
LIMITATIONS AND IMPROVEMENT OPPORTUNITIES FOR IMPLICIT
RESULT DIVERSIFICATION IN SEARCH ENGINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YAŞAR BARIŞ ULU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

DECEMBER 2019

Approval of the thesis:

LIMITATIONS AND IMPROVEMENT OPPORTUNITIES FOR IMPLICIT
RESULT DIVERSIFICATION IN SEARCH ENGINES

submitted by YAŞAR BARIŞ ULU in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering, METU

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering, METU

Prof. Dr. Özgür Ulusoy
Computer Engineering, Bilkent University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Yaşar Barış Ulu

Signature :

iv

ABSTRACT

LIMITATIONS AND IMPROVEMENT OPPORTUNITIES FOR IMPLICIT
RESULT DIVERSIFICATION IN SEARCH ENGINES

Ulu, Yaşar Barış

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Sengör Altıngövde

December 2019, 49 pages

Search engine users essentially expect to find the relevant results for their query. Ad-

ditionally, the results of the query should contain different possible query intents,

which leads to the well-known problem of search result diversification. Our work first

investigates the limitations of implicit search result diversification, and in particular,

reveals that typical optimization tricks (such as clustering) may not necessarily im-

prove the diversification effectiveness. Then, as our second contribution, we explore

whether recently introduced word embeddings can be exploited for representing doc-

uments to improve diversification, and show a positive result. Third, as our detailed

analysis reveals that the candidate set size plays a critical role for implicit diversifi-

cation, we propose to automatically predict the size of the candidate set on per query

basis. To this end, we use a rich set of features based on the inter-similarity of doc-

uments and similarity between queries and documents. Finally, we propose caching

similarities of document pairs to improve the processing time efficiency of implicit

result diversification.

v

Keywords: Search Engines, Search Result Diversification, Implicit Result Diversifi-

cation Methods, Machine Learning, Caching

vi

ÖZ

ARAMA MOTORLARINDA DOLAYLI CEVAP ÇEŞİTLENDİRME İÇİN
KISITLAMALAR VE GELİŞME FIRSATLARI

Ulu, Yaşar Barış

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Sengör Altıngövde

Aralık 2019 , 49 sayfa

Arama motoru kullanıcılarının arama motorundan temel beklentisi sorgu sonuçlarının

yapılan sorguyla alakalı olmasıdır. Buna ek olarak, sorgu sonuçları, sorgunun farklı

anlamlarını da barındırmalıdır, ki bu problem literatürde arama sonucu çeşitlendirme

şeklinde tanımlanmıştır. Çalışmamız ilk olarak geleneksel dolaylı çeşitlendirme me-

totlarının kısıtlamalarını incelemekte, ve özellikle kümeleme gibi optimizasyon yön-

temlerinin çeşitlendirme performansını iyileştirmeyebileceğini göstermektedir. İkinci

bir katkı olarak, dokümanları kelime kodlama tabanlı temsil etmenin çeşitlendirme

başarımına etkisi incelenmekte ve bu yaklaşımın olumlu sonuç verdiği gösterilmek-

tedir. Üçüncü bir katkı olaraksa aday küme büyüklüğünün dolaylı çeşitlendirme için

kritik rol oynadığı gözleminden hareketle bu parametre için sorgu bazında tahmin-

leme yapılması önerilmektedir. Bu amaçla dokümanlar arası, ve sorgu ile doküman

arası benzerlikleri temsil eden zengin bir öznitelik kümesi kullanılmaktadır. Son ola-

rak, dolaylı çeşitlendirmenin verimliliğini artırmak üzere dokümanlar arası benzer-

likleri saklayan bir önbellek yapısı önerilmektedir.

vii

Anahtar Kelimeler: Arama Motorları, Arama Sonucu Çeşitlendirme, Dolaylı Sonuç

Çeşitlendirme Metotları, Makine Öğrenimi, Önbellek

viii

To my love, Selin

ix

ACKNOWLEDGMENTS

I would first like to thank my supervisor Assoc. Prof. Dr. İ. Sengör Altıngövde with

my sincere feelings for his guidance and endless support. Without his knowledge and

motivation, our study would not be completed.

I would like to thank my love, Selin Ünal for her endless motivation and support in

my graduate study.

I would like to thank my colleagues Mehmet Akçay, Can Ünaldı, Andaç Akarsu and

Sena Terzi for their support.

I would also like to thank my parents who always give me the motivation every time

I need.

This work is partially funded by The Scientific and Technological Research Council

of Turkey (TÜBİTAK) under grant no. 117E861.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Definition and Contributions 2

1.3 Organization of the Thesis . 3

2 BACKGROUND INFORMATION . 5

2.1 Search Result Diversification . 5

2.2 Document Representation Methods 8

2.2.1 TF-IDF Model . 8

2.2.2 Word Embedding Model . 9

2.3 Predicting Parameters of the Result Diversification Methods 11

xi

2.4 Query-Document Relevance Score Calculation 12

2.5 Document-Document Similarity Calculation 12

2.6 Caching in Web Search Engines . 13

3 EXPERIMENTAL SETUP . 15

3.1 Data Set . 15

3.2 Evaluation Metric . 17

4 ANALYZING IMPLICIT RESULT DIVERSIFICATION METHODS . . . 19

5 PREDICTING IMPLICIT RESULT DIVERSIFICATION PARAMETERS . 29

5.1 Analyzing Candidate Set Size and Trade-off (λ) Value Selection . . . 29

5.2 Predicting the Candidate Set Size and Trade-off Parameter 32

6 CACHING DOCUMENT SIMILARITIES FOR IMPLICIT RESULT DI-
VERSIFICATION . 39

7 CONCLUSION AND FUTURE WORK 43

REFERENCES . 45

xii

LIST OF TABLES

TABLES

Table 2.1 Representation of a document as a word embedding. 11

Table 2.2 Different types of caching. 14

Table 3.1 Number of queries in TREC data sets. 16

Table 3.2 Query results in TREC data sets 16

Table 3.3 Document contents in TREC data sets. 16

Table 3.4 Term details in TREC data sets. 17

Table 4.1 MMR results using TF-IDF vector of documents with best α-nDCG@10

scores and trade-off (λ) values for each run. 20

Table 4.2 SY results using TF-IDF vector of documents with best α-nDCG@10

scores and threshold (β) values for each run. 20

Table 4.3 MMR results using DCG calculation and TF-IDF vector of docu-

ments with best α-nDCG@10 scores and trade-off (λ) values for each run. 21

Table 4.4 MMR results using clustering framework and TF-IDF vector rep-

resentation of documents with best α-nDCG@10 scores and trade-off (λ)

values for each run. 23

Table 4.5 MMR results using average word embedding of documents with

best α-nDCG@10 scores and trade-off (λ) values for each run. 24

xiii

Table 4.6 MMR results using minimum word embedding of documents with

best α-nDCG@10 scores and trade-off (λ) values for each run. 24

Table 4.7 MMR results using maximum word embedding of documents with

best α-nDCG@10 scores and trade-off (λ) values for each run. 24

Table 4.8 MMR results using min-max concatenation word embedding of

documents with best α-nDCG@10 scores and trade-off (λ) values for each

run. 25

Table 4.9 MMR results using TF-IDF mean word embedding of documents

with best α-nDCG@10 scores and trade-off (λ) values for each run. 25

Table 4.10 SY results using TF-IDF mean word embedding of documents with

best α-nDCG@10 scores and threshold (β) values for each run. 26

Table 5.1 Best α-nDCG@10 scores of each query with best trade-off (λ) value

and candidate set size. The scores that exceeds baseline scores is high-

lighted and fail ones are italicized. 30

Table 5.2 Number of queries performed high and poor according to baseline

scores with optimized parameter selection. 31

Table 5.3 Best overall performance metrics (α-nDCG@10) obtained by MMR

algorithm with both document representations. 31

Table 5.4 Feature list with properties. 33

Table 5.5 MMR diversification results with predicted candidate set size and

trade-off values by IBk algorithm. All α-nDCG@10 scores shows average

scores of queries. 36

Table 6.1 Different cache sizes obtained from using varying number of docu-

ments. 40

Table 6.2 Efficiency and effectiveness of original MMR. 41

Table 6.3 Efficiency and effectiveness of Case-1 Caching in MMR. 41

xiv

Table 6.4 Efficiency and effectiveness of Case-2 Caching in MMR. 42

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Visualization of word embedding vector. 10

Figure 4.1 Visualization of clustering framework. 22

Figure 4.2 Visualization of optimal trade-off value for each query in 2010HM

data set. 27

Figure 4.3 Ratio of relevant documents in candidate set for all data sets. . . 27

Figure 6.1 Visualization of cache hits. 40

xvi

LIST OF ABBREVIATIONS

AOL American Online

BM25 Best Matching-25

DCG Discounted Cumulative Gain

DF Document Frequency

IA-Select Intent-Aware Select

IDF Inverse Document Frequency

IR Information Retrieval

k-NN k-Nearest Neighbors

MMR Maximal Marginal Relevance

MSD Max-Sum Dispersion

NIST National Institute of Standards and Technology

NQC Normalized Query Commitment

TF Term Frequency

TF-IDF Term Frequency - Inverse Document Frequency

TREC Text Retrieval Conference

WE Word Embedding

xQuAD Explicit Query Aspect Diversification

α-nDCG α Weighted Normalized Discounted Cumulative Gain

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

One of the most popular web search engines, Google, handles over 6 billions of

queries per day1. Statistically, 84% of the submitted queries contain 3 or less number

of words2, and a certain fraction of these queries are likely to be too short to represent

the real underlying intent of the user. Such queries, called as ambiguous or multi-

faceted, can be interpreted in different ways [1]. A typical example of an ambiguous

query is the query ‘Apple’, which can be interpreted either as a product, a stock ex-

change, a fruit, or a street, etc. That is, the user’s intention may be retrieving the price

of Apple smart phones or computers, or learning about the types of apple fruit in the

world. For such queries, web search engines should provide search results that cover

as many different meanings of the query as possible.

The necessity of covering possible distinct meanings of the query leads to the search

result diversification problem. Generally, this problem is handled by re-ranking an

initially retrieved set of documents for a query to provide both relevance and diver-

sity of the results. The search result diversification problem is an instance of the

maximum coverage problem which is a typical NP-hard problem [2]. Therefore, sev-

eral approximate approaches are proposed in the literature in order to handle this

problem [2].

Search result diversification methods, namely implicit result diversification and ex-

plicit result diversification, try to satisfy user expectation in case of ambiguous or

1 https://www.internetlivestats.com/google-search-statistics/
2 https://www.keyworddiscovery.com/keyword-stats.html

1

https://www.internetlivestats.com/google-search-statistics/
https://www.keyworddiscovery.com/keyword-stats.html

multi-faceted queries [3]. Implicit result diversification methods essentially try to

cover different interpretations of a query by taking the inter document similarities

into account. On the other hand, explicit result diversification methods employ pre-

defined intents (e.g., sub-queries) of the query in order to cover all aspects of the

query.

In this thesis, we concentrate on the implicit result diversification, scrutinize possible

limitations of the methods in this category and propose solutions to overcome these

limitations.

1.2 Problem Definition and Contributions

By definition, implicit result diversification methods exploit the information (e.g.,

document content and features) extracted from the initial set of retrieved documents.

That is, these methods perform re-ranking of the retrieved set of documents without

any external knowledge of the query aspects. A typical implicit search result diver-

sification method contains three main components, such as the similarity function,

candidate document set and trade-off parameter. First one is the function that calcu-

lates the similarity between document pairs. Second one is the set of documents to

be re-ranked. And the last one is the parameter balancing the relevance and diver-

sity of the final ranking. In this thesis, we aim to improve the implicit diversification

performance by exploring better solutions to determine these key components.

To this end, our contributions are listed as follows:

• We first explore the impact of a well-known optimization (e.g., [3]), namely,

clustering, on the performance of a representative implicit diversification method,

i.e., Maximal Marginal Relevance (MMR) [4]. Our experiments reveal that

clustering of candidate documents in such a scenario does not help, but may

even diminish the diversification performance with respect to the baseline non-

diversified ranking.

• To improve implicit diversification performance, we propose to represents can-

didate documents based on the recently proposed word embeddings [5, 6]. Our

2

experiments show that using the latter representation is superior to representing

documents based on the traditional vector space model (with tf-idf weights).

• We analyze the diversification performance per query by varying the candidate

document set size and trade-off parameters for MMR method, and show that

the best performing parameters considerably differ for different queries (veri-

fying a similar finding for the trade-off parameter in [7]). Thus, we propose

to predict the candidate set size on a per query basis, to achieve a more cus-

tomized diversification of query results. To this end, we employ a rich set of

features that capture the retrieval effectiveness (i.e., query performance pre-

dictors [7, 8, 9, 10] and pairwise similarity of documents (using alternative

document representations).

• Implicit result diversification algorithms typically calculate pairwise similarity

of the documents in the candidate set, which is a costly operation to be con-

ducted on the fly. In order to improve the processing efficiency, we propose to

use a cache of such pairwise similarity scores.

Note that, a portion of our work presented in this thesis is accepted for publication in

European Conference on IR Research (ECIR 2020) with the title "Predicting the Size

of Candidate Document Set for Implicit Web Search Result Diversification".

1.3 Organization of the Thesis

In Chapter 2, we provide background information on search result diversification

methods as well as the basics of document representation and caching for search. In

Chapter 3, the details of the experimental setup and evaluation metrics used through-

out the thesis are explained. In Chapter 4, we analyze implicit search result diversi-

fication to detect possible limitations, and evaluate the impact of an alternative doc-

ument representation based on word embeddings on the diversification performance.

In Chapter 5, we focus on the performance of implicit diversification with respect to

the trade-off and candidate document set size parameters, and describe our strategy

to predict the candidate set size. Two basic strategies for employing a cache of pair-

wise document similarities during implicit search result diversification is presented

3

in Chapter 6. Finally, in Chapter 7, we conclude and point to future research direc-

tions.

4

CHAPTER 2

BACKGROUND INFORMATION

In this chapter some background information is provided in detail. Firstly, search

result diversification is defined, and then some approaches of search result diversi-

fication is explained. Later we give details of some methods which are examined

throughout our experiments.

2.1 Search Result Diversification

As explained before in Chapter 1, search result diversification is re-ranking result doc-

ument set which are retrieved by their relevance scores. Many have acknowledged the

search result diversification as an significant problem [11], [12]. Especially develop-

ing a model which rank documents on the basis of combination of relevance score

to a query and diversity is one of the crucial problem in search result diversification

[1]. In early stages of evolution of result diversification, common retrieval methods

which are rests upon Probabilistic Ranking Principle [13] suppose that relevance of

documents is irrelevant from others in the collection. On the contrary, as a part of def-

inition of result diversification, relevance specifies not only cohesion between given

a query and a selected document but also cohesion between a document and other re-

trieved documents [3]. As a result of this, most of the diversification techniques have

tried to stabilize similarity of query-document pairs for relevance and dissimilarity of

document-document pair for diversity in order to achieve result diversification.

Search result diversification techniques was categorized as implicit or explicit [14].

Implicit search result diversification ones cope with diversification problem by con-

tent of retrieved document list [4], [15], [16], [17]. On the other hand, explicit search

5

result diversification methods rely on aspects of queries which are externally gener-

ated using evidence [14], [18].

One of the earliest example of implicit result diversification methods is Maximal

Marginal Relevance (MMR) is proposed by Carbonell and Goldstein in [4]. In their

work, two functions, one is for calculating similarity between document and query,

the other is for calculation the dissimilarity between among documents are combined

together in order to calculate marginal score. At each iteration the document with

highest MMR score added to result set. The score can be calculated as follows:

MMR(Di) = argmax
Di∈R

[
λSim1

(
Di, Q

)
− (1− λ)max

Dj∈S
Sim2

(
Di, Dj

)]
(2.1)

where D stands for a document, Q for a query, S for set of documents that have been

selected so far,R for set of candidate documents to be selected. Sim1 is the similarity

between query and document, which also indicates relevance score of document for

a given query, Sim2 is the similarity between two documents. Lastly λ is the trade-

off parameter which tunes the relevance score of document and document-document

similarity.

Another example of implicit result diversification methods is Max-Sum Dispersion

(MSD) is proposed by Gollapudi and Sharma in [19]. It s a greedy algorithm firstly

introduced in [20] as a solution to Max-Sum Dispersion Problem. In this algorithm,

pair of documents with the largest score are added to result set and formulated as

follows:

MSD(Di,Dj) = argmax
Di,Dj∈R

[
(1−λ)

(
Sim(Di, Q)+Sim(Dj, Q)

)
+2λDiv(Di, Dj)

]
(2.2)

where Sim is the similarity between query and document, which is same as in MMR.

Samely in MMR,R stands for candidate document set and λ is the trade-off parameter

for balance. Different from MMR, Div stands for distance function that calculates

dissimilarity between pair of documents.

6

Another implicit method, namely Sy, which is a simple algorithm proposed in [21] for

detecting duplicate and near-duplicate tweets. In brief, Sy moves from top to bottom

in candidate document set R and compares pairwise similarity of documents with a

predefined threshold value. For a document Di, if similarity score with Dj , where Dj

follows Di in the ranking in candidate document set R, is greater than the threshold,

then Dj is removed from candidate document set R.

In the examples of implicit search result diversification methods, there exists only the

information about initially retrieved result set and some details like relevance score,

content of documents and queries etc.

In contrast to implicit search result diversification methods, explicit ones benefit from

query aspects which are explicitly created by using a taxonomy of information or

query logs [18], [22]. Intent-Aware Select (IA-Select) method, one of the explicit

search result diversification method, supposes that both queries and documents are

classified in compliance with this taxonomy [18]. In each iteration of algorithm, a

document is selected according to higher scores which means that it covers different

subtopic of a query. The presentation of the scoring function as follows:

IA− Select(Q,Di) =
∑
Qa∈Q

P (Qa|Q)V (Di|Q,Qa))
∏
Dj∈R

(1− V (Dj|Q,Qa)) (2.3)

where Qa is an aspect of query Q, Di is candidate document to be selected and Dj

is the document already selected. Furthermore P (Qa|Q) and V (Di|Q,Qa) are the

probability of query aspect Qa for the query Q and the likelihood of document Di

relevant to the query Q in terms of query aspect Qa, respectively.

Another example of explicit method is eXplicit Query Aspect Diversification (xQuAD)

framework based on probability of relevance and diversity [23]. It also uses query

aspects that are acquired by Text REtrieval Conference (TREC) subtopics. This

7

method’s scoring function is as follows:

xQuAD(Q,Di) = (1−λ)P (Di|Q)+λ
∑
Qa∈Q

[
P (Qa|Q)P (Di|Qa)

∏
Dj∈R

(1−P (Dj|Qa)))

]
(2.4)

where P (Di|Q) and P (Di|Qa) represents relevance score of candidate document Di

to the query Q and query aspect Qa respectively, P (Qa|Q) is the probability of the

aspectQa for the queryQ, P (Dj|Qa) represents likelihood of the documentDj which

is already selected in result set in terms of query aspect Qa. Lastly λ is the trade-off

parameter for balancing the relevance and the diversity measurements.

2.2 Document Representation Methods

Representation of a document plays a key role in implementing implicit result diver-

sification in order to calculate similarity measurement between pair of documents.

Basically, we use two main representation of a document namely, TF-IDF (Term Fre-

quency - Inverse Document Frequency) and word embedding model.

2.2.1 TF-IDF Model

TF-IDF often used in Information Retrieval (IR) is meant to represent the importance

of a term for a document in a corpus [24]. Furthermore, search engines often use sort

of TF-IDF schema as a key instrument in retrieving documents as a result of a query.

TF-IDF can be computed as follows:

TF − IDF (ti, d) = TF (ti, d) · IDF (ti, d) (2.5)

where t is for a term and d is for a document includes term t . TF (ti, d) and

IDF (ti, d) represent Term Frequency and Inverse Document Frequency respectively,

8

and formulations are as follows:

TF (ti, d) =
|{ti ∈ d}|
|d|

(2.6)

IDF (ti, d) = log
|C|

|{d ∈ C : ti ∈ d}|
(2.7)

where C stands for a collection or corpus.

In our experiments, the documents are symbolized using TF-IDF model. The illus-

trations of some documents as follows:

d1 =
[
(t1, tfidft1), (t4, tfidft4), (t5, tfidft5), (t7, tfidft7)

]
d2 =

[
(t1, tfidft1), (t2, tfidft2), (t3, tfidft3), (t4, tfidft4)

]
d3 =

[
(t2, tfidft2), (t3, tfidft3), (t7, tfidft7), (t8, tfidft8)

]
Calculation similarity measurement between pair of documents are simply done by

dot product with the help of representing document as a vector of TF-IDF values.

2.2.2 Word Embedding Model

Word embedding, which is also word representation, aims to group words having

characteristics in common. This representation is used for the first time in 1986 [25].

In recent years, Skip-gram model, which is an efficient way in which words can be

learned as a vector representation from text, is introduced [6]. Later, Glove [26] which

has higher performance than previous methods is presented.

Each word is represented as a D-dimensional vector in word embedding and each

dimension of a vector indicates how relevant a word is to specific feature. A small

example of word embedding vector with 8-dimension is shown in Figure 2.1. Ac-

cording to the figure, "broccoli" and "tomato" have a common feature saying both are

vegetable are similar to each other, on the other hand "cat" is different from both.

9

Figure 2.1: Visualization of word embedding vector.

The key point in this model is represent document as a vector with fixed D-dimension.

In our experiments we use several approaches (e.g., see [27]) while representing doc-

uments via word embeddings, listed as follows:

1. Calculating average of term’s word embedding

2. Finding minimum valued features of word embedding

3. Finding maximum valued features of word embedding

4. Finding minimum-maximum valued features of word embedding and concate-

nating

5. Calculating average of term’s word embedding multiplied by TF-IDF values of

the term.

We provide a visualization of some of these approaches as follows.

Document representation:

D : [w1, w2, w3]

Word embedding representation of terms:

w1 : [0.50, 0.20, 0.90]

w2 : [0.90, 0.60, 0.10]

w3 : [0.10, 0.50, 0.70]

10

TF-IDF representation of terms:

TF-IDFw1 = 0.20

TF-IDFw2 = 0.60

TF-IDFw3 = 0.30

Table 2.1: Representation of a document as a word embedding.

Method Document as a Word Embedding

1. Avg. of term D : [0.50, 0.43, 0.56]

2. Min D : [0.10, 0.20, 0.10]

3. Max D : [0.90, 0.60, 0.90]

4. Min-Max Concat. D : [0.10, 0.20, 0.10, 0.90, 0.60, 0.90]

5. TF-IDF Avg. D : [0.19, 0.18, 0.15]

2.3 Predicting Parameters of the Result Diversification Methods

Several diversification methods need to tune a trade-off parameter (aimed to balance

relevance versus diversity) in the range [0,1] to achieve its best performance. Nor-

mally, tuning of this trade-off parameter can be done uniformly on a query set in or-

der to obtain the higher diversification performance. However, since different queries

may exhibit a different level of ambiguity, Santos et al. [7] suggested a selective di-

versification approach, where the trade-off parameter is predicted for each query.

In addition to examining trade-off parameter, initial candidate set size, which is an-

other key parameter, has an impact on diversification performance. In [28], prelim-

inary experiments for candidate set size prediction is presented for explicit diver-

sification. In contrary, this thesis addresses implicit diversification, which requires

features that capture inter-document similarity that are not used in the latter work.

Furthermore, we predict both the candidate set size and trade-off parameters, which

is different than the setup of the previous work. That is, given an initial retrieval result

for a query, we estimate the candidate set size and trade-off parameter on the basis of

similar queries that has been processed before.

11

In our work, we employ k-NN [29] algorithm for prediction (as in [7]), which is

a lazy learning approach. We choose k-NN for simplicity,effectiveness and ease of

use in spite of some disadvantages such as computational complexity and significant

memory requirements.

2.4 Query-Document Relevance Score Calculation

Query-document relevance score which is an important part of implicit diversification

methods are calculated using Okapi BM25 ranking function [30] in our experiments.

Okapi BM25 ranking function is as follows:

BM25(Q,D) =
∑
Qi∈Q

IDFQi
× tfQi,D × (k1 + 1)

k1 × (1− b+ b× |D|
avdl

)× tfQi,D

(2.8)

where tfQi,D is frequency of term Qi in document D, avdl stands for average length

of document in corpus, b and k1 are free parameters, usually chosen as 0.75 and

1.2 respectively, and IDFQi
stands for inverse document frequency [31] and usually

calculated as follows:

IDF (Qi) = log
N −NQi

+ 0.5

NQi
+ 0.5

(2.9)

where, N is the size of the corpus and NQi
is the document count containing term Qi

in corpus.

2.5 Document-Document Similarity Calculation

Other important part of implicit diversification methods is similarity score between

pair of documents. In our experiments, we implement several similarity functions,

namely, cosine similarity, euclidean similarity and jaccard similarity, and they are

12

formulated as follows:

CosineSimilarity(X, Y) =

N∑
i=1

Xi · Yi√
N∑
i=1

Xi ·Xi ×

√
N∑
i=1

Yi · Yi

(2.10)

EuclideanSimilarity(X, Y) = 1−

√√√√ N∑
i=1

Xi · Yi (2.11)

JaccardSimilarity(X, Y) =
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
(2.12)

2.6 Caching in Web Search Engines

As a research topic, caching has been studied for a long time by many researchers

[32]. In spite of there exists many studies about web caching, researchers have had an

attention to caching in search engines for only a decade [33]. So long as the amount

of queries increases over time, significant performance gains and resource savings are

obtained by caching strategies in search engines.

In early stages of caching, the idea of caching was that the most frequent or recent

data have been stored in devices which have high volume and slow data storage.

Afterwards, devices with low volume and fast data storage have been used in caching.

In some caching techniques, this idea is accomplished with some specific information

and offline preprocessing.

In a typical large scale web search engine, there exists five different cache types ac-

cording to their contents. These are, namely result, score, intersection, list and docu-

ment. The contents of the different types of typical search engine caches are shown

in Table 2.2.

Caches in search engine can be categorized as static [33], [34], [35] and dynamic

[33], [35] depending on their abilities and capacities. In static caches, data items

13

Table 2.2: Different types of caching.

Cache Type Content

1. Result Cache Query Results

2. Score Cache Precomputed Scores

3. Intersection Cache Intersections of Posting Lists

4. List Cache Posting Lists

5. Document Cache Document Content

which will be cached are acquired from frequently accessed before and the content of

the caches remains unchanged until the following regular update [36]. On the other

hand, in dynamic caches the recent data items stored and are changed dynamically

according to recently accessed data.

In our work, we will develop a static cache for implicit search result diversification.

Our cache will store the similarity scores of document pairs generated from top-k

results of a large number fo queries. As the performance metrics, efficiency (time) and

effectiveness (performance of diversification) are investigated through experiments on

caching.

14

CHAPTER 3

EXPERIMENTAL SETUP

In this chapter, we present the details of the data sets used in our experiments in order

to analyze implicit diversification methods. Also, evaluations metrics that are used

for comparing our results to baseline results are explained.

3.1 Data Set

We employ TREC collections that belong to years 2009 to 2012 in our experiments.

Brief details of internal data files based on these data sets are as follows:

• Query Set: It contains queries that are performed by search engine. It has a

simple and short queries such as “obama family tree”, “horse hooves”, wed-

ding budget calculator”, etc. The number of queries in each data set is provided

in Table 3.1.

• Query Results: It contains results of queries that are sorted based on a ranking

model. In our cases, Okapi BM25 function is used as retrieval and ranking

function. In each year, there exists approximately 1000 documents per query. In

our experiments, we use discrete number of documents in retrieved results per

query in the [10,100] interval. Furthermore, the scores of retrieved documents

obtained from BM25 function and document id’s are existed in the data. A

structure of this data file is shown in Table 3.2.

• Document Contents: Documents retrieved as a result of query contain bag

15

Table 3.1: Number of queries in TREC data sets.

TREC Data Set Number of Queries

2009HM 50

2010HM 48

2011HM 50

2012HM 50

2009TREC 50

2010TREC 50

2011TREC 50

2012TREC 50

Table 3.2: Query results in TREC data sets

Query Id Document Id Score of a Document

queryi documentj score_of_documentj

queryi documentk score_of_documentk

queryi documentl score_of_documentl

queryi documentm score_of_documentm

of words, in order words, terms. This data is composed of some term details

such as a query id, rank of a document including the term, term id and term

frequency (TF) as shown in Table 3.3.

Table 3.3: Document contents in TREC data sets.

Query Id Rank of a Document Term Id Term Frequency

queryi rankj termk TF_termk

queryi rankj terml TF_terml

queryi rankj termm TF_termm

queryi rankj termn TF_termn

16

Table 3.4: Term details in TREC data sets.

Term as a string Document Frequency Inverse Document Frequency

termi DFi IDFi

termj DFj IDFj

termk DFk IDFk

• Term Details: Term details such as textual representation of a term, document

frequency (DF) and inverse document frequency (IDF) are included in this data.

Meanwhile, the order of terms is equal to term id. Simply, DF represents the

number of documents containing the term and IDF represents a measurement

of the amount of information provided by the term, as shown in Table 3.4.

• Relevance Information: It contains relevance judgments information that in-

dicates a document is relevant or non-relevant with respect to given query. Our

performance metrics which are explained later in this chapter are generated

using relevance information.

3.2 Evaluation Metric

We calculate α-nDCG@k [37] which is advanced version of nDCG [38] with using α

is equal to 0.5 in order to measure the diversification performance, where k is cut-off

value, used always as 10. This process is performed by the aid of ndeval software1

provided by NIST. ndeval uses diversified result file and relevance information as

inputs. Then, it generates metrics for each query and mean of those.

1 https://trec.nist.gov/data/web10.html

17

https://trec.nist.gov/data/web10.html

18

CHAPTER 4

ANALYZING IMPLICIT RESULT DIVERSIFICATION METHODS

In this chapter, we share experiment outcomes of implicit result diversification meth-

ods with several settings such as representing document as TF−IDF vector or Word

Embeddings and calculating similarity measurement between pair of documents. In

addition to that, some possible optimizations are made to improve diversity. So, we

compare results of implemented diversification methods to non-diverse results ac-

cording to evaluation metrics such as α-nDCG@10.

Candidate set size, which is one of key parameter of implicit result diversification

methods, is used with fixed value. Top 100 documents from initial result set are

selected as a candidate set for diversification. The other key parameter, trade-off

value (λ) for MMR and threshold value (β) for SY is increased with 0.05 between

values 0 and 1 for each diversification. Best performing trade-off (λ) and threshold

(β) values are presented for each TREC runs in experiment results.

First of all we look at the diversification performance of MMR algorithm with repre-

senting document as a TF − IDF vector belonging to its terms. For each run, left

side of MMR which is query-document relevance score is used as in TREC data set

and right side which is penalize the relevance score according to document-document

similarity calculated with cosine similarity. The problem behind this setup is left and

right side of MMR equation is not in same range. Because of cosine similarity by

nature is between 0 and 1, we normalize query-document relevance scores by Virtual

Document Normalization [39]. By this settings, experiment results are summarized in

Table 4.1. Our first attempt shows that MMR is under-performing contrary to findings

in [3] except for 2010HM run.

19

Table 4.1: MMR results using TF-IDF vector of documents with best α-nDCG@10

scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2360 0.95

2010HM 0.2427 0.2461 0.80

2011HM 0.4680 0.4581 0.95

2012HM 0.3218 0.2911 0.95

In addition to MMR, SY algorithm is employed for analyzing with same setup and

results of each run are shown in Table 4.2. Under same circumstances such as candi-

date set size and similarity function, SY algorithm has marginal effect on all runs in

contrast to MMR.

Table 4.2: SY results using TF-IDF vector of documents with best α-nDCG@10

scores and threshold (β) values for each run.

Run ID Initial Diversified Threshold (β) Value

2009HM 0.2520 0.2564 0.80

2010HM 0.2427 0.2534 0.70

2011HM 0.4680 0.4687 0.45

2012HM 0.3218 0.3273 0.90

In our first attempt in MMR, we realize that documents which are irrelevant and in

lower ranks are selected in our result set which brings unexpected results. In second

one, we try to promote documents that are possibly relevant and in higher ranks.

Our second attempt is to shrink effects of similarity part (right side of MMR) on

MMR score with checking initial ranks of already selected documents. Instead of

penalizing MMR score with exact similarity score, we multiply similarity score by

a formula which is shown in Eq. 4.1 based on initial rank of document which is in

result set. In this way, documents which are similar to top ranked documents in result

set can be more eligible. We call this optimization as DCG calculation, since the

20

formula is similar to DCG [38].

MMR(Di) = argmax
Di∈R

[
λSim1

(
Di, Q

)
−(1−λ)max

Dj∈S

[1

log2(10− i) + 1
Sim2

(
Di, Dj

)]]
(4.1)

In Eq. 4.1, k represents the rank of document Dj from initial result set. Results

of DCG calculation method in MMR is shown in Table 4.3. A trivial improvement

is achieved in comparison with original MMR results in Table 4.1. It shows that

diversification performance is still insufficient by comparison with the baseline of

runs.

Table 4.3: MMR results using DCG calculation and TF-IDF vector of documents

with best α-nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2464 0.95

2010HM 0.2427 0.2405 0.95

2011HM 0.4680 0.4666 0.95

2012HM 0.3218 0.3181 0.75

As in proposed framework by He et al. [3], we try to cluster initial retrieved docu-

ments in order to bring similar documents together. And then, a simple cluster ranker

is implemented according to documents which each cluster contains. After select-

ing documents for the candidate set from clusters that scored highly with cut-off T,

MMR as a diversification method is performed on selected candidate set. The overall

process is represented as in Fig 4.1. The idea behind selecting documents from top

ranked clusters is that we may eliminate irrelevant documents from initial retrieval

list.

21

Figure 4.1: Visualization of clustering framework.

In order to cluster documents, we adapt K-means Clustering [40] that uses document

contents as in vector space. At the beginning, predefined number of clusters are

created, in our work we select as 10. And then, randomly selected 10 documents

from initial candidate set are assigned to clusters. Algorithm iteratively select and

assign documents to closest center of cluster and after each iteration center of clusters

is updated. Algorithm iterates until convergence or reaching maximum number of

22

Table 4.4: MMR results using clustering framework and TF-IDF vector representa-

tion of documents with best α-nDCG@10 scores and trade-off (λ) values for each

run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2371 0.95

2010HM 0.2427 0.2341 0.90

2011HM 0.4680 0.4474 0.90

2012HM 0.3218 0.2954 0.95

iteration defined before. In ranking step, each cluster score is calculated by averaging

the scores of the documents that the cluster includes. And finally, the documents

which are obtained from top T ranked clusters are used as candidate document set.

It is because K-Means clustering performs poorly, especially several clusters contain

one or two documents, that we select T as 5.

Experiment results in Table 4.4 shows that, MMR algorithm with Clustering Frame-

work underperforms compared to pure MMR which is shown in Table 4.1 as well as

in contrary to literature. Possible problems with adaptation of Clustering Framework

are deciding number of clusters, selecting center of clusters randomly and cut-off T

value for eliminating clusters with lower scores. It could be said that a lots of tuning

are needed for improving diversification performance with Clustering Framework.

Since representing document as a TF-IDF vector could not be powerful for implicit

result diversification methods, we try another document representation called Word

Embedding. As explained in previous chapters, words or terms are represented as a

D-dimensional vector. We select 100-dimensional Glove model for our experiments.

Several representation methods such as averaging term word embeddings, selecting

min values or max values from word embeddings, concatenating min-max values

from word embeddings and averaging term word embeddings which are multipled

by own TF-IDF values. All representations are tested on experiments and results are

given below:

23

Table 4.5: MMR results using average word embedding of documents with best α-

nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2214 0.95

2010HM 0.2427 0.2321 0.80

2011HM 0.4680 0.4267 0.85

2012HM 0.3218 0.2971 0.65

Table 4.6: MMR results using minimum word embedding of documents with best

α-nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2593 0.65

2010HM 0.2427 0.2437 0.35

2011HM 0.4680 0.4684 0.90

2012HM 0.3218 0.3222 0.90

Table 4.7: MMR results using maximum word embedding of documents with best

α-nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2523 0.70

2010HM 0.2427 0.2425 0.20

2011HM 0.4680 0.4708 0.60

2012HM 0.3218 0.3204 0.95

24

Table 4.8: MMR results using min-max concatenation word embedding of documents

with best α-nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2531 0.70

2010HM 0.2427 0.2573 0.60

2011HM 0.4680 0.4693 0.75

2012HM 0.3218 0.3215 0.95

Table 4.9: MMR results using TF-IDF mean word embedding of documents with best

α-nDCG@10 scores and trade-off (λ) values for each run.

Run ID Initial Diversified Trade-off (λ) Value

2009HM 0.2520 0.2413 0.95

2010HM 0.2427 0.2461 0.95

2011HM 0.4680 0.4693 0.90

2012HM 0.3218 0.3060 0.95

Except from representing document as word embedding with averaging all terms’

word embeddings which is shown in Table 4.5, MMR with word embeddings yields

better diversification performance than representing document as a TF-IDF vector.

In word embedding representation, due to the fact that simply getting an average of

all word embeddings leads to lose information about documents, the results have no

change to have better performance than other approaches such as min, max, min-max

concatenate, tf-idf mean. Among all other approaches, diversification performance

totally depends on used data set. For example, highest diversification performance

for 2009HM and 2012HM data set is achieved by representing document as minimum

valued word embeddings and results of them are shown in Table 4.6. For 2010HM

data set, best diversification performance obtained by using minimum-maximum con-

catenation of word embeddings represented in Table 4.8. Lastly, maximum valued

word embedding representation of a document is beneficial for diversification perfor-

mance on 2011HM data set.

For SY algorithm, the problem arises from representing document as mean, mini-

25

mums, maximums and minimums-maximums concatenation of word embeddings. In

these four approach, similarity measurement of pair of documents are so close that

it is almost 1. Those representations make it impossible use SY algorithm which

only depends of similarity thresholds. According to our experiments, threshold val-

ues purely in range [0.970, 0.1] make some sense of using it, unfortunately it yields

poor performance. On the other hand, representing documents as tf-idf mean of word

embeddings is more sensitive to use SY algorithm. The experimental results of the

approach is shown in Table 4.10. However, it could be stated that SY algorithm with

word embedding have no remarkable effects on diversification performance.

Table 4.10: SY results using TF-IDF mean word embedding of documents with best

α-nDCG@10 scores and threshold (β) values for each run.

Run ID Initial Diversified Threshold (β) Value

2009HM 0.2520 0.2363 0.95

2010HM 0.2427 0.2463 0.95

2011HM 0.4680 0.4551 0.95

2012HM 0.3218 0.3115 0.95

In contrast to findings in literature, diversification performance of implicit result di-

versification methods is not efficient as we expect. Observing previously produced

results of implicit result diversification methods shows us better diversification per-

formance can be obtained by selecting trade-off (λ) value for each query as proposed

in [7]. The representation of optimal trade-off (λ) value that yields best α-nDCG@10

metric for each query in MMR with TF-IDF document representation for 2010HM

data set is shown in Fig. 4.2.

One another issue about poor performance of implicit result diversification is that ratio

of relevant documents in candidate set is relatively decreasing with increasing can-

didate document set size. It means that finding relevant and diverse documents from

candidate document set becomes much harder when candidate set is large enough.

The ratio of relevant documents in candidate set for all data sets used through our

experiments is shown in Fig. 4.3

26

Figure 4.2: Visualization of optimal trade-off value for each query in 2010HM data

set.

Figure 4.3: Ratio of relevant documents in candidate set for all data sets.

In addition to examining impact of trade-off (λ) parameter on diversification perfor-

mance for each query, varying candidate set size per query has better performance

than fixed candidate set size for explicit search diversification as proposed in [28].

Our experiments which is conducted with altering candidate set size and trade-off

27

(λ) parameter shows that much more diversification performance can be achieved by

selecting optimal values of both two key parameters belonging to implicit result di-

versification. In next chapter, we will try to find optimal values of those by learning

and predicting methods.

28

CHAPTER 5

PREDICTING IMPLICIT RESULT DIVERSIFICATION PARAMETERS

As demonstrated in previous chapter, distinct usage of trade-off (λ) parameter changes

the diversification performance significantly. In this chapter, we will investigate the

performance of implicit search result diversification methods by analyzing both pa-

rameters, namely trade-off (λ) and candidate set size with changing values.

In this chapter, firstly diversification performance for each query with changing trade-

off (λ) value and candidate set size will be shown. Then we will explain several fea-

tures that are used through learning process in order to predict both of the parameters.

5.1 Analyzing Candidate Set Size and Trade-off (λ) Value Selection

Since the input of implicit result diversification method is only initially retrieved re-

sult set, it can be said that candidate set which is a sub set of initial result set directly

influence on how diversification performs. In order to show this point, MMR as a

implicit diversification method is applied on four different data sets with different

baselines. Candidate set size is varied through experiments from 10 to 100 with an

step size 10 and lambda is valued from 0.05 to 1.0 as in previous chapter.

As shown in Table 5.1 with detailed scores for 2009HM data set obtained by MMR

method with word embeddings, candidate set sizes and trade-off (λ) parameters that

performs best changes for each query. (The queries have baselines with 0 scored

are excluded from the table) It can be said that performance of the implicit result

diversification can be improved considerably when optimum trade-off and candidate

set size parameters are predicted correctly.

29

Table 5.1: Best α-nDCG@10 scores of each query with best trade-off (λ) value and

candidate set size. The scores that exceeds baseline scores is highlighted and fail ones

are italicized.

Query ID Candidate Set Size Trade-off (λ) Value α-nDCG@10
1 10 0.05 0.6767
2 100 0.05 0.1826
3 10 0.55 0.7043
4 10 0.05 0.1723
5 10 0.80 0.1781
8 20 0.10 0.0771
9 10 0.60 0.1879

11 30 0.05 0.4450
12 10 0.25 0.6630
14 20 0.05 0.5044
16 10 0.55 0.1047
17 10 0.90 0.6061
18 100 0.20 0.8703
20 100 0.05 0.0869
21 10 0.55 0.4714
22 20 0.05 0.1897
24 30 0.10 0.0771
25 30 0.20 0.2462
26 10 0.75 0.6098
27 100 0.05 0.1811
28 100 0.20 0.0760
30 100 0.45 0.1634
31 20 0.05 0.2660
32 10 0.90 0.4173
33 30 0.05 0.3200
35 100 0.05 0.1758
36 30 0.05 0.1861
37 100 0.05 0.2683
38 10 0.25 0.3573
39 10 0.05 0.1815
40 10 0.05 0.4268
41 10 0.20 0.6008
42 100 0.20 0.1523
43 10 0.95 0.3906
44 10 0.85 0.2688
45 10 0.60 0.7394
46 50 0.05 0.4554
47 10 0.25 0.7935
48 10 0.2 0.5906
49 10 0.15 0.2488
50 10 0.85 0.9079

30

Another detail of the results of MMR method using word embedding is shown in

Table 5.2. Number of queries that have performance score above and under baseline

scores are listed in that table. It shows that high percentage of queries have higher

performance than baselines with help of the implicit diversification methods.

Table 5.2: Number of queries performed high and poor according to baseline scores

with optimized parameter selection.

Run ID Number of Queries Number of Well

Performed Queries

Number of Poor

Performed Queries

2009HM 50 31 3

2010HM 48 36 5

2011HM 50 35 3

2012HM 50 34 11

The overall performances of each data sets with MMR algorithm is represented in

Table 5.3. Samely, this performances are recorded using fixed, and also different,

candidate set and trade-off parameter (λ) for each of the query. It is totally true that

using best parameters with word embeddings representation provides higher perfor-

mance than tf-idf. Because of this, in next section we will benefit from the results

obtained by using word embeddings.

Table 5.3: Best overall performance metrics (α-nDCG@10) obtained by MMR algo-

rithm with both document representations.

Run ID Baseline MMR with TF-IDF MMR with

Word Embeddings

2009HM 0.2520 0.2924 0.3044

2010HM 0.2427 0.2961 0.3137

2011HM 0.4680 0.5114 0.5194

2012HM 0.3218 0.3787 0.4452

31

5.2 Predicting the Candidate Set Size and Trade-off Parameter

It is stated that with the help of optimizing candidate set size and trade-off value

per query can significantly improve the performance of implicit result diversification

methods in previous chapter. We develop a learning model for predicting candidate

set size and trade-off value for each query. In order to accomplish this task, we use

classification methods of Weka framework [41] which is an open source machine

learning tool. Weka basically contains various of machine learning algorithms for

analyzing and modelling data.

Classification is a learning technique which categorizes instances into different labels

or classes on the basis of several features. Although Weka framework provides lots

of classifier, we have tried some of them such as Naive Bayes [42], Multilayer Per-

ceptron [43], IBk (k-NN) [44] and J48 tree [45]. Since classifiers except for IBk have

bad prediction accuracy, we have mainly focused on IBk for learning and prediction

steps.

In this section, our purpose is to learn and predict optimal candidate set size and trade-

off value for each query with a set of features. The features used throughout learning

and shown in Table 5.4. Since each feature is calculated with varying candidate set

sizes with starting 10 to 100 with an increase of step size 10, there exist approximately

10 different scores for each feature.

1. Ratio of Documents’ Scores

As proposed in [46], when differences in scores between first document and

last document increase in result set, the probability of irrelevant documents that

appears in result set also increases. For this reason, we have used ratio of the

first to last document’s scores in candidate document set with different size.

2. Mean of Documents’ Scores

This feature is simply calculated by averaging scores of documents in candidate

document set with different size.

3. Decrease in Mean of Documents’ Scores

32

Table 5.4: Feature list with properties.

Feature Description Count

scoreRatio Ratio of top to last document’s score 10

scoreMean Mean of scores in document set 10

scoreMeanDecrease Decrease in mean of scores in document set 9

scoreMedian Median of scores in document set 10

standardDeviation Standard deviation of scores 10

variance Variance of scores 10

coefficientOfVariation Coefficient of variation 10

minPairwiseTfIdfSimilarity Minimum pairwise (td-idf vector) similarity 10

maxPairwiseTfIdfSimilarity Maximum pairwise (td-idf vector) similarity 10

avgPairwiseTfIdfSimilarity Average pairwise (td-idf vector) similarity 10

minPairwiseWESimilarity Minimum pairwise (WE vector) similarity 10

maxPairwiseWESimilarity Maximum pairwise (WE vector) similarity 10

avgPairwiseWESimilarity Average pairwise (WE vector) similarity 10

minPairwiseEntitySimilarity Minimum pairwise (Entity list) similarity 10

maxPairwiseEntitySimilarity Maximum pairwise (Entity list) similarity 10

avgPairwiseEntitySimilarity Average pairwise (Entity list) similarity 10

NQC Scores of Normalized Query Commitment 10

33

In addition to the previous feature, decrease between those such as difference

between mean of top 10 document’s scores and mean of top 20 document’s

scores are included to our feature set.

4. Median of Scores

The score of document which appears in the middle of candidate document set

is used as feature.

5. Variance

Variance is the mean squares of differences between scores of documents in

candidate set and mean of them.

6. Standard Deviation

Standard deviation is a measurement that represents how disperse data [47]. It

is calculated by extracting square root of the variance.

7. Coefficient of Variation

It is simply calculated by dividing standard deviation by mean score of docu-

ments in candidate set.

8. Minimum/Maximum/Average Pairwise Similarity of TF-IDF Vectors of Docu-

ments

These three features indicates minimum,maximum and average pairwise simi-

larity between documents which are represented by TF-IDF vectors. It is cal-

culated by cosine similarity function as described in Eq. 2.10 among all docu-

ments in candidate set with different sizes.

9. Minimum/Maximum/Average Pairwise Similarity of Word Embeddings of Doc-

uments

These three features indicates minimum,maximum and average pairwise sim-

ilarity between documents which are represented by Word Embeddings. It is

calculated by cosine similarity function as described in Eq. 2.10 among all

documents in candidate set with different sizes.

10. Minimum/Maximum/Average Pairwise Similarity of Entities of Documents

34

These three features indicates minimum,maximum and average pairwise simi-

larity between documents which are represented by entity vectors. Entity vec-

tors belonging to documents are constructed by DBPedia1 and the similarity

measurement is calculated by jaccard similarity function as described in Eq.

2.12.

11. Normalized Query Commitment Scores

As proposed in [8], NQC analyzes query performance by checking difference

in scores of documents in candidate result set and it is calculated by:

NQC(qi) =
1

Sim(C, qi)
×
√√√√ 1

N
×
∑

d∈D[N]
qi

(
Sim(d, qi)−meand∈D[N]

qi

(Sim(d, qi))
)2

(5.1)

where Sim is the relevance score of given a documentd for a query qi. C

represents the corpus as adocument by concatenating all documents inside it

and Nis the number of documents in candidate set.

12. Optimum candidate set size (class label)

For each query, best performing candidate set size is used as a class label. This

feature only appears in data set which used to predict candidate set size.

13. Optimum trade-off λ value (class label)

For each query, best performing trade-off λ value is used as a class label. This

feature only appears in data set which used to predict trade-off λ value.

Two data set are built from these all features in order to predict candidate set size

and trade-off values. Since IBk performs better than other classification methods for

2009HM data set, we have continued to use IBk to other data sets.

At first step, candidate set sizes are trained and predicted through 5-fold cross vali-

dation. Likewise, this process is done for trade-off values. After obtained both pa-

rameters for each query, MMR algorithm is applied to each query to get diversified

results.
1 http://dbpedia.org

35

http://dbpedia.org

Our results which are obtained by prediction are listed in Table 5.5. Results proves

that performance of diversification obtained with predicted candidate set size and

trade-off value for each query outperforms the results obtained with fixed candidate

set size (100) and varying trade-off λ values for all queries stated in Chapter 4.

Table 5.5: MMR diversification results with predicted candidate set size and trade-off

values by IBk algorithm. All α-nDCG@10 scores shows average scores of queries.

Run ID Baseline α-nDCG@10 MMR with Prediction

α-nDCG@10

2009HM 0.2520 0.2612

2010HM 0.2427 0.2554

2011HM 0.4680 0.4750

2012HM 0.3218 0.3392

2009TREC 0.2530 0.2589

2010TREC 0.3716 0.3768

2011TREC 0.5312 0.5379

2012TREC 0.4942 0.4890

For 2009HM run, in previous chapter best α-nDCG@10 score achieved by MMR

algorithm with documents are represented as WE vector. MMR algorithm produces

score of 0.2593 with fixed candidate set size (= 100) and optimal trade-off λ value

(= 0.65). On the other hand, with adaptive usage of both parameters for 2009HM

provides more diversity with score of 0.2612. According to baseline metrics, overall

diversity improved by 3.6%.

In 2010HM run 0.2554 α-nDCG@10 score is achieved by predicting candidate set

size and trade-off parameter. Approximately 5.2% improvement is gained in this data

set.

The best diversification score (α-nDCG@10 = 0.4697) of run 2011HM is achieved

by using MMR algorithm with WE. With the help of prediction, score of 2011HM

rises up to 0.4750 where improvement achieved by 1.5%. Since the baseline score

of 2011HM is much higher than the other runs, improvement achieved by predic-

tion is not perfect as the others. It shows us that diversification performance with

36

strong baselines (in our cases 2011HM data with baseline 0.4680) is very limited to

improvement even with optimal candidate set size and trade-off value.

For 2012HM run, SY algorithm have performed better than MMR by selecting can-

didate set size as 100 and threshold β value as 0.90 in previous chapter. By using

predicted parameters, the best improvement in all runs is achieved for 2012HM run.

Diversification performance reaches to 0.3392 and 5.4% improvement is gained.

For more competitive TREC runs, the relative gains are in the range 1.2% to 2.3%

(except the 2012 run, where there is a relative degradation of 1%). Given that the

latter runs are employing sophisticated approaches far beyond HM runs, our findings

are promising. Note that, in some cases (underlined in Table 5.5) improvements with

respect to baselines are statistically significant (using paired t-test at 0.05 confidence

level).

If we compare results achieved by learning both parameters in Table 5.5 to the re-

sults in previous chapter, it is totally true that learning the parameters provides better

results. On the other hand, maximum scores achieved by optimal values (per query)

shown in Table 5.3 is far beyond the our performance which shows us that some more

improvement is still possible.

37

38

CHAPTER 6

CACHING DOCUMENT SIMILARITIES FOR IMPLICIT RESULT

DIVERSIFICATION

In this chapter, we will briefly explain how our cache is develop, what is stored inside

the cache and how we used the cache in implicit search result diversification.

As explained in Chapter 2, most of the implicit search result diversification methods

have two main functions. The first one calculates similarity scores of a document

and a query, the second one computes dissimilarity or similarity between candidate

document and already selected document for a result set. At each iteration these

calculations are done until finding top-k documents for result set. If we think the

efficiency of a implicit diversification employed on a large scaled web search engine

under this circumstances, it can be said that calculations especially finding similarity

scores between documents can not be efficient. Therefore, a simple cache structure

adapted in diversification in order to boost efficiency of these calculations.

With the help of AOL Query Logs, we have computed pairwise similarity between

highly ranked documents from each query result and stored in the cache. In order

to analyze cache performance, MMR algorithm using word embeddings as a diversi-

fication method, is employed on our home made runs namely 2009HM, 2010HM,

2011HM and 2012HM. Approximately 200k pairwise document similarity is cal-

culated during diversification process. As a result of this, how cache hits changes

with varying numbers of documents cached is represented in Figure 6.1. The highest

number of cache hits is achieved in 2012HM data with 56621 times when pairwise

similarity is calculated among top 100 documents from 100k query results. And, the

lowest one observed in 2011HM data with 26079 times.

39

Figure 6.1: Visualization of cache hits.

By nature of caching, increasing number of high ranked documents for caching results

in growing size of the cache. The overall number of documents to compute pairwise

similarity and cache sizes are shown in Table 6.1. It is assumed that two integer values

for document identifiers and a single double value for similarity score are stored in

memory.

Table 6.1: Different cache sizes obtained from using varying number of documents.

Number of Documents Number of Pairs Cache Size

10 4253726 60 Megabyte

20 17709013 250 Megabyte

30 40128427 600 Megabyte

40 71365775 1 Gigabyte

100 433684174 6 Gigabyte

In addition to examining cache hits, efficiency in time and effectiveness in diversi-

fication performance are investigated through caching experiments with using pairs

of top 100 documents from each query results. We have implemented two different

caching strategy in MMR. In first one, namely Case-1, the similarity score of pair-

40

wise document is fetched from the cache, if it contains. And, if the cache does not

have the score, it is calculated at run time. On the other hand, in second case, namely

Case-2, if cache does not have the similarity score of pair of the documents, average

similarity score is used instead of calculating.

Table 6.2: Efficiency and effectiveness of original MMR.

Run ID Original MMR

(aNDCG@10)

Original MMR

Time (ms)

No. of Similarity

Calculations

2009HM 0.253145 3.5 4215

2010HM 0.257372 3.3 4215

2011HM 0.469732 3.5 4215

2012HM 0.321568 3.5 4215

Table 6.3: Efficiency and effectiveness of Case-1 Caching in MMR.

Run ID MMR & Cache

Case-1 (aNDCG@10)

MMR & Cache

Case-1 Time (ms)

No. of Similarity

Calculations

2009HM 0.253145 2.8 3591

2010HM 0.257372 2.8 3619

2011HM 0.469732 2.9 3706

2012HM 0.321568 2.6 3086

Firstly original MMR performance, corresponding MMR execution time in millisec-

ond and number of pairwise similarity calculation are shown in Table 6.2 in order to

show our baseline.

In Tables 6.3 and Table 6.4, two different usage of caching performances are shown.

According to experimental results, caching in MMR decreases the amount of time,

especially in Case-2. Also, it reveals that using average similarity score for unseen

pair of documents decreases effectiveness of MMR algorithm slightly.

41

Table 6.4: Efficiency and effectiveness of Case-2 Caching in MMR.

Run ID MMR & Cache Case-2

(aNDCG@10)

MMR & Cache Case-2 Time

(ms)

2009HM 0.250793 0.6

2010HM 0.245713 0.5

2011HM 0.467226 0.6

2012HM 0.318221 0.6

42

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis, we focused on the implicit search result diversification methods and

proposed approaches to improve their effectiveness and efficiency. We first demon-

strated that traditional implicit result diversification methods with predefined parame-

ters rarely outperform the initial retrieval results that are obtained by a typical ranking

function, such as Okapi BM25. Even when these methods provide better diversifi-

cation performance than the baselines, the performance gains are found to be only

marginal. We further showed that implicit diversification benefits from the proposed

idea of employing word embeddings based document representations, but the perfor-

mance improvements are still limited.

As a remedy, we proposed to predict the candidate set size, a key parameter for im-

plicit diversification, using a rich set of features on a per query basis. By predicting

the candidate set size (together with λ, as in [7]) and employing word embeddings,

we achieved higher diversification performance.

Finally, we proposed caching pairwise document similarities to improve the implicit

diversification efficiency. Our experiments using a representative diversification method,

MMR [4], revealed that the proposed caching idea can provide significant gains in

processing efficiency.

In our future work, we plan to use document embeddings (e.g., Doc2Vec [48]) to rep-

resent document in the context of result diversification. As a second research direc-

tion, we will exploit additional (e.g., click-based) features for better prediction of the

diversification parameters. Finally, we aim to employ and evaluate dynamic caching

strategies to further improve the efficiency of implicit diversification techniques.

43

44

REFERENCES

[1] L. Xia, J. Xu, Y. Lan, J. Guo, and X. Cheng, “Learning maximal marginal rele-

vance model via directly optimizing diversity evaluation measures,” in Proceed-

ings of the 38th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, (Santiago, Chile), pp. 113–122, 09-13 August

2015.

[2] R. L. T. Santos, C. Macdonald, and I. Ounis, “Search result diversification,”

Foundations and Trends in Information Retrieval, pp. 1–90, 2015.

[3] J. He, E. Meij, , and M. de Rijke, “Result diversification based on query-

specific cluster ranking,” Journal of the American Society for Information Sci-

ence, pp. 550–571, 2011.

[4] J. G. Carbonell and J. Goldstein, “The use of mmr, diversity-based reranking

for reordering documents and producing summaries,” in Proceedings of the 21st

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval, pp. 335–336, 1998.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Proceed-

ings of the 27th Annual Conference on Neural Information Processing Systems,

pp. 3111–3119, 2013.

[6] T. Mikolov, K. Chen, G. S. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” ICLR Workshop, 2013.

[7] R. L. T. Santos, C. MacDonald, and I. Ounis, “Selectively diversifying web

search results,” in CIKM, 2010.

[8] A. Shtok, O. Kurland, and D. Carmel, “Predicting query performance by query-

drift estimation,” in Proceedings of the 2Nd International Conference on Theory

45

of Information Retrieval: Advances in Information Retrieval Theory, pp. 305–

312, 2009.

[9] D. Carmel and O. Kurland, “Query performance prediction for ir,” in Proc. of

SIGIR, pp. 1196–1197, 2012.

[10] G. Markovits, A. Shtok, O. Kurland, and D. Carmel, “Predicting query perfor-

mance for fusion-based retrieval,” in Proc. of CIKM, pp. 813–822, 2012.

[11] B. R. Boyce, “Beyond topicality : A two stage view of relevance and the retrieval

process,” Information Processing & Management, vol. 18, no. 3, pp. 105–109,

1982.

[12] W. Goffman, “A searching procedure for information retrieval,” Information

Storage and Retrieval, vol. 2, no. 2, pp. 73–78, 1964.

[13] S. Robertson, “The probability ranking principle in ir,” in Readings in Informa-

tion Retrieval, pp. 335–336, 1997.

[14] R. L. T. Santos, C. Macdonald, and I. Ounis, “On the role of novelty for search

result diversification,” Information retrieval, vol. 15, no. 5, pp. 478–502, 2012.

[15] S. Sanner, S. Guo, T. Graepel, S. Kharazmi, and S. Karimi, “Diverse retrieval via

greedy optimization of expected 1-call@k in a latent subtopic relevance model,”

in CIKM, 2011.

[16] J. Wang and J. Zhu, “Portfolio theory of information retrieval,” in Proc. 32nd

Int. ACM SIGIR Conf. on Research and Development in IR, pp. 115–122, ACM,

2009.

[17] C. Zhai and J. D. Lafferty, “A risk minimization framework for information

retrieval,” Information Processing & Management, vol. 42, pp. 31–55, 2006.

[18] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying search

results,” in Proceedings of the Second ACM International Conference on Web

Search and Data Mining, pp. 5–14, 2009.

[19] S. Gollapudi and A. Sharma, “An axiomatic approach for result diversification,”

in Proc. WWW, 2009.

46

[20] R. Hassin, S. Rubinstein, and A. Tamir, “Approximation algorithms for maxi-

mum dispersion,” Operations Research Letters, vol. 21, pp. 133–137, 1997.

[21] K. Tao, F. Abel, C. Hauff, G.-J. Houben, and U. Gadiraju, “Groundhog day:

near-duplicate detection on twitter,” in Proc. WWW, 2013.

[22] R. L. T. Santos, J. Peng, C. Macdonald, and I. Ounis, “Explicit search result

diversification through sub-queries,” in Proceedings of ECIR, pp. 87–99, 2010.

[23] R. Santos, C. Macdonald, and I. Ounis, “Exploiting query reformulations for

web search result diversification,” in Proceedings of the 19th International Con-

ference on World Wide Web, WWW ’10, pp. 881–890, 2010.

[24] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge Uni-

versity Press, 2011.

[25] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic

language model,” The Journal of Machine Learning Research, pp. 1137–1155,

2003.

[26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word

representation,” in Proc. of EMNLP, 2014.

[27] C. D. Boom, S. V. Canneyt, T. Demeester, and B. Dhoedt, “Representation learn-

ing for very short texts using weighted word embedding aggregation,” Pattern

Recognition Letters, vol. 80, pp. 150–156, 2016.

[28] M. Akcay, “Analyzing and boosting the performance of explicit result diversifi-

cation methods for web search,” Master’s thesis, METU, December 2016.

[29] W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,”

Machine Learning, vol. 6, pp. 37–66, 01 1991.

[30] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: Bm25

and beyond,” Foundations and Trends in Information Retrieval, vol. 3, pp. 333–

389, Apr. 2009.

[31] K. S. Jones, “A statistical interpretation of term specificity and its application in

retrieval,” Journal of Documentation, vol. 28, no. 1, pp. 11–21, 1972.

47

[32] W. Effelsberg and T. Haerder, “Principles of database buffer management,” ACM

Trans. Database Syst., vol. 9, pp. 560–595, Dec. 1984.

[33] E. Markatos, “On caching search engine query results,” Comput. Commun.,

vol. 24, pp. 137–143, Feb. 2001.

[34] R. Baeza-Yates and F. Saint-Jean, “A three level search engine index based in

query log distribution,” in String Processing and Information Retrieval, pp. 56–

65, 2003.

[35] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance

of web search engines: Caching and prefetching query results by exploiting

historical usage data,” ACM Trans. Inf. Syst., vol. 24, pp. 51–78, Jan. 2006.

[36] R. Ozcan, I. Altingovde, and O. Ulusoy, “Static query result caching revisited,”

pp. 1169–1170, 01 2008.

[37] C. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher,

and I. MacKinnon, “Novelty and diversity in information retrieval evaluation,”

pp. 659–666, 01 2008.

[38] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir tech-

niques,” ACM Trans. Inf. Syst., vol. 20, pp. 422–446, 2002.

[39] A. Ozdemiray and I. Altingövde, “Explicit search result diversification using

score and rank aggregation methods,” Journal of the Association for Information

Science and Technology, vol. 66, no. 6, pp. 1212–1228, 2015.

[40] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf. Theor., vol. 28,

no. 2, pp. 129–137.

[41] I. Witten, I. H, F. , and E. , Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. 10 1999.

[42] P. Langley and S. Sage, “Induction of selective bayesian classifiers,” in Proceed-

ings of the Tenth International Conference on Uncertainty in Artificial Intelli-

gence, pp. 399–406, 1994.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed process-

ing: Explorations in the microstructure of cognition,” pp. 318–362, 1986.

48

[44] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric

regression,” The American Statistician, vol. 46, pp. 175–185, 1992.

[45] S. Wang, M. Zhou, and G. Geng, “Application of fuzzy cluster analysis for

medical image data mining,” Journal of Computational Physics - J COMPUT

PHYS, pp. 631 – 636, 2005.

[46] A. M. Ozdemiray and I. S. Altingovde, “Query performance prediction for as-

pect weighting in search result diversification,” in Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge Man-

agement, pp. 1871–1874, ACM, 2014.

[47] J. Martin Bland and D. Altman, “Statistics notes: Measurement error,” BMJ,

vol. 313, p. 744, 1996.

[48] Q. V. Le and T. Mikolov, “Distributed representations of sentences and docu-

ments,” in Proc. of ICML, pp. 1188–1196, 2014.

49

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Problem Definition and Contributions
	Organization of the Thesis

	BACKGROUND INFORMATION
	Search Result Diversification
	Document Representation Methods
	TF-IDF Model
	Word Embedding Model

	Predicting Parameters of the Result Diversification Methods
	Query-Document Relevance Score Calculation
	Document-Document Similarity Calculation
	Caching in Web Search Engines

	EXPERIMENTAL SETUP
	Data Set
	Evaluation Metric

	ANALYZING IMPLICIT RESULT DIVERSIFICATION METHODS
	PREDICTING IMPLICIT RESULT DIVERSIFICATION PARAMETERS
	Analyzing Candidate Set Size and Trade-off () Value Selection
	Predicting the Candidate Set Size and Trade-off Parameter

	CACHING DOCUMENT SIMILARITIES FOR IMPLICIT RESULT DIVERSIFICATION
	CONCLUSION AND FUTURE WORK
	REFERENCES

