classifier is superior to other experimented kNN classifiers in all remaining 

performance measures except the specificity measure. In terms of specificity, the best 

classifiers are obtained from the kNN algorithm without using decomposition 

techniques and the kNN RCC algorithm. However, as given in Section 5.3.1.3, the 

Naïve Bayes ECC technique (85.93% average prediction accuracy) significantly 

outperformed the kNN ECC algorithm for resolution method selection. 

5.3.1.7. The J48 Algorithm and its Configuration in WEKA 

The J48 algorithm can naturally solve multiclass classification problems of potential 

compensation prediction and resolution method selection. The configuration of the 

J48 algorithm in WEKA for binary classification can be used exactly the same way to 
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obtain multiclass solutions. In addition to this, both problems can be solved by 

decomposing them into several binary problems using the class 

‘weka.classifiers.meta.MultiClassClassifier’. Configuration details for the J48 

algorithm using decomposition techniques in WEKA can be seen in Figure 5.21. 

 

 

Figure 5.21. The Multiclass J48 Classifier Configuration in WEKA 

To select the J48 algorithm, the ‘classifier’ setting should be set to J48 with the 

configuration used in binary classification task (‘GridSearch’) (Figure 5.6 and Figure 

5.7). The ‘method’ setting allows the user to select the decomposition technique. The 

J48 algorithm is tested using all available decomposition techniques, which are OVO, 

OVA, RCC, and ECC. In addition, a solution is obtained when no decomposition 

techniques used (natural solution). Default values in WEKA are used for remaining 

settings. 
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5.3.1.8. Results from the J48 Algorithm for Potential Compensation Prediction 

In the first experiment, 10-fold cross-validation results with 10 repeats obtained from 

using the J48 algorithm without any decomposition technique (natural solution) are 

given in Table 5.32. The grid search algorithm was used to optimize two parameters; 

confidence factor and minimum number of instances at leaf nodes. The optimum 

confidence factor is determined as ‘1’ while, the optimum value for minimum number 

of instances at leaf nodes is ‘4’. According to these results, J48 classifiers without 

using any decomposition technique have an average multiclass classification accuracy 

of ‘76.59%’ with lower and upper bounds (75.99% - 77.91%) within 95% CI. In other 

words, the J48 algorithm predicts the potential compensation type that can be acquired 

in a dispute with an average success rate of ‘76.95%’ that makes it the best J48 

classifier in terms of classification accuracy for potential compensation prediction. 

Table 5.32. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm 

without Using Decomposition Techniques for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

 

No 

Decomp. 

            
Accuracy(%) 78.05 78.05 78.05 78.05 74.39 76.83 76.83 78.05 75.61 75.61 76.95 
Kappa 0.631 0.631 0.636 0.631 0.578 0.613 0.615 0.631 0.595 0.599 0.616 
Precision 0.620 0.620 0.699 0.620 0.613 0.618 0.625 0.620 0.615 0.670 0.632 
Recall 0.780 0.780 0.780 0.780 0.744 0.768 0.768 0.780 0.756 0.756 0.769 
Specificity 0.851 0.851 0.860 0.851 0.846 0.849 0.856 0.851 0.850 0.857 0.852 
AUROC 0.817 0.807 0.823 0.799 0.788 0.820 0.808 0.813 0.812 0.826 0.811 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 2 88 0 30 
Cost Comp. Only 5 365 1 9 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 1 0 5 264 

 

The highest average for Kappa statistic value among J48 classifiers belongs to this 

algorithm with a Kappa value of ‘0.616’ that shows a substantial agreement. The 

weighted average precision value is ‘0.632’. The highest weighted average sensitivity 

(recall) value is also obtained from this algorithm as ‘0.769’ that means the success of 
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classifiers in identifying true positive instances is ‘76.9%’. The weighted average 

specificity value is ‘0.852’ showing the algorithm achieved ‘85.2%’ success in 

identifying true negative instances. The weighted average AUROC value is ‘0.811’. 

In the second experiment with the J48 algorithm, the OVO technique with pairwise 

coupling is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.33), J48 classifiers using OVO technique have an average classification 

accuracy of ‘75.37%’ with lower and upper bounds (73.32% - 77.41%) within 95% 

CI. In other words, the J48 OVO algorithm predicts the potential compensation type 

that can be acquired in a dispute with an average success rate of ‘75.37%’. 

The average for Kappa value is ‘0.605’ that shows a substantial agreement. The 

highest weighted average precision value among experimented J48 algorithms is 

obtained from this algorithm as ‘0.686’. The weighted average sensitivity (recall) 

value is ‘0.754’ that means the success of classifiers in identifying true positive 

instances is ‘75.4%’. The highest weighted average specificity value is also obtained 

from this algorithm as ‘0.868’ showing the algorithm achieved ‘86.8%’ success in 

identifying true negative instances. The weighted average AUROC value is ‘0.836’. 

Table 5.33. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 73.17 78.05 71.95 76.83 76.83 69.51 76.83 78.05 75.61 76.83 75.37 
Kappa 0.566 0.641 0.568 0.628 0.628 0.514 0.618 0.650 0.611 0.623 0.605 
Precision 0.647 0.706 0.701 0.702 0.702 0.627 0.673 0.722 0.692 0.690 0.686 
Recall 0.732 0.780 0.720 0.768 0.768 0.695 0.768 0.780 0.756 0.768 0.754 
Specificity 0.853 0.868 0.884 0.875 0.875 0.845 0.858 0.885 0.872 0.866 0.868 
AUROC 0.840 0.846 0.848 0.828 0.823 0.834 0.813 0.855 0.803 0.870 0.836 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 25 65 0 30 
Cost Comp. Only 41 329 0 10 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 4 0 2 264 
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In the third experiment with the J48 algorithm, the OVA technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.34), J48 

classifiers using OVA technique have an average classification accuracy of ‘75.12%’ 

with lower and upper bounds (73.94% - 76.30%) within 95 CI. In other words, the J48 

OVA algorithm predicts the potential compensation type that can be acquired in a 

dispute with an average success rate of ‘75.12%’. 

Table 5.34. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

OVA Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

OVA 

            
Accuracy(%) 76.83 75.61 75.61 74.39 74.39 71.95 76.83 76.83 73.17 75.61 75.12 
Kappa 0.613 0.596 0.604 0.581 0.580 0.553 0.615 0.618 0.560 0.595 0.592 
Precision 0.617 0.615 0.677 0.655 0.620 0.659 0.625 0.673 0.611 0.622 0.637 
Recall 0.768 0.756 0.756 0.744 0.744 0.720 0.768 0.768 0.732 0.756 0.751 
Specificity 0.851 0.847 0.864 0.850 0.852 0.859 0.856 0.858 0.846 0.851 0.853 
AUROC 0.864 0.833 0.837 0.831 0.819 0.826 0.887 0.841 0.767 0.856 0.836 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 6 85 0 29 
Cost Comp. Only 16 353 3 8 
Time Comp. Only 1 0 0 49 
Cost & Time Comp. 7 0 6 257 

 

The average for Kappa statistic value is ‘0.592’ that shows a moderate agreement. The 

weighted average precision value is ‘0.637’. The weighted average sensitivity (recall) 

value is ‘0.751’ that means the success of classifiers in identifying true positive 

instances is ‘75.1%’. Similarly, the weighted average specificity value is ‘0.853’ 

showing the algorithm achieved ‘85.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.836’. 

In the fourth experiment with the J48 algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.35), J48 

classifiers using RCC technique have an average classification accuracy of ‘74.51%’ 
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with lower and upper bounds (72.61% - 76.42%) within 95% CI. In other words, the 

J48 RCC classifier have an average success rate of ‘74.51%’. 

The average for Kappa statistic value is ‘0.584’ that shows a moderate agreement. The 

weighted average precision value is ‘0.665’. The weighted average sensitivity (recall) 

value is ‘0.745’ that means the success of classifiers in identifying true positive 

instances is ‘74.5%’. Similarly, the weighted average specificity value is ‘0.852’ 

showing the algorithm achieved ‘85.2%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.845’. 

Table 5.35. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

RCC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

RCC 

            
Accuracy(%) 78.05 74.39 73.17 76.83 75.61 69.51 75.61 75.61 75.61 70.73 74.51 
Kappa 0.631 0.579 0.568 0.615 0.597 0.519 0.600 0.599 0.600 0.532 0.584 
Precision 0.620 0.647 0.724 0.675 0.622 0.649 0.694 0.688 0.694 0.641 0.665 
Recall 0.780 0.744 0.732 0.768 0.756 0.695 0.756 0.756 0.756 0.707 0.745 
Specificity 0.851 0.841 0.847 0.845 0.855 0.856 0.858 0.853 0.858 0.854 0.852 
AUROC 0.841 0.818 0.814 0.881 0.847 0.837 0.863 0.840 0.850 0.863 0.845 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 10 80 0 30 
Cost Comp. Only 18 350 2 10 
Time Comp. Only 1 1 2 46 
Cost & Time Comp. 6 5 10 249 

 

In the final experiment with the J48 algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.36), J48 

classifiers using ECC technique have an average classification accuracy of ‘75.73%’ 

with lower and upper bounds (74.69% - 76.78%) within 95% CI. In other words, J48 

ECC algorithm predicts the potential compensation type that can be acquired in a 

dispute with an average success rate of ‘75.73%’. This is the second best J48 classifier 

in terms of classification accuracy with a slightly worse performance than the best 

performing J48 classifier (natural solution). 
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The average for Kappa statistic value is ‘0.601’ that shows a substantial agreement. 

The weighted average precision value is ‘0.642’. The weighted average sensitivity 

(recall) value is ‘0.757’ that means the success of classifiers in identifying true positive 

instances is ‘75.7%’. Similarly, the weighted average specificity value is ‘0.855’ 

showing the algorithm achieved ‘85.5%’ success in identifying true negative 

instances. Among experimented J48 classifiers, the highest weighted average AUROC 

value is obtained from this algorithm as ‘0.889’. 

Table 5.36. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

ECC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

ECC 

            
Accuracy(%) 75.61 76.83 75.61 76.83 74.39 74.39 76.83 78.05 73.17 75.61 75.73 
Kappa 0.596 0.623 0.604 0.613 0.580 0.583 0.615 0.631 0.566 0.597 0.601 
Precision 0.615 0.704 0.687 0.618 0.620 0.656 0.625 0.620 0.654 0.622 0.642 
Recall 0.756 0.768 0.756 0.768 0.744 0.744 0.768 0.780 0.732 0.756 0.757 
Specificity 0.847 0.867 0.865 0.849 0.852 0.855 0.856 0.851 0.854 0.851 0.855 
AUROC 0.893 0.894 0.884 0.888 0.889 0.875 0.924 0.869 0.873 0.904 0.889 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 6 84 0 30 
Cost Comp. Only 17 353 2 8 
Time Comp. Only 1 0 0 49 
Cost & Time Comp. 1 0 7 262 

 

In the light of classification results from J48 classifiers for potential compensation 

prediction, performances of various J48 algorithms are very similar. There is no single 

J48 classifier that outperforms others in majority of the performance measures. 

Therefore, the primary evaluation criterion, which is the average classification 

accuracy, is used to determine the best J48 classifier. According to this, it can be said 

that the best performing J48 classifier is obtained from the one with no decomposition 

technique (natural solution). It achieved ‘76.95%’ average prediction accuracy for 

potential compensation prediction. However, this classifier is outperformed by the 

Naïve Bayes OVA and the multiclass kNN algorithms. 
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5.3.1.9. Results from the J48 Algorithm for Resolution Method Selection 

In the first experiment, 10-fold cross-validation results with 10 repeats obtained from 

using the multiclass J48 algorithm (natural solution) are given in Table 5.37. 

According to these results, multiclass J48 classifiers have an average multiclass 

classification accuracy of ‘80.37%’ with lower and upper bounds (77.78% - 82.96%) 

within 95% CI. In other words, the J48 algorithm predicts the resolution method to be 

used in construction disputes with an average success rate of ‘80.37%’. 

Table 5.37. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm 

without Using Decomposition Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

 

No 

Decomp. 

            
Accuracy(%) 81.48 83.33 85.19 72.22 83.33 81.48 79.63 79.63 79.63 77.78 80.37 
Kappa 0.767 0.791 0.814 0.652 0.791 0.767 0.744 0.744 0.744 0.721 0.753 
Precision 0.830 0.850 0.866 0.751 0.850 0.830 0.810 0.811 0.812 0.791 0.820 
Recall 0.815 0.833 0.852 0.722 0.833 0.815 0.796 0.796 0.796 0.778 0.804 
Specificity 0.960 0.963 0.965 0.940 0.963 0.960 0.951 0.957 0.956 0.954 0.957 
AUROC 0.937 0.945 0.944 0.886 0.955 0.946 0.947 0.947 0.924 0.941 0.937 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 58 14 18 0 0 0 
Arbitration 11 49 0 0 0 0 
DRB 10 0 40 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 89 11 
Negotiation 0 0 0 0 42 148 

 

The average for Kappa statistic value is ‘0.753’ that shows a substantial agreement. 

The weighted average precision value is ‘0.820’. The weighted average sensitivity 

(recall) value is ‘0.804’ that means the success of classifiers in identifying true positive 

instances is ‘80.4%’. The weighted average specificity value is ‘0.957’ showing the 

algorithm achieved ‘95.7%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.937’. 

In the second experiment with the J48 algorithm, the OVO technique with pairwise 

coupling is utilized. According to 10-fold cross-validation results with 10 repeats 
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(Table 5.38), J48 classifiers using OVO technique have an average classification 

accuracy of ‘82.41%’ with lower and upper bounds (80.51% - 84.31%) within 95% 

CI. In other words, the J48 OVO algorithm predicts the resolution method to be used 

in construction disputes with an average success rate of ‘82.41%’. 

Table 5.38. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

OVO Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 79.63 87.04 81.48 79.63 81.48 79.63 85.19 85.19 83.33 81.48 82.41 
Kappa 0.737 0.834 0.765 0.741 0.765 0.741 0.813 0.813 0.786 0.765 0.776 
Precision 0.805 0.868 0.829 0.806 0.821 0.814 0.869 0.860 0.831 0.822 0.833 
Recall 0.796 0.870 0.815 0.796 0.815 0.796 0.852 0.852 0.833 0.815 0.824 
Specificity 0.926 0.947 0.950 0.940 0.945 0.946 0.963 0.957 0.935 0.943 0.945 
AUROC 0.941 0.932 0.954 0.933 0.948 0.945 0.968 0.962 0.955 0.952 0.949 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 81 9 0 0 0 0 
Arbitration 13 47 0 0 0 0 
DRB 6 0 44 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 70 30 
Negotiation 0 0 0 0 37 153 

 

The average for Kappa value is ‘0.776’ that shows a substantial agreement. The 

weighted average precision value is ‘0.833’. The weighted average sensitivity (recall) 

value is ‘0.824’ that means the success of classifiers in identifying true positive 

instances is ‘82.4%’. The weighted average specificity value is ‘0.945’ showing the 

algorithm achieved ‘94.5%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.949’. 

In the third experiment with the J48 algorithm, the OVA technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.39), J48 

classifiers using OVA technique have an average classification accuracy of ‘80.56%’ 

with lower and upper bounds (78.87% - 82.24%) within 95 CI. In other words, the J48 
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OVA algorithm predicts the resolution method to be used in construction disputes with 

an average success rate of ‘80.56%’. 

The average for Kappa statistic value is ‘0.754’ that shows a substantial agreement. 

The weighted average precision value is ‘0.834’. The weighted average sensitivity 

(recall) value is ‘0.806’ that means the success of classifiers in identifying true positive 

instances is ‘80.6%’. Similarly, the weighted average specificity value is ‘0.952’ 

showing the algorithm achieved ‘95.2%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.929’. 

Table 5.39. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

OVA Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

OVA 

            
Accuracy(%) 79.63 79.63 83.33 81.48 81.48 85.19 79.63 77.78 77.78 79.63 80.56 
Kappa 0.743 0.741 0.789 0.768 0.765 0.813 0.742 0.719 0.718 0.743 0.754 
Precision 0.820 0.844 0.860 0.852 0.829 0.873 0.821 0.813 0.798 0.826 0.834 
Recall 0.796 0.796 0.833 0.815 0.815 0.852 0.796 0.778 0.778 0.796 0.806 
Specificity 0.954 0.946 0.954 0.958 0.946 0.965 0.948 0.950 0.944 0.956 0.952 
AUROC 0.941 0.926 0.913 0.916 0.939 0.941 0.928 0.928 0.928 0.932 0.929 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 71 19 0 0 0 0 
Arbitration 1 57 2 0 0 0 
DRB 6 0 23 0 26 1 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 85 15 
Negotiation 0 0 7 0 34 149 

 

In the fourth experiment with the J48 algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.40), J48 

classifiers using RCC technique have an average classification accuracy of ‘85.00%’ 

with lower and upper bounds (83.41% - 86.59%) within 95% CI. In other words, the 

J48 random correction code classifier predicts the resolution method to be used in 

construction disputes with an average success rate of ‘85.00%’. 
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The average for Kappa statistic value is ‘0.811’ that shows a perfect agreement. The 

weighted average precision value is ‘0.869’. The weighted average sensitivity (recall) 

value is ‘0.850’ that means the success of classifiers in identifying true positive 

instances is ‘85.0%’. Similarly, the weighted average specificity value is ‘0.963’ 

showing the algorithm achieved ‘96.3’ success in identifying true negative instances. 

The weighted average AUROC value is ‘0.940’. 

Table 5.40. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

RCC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

RCC 

            
Accuracy(%) 85.19 87.04 87.04 85.19 85.19 85.19 85.19 87.04 83.33 79.63 85.00 
Kappa 0.813 0.836 0.836 0.814 0.813 0.813 0.814 0.836 0.791 0.744 0.811 
Precision 0.872 0.886 0.886 0.866 0.870 0.876 0.872 0.896 0.851 0.819 0.869 
Recall 0.852 0.870 0.870 0.852 0.852 0.852 0.852 0.870 0.833 0.796 0.850 
Specificity 0.966 0.961 0.961 0.965 0.959 0.967 0.965 0.967 0.963 0.957 0.963 
AUROC 0.940 0.943 0.943 0.938 0.936 0.960 0.914 0.949 0.946 0.927 0.940 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 71 9 8 0 0 2 
Arbitration 1 59 0 0 0 0 
DRB 3 0 42 1 4 0 
Mediation 0 0 1 48 0 1 
SEA 0 2 0 0 88 10 
Negotiation 0 0 0 0 39 151 

 

In the final experiment with the J48 algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.41), J48 

classifiers using ECC technique have an average classification accuracy of ‘86.48%’ 

with lower and upper bounds (85.08% - 87.88%) within 95% CI. In other words, J48 

ECC algorithm predicts the resolution method to be used in construction disputes with 

an average success rate of ‘86.48%’ that makes it the best J48 classifier in terms of 

classification accuracy for resolution method selection. 

Among all experimented J48 classifiers, the highest average for Kappa statistic value 

is obtained from this algorithm as ‘0.830’ that shows a perfect agreement. The highest 
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weighted average precision value is also obtained from this algorithm as ‘0.879’. 

Similarly, the highest weighted average sensitivity (recall) value (‘0.879’) and the 

highest weighted average specificity value (‘0.865’) is obtained from J48 ECC 

algorithm. In other words, the algorithm achieved ‘87.9%’ success in identifying true 

positive instances and ‘86.5%’ success in identifying true negative instances. The 

highest weighted average AUROC value is also obtained from the J48 ECC algorithm 

as ‘0.964’, which is almost an ideal AUROC value. 

Table 5.41. 10-Times 10-Fold Cross-Validation Results of the J48 Algorithm Using 

ECC Technique for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

J48 

ECC 

            
Accuracy(%) 85.19 85.19 90.74 88.89 85.19 85.19 85.19 87.04 85.19 87.04 86.48 
Kappa 0.814 0.814 0.883 0.860 0.814 0.814 0.814 0.837 0.814 0.837 0.830 
Precision 0.866 0.866 0.921 0.905 0.866 0.866 0.866 0.884 0.869 0.884 0.879 
Recall 0.852 0.852 0.907 0.889 0.852 0.852 0.852 0.870 0.852 0.870 0.865 
Specificity 0.965 0.965 0.973 0.971 0.965 0.965 0.965 0.968 0.966 0.968 0.967 
AUROC 0.956 0.956 0.969 0.968 0.965 0.967 0.966 0.955 0.972 0.961 0.964 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 75 6 9 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 8 0 42 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 90 10 
Negotiation 0 0 0 0 40 150 

 

In the light of results from J48 classifiers for resolution method selection, the J48 ECC 

algorithm outperformed others in every performance measure. Thus, it is the best 

performing J48 classifier achieving ‘86.48%’ average prediction accuracy. In 

addition, the J48 ECC algorithm outperformed the Naïve Bayes ECC and kNN ECC 

algorithms in terms of prediction accuracy for resolution method selection. Finally, 

the J48 ECC algorithm is perfect in predicting arbitration and mediation cases and 

relatively powerful in predicting litigation, DRB, and SEA cases. 
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5.3.1.10. The MLP and its Configuration in WEKA 

The MLP algorithm can naturally solve multiclass classification problems of potential 

compensation prediction and resolution method selection. The configuration of the 

MLP algorithm in WEKA for binary classification can be used exactly the same way 

to obtain multiclass solutions. In addition to this, both problems can be solved by 

decomposing them into several binary problems using the class 

‘weka.classifiers.meta.MultiClassClassifier’. Similar to the binary classification with 

MLP algorithm, best results are obtained from using ‘a’ hidden layers. For potential 

compensation prediction, ‘a’ corresponds to ‘7’ ((9 attributes + 4 classes) / 2 = 6.5 ≈ 

7). For resolution method selection, ‘a’ corresponds to ‘7’ ((7 attributes + 6 classes) / 

2 = 6.5 ≈ 7). Configuration details for the MLP algorithm using decomposition 

techniques in WEKA can be seen in Figure 5.22. 

 

 

Figure 5.22. The Multiclass MLP Classifier Configuration in WEKA 

To select the MLP algorithm, the ‘classifier’ setting should be set to MLP with the 

configuration used in binary classification task (‘CVParameterSelection’ with ‘a’ 
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hidden layers) (Figure 5.8 and Figure 5.9). The ‘method’ setting allows the user to 

select the decomposition technique. Default values in WEKA are used for remaining 

settings. 

5.3.1.11. Results from the MLP for Potential Compensation Prediction 

10-fold cross-validation results with 10 repeats obtained from using the MLP 

algorithm without any decomposition technique are given in Table 5.42. According to 

these results, MLP classifiers with no decomposition techniques have an average 

multiclass classification accuracy of ‘66.95%’ with lower and upper bounds (64.50% 

- 69.40%) within 95% CI. In other words, the MLP multiclass algorithm predicts the 

potential compensation type that can be acquired in a dispute with an average success 

rate of ‘66.95%’. 

The average for Kappa statistic value is ‘0.491’ that shows a moderate agreement. The 

weighted average precision value is ‘0.657’. The weighted average sensitivity (recall) 

value is ‘0.670’ that means the success of classifiers in identifying true positive 

instances is ‘67.0%’. Similarly, the weighted average specificity value is ‘0.858’ 

showing the algorithm achieved ‘85.8%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.824’. 

Table 5.42. 10-Times 10-Fold Cross-Validation Results of MLP Algorithm without 

Using Decomposition Techniques for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

 

No 

Decomp. 

            
Accuracy(%) 74.39 65.85 67.07 64.63 64.63 68.29 68.29 64.63 69.51 62.20 66.95 
Kappa 0.607 0.484 0.494 0.454 0.442 0.509 0.506 0.454 0.531 0.429 0.491 
Precision 0.740 0.671 0.676 0.620 0.592 0.657 0.659 0.632 0.684 0.637 0.657 
Recall 0.744 0.659 0.671 0.646 0.646 0.683 0.683 0.646 0.695 0.622 0.670 
Specificity 0.891 0.875 0.858 0.845 0.830 0.861 0.852 0.840 0.873 0.853 0.858 
AUROC 0.860 0.815 0.853 0.844 0.816 0.829 0.797 0.810 0.799 0.815 0.824 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 16 67 10 27 
Cost Comp. Only 72 297 6 5 
Time Comp. Only 3 1 10 36 
Cost & Time Comp. 5 9 30 226 
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In the second experiment with the MLP algorithm, the OVO technique is used with 

pairwise coupling. According to 10-fold cross-validation results with 10 repeats 

(Table 5.43), MLP OVO classifiers with pairwise coupling have an average multiclass 

classification accuracy of ‘68.54%’ with lower and upper bounds (67.01% - 70.06%) 

within 95% CI. In other words, the MLP OVO algorithm predicts the potential 

compensation type that can be acquired in a dispute with an average success rate of 

‘68.54%’. 

The average for Kappa statistic value is ‘0.512’ that shows a moderate agreement. The 

weighted average precision value is ‘0.658’. The weighted average sensitivity (recall) 

value is ‘0.686’ that means the success of classifiers in identifying true positive 

instances is ‘68.6%’. The weighted average specificity value is ‘0.859’ showing the 

algorithm achieved ‘85.9%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.837’. 

Table 5.43. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 71.95 69.51 67.07 65.85 69.51 67.07 68.29 71.95 67.07 67.07 68.54 
Kappa 0.561 0.523 0.491 0.481 0.517 0.497 0.503 0.567 0.487 0.494 0.512 
Precision 0.687 0.656 0.648 0.660 0.632 0.668 0.639 0.703 0.630 0.653 0.658 
Recall 0.720 0.695 0.671 0.659 0.695 0.671 0.683 0.720 0.671 0.671 0.686 
Specificity 0.869 0.858 0.857 0.860 0.848 0.860 0.855 0.878 0.851 0.858 0.859 
AUROC 0.829 0.855 0.871 0.843 0.846 0.821 0.817 0.853 0.826 0.811 0.837 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 13 77 7 23 
Cost Comp. Only 76 295 5 4 
Time Comp. Only 0 0 9 41 
Cost & Time Comp. 0 0 25 245 

 

In the third experiment with the MLP algorithm, the OVA technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.44), MLP 

classifiers using OVA technique have an average classification accuracy of ‘68.63%’ 
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with lower and upper bounds (67.03% - 70.23%) within 95% CI. In other words, the 

MLP OVA algorithm predicts the potential compensation type that can be acquired in 

a dispute with an average success rate of ‘68.63%’ that makes it the best performing 

MLP algorithm for potential compensation prediction. 

Among all experimented MLP algorithms, the highest average Kappa statistic value 

(‘0.512’) and the highest weighted average precision value (‘0.666’) is obtained from 

the MLP OVA algorithm. In addition, the highest weighted average sensitivity (recall) 

value (‘0.686’) and the highest weighted average specificity value (‘0.864’) are also 

obtained from this algorithm compared to other MLP classifiers. In other words, this 

algorithm achieved ‘68.6%’ success in identifying true positive instances and ‘86.4%’ 

success in identifying true negative instances. The weighted average AUROC value 

is ‘0.842’. 

Table 5.44. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using OVA Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

OVA 

            
Accuracy(%) 71.95 68.29 73.17 68.29 67.07 67.97 67.07 68.29 68.29 65.85 68.63 
Kappa 0.564 0.511 0.576 0.504 0.489 0.489 0.502 0.511 0.503 0.479 0.512 
Precision 0.725 0.666 0.699 0.637 0.643 0.646 0.681 0.670 0.638 0.655 0.666 
Recall 0.720 0.683 0.732 0.683 0.671 0.671 0.671 0.683 0.683 0.659 0.686 
Specificity 0.879 0.868 0.868 0.853 0.861 0.851 0.881 0.863 0.857 0.861 0.864 
AUROC 0.850 0.853 0.862 0.835 0.833 0.820 0.833 0.855 0.833 0.850 0.842 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 20 65 8 27 
Cost Comp. Only 65 303 9 3 
Time Comp. Only 3 2 2 43 
Cost & Time Comp. 3 3 27 237 

 

In the fourth experiment with the MLP algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.45), MLP 

classifiers using RCC technique have an average classification accuracy of ‘68.02%’ 

with lower and upper bounds (66.16% - 69.88%) within 95% CI. In other words, the 
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MLP RCC classifier algorithm predicts the potential compensation type that can be 

acquired in a dispute with an average success rate of ‘68.02%’. 

The average for Kappa statistic value is ‘0.503’ that shows a moderate agreement. The 

weighted average precision value is ‘0.648’. The weighted average sensitivity (recall) 

value is ‘0.681’ that means the success of classifiers in identifying true positive 

instances is ‘68.1%’. The weighted average specificity value is ‘0.860’ showing the 

algorithm achieved ‘86.0%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.832’. 

Table 5.45. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using RCC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

RCC 

            
Accuracy(%) 69.51 67.07 67.07 71.95 64.34 63.41 69.51 69.51 68.29 69.51 68.02 
Kappa 0.521 0.492 0.502 0.565 0.446 0.433 0.529 0.518 0.497 0.523 0.503 
Precision 0.637 0.655 0.671 0.697 0.610 0.606 0.677 0.641 0.622 0.662 0.648 
Recall 0.695 0.671 0.671 0.720 0.646 0.634 0.695 0.695 0.683 0.695 0.681 
Specificity 0.868 0.862 0.879 0.874 0.834 0.844 0.874 0.857 0.842 0.863 0.860 
AUROC 0.819 0.794 0.851 0.866 0.821 0.843 0.814 0.842 0.825 0.844 0.832 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 12 69 12 27 
Cost Comp. Only 61 304 10 5 
Time Comp. Only 4 2 2 42 
Cost & Time Comp. 5 3 22 240 

 

In the final experiment with the MLP algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.46), MLP 

classifiers using ECC technique have an average classification accuracy of ‘68.48%’ 

with lower and upper bounds (66.81% - 70.15%) within 95% CI. In other words, the 

MLP ECC algorithm predicts the potential compensation type that can be acquired in 

a dispute with an average success rate of ‘68.48%’.  

The average for Kappa statistic value is ‘0.505’ that shows a moderate agreement. The 

weighted average precision value is ‘0.637’. The weighted average sensitivity (recall) 
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value is ‘0.684’ that means the success of classifiers in identifying true positive 

instances is ‘68.4%’. The weighted average specificity value is ‘0.853’ showing the 

algorithm achieved ‘85.3%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.866’, which is the highest AUROC value 

among experimented MLP algorithms. 

Table 5.46. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using ECC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

ECC 

            
Accuracy(%) 69.51 73.17 69.51 68.29 65.85 68.29 69.51 67.07 68.93 64.63 68.48 
Kappa 0.514 0.577 0.514 0.504 0.465 0.501 0.526 0.493 0.504 0.449 0.505 
Precision 0.619 0.686 0.613 0.637 0.617 0.636 0.666 0.655 0.634 0.603 0.637 
Recall 0.695 0.732 0.695 0.683 0.659 0.683 0.695 0.671 0.683 0.646 0.684 
Specificity 0.848 0.870 0.848 0.853 0.838 0.852 0.867 0.862 0.851 0.841 0.853 
AUROC 0.873 0.892 0.887 0.862 0.855 0.861 0.860 0.857 0.857 0.857 0.866 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 10 77 6 27 
Cost Comp. Only 71 301 5 3 
Time Comp. Only 2 2 1 45 
Cost & Time Comp. 0 1 20 249 

 

Considering results from MLP experiments, it can be seen that the MLP OVA 

algorithm outperformed others in every performance measure except the AUROC 

value for potential compensation prediction. Moreover, the MLP OVA algorithm has 

the second best AUROC value with a slightly worse performance behind the MLP 

ECC algorithm. Thus, it can be said that the best performing MLP classifier is obtained 

from the OVA technique that achieved ‘68.63%’ average prediction accuracy for 

potential compensation prediction. However, considering previous experiments, the 

performance of the MLP algorithm in multiclass classification of potential 

compensation types is relatively low compared to Naïve Bayes, kNN, and J48 

algorithms. 
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5.3.1.12. Results from the MLP for Resolution Method Selection 

10-fold cross-validation results with 10 repeats obtained from using the MLP 

algorithm without any decomposition technique are given in Table 5.47. According to 

these results, the MLP multiclass algorithm has an average multiclass classification 

accuracy of ‘83.15%’ with lower and upper bounds (81.04% - 85.26%) within 95% 

CI. In other words, the MLP multiclass algorithm predicts the resolution method to be 

used in construction projects with an average success rate of ‘83.15%’. 

The average for Kappa statistic value is ‘0.788’ that shows a substantial agreement. 

The weighted average precision value is ‘0.851’. The weighted average sensitivity 

(recall) value is ‘0.831’ that means the success of classifiers in identifying true positive 

instances is ‘83.1%’. Similarly, the weighted average specificity value is ‘0.951’ 

showing the algorithm achieved ‘95.1%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.958’. 

Table 5.47. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

without Using Decomposition Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

 

No 

Decomp. 

            
Accuracy(%) 87.04 83.33 77.78 81.48 85.19 83.33 79.63 83.33 87.04 83.33 83.15 
Kappa 0.836 0.791 0.721 0.766 0.813 0.791 0.744 0.789 0.836 0.790 0.788 
Precision 0.881 0.857 0.800 0.839 0.869 0.858 0.827 0.846 0.881 0.848 0.851 
Recall 0.870 0.833 0.778 0.815 0.852 0.833 0.796 0.833 0.870 0.833 0.831 
Specificity 0.961 0.954 0.934 0.944 0.958 0.952 0.940 0.948 0.961 0.953 0.951 
AUROC 0.965 0.959 0.942 0.963 0.964 0.957 0.957 0.960 0.964 0.950 0.958 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 75 15 0 0 0 0 
Arbitration 2 58 0 0 0 0 
DRB 0 0 50 0 0 0 
Mediation 0 0 0 48 0 2 
SEA 0 0 0 0 78 22 
Negotiation 0 0 0 0 50 140 

 

In the second experiment with the MLP algorithm, the OVO technique with pairwise 

coupling is utilized. According to 10-fold cross-validation results with 10 repeats 
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(Table 5.48), the MLP algorithm using OVO technique with pairwise coupling has an 

average classification accuracy of ‘81.30%’ with lower and upper bounds (79.71% - 

82.88%) within 95% CI. In other words, the MLP OVO algorithm predicts the 

resolution method to be used in construction disputes with an average success rate of 

‘81.30%’. 

The average for Kappa statistic value is ‘0.766’ that shows a substantial agreement. 

The weighted average precision value is ‘0.844’. The weighted average sensitivity 

(recall) value is ‘0.813’ that means the success of classifiers in identifying true positive 

instances is ‘81.3%’. The weighted average specificity value is ‘0.947’ showing the 

algorithm achieved ‘94.7%’ success in identifying true negative instances. Among 

experimented MLP algorithms for resolution method selection, the highest weighted 

average AUROC value is obtained from this algorithm as ‘0.963’, which is almost an 

ideal AUROC value. 

Table 5.48. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using OVO Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 81.48 79.63 79.63 79.63 85.19 79.63 81.48 79.63 85.19 81.48 81.30 
Kappa 0.769 0.747 0.745 0.743 0.814 0.746 0.768 0.746 0.814 0.767 0.766 
Precision 0.847 0.837 0.821 0.826 0.869 0.836 0.846 0.836 0.869 0.851 0.844 
Recall 0.815 0.796 0.796 0.796 0.852 0.796 0.815 0.796 0.852 0.815 0.813 
Specificity 0.948 0.944 0.938 0.938 0.957 0.946 0.950 0.946 0.957 0.948 0.947 
AUROC 0.958 0.967 0.949 0.967 0.968 0.962 0.964 0.960 0.970 0.960 0.963 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 77 13 0 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 48 0 2 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 78 22 
Negotiation 0 0 0 0 64 126 

 

In the third experiment with the MLP algorithm, the OVA technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.49), the MLP 
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algorithm using OVA technique has an average classification accuracy of ‘82.04%’ 

with lower and upper bounds (80.06% - 84.02%) within 95% CI. In other words, the 

MLP OVA algorithm predicts the resolution method to be used in construction 

projects with an average success rate of ‘82.04%’. 

The average for Kappa statistic value is ‘0.774’ that shows a substantial agreement. 

The weighted average precision value is ‘0.842’. The weighted average sensitivity 

(recall) value is ‘0.820’ that means the success of classifiers in identifying true positive 

instances is ‘82.0%’. The weighted average specificity value is ‘0.951’ showing the 

algorithm achieved ‘95.1%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.961’. 

Table 5.49. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using OVA Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

OVA 

            
Accuracy(%) 85.19 81.48 75.93 81.48 83.33 83.33 79.63 81.48 83.33 85.19 82.04 
Kappa 0.813 0.768 0.699 0.768 0.791 0.790 0.744 0.766 0.790 0.813 0.774 
Precision 0.866 0.846 0.794 0.837 0.853 0.854 0.817 0.831 0.854 0.870 0.842 
Recall 0.852 0.815 0.759 0.815 0.833 0.833 0.796 0.815 0.833 0.852 0.820 
Specificity 0.959 0.950 0.934 0.955 0.955 0.957 0.942 0.946 0.957 0.959 0.951 
AUROC 0.970 0.962 0.952 0.964 0.965 0.960 0.951 0.968 0.963 0.959 0.961 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 65 17 8 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 50 0 0 0 
Mediation 0 0 0 47 0 3 
SEA 0 0 0 0 80 20 
Negotiation 0 0 0 2 47 141 

 

In the fourth experiment with the MLP algorithm, the RCC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.50), the MLP 

algorithm using RCC technique has an average classification accuracy of ‘80.74%’ 

with lower and upper bounds (77.87% - 83.62%). In other words, the MLP RCC 



 

 
 

291 
 

algorithm predicts the resolution method to be used in construction projects with an 

average success rate of ‘80.74%’. 

The average for Kappa statistic value is ‘0.757’ that shows a substantial agreement. 

The weighted average precision value is ‘0.826’. The weighted average sensitivity 

(recall) value is ‘0.807’ that means the success of classifiers in identifying true positive 

instances is ‘80.7%’. The weighted average specificity value is ‘0.948’ showing the 

algorithm achieved ‘94.8%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.917’. 

Table 5.50. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using RCC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

RCC 

            
Accuracy(%) 85.19 83.33 74.07 85.19 79.63 81.48 74.07 79.63 81.48 83.33 80.74 
Kappa 0.814 0.791 0.672 0.812 0.744 0.766 0.669 0.743 0.770 0.789 0.757 
Precision 0.866 0.843 0.773 0.862 0.821 0.823 0.748 0.821 0.851 0.851 0.826 
Recall 0.852 0.833 0.741 0.852 0.796 0.815 0.741 0.796 0.815 0.833 0.807 
Specificity 0.961 0.963 0.922 0.959 0.940 0.953 0.925 0.945 0.960 0.955 0.948 
AUROC 0.924 0.911 0.899 0.933 0.909 0.922 0.889 0.928 0.949 0.908 0.917 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 68 15 4 0 2 1 
Arbitration 1 53 0 0 5 1 
DRB 1 1 46 0 1 1 
Mediation 1 0 0 47 0 2 
SEA 3 1 0 0 77 19 
Negotiation 1 0 7 0 37 145 

 

In the final experiment with the MLP algorithm, the ECC technique is utilized. 

According to 10-fold cross-validation results with 10 repeats (Table 5.51), the MLP 

algorithm using ECC technique has an average classification accuracy of ‘83.33%’ 

with lower and upper bounds (80.54% - 86.13%) within 95% CI. In other words, the 

MLP ECC algorithm predicts the resolution method to be used in construction projects 

with an average success rate of ‘83.33%’ that makes it the most successful one among 

the MLP classifiers for resolution method selection.  
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Among all MLP classifiers, the highest average for Kappa statistic value (‘0.790’) and 

the highest weighted average precision value (‘0.857’) is obtained from the MLP ECC 

algorithm. Similarly, the highest weighted average sensitivity (recall) value (‘0.833’) 

and the highest specificity value (‘0.953’) are also obtained from this algorithm. In 

other words, the MLP ECC algorithm achieved ‘83.3%’ accuracy in identifying true 

positive instances and ‘95.3%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.948’. 

Table 5.51. 10-Times 10-Fold Cross-Validation Results of the MLP Algorithm 

Using ECC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

MLP 

ECC 

            
Accuracy(%) 83.33 83.33 75.93 85.19 83.33 85.19 77.78 87.04 83.33 88.89 83.33 
Kappa 0.791 0.791 0.697 0.813 0.791 0.813 0.719 0.836 0.791 0.860 0.790 
Precision 0.857 0.857 0.792 0.874 0.857 0.869 0.822 0.883 0.857 0.905 0.857 
Recall 0.833 0.833 0.759 0.852 0.833 0.852 0.778 0.870 0.833 0.889 0.833 
Specificity 0.954 0.954 0.926 0.958 0.954 0.958 0.938 0.963 0.954 0.971 0.953 
AUROC 0.952 0.949 0.938 0.956 0.951 0.951 0.942 0.950 0.954 0.939 0.948 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 70 20 0 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 49 0 1 0 
Mediation 0 0 0 47 0 3 
SEA 0 0 0 0 81 19 
Negotiation 0 0 0 0 47 143 

 

Considering results from MLP experiments, it can be seen that the MLP ECC 

algorithm outperformed other MLP classifiers in every performance measure except 

the AUROC value for resolution method selection. Thus, it can be said that the best 

performing MLP classifier is obtained from the ECC technique that achieved 

‘83.33%’ average classification accuracy. In addition, MLP ECC algorithm is superior 

to kNN algorithms experimented previously for resolution method selection. 

However, the performance of the MLP ECC algorithm in multiclass classification of 

resolution method selection is outperformed by the J48 ECC and Naïve Bayes ECC 

algorithms.  
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5.3.1.13. The Polynomial Kernel SVM and its Configuration in WEKA 

The SVM algorithm cannot naturally solve multiclass classification problems of 

potential compensation prediction and resolution method selection. Therefore, both 

multiclass classification problems must be solved by decomposing them into several 

binary problems using the class ‘weka.classifiers.meta.MultiClassClassifier’. 

Configuration details for the polynomial kernel SVM algorithm using decomposition 

techniques in WEKA can be seen in Figure 5.23. 

 

 

Figure 5.23. The Multiclass Polynomial Kernel SVM Classifier Configuration in 

WEKA 

To select the polynomial kernel SVM algorithm, the ‘classifier’ setting should be set 

to SMO with polynomial kernel function using the configuration in binary 

classification task (‘GridSearch’) (Figure 5.10 and Figure 5.11). The ‘method’ setting 

allows the user to select the decomposition technique. The SMO algorithm is tested 



 

 
 

294 
 

using all the available methods, which are OVO, OVA, RCC, and ECC. Default values 

in WEKA are used for remaining settings. 

5.3.1.14. Results from the Polynomial Kernel SVM for Potential Compensation 

Prediction 

As mentioned earlier, the SVM algorithm is not capable of solving multiclass 

classification problems without decomposing them into binary classification 

problems. Thus, there will be no natural multiclass solution for the polynomial kernel 

SVM algorithm. Instead, the OVO technique with pairwise coupling will be utilized 

in the first experiment with the polynomial kernel SVM. According to 10-fold cross-

validation results with 10 repeats (Table 5.52), polynomial kernel SVM classifiers 

using OVO technique with pairwise coupling have an average classification accuracy 

of ‘73.54%’ with lower and upper bounds (71.24% - 75.83%) within 95% CI. In other 

words, the polynomial kernel SVM OVO algorithm predicts the potential 

compensation type that can be acquired in a dispute with an average success rate of 

‘73.54%’. 

Table 5.52. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 76.83 73.17 79.27 74.39 74.39 67.07 73.17 73.17 71.95 71.95 73.54 
Kappa 0.623 0.576 0.674 0.584 0.595 0.478 0.569 0.563 0.552 0.556 0.577 
Precision 0.690 0.680 0.762 0.649 0.693 0.614 0.657 0.618 0.657 0.671 0.669 
Recall 0.768 0.732 0.793 0.744 0.744 0.671 0.732 0.732 0.720 0.720 0.736 
Specificity 0.866 0.864 0.902 0.854 0.879 0.843 0.862 0.849 0.855 0.866 0.864 
AUROC 0.865 0.867 0.899 0.853 0.853 0.801 0.845 0.851 0.844 0.823 0.850 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 20 72 0 28 
Cost Comp. Only 41 329 6 4 
Time Comp. Only 3 2 0 45 
Cost & Time Comp. 8 0 8 254 
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The average for Kappa statistic value is ‘0.577’ that shows a moderate agreement. 

Among polynomial kernel SVM classifiers, the highest weighted average precision 

value is obtained from this algorithm as ‘0.669’. The weighted average sensitivity 

(recall) value is ‘0.736’ that means the success of classifiers in identifying true positive 

instances is ‘73.6%’. The highest weighted average specificity value is also obtained 

from this algorithm as ‘0.864’ showing the algorithm achieved ‘86.4%’ success in 

identifying true negative instances. In addition, the weighted average AUROC value 

is ‘0.850’, which is the highest AUROC value among polynomial kernel SVM 

classifiers for potential compensation prediction. 

In the second experiment with the polynomial kernel SVM algorithm, the OVA 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.53), polynomial kernel SVM classifiers using OVA technique have an 

average classification accuracy of ‘72.20%’ with lower and upper bounds (70.91% - 

73.48%) within 95% CI. In other words, the polynomial kernel SVM OVA classifier 

predicts the potential compensation type that can be acquired in a dispute with an 

average success rate of ‘72.20%’. 

Table 5.53. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using OVA Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

OVA 

            
Accuracy(%) 70.73 74.39 70.73 70.73 70.73 70.73 71.95 75.61 73.17 73.17 72.20 
Kappa 0.518 0.581 0.516 0.518 0.518 0.529 0.533 0.601 0.563 0.564 0.544 
Precision 0.597 0.638 0.617 0.623 0.628 0.635 0.641 0.665 0.664 0.671 0.638 
Recall 0.707 0.744 0.707 0.707 0.707 0.707 0.720 0.756 0.732 0.732 0.722 
Specificity 0.823 0.847 0.813 0.819 0.813 0.845 0.812 0.856 0.840 0.845 0.831 
AUROC 0.802 0.826 0.806 0.812 0.817 0.805 0.813 0.829 0.819 0.822 0.815 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 10 84 0 26 
Cost Comp. Only 27 343 8 2 
Time Comp. Only 0 7 1 42 
Cost & Time Comp. 6 22 4 238 
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The average for Kappa statistic value is ‘0.544’ that shows a moderate agreement. The 

weighted average precision value is ‘0.638’. The weighted average sensitivity (recall) 

value is ‘0.722’ that means the success of classifiers in identifying true positive 

instances is ‘72.2%’. The weighted average specificity value is ‘0.831’ showing the 

algorithm achieved ‘83.1%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.815’. 

In the third experiment with the polynomial kernel SVM algorithm, the RCC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.54), polynomial kernel SVM classifiers using RCC technique have an 

average classification accuracy of ‘72.44%’ with lower and upper bounds (71.42% - 

73.46%). In other words, the polynomial kernel SVM RCC algorithm predicts the 

potential compensation type that can be acquired in a dispute with an average success 

rate of ‘72.44%’. 

Table 5.54. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using RCC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

RCC 

            
Accuracy(%) 73.17 73.17 70.73 74.39 71.95 69.51 73.17 71.95 73.17 73.17 72.44 
Kappa 0.560 0.565 0.529 0.583 0.530 0.507 0.561 0.546 0.565 0.568 0.551 
Precision 0.611 0.626 0.636 0.656 0.593 0.622 0.644 0.616 0.665 0.663 0.633 
Recall 0.732 0.732 0.707 0.744 0.720 0.695 0.732 0.720 0.732 0.732 0.725 
Specificity 0.843 0.855 0.850 0.855 0.815 0.831 0.840 0.850 0.855 0.852 0.845 
AUROC 0.800 0.782 0.767 0.833 0.816 0.803 0.790 0.803 0.813 0.814 0.802 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 7 83 3 27 
Cost Comp. Only 25 341 5 9 
Time Comp. Only 1 3 0 46 
Cost & Time Comp. 8 7 9 246 

 

The average for Kappa statistic value is ‘0.551’ that shows a moderate agreement. The 

weighted average precision value is ‘0.633’. The weighted average sensitivity (recall) 

value is ‘0.725’ that means the success of classifiers in identifying true positive 
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instances is ‘72.5%’. Similarly, the weighted average specificity value is ‘0.845’ 

showing the algorithm achieved ‘84.5%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.802’. 

In the final experiment with the polynomial kernel SVM algorithm, the ECC technique 

is utilized. According to 10-fold cross-validation results with 10 repeats (Table 5.55), 

polynomial kernel SVM classifiers using ECC technique have an average 

classification accuracy of ‘74.39%’ with lower and upper bounds (72.97% - 75.81%) 

within 95% CI. In other words, the polynomial kernel SVM ECC algorithm predicts 

the potential compensation type that can be acquired in a dispute with an average 

success rate of ‘74.39%’ that makes it the best polynomial kernel SVM algorithm in 

terms of classification accuracy for potential compensation prediction. 

Table 5.55. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using ECC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

ECC 

            
Accuracy(%) 74.39 73.17 74.39 74.39 74.39 70.73 74.39 73.17 78.05 76.83 74.39 
Kappa 0.578 0.571 0.581 0.582 0.580 0.529 0.584 0.569 0.641 0.623 0.584 
Precision 0.614 0.677 0.649 0.655 0.647 0.635 0.662 0.653 0.706 0.700 0.660 
Recall 0.744 0.732 0.744 0.744 0.744 0.707 0.744 0.732 0.780 0.768 0.744 
Specificity 0.845 0.857 0.854 0.850 0.849 0.845 0.855 0.861 0.868 0.862 0.855 
AUROC 0.797 0.837 0.836 0.849 0.809 0.830 0.830 0.816 0.832 0.818 0.825 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 12 81 0 27 
Cost Comp. Only 30 340 3 7 
Time Comp. Only 1 1 1 47 
Cost & Time Comp. 7 2 4 257 

 

Among all experimented polynomial kernel SVM classifiers, the highest average 

value for Kappa statistic is obtained from this algorithm as ‘0.584’ that shows a 

moderate agreement. The weighted average precision value is ‘0.660’. The highest 

weighted average sensitivity (recall) value is also obtained from this algorithm as 

‘0.744’ that means the success of classifiers in identifying true positive instances is 
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‘74.4%’. The weighted average specificity value is ‘0.855’ showing the algorithm 

achieved ‘85.5%’ success in identifying true negative instances. The weighted average 

AUROC value is ‘0.825’. 

In the light of results from polynomial kernel SVM classifiers for potential 

compensation prediction, it can be seen that performances are very similar. There is 

no single polynomial kernel SVM classifier that outperforms others in majority of the 

performance measures. Therefore, the primary evaluation criterion, which is the 

average classification accuracy, is used to determine the best polynomial kernel SVM 

classifier. According to this, it can be said that the best performing polynomial kernel 

SVM classifier is obtained from using ECC technique. Polynomial kernel SVM ECC 

algorithm achieved ‘74.39%’ average prediction accuracy for potential compensation 

prediction. However, this classifier is outperformed by the Naïve Bayes OVA, 

multiclass kNN, and multiclass J48 algorithms. 

5.3.1.15. Results from the Polynomial Kernel SVM for Resolution Method 

Selection 

In the first experiment with the polynomial kernel SVM algorithm, the OVO technique 

with pairwise coupling is utilized. According to 10-fold cross-validation results with 

10 repeats (Table 5.56), polynomial kernel SVM classifiers using OVO technique with 

pairwise coupling have an average classification accuracy of ‘78.15%’ with lower and 

upper bounds (76.10% - 80.20%) within 95% CI. In other words, the polynomial 

kernel SVM OVO algorithm predicts the resolution method to be used in construction 

projects with an average success rate of ‘78.15%’. 

The average for Kappa statistic value is ‘0.716’ that shows a substantial agreement. 

The weighted average precision value is ‘0.796’. The weighted average sensitivity 

(recall) value is ‘0.781’ that means the success of classifiers in identifying true positive 

instances is ‘78.1%’. Similarly, the weighted average specificity value is ‘0.913’ 

showing the algorithm achieved ‘91.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.912’. 
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Table 5.56. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using OVO Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 75.93 79.63 83.33 79.63 74.07 77.78 79.63 74.07 77.78 79.63 78.15 
Kappa 0.684 0.737 0.785 0.738 0.660 0.709 0.734 0.666 0.710 0.736 0.716 
Precision 0.772 0.813 0.838 0.803 0.762 0.787 0.820 0.769 0.777 0.814 0.796 
Recall 0.759 0.796 0.833 0.796 0.741 0.778 0.796 0.741 0.778 0.796 0.781 
Specificity 0.900 0.926 0.933 0.925 0.896 0.903 0.920 0.900 0.903 0.921 0.913 
AUROC 0.903 0.924 0.909 0.918 0.883 0.900 0.939 0.893 0.904 0.943 0.912 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 89 1 0 0 0 0 
Arbitration 7 53 0 0 0 0 
DRB 8 0 33 0 4 5 
Mediation 0 0 0 41 0 9 
SEA 0 0 0 0 48 52 
Negotiation 0 0 0 0 32 158 

 

In the second experiment with the polynomial kernel SVM algorithm, the OVA 

technique is utilized. According to the 10-fold cross-validation results with 10 repeats 

(Table 5.57), polynomial kernel SVM classifiers using OVA technique have an 

average classification accuracy of ‘75.19%’ with lower and upper bounds (72.92% - 

77.45%) within 95% CI. In other words, the polynomial kernel SVM OVA algorithm 

predicts the resolution method to be used in construction projects with an average 

success rate of ‘75.19%’. 

The average for Kappa statistic value is ‘0.672’ that shows a substantial agreement. 

The weighted average precision value is ‘0.784’. The weighted average sensitivity 

(recall) value is ‘0.752’ that means the success of classifiers in identifying true positive 

instances is ‘75.2%’. Similarly, the weighted average specificity value is ‘0.888’ 

showing the algorithm achieved ‘88.8%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.896’. 
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Table 5.57. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using OVA Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

OVA 

            
Accuracy(%) 79.63 77.78 72.22 77.78 75.93 68.52 74.07 75.93 75.93 74.07 75.19 
Kappa 0.734 0.704 0.635 0.706 0.686 0.580 0.656 0.681 0.680 0.656 0.672 
Precision 0.819 0.816 0.749 0.810 0.774 0.728 0.777 0.793 0.797 0.772 0.784 
Recall 0.796 0.778 0.722 0.778 0.759 0.685 0.741 0.759 0.759 0.741 0.752 
Specificity 0.909 0.892 0.879 0.899 0.901 0.861 0.885 0.887 0.889 0.877 0.888 
AUROC 0.906 0.910 0.871 0.919 0.897 0.854 0.884 0.889 0.916 0.916 0.896 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 56 6 0 0 0 28 
Arbitration 3 55 0 0 0 2 
DRB 6 0 30 0 0 14 
Mediation 0 0 0 47 0 3 
SEA 0 0 0 0 49 51 
Negotiation 0 0 0 0 21 169 

 

In the third experiment with the polynomial kernel SVM algorithm, the RCC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.58), polynomial kernel SVM classifier using RCC technique have an average 

classification accuracy of ‘74.63%’ with lower and upper bounds (71.38% - 77.88%). 

In other words, the polynomial kernel SVM RCC algorithm predicts the resolution 

method to be used in construction projects with an average success rate of ‘74.63%’.  

The average for Kappa statistic value is ‘0.681’ that shows a substantial agreement. 

The weighted average precision value is ‘0.764’. The weighted average sensitivity 

(recall) value is ‘0.746’ that means the success of classifiers in identifying true positive 

instances is ‘74.6%’. Similarly, the weighted average specificity value is ‘0.933’ 

showing the algorithm achieved ‘93.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.904’. 
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Table 5.58. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using RCC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

RCC 

            
Accuracy(%) 77.78 77.78 68.52 81.48 74.07 72.22 66.67 75.93 74.07 77.78 74.63 
Kappa 0.717 0.721 0.605 0.766 0.676 0.650 0.580 0.698 0.679 0.716 0.681 
Precision 0.789 0.794 0.709 0.832 0.757 0.751 0.678 0.775 0.773 0.779 0.764 
Recall 0.778 0.778 0.685 0.815 0.741 0.722 0.667 0.759 0.741 0.778 0.746 
Specificity 0.924 0.943 0.918 0.947 0.933 0.929 0.919 0.935 0.952 0.932 0.933 
AUROC 0.894 0.884 0.900 0.922 0.897 0.893 0.874 0.927 0.936 0.908 0.904 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 70 14 3 1 1 1 
Arbitration 1 59 0 0 0 0 
DRB 5 1 39 2 1 2 
Mediation 4 0 3 39 0 4 
SEA 5 3 2 3 60 27 
Negotiation 2 7 4 4 37 136 

 

In the final experiment with the polynomial kernel SVM algorithm, the ECC technique 

is utilized. According to 10-fold cross-validation results with 10 repeats (Table 5.59), 

polynomial kernel SVM classifiers using ECC technique have an average 

classification accuracy of ‘82.04%’ with lower and upper bounds (79.17% - 84.90%). 

In other words, the polynomial kernel SVM ECC algorithm predicts the resolution 

method to be used in construction projects with an average success rate of ‘82.04%’ 

that makes it the best performing polynomial kernel SVM algorithm for resolution 

method selection in terms of accuracy. 

Among all experimented polynomial kernel SVM algorithms, the highest average for 

Kappa statistic value (‘0.773’), the highest weighted average precision value (‘0.839’), 

the highest weighted average sensitivity (recall) value (‘0.820’), the highest weighted 

average specificity value (‘0.944’), and the highest AUROC value (‘0.945’) is 

obtained from this algorithm. Thus, the polynomial kernel SVM ECC algorithm 

achieved ‘82.0%’ success in identifying true positive instances and ‘94.4%’ success 

in identifying true negative instances.  
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Table 5.59. 10-Times 10-Fold Cross-Validation Results of the Poly. Kernel SVM 

Algorithm Using ECC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Poly. 

Kernel 

SVM 

ECC 

            
Accuracy(%) 83.33 77.78 74.07 85.19 85.19 77.78 85.19 83.33 83.33 85.19 82.04 
Kappa 0.790 0.721 0.672 0.813 0.814 0.715 0.814 0.790 0.791 0.812 0.773 
Precision 0.845 0.815 0.769 0.872 0.869 0.786 0.869 0.845 0.858 0.858 0.839 
Recall 0.833 0.778 0.741 0.852 0.852 0.778 0.852 0.833 0.833 0.852 0.820 
Specificity 0.946 0.934 0.916 0.957 0.957 0.919 0.957 0.946 0.952 0.951 0.944 
AUROC 0.950 0.943 0.927 0.951 0.955 0.938 0.946 0.943 0.955 0.944 0.945 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 79 11 0 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 47 0 2 1 
Mediation 0 0 0 48 0 2 
SEA 0 0 0 0 72 28 
Negotiation 0 0 1 0 52 137 

 

Considering results from the polynomial kernel SVM algorithm, it can be said that the 

best performing polynomial kernel SVM classifier is obtained from the ECC 

technique that achieved ‘82.04%’ average prediction accuracy for resolution method 

selection. In addition, the polynomial kernel SVM ECC algorithm is superior to others 

in all performance measures. However, considering previous algorithms, polynomial 

kernel SVM is outperformed by the Naïve Bayes ECC, J48 ECC, and MLP ECC 

algorithms.  

5.3.1.16. The RBF Kernel SVM and its Configuration in WEKA 

As mentioned earlier, the SVM algorithm cannot naturally solve multiclass 

classification problems of potential compensation prediction and resolution method 

selection. Therefore, both multiclass classification problems should be solved by 

decomposing them into several binary problems using the class 

‘weka.classifiers.meta.MultiClassClassifier’. Configuration details for the Gaussian 

RBF kernel SVM algorithm using decomposition techniques in WEKA can be seen in 

Figure 5.24. 
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Figure 5.24. The Multiclass Gaussian RBF Kernel SVM Classifier Configuration  

To select the Gaussian RBF kernel SVM algorithm, the ‘classifier’ setting should be 

set to LibSVM with Gaussian RBF kernel function using the configuration in binary 

classification task (‘GridSearch’) (Figure 5.12 and Figure 5.13). The ‘method’ setting 

allows the user to select the decomposition technique. The LibSVM algorithm is tested 

using all available methods, which are OVO, OVA, RCC, and ECC. Default values in 

WEKA are used for remaining settings. 

5.3.1.17. Results from the Gaussian RBF Kernel SVM for Potential 

Compensation Prediction 

In the first experiment with the Gaussian RBF kernel SVM algorithm, the OVO 

technique with pairwise coupling is utilized. According to 10-fold cross-validation 

results with 10 repeats (Table 5.60), Gaussian RBF kernel SVM classifiers using OVO 

technique with pairwise coupling have an average classification accuracy of ‘73.05%’ 

with lower and upper bounds (71.28% - 74.82%) within 95% CI. In other words, the 
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Gaussian RBF kernel SVM OVO classifier predicts the potential compensation type 

that can be acquired in a dispute with an average success rate of ‘73.05%’. 

Among all experimented RBF kernel SVM algorithms, the highest average for Kappa 

statistic value (‘0.568’) and the highest weighted average precision value (‘0.659’) is 

obtained from this algorithm. The weighted average sensitivity (recall) value is ‘0.731’ 

that means the success of classifiers in identifying true positive instances is ‘73.1%’. 

The highest weighted average specificity value is also obtained from this algorithm as 

‘0.859’ showing the algorithm achieved ‘85.9%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.849’, which is the highest among 

RBF kernel SVM algorithms experimented for potential compensation prediction. 

Table 5.60. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using OVO Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 74.39 73.17 78.05 71.95 73.17 68.29 71.95 74.39 71.95 73.17 73.05 
Kappa 0.584 0.572 0.653 0.550 0.571 0.496 0.550 0.582 0.555 0.566 0.568 
Precision 0.649 0.662 0.748 0.636 0.662 0.624 0.647 0.649 0.659 0.654 0.659 
Recall 0.744 0.732 0.780 0.720 0.732 0.683 0.720 0.744 0.720 0.732 0.731 
Specificity 0.854 0.860 0.896 0.849 0.860 0.844 0.856 0.854 0.859 0.854 0.859 
AUROC 0.848 0.858 0.892 0.825 0.851 0.807 0.852 0.869 0.847 0.841 0.849 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 17 73 0 30 
Cost Comp. Only 45 325 1 9 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 6 0 7 257 

 

In the second experiment with the Gaussian RBF kernel SVM algorithm, the OVA 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.61), Gaussian RBF kernel SVM classifiers using OVA technique have an 

average classification accuracy of ‘71.55%’ with lower and upper bounds (69.63% - 

73.47%) within 95% CI. In other words, the Gaussian RBF kernel SVM OVA 
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algorithm predicts the potential compensation type that can be acquired in a dispute 

with an average success rate of ‘71.55%’. 

The average for Kappa statistic value is ‘0.527’ that shows a moderate agreement. The 

weighted average precision value is ‘0.610’. The weighted average sensitivity (recall) 

value is ‘0.715’ that means the success of classifiers in identifying true positive 

instances is ‘71.5%’. Similarly, the weighted average specificity value is ‘0.817’ 

showing the algorithm achieved ‘81.7%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.813’. 

Table 5.61. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using OVA Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

OVA 

            
Accuracy(%) 71.95 74.39 71.95 69.51 70.73 68.29 71.95 76.83 67.97 71.95 71.55 
Kappa 0.543 0.579 0.526 0.497 0.509 0.480 0.532 0.609 0.454 0.543 0.527 
Precision 0.636 0.640 0.591 0.588 0.586 0.585 0.629 0.617 0.587 0.644 0.610 
Recall 0.720 0.744 0.720 0.695 0.707 0.683 0.720 0.768 0.671 0.720 0.715 
Specificity 0.838 0.842 0.799 0.812 0.800 0.810 0.810 0.840 0.786 0.834 0.817 
AUROC 0.795 0.815 0.838 0.805 0.810 0.804 0.811 0.827 0.800 0.822 0.813 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 3 91 0 26 
Cost Comp. Only 25 347 2 6 
Time Comp. Only 0 13 2 35 
Cost & Time Comp. 6 25 5 234 

 

In the third experiment with the Gaussian RBF kernel SVM algorithm, the RCC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.62), Gaussian RBF kernel SVM classifiers using RCC technique have an 

average classification accuracy of ‘72.44%’ with lower and upper bounds (71.26% - 

73.62%). In other words, the Gaussian RBF kernel SVM RCC algorithm predicts the 

potential compensation type that can be acquired in a dispute with an average success 

rate of ‘72.44%’. 
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The average for Kappa statistic value is ‘0.552’ that shows a moderate agreement. The 

weighted average precision value is ‘0.641’. The weighted average sensitivity (recall) 

value is ‘0.725’ that means the success of classifiers in identifying true positive 

instances is ‘72.5%’. Similarly, the weighted average specificity value is ‘0.847’ 

showing the algorithm achieved ‘84.7%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.805’. 

Table 5.62. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using RCC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

RCC 

            
Accuracy(%) 73.17 74.39 70.73 73.17 69.51 71.95 73.17 70.73 73.17 74.39 72.44 
Kappa 0.559 0.579 0.532 0.566 0.499 0.541 0.563 0.530 0.570 0.584 0.552 
Precision 0.610 0.620 0.642 0.649 0.596 0.627 0.652 0.615 0.696 0.706 0.641 
Recall 0.732 0.744 0.707 0.732 0.695 0.720 0.732 0.707 0.732 0.744 0.725 
Specificity 0.843 0.847 0.858 0.857 0.816 0.832 0.845 0.854 0.865 0.849 0.847 
AUROC 0.808 0.791 0.766 0.826 0.817 0.797 0.796 0.814 0.820 0.816 0.805 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 7 81 3 29 
Cost Comp. Only 25 342 4 9 
Time Comp. Only 1 5 1 43 
Cost & Time Comp. 11 5 10 244 

 

In the final experiment with the Gaussian RBF kernel SVM algorithm, the ECC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.63), Gaussian RBF kernel SVM classifiers using ECC technique have an 

average classification accuracy of ‘73.41%’ with lower and upper bounds (72.34% - 

74.49%) within 95% CI. In other words, the Gaussian RBF kernel SVM ECC 

algorithm predicts the potential compensation type that can be acquired in a dispute 

with an average success rate of ‘73.41%’ that makes it the best one among 

experimented Gaussian RBF kernel algorithms in terms of accuracy for potential 

compensation prediction.  
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The average Kappa statistic value is ‘0.564’ that shows a moderate agreement. The 

weighted average precision value is ‘0.626’. Among all experimented RBF kernel 

SVM algorithms, the highest weighted average sensitivity (recall) value is obtained 

from this algorithm as ‘0.733’ that means the success of classifiers in identifying true 

positive instances is ‘73.3%’. The weighted average specificity value is ‘0.845’ 

showing the algorithm achieved ‘84.5%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.827’.  

Table 5.63. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using ECC Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

ECC 

            
Accuracy(%) 73.17 74.39 73.17 73.17 70.73 71.95 75.61 73.17 75.61 73.17 73.41 
Kappa 0.560 0.578 0.560 0.564 0.520 0.543 0.599 0.565 0.600 0.557 0.564 
Precision 0.611 0.614 0.611 0.645 0.598 0.609 0.657 0.642 0.659 0.610 0.626 
Recall 0.732 0.733 0.732 0.732 0.707 0.720 0.756 0.732 0.756 0.732 0.733 
Specificity 0.843 0.845 0.843 0.848 0.830 0.841 0.851 0.851 0.856 0.838 0.845 
AUROC 0.813 0.850 0.843 0.817 0.816 0.822 0.827 0.834 0.823 0.829 0.827 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 4 87 0 29 
Cost Comp. Only 30 341 0 9 
Time Comp. Only 1 0 0 49 
Cost & Time Comp. 9 3 1 257 

 

Considering that performances of Gaussian RBF kernel SVM algorithms are close to 

each other, the primary evaluation criterion (classification accuracy) will be used for 

determining the best RBF kernel SVM classifier for potential compensation 

prediction. Thus, it can be said that the best performing Gaussian RBF kernel SVM 

classifier is obtained from the ECC technique that achieved ‘73.41%’ average 

prediction accuracy. However, considering previous algorithms, Gaussian RBF kernel 

SVM is outperformed by the Naïve Bayes OVA, multiclass kNN, multiclass J48, and 

polynomial kernel SVM ECC algorithms.  
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5.3.1.18. Results from the Gaussian RBF Kernel SVM for Resolution Method 

Selection 

In the first experiment with the Gaussian RBF kernel SVM algorithm, the OVO 

technique with pairwise coupling is utilized. According to 10-fold cross-validation 

results with 10 repeats (Table 5.64), Gaussian RBF kernel SVM classifiers using OVO 

technique with pairwise coupling have an average classification accuracy of ‘78.33%’ 

with lower and upper bounds (74.43% - 82.24%) within 95% CI. In other words, the 

Gaussian RBF kernel SVM OVO algorithm predicts the resolution method to be used 

in construction projects with an average success rate of ‘78.33%’. 

The average for Kappa statistic value is ‘0.720’ that shows a substantial agreement. 

The weighted average precision value is ‘0.798’. The weighted average sensivity 

(recall) value is ‘0.783’ that means the success of classifiers in identifying true positive 

instances is ‘78.3%’. Similarly, the weighted average specificity value is ‘0.917’ 

showing the algorithm achieved ‘91.7%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.918’. 

Table 5.64. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using OVO Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

OVO 

 

Pairwise 

Coupling 

            
Accuracy(%) 77.78 81.48 74.07 83.33 66.67 79.63 85.19 74.07 81.48 79.63 78.33 
Kappa 0.711 0.761 0.674 0.785 0.561 0.733 0.810 0.663 0.760 0.739 0.720 
Precision 0.785 0.817 0.790 0.834 0.701 0.813 0.866 0.746 0.822 0.804 0.798 
Recall 0.778 0.815 0.741 0.833 0.667 0.796 0.852 0.741 0.815 0.796 0.783 
Specificity 0.903 0.929 0.925 0.933 0.874 0.907 0.949 0.896 0.923 0.926 0.917 
AUROC 0.910 0.925 0.901 0.933 0.878 0.933 0.955 0.899 0.926 0.919 0.918 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 88 2 0 0 0 0 
Arbitration 7 53 0 0 0 0 
DRB 1 0 37 0 8 4 
Mediation 0 0 0 44 0 6 
SEA 0 0 0 0 50 50 
Negotiation 0 0 0 0 39 151 
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In the second experiment with the Gaussian RBF kernel SVM algorithm, the OVA 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.65), Gaussian RBF kernel SVM classifiers using OVA technique have an 

average classification accuracy of ‘74.07%’ with lower and upper bounds (71.66% - 

76.49%) within 95% CI. In other words, the Gaussian RBF kernel SVM OVA 

algorithm predicts the resolution method to be used in construction projects with an 

average success rate of ‘74.07%’. 

The average for Kappa statistic value is ‘0.659’ that shows a substantial agreement. 

The weighted average precision value is ‘0.784’. The weighted average sensitivity 

(recall) value is ‘0.741’ that means the success of classifiers in identifying true positive 

instances is ‘74.1%’. The weighted average specificity value is ‘0.884’ showing the 

algorithm achieved ‘88.4%’ success in identifying true negative instances. The 

weighted average AUROC value is ‘0.878’. 

Table 5.65. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using OVA Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

OVA 

            
Accuracy(%) 72.22 72.22 72.22 75.93 74.07 66.67 77.78 75.93 77.78 75.93 74.07 
Kappa 0.636 0.627 0.634 0.680 0.662 0.560 0.710 0.687 0.705 0.687 0.659 
Precision 0.761 0.786 0.769 0.809 0.770 0.719 0.811 0.794 0.828 0.794 0.784 
Recall 0.722 0.722 0.722 0.759 0.741 0.667 0.778 0.759 0.778 0.759 0.741 
Specificity 0.880 0.861 0.873 0.881 0.890 0.856 0.905 0.900 0.893 0.900 0.884 
AUROC 0.866 0.870 0.870 0.892 0.884 0.851 0.883 0.880 0.908 0.880 0.878 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 50 7 0 0 0 33 
Arbitration 0 60 0 0 0 0 
DRB 0 0 34 0 0 16 
Mediation 0 0 0 45 0 5 
SEA 0 0 0 0 54 46 
Negotiation 0 0 0 0 33 157 

 

In the third experiment with the Gaussian RBF kernel SVM algorithm, the RCC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 
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(Table 5.66), Gaussian RBF kernel SVM classifiers using RCC technique have an 

average classification accuracy of ‘75.37%’ with lower and upper bounds (77.54% - 

73.20%) within 95% CI. In other words, the Gaussian RBF kernel SVM RCC 

algorithm predicts the resolution method to be used in construction projects with an 

average success rate of ‘75.37%’. 

The average for Kappa statistic value is ‘0.690’ that shows a substantial agreement. 

The weighted average precision value is ‘0.767’. The weighted average sensitivity 

(recall) value is ‘0.754’ that means the success of classifiers in identifying true positive 

instances is ‘75.4%’. Similarly, the weighted average specificity value is ‘0.933’ 

showing the algorithm achieved ‘93.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.897’. 

Table 5.66. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using RCC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

RCC 

            
Accuracy(%) 79.63 77.78 72.22 75.93 77.78 70.37 72.22 77.78 74.07 75.93 75.37 
Kappa 0.744 0.720 0.650 0.694 0.720 0.633 0.646 0.721 0.675 0.694 0.690 
Precision 0.820 0.782 0.736 0.767 0.796 0.725 0.728 0.801 0.763 0.753 0.767 
Recall 0.796 0.778 0.722 0.759 0.778 0.704 0.722 0.778 0.741 0.759 0.754 
Specificity 0.940 0.937 0.924 0.930 0.935 0.931 0.927 0.940 0.940 0.930 0.933 
AUROC 0.896 0.878 0.900 0.883 0.900 0.907 0.868 0.901 0.927 0.905 0.897 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 69 16 3 1 1 0 
Arbitration 0 60 0 0 0 0 
DRB 4 1 41 0 3 1 
Mediation 3 0 2 39 0 6 
SEA 1 4 2 4 62 27 
Negotiation 5 2 4 3 40 136 

 

In the final experiment with the Gaussian RBF kernel SVM algorithm, the ECC 

technique is utilized. According to 10-fold cross-validation results with 10 repeats 

(Table 5.67), Gaussian RBF kernel SVM classifiers using ECC technique have an 

average classification accuracy of ‘80.93%’ with lower and upper bounds (79.84% - 
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82.02%). In other words, the Gaussian RBF kernel SVM ECC algorithm predicts the 

resolution method to be used in construction projects with an average success rate of 

‘80.93%’ that makes it the best one among Gaussian RBF kernel classifiers. 

Among all experimented Gaussian RBF kernel SVM algorithms, the highest average 

Kappa statistic value (‘0.760’), the highest weighted average precision value (‘0.833’), 

the highest weighted average sensitivity (recall) value (‘0.809’), the highest weighted 

average specificity value (‘0.943’), and the highest weighted average AUROC value 

(‘0.944’) is obtained from this algorithm.  

Table 5.67. 10-Times 10-Fold Cross-Validation Results of the RBF Kernel SVM 

Algorithm Using ECC Techniques for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

RBF 

Kernel 

SVM 

ECC 

            
Accuracy(%) 81.48 81.48 79.63 77.78 81.48 81.48 81.48 79.63 83.33 81.48 80.93 
Kappa 0.768 0.767 0.742 0.719 0.767 0.766 0.765 0.743 0.791 0.767 0.760 
Precision 0.826 0.851 0.816 0.794 0.851 0.833 0.843 0.826 0.857 0.836 0.833 
Recall 0.815 0.815 0.796 0.778 0.815 0.815 0.815 0.796 0.833 0.815 0.809 
Specificity 0.945 0.948 0.932 0.932 0.948 0.944 0.942 0.938 0.954 0.949 0.943 
AUROC 0.947 0.940 0.941 0.948 0.950 0.938 0.951 0.944 0.946 0.938 0.944 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 76 13 1 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 45 0 5 0 
Mediation 0 0 0 48 0 2 
SEA 1 0 0 0 73 26 
Negotiation 0 0 1 0 54 135 

 

Considering results from the Gaussian RBF kernel SVM algorithm, it can be said that 

the best performing Gaussian RBF kernel SVM classifier is obtained from the ECC 

technique that achieved ‘80.93%’ average prediction accuracy for resolution method 

selection. In addition, the Gaussian RBF kernel SVM ECC algorithm is superior to 

remaining Gaussian RBF kernel SVM classifiers in all other performance measures. 

However, it is outperformed by the Naïve Bayes ECC, J48 ECC, MLP ECC, and 

polynomial kernel SVM ECC algorithms. 
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5.3.2. Comparison of Results from Single Classifiers for Potential Compensation 

Prediction 

Table 5.68 shows the 10-times 10-fold cross-validation results of single classifiers 

with their best parameter settings. The best version of each algorithm is considered 

(results from the best decomposition technique). This table is used for comparing 

performances of single classifiers with each other.  

Table 5.68. Comparison of Single Classifiers for Potential Compensation Prediction 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 

Avg. 

Kappa 

Weigh. 

Avg. 

Precision 

Weigh 

Avg. 

Recall 

(TPR) 

Weight. 

Avg. 

Specificity 

Weigh. 

Avg. 

AUROC 

Rank 

Naïve Bayes 

OVA 
80.61 [80.11 – 81.10] 0.691 0.774 0.806 0.899 0.916 1 

KNN  
Multiclass 78.66 [77.05 – 80.26] 0.661 0.737 0.787 0.893 0.912 2 

J48  
Multiclass 76.95 [75.99 – 77.91] 0.616 0.632 0.769 0.852 0.811 3 

MLP 
OVA 68.63 [67.03 – 70.23] 0.512 0.666 0.686 0.864 0.842 6 

Poly. Kernel SVM 
ECC 74.39 [72.97 – 75.81] 0.584 0.660 0.744 0.855 0.825 4 

RBF Kernel SVM 
ECC 73.41 [72.34 – 74.49] 0.564 0.626 0.733 0.845 0.827 5 

 

The best average classification accuracy is obtained from the Naïve Bayes algorithm 

using OVA technique that achieved ‘80.61%’ average classification accuracy. It is 

followed by the multiclass kNN (no decomposition, natural solution) algorithm that 

achieved ‘78.66%’ average classification accuracy. The third place belongs to 

multiclass J48 classifiers with ‘76.95%’ average classification accuracy. The average 

classification accuracy of single classifiers within 95% CI can be seen in Figure 5.25.  

Besides the average accuracy measure, the Naïve Bayes OVA algorithm generated the 

best results in all performance measures. 
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Figure 5.25. Average Classification Accuracies of Single Classifiers within 95% CI 

for Potential Compensation Prediction 

In the light of these comparisons, it is observed that the Naïve Bayes OVA algorithm 

is superior to others in terms of average classification accuracy, average Kappa, 

weighted average precision, weighted average true positive rate (recall), weighted 

average specificity, and weighted average AUROC measures.  

5.3.3. Comparison of Results from Single Classifiers for Resolution Method 

Selection 

Table 5.69 shows the 10-times 10-fold cross-validation results of single classifiers 

with their best parameter settings. The best version of each algorithm is considered 

(results from the best decomposition technique). This table is used for comparing 

performances of single classifiers with each other.  
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Table 5.69. Comparison of Single Classifiers for Resolution Method Selection 

Algorithm 
Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 
Avg. 

Kappa 

Weigh. 

Avg. 

Precision 

Weigh 

Avg. 

Recall 

(TPR) 

Weigh. 

Avg. 

Specificity 

Weigh. 

Avg. 

AUROC 
Rank 

Naïve Bayes  
ECC 85.93 [84.50 – 87.35] 0.817 0.875 0.859 0.935 0.961 2 

KNN  
ECC 74.63 [72.46 – 76.80] 0.674 0.769 0.746 0.910 0.908 6 

J48  
ECC 86.48 [85.08 – 87.88] 0.830 0.879 0.865 0.967 0.964 1 

MLP 
ECC 83.33 [80.54 – 86.13] 0.790 0.857 0.833 0.953 0.948 3 

Poly. Kernel SVM 
ECC 82.04 [79.17 – 84.90] 0.773 0.839 0.820 0.944 0.945 4 

RBF Kernel SVM 
ECC 80.93 [79.84 – 82.02] 0.760 0.833 0.809 0.943 0.944 5 

 

The best average classification accuracy is obtained from the J48 algorithm using ECC 

technique that achieved ‘86.48%’ average classification accuracy. It is followed by 

the Naïve Bayes algorithm using ECC technique that achieved ‘85.93%’ average 

classification accuracy. The third place belongs to MLP classifiers using ECC 

technique with ‘83.33%’ average classification accuracy. The average classification 

accuracy of single classifiers within 95% CI can be seen in Figure 5.26.  

Besides the average accuracy measure, the J48 ECC algorithm generated the best 

results in all performance measures. 

In the light of these comparisons, it is observed that the Naïve Bayes OVA algorithm 

is superior to others in terms of average classification accuracy, average Kappa, 

weighted average precision, weighted average true positive rate (recall), weighted 

average specificity, and weighted average AUROC measures.  
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Figure 5.26. Average Classification Accuracies of Single Classifiers within 95% CI 

for Resolution Method Selection 

5.3.4. Multiclass Classification Using Ensemble ML Algorithms 

WEKA configuration details of each ensemble ML algorithm and obtained multiclass 

classification results are given in this section starting with the voting technique, which 

will be followed by the stacked generalization technique and the AdaBoost algorithm, 

in the given order. 

5.3.4.1. The Voting Technique and its Configuration in WEKA 

In this research, results of the top three base classifiers in terms of multiclass 

classification accuracy are considered during voting. For potential compensation 

prediction, these algorithms are (1) Naïve Bayes using OVA technique, (2) multiclass 

kNN, and (3) multiclass J48 algorithms. For resolution method selection, these 

algorithms are (1) J48 using ECC technique, (2) Naïve Bayes using ECC technique, 

and (3) MLP algorithm using ECC technique.  
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In order to define the mentioned algorithms, firstly, the voting technique is selected 

from the class ‘weka.classifiers.meta.Vote’ class; secondly, all three algorithms are 

selected one by one using the class ‘weka.classifiers.meta.MultiClassClassifier’ with 

their original configurations in their single versions. Figure 5.27 shows configuration 

details of the voting technique in WEKA workbench.  

Among various voting strategies in the literature, the majority voting and the average 

of probabilities techniques are experimented in this research. The voting strategy can 

be selected by adjusting the ‘combinationRule’ setting. Default values of WEKA are 

used for remaining settings.  

 

 

Figure 5.27. The Voting Technique Configuration in WEKA for Multiclass 

Classification Problems 

5.3.4.2. Results from Voting Technique for Potential Compensation Prediction 

10-fold cross-validation results with 10 repeats obtained from the majority voting 

technique are given in Table 5.70. Ensemble classifiers obtained from majority voting 

have an average classification accuracy of ‘80.61%’ with lower and upper bounds 

(79.57% - 81.65%) within 95% CI. In other words, ensemble classifiers predict the 
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potential compensation type that can be acquired in a dispute with an average success 

rate of ‘80.61%’.  

The average for Kappa statistic value is ‘0.688’ that shows a substantial agreement. 

The weighted average precision value is ‘0.755’. The weighted average sensitivity 

(recall) value is ‘0.806’ that means the algorithm achieved ‘80.6%’ success in 

identifying true positive instances. Similarly, the weighted average specificity value 

is ‘0.894’ showing the algorithm achieved ‘89.4%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.850’. 

Table 5.70. 10-Times 10-Fold Cross-Validation Results of Majority Voting 

Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Majority 

Voting 

            
Accuracy(%) 81.71 80.49 80.49 79.27 78.05 82.93 81.71 79.27 81.71 80.49 80.61 
Kappa 0.706 0.685 0.688 0.667 0.645 0.724 0.706 0.667 0.705 0.689 0.688 
Precision 0.767 0.750 0.765 0.735 0.714 0.786 0.767 0.748 0.764 0.753 0.755 
Recall 0.817 0.805 0.805 0.793 0.780 0.829 0.817 0.793 0.817 0.805 0.806 
Specificity 0.900 0.889 0.899 0.887 0.877 0.902 0.900 0.888 0.895 0.898 0.894 
AUROC 0.858 0.847 0.852 0.840 0.829 0.866 0.858 0.841 0.856 0.851 0.850 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 45 45 0 30 
Cost Comp. Only 22 348 0 10 
Time Comp. Only 0 1 0 49 
Cost & Time Comp. 0 0 2 268 

 

10-fold cross-validation results with 10 repeats obtained from average of probabilities 

voting technique are given in Table 5.71. Ensemble classifiers obtained from the 

average of probabilities voting technique have an average classification accuracy of 

‘77.07%’ with lower and upper bounds (75.72% - 78.42%) within 95% CI. In other 

words, ensemble classifiers predict the potential compensation type that can be 

acquired in a dispute with an average success rate of ‘77.07%’. 

The average for Kappa statistic value is ‘0.625’ that shows a substantial agreement. 

The weighted average precision value is ‘0.624’. The weighted average sensitivity 
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(recall) value is ‘0.771’ that means the algorithm achieved ‘77.1%’ success in 

identifying true positive instances. Similarly, the weighted average specificity value 

is ‘0.864’ showing the algorithm achieved ‘86.4%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.915’. 

Table 5.71. 10-Times 10-Fold Cross-Validation Results of Average of Probabilities 

Voting Technique for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Average 

of  

Prob. 

Voting 

            
Accuracy(%) 76.83 78.05 79.27 75.61 73.17 78.05 79.27 78.05 76.83 75.61 77.07 
Kappa 0.618 0.641 0.663 0.601 0.561 0.641 0.659 0.645 0.618 0.605 0.625 
Precision 0.673 0.706 0.752 0.659 0.611 0.706 0.732 0.728 0.673 0.687 0.693 
Recall 0.768 0.780 0.793 0.756 0.732 0.780 0.793 0.780 0.768 0.756 0.771 
Specificity 0.858 0.868 0.880 0.856 0.843 0.868 0.870 0.878 0.858 0.865 0.864 
AUROC 0.922 0.923 0.913 0.915 0.903 0.908 0.922 0.915 0.913 0.917 0.915 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 17 73 0 30 
Cost Comp. Only 22 348 0 10 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 0 0 3 267 

 

In the light of these results, it can be seen that majority voting technique performed 

better than the average of probabilities voting technique for potential compensation 

prediction. However, the average classification accuracy obtained from majority 

voting technique is same as the best single classifier, which is the Naïve Bayes OVA 

classifier. In addition, the single Naïve Bayes OVA algorithm has better performance 

in remaining measures compared to the ensemble classifier obtained from the majority 

voting technique.  

5.3.4.3. Results from the Voting Technique for Resolution Method Selection 

10-fold cross-validation results with 10 repeats obtained from the majority voting 

technique are given in Table 5.72. Ensemble classifiers obtained from majority voting 

have an average classification accuracy of ‘89.44%’ with lower and upper bounds 

(87.37% - 91.52%) within 95% CI. In other words, ensemble classifiers predict the 
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resolution method to be used in construction projects with an average success rate of 

‘89.44%’.  

The average for Kappa statistic value is ‘0.866’ that shows a perfect agreement. The 

weighted average precision value is ‘0.900’. The weighted average sensitivity (recall) 

value is ‘0.894’ that means the success of the algorithm in identifying true positive 

instances is ‘89.4%’. Similarly, the weighted average specificity value is ‘0.965’ 

showing the algorithm achieved ‘96.5%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.930’. 

Table 5.72. 10-Times 10-Fold Cross-Validation Results of Majority Voting 

Technique for Resolution Method Selection  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Majority 

Voting 

            
Accuracy(%) 90.74 88.89 83.33 88.89 90.74 90.74 87.04 90.74 88.89 94.44 89.44 
Kappa 0.882 0.859 0.788 0.859 0.882 0.882 0.834 0.882 0.859 0.930 0.866 
Precision 0.910 0.895 0.845 0.899 0.910 0.910 0.879 0.910 0.895 0.947 0.900 
Recall 0.907 0.889 0.833 0.889 0.907 0.907 0.870 0.907 0.889 0.944 0.894 
Specificity 0.969 0.965 0.939 0.965 0.969 0.969 0.957 0.970 0.965 0.982 0.965 
AUROC 0.938 0.927 0.886 0.927 0.938 0.938 0.914 0.938 0.927 0.963 0.930 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 81 6 3 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 50 0 0 0 
Mediation 0 0 0 47 0 3 
SEA 0 0 0 0 81 19 
Negotiation 0 0 0 0 26 164 

 

10-fold cross-validation results with 10 repeats obtained from average of probabilities 

voting technique are given in Table 5.73. Ensemble classifiers obtained from average 

of probabilities voting have an average classification accuracy of ‘88.33%’ with lower 

and upper bounds (87.24% - 89.42%) within 95% CI. In other words, ensemble 

classifiers predict the resolution method to be used in construction projects with an 

average success rate of ‘88.33%’.  
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The average for Kappa statistic value is ‘0.853’ that shows a perfect agreement. The 

weighted average precision value is ‘0.899’. The weighted average sensitivity (recall) 

value is ‘0.883’ that means the success of the algorithm in identifying true positive 

instances is ‘88.3%’. Similarly, the weighted average specificity value is ‘0.970’ 

showing the algorithm achieved ‘97.0%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.969’. 

Table 5.73. 10-Times 10-Fold Cross-Validation Results of Average of Probabilities 

Voting Technique for Resolution Method Selection  

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Average 

of 

Prob. 

Voting 

            
Accuracy(%) 88.89 87.04 85.19 88.89 88.89 90.74 87.04 88.89 88.89 88.89 88.33 
Kappa 0.860 0.837 0.814 0.859 0.860 0.883 0.837 0.860 0.860 0.860 0.853 
Precision 0.905 0.893 0.869 0.898 0.905 0.917 0.890 0.902 0.902 0.905 0.899 
Recall 0.889 0.870 0.852 0.889 0.889 0.907 0.870 0.889 0.889 0.889 0.883 
Specificity 0.973 0.968 0.957 0.967 0.973 0.975 0.971 0.973 0.973 0.971 0.970 
AUROC 0.971 0.965 0.964 0.968 0.970 0.972 0.969 0.970 0.973 0.971 0.969 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 72 15 3 0 0 0 
Arbitration 0 60 0 0 0 0 
DRB 0 0 50 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 88 12 
Negotiation 0 0 0 0 33 157 

 

In the light of these results, it can be observed that the majority voting technique 

performed better than the average of probabilities voting technique for resolution 

method selection. In addition, the average classification accuracy obtained from 

majority voting technique outperformed the single ML algorithms it contains. The 

ensemble classifier improved the average classification accuracy of MLP ECC 

classifiers by ‘+6.11%’, Naïve Bayes ECC classifiers by ‘+3.51%’, and J48 ECC 

classifiers by ‘+2.96%’. Thus, majority voting technique contributed to overall 

performance significantly.  
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5.3.4.4. The Stacked Generalization and its Configuration in WEKA 

In this thesis study, the top three single classifiers are combined with remaining 

experimented ML algorithms during stacking. For potential compensation prediction, 

the top three algorithms are (1) Naïve Bayes algorithm using OVO technique, (2) 

multiclass kNN algorithm, and (3) multiclass J48 algorithm. In stacking, same 

algorithms should not be stacked together. Therefore, each algorithm is combined with 

the remaining five algorithms so that ‘15’ ensemble classifiers are obtained for 

potential compensation prediction. For resolution method selection, the top three 

algorithms are (1) J48 algorithm using ECC technique, (2) Naïve Bayes algorithm 

using ECC technique, and (3) MLP algorithm using ECC technique. Similar to the 

potential compensation prediction, there will be ‘15’ stacked ensemble classifiers 

obtained for resolution method selection. 

In order to apply stacked generalization to multiclass classification problems of 

potential compensation prediction and resolution method selection, firstly, the stacked 

generalization class in Weka is selected as ‘weka.classifiers.meta.Stacking’. In 

stacked generalization, the primary algorithm, which is the base-learner, is defined in 

the ‘classifiers’ setting by selecting the relevant algorithm. The secondary algorithm, 

which is the meta-learner, is defined in the ‘metaClassifier’ setting by selecting the 

relevant algorithm. Figure 5.28 shows an example configuration of the ensemble 

algorithm obtained by combining the kNN algorithm as base-learner and the Naïve 

Bayes algorithm as meta-learner. While defining the kNN algorithm as the base-

learner, the ECC multiclass decomposition technique is used by selecting the 

‘weka.classifiers.meta.MultiClassClassifier’ class. Similarly, while defining the 

Naïve Bayes algorithm as the meta-learner, the ECC multiclass decomposition is used.  
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Figure 5.28. The Stacked Generalization Configuration in WEKA for Multiclass 

Classification Problems 

5.3.4.5. Results from Stacking Technique for Potential Compensation Prediction 

It was experienced in the binary data classification problem that not all stacked 

ensemble classifiers achieved better classification accuracies than the single ones they 

contain. A similar situation also exist for the multiclass classification problem of 

potential compensation prediction. For this purpose, the classification accuracy of the 

ensemble model is compared with accuracies of both of the single classifiers they 

contain.  

When the base-learner is the Naïve Bayes algorithm using OVA technique (best 

performing single Naïve Bayes algorithm for potential compensation prediction), none 

of the ensemble classifiers achieved better classification accuracy than single 

algorithms they contain. Therefore, classification results of ensemble models ‘Naïve 

Bayes OVA + multiclass kNN’, ‘Naïve Bayes OVA + multiclass J48’, ‘Naïve Bayes 

OVA + MLP OVA’, ‘Naïve Bayes OVA + Polynomial kernel SVM ECC’, and ‘Naïve 

Bayes OVA + Gaussian RBF kernel SVM ECC’ are not considered.  

Similarly, when the base learner is the multiclass kNN algorithm (best performing 

single kNN algorithm for potential compensation prediction), none of the ensemble 
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classifiers achieved better classification accuracy than single algorithms they contain. 

Therefore, classification results of ensemble models containing multiclass kNN 

algorithm as base-learner are not considered. 

When the base-learner is multiclass J48 algorithm (best performing single J48 

algorithm for potential compensation prediction), two of the ensemble models 

achieved better accuracies than single algorithms they contain. These are ‘multiclass 

J48 + MLP OVA’ and ‘multiclass J48 + Gaussian RBF kernel SVM ECC’. 

10-fold cross-validation results with 10 repeats obtained by combining the multiclass 

J48 and MLP OVA algorithms are given in Table 5.74. These ensemble classifiers 

have an average classification accuracy of ‘77.56%’ with lower and upper bounds 

(76.95% - 78.17%) within 95% CI. In other words, ensemble classifiers predict the 

potential compensation type that can be acquired in a dispute with an average success 

rate of ‘77.56%’. Thus, the stacked classifier enhanced the average classification 

accuracy of the base-learner (multiclass J48) by ‘0.61%’ and the meta-learner (MLP 

OVA) by ‘8.93%’. 

Table 5.74. 10-Times 10-Fold Cross-Validation Results of the ‘Multiclass J48 + 

MLP OVA’ Stacked Classifier for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Stacking 

 

Multi. 

J48 

+ 

MLP 

OVA 

            
Accuracy(%) 76.83 78.05 78.05 78.05 78.05 78.05 78.05 78.05 76.83 75.61 77.56 
Kappa 0.613 0.631 0.631 0.631 0.631 0.631 0.631 0.631 0.613 0.593 0.624 
Precision 0.618 0.620 0.620 0.620 0.620 0.620 0.620 0.620 0.613 0.603 0.617 
Recall 0.768 0.780 0.780 0.780 0.780 0.780 0.780 0.780 0.768 0.756 0.775 
Specificity 0.849 0.851 0.851 0.851 0.851 0.851 0.851 0.851 0.850 0.839 0.850 
AUROC 0.827 0.796 0.788 0.812 0.801 0.809 0.805 0.802 0.794 0.793 0.803 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 0 89 0 31 
Cost Comp. Only 1 366 0 13 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 0 0 0 270 
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The average for Kappa statistic value is ‘0.624’ that shows a substantial agreement. 

The weighted average precision value is ‘0.617’. The weighted average sensitivity 

(recall) value is ‘0.775’ that means the algorithm achieved ‘77.5%’ success in 

identifying true positive instances. Similarly, the weighted average specificity value 

is ‘0.850’ showing the algorithm achieved ‘85.0%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.803’. 

10-fold cross-validation results with 10 repeats obtained by combining the multiclass 

J48 and RBF kernel SVM ECC algorithms are given in Table 5.75. These ensemble 

classifiers have an average classification accuracy of ‘77.20%’ with lower and upper 

bounds (76.37% - 78.02%) within 95% CI. In other words, ensemble classifiers predict 

the potential compensation type that can be acquired in a dispute with an average 

success rate of ‘77.20%’. Thus, the stacked classifier enhanced the average 

classification accuracy of the base-learner (multiclass J48) by ‘0.25%’ and the meta-

learner (RBF kernel SVM ECC) by ‘3.79%’. 

Table 5.75. 10-Times 10-Fold Cross-Validation Results of the ‘Multiclass J48 + 

RBF Kernel SVM ECC’ Stacked Classifier for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Stacking 

Multi. 

J48 

+ 

RBF 

Kernel 

SVM 

ECC 

            
Accuracy(%) 75.61 78.05 78.05 75.61 78.05 75.61 78.05 78.05 76.83 78.05 77.20 
Kappa 0.595 0.631 0.631 0.595 0.631 0.594 0.631 0.631 0.613 0.631 0.619 
Precision 0.615 0.620 0.620 0.615 0.620 0.615 0.620 0.620 0.613 0.620 0.618 
Recall 0.756 0.780 0.780 0.756 0.780 0.756 0.780 0.780 0.768 0.780 0.772 
Specificity 0.847 0.851 0.851 0.850 0.851 0.848 0.851 0.851 0.850 0.851 0.850 
AUROC 0.803 0.812 0.814 0.806 0.810 0.808 0.820 0.811 0.813 0.806 0.810 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 0 89 0 31 
Cost Comp. Only 1 368 0 11 
Time Comp. Only 0 0 0 50 
Cost & Time Comp. 2 0 3 265 

 

The average for Kappa statistic value is ‘0.619’ that shows a substantial agreement. 

The weighted average precision value is ‘0.618’. The weighted average sensitivity 
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(recall) value is ‘0.772’ that means the algorithm achieved ‘77.2%’ success in 

identifying true positive instances. Similarly, the weighted average specificity value 

is ‘0.850’ showing the algorithm achieved ‘85.0%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.810’. 

5.3.4.6. Results from Stacking Technique for Resolution Method Selection 

It was experienced in previous problems that not all stacked ensemble classifiers 

achieved better classification accuracies than the single ones they contain. A similar 

situation also exist for the multiclass classification problem of resolution method 

selection. For this purpose, the classification accuracy of the ensemble model is 

compared with accuracies of both of the single classifiers they contain.  

When the base-learner is the Naïve Bayes algorithm using ECC technique (best 

performing single Naïve Bayes algorithm for resolution method selection), none of 

the ensemble classifiers achieved better classification accuracy than single algorithms 

they contain. Therefore, classification results of ensemble models ‘Naïve Bayes ECC 

+ kNN ECC’, ‘Naïve Bayes ECC + J48 ECC’, ‘Naïve Bayes ECC + MLP ECC, ‘Naïve 

Bayes ECC + Polynomial kernel SVM ECC’, and ‘Naïve Bayes ECC + Gaussian RBF 

kernel SVM ECC’ are not considered.  

Similarly, when the base learner is the MLP ECC algorithm (best performing single 

MLP algorithm for resolution method selection), none of the ensemble classifiers 

achieved better classification accuracy than single algorithms they contain. Therefore, 

classification results of ensemble models containing MLP ECC algorithm as base-

learner are not considered. 

When the base-learner is J48 ECC algorithm (best performing single J48 algorithm 

for resolution method selection), only one ensemble model achieved better accuracy 

than single algorithms they contain. This is ‘J48 ECC + Naïve Bayes ECC’ 

combination. 
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10-fold cross-validation results with 10 repeats obtained by combining the J48 ECC 

and Naïve Bayes ECC algorithms are given in Table 5.76. These ensemble classifiers 

have an average classification accuracy of ‘86.67%’ with lower and upper bounds 

(85.04% - 88.30%) within 95% CI. In other words, ensemble classifiers predict the 

resolution method to be used in construction projects with an average success rate of 

‘86.67%’. Thus, the stacked classifier enhanced the average classification accuracy of 

the base-learner (J48 ECC) by ‘0.19%’ and the meta-learner (Naïve Bayes ECC) by 

‘0.74%’. 

Table 5.76. 10-Times 10-Fold Cross-Validation Results of the ‘J48 ECC+ Naïve 

Bayes ECC’ Stacked Classifier for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

Stacking 

 

J48 

ECC 

+ 

Naïve 

Bayes 

ECC 

            
Accuracy(%) 85.19 87.04 88.89 83.33 88.89 85.19 87.04 88.89 88.89 83.33 86.67 
Kappa 0.813 0.836 0.860 0.791 0.860 0.813 0.837 0.860 0.860 0.789 0.832 
Precision 0.860 0.880 0.904 0.850 0.904 0.869 0.887 0.904 0.904 0.845 0.881 
Recall 0.852 0.870 0.889 0.833 0.889 0.852 0.870 0.889 0.889 0.833 0.867 
Specificity 0.957 0.959 0.969 0.953 0.969 0.964 0.967 0.969 0.969 0.954 0.963 
AUROC 0.965 0.950 0.967 0.961 0.958 0.949 0.959 0.957 0.963 0.961 0.959 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 86 1 3 0 0 0 
Arbitration 3 57 0 0 0 0 
DRB 9 0 41 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 86 14 
Negotiation 0 0 0 1 41 148 

 

The average for Kappa statistic value is ‘0.832’ that shows a perfect agreement. The 

weighted average precision value is ‘0.881’. The weighted average sensitivity (recall) 

value is ‘0.867’ that means the algorithm achieved ‘86.7%’ success in identifying true 

positive instances. Similarly, the weighted average specificity value is ‘0.963’ 

showing the algorithm achieved ‘96.3%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.959’, which is almost an ideal 

AUROC value. 
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5.3.4.7. The AdaBoost Algorithm and its Configuration in WEKA 

In order to use the AdaBoost algorithm with single multiclass classifiers, the class 

‘weka.classifiers.meta.AdaBoostM1’ should be selected first. Then, the ‘classifier’ 

setting should be set to ‘weka.classifiers.meta.MultiClassClassifier’ class. Inside the 

multiclass classifier, each single ML  algorithm should be defined with its 

corresponding configuration one by one as weak learner. The corresponding 

decomposition technique for each single algorithm is adjusted by the ‘method’ setting 

in the multiclass classifier. Similar to the binary case, using resampling technique did 

not improve the performance. Default values of WEKA are used for remaining 

settings. Figure 5.29 shows the configuration for the AdaBoost algorithm. 

 

 

Figure 5.29. The AdaBoost Algorithm Configuration in WEKA for Multiclass 

Classification Problems 
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5.3.4.8. Results from the AdaBoost Algorithm for Potential Compensation 

Prediction 

In this thesis study, all six single ML algorithms are boosted by the AdaBoost 

algorithm for multiclass classification problem of potential compensation prediction. 

During boosting, each single algorithm is used with the decomposition technique and 

parameter setting that gave the best performance. Thus, the Naïve Bayes algorithm 

using OVA technique, multiclass kNN algorithm, multiclass J48 algorithm, MLP 

algorithm using OVA technique, polynomial kernel SVM using ECC technique, and 

Gaussian RBF kernel SVM using ECC technique are used as weak learners one by 

one. Among all boosting experiments, the only enhancement is achieved in boosting 

of MLP OVA algorithm. In other experiments, the single ML algorithm outperformed 

the boosted version.  

10-fold cross-validation results with 10 repeats obtained from the AdaBoost algorithm 

that combined MLP OVA classifiers to form an ensemble classifier are given in Table 

5.77. These ensemble classifiers have an average classification accuracy of ‘71.10%’ 

with lower and upper bounds (69.40% - 72.80%) within 95% CI. In other words, 

ensemble classifiers predict the potential compensation type that can be acquired in a 

dispute with an average success rate of ‘71.10%’. Thus, the boosted classifier 

enhanced the average classification accuracy of the single algorithm (MLP OVA) by 

‘2.47%’. 

The average for Kappa statistic value is ‘0.552’ that shows a moderate agreement. The 

weighted average precision value is ‘0.689’. The weighted average sensitivity (recall) 

value is ‘0.711’ that means the algorithm achieved ‘71.1%’ success in identifying true 

positive instances. Similarly, the weighted average specificity value is ‘0.876’ 

showing the algorithm achieved ‘87.6%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.853’. 
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Table 5.77. 10-Times 10-Fold Cross-Validation Results of the AdaBoost Algorithm 

with Ensemble MLP OVA Classifiers for Potential Compensation Prediction 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

AdaBoost 

 

MLP 

OVA 

            
Accuracy(%) 69.51 68.29 74.39 70.73 70.73 71.95 75.61 70.73 68.29 70.73 71.10 
Kappa 0.521 0.506 0.607 0.543 0.550 0.572 0.618 0.546 0.504 0.554 0.552 
Precision 0.660 0.652 0.730 0.677 0.697 0.720 0.734 0.680 0.638 0.705 0.689 
Recall 0.695 0.683 0.744 0.707 0.707 0.720 0.756 0.707 0.683 0.707 0.711 
Specificity 0.858 0.859 0.894 0.867 0.877 0.894 0.887 0.875 0.855 0.890 0.876 
AUROC 0.875 0.860 0.872 0.853 0.842 0.832 0.862 0.851 0.843 0.841 0.853 
            

 
Confusion Matrix 

 Predicted 

Actual No Comp. Cost Comp. Only Time Comp. Only Cost & Time Comp. 
No Comp. 30 61 5 24 
Cost Comp. Only 69 306 5 0 
Time Comp. Only 0 1 4 45 
Cost & Time Comp. 3 0 24 243 

 

5.3.4.9. Results from the AdaBoost Algorithm for Resolution Method Selection 

In this thesis study, all six single ML algorithms are boosted by the AdaBoost 

algorithm for multiclass classification problem of resolution method selection. During 

boosting, each single algorithm is used with the decomposition technique and 

parameter setting that gave the best performance. Thus, the Naïve Bayes algorithm 

using ECC technique, kNN algorithm using ECC technique, J48 algorithm using ECC 

technique, MLP algorithm using ECC technique, polynomial kernel SVM using ECC 

technique, and Gaussian RBF kernel SVM using ECC technique are used as weak 

learners one by one. Among all boosting experiments, the only enhancement is 

achieved in boosting of J48 ECC algorithm. In other experiments, the single ML 

algorithm outperformed the boosted version.  

10-fold cross-validation results with 10 repeats obtained from the AdaBoost algorithm 

that combined J48 ECC classifiers to form an ensemble classifier are given in Table 

5.78. These ensemble classifiers have an average classification accuracy of ‘88.15%’ 

with lower and upper bounds (85.34% - 90.95%) within 95% CI. In other words, 

ensemble classifiers predict the resolution method to be used in construction projects 



 

 
 

330 
 

with an average success rate of ‘88.15%’. Thus, the boosted classifier enhanced the 

average classification accuracy of the single algorithm (J48 ECC) by ‘1.67%’. 

Table 5.78. 10-Times 10-Fold Cross-Validation Results of the AdaBoost Algorithm 

with Ensemble J48 ECC Classifiers for Resolution Method Selection 

Classifier 
Performance 

Measure 

Run Number 
Avg. 

1 2 3 4 5 6 7 8 9 10 

AdaBoost 

 

J48 

ECC 

            
Accuracy(%) 92.59 88.89 90.74 85.19 87.04 81.48 92.59 85.19 92.59 85.19 88.15 
Kappa 0.906 0.859 0.883 0.813 0.836 0.767 0.906 0.814 0.906 0.814 0.850 
Precision 0.930 0.899 0.921 0.860 0.877 0.830 0.931 0.879 0.931 0.876 0.893 
Recall 0.926 0.889 0.907 0.852 0.870 0.815 0.926 0.852 0.926 0.852 0.882 
Specificity 0.978 0.971 0.973 0.957 0.971 0.951 0.979 0.967 0.979 0.963 0.969 
AUROC 0.968 0.956 0.968 0.950 0.966 0.948 0.982 0.972 0.963 0.967 0.964 
            

 
Confusion Matrix 

 Predicted 

Actual Litigation Arbitration DRB Mediation SEA Negotiation 
Litigation 77 9 4 0 0 0 
Arbitration 1 59 0 0 0 0 
DRB 5 0 45 0 0 0 
Mediation 0 0 0 50 0 0 
SEA 0 0 0 0 88 12 
Negotiation 0 0 0 0 33 157 

 

The average for Kappa statistic value is ‘0.850’ that shows a perfect agreement. The 

weighted average precision value is ‘0.893’. The weighted average sensitivity (recall) 

value is ‘0.882’ that means the algorithm achieved ‘88.2%’ success in identifying true 

positive instances. Similarly, the weighted average specificity value is ‘0.969’ 

showing the algorithm achieved ‘96.9%’ success in identifying true negative 

instances. The weighted average AUROC value is ‘0.964’. 

5.3.5. Comparison of Results from Ensemble Classifiers for Potential 

Compensation Prediction 

The Table 5.79 shows the 10-times 10-fold cross-validation results of ensemble 

classifiers that performed better than their single counterparts for potential 

compensation prediction. This table is used for comparing performances of ensemble 

classifiers with each other.  
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Table 5.79. 10-Times 10-Fold Cross-Validation Performance of Ensemble 

Classifiers for Potential Compensation Prediction 

Algorithm 
Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy 

(%) 

Avg. 

Kappa 

Weig. 

Avg. 

Prec. 

Weig. 

Avg. 

Recall 

(TPR) 

Weig. 

Avg. 

Spec. 

Weigh. 

Avg. 

AUROC 

Improve 

Base 

Learner 

Accuracy 

Improve 

Meta 

Learner 

Accuracy 
 
Majority  
Voting 
 

80.61 [79.57-81.65] 0.688 0.755 0.806 0.894 0.850 - NA 

 
Stacking 
Multi. J48 + 
MLP OVA 
 

77.56 [76.95-78.17] 0.624 0.617 0.775 0.850 0.803 +0.61% +8.93% 

 
Stacking 
Multi. J48 + 
RBF SVM 
ECC 
 

77.20 [76.37-78.02] 0.619 0.618 0.772 0.850 0.810 +0.25% +3.79% 

 
AdaBoost 
MLP OVA 
 

71.10 [69.40-72.80] 0.552 0.689 0.711 0.876 0.853 +2.47% NA 

 

The best average classification accuracy is obtained from the majority voting 

technique that combined prediction decisions from Naïve Bayes algorithm using OVA 

technique, multiclass kNN algorithm, and multiclass J48 algorithm. However, it is 

outperformed by the single Naïve Bayes OVA algorithm. 

Considering that even the best ensemble classifier generated a lower performance 

compared to single ML algorithms, it can be said that ensemble classifiers are 

outperformed by single counterparts for potential compensation prediction.  

5.3.6. Comparison of Results from Ensemble Classifiers for Resolution Method 

Selection 

The Table 5.80 shows the 10-times 10-fold cross-validation results of ensemble 

classifiers that performed better than their single counterparts for resolution method 

selection. This table is used for comparing performances of ensemble classifiers with 

each other.  
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Table 5.80. 10-Times 10-Fold Cross-Validation Performance of Ensemble 

Classifiers for Resolution Method Selection 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy 

(%) 

Avg. 

Kappa 

Weig. 

Avg. 

Prec. 

Weig. 

Avg. 

Recall 

(TPR) 

Weig. 

Avg. 

Spec. 

Weig. 

Avg. 

AUROC 

Improve 

Base 

Learner 

Accuracy 

Improve 

Meta 

Learner 

Accuracy 

 
Majority  
Voting 
 

89.44 [87.37-91.52] 0.866 0.900 0.894 0.965 0.930 

+2.96% 
to best 
base 

learner 

NA 

 
Stacking 
J48 ECC + 
Naïve 
Bayes ECC 
 

86.67 [85.04-88.30] 0.832 0.881 0.867 0.963 0.959 +0.19% +0.74% 

 
AdaBoost 
J48 ECC 
 

88.15 [85.34-90.95] 0.850 0.893 0.882 0.969 0.964 +1.67% NA 

 

The best average classification accuracy (89.44%) is obtained from the majority 

voting technique that combined prediction decisions from J48 algorithm using ECC 

technique, Naïve Bayes algorithm using ECC technique, and MLP algorithm using 

ECC technique. The improvement in average classification accuracy by using the 

majority voting technique is ‘+2.96%’ to the best single classifier (J48 ECC), 

‘+3.51%’to the second best single classifier (Naïve Bayes ECC), and ‘+6.11%’ to third 

best single classifier (MLP ECC).  

The improvement in average classification accuracy by using the stacked 

generalization method is ‘+0.19%’ to base-learner (J48 ECC) and ‘+0.74%’ to meta-

learner (Naïve Bayes ECC). However, ensemble classifiers obtained by stacking have 

lower performance compared to ensemble classifiers obtained from the majority 

voting technique and the AdaBoost algorithm. 

Finally, the improvement in average classification accuracy by using the AdaBoost 

algorithm is ‘+1.67%’ to the base-learner (J48 ECC). Although this classifier 

performed better than the stacked classifier, it is outperformed by the majority voting 

technique. 
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5.3.7. Comparison of All Classifiers for Compensation Prediction 

Table 5.81 shows the 10-times 10-fold cross-validation results of all classifiers (single 

and ensemble) for potential compensation prediction together for comparison.  

Table 5.81. Comparison of All Potential Compensation Prediction Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 

Avg. 

Kappa 

Weigh. 

Avg. 

Precision 

Weigh. 

Avg. 

Recall 

(TPR) 

Weigh. 

Avg. 

Specificity 

Weigh. 

Avg. 

AUROC 

Rank 

 
Naïve Bayes 
OVA 
 

80.61 [80.11 – 81.10] 0.691 0.774 0.806 0.899 0.916 1 

 
Majority  
Voting 
 

80.61 [79.57-81.65] 0.688 0.755 0.806 0.894 0.850 2 

 
KNN  
Multiclass 
 

78.66 [77.05 – 80.26] 0.661 0.737 0.787 0.893 0.912 3 

 
Stacking 
Multi. J48 + MLP 
OVA 
 

77.56 [76.95-78.17] 0.624 0.617 0.775 0.850 0.803 4 

 
Stacking 
Multi. J48 + RBF 
SVM ECC 
 

77.20 [76.37-78.02] 0.619 0.618 0.772 0.850 0.810 5 

 
J48  
Multiclass 
 

76.95 [75.99 – 77.91] 0.616 0.632 0.769 0.852 0.811 6 

 
Poly Kernel SVM 
ECC 
 

74.39 [72.97 – 75.81] 0.584 0.660 0.744 0.855 0.825 7 

 
RBF Kernel SVM 
ECC 
 

73.41 [72.34 – 74.49] 0.564 0.626 0.733 0.845 0.827 8 

 
AdaBoost 
MLP OVA 
 

71.10 [69.40-72.80] 0.552 0.689 0.711 0.876 0.853 9 

 
MLP 
OVA 
 

68.63 [67.03 – 70.23] 0.512 0.666 0.686 0.864 0.842 10 

 

As it can be observed from Table 5.81, the best performance is obtained from the 

single Naïve Bayes algorithm using OVA technique. An average classification 
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accuracy of ‘80.61%’ is obtained from Naïve Bayes OVA classifiers. Although the 

same average classification accuracy is also generated by ensemble classifiers 

obtained from the majority voting technique, in every other performance measure the 

Naïve Bayes OVA algorithm is superior to remaining algorithms. The average 

classification accuracy of all classifiers for potential compensation prediction within 

95% CI can be seen in Figure 5.30.  

 

 

Figure 5.30. Average Classification Accuracies of All Classifiers within 95% CI for 

Potential Compensation Prediction 

In the light of these, the final model for potential compensation prediction is the single 

classifier obtained from the Naïve Bayes algorithm using OVA technique. 

5.3.8. Comparison of All Classifiers for Resolution Method Selection 

Table 5.82 shows the 10-times 10-fold cross-validation results of all classifiers (single 

and ensemble) for resolution method selection together for comparison.  
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Table 5.82. Comparison of All Dispute Occurrence Prediction Classifiers 

Algorithm 

Avg. 

Accuracy 

(%) 

%95 CI 

Accuracy (%) 

Avg. 

Kappa 

Weigh. 

Avg. 

Precision 

Weigh. 

Avg. 

Recall 

(TPR) 

Weigh. 

Avg. 

Specificity 

Weigh. 

Avg. 

AUROC 

Rank 

 
Majority Voting 
 

89.44 [87.37-91.52] 0.866 0.900 0.894 0.965 0.930 1 

 
AdaBoost 
J48 ECC 
 

88.15 [85.34-90.95] 0.850 0.893 0.882 0.969 0.964 2 

 
Stacking 
J48 ECC +  
Naïve Bayes ECC 
 

86.67 [85.04-88.30] 0.832 0.881 0.867 0.963 0.959 3 

 
J48 ECC 
 

86.48 [85.08 – 87.88] 0.830 0.879 0.865 0.967 0.964 4 

 
Naïve Bayes  
ECC 
 

85.93 [84.50 – 87.35] 0.817 0.875 0.859 0.935 0.961 5 

 
MLP 
ECC 
 

83.33 [80.54 – 86.13] 0.790 0.857 0.833 0.953 0.948 6 

 
Poly. Kernel 
SVM 
ECC 
 

82.04 [79.17 – 84.90] 0.773 0.839 0.820 0.944 0.945 7 

 
RBF Kernel SVM 
ECC 
 

80.93 [79.84 – 82.02] 0.760 0.833 0.809 0.943 0.944 8 

 
KNN  
ECC 
 

74.63 [72.46 – 76.80] 0.674 0.769 0.746 0.910 0.908 9 

 

As it can be seen from Table 5.82, ensemble classifiers outperformed single classifiers 

in terms of average prediction accuracy. The first three best performing classifiers are 

ensemble classifiers. The best single classifier (J48 algorithm using ECC technique) 

has the fourth rank in overall comparison. The average classification accuracy of all 

classifiers for resolution method selection within 95% CI can be seen in Figure 5.31. 

In addition, the best classifier, which is the ensemble classifier obtained from the 

majority voting technique, gave the best performance in every measure other than 

specificity and AUROC. The best weighted average specificity (‘0.969’) and the best 
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weighted average AUROC value (‘0.964’) are generated by ensemble classifiers 

obtained from the AdaBoost algorithm on J48 ECC classifiers.  

 

 

Figure 5.31. Average Classification Accuracies of All Classifiers within 95% CI for 

Resolution Method Selection 

In the light of these, the final model for resolution method selection is the ensemble 

classifier obtained from the majority voting method that combined J48 algorithm 

using ECC technique, Naïve Bayes algorithm using ECC technique, and MLP 

algorithm using ECC technique. 

In short, final classifiers for dispute occurrence and potential compensation prediction 

models as well as the final classifier for resolution method selection are determined in 

this chapter based on averaged 10 times 10-fold cross-validated classification results 

of various ML algorithms. The next chapter will include the overview of the research, 

conclusions, and contributions to literature and industry along with research 

limitations and recommendations for future works. 
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CHAPTER 6  

 

6. CONCLUSIONS 

 

In this chapter, the research overview will be given and findings of the thesis study 

will be highlighted. The process for selecting final classifiers for binary data 

classification problem of dispute occurrence prediction as well as multiclass data 

classification problems of potential compensation prediction and resolution method 

selection will be summarized. Strengths and weaknesses of this research to similar 

research and contributions to the literature will be mentioned along with potential 

benefits to the construction industry and dispute management domain. Limitations of 

the research and potential enhancements to final classifiers will be discussed and 

further recommendations will be given for future research. 

As mentioned in the introduction chapter, detrimental effects of disputes in the 

construction industry is well understood and documented however, the industry still 

struggles to find methods to resolve disputes effectively. In the current state, the 

construction industry has acquired a bad reputation for being contentious and is 

overwhelmed by the increasing number and severity of disputes (Arditi et al., 1998; 

Cheng et al., 2009). This is a clear proof that current practices are insufficient in 

avoiding disputes. Therefore, an early-warning of dispute occurrence will be 

beneficial for the management personnel so that necessary actions to avoid disputes 

can be taken. This can be achieved by prediction (Fenn, 2007). Machine learning (ML) 

algorithms present necessary tools for dispute occurrence prediction and when the 

output variable is a categorical variable, prediction problems become data 

classification problems (Chou and Lin, 2002). In the case of dispute occurrence 

prediction, there is a binary data classification problem that can be solved by various 

ML algorithms.  
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Another aspect to be considered during dispute prediction is the potential 

compensation(s) that can be acquired out of a disputed case. If parties know whether 

they can acquire any compensation or not in a disputed case with some certainty, their 

decisions and strategies might change. An accurate compensation prediction may 

result in backing down on claims so that disputes can be avoided. In the case of 

potential compensation prediction, there is a multiclass data classification problem 

that can be solved systematically by ML algorithms.  

Upon inevitable occurrence, disputes should be resolved by using the most appropriate 

method available with the best management efforts. However, successful dispute 

management is dependent on making complex and challenging decisions and the 

current tendency in the industry is to make these decisions intuitively based on 

experience of the decision-maker with limited available information of questionable 

quality (Chou et al., 2013b). Thus, there is a need for new decision support 

technologies that is based on systematical selection of resolution methods instead of a 

subjective decision-making process. This subjectivity can be minimized by utilizing 

ML techniques in systematical selection of resolution methods (Cheung et. al, 2004a). 

In the case of resolution method selection, there is a multiclass data classification 

problem that can be solved systematically by ML techniques. 

In short, the construction industry requires development and employment of adequate 

decision support technologies in order to avoid disputes and upon inevitable 

occurrence, to forestall and mitigate disputes via appropriate resolution methods. 

However, the disputes literature lacks such supporting models or systems (İlter and 

Dikbaş, 2008). As mentioned in the literature review on dispute prediction (Section 

2.1.3), the available limited studies lack consideration of numerous complex and 

interrelated factors related to disputes. Due to their limited capabilities in discovering 

complex and interrelated factors between input variables, it can be claimed that 

prediction studies that do not utilize ML techniques are insufficient. Considering the 

multitude of participants, various sources of uncertainties, and numerous variables in 

construction industry, the utilization of ML techniques in construction dispute domain 
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is a necessity. Another problem of dispute management models and systems is the 

level of representation. Dispute management models and systems are mainly based on 

local industries and they are not capable of representing the construction industry as a 

whole. Moreover, instead of a general approach, it is observed that the main preference 

is to conduct the research for specific project types such as public projects only or PPP 

projects only. Despite the fact that there are various parties from many domains in a 

construction project, most of the studies also fail to represent or target these various 

professions since they merely review certain groups. In addition, previous studies on 

dispute prediction using ML techniques generally focused on specific change order 

disputes or on conventional contracting projects, which means ignoring variations in 

the project environment and its characteristics (Chou et al., 2013b). Similarly, based 

on the literature review on decision support systems for resolution method selection 

(Section 2.2.4), it is observed that studies have limitations such as being industry, 

project type, dispute type, and contracting strategy specific. Global-scaled models that 

consider these variations during resolution method selection do not exist in the 

literature.  

In the light of the foregoing considerations, the research at the core of this thesis study 

addresses the need for sound decision support technologies for dispute prediction 

(occurrence and potential compensation prediction) and resolution method selection 

that are capable of representing the industry on a global-scale with a general approach 

that can be benefited by various project participants. For this purpose, various real 

construction project data is collected and processed to establish a disputes database. 

The collected database is classified by models derived from utilizing ML algorithms. 

Numerous experiments are performed on the collected data using several ML 

algorithms with the aim of presenting the best classifier in terms of classification 

(prediction) accuracy for dispute occurrence and potential compensation prediction 

along with resolution method selection in order to fill the mentioned gaps in the 

construction dispute literature.  
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Before starting the efforts for data collection, an extensive analysis of literature on 

construction conflicts, claims, disputes, and resolution methods with the aim of 

synthesizing findings of the previous research is conducted. As a result of this 

literature review, frameworks for dispute occurrence, potential compensation, and 

resolution method are established. These frameworks involve input variables 

(attributes) that may impact outputs of proposed models. In the light of these 

frameworks, a conceptual model is developed that includes all attributes identified in 

the literature review. Currently, there is no consensus in the literature on variables that 

affect dispute development and decision-making in dispute management strategies. 

Such a conceptual model that synthesized findings of previous research will contribute 

to the literature by creating a common ground for dispute prediction and resolution 

method selection research. Moreover, the conceptual model will eliminate the 

confusion in dispute management terminology due to overlapping concepts.  

Within the scope of this thesis study, by using the conceptual model, a questionnaire 

is designed for collecting empirical data via face-to-face and online meetings with 

authorized project participants. As mentioned in Section 3.2, in order to reflect 

variations in the construction industry, the collected dataset is composed of 108 

construction projects executed in 19 different countries. In addition, these projects are 

obtained from 78 individuals from 6 different nationalities representing 75 different 

construction companies. This complete dataset is used in dispute occurrence 

prediction. Among these 108 projects, 82 disputed cases are obtained. These 82 cases 

are used in potential compensation prediction. Finally, among these 82 disputed cases, 

the satisfactorily resolved 54 cases are used in resolution method selection model. 

Considering that there are limited studies focusing on interrelations between disputes 

and various project characteristics based on empirical data, this thesis study will have 

another contribution to the literature with its data dependent nature. 

The collected data is initially analyzed to discover the profile of participants (Section 

3.2.1). The profile of projects with respect to output variables (Section 3.2.2) and input 
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variables (Section 3.2.3) are also analyzed. These analyses highlighted several 

important findings, some of which can be listed as: 

i. The construction industry is dominated by disputed projects with the 

dataset containing 65% of disputed projects. 

ii. The dispute management decision-making is performed by engineers 

mostly (75.9%). Considering that dispute management decisions in 

construction industry requires both technical and legal backgrounds, 

decision support technologies for resolution method selection proposed in 

this thesis study can said to be beneficial for the management personnel 

from engineering domain who lack legal expertise.  

iii. The highest dispute occurrence rate is observed when the dispute 

management decision-making is performed by legal representatives (80%). 

This is mainly due to considering the disputed issue only from the legal 

perspective, not from the technical perspective. Thus, this thesis study is 

envisaged to be beneficial for legal representatives who lack technical 

expertise.  

iv. With the increasing amount in contract values, dispute occurrence rates 

also increase. In addition, with the increasing planned project duration, 

dispute occurrence rates also increase. 

v. Dispute occurrence in international projects is more likely (82%) 

compared to domestic projects (59%).  

vi. When there are time extensions, more disputes are encountered. Moreover, 

with the increasing amount of time extensions, dispute occurrence rates 

also increase. 

vii. The most preferred resolution method is the negotiation technique (35%). 

Considering advantages of negotiation (Section 2.2.2.4), it is beneficial for 

the construction industry to utilize negotiation processes in most of the 

cases. In accordance with this, the second most resorted resolution method 

is senior executive appraisal (SEA) (19%). However, the third most 
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resorted resolution method is litigation (17%). Considering the claim that 

litigation should be avoided even with the best outcomes, the situation in 

the dataset poses a contradiction. 

viii. Construction professionals are least familiar with the dispute review board 

(DRB) method and most familiar with the negotiation and SEA methods. 

The familiarity with SEA is surprising however; the reason of this is the 

tendency of professionals to perceive SEA as a form of negotiation that is 

performed with the top-level management and owners.  

ix. In terms of resolution costs, it is seen that arbitration is the most expensive 

method of resolution. Although litigation is generally associated with high 

resolution costs, it is the second most expensive resolution method behind 

arbitration. The DRB technique has lower costs compared to conventional 

resolution techniques and mediation is even less expensive than DRB. 

Thus, it might be better to resolve disputes by alternative dispute resolution 

(ADR) techniques instead of resorting to conventional methods of 

arbitration and litigation considering resolution costs.  

x. In terms of resolution duration, it is observed that litigation is the longest 

procedure. Although arbitration is initially considered as a fast alternative 

to litigation, arbitral proceedings have the second longest duration. 

Mediation is the most effective resolution technique in terms of resolution 

duration. Negotiation, SEA, and DRB also have comparable resolution 

duration to mediation. Thus, it might be better to resolve disputes by ADR 

techniques instead of resorting to conventional methods of arbitration and 

litigation considering resolution durations. 

As mentioned in Section 4.1.5, the performance of ML algorithms is generally affected 

negatively by the irrelevant or insignificant attributes (Pulket and Arditi, 2009b). 

Elimination of insignificant attributes and selection of the ones affecting the model 

outcomes improve generalization performance of ML algorithms (Sönmez and 

Sözgen, 2017). Therefore, following the analysis to reveal the initial findings, the Chi-
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Square tests of association are performed for evaluating the statistical significance of 

association between input and output variables in datasets. According to the results of 

the Chi-Square tests, insignificant attributes on outcomes are eliminated from the 

conceptual model and final prediction models are developed by using the remaining 

significant attributes. What follows provides details on the selected attributes for the 

proposed prediction models. 

The conceptual model involved 25 attributes associated with the dispute occurrence. 

According to results of the Chi-Square tests (Section 3.3.2.1) on the complete dataset 

(108 projects), only 14 attributes are found to be significantly associated with dispute 

occurrence. Thus, the finalized prediction model showed that dispute occurrence is 

affected by project characteristics, skills of parties, changes, and delays.  

The conceptual model involved 32 attributes associated with the potential 

compensation type. According to results of the Chi-Square tests (Section 3.3.2.2) on 

disputed cases (82 projects), only 9 attributes are found to be significantly associated 

with compensations. Therefore, the finalized prediction model showed that potential 

compensation that can be acquired in a disputed case is affected by project 

characteristics, changes, delays, and dispute characteristics.  

Finally, the conceptual model involved 55 attributes associated with the resolution 

method selection. According to the results of the Chi-Square tests (Section 3.3.2.3) on 

satisfactorily resolved cases (54 projects), only 7 attributes are found to be 

significantly associated with the resolution method selection. Thus, the finalized 

selection model showed that resolution method selection decision-making is affected 

by project characteristics, changes, dispute characteristics, resolution method 

characteristics, and level of knowledge on resolution methods.  

Subsequent to finalizing the prediction models, data classification was performed by 

using the ML algorithms. Based on the literature review on data classification using 

ML techniques (Chapter 4), (1) Naïve Bayes, (2) kNN, (3) C4.5 decision trees (J48 

algorithm), (4) MLP, (5) polynomial kernel SVM, and (6) Gaussian RBF kernel SVM 
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algorithms are the selected ML algorithms for developing single classifiers. These ML 

algorithms have various parameter settings that affect their generalization 

performances. For this reason, a process called parameter tuning is performed on these 

algorithms in order to obtain optimum parameter settings that maximize algorithm 

performance. In short, all single ML algorithms are experimented by using their 

optimum parameter settings.  

Apart from single ML algorithms, ensemble algorithms are also experimented in 

pursuit of enhancing classification performances. The selected techniques for 

developing ensemble classifiers are (1) voting technique, (2) stacked generalization, 

and (3) AdaBoost algorithm. 

Problems reviewed in this thesis study require different approaches during 

classification. The dispute occurrence prediction problem has only two classes as 

disputed projects and undisputed projects. Therefore, the dispute occurrence 

prediction is basically a binary data classification problem. On the other hand, 

potential compensation prediction problem has four classes and resolution method 

selection problem has six classes. Hence, they are both multiclass data classification 

problems. Multiclass classification problems can be solved by two different 

approaches. In the first approach, the ML algorithm can naturally solve both binary 

and multiclass classification problems. However, algorithms like SVM cannot 

naturally solve multiclass classification problems. In such cases, multiclass problems 

are decomposed into several binary problems and each problem is solved separately. 

Thus, the second approach is decomposing multiclass problem into several binary 

problems. The decomposition techniques utilized in this thesis study are (1) OVO, (2) 

OVA, (3) RCC, and (4) ECC techniques (Section 5.3). Both natural and 

decomposition approaches are experimented whenever it is possible.  

In the experiments, stratified 10-fold cross-validation technique is used. Moreover, in 

order to decrease the variance associated with ML algorithms, all experiments are 

repeated 10 times and the average values (within 95% confidence intervals (CI)) are 
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considered as the final performance measures. In evaluation of the classifier 

performance, (1) classification accuracy, (2) Kappa statistic, (3) precision, (4) 

sensitivity (recall) (TP rate), (5) specificity, and (6) AUROC measures are used 

(Section 4.1.4). Using these measures, performances of all single and ensemble 

classifiers for dispute occurrence and potential compensation prediction are compared 

with each other. Similarly, performances of all single and ensemble classifiers for 

resolution method selection are compared with each other.  

The best performance for dispute occurrence prediction is obtained from the ensemble 

classifier generated by using majority voting technique that combined classification 

decisions of Gaussian RBF kernel SVM, polynomial kernel SVM, and J48 decision 

trees. This ensemble classifier achieved ‘91.11%’ average classification accuracy. In 

other words, the dispute occurrence prediction model achieved ‘91.11%’ success. 

Among limited research on dispute occurrence prediction based on empirical data, 

Chou and Lin (2012) predicted dispute occurrence in PPP projects undertaken by 

TPCC using single and ensemble ML techniques. According to 10-fold cross-

validation performances, the highest dispute occurrence prediction accuracy was 

‘84.33%’ obtained from the ensemble classifier that combined SVM, ANN, and C5.0 

algorithms. They also achieved ‘85.60%’ precision, ‘95.26%’ sensitivity, ‘48.82%’ 

specificity, and ‘0.7229’ AUROC values. The dispute occurrence prediction classifier 

developed in this thesis study not only outperforms this classifier in terms of 

classification accuracy, but also it is capable of generating better precision (‘93.70%’), 

sensitivity (‘92.60%’), specificity (‘88.40%’), and AUROC (‘0.905’) values; although 

it should be noted that compared studies used different datasets and attributes in 

classification. Chou et al. (2014) developed a GA based SVM model by using the 

same dataset that achieved ‘89.30%’ dispute occurrence prediction success with 

‘94.67%’ precision, ‘74.24%’ sensitivity, ‘93.64%’ specificity, and ‘0.8364’ AUROC 

values. This classifier is also outperformed by the classifier developed in this thesis 

study. Although precision and specificity values seem higher in Chou et al. (2014), 

these values are obtained from the best classifier with only a single trial and the 
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variance in ML algorithms is not considered. On the other hand, this thesis study 

presents average results obtained from repeating each test 10 times. In another study 

that considers the variance in ML algorithms by repeating classification tests 10 times, 

Chou et al. (2016) achieved an average 10-fold cross-validation classification 

accuracy of ‘83.92%’ using C5.0 algorithm for dispute occurrence prediction in PPP 

projects using the same dataset in their previous attempts. Similar to dispute 

occurrence prediction studies, there are studies predicting the litigation likelihood of 

disputes. For instance, Chen and Hsu (2007) developed a hybrid model combining 

MLP and CBR techniques to classify construction projects with change orders 

according to their litigation likelihood, which achieved ‘84.61%’ classification 

accuracy. Based on the same dataset, Chen (2008) achieved ‘84.38%’ classification 

accuracy using a kNN-based model. However, compared to the model proposed herein 

both studies generate lower accuracies and they only focus on change order related 

disputes.  

The best performance for potential compensation prediction is obtained from the 

single Naïve Bayes classifiers using OVA decomposition technique that achieved 

‘80.61%’ average classification accuracy. In other words, the potential compensation 

prediction model achieved ‘80.61%’ success. Although there are studies on claim 

quantification in the literature, it is not possible to quantify a claim precisely even with 

the best information available (Ren et al., 2001). However, parties may benefit from a 

decision support that helps them understand whether they can acquire any 

compensation or not and in what aspect (time or cost or both) depending on the dispute 

source. Unfortunately, the disputes literature lacks such studies. In a similar search for 

predicting the dispute types, Chou et al. (2016) achieved an average 10-fold cross-

validation classification accuracy of ‘77.00%’ using C5.0 algorithm, which is lower 

than that of the proposed model. 

Finally, the best performance for resolution method selection is obtained from the 

ensemble classifier generated by using majority voting technique that combined 

classification decisions of J48 decision trees using ECC decomposition technique, 
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Naïve Bayes algorithm using ECC decomposition technique, and MLP algorithm 

using ECC decomposition technique. This ensemble classifier achieved ‘89.44%’ 

average classification accuracy. In other words, the resolution method selection model 

achieved ‘89.44%’ success. 

Among limited research on resolution method selection based on empirical data, Chou 

(2012) achieved ‘84.65%’ classification accuracy on test set using an ensemble model 

combining QUEST, Exhaustive CHAID, and C5.0 algorithms during project initiation 

phase. However, the test set classification accuracy dropped to ‘69.05%’ for dispute 

occurred phase using an ensemble model combining CART, Exhaustive CHAID, and 

SVM. In another attempt, Chou et al. (2013b) achieved ‘77.04% classification 

accuracy using fmGA based SVM model with fuzzy logic for resolution method 

selection. Finally, Chou et al. (2016) achieved an average 10-fold cross-validation 

accuracy of ‘81.12%’ using SVM algorithm for resolution method selection. 

Therefore, it can be observed that the resolution method selection model developed in 

this thesis study outperformed the mentioned studies.  

In the light of foregoing observations, it can firmly be concluded that the results 

obtained by the three models developed in this thesis study are promising. Potential 

contributions of these models to construction industry are also encouraging. Prediction 

of potential disputes (before occurrence) using the proposed dispute occurrence 

prediction model will be valuable for management personnel as it will avail early 

planning for taking necessary precautions. This, in turn, may reduce the effort, time, 

and cost of dispute management actions considerably. In addition, if parties know 

whether they can acquire any compensation or not and in what aspects in a disputed 

case with some certainty, their decisions and strategies might change. The potential 

compensation prediction model proposed in this thesis study can avoid inconclusive 

disputes along with waste of scarce resources that will be spent on resolution of these 

disputes. Finally, the resolution method selection model presented in this thesis study 

can help decision-makers in making informed and logical decisions during dispute 

resolution. Considering that dispute resolution decision-making requires 
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consideration of various interrelated and complex factors along with legal and 

technical expertise, the presented resolution method selection model can provide 

assistance to management personnel who lack legal or technical expertise in cases 

where rationalizing these complex and interrelated factors are difficult. 

Data specific nature of this research is regarded as its main limitation since the 

established models are data dependent. In other words, they are based on data from a 

finite number of construction projects. Although collected datasets can said to be quite 

representative, the number and variety of projects are still limited due to limitations 

on access to such information, research duration, and budget. The number and the 

variety of projects can be increased in the future so that the level of representation of 

the construction industry and generalization capabilities of presented models will be 

improved. Another future work includes converting these models to an integrated 

decision-support system. Further research can be performed to establish a combined 

decision-support system utilizing presented models via a user interface. In addition, 

the underlying rule sets in classification decisions of these models can be discovered 

so that knowledge can be extracted from association rules for more solid support.  
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APPENDICES 

 

A. THE CONSTRUCTION PROJECT DATA QUESTIONNAIRE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This study is a part of a PhD dissertation being prepared at METU Civil 

Engineering Department that aims to predict dispute occurrence in construction 

projects, potential compensations that can be acquired out of a dispute, and the 

resolution method to be used.  

If you kindly agree to participate in the research, a questionnaire, which is expected 

to take one hour, will be conducted. The questionnaire is designed to collect 

empirical data related to a past project where you were the authorized decision-

maker related to project management strategies in technical and legal aspects.  

Participation is voluntary and the participant can leave the research at any time. 

The questionnaire does not contain any questions that may cause personal 

discomfort. However, if you feel discomfort due to the questions or any other 

reason, you can stop participating and leave. In such a case, it is sufficient to tell 

the researcher that you have decided not to complete the survey. You may refuse 

or stop participating in the survey without any sanctions or penalties. You can stop 

participating during the survey or continue answering at another time. 

The collected data will be kept confidential. No personal information will be 

disclosed to a third party. Information obtained from the participants will be 

evaluated collectively and used in scientific publications only.  

For any questions, remarks or suggestions, please contact the researcher. Thank 

you for your contribution to the research. 

Kind regards,       Research Assistant Murat AYHAN  
         Gazi University Faculty of Engineering 
Civil Engineering Deparment Room No: 255 

e-mail: muratayhan@gazi.edu.tr 
Phone: +90-505-319-19-88 

mailto:muratayhan@gazi.edu.tr
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SECTION 1: INFORMATION ABOUT THE PARTICIPANT 

Q1. Please indicate your occupation: 

☐ Lawyer  ☐ Architect  ☐ Engineer 

☐ Other: ………………………… 

Q2. Please indicate your specific role in the project: 

☐ Project Manager  ☐ Legal Advisor 

☐ Contract Manager  ☐ Claim Adviser / Specialist 

☐ Project Consultant  ☐ Site Manager 

☐ Project Engineer  ☐ Other: ………………………… 

Q3. Represented party in the project 

☐ Owner / Employer  ☐ Contractor  ☐ Other: ……………… 

Q4. Counter party in the project (evaluated party): 

☐ Owner / Employer  ☐ Contractor  ☐ Other: ……………… 

Q5. Professional experience in the construction industry: …………… year(s) 

Q6. Experience in the current role: …………… year(s) 

 

SECTION 2: INFORMATION ABOUT THE PROJECT AND CONTRACT 

CHARACTERISTICS 

Q7. Project Location: ………………………… 

Q8. Cost of construction or contract value: ………………………… $ 

Q9. Start and end dates of the contract: ………………………… 

Q9a. If the project is not completed, planned project duration: ………… days 

Q9b. If the project is completed, the real duration of the project: ……… days 
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Q10. Type of construction: 

☐ Housing     ☐ Commercial 

☐ Public Service & Medical Facilities 

☐ Sports & Educational & Cultural Facilities 

☐ Industrial Facilities  ☐ Transportation Facilities 

☐ Treatment Facilities  ☐ Water Supply & Reservoirs 

☐ Power Plants & Lines  ☐ Soil Works 

☐ Other: ………………………… 

Q11. Type of contractor: 

☐ Single Company  ☐ Joint Venture ☐ Consortium 

Q12. Type of employer / owner: 

☐ Public   ☐ Private  ☐ PPP 

 

Q13. Type of contract: 

☐ Private Contracts   ☐ Public procurement 

☐ FIDIC Red Book   ☐ FIDIC Yellow Book 

☐ FIDIC Silver Book   ☐ Other: ………………………… 

Q14. Payment method of the contract: 

☐ Lump-Sum (Fixed Price)  ☐ Unit Price  ☐ Other :……… 

Q15. Project delivery system: 

☐ Design-Bid-Build (DBB) 

☐ Design-Build (DB) 

☐ Engineer-Procure-Construct (EPC) 

☐ Other: ………………………… 
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Q16. Please rate the level of design complexity of the project: 

(1: lowest level of complexity; and 5: highest level of complexity) 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q17. Please rate the level of construction complexity of the project: 

(1: lowest level of complexity; and 5: highest level of complexity) 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

 

SECTION 3: INFORMATION RELATED TO CHARACTERISTICS OF 

PARTIES AND THEIR ORGANIZATIONAL STRUCTURES (SKILLS) 

 Please rate the following using the values between 1 and 5. 

(1: weakest / worst; and 5: strongest / best) 

 

Q18. Relationship between parties / individuals: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q19. Parties’ previous experience with each other (i.e. level of satisfaction from 

each other). If there are no previous works together, then consider the reputation 

or credibility of the counter party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q20. Appropriateness of dispute avoidance incentives in the project: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q21. Quality of communication between parties: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 
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Q22. Working culture and skills (qualifications) of the counter party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q23. Working culture and skills (qualifications) of the represented party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q24. Response rate and communication skills of the counter party (please 

consider the quality of response structures): 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q25. Response rate and communication skills of the represented party (please 

consider the quality of response structures): 

 ☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q26. Level of experience (on the project type) of the counter party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q27. Level of experience (on the project type) of the represented party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q28. Project management and coordination skills of the counter party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q29. Project management and coordination skills of the represented party: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 
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SECTION 4: INFORMATION RELATED TO CHANGES  

Q30a. Is there any change order (variation order) in the project? 

☐ Yes   ☐ No 

Q30b. Is there any unexpected event in the project? 

☐ Yes   ☐ No 

Q.30c Is there any force majeure event in the project? 

☐ Yes   ☐ No 

 

SECTION 5: INFORMATION ABOUT THE DISPUTE CHARACTERISTICS 

 

Q31. Did any disputes occur during the project? 

 ☐ Yes   ☐ No 

Q32. Number of disputes: ………………………… 

Q33. Disputant party: 

☐ Owner / Employer  ☐ Contractor  ☐ Other: …………. 

Q34. Phase of occurrence of dispute: 

☐ Planning & Design & Tender & Procurement 

☐ Construction 

☐ Transfer & Repair & Maintenance 

☐ Other: ………………………… 
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Q35. Source of dispute: 

☐ Argument on payment related to extra works due to change order(s) 

☐ Argument on payment and EoT related to extra works due to change order(s) 

☐ Argument on measurement & valuation of contracted work(s) 

☐ Argument on EoT related extra costs 

☐ Delay in site handover & possession  

☐ Construction / Design defects, errors, and poor quality 

☐ Contractor fails to act as a prudent merchant 

☐ Delays in payments 

☐ Errors or substantial change(s) in Bill of Quantities 

☐ Inadequate site / soil investigation 

☐ Differences in interpretation of contract clauses  

☐ Other: ………………………… 

Q36. Is there any stoppage / suspension / interruption of works due to disputes? 

☐ Yes   ☐ No 

Q37. Disputed amount: ………………………… $ 

Q38. Settled amount: ………………………… $ 

Q39. Success Rate: ………………………… % 

Q40. Is there any EoT claim associated with the dispute? 

☐ Yes   ☐ No 

Q41. Disputed EoT amount: ………………………… days 

Q42. Settled EoT amount: ………………………… days 

Q43. Success Rate: ………………………… % 
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SECTION 6: INFORMATION ABOUT THE DELAY(S) IN THE PROJECT 

 

Q44a. Time extensions (total amount): …………… days 

Q44b. Ratio of extensions to planned project duration: ………………… % 

 

SECTION 7: INFORMATION ABOUT THE RESOLUTION METHOD 

CHARACTERISTICS 

 

Q45. Utilized resolution method for the dispute: 

☐ Litigation     ☐ Arbitration 

☐ Dispute Review Boards   ☐ Mediation 

☐ Senior Executive Appraisal  ☐ Negotiation 

☐ Other (Please indicate): ………………………… 

Q46. Cost of resolution with the preferred method: ………………………… $ 

Q47. Duration of resolution with the preferred method: …………………(years) 

Q48. Please rate the level of satisfaction from the preferred resolution method: 

(1: lowest level of satisfaction; and 5: highest level of satisfaction) 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 
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Q49. Please order the following resolution method attributes by ranking them 

from 1 to 10 using the values just once according to their importance during 

method selection for the disputed case in the project. 

(1: most important; and 10: least important)  

Resolution Method Attribute   Ranking (order of importance) 

Q49a. Preserve Relationships   …………………………………. 

Q49b. Speed of Resolution    …………………………………. 

Q49c. Cost of Resolution    …………………………………. 

Q49d. Bindingness     …………………………………. 

Q49e. Confidentiality    …………………………………. 

Q49f. Fairness     …………………………………. 

Q49g. Flexibility     …………………………………. 

Q49h. Control Over Process    …………………………………. 

Q49i. Reaching Creative or Remedying Solutions …………………………………. 

Q49j. Willingness      …………………………………. 
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SECTION 8: INFORMATION RELATED TO RESOLUTION METHOD 

KNOWLEDGE 

Please indicate your level of knowledge on the resolution methods below: 

(1: lowest level of knowledge; and 5: highest level of knowledge) 

Q50. Litigation: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q51. Arbitration: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q52. Dispute Review Boards: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q53. Mediation: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q54. Senior Executive Appraisal: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 

Q55. Negotiation: 

☐ 1  ☐ 2  ☐ 3  ☐ 4  ☐ 5 
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SECTION 9: FINAL REMARKS 

Q56. Would you consider using the “dispute occurrence prediction” model that 

will be established at the end of this research for decision-support? 

☐ Yes   ☐ No 

Q57. Would you consider using the “potential compensation prediction” model 

that will be established at the end of this research for decision-support? 

☐ Yes   ☐ No 

Q58. Would you consider using the “resolution method selection” model that 

will be established at the end of this research for decision-support? 

☐ Yes   ☐ No 

 

Thank you for precious contributions to our research. 
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B. APPROVAL FROM APPLIED ETHICS RESEARCH CENTER FOR THE 
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