DEVELOPMENT OF NEW METHODS FOR THE SYNTHESIS OF FIVE-, SIXAND SEVEN-MEMBERED HETEROCYCLIC COMPOUNDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
EDA KARADENIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
CHEMISTRY

Approval of the thesis:

DEVELOPMENT OF NEW METHODS FOR THE SYNTHESIS OF FIVE-, SIX- AND SEVEN-MEMBERED HETEROCYCLIC COMPOUNDS

submitted by EDA KARADENIZ in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences
Prof. Dr. Cihangir Tanyeli
Head of Department, Chemistry
Prof. Dr. Metin Zora
Supervisor, Chemistry, METU

Examining Committee Members:

Prof. Dr. Cihangir Tanyeli
Chemistry, METU

Prof. Dr. Metin Zora
Chemistry, METU
Prof. Dr. Özdemir Doğan
Chemistry, METU
Prof. Dr. Aliye Alaylı Altundaş
Chemistry, Gazi University

Assoc. Prof. Dr. Barış Temelli
Chemistry, Hacettepe University

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Surname: Eda Karadeniz

Signature:

Abstract

\title{ DEVELOPMENT OF NEW METHODS FOR THE SYNTHESIS OF FIVE-, SIX- AND SEVEN-MEMBERED HETEROCYCLIC COMPOUNDS }

Karadeniz, Eda
Doctor of Philosophy, Chemistry
Supervisor: Prof. Dr. Metin Zora

October 2019, 310 pages

Synthesis of heterocyclic compounds has become an important area among organic chemists since they occupy a unique position in the design and synthesis of novel biologically active agents that exhibit noteworthy medicinal activities. In this regard, N-propargylic β-enaminones have been recognized as valuable substrates in synthesis because they afford a variety of heterocyclic compounds upon treatment with proper reagents. In this study, new reactivity patterns of N-propargylic β-enaminones were investigated in order to synthesize different heterocyclic compounds. Accordingly, in the first part of study, 5-iodopyridines were prepared by electrophilic cyclization of N-propargylic β-enaminones, and then their Suzuki-Miyaura coupling reaction with boronic acids were investigated to afford 5-aryl-substituted pyridines. Secondly, a facile one-pot method for the synthesis of 2-ferrocenylpyridines has been established. The reaction of α, β-alkynic ketones with propargylamine produced N-propargylic β enaminones in situ, which, in the presence of copper(I) chloride, have underwent electrophilic cyclization to furnish 2-ferrocenylpyridine derivatives. Thirdly, an efficient method for the synthesis of spiro-2H-pyrroles has been developed. When reacted with 1-ethynylcyclohexylamine, α, β-alkynic ketones produced cyclohexaneembedded N-propargylic β-enaminones, which, upon treatment with cesium carbonate, yielded spiro- 2 H -pyrrole derivatives via nucleophilic cyclization. In
addition, cyclohexane-embedded N-propargylic β-enaminones were further functionalized with aryl iodides. Subsequently, when these arylated β-enaminones were exposed to cesium carbonate mediated nucleophilic cyclization, they produced spiro-2H-pyrroles with two carbonyl groups via further benzylic C-H oxidation. In the last part, a different approach have been employed for the synthesis of spiro-1,4oxazepines. Upon treatment with zinc iodide and silver hexafluoroantimonate, cyclohexane-embedded N-propargylic β-enaminones produced spiro- 1,4 -oxazepines.

Keywords: Pyridines, Spiro-2H-pyrroles, Spiro-1,4-oxazepines, N-Propargylic β enaminones

BEŞ, ALTI VE YEDİ ÜYELİ HETEROHALKALI BİLEŞİKLERİN SENTEZİ İÇIN YENİ METOTLARIN GELİSTİRİLMESİ

Karadeniz, Eda
Doktora, Kimya
Tez Danışmanı: Prof. Dr. Metin Zora

Ekim 2019, 310 sayfa

Önemli tıbbi özellikleri ve biyoaktif bileşiklerin tasarım ve sentezinde eşsiz bir yere sahip olmalarından dolayı heterohalkalı bileşiklerin sentezi organik kimyacılar arasında önemli bir araştırma alanı olmuştur. Bu bakımdan, N-proparjilik β enaminonlar uygun reaktifler ile tepkimeye girdiklerinde çeşitli heterohalkalı bileşikleri üretebildikleri için değerli ara ürünler olarak kabul edilmektedirler. Bu çalışmada, farklı heterohalkalı bileşikler sentezlemek için, N-proparjilik β enaminonların yeni reaktivite özellikleri araştırılmıştır. Çalışmanın ilk bölümünde, N proparjilik β-enaminonların elektrofilik halkalaşmasıyla 5 -iyodopiridinler hazırlanmıs ve sonrasında boronik asitler kullanılarak Suzuki-Miyaura kenetlenme tepkimesi ile 5-arilpiridinlerin sentezi incelenmiştir. İkinci olarak, 2-ferrosenilpiridinlerin sentezi için tek kapta gerçekleşen kolay bir metot geliştirilmiştir. α, β-Alkinik ketonlar ile proparjilamin tepkimeye girdiğinde tepkime ortamında N-proparjilik β-enaminonları oluşturmakta, bunlarda bakır(I) klorür varlığında elektrofilik halkalaşmasına girerek 2-ferrosenilpiridin türevlerini üretmektedir. Üçüncü olarak, spiro-2H-pirollerin sentezi için etkili bir yöntem geliştirilmiştir. Bunun için ilk olarak, 1etinilsiklohekzilamin' in α, β-alkinik ketonlarla tepkimesi sonucu spiro grubu içeren N proparjilik β-enaminonlar hazırlanmış ve sonrasında sezyum karbonat varlığında nükleofilik halkalaşma ile spiro- $2 H$-pirol türevlerinin oluşum tepkimeleri
araştırılmıştır. Buna ek olarak, spiro grubu içeren N-proparjilik β-enaminonlar, aril iyodürler kullanılarak daha da türevlendirilmiştir. Sonrasında, türevlendirilmiş β enaminonlar, sezyum karbonat ile nükleofilik halkalaşma tepkimesine sokularak iki karbonil grubu içeren spiro- $2 H$-piroller elde edilmiştir. Son bölümde ise, spiro-1.4oksazepinlerin sentezi için farklı bir yaklaşım tarzı araştırılmışıır. Spiro grubu içeren N-proparjilik β-enaminonlar, çinko iyodür ve gümüş hekzafloroantimon varlğ̆ında tepkimeye sokulduklarında spiro-1,4-oksazepin türevleri elde edilmiştir.

Anahtar Kelimeler: Piridinler, Spiro-2H-piroller, Spiro-1,4-oksazepinler, Nproparjilik β-enaminonlar

To My Dear Family

ACKNOWLEDGEMENTS

I would first like to express my sincere gratitude to my advisor Prof. Dr. Metin Zora for his continuous support throughout my PhD study. His invaluable guidance, immense knowledge, constant encouragement, affectionate attitude and healthy criticism added considerably to my experience.

I would also like to thank all Zora`s past research group members, N. Esra Yazicı Aksakal, Ecem Teke Ulukan, Ezel Dikmen Çelik, Özge İbiş, especially Dr. Yılmaz Kelgökmen for his help and support during my research and present group members, Elif Serel Yılmaz, Esra Korkmaz, Nilay Kanova and Ayşen Buse Dündar for their friendship, helps and tolerances during my laboratory process. Besides that, they provide enjoyable research area for me.

I should also express my thanks to Seda Karahan, Deniz Tözendemir and Halil İpek for their precious friendships during my school life and further.

I would also thank all staff of Department of Chemistry for their administrative and technical assistants, particularly the specialist Betül Eymür Dönmez for NMR analyses. Moreover, I want to thank the specialist Zeynep Erdoğan in UNAM for her help in High Resolution Mass Spectrometry (HRMS) analyses.

Finally, I must express my very profound gratitude to my parents and to my sister for providing me with unfailing support and continuous encouragement throughout my whole life and through the process of researching and writing this thesis. In all situations, I always feel their moral and emotional support behind me. This accomplishment would not have been possible without their love and support.

TABLE OF CONTENTS

ABSTRACT v
ÖZ vii
ACKNOWLEDGEMENTS x
TABLE OF CONTENTS xi
LIST OF TABLES xxiii
LIST OF FIGURES xxiv
LIST OF ABBREVIATIONS XXXV
LIST OF SCHEMES xxxvi
CHAPTERS

1. INTRODUCTION 1
1.1. Pyrroles 2
1.1.1. Importance of Pyrroles 3
1.1.2. Synthesis of Pyrroles 5
1.2. Pyridines 8
1.2.1. Importance of Pyridines 8
1.2.2. Synthesis of Pyridines 10
1.2.3. Aryl-Substituted Pyridines 12
1.2.4. Ferrocenyl-Substituted Pyridines 14
1.3. Oxazepines 16
1.3.1. Importance of Oxazepines 16
1.3.2. Synthesis of Oxazepines 17
1.4. Spiro Compounds 19
1.4.1. Importance of Spiro Compounds 19
1.4.2. Synthesis of Spiro Compounds 21
1.5. Aim of Study 23
2. RESULTS AND DISCUSSION 27
2.1. Synthesis of Starting Materials 27
2.1.1. Synthesis of α, β-Alkynic Ketones 26 27
2.1.2. Synthesis of N-propargylic β-enaminones 32, $\mathbf{5 0}$ and $\mathbf{6 1}$ 30
2.1.3. Synthesis of N-propargylic β-enaminones 10 and $\mathbf{5 2}$ 35
2.1.4. Synthesis of 5-Iodopyridines 65 38
2.2. Synthesis of Target Compounds. 40
2.2.1. Synthesis of 5-Arylpyridines 46 40
2.2.2. Synthesis of 2-Ferrocenylpyridines 49 47
2.2.3. Synthesis of Spiro-2H-pyrroles 51 52
2.2.4. Synthesis of Spiro-2H-pyrroles with Two Carbonyl Groups 53 60
2.2.5. Synthesis of Spiro-1,4-oxazepines 54 67
3. EXPERIMENTAL 75
3.1. General Information 75
3.2. Synthesis of Acetylferrocene (58) 76
3.3. Synthesis of (2-Formyl-1-chlorovinyl)ferrocene (59) 76
3.4. Synthesis of Ethynylferrocene (60) 77
3.5. General Procedure for the Synthesis of α, β-Alkynic Ketones 26 78
3.5.1. 1,3-Diphenylprop-2-yn-1-one (26a) 78
3.5.2. 1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (26b) 79
3.5.3. 1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (26c) 79
3.5.4. 3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (26d) 80
3.5.5. 1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (26e) 80
3.5.6. 3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one (26f) 80
3.5.7. 3-(4-Chlorophenyl)-1-phenylprop-2-yn-1-one (26g) 81
3.5.8. 3-(4-Bromophenyl)-1-phenylprop-2-yn-1-one (26h). 81
3.5.9. 3-(4-Nitrophenyl)-1-phenylprop-2-yn-1-one (26i) 82
3.5.10. 1-Phenylhept-2-yn-1-one (26j) 82
3.5.11. 1-Phenyloct-2-yn-1-one (26k) 83
3.5.12. 4-Cyclopentyl-1-phenylbut-2-yn-1-one (261) 83
3.5.13. 1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one (26m) 83
3.5.14. 1-(4-Methoxyphenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (26n) 84
3.5.15. 3-(3-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (260) 84
3.5.16. 3-(4-Bromophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (26p) 85
3.5.17. 1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (26q) 85
3.5.18. 1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (26r) 86
3.5.19. 1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (26s) 86
3.5.20. 3-Ferrocenyl-1-phenylprop-2-yn-1-one (26t) 87
3.5.21. 3-Ferrocenyl-1-(p-tolyl)prop-2-yn-1-one (26u) 87
3.5.22. 3-Ferrocenyl-1-(4-methoxyphenyl)prop-2-yn-1-one (26v) 88
3.5.23. 1-(4-Chlorophenyl)-3-ferrocenylprop-2-yn-1-one (26w) 88
3.5.24. 1-(2-Bromophenyl)-3-ferrocenylprop-2-yn-1-one (26x) 89
3.5.25. 3-Ferrocenyl-1-(4-nitrophenyl)prop-2-yn-1-one (26y) 89
3.6. General Procedure for the Synthesis of N-Propargylic β-Enaminones 32, 50 and 61 90
3.6.1. 1,3-Diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32a) 90
3.6.2. 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32b) 91
3.6.3. 1-Phenyl-3-(prop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32c) 91
3.6.4. 4-Cyclopentyl-1-phenyl-3-(prop-2-yn-1-ylamino)but-2-en-1-one (32d) 92
3.6.5. 3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) 92
3.6.6. 3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (50b) 93
3.6.7. 3-((1-Ethynylcyclohexyl)amino)-3-(4-methoxyphenyl)-1-phenylprop-2- en-1-one (50c) 93
3.6.8. 3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1- one (50d) 94
3.6.9. 3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-phenylprop-2-en- 1-one (50e) 94
3.6.10. 3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en- 1-one (50f) 95
3.6.11. 3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en- 1 -one ($\mathbf{5 0 g}$) 95
3.6.12. 3-((1-Ethynylcyclohexyl)amino)-3-(4-nitrophenyl)-1-phenylprop-2-en- 1-one (50h) 96
3.6.13. 3-((1-Ethynylcyclohexyl)amino)-1-phenylhept-2-en-1-one (50i) 96
3.6.14. 3-((1-Ethynylcyclohexyl)amino)-1-phenyloct-2-en-1-one (50j) 97
3.6.15. 3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-phenylprop-2- en-1-one (50k) 97
3.6.16. 3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-(thiophen-3- yl)prop-2-en-1-one (501) 98
3.6.17. 3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-(4- methoxyphenyl)prop-2-en-1-one (50m) 98
3.6.18. 3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-(4- methoxyphenyl)prop-2-en-1-one (50n) 99
3.6.19. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-phenylprop-2-en- 1-one (500) 100
3.6.20. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(p-tolyl)prop-2- en-1-one (50p) 100
3.6.21. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(3- fluorophenyl)prop-2-en-1-one ($\mathbf{5 0 q}$) 101
3.6.22. 3-((2-Methylbut-3-yn-2-yl)amino)-1,3-diphenylprop-2-en-1-one (61a) 101
3.6.23. 3-((2-Methylbut-3-yn-2-yl)amino)-1-phenyl-3-(m-tolyl)prop-2-en-1-one (61b) 102
3.6.24. 1-(4-Chlorophenyl)-3-((2-methylbut-3-yn-2-yl)amino)-3-phenylprop-2- en-1-one (61c) 102
3.7. General Procedure for the Synthesis of N-Propargylic β-enaminones 10 and
52 103
3.7.1. 1,3-Diphenyl-3-(3-phenylprop-2-ynylamino)prop-2-en-1-one (10a). 103
3.7.2. 3-(4-Methoxyphenyl)-1-phenyl-3-(3-phenylprop-2-ynylamino)prop-2-en- 1-one (10b). 104
3.7.3. 1-Phenyl-3-(3-phenylprop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1- one (10c). 104
3.7.4. 4-Cyclopentyl-1-phenyl-3-((3-phenylprop-2-yn-1-yl)amino)but-2-en-1- one (10d) 105
3.7.5. 1,3-Diphenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52a) 106
3.7.6. 1,3-Diphenyl-3-((1-(p-tolylethynyl)cyclohexyl)amino)prop-2-en-1-one (52b) 106
3.7.7. 3-((1-((4-Fluorophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2- en-1-one (52c) 107
3.7.8. 3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2- en-1-one (52d) 107
3.7.9. 3-((1-((4-Nitrophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en- 1-one (52e) 108
3.7.10. 3-(4-Chlorophenyl)-1-phenyl-3-((1- (phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52f) 109
3.7.11. 3-(4-Chlorophenyl)-1-phenyl-3-((1-(p- tolylethynyl)cyclohexyl)amino)prop-2-en-1-one (52g) 109
3.7.12. 3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-3-(4-chlorophenyl)- 1-phenylprop-2-en-1-one (52h) 110
3.8. General Procedure for the Synthesis of Iodopyridines 44 110
3.8.1. (5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) 111
3.8.2. (5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) 111
3.8.3. (5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (44c) 112
3.8.4. (2-(Cyclopentylmethyl)-5-iodo-4-phenylpyridin-3-yl)(phenyl)methanone (44d) 112
3.9. General Procedure for the Synthesis of 5-Aryl-substituted Pyridines 46 113
3.9.1. Phenyl(2,4,5-triphenylpyridin-3-yl)methanone (46a) 113
3.9.2. (5-(4-Ethylphenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46b) 114
3.9.3. (5-(4-Chlorophenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46c) 114
3.9.4. (5-(4-Ethoxy-3-fluorophenyl)-2,4-diphenylpyridin-3- yl)(phenyl)methanone (46d) 115
3.9.5. (6'-Methoxy-4,6-diphenyl-[3,3'-bipyridin]-5-yl)(phenyl)methanone (46e) 116
3.9.6. (5-(3-Nitrophenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46f) 116
3.9.7. (5-(Furan-2-yl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46g) 117
3.9.8. (2,4-Diphenyl-5-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (46h) 117
3.9.9. (5-(Ferrocenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46i) 118
3.9.10. (2-(4-Methoxyphenyl)-4,5-diphenylpyridin-3-yl)(phenyl)methanone (46j) 118
3.9.11. (5-(4-Ethylphenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl)(phenyl)methanone (46k) 119
3.9.12. (5-(4-Chlorophenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl)(phenyl)methanone (461) 120
3.9.13. (5-(4-Ethoxy-3-fluorophenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl)(phenyl)methanone (46m) 120
3.9.14. (5-(Furan-2-yl)-2-(4-methoxyphenyl)-4-phenylpyridin-3- yl (phenyl)methanone (46n) 121
3.9.15. (2-(4-Methoxyphenyl)-4-phenyl-5-(thiophen-3-yl)pyridin-3- yl (phenyl)methanone (460) 121
3.9.16. (4,5-Diphenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (46p) 122
3.9.17. (5-(4-Ethylphenyl)-4-phenyl-2-(thiophen-3-yl)pyridin-3- yl (phenyl)methanone (46q) 123
3.9.18. (4'-(Cyclopentylmethyl)-[1,1':2',1"-terphenyl]-3'-yl)(phenyl)methanone (46r) 123
3.10. General Procedure for the Synthesis of 2-Ferrocenyl-Substituted Pyridines 49 124
3.10.1. (2-Ferrocenylpyridin-3-yl)(phenyl)methanone (49a) 124
3.10.2. (2-Ferrocenylpyridin-3-yl)(p-tolyl)methanone (49b) 125
3.10.3. (2-Ferrocenylpyridin-3-yl)(4-methoxyphenyl)methanone (49c) 125
3.10.4. (4-Chlorophenyl)(2-ferrocenylpyridin-3-yl)methanone (49d) 126
3.10.5. (2-Bromophenyl)(2-ferrocenylpyridin-3-yl)methanone (49e) 126
3.10.6. (2-Ferrocenylpyridin-3-yl)(4-nitrophenyl)methanone (49f). 127
3.11. General Procedure for the Synthesis of Spiro-2H-Pyrroles 51 and $2 H$ - Pyrroles 72 127
3.11.1. (4-Methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51a) 128
3.11.2. (4-Methyl-2-(p-tolyl)-1-azaspiro[4.5]deca-1,3-dien-3- $\mathrm{yl})($ phenyl)methanone (51b) 128
3.11.3. (2-(4-Methoxyphenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51c) 129
3.11.4. (4-Methyl-2-(thiophen-3-yl)-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51d) 130
3.11.5. (2-(3-Fluorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51e) 130
3.11.6. (2-(4-Chlorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51f) 131
3.11.7. (2-(4-Bromophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3- yl (phenyl)methanone (51g) 131
3.11.8. (4-Methyl-2-(4-nitrophenyl)-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51h) 132
3.11.9. (2-Butyl-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(phenyl)methanone (51i) 132
3.11.10. (4-Methyl-2-pentyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)(phenyl)methanone (51j) 133
3.11.11. (4-Methoxyphenyl)(4-methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)methanone (51k) 134
3.11.12. (4-Methoxyphenyl)(4-methyl-2-(thiophen-3-yl)-1-azaspiro[4.5]deca- 1,3-dien-3-yl)methanone (511) 134
3.11.13. (2-(3-Fluorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(4- methoxyphenyl)methanone (51m) 135
3.11.14. (2-(4-Bromophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(4- methoxyphenyl)methanone (51n) 135
3.11.15. 4-Chlorophenyl)(4-methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3- yl)methanone (510) 136
3.11.16. (4-Chlorophenyl)(4-methyl-2-(p-tolyl)-1-azaspiro[4.5]deca-1,3-dien-3- yl)methanone ($\mathbf{5 1 p}$). 137
3.11.17. (4-Chlorophenyl)(2-(3-fluorophenyl)-4-methyl-1-azaspiro[4.5]deca- 1,3-dien-3-yl)methanone (51q) 137
3.11.18. Phenyl(2,2,3-trimethyl-5-phenyl-2H-pyrrol-4-yl)methanone (72a)... 138
3.11.19. Phenyl(2,2,3-trimethyl-5-(m-tolyl)-2H-pyrrol-4-yl)methanone (72b) 138
3.11.20. (4-Chlorophenyl)(2,2,3-trimethyl-5-phenyl-2H-pyrrol-4-yl)methanone (72c) 139
3.12. General Procedure for the Synthesis of Spiro-2H-Pyrroles with Two Carbonyl Groups 53 139
3.12.1. (2-Phenyl-1-azaspiro[4.5]deca-1,3-diene-3,4-diyl)bis(phenylmethanone) (53a) 140
3.12.2. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(p- tolyl)methanone (53b) 140
3.12.3. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(4- fluorophenyl)methanone (53c) 141
3.12.4. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(3- bromophenyl)methanone (53d) 141
3.12.5. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(4- nitrophenyl)methanone (53e) 142
3.12.6. (2-(4-Chlorophenyl)-1-azaspiro[4.5]deca-1,3-diene-3,4- diyl)bis(phenylmethanone) (53f) 143
3.12.7. (3-Benzoyl-2-(4-chlorophenyl)-1-azaspiro[4.5]deca-1,3-dien-4-yl)(p- tolyl)methanone (53g) 143
3.12.8. (3-Benzoyl-2-(4-chlorophenyl)-1-azaspiro[4.5]deca-1,3-dien-4-yl)(3- bromophenyl)methanone (53h) 144
3.13. General Procedure for the Synthesis of Spiro-1,4-Oxazepines 54 and 1,4-
Oxazepines 86 144
3.13.1. 12-Methylene-8,10-diphenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54a) 145
3.13.2. 12-Methylene-10-phenyl-8-(p-tolyl)-11-oxa-7-azaspiro[5.6]dodeca-7,9- diene (54b) 145
3.13.3. 12-Methylene-10-phenyl-8-(thiophen-3-yl)-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54c) 146
3.13.4. 8-(3-Fluorophenyl)-12-methylene-10-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54d) 147
3.13.5. 8-(4-Chlorophenyl)-12-methylene-10-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54e) 147
3.13.6. 8-(4-Bromophenyl)-12-methylene-10-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54f). 148
3.13.7. 12-Methylene-8-(4-nitrophenyl)-10-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54g) 148
3.13.8. 10-(4-Methoxyphenyl)-12-methylene-8-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54h) 149
3.13.9. 10-(4-Methoxyphenyl)-12-methylene-8-(thiophen-3-yl)-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54i) 149
3.13.10. 8-(3-Fluorophenyl)-10-(4-methoxyphenyl)-12-methylene-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54j) 150
3.13.11. 8-(4-Bromophenyl)-10-(4-methoxyphenyl)-12-methylene-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54k) 151
3.13.12. 10-(4-Chlorophenyl)-12-methylene-8-phenyl-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54I) 151
3.13.13. 10-(4-Chlorophenyl)-12-methylene-8-(p-tolyl)-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54m) 152
3.13.14. 10-(4-Chlorophenyl)-8-(3-fluorophenyl)-12-methylene-11-oxa-7- azaspiro[5.6]dodeca-7,9-diene (54n) 152
3.13.15. 3,3-Dimethyl-2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (86a) 153
3.13.16. 3,3-Dimethyl-2-methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4- oxazepine ($\mathbf{8 6 b}$) 153
3.13.17. 7-(4-Chlorophenyl)-3,3-dimethyl-2-methylene-5-phenyl-2,3-dihydro-
1,4-oxazepine (86c) 154
4. CONCLUSION 155
REFERENCES 159
APPENDIX A 173
NMR SPECTRA 173
CURRICULUM VITAE 309

LIST OF TABLES

TABLES

Table 1. Synthesis of α, β-alkynic ketones 26 28
Table 2. Synthesis of N-propargylic β-enaminones 32 30
Table 3. Synthesis of N-propargylic β-enaminones 50 31
Table 4. Synthesis of N-propargylic β-enaminones $\mathbf{6 1}$ 33
Table 5. Synthesis of N-propargylic β-enaminones $\mathbf{1 0}$ 36
Table 6. Synthesis of N-propargylic β-enaminones 52 37
Table 7. Synthesis of 5-iodopyridines 44 38
Table 8. Optimization studies for the synthesis of 5-arylpyridines 46 42
Table 9. Synthesis of 5-arylpyridines via Suzuki-Miyaura reaction. 43
Table 10. Optimization studies for the formation of 2-ferrocenylpyridines 49 48
Table 11. One-pot synthesis of 2-ferrocenylpyridines 49 50
Table 12. Optimization studies for the synthesis of spiro-2H-pyrroles $\mathbf{5 1}$ 54
Table 13. Synthesis of spiro- 2 H -pyrroles 51 55
Table 14. Synthesis of 2 H -pyrroles 72 57
Table 15. Optimization studies for the benzylic C - H oxidation in spiro- 2 H -pyrroles53.62
Table 16. Synthesis of spiro-2H-pyrroles with two carbonyl groups 53 63
Table 17. Optimization studies for the synthesis of spiro-1,4-oxazepines $\mathbf{5 4}$ 68
Table 18. Synthesis of spiro-1,4-oxazepines 54. 70
Table 19. Synthesis of 1,4-oxazepines 86 72

LIST OF FIGURES

FIGURES

Figure 1. Heterocyclic drugs present in the US top five prescription drugs in 2014. .2
Figure 2. Three classes of pyrroles. 3
Figure 3. Structure of porphine (the simplest phorphyrin ring). 3
Figure 4. Representative members of the prodigiosin alkoloids family. 4
Figure 5. Structures of Tolmetin, Ketorolac and Sunitinib. 4
Figure 6. Examples of pyrrole-containing compounds in material science. 5
Figure 7. Structure of pyridine. 8
Figure 8. Structures of Diploclidine and Nakinadine A. 9
Figure 9. Structures of nicotinic acid and pyridoxine. 9
Figure 10. Some examples of drugs containing pyridine unit. 10
Figure 11. Examples of aryl-substituted pyridines showing antimalarial, antitumor and antibacterial activities 13
Figure 12. Structures of Pyridinitril and Etoricoxib. 13
Figure 13. Structure of ferrocene. 14
Figure 14. Structures of tamoxifen and ferrocifen. 15
Figure 15. Three types of oxazepines 16
Figure 16. Examples of oxazepine-containing drugs. 17
Figure 17. Structures of (-)-sibirine and acorenone B. 20
Figure 18. Structures of some drugs containing spirocycles. 20
Figure 19. Structures of spinol and spirOP. 21
Figure 20. The structure of compound 32e. 33
Figure 21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a 34
Figure 22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a 35
Figure 23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44 a 39
Figure $24 .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 a}$. 39
Figure $25 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 46a 46
Figure 26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46a 46
Figure 27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49a 51
Figure 28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49a 52
Figure 29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51a 58
Figure 30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 a}$ 59
Figure 31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51a 59
Figure $32 .{ }^{1} \mathrm{H}$ NMR spectrum of compound 53a 66
Figure 33. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53a 66
Figure $34 .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 a}$. 74
Figure 35. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 a}$ 74
Figure A1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26a. 174
Figure A2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26a. 174
Figure A3. ${ }^{1}$ H NMR spectrum of compound 26b. 175
Figure A4. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 b}$. 175
Figure A5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 c}$. 176
Figure A6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 c}$ 176
Figure A7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 d}$. 177
Figure A8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26d. 177
Figure A9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 e}$. 178
Figure A10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26e 178
Figure A11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 f}$. 179
Figure A12. ${ }^{13}$ C NMR spectrum of compound $\mathbf{2 6 f}$. 179
Figure A13. ${ }^{1}$ H NMR spectrum of compound $\mathbf{2 6 g}$. 180
Figure A14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 g}$ 180
Figure A15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 h}$. 181
Figure A16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 h}$ 181
Figure A17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 i}$ 182
Figure A18. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 i}$ 182
Figure A19. ${ }^{1}$ H NMR spectrum of compound $\mathbf{2 6 j}$. 183
Figure A20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 j}$. 183
Figure A21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 k}$. 184
Figure A22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 k}$ 184
Figure A23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 261. 185
Figure A24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26. 185
Figure A25. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 m}$. 186
Figure A26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 m}$. 186
Figure A27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 n}$. 187
Figure A28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 n}$. 187
Figure A29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 0}$. 188
Figure A30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 0}$. 188
Figure A31. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{2 6 p}$. 189
Figure A32. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 p}$. 189
Figure A33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 q}$. 190
Figure A34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 q}$ 190
Figure A35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6}$. 191
Figure A36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 r}$. 191
Figure A37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26s. 192
Figure A38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26s. 192
Figure A39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 t}$. 193
Figure A40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 t}$. 193
Figure A41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 u}$. 194
Figure A42. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 u}$. 194
Figure A43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 v}$. 195
Figure A44. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 v}$. 195
Figure A45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 w}$ 196
Figure A46. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 w}$. 196
Figure A47. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 x}$. 197
Figure A48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 x}$. 197
Figure A49. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 y}$. 198
Figure A50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6} \mathbf{y}$ 198
Figure A51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a. 199
Figure A52. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a 199
Figure A53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 b}$. 200
Figure A54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32b 200
Figure A55. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32c. 201
Figure A56. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32c 201
Figure A57. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32d. 202
Figure A58. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32d 202
Figure A59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 a}$ 203
Figure A60. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 50a 203
Figure A61. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 b}$. 204
Figure A62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 b}$ 204
Figure A63. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50c. 205
Figure A64. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 c}$ 205
Figure A65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 d}$. 206
Figure A66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 d}$ 206
Figure A67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 e}$. 207
Figure A68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 e}$ 207
Figure A69. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 f}$. 208
Figure A70. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 f}$. 208
Figure A71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 g}$. 209
Figure A72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 g}$ 209
Figure A73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 h}$ 210
Figure A74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 h}$ 210
Figure A75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 i}$. 211
Figure A76. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 i}$ 211
Figure A77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 j}$. 212
Figure A78. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 j}$. 212
Figure A79. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 k}$. 213
Figure A80. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 k}$ 213
Figure A81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 1}$ 214
Figure A82. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 1}$. 214
Figure A83. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 m}$. 215
Figure A84. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 m}$. 215
Figure A85. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 n}$. 216
Figure A86. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 n}$. 216
Figure A87. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 0}$. 217
Figure A88. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 0}$. 217
Figure A89. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0} \mathbf{p}$. 218
Figure A90. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 0 p}$ 218
Figure A91. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 q}$. 219
Figure A92. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 q}$ 219
Figure A93. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 61a. 220
Figure A94. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 a}$. 220
Figure A95. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 b}$. 221
Figure A96. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 b}$. 221
Figure A97. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6 1 c}$. 222
Figure A98. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 c}$. 222
Figure A99. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 a}$. 223
Figure A100. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10a. 223
Figure A101. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 b}$. 224
Figure A102. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 b}$ 224
Figure A103. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10c. 225
Figure A104. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 c}$ 225
Figure A105. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 d}$. 226
Figure A106. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 d}$. 226
Figure A107. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52a. 227
Figure A108. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 52a. 227
Figure A109. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 2 b}$. 228
Figure A110. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 2 b}$ 228
Figure A111. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52c. 229
Figure A112. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 c}$ 229
Figure A113. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52d. 230
Figure A114. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 52d 230
Figure A115. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52e. 231
Figure A116. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 e}$. 231
Figure A117. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 f}$. 232
Figure A118. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 f}$. 232
Figure A119. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 g}$. 233
Figure A120. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 2 g}$ 233
Figure A121. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 h}$. 234
Figure A122. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 h}$ 234
Figure A123. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44 a 235
Figure A124. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 a}$. 235
Figure A125. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 4 b}$. 236
Figure A126. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 b}$ 236
Figure A127. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 4 c}$. 237
Figure A128. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 c}$. 237
Figure A129. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 4 d}$. 238
Figure A130. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 d}$ 238
Figure A131. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46a. 239
Figure A132. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46a 239
Figure A133. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 b}$. 240
Figure A134. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 b}$ 240
Figure A135. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46c. 241
Figure A136. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 c}$ 241
Figure A137. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 d}$. 242
Figure A138. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 d}$ 242
Figure A139. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46e. 243
Figure A140. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46e 243
Figure A141. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 f}$. 244
Figure A142. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46f. 244
Figure A143. ${ }^{1} \mathrm{H}$ NMR spectrum ofcompound $\mathbf{4 6 g}$. 245
Figure A144. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 g}$. 245
Figure A145. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 h 246
Figure A146. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 h}$ 246
Figure A147. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 i}$ 247
Figure A148. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 i}$. 247
Figure A149. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 6 j}$ 248
Figure A150. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 j}$. 248
Figure A151. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 k}$. 249
Figure A152. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 k}$ 249
Figure A153. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 461. 250
Figure A154. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 461 250
Figure A155. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 m}$ 251
Figure A156. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 m}$ 251
Figure A157. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 n}$. 252
Figure A158. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 n}$. 252
Figure A159. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 0}$. 253
Figure A160. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 o}$ 253
Figure A161. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 p}$. 254
Figure A162. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 p}$ 254
Figure A163. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 q}$. 255
Figure A164. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 q}$ 255
Figure A165. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 r 256
Figure A166. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 r}$ 256
Figure A167. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49 a. 257
Figure A168. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49a. 257
Figure A169. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49b. 258
Figure A170. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 9 b}$ 258
Figure A171. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49c. 259
Figure A172. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 c 259
Figure A173. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49d. 260
Figure A174. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 d 260
Figure A175. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49e. 261
Figure A176. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 e 261
Figure A177. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49 f 262
Figure A178. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 9 f}$. 262
Figure A179. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51a. 263
Figure A180. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51a 263
Figure A181. ${ }^{1}$ H NMR spectrum of compound 51b. 264
Figure A182. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 b}$ 264
Figure A183. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51c. 265
Figure A184. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51c. 265
Figure A185. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51d 266
Figure A186. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 d}$ 266
Figure A187. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51e. 267
Figure A188. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51e. 267
Figure A189. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 f}$. 268
Figure A190. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51f. 268
Figure A191. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 g}$. 269
Figure A192. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 g}$ 269
Figure A193. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 h}$. 270
Figure A194. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 h}$ 270
Figure A195. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51i. 271
Figure A196. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1}$ i. 271
Figure A197. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1} \mathbf{j}$ 272
Figure A198. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1} \mathbf{j}$. 272
Figure A199. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 k}$. 273
Figure A200. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 k}$ 273
Figure A201. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 1}$. 274
Figure A202. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 1}$. 274
Figure A203. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51m 275
Figure A204. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 m}$. 275
Figure A205. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51n. 276
Figure A206. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 n}$. 276
Figure A207. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 0}$. 277
Figure A208. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 o}$ 277
Figure A209. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 p}$. 278
Figure A210. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 p}$. 278
Figure A211. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 q}$. 279
Figure A212. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51q 279
Figure A213. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72a. 280
Figure A214. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72a. 280
Figure A215. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72b. 281
Figure A216. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 2 b}$ 281
Figure A217. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72c. 282
Figure A218. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72c 282
Figure A219. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53a. 283
Figure A220. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53a 283
Figure A221. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 b}$. 284
Figure A222. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 b}$ 284
Figure A223. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3}$ c. 285
Figure A224. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 c}$ 285
Figure A225. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53d. 286
Figure A226. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53d 286
Figure A227. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 e}$. 287
Figure A228. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3} \mathbf{e}$ 287
Figure A229. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 3 f}$. 288
Figure A230. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 f}$. 288
Figure A231. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 g}$. 289
Figure A232. ${ }^{13}$ C NMR spectrum of compound $\mathbf{5 3 g}$ 289
Figure A233. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 h}$. 290
Figure A234. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 h}$ 290
Figure A235. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 a}$. 291
Figure A236. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 a}$ 291
Figure A237. ${ }^{1}$ H NMR spectrum of compound 54b. 292
Figure A238. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 b}$ 292
Figure A239. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 c}$. 293
Figure A240. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 c}$ 293
Figure A241. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 d}$. 294
Figure A242. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 d}$ 294
Figure A243. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 e}$. 295
Figure A244. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 e}$ 295
Figure A245. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 f}$. 296
Figure A246. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 f}$. 296
Figure A247. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 g}$. 297
Figure A248. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 g}$ 297
Figure A249. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 h}$. 298
Figure A250. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 h}$ 298
Figure A251. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 i}$ 299
Figure A252. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 i}$. 299
Figure A253. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 j}$ 300
Figure A254. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 j}$ 300
Figure A255. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 k}$. 301
Figure A256. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 k}$ 301
Figure A257. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 541 302
Figure A258. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 1}$. 302
Figure A259. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 m}$ 303
Figure A260. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 m}$ 303
Figure A261. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 4 n}$. 304
Figure A262. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 n}$ 304
Figure A263. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 6 a}$. 305
Figure A264. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 86a. 305
Figure A265. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 6 b}$. 306
Figure A266. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 6 b}$ 306
Figure A267. ${ }^{1}$ H NMR spectrum of compound $\mathbf{8 6 c}$. 307
Figure A268. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 6 c}$. 307

LIST OF ABBREVIATIONS

ABBREVIATIONS

ATR	attenuated total reflection
DBU	1,8 -diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-dichloroethane
DCM	dichloromethane
DIPA	diisopropylamine
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
HRMS	high resolution mass spectrometry
NMP	N-methyl-2-pyrrolidone
NMR	nuclear magnetic resonance
NOESY	nuclear overhauser spectroscopy
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin layer chromatography

LIST OF SCHEMES

SCHEMES

Scheme 1. Knorr pyrrole synthesis. 6
Scheme 2. Hantzsch pyrrole synthesis 6
Scheme 3. Silver-catalyzed pyrrole synthesis. 6
Scheme 4. Base-mediated synthesis of pyrroles. 7
Scheme 5. Au(I)-catalyzed formation of pyrroles. 7
Scheme 6. Base-promoted synthesis of N -alkyl pyrroles. 8
Scheme 7. Cu-catalyzed pyridine synthesis. 11
Scheme 8. Rhenium-catalyzed synthesis of pyridines 11
Scheme 9. Synthesis of pyridines via aza-annulation of enynyl azides. 12
Scheme 10. Synthesis of substituted pyridines. 12
Scheme 11. Phosphine-mediated synthesis of 1,4-oxazepines. 18
Scheme 12. Copper-catalyzed synthesis of 1,4 -oxazepines. 18
Scheme 13. Gold-catalyzed synthesis of 1,4-oxazepines 18
Scheme 14. Base-mediated synthesis of 1,4-oxazepines and their conversion to pyridines. 19
Scheme 15. Synthesis of spiro compounds from 2-naphthols. 21
Scheme 16. Synthesis of spiro compounds via intermolecular Diels-Alder reaction.22
Scheme 17. Synthesis of halogenated spiroketals via iodocyclization. 22
Scheme 18. Synthesis of spiro-pseudoindoxyls. 23
Scheme 19. Synthesis of 5-iodopyridines. 23
Scheme 20. Synthesis of 5-arylpyridines. 24
Scheme 21. One-pot synthesis of 2-ferrocenylpyridines. 24
Scheme 22. Synthesis of spiro-2H-pyrroles. 25
Scheme 23. Synthesis of spiro-2H-pyrroles with two carbonyl groups. 25
Scheme 24. Synthesis of spiro-1,4-oxazepines 26
Scheme 25. Synthesis of ethynylferrocene ($\mathbf{6 0}$) 27
Scheme 26. Proposed mechanism for the formation of 5-iodopyridines 40
Scheme 27. Proposed mechanism for the synthesis of 5-arylpyridines 46. 45
Scheme 28. One-pot synthesis of 2-ferrocenylpyridines 49. 47
Scheme 29. Proposed mechanism for the formation of 2-ferrocenylpyridines 49.... 51
Scheme 30. Proposed mechanism for the formation of spiro- $2 H$-pyrroles 51 58
Scheme 31. Synthesis of spiro-2H-pyrrole with two carbonyl groups 53. 60
Scheme 32. Examples of benzylic C-H oxidations. 61
Scheme 33. Proposed mechanism for the formation of spiro-2H-pyrroles 53. 65
Scheme 34. Proposed mechanism for the formation of spiro-1,4-oxazepines 54. 73

CHAPTER 1

INTRODUCTION

Organic chemistry is the study of carbon compounds and it is considered as one of the most important branches of chemistry because every living organism is composed of organic compounds. ${ }^{1}$ For example, deoxyribonucleic acid (DNA) is the carrier of genetic heritage in all living beings, proteins and enzymes play important role in vital processes of all organisms, and carbohydrates and fats are essential for energy balance of the body. These are all organic compounds and they have great importance for the continuity of life. However, organic chemists are not only interested in the chemistry of life and natural carbon compounds but also sophisticated ability to design and synthesize new organic compounds in medicines, dyes, polymers, pesticides, food additives and a large number of other substances. Therefore, organic chemistry touches the lives of everyone else. ${ }^{1}$

In particular, heterocyclic compounds, which contain at least one heteroatom other than carbon in their ring forming carbon skeletons, occupy unique place in organic chemistry. The most common heteroatoms are nitrogen, oxygen and sulphur. ${ }^{2}$ Heterocyclic compounds are widely found in biologically active natural products, organic materials, agrochemicals, additives and modifiers. ${ }^{3,4}$ Moreover, heterocycles constitute common structural scaffolds of the most marketed drugs. According to the top of five US small molecule drug retail sales in 2014, four of the five drugs contain heterocyclic units in their structures (Figure 1). These four drugs have brought in approximately 27.4 million U.S. dollars, almost 80% of total income came from the top five drugs. ${ }^{5}$ Consequently, development of new and efficient synthetic approaches for the synthesis of heterocyclic compounds and finding specific properties of heterocycles are the main objective for organic chemists. Especially, compounds,
which contain five-, six- and seven-membered heterocycles such as pyrroles, pyridines and oxazepines, have gained importance owing to their wide variety of pharmacological properties. ${ }^{6,7}$

Sovaldi (Antiviral)

Esomeprazole (Antiulcerant)

Aripiprazole (Antipsychotic)

Crestor (Cholesterol regulator)

Figure 1. Heterocyclic drugs present in the US top five prescription drugs in 2014.

1.1. Pyrroles

Pyrroles are five-membered heterocyclic aromatic compounds with one nitrogen heteroatom in their ring structure. Three classes of pyrroles are known: the more common aromatic 1 H -pyrroles and the less familiar 2 H - and 3 H -pyrroles (Figure 2). The latter two classes, which were defined in early literature examples as isopyrroles and as pyrrolenines, are nonaromatic because of the presence of the tetrahedral carbon atom in their ring. ${ }^{8}$ In 1834, pyrrole was first detected by F. F Runge as a constituent of coal tar and it was isolated from the pyrolysate of bone in $1857 .{ }^{9}$

$1 H$-pyrrole

2 H -pyrrole

3H-pyrrole

Figure 2. Three classes of pyrroles.

1.1.1. Importance of Pyrroles

Pyrroles are one of the most important class of heterocyclic compounds and emerge in many natural products and synthetic pharmaceuticals. ${ }^{10}$ In fact, pyrroles have a wide range of applications in many branches of science including biology, medicine and material science. ${ }^{11}$ Pyrrole unit is an essential component of porphyrin rings, which plays a crucial role in biologically important compounds such as chlorophyll, heme, vitamin B_{12} and bile pigments (Figure 3). ${ }^{12}$

Figure 3. Structure of porphine (the simplest porphyrin ring).

Also, prodigiosin alkaloids, a family of naturally occurring red pigments produced by Streptomycesand Serratia, include a common pyrrole unit in their structures (Figure 4). ${ }^{13}$

Prodigiosin

Sterptorubin B

Cycloprodigiosin

Figure 4. Representative members of the prodigiosin alkoloids family.

Notably, pyrrole and its derivatives are widely used as building blocks for medicinal research as well, ${ }^{14}$ since they are present in the structures of a diverse range of marketed drugs, including neotropic Aloracetam, used for the treatment of Alzheimer's disease, anxiolytic Isamoltane, non-steroidal antiflammatory Tolmetin and Ketorolac, cholesterol-lowering Atorvastatin, antipsychotic Elopiprazole and anticancer Sunitinib (Figure 5). ${ }^{15}$

Tolmetin

Ketorolac

Sunitinib

Figure 5. Structures of Tolmetin, Ketorolac and Sunitinib.

Morover, pyrroles have great importance in material science because of their distinctive potential as components of boron-dipyrromethene (BODIPY) dyes and optoelectronic materials such as organic light emitting diodes (OLEDs), semiconductors and glucose sensors, two examples of which are given in Figure 6. ${ }^{16}$

A pyrrole based semiconductor

BODIPY dyes

Figure 6. Examples of pyrrole-containing compounds in material science.

1.1.2. Synthesis of Pyrroles

Pyrroles have been a prominent class of heterocyclic molecules in organic research owing to important biological, medicinal and materials science applications. ${ }^{17}$ Therefore, development of efficient synthetic routes for their formation have attracted considerable attention from researchers of organic chemistry. A wide variety of methods exist in literature, in which different starting materials have been employed, such as N-propargylamines, α-diazoketones, 1,4-dicarbonyls, α-hydroxyketones, isocyanides, nitroalkanes or alkynes. ${ }^{17}$ Also traditional approaches for the synthesis of pyrroles include Knorr and Hantzsch reactions.

In 1885, Knorr reported that cyclocondensation of α-aminoketones $\mathbf{2}$ with β-ketoesters $\mathbf{1}$ yielded substituted pyrroles $\mathbf{3}$ as depicted in Scheme 1. ${ }^{18}$

Scheme 1. Knorr pyrrole synthesis.

Then, Hantzsch in 1890 published that the reaction between acetoacetic ester (4) and α-chloroacetone (5) in the presence of aqueous ammonia afforded pyrrole derivative 6 (Scheme 2). ${ }^{19}$

Scheme 2. Hantzsch pyrrole synthesis.

Moreover, Lei research group showed that silver-catalyzed reaction between terminal alkynes $\mathbf{7}$ and isocyanides $\mathbf{8}$ yielded substituted pyrroles $\mathbf{9}$, as illustrated in Scheme $3 .{ }^{20}$

Scheme 3. Silver-catalyzed pyrrole synthesis.

Notably, cyclization of N-propargylic β-enaminones mostly produced pyrrole and pyridine derivatives. In 2008, Cacchi and co-workers described the conversion of N -
propargylic β-enaminones $\mathbf{1 0}$ into pyrroles $\mathbf{1 1}$ in the presence of cesium carbonate (Scheme 4). ${ }^{21}$

Scheme 4. Base-mediated synthesis of pyrroles.

Then, in 2010 Saito, research group found that $[(\operatorname{IPr}) \mathrm{Au}(\mathrm{MeCN})] \mathrm{BF}_{4}$-catalyzed amino-Claisen rearrangement of N-propargylic β-enaminones 12, followed by heterocyclization, yielded pyrrole derivatives 13 (Scheme 5). ${ }^{22}$

Scheme 5. Au(I)-catalyzed formation of pyrroles.

Most recently, Hu and Zhang showed that when treated with tert-BuOK in DMF at room temperature, N-alkyl, N-propargylic β-enaminones $\mathbf{1 4}$ yielded pyrrole derivatives $\mathbf{1 5}$ as well (Scheme 6). ${ }^{23}$

Scheme 6. Base-promoted synthesis of N-alkyl pyrroles.

1.2. Pyridines

Pyridines, in which one of carbon of benzene is replaced by nitrogen, are the sixmembered heterocyclic aromatic compounds (Figure 7). In 1849, pyridine was discovered as one of the constituents of bone oil by chemist Thomas Anderson. ${ }^{24} \mathrm{He}$ separated pyridine from oil through fractional distillation. However, the cyclic structure of pyridine was recognized by Wilhelm Körner and James Dewar in 1869. ${ }^{24}$

Figure 7. Structure of pyridine.

1.2.1. Importance of Pyridines

Pyridines are one of the most important classes of heterocyclic compounds and found in many natural products and medicinal compounds. ${ }^{25}$ In fact, pyridines have a range of applications in many branches of chemistry, such as catalysis, drug design and synthesis, molecular recognition and material science. ${ }^{26}$

Diploclidine

Nakinadine A

Figure 8. Structures of Diploclidine and Nakinadine A.

Pyridines are also important structural cores of diverse natural products such as Diploclidine and Nakinadine A, as depicted in Figure 8. ${ }^{27}$ Moreover, there are many pyridine-based alkaloid natural products such as nicotinic acid and pyridoxine (also called vitamin B_{3} and vitamin B_{6}, respectively) (Figure 9). ${ }^{28}$ They are found in many multiple vitamins and nutritional supplements. Among them, nicotinic acid is used in NADP/NADPH redox system and lowering cholesterol and triglycerides in the blood. It is also used to lower the risk of heart attack in people with high cholesterol. Moreover, pyridoxine plays an active role in amino acid metabolism.

Figure 9. Structures of nicotinic acid and pyridoxine.

Notably, pyridines are broadly used in pharmaceutical research because they are found in the structures of a diverse range of pioneering drugs, including anticancer Imatinib, ${ }^{29}$ antidiabetic Pioglitazone, ${ }^{30}$ antihistaminic Desloratadine, ${ }^{31}$ antineoplastic and HIV antiviral Atazanavir, ${ }^{32}$ bone calcium regulator Risedronate, ${ }^{33}$ hipnotic and
sedative Eszopiclone, ${ }^{34}$ cholesterol and triglyceride regulator Niacin ${ }^{35}$ and antiulcerant Esomeprazole (Figure 10). Among them, Esomeprazole, which is tetrasubstituted pyridine derivative, placed in top twenty pharmaceutical products by sales worldwide in $2015 .{ }^{36}$

Esomeprazole

Imatinib

Pioglitazone

Eszopiclone

Figure 10. Some examples of drugs containing pyridine unit.

Moreover, pyridines are utilized in preparation of conjugated polymers and functional materials that are employed in the light-emitting devices (LEDs). ${ }^{37}$

1.2.2. Synthesis of Pyridines

Since pyridines are important scaffolds in natural products and pharmaceutical drugs, over many years, many methods have been developed and new ones continue to come out. ${ }^{38}$ In this respect, in 1876, first synthesis of pyridine was achieved by William Ramsay via the reaction of acetylene and hydrogen cyanide in hot iron-tube furnace. ${ }^{38}$

In 1920s, Chichibain synthesized pyridine from the reaction of aldehyde derivatives with ammonia which is one of the most widely used industrial method for the pyridine production. ${ }^{39}$ After that, pyridine synthesis was continued with different types of methods, which commonly involve condensation of carbonyl compounds with amines or cycloaddition of azadienes and nitriles with alkane and alkynes. ${ }^{40}$

Recently, Fabrizi and Cacchi have reported that when treated with CuBr in DMSO, N-propargylic β-enaminones 10 afforded substituted pyridines 16 via 6 -endo-dig cyclization (Scheme 7). ${ }^{21}$

Scheme 7. Cu-catalyzed pyridine synthesis.

In 2012, Takai et al. described a different method for the synthesis of multisubstituted pyridine derivatives, which is shown in Scheme 8 . When N-acetyl β-enamino ketones 17 reacted with alkynes 18 in the presence of the rhenium catalyst, $\operatorname{Re}_{2}(\mathrm{CO})_{10}$, multisubstituted pyridines 19 were obtained (Scheme 8). ${ }^{41}$

Scheme 8. Rhenium-catalyzed synthesis of pyridines.

In 2015, Reddy and his co-workers established a method for the synthesis of pyridines through aza-annulation of 2-en-4-ynyl azides 20 (Scheme 9). In this study, Agcatalyzed cyclization afforded 3,6-disubstituted pyridines 22. However, in case of $\mathrm{I}_{2}-$ promoted annulation, the reaction gave 5-iodo-3,6-disubstituted pyridines 21. ${ }^{42}$

Scheme 9. Synthesis of pyridines via aza-annulation of enynyl azides.

Most recently, Rychnovsky and co-workers developed a method for constructing substituted pyridine rings, as illustrated in Scheme 10. This approach first involves the addition of allylsilane (24) to enone structure $\mathbf{2 3}$. Then, oxidation and cyclization with hydroxylamine completes the synthesis of pyridine derivatives $\mathbf{2 5} .{ }^{43}$

Scheme 10. Synthesis of substituted pyridines.

1.2.3. Aryl-Substituted Pyridines

Aryl-substituted pyridines have an important place in pharmaceutical industry. In particular, properly substituted aryl-pyridines exhibit remarkable medicinal properties including antibacterial ${ }^{44}$ antifungal, ${ }^{45}$ anti-inflammatory, ${ }^{46}$ antimalarial, ${ }^{47}$ antitumor, ${ }^{48}$ high potency calcium-sensing receptor antagonist, ${ }^{49}$ and sodium channel inhibitory activities (Figure 11). ${ }^{50}$

Antimalarial

Antitumor

Antibacterial

Figure 11. Examples of aryl-substituted pyridines showing antimalarial, antitumor and antibacterial activities.

Moreover, Pyridinitril is a well known arylpyridine having fungicide activity. ${ }^{45}$ Etoricoxib is a new class nonsteroidal anti-inflammatory drug. It specifically binds and inhibits the enzyme cyclooxygenase-2 (COX-2), which results in the prevention of conversion of arachidonic acid to prostaglandins. ${ }^{46}$

Pyridinitril

Etoricoxib

Figure 12. Structures of Pyridinitril and Etoricoxib.

Also, arylpyridine-based dipeptyl peptidase-4 (DPP-4) inhibitors are relatively new class of oral diabetes drugs. DPP-4 inhibitors work by blocking the action of DPP-4 enzyme which destroys a group of gastrointestinal hormones. In this way, DPP-4 inhibitors treat the type-2 diabetes mellitus and help other metabolic disorders. ${ }^{51}$

In addition, some terpyridines and the related aryl-substituted pyridines have exhibited strong antitumor cytotoxicities against several human cancer cell lines and topoisomerase I inhibitory activities. Studies also revealed that the number of aryl groups attached to pyridine core plays an important role for their biological activities. When number of aryl substituents on the pyridine ring increases, enhanced biological activities could be observed. ${ }^{52}$ Therefore, a large number of studies has been devoted to the synthesis of polyarylated pyridines which could be potential drug substances.

1.2.4. Ferrocenyl-Substituted Pyridines

Ferrocene is the most well-known sandwich-type organometallic compound (Figure 13). ${ }^{53}$ The terms like 'sandwich compound' and 'metallocene' are commonly applied to define ferrocene and its derivatives. Ferrocene has obtained considerable importance in medicinal chemistry because it is chemically stable, non-toxic and able to cross cell membranes. Many ferrocene derivatives have displayed antifungal, antibacterial, antimalarial and antitumor activities. ${ }^{53}$ For example, ferrocifen, which is a ferrocenyl analog of tamoxifen, shows antiproliferative activity on both hormonedependent and hormone-independent breast cancer cells, while tamoxifen only displays antiestrogenic activity on hormone-dependent breast cancer cells (Figure 14). ${ }^{53}$

Figure 13. Structure of ferrocene.

Due to the dual effect of ferrocifen, researchers has started to synthesize and investigate further ferrocifen-like complexes. In fact, integration of ferrocene core into potentialy bioactive compounds can introduce new and novel properties. Therefore,
development of new methods for their synthesis attracts the attention of organic chemists.

Tamoxifen

Ferrocifen

Figure 14. Structures of tamoxifen and ferrocifen.

In particular, ferrocenyl pyridines have gained considerable importance because of their wide variety of applications in nonlinear optic devices, catalysis, self-assembly devices, electrochemical sensors and medicinal chemistry. ${ }^{54}$ Ferrocenylpyridines have been also used as ligands for the synthesis of heterobimetallic complexes by the means of metal binding ability of pyridine nitrogen atom. In this manner, different metal complexes of ferrocenylpyridines have been synthesized to facilitate electronic interaction between metal centers. ${ }^{55}$ Changing the oxidation state of ferrocenyl unit allows to tune electron density and so reactivity. Moreover, in Heck and Suzuki coupling reactions, carbene adducts of cyclopalladated ferrocenylpyridines have been used as catalyst. ${ }^{56}$ In addition, ferrocenylpyridines have been utilized as anticancer agent against human cancer cell lines. Notably, some derivatives of ferrocenylpyridines have exhibited higher activity than cisplatin, which are used as common chemothepautic agents. ${ }^{54}$ In brief, ferrocenylpyridines are valuable compounds with a wide range of applications and usage. So the development of new methods for their synthesis of attracts the interest of researchers.

1.3. Oxazepines

Oxazepines are seven-membered unsaturated heterocyclic compounds with one nitrogen and one oxygen heteroatoms. According to the positions of oxygen and nitrogen atoms in the ring, they are named as 1,2-oxazepine, 1,3-oxazepine and 1,4oxazepine (Figure 15). In 1965, one of oxazepine derivatives, namely benzodiazepine, was first used in mental ease which has been characterized by anxiety and tension. ${ }^{57}$

1,2-Oxazepine

1,3-Oxazepine

1,4-Oxazepine

Figure 15. Three types of oxazepines.

1.3.1. Importance of Oxazepines

Seven-membered heterocycles, especially oxazepines, are an important class of molecules in the design and synthesis of bioactive compounds which show extraordinary medicinal activities. ${ }^{58}$ Therefore, in recent years, appreciable number of methodologies have been developed for the preparation of oxazepines. ${ }^{58}$ Oxazepines could be found in different forms such as partly and fully saturated, benzo-, dibenzoand oxo derivatives. Notably, all have great importance as pharmaceutical drugs and/or active substances in biological systems. ${ }^{59}$

Oxazepines have exhibited biological activities such as anticonvulsant, ${ }^{60}$ antidepressant, ${ }^{61}$ antipsychotic ${ }^{62}$ and antitumor properties. ${ }^{63}$ Moreover, oxazepine derivatives have been used as histone deacetylase inhibitor, ${ }^{64}$ progesterone receptor agonist ${ }^{65}$ and calcium antagonist. ${ }^{66}$ They are also effective against fungi and bacteria. ${ }^{67}$

Oxazepine derivatives have been commonly used to treat symptoms of depression, anxiety and schizophrenia. Therefore, oxazepines are main structural core in medicinally important drugs like antidepressants Amoxapine ${ }^{68}$ and Sintamil ${ }^{69}$ and antipsychotic Loxapine (Figure 16). ${ }^{70}$

Amoxapine

Sintamil

Loxapine

Figure 16. Examples of oxazepine-containing drugs.

In addition, oxazepines are utilized in photostabilization of polymers. Oxazepine containing heterocyclic compounds have been reported as stabilizer of PVC (polyvinylchloride) via different mechanisms like UV adsorber, screener or by radical scavenger. In this way, polymer would have good long-term stability. ${ }^{71}$

1.3.2. Synthesis of Oxazepines

There is an increasing interest for the synthesis of seven-membered rings with two heteroatoms. Among them, partly and fully unsaturated monocyclic 1,4-oxazepines have been less studied, so limited examples could be found in literature. In 1986, Tsuchiya et al. reported the first preparation of fully unsaturated 1,4-oxazepines. When irradiated, a tricycloheptene, synthesized from pyridine in five steps, underwent valence isomerization to give the corresponding 1,4-oxazepine derivatives. ${ }^{72}$

Recently, in 2010, Loreau and Taran published an interesting route for the synthesis of 1,4-oxazepines $\mathbf{2 8}$. The reaction of ynones $\mathbf{2 6}$ with 2 -azido alcohols $\mathbf{2 7}$ via n - $\mathrm{Bu}_{3} \mathrm{P}-$
mediated tandem aza-Wittig reaction, followed by intramolecular cyclization, afforded 1,4-oxazepines 28 (Scheme 11). ${ }^{73}$

Scheme 11. Phosphine-mediated synthesis of 1,4-oxazepines.

In 2013, Nakamura's research group reported a copper-catalyzed method for the synthesis oxazepines 31 through the reaction of o-propargylic oximes 29 with dipolarophiles $\mathbf{3 0}$ such as maleimides and fumaric acid esters (Scheme 12). ${ }^{74}$

Scheme 12. Copper-catalyzed synthesis of 1,4-oxazepines.

In 2015, Karunakar et al. reported an efficient method for the synthesis of 1,4oxazepines 33 via gold-catalyzed intramolecular cyclization of N-propargylic β enaminones 32, which is illustrated in Scheme $13 .{ }^{75}$

Scheme 13. Gold-catalyzed synthesis of 1,4-oxazepines.

In 2017, Cui's research group showed that in situ preparation of base-promoted 1,4oxazepines 34 from the 7 -exo-dig cyclization of N-propargylic β-enaminones 32 (Scheme 14). When alcohols, thiols and aldehydes were added to active intermediate 1,4-oxazepines, pyridine derivatives were formed efficiently. ${ }^{76}$

Scheme 14. Base-mediated synthesis of 1,4-oxazepines and their conversion to pyridines.

1.4. Spiro Compounds

Spiro compounds are molecules that combining two rings with one shared atom. ${ }^{77}$ The atom connecting the rings is called spiro atom. Carbon atom is most common spiro atom, but other atoms such as nitrogen, phosphorus and boron are also known. It is estimated that the discovery of spirocycles can be traced back to the late 1890s. After a few years, Von Baeyer proposed the name 'spirocylane' for bicyclic hydrocarbons which have two rings with spiro carbon atoms. ${ }^{77}$

1.4.1. Importance of Spiro Compounds

Spiro compounds are a priviliged class of molecules since they are present in the structures of numerous natural and non-natural products. They are widely used as building blocks for medicinal research owing to their presence in pharmacologically important molecules. ${ }^{78}$ In fact, spiro compounds are important structural units of
diverse natural products such as alkoloid (-)-sibirine, fused tetracyclic lycopodium, alkaloid nankakurine A , several spongistatins and acorenone B (Figure 17). ${ }^{79}$

(-)-Sibirine

Acorenone B

Figure 17. Structures of (-)-sibirine and acorenone B.

Spirocycles are found in structures of diverse pioneering drugs such as Ibersartan ${ }^{80}$ for cardivascular diseases, Drospirenone ${ }^{81}$ which is used in birth control pills and in menopausal hormone therapy and Spironolactone ${ }^{82}$ that is used to treat edema and hypokalemia (Figure 18).

Irbesartan

Spironolactone

Figure 18. Structures of some drugs containing spirocycles.

Spirocycles have unique structural features with central or axial chirality, so they are useful in asymmetric synthesis as well, in which spiro moiety gives high degree of rigidity to overall structure and reduces the number of rotable bonds. Common examples of chiral ligands are spinol, spirOP and spirobisoxazoline (Figure 19). ${ }^{83}$ Moreover, some spiro compounds have homo conjugation because of perpendicular
π-electron systems. Due to this property, they could be utilized in light-emitting diodes (OLEDs) and various conjugated polymers. ${ }^{83}$

Spinol

SpirOP

Figure 19. Structures of spinol and spirOP.

1.4.2. Synthesis of Spiro Compounds

Construction of new spirocyclic compounds is one of the chalenges in synthetic organic chemistry. However, design of spirocyclic scaffolds is highly diffucult goal because creation of quaternary centre is needed for this process. ${ }^{83}$ Therefore, different strategies have been developed for their synthesis. These methods include cycloadditions, intramolecular substitutions, metal-promoted cyclizations, radical cyclizations and intramolecular arrangements. ${ }^{77}$

In literature studies, different types of approaches could be observed. For example, in 2010, Tsubaki and his co-workers showed that in the presence of $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$, oxidative coupling of 2-naphthols $\mathbf{3 6}$ and their rearrangement gave the corresponding spiro compounds 37 (Scheme 15). ${ }^{84}$

Scheme 15. Synthesis of spiro compounds from 2-naphthols.

Moody's et al. reported an approach for the sythesis of spirocycles 39 through intermolecular Diels-Alder reaction between tetramic acid 38 and 2,3-dimethyl-1,3butadiene, which is illustrated in Scheme 16. ${ }^{85}$

Scheme 16. Synthesis of spiro compounds via intermolecular Diels-Alder reaction.

In 2014, Liang research group developed a strategy for synthesis of variety spiroketals 41 via tandem iodocyclization of 1-(2-ethynylphenyl)-4-hydroxybut-2-yn-1-one derivatives 40 (Scheme 17). ${ }^{86}$

Scheme 17. Synthesis of halogenated spiroketals via iodocyclization.

In 2017, Wang and co-workers described an efficient method for the synthesis of spiro-pseudoinoxyls 43 from o-alkynylnitrobenzene 42. This one-pot approach involves Pd-catalyzed cycloisomerization, nucleophilic addition and reduction processes (Scheme 18). ${ }^{87}$

Scheme 18. Synthesis of spiro-pseudoindoxyls.

1.5. Aim of Study

As mentioned before, nitrogen-containing five-, six- and seven-membered heterocyclic compounds have attracted great importance in organic synthesis as a result of their wide range of applications in many branches of chemistry. In this respect, N-propargylic β-enaminones have been recognized as the attractive substrates for the preparation of a range of important heterocyclic compounds. Notably, they have a special structure since they contain different fuctional groups like alkene, alkyne, enone, enamine and enaminone. Under proper conditions, N-propargylic β enaminones could afford pyrroles, ${ }^{22}$ pyridines, ${ }^{21}$ dihydropyridines ${ }^{88}$ and oxazepines. ${ }^{75}$ The aim of this study is to develop new methodologies for the synthesis of five-, sixand seven-membered heterocyclic compounds by employing the cyclizations of N propargylic β-enaminones. Our research group recently explored their cyclizations. When treated with molecular iodine in the presence of sodium bicarbonate, N propargylic β-enaminones 10 underwent electrophilic cyclization to give 5iodopyridines 44 (Scheme 19). ${ }^{89}$

Scheme 19. Synthesis of 5-iodopyridines.

Iodine containing pyridines are desirable building blocks for synthesis of more complex molecules. In fact, they present a platform for metal-catalyzed cross-coupling reactions. Therefore, in the first part of study, Suzuki-Miyaura coupling reaction of 5iodopyridines $\mathbf{4 4}$ with boronic acids 45 has been investigated, which afforded a diverse range of potentially bioactive 5 -aryl-substituted pyridines 46 (Scheme 20). ${ }^{90}$

Scheme 20. Synthesis of 5-arylpyridines.

In the second part of the study, a one-pot approach for the synthesis of 2ferrocenylpyridines has been described. When reacted with propargylamine (48), $\alpha, \beta-$ alkynic ketones 26 yielded N-propargylic β-enaminones, which in the presence of copper(I) chloride, underwent electrophilic cyclization to generate 2ferrocenylpyridine derivatives 49 (Scheme 21). ${ }^{91}$

Scheme 21. One-pot synthesis of 2-ferrocenylpyridines.

Then, cyclohexane-embedded N-propargylic β-enaminones were prepared. In the third part, an efficient methodology has been developed for the synthesis of spiro- 2 H pyrroles. When treated with cesium carbonate, cyclohexane-embedded N-propargylic β-enaminones $\mathbf{5 0}$ underwent cyclization to afford spiro- $2 H$-pyrrole derivatives $\mathbf{5 1}$ in very high yields (Scheme 22). ${ }^{92}$

Scheme 22. Synthesis of spiro-2H-pyrroles.

In order to obtain further functionalized spiro- 2 H -pyrroles, cyclohexane-embedded N propargylic β-enaminones were subjected to Sonogashira cross-coupling with aryl iodides. In the fourth part of study, these arylated β-enaminones $\mathbf{5 2}$ were exposed to cesium carbonate, which interestingly afforded pyrroles $\mathbf{5 3}$ with two carbonyl groups through further benzylic C-H oxidation (Scheme 23). ${ }^{93}$

Scheme 23. Synthesis of spiro-2H-pyrroles with two carbonyl groups.

At the final stage, a strategy for the preparation of spiro-1,4-oxazepines was developed. Upon reaction in the presence of zinc iodide and silver hexafluoroantimonate, cyclohexane-embedded N-propargylic β-enaminones 50 underwent cyclization to generate spiro-1,4-oxazepines 54 (Scheme 24).

Scheme 24. Synthesis of spiro-1,4-oxazepines.

In summary, scope, limitations and mechanisms for the synthesis of 5-arylpyridines 46, 2-ferrocenylpyridines 49, spiro-2H-pyrroles 51 and 53 and spiro-1,4-oxazepines 54 will be discussed in detail.

CHAPTER 2

RESULTS AND DISCUSSION

2.1. Synthesis of Starting Materials

2.1.1. Synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Alkynic Ketones 26

In the first part of the study, Sonogashira cross-coupling reaction of substituted benzoyl chlorides 55 with terminal alkynes 56 was explored for the synthesis of α, β alkynic ketones 26. This reaction was performed at room temperature using $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ as a catalyst, combined with CuI as a co-catalyst, and $\mathrm{Et}_{3} \mathrm{~N}$ in THF under argon atmosphere. By employing Sonogashira approach, we achieved the synthesis of 25 derivatives of α, β-alkynic ketones in $65-99 \%$ yields as illustrated in Table 1.

In these Sonogashira cross-coupling reactions, commercially available terminal alkynes were utilized. Only ethynylferrocene ($\mathbf{6 0}$) was synthesized from ferrocene according to a well-known literature procedure as shown in Scheme 25. ${ }^{94}$

Scheme 25. Synthesis of ethynylferrocene (60).

Table 1. Synthesis of α, β-alkynic ketones 26. ${ }^{a}$

26a (96\%)

26d (89\%)

26g (82\%)

26j (73\%)

26k (72\%)

261 (76\%)

26m (94\%)

26n (73\%)

Table 1. Continued.
\qquad

26s (75\%)

${ }^{a}$ Isolated yields.

2.1.2. Synthesis of N-propargylic $\boldsymbol{\beta}$-enaminones 32,50 and 61

After preparing α, β-alkynic ketones 26, N-propargylic β-enaminone derivatives 32 were synthesized (Table 2). Conjugate addition of propargylamine to α, β-alkynic ketones 26 in refluxing methanol gave N-propargylic β-enaminones 32. By employing this method, 4 derivatives of β-enaminones $\mathbf{3 2}$ were obtained in $94-98 \%$ yields as shown in Table 2.

Table 2. Synthesis of N-propargylic β-enaminones 32. ${ }^{a}$

${ }^{a}$ Isolated yields.

Moreover, previously unknown N-propargylic β-enaminone derivatives 50 and 61 were synthesized (Tables 3 and 4). Conjugate addition of 1-ethynylcyclohexylamine to α, β-alkynic ketones 26 in refluxing methanol afforded N-propargylic β-enaminones 50 in $51-83 \%$ yields (Table 3). By these reactions, 17 derivatives of N-propargylic β enaminones 50 including alkyl and aryl groups with electron-withdrawing and electron-donating substituents were prepared.

Table 3. Synthesis of N-propargylic β-enaminones 50. ${ }^{a}$

Table 3. Continued.

500 (68\%)

50p (63\%)

50q (62\%)
${ }^{a}$ Isolated yields.

Then, 3 derivatives of N-(1,1-dimethyl)propargylic β-enaminones 61 were synthesized as well for comparison purpose. Conjugate addition of 2-methyl-3-butyn2 -amine to α, β-alkynic ketones $\mathbf{2 6}$ produced β-enaminones 61 in $60-69 \%$ yields (Table 4). In this way, 3 derivatives of N-propargylic β-enaminones $\mathbf{6 1}$ were prepared.

Table 4. Synthesis of N-propargylic β-enaminones $61 .{ }^{a}$

${ }^{\bar{a}}$ Isolated yields.

Notably, N-propargylic β-enaminones were isolated as single isomers. NOESY experiments were done by our ${ }^{89}$ and Cacchi ${ }^{21}$ research group proved that N propargylic β-enaminones form as (Z)-isomers. NOE interactions were observed between the indicated hydrogens of compound 32e (Figure 20). These signals arise from protons that are close to each other in space even if they are not bonded. Moreover, there is an intramolecular hydrogen bond between amine hydrogen and carbonyl oxygen due to their geometry, which plays an important role in the stability of (Z)-isomers.

Figure 20. The structure of compound 32e.

The synthesized N-propargylic β-enaminones show some characteristic peaks in their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. As a representative example, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1,3-diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32a) is illustrated in Figures 21 and 22. In case of ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 21), amine hydrogen resonates at 11.34 ppm as a broad singlet peak. The vinylic hydrogen is observed as a singlet at 5.86 ppm . Furthermore, methylene hydrogen atoms resonate at 3.96 ppm . At high field, alkynyl hydrogen gives a resonance signal at 2.32 ppm . Remaining hydrogens, which belong to phenyl groups, appear between 7.94 and 7.38 ppm .

Figure 21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a.

In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 22), compound 32a displays 14 different resonance signals. Among them, carbonyl carbon and β-carbon resonate at 189.4 and 166.1 ppm , respectively. However, α-carbon is observed at 94.9 ppm . Aromatic carbon atoms appear between 140.2 and 127.4 ppm as expected. Two acetylenic carbons resonate at 80.0 and 72.6 ppm . Methylene carbon signal appears at high field (34.4 ppm). Overall, all NMR data supports the indicated structure of 1,3-diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32a).

Figure 22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a.

2.1.3. Synthesis of N-propargylic $\boldsymbol{\beta}$-enaminones 10 and 52

Some of the N-propargylic β-enaminones $\mathbf{3 2}$ and $\mathbf{5 0}$ were subjected to Sonogashira cross-coupling with aryl iodides in order to further functionalize these compounds (Table 5 and 6).

Palladium-catalyzed cross-coupling of β-enaminones was carried out in the presence of $(i-\operatorname{Pr})_{2} \mathrm{NH}$ at room temperature. When N-propargylic β-enaminones $\mathbf{3 2}$ were treated with iodo benzene, arylated β-enaminones $\mathbf{1 0}$ were obtained in $77-88 \%$ yields as shown in Table 5. On the other hand, the cross-coupling of β-enaminones $\mathbf{5 0}$ with aryl iodides provided arylated β-enaminones 52 in $70-89 \%$ yields (Table 6).

Table 5. Synthesis of N-propargylic β-enaminones 10. ${ }^{a}$

[^0]Table 6. Synthesis of N-propargylic β-enaminones 52. ${ }^{a}$

52c (84\%)

[^1]
2.1.4. Synthesis of 5-Iodopyridines $\mathbf{6 5}$

When reacted with excess molecular iodine and sodium bicarbonate in refluxing acetonitrile, N-propargylic β-enaminones 10 underwent electrophilic cyclization to provide 5 -iodopridines $\mathbf{4 4}$, which were explored by our research group previously. ${ }^{89}$ Four different iodo-substituted pyridine derivatives 44 were synthesized from the corresponding N-propargylic β-enaminones 10 in 62-80\% yields as shown in Table 7.

Table 7. Synthesis of 5-iodopyridines 44. ${ }^{a}$

44a (80\%)

44b (62\%)

44c (75\%)

44d (66\%)

[^2]Formation of pyridine ring has been supported by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. For example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 4 a}$ (Figure 23), α-proton of pyridine ring resonates at 9.28 ppm as singlet. The remaining phenyl hydrogens appear between 7.47-6.78 ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 24), iodine-attached carbon peak was observed around 98.6 ppm . Carbonyl carbon resonates at 195.7 ppm while aromatic carbons were seen between 157.8 and 128.0 ppm .

Figure 23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44a.

Figure 24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 a}$.

Proposed mechanism for the formation of 5-iodopyridines 44 is shown in Scheme 26. According to this mechanism, firstly, reaction of alkyne unit of N-propargylic β enaminone 10 with iodine gives iodonium ion 63. Then, 6 -endo-dig electrophilic cyclization takes place to afford intermediate 64. Subsequently, deprotonation with
sodium bicarbonate produces dihydropyridine 65. Finally, aerobic and/or iodinemediated oxidations yield 5-iodopyridine 44.

Scheme 26. Proposed mechanism for the formation of 5-iodopyridines 44

2.2. Synthesis of Target Compounds

2.2.1. Synthesis of 5-Arylpyridines 46

In this part of the thesis study, Suzuki-Miyaura coupling reaction between 5iodopyridines $\mathbf{4 4}$ and boronic acids $\mathbf{4 5}$ were investigated to produce 5 -aryl-substituted pyridines 46. We first examined the reaction of 5-iodopyridine 44a with phenylboronic acid (45a) under different conditions in order to optimize the reaction conditions as illustrated in Table 8. Although Suzuki-Miyaura coupling reactions could be carried out by using different catalysts, bases, and solvents, literature search showed that palladium catalysts with triphenylphosphine ligands and bases in bicarbonate salt form work quite efficiently in such coupling reactions. ${ }^{95}$ In this regard, we started our optimization studies by utilizing $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and 1.4 equiv. of both boronic acid and KHCO_{3} relative to 5-iodopyridine. Initially, the
reaction was carried out in DMF at room temperature and at $110^{\circ} \mathrm{C}$ in which expected product 5-arylpyridine (46a) was obtained in 60 and 85% yields respectively (Table 8, Entries 1 and 2). Then, the reaction was examined in different solvents such as THF, $\mathrm{CH}_{3} \mathrm{CN}$ and dioxane at refluxing conditions, which afforded 5-arylpyridine (46a) in $70-80 \%$ yields (Table 8, Entries 3-5). All of these reactions went completion in 10-24 h where highest yield was obtained in DMF at $110^{\circ} \mathrm{C}$. At this point, it should be stated that $4: 1$ ratio of solvent $/ \mathrm{H}_{2} \mathrm{O}$ combination is widely used in this type of coupling reactions. ${ }^{95}$ Then, the reaction was repeated in $4: 1$ ratio of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ and dioxane $/ \mathrm{H}_{2} \mathrm{O}$ at $110^{\circ} \mathrm{C}$ or refluxing conditions (Table 8, Entries 69). In DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1) system, the reaction afforded 5-arylpyridine (46a) in 94% yield. In addition, this reaction went to completion in 8 h which is shorter reaction time as compared to others ($15-18 \mathrm{~h}$). Therefore, $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(4: 1)$ was chosen as the reaction solvent system. After determining solvent system, the reaction was performed with different equivalents of boronic acid. The lower equivalents of boronic acid (1.0 equiv.) decreased the yield of the corresponding product (46a) while the higher number of equivalents did not rise the yield (Table 8, Entries 10 and 11). So, the reactions were carried out by using 1.4 equiv. of boronic acid. When the reaction was conducted with different catalyst such as $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 5$-arylpyridine was produced in 86 and 89% yields, respectively (Table 8 , Entries 12 and 13). When lower number of equivalents of base (1.0 equiv.) was used, the yield of product decreased to 87\% (Table 8, Entry 14). The reaction was run with different bases as well but 5arylpyridine (46a) was produced in lower yields ($86-89 \%$). As a result of these experiments, we decided to carry out Suzuki coupling reactions of 5-iodopyridines 44 by employing $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)$ and 1.4 equiv. of both boronic acids 45 and KHCO_{3}, with respect to iodopyridine 44 , in $4: 1$ ratio of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ solution at $110^{\circ} \mathrm{C}$ (Table 8).

Table 8. Optimization studies for the synthesis of 5-arylpyridines 46.

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

[^3]Table 9. Synthesis of 5-arylpyridines via Suzuki-Miyaura reaction. ${ }^{a}$

46d (72\%)

46g (83\%)

46j (85\%)

[^4]Table 9. Continued. ${ }^{a}$

${ }^{\bar{a}}$ Isolated yields.

By employing the optimized conditions, 18 novel 5-arylpyridine derivatives 46 were synthesized as shown in Table 9. All coupling reactions proceeded well and the corresponding 5-arylpyridines 46 were obtained in good to excellent yields (65-98\%). As a result of these studies, the coupling reactions were found to be general for a wide range of 5-iodopyridines and boronic acids. Moreover, the reactions showed good tolerance for a variety of substituents with different electron-withdrawing and electron-donating groups.

Catalytic cycle for our Suzuki coupling reaction, proposed on the basis of literature studies, ${ }^{96}$ is shown in Scheme 27. The cycle begins with oxidative addition of 5-
iodopyridine 44 to $\operatorname{Pd}(0)$ catalyst to form $\mathrm{Pd}(\mathrm{II})$ complex 66. Then, transmetallation occurs in which iodine on the palladium complex replaces with bicarbonate to give 67. Subsequently, bicarbonate also adds to aryl boronic acid to form boronate complex which, initiates the transmetallation between boronate and palladium complex to afford intermediate 68. Finally, reductive elimination produces the final coupled product 46 and regenerates the palladium catalyst.

68

67

Scheme 27. Proposed mechanism for the synthesis of 5-arylpyridines 46.

Structures of 5-arylpyridines 46 were determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. As an example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of phenyl(2,4,5-triphenylpyridin-3yl)methanone (46a), α-proton of pyridine resonates at 8.78 ppm (Figure 25). However, in the ${ }^{1} \mathrm{H}$ NMR spectrum of corresponding starting 5 -iodopyridine (see Figure 23), this α-hydrogen appeared at 9.28 ppm . Moreover, the number of aromatic protons
increases from 15 to 20 when compared to the corresponding 5 -iodopyridine. In ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 26), resonance signal at 98.6 ppm which belongs to carbon atom connected to iodine, disappeared. The carbon atom with hydrogen atom in the pyridine ring resonates at 150.8 ppm . However, in the ${ }^{13} \mathrm{C}$ NMR spectrum of the corresponding starting 5-iodopyridine (see Figure 24), this carbon atom was appeared in relatively lower field (157.5 ppm). Also, the number of aromatic carbon signals rises.

Figure 25. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46a.

Figure 26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46 .

2.2.2. Synthesis of 2-Ferrocenylpyridines 49

In the second part of the thesis study, we described one-pot method for the synthesis of 2-ferrocenylpyridines 49 from α, β-alkynic ketones 26 and propargyl amine (48) via in situ formation of N-propargylic β-enaminone 32, which in the presence of copper (I) chloride, underwent electrophilic cyclization to afford 2-ferrocenyl-substituted pyridine derivatives 49 (Scheme 28).

Scheme 28. One-pot synthesis of 2-ferrocenylpyridines 49.

Firstly, we synthesized ferrocenly-substituted α, β-alkynic ketones 26 through coupling of ethynylferrocene with aryl chlorides. Then, the reaction of 3-ferrocenyl-1-phenylprop-2-yn-1-one (26u) with propargylamine (48) was tested under different conditions to find the optimal reaction conditions (Table 10). Initially, the reaction was conducted in $\mathrm{CH}_{3} \mathrm{OH}$ and DMF under argon atmosphere at $65^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$, respectively (Table 10, Entries 1 and 2). Interestingly, in $\mathrm{CH}_{3} \mathrm{OH}$, the reaction gave N-propargylic β-enaminone in 40% yield. However, in DMF, 2-ferrocenylpyridine 49a was obtained in 25% yield. Then, when the reaction was performed in the presence of 0.2 equiv. of AuCl and AuCl_{3} in DMF or THF, a mixture of N-propargylic β-enaminone 32e and 2-ferrocenylpyridine 49a were produced, where the former was obtained as a major product (Table 10, Entries 3-5). Subsequently, the reaction was conducted in 0.2 equiv. of InCl_{3} and AlCl_{3}, which also afforded a mixture of N propargylic β-enaminone 32e and 2-ferrocenylpyridine 49a, but the latter was obtained as major product (Table 10, Entries 6 and 7).

Table 10. Optimization studies for the formation of 2-ferrocenylpyridines 49.a

		$\mathrm{H}_{2} \mathrm{~N}$ 48 Catalyst, Oxidant Solvent Temperature			 49a	
Entry	Catalyst or additive (equiv)	Atmosphere or oxidant (equiv)	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 32e }^{b} \\ & (\%) \end{aligned}$	$\begin{gathered} \mathbf{4 9 a}^{b} \\ (\%) \end{gathered}$
1	-	Argon	$\mathrm{CH}_{3} \mathrm{OH}$	reflux	40	-
2	-	Argon	DMF	110	-	25
3	AuCl (0.2)	Argon	DMF	110	28	7
4	$\mathrm{AuCl}_{3}(0.2)$	Argon	DMF	110	34	16
5	$\mathrm{AuCl}_{3}(0.2)$	Argon	THF	reflux	30	18
6	$\mathrm{InCl}_{3}(0.2)$	Argon	DMF	110	7	16
7	$\mathrm{AlCl}_{3}(0.2)$	Argon	DMF	110	14	20
8	$\mathrm{CuI}(0.2)$	Argon	DMF	110	-	40
9	CuBr (0.2)	Argon	DMF	110	-	43
10	CuCl (0.2)	Argon	DMF	110	-	49
11	CuCl (0.2)	Argon	$\mathrm{CH}_{3} \mathrm{OH}$	reflux	50	16
12	CuCl (0.2)	Argon	THF	reflux	-	30
13	CuCl (0.2)	Argon	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	-	35
14	CuCl (1.0)	Argon	DMF	110	-	60
15	CuCl (2.0)	Argon	DMF	110	-	60
16	$\mathbf{C u C l}(1.0)$	Air	DMF	110	-	77
17	CuCl (1.0)	$\underset{(1.1)}{p \text {-Benzoquinone }}$	DMF	110	-	72
18	CuCl (1.0)	$\begin{gathered} p \text {-Benzoquinone } \\ (3.0) \\ \hline \end{gathered}$	DMF	110	-	61

[^5]When the reactions were carried out with 0.2 equiv. of $\mathrm{CuI}, \mathrm{CuBr}$ and CuCl , all gave 2-ferrocenylpyridine 49a as a single product (Table 10, Entries 8-10), where the highest yield (49\%) was obtained by using CuCl . Next, we screened the reaction in different solvents such as $\mathrm{CH}_{3} \mathrm{OH}$, THF and $\mathrm{CH}_{3} \mathrm{CN}$ by using 0.2 equiv. of CuI (Table 10, Entries 11-13). However, 2-ferrocenylpyridine 49a was isolated in lower yields (16-35\%). Then, the reaction was carried out in the presence of 1.0 equiv. of CuCl . We observed that yield of 2-ferrocenylpyridine 49a increased to 60\% yield (Table 10, Entry 14). The reaction was tested with 2.0 equiv. of CuCl , but increasing number of equivalents of CuCl did not improve the yield (Table 10, Entry 15). Then, we thought that oxidation could be necessary for aromatization. Therefore, the reaction was carried out under air and in the presence of p-benzoquinone. The reaction with 1.0 equiv. of CuCl was conducted open to air which afforded 2-ferrocenylpyridine 49a in 77% yield (Table 10, Entry 16). We tested p-benzoquinone as oxidant with 1.1 and 3.0 molar equivalents, but the yield of product did not increase (Table 10, Entries 17 and 18). In summary, the highest yield (77\%) of 2-ferrocenylpyridine 49a was obtained with 1.0 equiv. of CuCl in DMF at $110^{\circ} \mathrm{C}$ and open to air.

As illustrated in Table 11, a diverse range of 2-ferrocenylpyridine derivatives 49 were synthesized by employing a variety ferrocenly-substituted α, β-alkynic ketones 26 using optimized reaction conditions. In fact, reactions were fast and went completion in 1.5 to 2 hours. Notably, all reactions proceeded well and afforded corresponding 2ferrocenylpyridines 49 in good yields ($69-90 \%$). Moreover, reactions showed good tolerance for both electron-donating and electron-withdrawing groups. α, β-Alkynic ketones with electron-withdrawing groups produced the corresponding ferrocenylpyridines 49 in relatively higher yields (71-90\%) (49d, 49e and 49f) than did those with electron-donating groups (69-70\%) (49b and 49c).

Table 11. One-pot synthesis of 2-ferrocenylpyridines 49. ${ }^{a}$

[^6]Mechanism proposed for the formation of 2-ferrocenylpyridines 49 is outlined in Scheme 29. First, conjugate addition of propargylamine 48 to α, β-alkynic ketone 26 yields N-propargylic β-enaminone 32. Notably, in situ formed β-enaminone 32 was not isolated. Then, copper coordinates to alkyne moiety, which produces complex 69. Electrophilic cyclization of complex 69 affords intermediate 70. Hydrogen atom transfer into copper and regeneration of CuCl yields 2,5-dihydropyridine $\mathbf{7 1}$ through reductive elimination. Finally, aerobic oxidation of 2,5-dihydropyridine 71 affords 2ferrocenylpyridines 49.

Scheme 29. Proposed mechanism for the formation of 2-ferrocenylpyridines 49.

In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesized 2-ferrocenylpyridine derivatives, some characteristic peaks are observed which relates to the formation of pyridine ring. For instance, in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49a, hydrogen atoms at $\mathrm{C} 4, \mathrm{C} 5$ and C 6 of the pyridine ring resonate at approximately $7.56-7.50,7.19$ and 8.69 ppm , respectively (Figure 27).

Figure 27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49a.

In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49a, the peaks of $\mathrm{C} 4, \mathrm{C} 5$, and C 6 were appeared at approximately $135.5,119.7$ and 150.2 ppm , respectively (Figure 28). Moreover, C2 atom attached to the ferrocenyl group, resonated nearly at 156.6 ppm . C3 atom connected to benzoyl group, appeared around 132.1 ppm . In brief, the combined NMR data clearly support the indicated formation of 2-ferrocenylpyridine ring.

Figure 28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 a .

2.2.3. Synthesis of Spiro-2H-pyrroles 51

Investigation of the cyclization of cyclohexane-embedded N-propargylic β enaminones $\mathbf{5 0}$ in the presence of cesium carbonate comprises the basis of this section of the thesis study. The cyclohexane-embedded N-propargylic β-enaminones $\mathbf{5 0}$ were produced from the reaction of α, β-alkynic ketones 26 with 1-ethynylcyclohexylamine. In addition, 3 derivatives of N-(1,1-dimethyl)propargylic β-enaminone derivatives 61 were synthesized as well for comparison purpose. Conjugate addition of 2-methyl-3-butyn- 2 -amine to α, β-alkynic ketones 26 produced β-enaminones 61. With the synthesized β-enaminones in hand, we next investigated their cyclization to spiro- 2 H pyrroles 51 and/or $2 H$-pyrroles 72. In order to optimize the reaction conditions, we
first examined the reaction of N-propargylic β-enaminone 50a under different conditions as illustrated in Table 12. Initially, the reaction was performed with 2.0 equiv. of NaH at room temperature in DMF, the corresponding spiro- $2 H$-pyrrole 51a was formed in 69% yield (Table 12, Entry 1). The reaction in the presence of 1.0 and 3.0 molar equivalents of NaH produced (51a) in 62 and 68% yields, respectively (Table 12, Entries 2 and 3). Both lower number of equivalents (1.0 equiv.) and higher number of equivalents (3.0 equiv.) of NaH did not improve the yield. Hence, 2.0 equiv. of base was used in the following reactions. Then, the reaction with 2.0 equiv. of NaH at room temperature was performed in $\mathrm{CH}_{3} \mathrm{CN}$, DCM, dioxane, THF, DCE and $\mathrm{CH}_{3} \mathrm{OH}$ (Table 12, Entries 4-9). These reactions produced the expected spiro-2Hpyrrole 51a in 47-65\% yields. Next, the same reactions were conducted in refluxing conditions and/or high temperatures. The reactions in DMF at $110{ }^{\circ} \mathrm{C}$ and in refluxing dioxane yielded 51a in 12% and 22% yields, respectively (Table 12, Entries 10 and 11). Notably, the reaction at higher temperature such as $100^{\circ} \mathrm{C}$ and above did not increase the yield of spiro-2 H -pyrrole 51a. Conversely, it drastically decreased the yield of the product. However, the reaction in refluxing DCM, $\mathrm{CH}_{3} \mathrm{OH}$, DCE and $\mathrm{CH}_{3} \mathrm{CN}$ afforded spiro-2H-pyrrole 51a in 64-80\% yields, (Table 12, Entries 12-15), where the highest yield of spiro- 2 H -pyrrole 51a was obtained in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ (Table 12, Entry 15). Therefore, $\mathrm{CH}_{3} \mathrm{CN}$ was choosen as the reaction solvent. In order to improve the yield of product 51a in refluxing $\mathrm{CH}_{3} \mathrm{CN}$, the reaction was carried out in the presence of various bases. The use of DIPA did not lead to formation of spiro2 H -pyrrole $51 \mathbf{a}$ (Table 12, Entry 16). When the reaction was run with NEt_{3}, compound 51a was obtained in 5% yield (Table 12, Entry 17). Next, the reaction was tested with in the presence of 2.0 equiv. of $\mathrm{DBU}, \mathrm{NaHCO}_{3}$ and KHCO_{3} (Table 12, Entries 18-20) and spiro- 2 H -pyrrole (51a) was obtained in relatively lower yields (71-75\%). Subsequently, the reaction was performed by using 2.0 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, which produced spiro-2 H -pyrrole 51a in 92% yield (Table 12, Entry 21).

Table 12. Optimization studies for the synthesis of spiro-2H-pyrroles 51. ${ }^{a}$

		$\xrightarrow[\substack{\text { Solvent } \\ \text { Temperature }}]{\text { Base }}$		
Entry	Base (equiv.)	Solvent	Temp. (${ }^{\circ} \mathrm{C}$)	Yield ${ }^{\text {b }}$ (\%)
1	NaH (2.0)	DMF	r.t.	69
2	NaH (1.0)	DMF	r.t.	62
3	NaH (3.0)	DMF	r.t.	68
4	NaH (2.0)	$\mathrm{CH}_{3} \mathrm{CN}$	r.t.	65
5	NaH (2.0)	DCM	r.t.	58
6	NaH (2.0)	Dioxane	r.t.	50
7	NaH (2.0)	THF	r.t.	47
8	NaH (2.0)	DCE	r.t.	53
9	NaH (2.0)	$\mathrm{CH}_{3} \mathrm{OH}$	r.t.	52
10	NaH (2.0)	DMF	110	12
11	NaH (2.0)	Dioxane	reflux	22
12	NaH (2.0)	DCM	reflux	64
13	NaH (2.0)	$\mathrm{CH}_{3} \mathrm{OH}$	reflux	71
14	NaH (2.0)	DCE	reflux	76
15	NaH (2.0)	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	80
16	DIPA(2.0)	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	-
17	$\mathrm{Et}_{3} \mathrm{~N}(2.0)$	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	5
18	DBU (2.0)	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	74
19	$\mathrm{NaHCO}_{3}(2.0)$	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	71
20	$\mathrm{KHCO}_{3}(2.0)$	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	75
21	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0)$	$\mathrm{CH}_{3} \mathrm{CN}$	reflux	92
22	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(\mathbf{3 . 0})$	$\mathrm{CH}_{3} \mathbf{C N}$	reflux	95

${ }^{\bar{a}}$ Reaction was carried out using cyclohexane-embedded N-propargylic β-enaminone $\mathbf{5 0 a}(0.30 \mathrm{mmol})$, solvent (3 mL) under indicated conditions.
${ }^{b}$ Isolated yield.

Clearly, the use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ highly improved the yield of 51a. Finally, we carried out the reaction in the presence of 3.0 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, which yielded spiro- 2 H -pyrrole 51a in 95% yield (Table 12, Entry 22). This was the highest yield obtained from these reactions. In brief, cyclization of cyclohexane-embedded N-propargylic β-enaminones 50 to spiro- $2 H$-pyrroles 51 were performed with 3.0 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

As shown in Table 13, a diverse range of novel spiro- $2 H$-pyrroles 51 was synthesized from N-propargylic β-enaminone derivatives $\mathbf{5 0}$ by emplying the optimized reaction conditions. All cyclizations of β-enaminones $\mathbf{5 0}$ proceeded well and afforded corresponding spiro-2H-pyrroles 51 in good to excellent yields (82-97\%). Notably, the cyclizations were fast and went to completion in very short time (1-2 h). Moreover, cyclizations demonstrated good tolerance for both elecron-donating and electronwithdrawing groups.

Table 13. Synthesis of spiro-2H-pyrroles 51. ${ }^{a}$

51a (95\%)

51d (90\%)

51b (94\%)

51e (89\%)

51c (91\%)

51f (91\%)

Table 13. Continued.

[^7]As illustrated in Table 14, we also synthesized 3 derivatives of 2,2-dimethyl- 2 H pyrroles, specifically 72a, 72b and 72c, which contain two methyl groups, instead of a spiro-cyclohexane unit. These 2 H -pyrrole derivatives 72 were obtained in $85-92 \%$
yields, comparable with those of spiro- $2 H$-pyrroles 51 . In fact, β-enaminones 50 and 61 with a cyclohexane-embedded or 1,1-dimethyl-substituted propargylamine in the presence of cesium carbonate underwent nucleophilic cyclization smoothly to afford the corresponding spiro-2H-pyrroles 51 and $2 H$-pyrroles 72 in good to excellent yields.

Table 14. Synthesis of 2H-pyrroles 72. ${ }^{a}$

${ }^{a}$ Isolated yields.

A plausible mechanism for the formation of spiro-2H-pyrroles $\mathbf{5 1}$ is described in Scheme 30. Initially, abstraction of amine proton with base initiates nucleophilic cyclization giving intermediate 73. Subsequently, protonation of intermediate 73 yields spiro-1-pyrroline 74. Then, base takes the acidic α-hydrogen which produces the corresponding enolate $\mathbf{7 5}$, which upon resonance interaction generates intermediate 76. Finally, protonation of intermediate 76 affords spiro-2H-pyrrole derivatives 51.

The structures of the synthesized spiro-2H-pyrroles 51 and $2 H$-pyrroles 72 were proved by the analysis of their corresponding ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Their HRMS data also supported assigned structures of spiro-2H-pyrroles and/or 2H-pyrroles. As
an example, in the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51a (Figure 29), aromatic hydrogens which belong to phenyl groups resonate around $7.82-7.19 \mathrm{ppm} .10$ aliphatic protons attached to cyclohexyl unit were observed at 2.15-1.33 ppm. Methyl protons appear around 1.94 ppm as a singlet.

Scheme 30. Proposed mechanism for the formation of spiro-2H-pyrroles 51.

Figure 29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51a.
${ }^{13} \mathrm{C}$ NMR spectra of 3-((1-ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) and (4-methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(phenyl)methanone
(51a) are given for comparison in Figures 30 and 31. As it can be seen, the peak of spiro atom (shown by an arrow) in compound 50a resonates at 53.7 ppm , but in compound 51a, the peak of spiro atom shifted to downfield and appeared at 82.5 ppm . Moreover, two acetylenic carbon peaks (shown by dashed arrow), which are shown at 86.7 and 73.6 ppm in Figure 30, disappeared in ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51a. The existence of methyl carbon, which resonates at 12.5 ppm , proves the formation of targeted product 51a.

Figure 30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 a}$.

Figure 31. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51a.

2.2.4. Synthesis of Spiro-2H-pyrroles with Two Carbonyl Groups 53

While synthesizing spiro- 2 H -pyrroles, we also tried to make different derivatives in order to increase the range of products. Then, we subjected to cyclohexane-embedded N-propargylic β-enaminones 50 to Sonogashira cross-coupling reactions with aryl iodides in order to further functionalize these compounds. The palladium-catalyzed reaction of β-enaminones $\mathbf{5 0}$ with aryl iodides $\mathbf{6 2}$ in the presence of CuI and $\mathrm{Et}_{3} \mathrm{~N}$ at room temperature gave the arylated β-enaminones 52 with internal alkyne functionality in $70-89 \%$ yields as shown in Table 6 . After preparation of arylated β enaminones 52, we carried out their cyclization as illustrated in Scheme 31. Surprisingly, this reaction did not produce the expected product 77; instead, it produced spiro- $2 H$-pyrrole $\mathbf{5 3}$ with two carbonyl groups via benzylic C-H oxidation.

Scheme 31. Synthesis of spiro-2H-pyrrole with two carbonyl groups 53.

Formation of these oxidized spiro-2H-pyrrole $\mathbf{5 3}$ was interesting. So, we searched the literature for similar benzylic C-H oxidations. We found similar examples of benzylic oxidations in basic medium, which are shown in Scheme $32 .{ }^{97}$ In the first case, fluorenes are effectively transformed into corresponding aryl ketones in the presence of excess cesium carbonate in DMSO at room temperature (Scheme 32a). Secondly, Xu and co-workers provided a route to α-ketoamides from arylacetamides (Scheme 32b). Grimaud and Kaim reported that under air and basic conditions, benzothiazoles were easily oxidized to corresponding ketones (Scheme 32c). This literature findings gave brief information about such benzylic C-H oxidations. Notably, in our case,
cyclization first produced the corresponding spiro- 2 H -pyrroles 77 in situ, which subsequently underwent benzylic C-H oxidation.
(a)

(b)

(c)

Scheme 32. Examples of benzylic C-H oxidations.

In the light of this literature information about benzylic $\mathrm{C}-\mathrm{H}$ oxidation, we first examined reaction of 1,3-diphenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52a) under different conditions in order to find the optimal reaction conditions (Table 15). We already obtained the oxidized spiro-2H-pyrrole 53a in 53\% yield in the presence 3.0 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in acetonitrile at refluxing condition under argon atmosphere (Table 15, Entry 1). Then, the reaction was performed with 1.0 and 2.0 molar equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, which afforded product 53a in 5 and 48% yields, respectively (Table 15, Entries 2 and 3). Notably, using 1.0 equivalent of base drastically decreased the yield of product. Moreover, the reaction was carried out at room temperature, which afforded spiro- 2 H -pyrrole 53a in very low yield (Table 15, Entry 4). When the reaction with 3.0 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was conducted open to air, spiro- 2 H -pyrrole 53a was obtained in 62% yield (Table 15, Entry 5). Then, the

Table 15. Optimization studies for the benzylic C-H oxidation in spiro-2H-pyrroles 53. ${ }^{a}$

${ }^{a}$ Reaction was carried out using cyclohexane-embedded N-propargylic β-enaminone 52a $(0.30 \mathrm{mmol})$, solvent (3 mL) under indicated conditions.
${ }^{b}$ Isolated yield.
reaction was screened in different solvent such as DMF, DMSO and THF at high temperatures and/or refluxing conditions (Table 15, Entries 6-8). From these reactions, spiro- 2 H -pyrrole 53a was isolated in 30-69\% yields. Notably, the highest yield of 53a was obtained in DMSO. Finally, the same reaction was carried out in the presence of different bases such as $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$, but the corresponding product 53a was isolated in 13-38\% yields (Table 15, Entries 9-11). In summary, the
highest yield (69%) was obtained in the presence of 3 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMSO at $80^{\circ} \mathrm{C}$ and open to air (Table 15, Entry 7) and the substrate scope were performed under these conditions. As illustrated in Table 16, different derivatives of spiro-2Hpyrroles 53 were synthesized by employing variety of β-enaminone derivatives $\mathbf{5 2}$ under optimized conditions via benzylic C-H oxidation.

Table 16. Synthesis of spiro-2H-pyrroles with two carbonyl groups 53. ${ }^{a}$

52

53a (69\%)

53b (72\%)

53e (67\%)

53c (60\%)

$53 f(75 \%)$

53g (69\%)

53h (75\%)

[^8]Notably, all reactions proceeded smoothly and afforded corresponding products in good yields (60-75\%).

A possible mechanism for the formation of spiro- 2 H -pyrroles $\mathbf{5 3}$ is shown in Scheme 33. First, abstraction of the amine proton with base and subsequent vinylogous amidoimido tautomerization initiates nucleophilic cyclization, producing intermediate 78. Protonation of 78 yields spiro-1-pyrroline 79. Next, abstraction of the acidic α hydrogen with base generates enolate $\mathbf{8 0}$, which, upon resonance, produces carbanion 81. Finally, protonation of $\mathbf{8 1}$ affords spiro- $2 H$-pyrrole 77. As previously noted, spiro2 H -pyrrole derivatives 77 have not been observed in these reactions. Presumably, under basic conditions, intermediate 77 is converted back into carbanion 81 since γ hydrogen atoms in 77 are relatively acidic because they are benzylic $\left(\mathrm{R}^{3}=\right.$ aryl) and, in 81, the resulting carbanion at this site is conjugated to the enone functionality. According to literature precedent, ${ }^{98}$ at this stage, carbanion $\mathbf{8 1}$ undergoes aerobic oxidation and/or DMSO based oxidation to afford spiro-2H-pyrrole 53 (Scheme 33). On aerobic oxidation, carbanion 81 reacts with molecular oxygen to generate peroxy anion 82, which subsequently rearranges to form spiro- $2 H$-pyrroles 53 through hydrogen abstraction from the benzylic site, which enables the formation of a carbonyl group with the loss of hydroxide ion. On the other hand, in DMSO-based oxidation, carbanion 81 interacts with DMSO to produce intermediate 83, which, upon 1,2sigmatropic rearrangement, forms alkoxide ion 84 with the loss of dimethyl sulfide. Subsequently, alkoxide ion $\mathbf{8 4}$ couples with the electrophilic sulfur atom of DMSO to yield intermediate $\mathbf{8 5}$, which finally rearranges to afford spiro- 2 H -pyrrole $\mathbf{5 3}$ via proton transfer, followed by $\mathrm{E}_{1 \mathrm{cb}}$ elimination, with the loss of dimethyl sulfide and hydroxide ion (Scheme 33). At present, it is not clear which mechanism is operating, individually or predominantly. However, according to our experimental results, it is most likely that aerobic oxidation is heavily involved in the formation of spiro- 2 H pyrroles $\mathbf{5 3}$ given that the reaction of $\mathbf{5 2 a}$ with 3.0 equivalents of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ under air produced spiro- 2 H -pyrrole 53a in 62% yield (Table 15, entry 5); whereas use of DMSO as solvent under the same conditions did not increase the yield
of 53a significantly (69\%; Table 15, entry 7). These results strongly imply that benzylic $\mathrm{C}-\mathrm{H}$ oxidation of $\mathbf{7 7}$ to $\mathbf{5 3}$ occurs predominantly by aerobic oxidation.

83

82

Scheme 33. Proposed mechanism for the formation of spiro-2H-pyrroles 53.

Figure 32. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53a.

Figure 33. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53a.

As an example, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (2-phenyl-1-azaspiro[4.5]deca-1,3-diene-3,4-diyl)bis(phenylmethanone) (53a) are demonstrated in Figures 32 and 33. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 32), all phenyl protons resonate at aromatic region (7.56-7.15 ppm), while 10 aliphatic protons, which belong to cyclohexyl group, appear between 2.13-1.24 ppm. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53a, two carbonyl carbons
resonate at 194.5 and 192.9 ppm (shown by arrows), which are characteristic peaks in order to prove the formation of compound 53a.

2.2.5. Synthesis of Spiro-1,4-oxazepines 54

In the last part of the thesis study, cyclization of cyclohexane-embedded N-propargylic β-enaminones 50 was described in the presence of zinc iodide and silver hexafluoroantimonate. With the synthesized β-enaminones 50 in hand, we next investigated their Lewis acid promoted electrophilic cyclization to spiro-1,4oxazepines 54. In order to optimize reaction conditions, we first examined the representative reaction of N-propargylic β-enaminone 50a under various conditions as illustrated in Table 17. Initially, the reaction was performed with 2.0 equivalents of ZnCl_{2} and ZnI_{2} in DCE at room temperature, which afforded the corresponding spiro-1,4-oxazepine 54a but in low yields (Table 17, Entries 1 and 2). In order to improve the yield of 54a, the reaction was conducted in refluxing conditions which produced spiro-1,4-oxazepine 54a in 41% yield (Table 17, Entry 3). Notably, the reaction with lower number equivalents (1.0 equiv.) and higher number of equivalents (2.0 equiv.) of ZnCl_{2} at refluxing conditions did not raise the yield (Table 17, Entries 4 and 5). The reaction was carried out in the presence of 0.05 equiv. of silver acetate as an additive, in addition to 1.0 equiv. of ZnCl_{2}, in refluxing DCE. However, the product $\mathbf{5 4 a}$ was isolated in 35% yield (Table 17, Entry 6). The same reaction was performed in the presence of different equivalents $\mathrm{ZnBr}_{2}, \mathrm{ZnI}_{2}, \mathrm{AuCl}_{3}$ and InCl_{3} (Table 17, Entries 712) where the highest yield (48%) was obtained with 2.0 equiv. of ZnI_{2}. Next, the reaction was tested with AuCl (2.0 equiv.) and AuCl_{3} (1.0 and 2.0 equiv.) in refluxing chloroform (Table 17, Entries 13-15); however, with these Lewis acids, 54a was obtained in lower yields (19-32\%). When the reaction was conducted with 2.0 equiv. of AuCl_{3} in refluxing methanol, spiro-1,4-oxazepine 54a formed in very low yield (Table 18, Entry 16). The reaction was also performed with 0.15 equiv. silver hexafluoroantimonate as an additive together with 0.1 and 1.0 equiv. of AuCl_{3}, but these did not increase the yield (Table 17, Entries 17 and 18). Since the best yield

Table 17. Optimization studies for the synthesis of spiro-1,4-oxazepines $\mathbf{5 4} .^{a}$

Entry	Lewis acid /Catalyst (equiv.)	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$
1	ZnCl_{2} (2.0)	DCE	r.t.	29
2	ZnI_{2} (2.0)	DCE	r.t.	28
3	ZnCl_{2} (2.0)	DCE	84	41
4	ZnCl_{2} (1.0)	DCE	84	40
5	ZnCl_{2} (3.0)	DCE	84	40
6	$\mathrm{ZnCl}_{2}(1.0) / \mathrm{AgOAc}(0.05)$	DCE	84	35
7	$\mathrm{ZnBr}_{2}(2.0)$	DCE	84	43
8	ZnI_{2} (2.0)	DCE	84	48
9	$\mathrm{ZnI}_{2}(1.0)$	DCE	84	42
10	$\mathrm{InCl}_{3}(2.0)$	DCE	84	40
11	$\mathrm{InCl}_{3}(1.0)$	DCE	84	40
12	AuCl_{3} (2.0)	DCE	84	27
13	AuCl (2.0)	CHCl_{3}	61	19
14	$\mathrm{AuCl}_{3}(1.0)$	CHCl_{3}	61	30
15	AuCl_{3} (2.0)	CHCl_{3}	61	32
16	AuCl_{3} (2.0)	$\mathrm{CH}_{3} \mathrm{OH}$	65	6
17	$\mathrm{AuCl}_{3}(0.1) / \mathrm{AgSbF}_{6}(0.15)$	$\mathrm{CH}_{3} \mathrm{OH}$	r.t.	12
18	$\mathrm{AuCl}_{3}(1.0) / \mathrm{AgSbF}_{6}(0.15)$	$\mathrm{CH}_{3} \mathrm{OH}$	65	26
19	$\mathrm{ZnI}_{2}(2.0)$	CHCl_{3}	61	44
20	ZnI_{2} (2.0)	$\mathrm{CH}_{3} \mathrm{CN}$	82	37
21	ZnI_{2} (2.0)	DMF	110	26
22	ZnI_{2} (2.0)	DCM	40	32
23	$\mathrm{ZnI}_{2}(2.0)$	$\mathrm{CH}_{3} \mathrm{OH}$	65	39

Table 17. Continued.

${ }^{a}$ Reactions were carried out on scale of 0.30 mmol of of N -propargylic β-enaminones 1a in 3 mL of solvent under argon with indicated conditions.
${ }^{b}$ Isolated yields.
(48%) of $\mathbf{5 4} \mathbf{a}$ in these reactions was obtained with 2.0 equiv. ZnI_{2} in DCE at reflux conditions (Table 17, Entry 8), the same reaction was carried out in $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, DMF, DCM and $\mathrm{CH}_{3} \mathrm{OH}$ as well. From these reactions, spiro-1,4-oxazepine 54a was isolated in $26-44 \%$ yields (Table 17, Entries 19-23). Then, 0.05 equiv. of AgSbF_{6} was put into reaction medium as an additive, together with 2.0 equiv. ZnI_{2}, which improved the yield of spiro-1,4-oxazepine 54a significantly (60\%) (Table 17, Entry 24). Finally, when the reaction was tested in the presence of 0.1 and 0.15 equiv. of AgSbF_{6} (Table 17, Entries 25 and 26), spiro-1,4-oxazepines (54a) were isolated in higher yields (66% and 73%). Further increasing the amount of AgSbF_{6} did not improve the yield of (54a) (Table 17, Entry 27). In summary, the highest yield (73\%) of spiro-1,4-oxazepine 54a was obtained with 2.0 equiv. of ZnI_{2} and 0.15 equiv. AgSbF_{6} in refluxing DCE under argon atmosphere, i.e with the conditions present in entry 26.

The generality of reaction and the scope of substrates were performed under these optimized conditions. As depicted in Table 18, a diverse range of spiro-1,4-oxazepines

54 were synthesized by employing a variety of N-propargylic β-enaminone derivatives 50. In general, the reaction proceeded smoothly and afforded the corresponding spiro-1,4-oxazepines in good to high yields ($60-89 \%$).

Table 18. Synthesis of spiro-1,4-oxazepines 54. ${ }^{a}$

Table 18. Continued. ${ }^{a}$

${ }^{a}$ Isolated yields.

Moreover, the reactions demonstrated good tolerance for both electron-donating and electron-withdrawing groups. As shown in Table 19, we synthesized three derivatives of 3,3-dimethyl-1,4-oxazepines $\mathbf{8 6}$ as well, which contain two methyl groups, instead of a spiro-cyclohexane unit. These 1,4-oxazepine derivatives resulted from these reactions in 65-78\% yields, comparable with those of spiro-1,4-oxazepines $\mathbf{5 4}$.

Table 19. Synthesis of 1,4-oxazepines $\mathbf{8 6}$. ${ }^{a}$

61

$\overline{{ }^{a}}$ Isolated yields.

Mechanism proposed for the formation of spiro-1,4-oxazepines $\mathbf{5 4}$ is outlined in Scheme 34. First, ZnI_{2} reacts with AgSbF_{6}, which affords the more active cationic catalyst system $\mathrm{ZnI}\left(\mathrm{SbF}_{6}\right) .{ }^{99}$ Then, interaction of $\mathrm{ZnI}\left(\mathrm{SbF}_{6}\right)$ with alkyne moiety of $\mathbf{5 0}$ gives 87, which enhances the electrophilicity of alkyne unit. Subsequent coordination of carbonyl oxygen to zinc through vinylogous amido-imido tautomerization produces intermediate 88, bringing the carbonyl and alkyne functionalities in close proximity. Moreover, intramolecular 7-exo-dig electrophilic cyclization occurs to yield vinyl zinc intermediate 89. Finally, hydrolysis with HSbF_{6} generated in situ affords spiro-1,4oxazepine derivatives 54 . ${ }^{100}$

Scheme 34. Proposed mechanism for the formation of spiro-1,4-oxazepines 54.

Formation of spiro-1,4-oxazepine derivatives 54 were mainly confirmed by the analysis of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data. For instance, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 54b are demonstrated in Figures 34 and 35, respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 34), the protons of exo-methylenic carbon give distinct high-field signals at 4.92 and 4.62 ppm as doublets with small coupling constants ($J=1.4 \mathrm{~Hz}$). The other olefinic proton resonates as a singlet at 6.29 ppm . Remaining 10 phenyl hydrogens appear between 7.20 and 7.81 ppm .

In the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 35), the peaks of $\mathrm{C} 2, \mathrm{C} 5$ and C 7 were observed at 159.2, 159.5, and 160.3 ppm . Eight different phenyl carbon peaks appear between 126.6 ppm and 140.2 ppm . The exo-methylenic carbon signal is observed at 96.7 ppm . The peak, which resonates at 97.0 ppm , belongs to olefinic carbon atom at C6. The peak of spiro carbon atom (C3) was observed at 64.7 ppm .

Figure 34. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 a}$.

Figure 35. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 a}$.

CHAPTER 3

EXPERIMENTAL

3.1. General Information

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 and 100 MHz , respectively. Chemical shifts are reported in parts per million (ppm) relative to CDCl_{3} (7.26 and 77.16 ppm in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively). Coupling constants (J) are reported in Hertz (Hz), and spin multiplicities are presented by the following symbols: s (singlet), br s (broad singlet), br t (broad triplet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), tt (triplet of triplet), dt (doublet of triplet), td (triplet of doublet), qt (quartet of triplet), ddd (doublet of doublet of doublet), tdd (triplet of doublet of doublet), pseudo d (pseudo doublet), pseudo t (pseudo triplet), pseudo q (pseudo quartet).Infrared spectra (IR) were recorded by using attenuated total reflection (ATR). Band positions are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Mass spectra (MS) and high resolution mass spectra (HRMS) were obtained by using Electrospray Ionization (ESI) with Micro-Tof; m / z values are reported (For each measurement, the mass scale was recalibrated with sodium formate clusters, and samples were dissolved and measured in MeOH or $\mathrm{CH}_{3} \mathrm{CN}$). The melting point temperatures of crystalline samples held within capillary tubes were measured and recorded automatically. Flash chromatography was performed using thick-walled glass columns and "flash grade" silica gel (230-400 mesh). Thin layer chromatography (TLC) was performed by using commercially prepared 0.25 mm silica gel or aluminium oxide (neutral) plates and visualization was effected with short wavelength UV lamp (254 nm). The relative proportions of solvents in chromatography solvent mixtures refer to the volume:volume ratio. All commercially available reagents were used directly without purification unless otherwise stated. All solvents used in reactions and
chromatography were distilled and/or dried properly for purity. The inert atmosphere was created by slight positive pressure (ca. 0.1 psi) of argon. All glassware was dried in oven prior to use.

3.2. Synthesis of Acetylferrocene (58)

Ferrocene (57) ($2.0 \mathrm{~g}, 10.8 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ by constant stirring under argon. Then acetyl chloride $(0.92 \mathrm{~mL}, 11.8 \mathrm{mmol})$ was added to the resultant orange/red solution. The flask was immersed in a $0-5{ }^{\circ} \mathrm{C}$ ice-water bath. Anhydrous aluminum chloride ($1.44 \mathrm{~g}, 10.8 \mathrm{mmol}$) was slowly added in small portions to the reaction flask. The reaction mixture was stirred at room temperature for 2 h and then it was recooled to $0-5^{\circ} \mathrm{C}$ by a fresh ice-water bath. By the slow addition of cold water ($4 \times 0.5 \mathrm{ml}$), the reaction mixture was hydrolyzed. Then a further 3 mL of cold water was added more rapidly. The hydrolyzed reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and combined organic extracts were washed with $5 \% \mathrm{NaOH}$ solution followed by brine solution. The organic phase was dried over magnesium sulfate and filtered off. An orange/red solid was obtained after solvent was removed on rotary evaporator. The resultant solid was purified by flash column chromatography on silica gel using 9:1 hexane/ethylacetate as the eluent to give acetylferrocene (198) ($1.96 \mathrm{~g}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.60$ (s, 2H), 4.32 (s, 2H), 4.02 (s, 5H), 2.17 ($\left.\mathrm{s}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 79.2(\mathrm{C}), 72.3(\mathrm{CH}), 69.8(\mathrm{CH}), 69.5(\mathrm{CH}), 27.3\left(\mathrm{CH}_{3}\right)$. The spectral data is in agreement with those reported previously for this compound. ${ }^{101}$

3.3. Synthesis of (2-Formyl-1-chlorovinyl)ferrocene (59)

In a two necked flask, acetylferrocene (58) ($2.0 \mathrm{~g}, 8.8 \mathrm{mmol}$) and DMF ($2.17 \mathrm{ml}, 28.2$ mmol) were added under argon. The flask was cooled to $0^{\circ} \mathrm{C}$ by ice-water bath and the brown reaction mixture was stirred for 10 minutes. Separately, in a round-bottom flask, DMF ($2.17 \mathrm{~mL}, 28.2 \mathrm{mmol}$) was added and cooled to $0^{\circ} \mathrm{C}$ under argon. Then cautiously phosphorus oxychloride ($2.21 \mathrm{~mL}, 28.2 \mathrm{mmol}$) was added to DMF with
good stirring. The resultant viscous red complex was slowly (over 30 minutes) transferred to the two neck flask containing acetylferrocene (58) and DMF by a dropping funnel. After the addition was completed, the contents of the flask were stirred at $0^{\circ} \mathrm{C}$ for approximately 2 h until the color of reaction mixture changed from dark brown to olive green and then to dark blue. A 20 mL portion of diethyl ether was added, and the mixture was stirred vigorously. Then with continued cooling with icewater bath, sodium acetate trihydrate ($10.18 \mathrm{~g}, 74.6 \mathrm{mmol}$) was carefully added to the reaction flask in one portion followed by addition of water (2 mL). The ice water bath was removed and a color change in organic layer from colorless to ruby red, indicating the formation of formyl derivative, was observed. After 1 h , additional ether (2 mL) was added and the stirring was continued for 3 h at room temperature for complete quenching. The reaction mixture was extracted with diethyl ether. The organic extracts were combined and washed with saturated sodium bicarbonate solution. After dried by magnesium sulfate and filtered, organic phase was concentrated on rotary evaporator, yielding (2-formyl-1-chlorovinyl)ferrocene (59) ($2.25 \mathrm{~g}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 10.06(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 6.38(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.73(\mathrm{t}, 2 \mathrm{H}$, $J=1.68 \mathrm{~Hz}), 4.54(\mathrm{t}, 2 \mathrm{H}, J=1.68 \mathrm{~Hz}), 4.22(\mathrm{~s}, 5 \mathrm{H})$. The spectral data is in agreement with those reported previously for this compound. ${ }^{102}$

3.4. Synthesis of Ethynylferrocene (60)

In a dry flask, (2-formyl-1-chlorovinyl)ferrocene (59) (1.3 g, 4.75 mmol) was dissolved in anhydrous dioxane (15 mL) by flashing with argon and heated to reflux. After approximately 5 minutes a boiling 1 N solution of sodium hydroxide (12.5 mL) was added rapidly in one portion and the reflux continued for another 25 minutes. Then refluxing was stopped and the mixture was allowed to cool to room temperature. The contents of the flask were poured directly into ice and neutralized with 1 N hydrochloric acid solution. The resultant mixture was extracted with hexane (5 x 5 mL). The organic phase was washed with sodium bicarbonate solution and water. The combined organic parts were dried over magnesium sulfate, filtered and the solvent
was removed on rotary evaporator. The crude ethynylferrocene ($\mathbf{6 0}$) was purified by flash chromatography on silica gel by using hexane as the eluent and the clear product was obtained as orange crystals ($750 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.46$ $(\mathrm{s}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 5 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.6$ (C), $73.6(\mathrm{C}), 71.7(\mathrm{CH}), 70.0(\mathrm{CH}), 68.7(\mathrm{CH}), 63.9(\mathrm{CH})$. The spectral data is in agreement with those reported previously for this compound. ${ }^{102}$

3.5. General Procedure for the Synthesis of $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$-Alkynic Ketones 26

A mixture of the corresponding aryloyl/alkanoyl chloride $55(3.0 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (0.02 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{mmol})$ in anhydrous THF (7.5 mL) were stirred for 10 min at room temperature under argon. $\mathrm{CuI}(0.02 \mathrm{mmol})$ was then added and the reaction mixture was stirred for another 10 min . After the addition of the appropriate terminal alkyne 56 and/or ($\mathbf{6 0}$) (2.5 mmol) over 15 min , the resulting mixture was stirred at room temperature for approximately 6 h . (Note that the progress of the reaction was monitored by routine TLC). After the reaction was over, ethyl acetate (30 mL) was added, and the resulting solution was washed with $0.1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and subsequently with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) in a separatory funnel. After the layers were separated, organic phase was dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate (19:1) as the eluent to afford the corresponding α, β-alkynic ketone 26a-t.

3.5.1. 1,3-Diphenylprop-2-yn-1-one (26a)

Benzoyl chloride ($420.0 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35.1 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($303.0 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{CuI}(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and phenylacetylene $(300.8 \mathrm{mg}$, $2.50 \mathrm{mmol})$ were employed to afford $494.4 \mathrm{mg}(96 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H})$, 7.45-7.40 (m, 2H), 7.39-7.34 (m, 1H), 7.33-7.27 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 177.5(\mathrm{CO}), 136.6(\mathrm{C}), 133.9(\mathrm{CH}), 132.8(\mathrm{CH}), 130.6(\mathrm{CH}), 129.2(\mathrm{CH})$, 128.4 (CH), 128.3 (CH), 119.7 (C), 92.8 (C), 86.7 (C); IR (neat) 2195, 1636, 1597, $1580,1447,1314,1282,1207,1170,1010,994,756,687,535 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103,104,105,106}$

3.5.2. 1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (26b)

Benzoyl chloride ($456.4 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(46.3 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($329.3 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{CuI}(12.5 \mathrm{mg}, 0.07 \mathrm{mmol})$ and 1-ethynyl-4-methylbenzene ($315.6 \mathrm{mg}, 2.70 \mathrm{mmol}$) were employed to afford $535.3 \mathrm{mg}(90 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.53-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.02 (CO), 141.59 (C), 136.99 (C), 134.03 (CH), 133.13 (CH), 129.53 (CH), 128.61 (CH), 116.99 (C), $93.85(\mathrm{C}), 86.83(\mathrm{C}), 21.76\left(\mathrm{CH}_{3}\right)$ (One CH peak overlaps with each other); IR (neat) $2194,1627,1601,1577,1448,1314,1293,1168,1007,814,793$, $695,535 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103,104,106,107}$

3.5.3. 1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (26c)

Benzoyl chloride ($435.0 \mathrm{mg}, 3.10 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.5 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($313.1 \mathrm{mg}, 3.10 \mathrm{mmol}$), $\mathrm{CuI}(9.9 \mathrm{mg}, 0.05 \mathrm{mmol}$) and 1-ethynyl-3-methylbenzene ($300.8 \mathrm{mg}, 2.60 \mathrm{mmol}$) were employed to afford $504.0 \mathrm{mg}(88 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ $7.45(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (CO), 138.4 (C), 136.8 (C), 134.0 (CH), 133.4 (CH), 131.7 (CH), 130.1 (CH), 129.4 (CH), $128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 119.7$ (C), $93.4(\mathrm{C}), 86.6(\mathrm{C}), 21.0\left(\mathrm{CH}_{3}\right)$; IR (neat) $2190,1630,1578,1451,1314,1225,1164,1036,988,884,784,685,548 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{107}$

3.5.4. 3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (26d)

Benzoyl chloride ($387.3 \mathrm{mg}, 2.80 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(32.4 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($279.4 \mathrm{mg}, 2.80 \mathrm{mmol}$), $\mathrm{CuI}(8.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 1-ethynyl-4-methoxybenzene ($304.7 \mathrm{mg}, 2.30 \mathrm{mmol}$) were employed to afford 484.9 mg (89%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-8.15(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.49-$ 7.43 (m, 2H), 6.88-6.84 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (CO), 161.7 (C), $136.9(\mathrm{C}), 135.0(\mathrm{CH}), 133.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.5(\mathrm{CH}), 114.4$ (CH), 111.6 (C), 94.3 (C), 86.8 (C), $55.3\left(\mathrm{CH}_{3}\right)$; IR (neat) 2183, 1624, 1596, 1510, $1440,1315,1252,1209,1166,1005,834,793,695,605,507 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103,104, ~ 106, ~} 107$

3.5.5. 1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (26e)

Benzoyl chloride ($467.8 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(39.1 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($337.5 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{CuI}(10.6 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 3-ethynylthiophene (301.2 mg , $2.80 \mathrm{mmol})$ were employed to afford $585.2 \mathrm{mg}(99 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{dd}, J=3.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-$ 7.56 (m, 1H), 7.47-7.45 (m, 2H), 7.32 (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (dd, $J=5.0,1.1$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7$ (CO), 136.6 (C), $134.0(\mathrm{CH}), 133.9$ (CH), $130.1(\mathrm{CH}), 129.4(\mathrm{CH}), 128.5(\mathrm{CH}), 126.3(\mathrm{CH}), 119.1(\mathrm{C}), 88.5(\mathrm{C}), 87.1(\mathrm{C})$; IR (neat) 2185, 1732, 1630, 1596, 1576, 1448, 1312, 1266, 1217, 1167, 1014, 924, $827,783,694,550 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{89}$

3.5.6. 3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one (26f)

Benzoyl chloride ($434.3 \mathrm{mg}, 3.10 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(36.3 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($313.3 \mathrm{mg}, 3.10 \mathrm{mmol}$), $\mathrm{CuI}(9.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 1-ethynyl-3-fluorobenzene ($310.5 \mathrm{mg}, 2.60 \mathrm{mmol}$) were employed to afford 504.2 mg (87%) of the indicated
product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{tdd}, J=8.4,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $177.9(\mathrm{CO}), 162.4\left(\mathrm{~d},{ }^{1} J_{C F}=248.1 \mathrm{~Hz}, \mathrm{C}\right) 136.8(\mathrm{C}), 134.4(\mathrm{CH}), 130.5\left(\mathrm{~d},{ }^{3} J_{C F}=8.4\right.$ $\mathrm{Hz}, \mathrm{CH}), 129.7(\mathrm{CH}), 129.1\left(\mathrm{~d},{ }^{4} J_{C F}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 128.8(\mathrm{CH}), 122.1\left(\mathrm{~d},{ }^{3} J_{C F}=9.5\right.$ $\mathrm{Hz}, \mathrm{C}), 119.8\left(\mathrm{~d},{ }^{2} J_{C F}=23.3 \mathrm{~Hz}, \mathrm{CH}\right), 118.4\left(\mathrm{~d},{ }^{2} J_{C F}=21.2 \mathrm{~Hz}, \mathrm{CH}\right), 91.2(\mathrm{C}), 87.3$ (C); IR (neat) 2202, 1649, 1579, 1485, 1426, 1299, 1228, 1144, 1015, 922, 867, 781, $691,516 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{107}$

3.5.7. 3-(4-Chlorophenyl)-1-phenylprop-2-yn-1-one (26g)

Benzoyl chloride ($424.9 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42.6 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($306.5 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{CuI}(11.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ and 1-chloro-4-ethynylbenzene ($345.4 \mathrm{mg}, 2.50 \mathrm{mmol}$) were employed to afford $499.1 \mathrm{mg}(82 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7(\mathrm{CO}), 137.2$ (C), 136.7 (C), 134.3 (CH), 129.6 (CH), 129.2 (CH), 128.7 (CH), 118.6 (C), 91.6 (C), 87.6 (C) (Two CH peaks overlap with each other); IR (neat) 2197, 1629, 1577, 1477, $1316,1294,1205,1170,1085,1030,820,791,692,530 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{104,108}$

3.5.8. 3-(4-Bromophenyl)-1-phenylprop-2-yn-1-one (26h)

Benzoyl chloride ($371.2 \mathrm{mg}, 2.70 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(37.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($267.8 \mathrm{mg}, 2.70 \mathrm{mmol}$), $\mathrm{CuI}(10.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 1-bromo-4-ethynylbenzene ($400.0 \mathrm{mg}, 2.20 \mathrm{mmol}$) were employed to afford 472.5 mg (75%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H})$, 7.59-7.49 (m, 6H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9$ (CO), $136.8(\mathrm{C}), 134.5(\mathrm{CH})$, 134.4 (CH), 132.2 (CH), 129.7 (CH), 128.8 (CH), 125.7 (C), 119.2 (C), 91.8 (C), 87.8
(C); IR (neat) 2196, 1629, 1577, 1473, 1315, 1292, 1169, 1007, 817, 790, 691, 528 cm^{-1}. The spectral data were in agreement with those reported previously for this compound. ${ }^{106,107}$

3.5.9. 3-(4-Nitrophenyl)-1-phenylprop-2-yn-1-one (26i)

Benzoyl chloride ($363.0 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(46.4 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($334.1 \mathrm{mg}, 3.30 \mathrm{mmol}$), $\mathrm{CuI}(12.6 \mathrm{mg}, 0.07 \mathrm{mmol})$ and 1-ethynyl-4-nitrobenzene ($405.8 \mathrm{mg}, 2.80 \mathrm{mmol}$) were employed to afford $446.5 \mathrm{mg}(65 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5$ (CO), 148.7 (C), 136.5 (C), $134.8(\mathrm{CH}), 133.8(\mathrm{CH})$, 129.8 (CH), 129.0 (CH), 126.9 (C), 124.0 (CH), 90.0 (C), 89.3 (C); IR (neat) 2199, $1636,1591,1512,1449,1341,1314,1283,1168,1005,856,749,695,525 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{104}$

3.5.10. 1-Phenylhept-2-yn-1-one (26j)

Benzoyl chloride ($512.1 \mathrm{mg}, 3.60 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42.8 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($369.4 \mathrm{mg}, 3.60 \mathrm{mmol}$), CuI ($11.6 \mathrm{mg}, 0.06 \mathrm{mmol}$) and hex-1-yne ($250.4 \mathrm{mg}, 3.00$ mmol) were employed to afford $414.4 \mathrm{mg}(73 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ (dd, $\left.J=8.2,0.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, 2 H), 2.39 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.55 (pentet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.40 (sextet, $J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8$ (CO), 136.8 (C), $133.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.3(\mathrm{CH}), 96.5(\mathrm{C}), 79.5(\mathrm{C}), 29.7\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{2}\right), 18.6$ $\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right)$; IR (neat) 2958, 2932, 2871, 2236, 2199, 1640, 1580, 1449, 1312, 1262, 1174, 910, $698 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{104,105}$

3.5.11. 1-Phenyloct-2-yn-1-one (26k)

Benzoyl chloride ($524.1 \mathrm{mg}, 3.70 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(43.8 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($378.1 \mathrm{mg}, 3.70 \mathrm{mmol}$), CuI ($11.9 \mathrm{mg}, 0.06 \mathrm{mmol}$) and hept-1-yne ($300.0 \mathrm{mg}, 3.10$ mmol) were employed to afford $449.8 \mathrm{mg}(72 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 2.46-$ $2.37(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.81(\mathrm{~m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9(\mathrm{CO}), 136.8(\mathrm{C}), 133.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.3(\mathrm{CH})$, $96.6(\mathrm{C}), 79.6(\mathrm{C}), 30.9\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 19.0\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2955, 2930, 2860, 2235, 2200, 1640, 1580, 1449, 1312, 1261, 1174, 918, 699 cm^{-1}. The spectral data were in agreement with those reported previously for this compound. ${ }^{108,109}$

3.5.12. 4-Cyclopentyl-1-phenylbut-2-yn-1-one (261)

Benzoyl chloride ($824.4 \mathrm{mg}, 5.89 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(68.9 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($595.0 \mathrm{mg}, 5.89 \mathrm{mmol}$), CuI ($18.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 3-cyclopentyl-1-propyne $(530.0 \mathrm{mg}, 4.91 \mathrm{mmol})$ were employed to afford 787.0 mg (76%) of the indicated product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.51$ (m, 1H), 7.45-7.39 (m, 2H), 2.45 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.14 (septet, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89-1.77 (m, 2H), 1.69-1.47 (m, 4H), 1.36-1.24 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 177.9(\mathrm{CO}), 136.8(\mathrm{C}), 133.7(\mathrm{C}), 129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 96.2(\mathrm{C}), 79.6$ (C), $38.3(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$; IR (neat): 2948, 2865, 2232, 2197, 1640, 1596, 1579, 1448, 1261, 904, $698 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $213.13[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}: 213.1274[\mathrm{M}+\mathrm{H}]^{+}$, found: 213.1278.

3.5.13. 1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one (26m)

4-Methoxybenzoyl chloride ($634.6 \mathrm{mg}, 3.70 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(43.5 \mathrm{mg}, 0.06$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(375.7 \mathrm{mg}, 3.70 \mathrm{mmol}), \mathrm{CuI}(11.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ and phenylacetylene
($316.2 \mathrm{mg}, 3.10 \mathrm{mmol}$) were employed to afford 688.5 mg (94%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8(\mathrm{CO}), 164.6(\mathrm{C}), 133.1(\mathrm{CH}), 132.1(\mathrm{CH}), 130.7(\mathrm{CH}), 130.3$ (C), $128.8(\mathrm{CH}), 120.4(\mathrm{C}), 114.0(\mathrm{CH}), 92.4(\mathrm{C}), 87.0(\mathrm{C}), 55.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2195, 1627, 1594, 1567, 1420, 1305, 1258, 1157, 1030, 993, 838, 760, 682, $598 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103-}$ 106

3.5.14. 1-(4-Methoxyphenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (26n)

4-Methoxybenzoyl chloride ($598.5 \mathrm{mg}, 3.50 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(41.0 \mathrm{mg}, 0.06$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($354.3 \mathrm{mg}, 3.50 \mathrm{mmol}$), $\mathrm{CuI}(11.1 \mathrm{mg}, 0.06 \mathrm{mmol})$ and 3ethynylthiophene ($316.2 \mathrm{mg}, 2.90 \mathrm{mmol}$) were employed to afford $517.1 \mathrm{mg}(73 \%)$ of the indicated product as a light yellow solid ($R_{f}=0.58$ in $9: 1$ hexane/ethyl acetate; mp 101.2-103.1 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=3.0$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5$ (CO), $164.4(\mathrm{C}), 133.5$ (CH), $131.8(\mathrm{CH}), 130.1(\mathrm{CH}), 130.0(\mathrm{C}), 126.2(\mathrm{CH}), 119.4(\mathrm{C}), 113.8(\mathrm{CH}), 87.7$ (C), 87.0 (C), $55.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2186, 1625, 1597, 1570, 1506, 1421, 1361, 1280, 1157, 1087, 1004, 839, 791, 676, $535 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $243.05[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{SO}_{2}$: $243.0474[\mathrm{M}+\mathrm{H}]^{+}$, found: 243.0477.

3.5.15. 3-(3-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (260)

4-Methoxybenzoyl chloride ($621.2 \mathrm{mg}, 3.60 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(42.6 \mathrm{mg}, 0.06$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(367.8 \mathrm{mg}, 3.60 \mathrm{mmol}), \mathrm{CuI}(11.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ and 1-ethynyl-3fluorobenzene ($364.5 \mathrm{mg}, 3.00 \mathrm{mmol}$) were employed to afford $702.1 \mathrm{mg}(91 \%)$ of the indicated product as a yellow solid ($R_{f}=0.60$ in 9:1 hexane/ethyl acetate; mp 91.9$93.7^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-$
7.32 (m, 2H), 7.17 (tdd, $J=8.5,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4$ (CO), 164.8 (C), 162.4 (d, $\left.{ }^{1} J_{C F}=248.2 \mathrm{~Hz}, \mathrm{C}\right)$, $132.1(\mathrm{CH}), 130.5\left(\mathrm{~d},{ }^{3} J_{C F}=8.3 \mathrm{~Hz}, \mathrm{CH}\right), 130.2(\mathrm{C}), 128.9\left(\mathrm{~d},{ }^{4} J_{C F}=3.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $122.3\left(\mathrm{~d},{ }^{3} J_{C F}=9.0 \mathrm{~Hz}, \mathrm{C}\right), 119.7\left(\mathrm{~d},{ }^{2} J_{C F}=23.2 \mathrm{~Hz}, \mathrm{CH}\right), 118.1\left(\mathrm{~d},{ }^{2} J_{C F}=21.4 \mathrm{~Hz}\right.$, CH), $114.1(\mathrm{CH}), 90.4(\mathrm{C}), 87.3(\mathrm{C}), 55.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2200, 1637, 1592, 1579, 1484, 1316, 1296, 1232, 1165, 1145, 1021, 998, 870, 839, 777, 674, $540 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $255.08[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{FO}_{2}: 255.0816[\mathrm{M}+\mathrm{H}]^{+}$, found: 255.0823.

3.5.16. 3-(4-Bromophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (26p)

4-Methoxybenzoyl chloride ($458.8 \mathrm{mg}, 2.70 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(31.4 \mathrm{mg}, 0.04$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(271.6 \mathrm{mg}, 2.70 \mathrm{mmol}), \mathrm{CuI}(8.5 \mathrm{mg}, 0.04 \mathrm{mmol})$ and 1 -bromo-4ethynylbenzene ($405.7 \mathrm{mg}, 2.20 \mathrm{mmol}$) were employed to afford 600.3 mg (85%) of the indicated product as a light yellow solid ($R_{f}=0.62$ in $9: 1$ hexane/ethyl acetate; mp $114.5-116.7^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.49(\mathrm{~m}$, 4H), 7.00-6.95 (m, 2H), $3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5$ (CO), 164.7 (C), 134.4 (CH), 132.2 (CH), 132.1 (CH), 130.3 (C), 125.5 (C), 119.4 (C), 114.1 (CH), 91.0 (C), 87.9 (C), $55.8\left(\mathrm{CH}_{3}\right)$; IR (neat) 2199,1627, 1602, 1578, 1474, 1392, 1295, 1249, 1162, 1061, 1007, 820, 748, 679, $529 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 315.00 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrO}_{2}: 315.0015[\mathrm{M}+\mathrm{H}]^{+}$, found: 315.0017.

3.5.17. 1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (26q)

4-Chlorobenzoyl chloride ($617.6 \mathrm{mg}, 3.5 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(41.3 \mathrm{mg}, 0.06 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(356.5 \mathrm{mg}, 3.50 \mathrm{mmol}), \mathrm{CuI}(11.2 \mathrm{mg}, 0.06 \mathrm{mmol})$ and phenylacetylene (300.0 $\mathrm{mg}, 2.90 \mathrm{mmol}$) were employed to afford $566.3 \mathrm{mg}(80 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18-8.13$ (m, 2H), 7.70-7.66 (m, 2H), 7.53-7.47 (m, $3 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8$ (CO), 140.8 (C), 135.4 (C), $133.2(\mathrm{CH}), 131.1(\mathrm{CH}), 131.0(\mathrm{CH}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 120.0(\mathrm{C}), 93.8$
(C), 86.7 (C); IR (neat) 2196, 1648, 1582, 1480, 1300, 1276, 1168, 1089, 993, 812, $750,680,527 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103,107,110}$

3.5.18. 1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (26r)

4-Chlorobenzoyl chloride ($560.2 \mathrm{mg}, 3.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(37.5 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(323.3 \mathrm{mg}, 3.20 \mathrm{mmol}), \mathrm{CuI}(10.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 1-ethynyl-4methylbenzene ($310.0 \mathrm{mg}, 2.70 \mathrm{mmol}$) were employed to afford $516.4 \mathrm{mg}(76 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8(\mathrm{CO}), 141.9(\mathrm{C}), 140.7(\mathrm{C}), 135.6(\mathrm{C}), 133.3(\mathrm{CH})$, $131.0(\mathrm{CH}), 129.7(\mathrm{CH}), 129.1(\mathrm{CH}), 116.9(\mathrm{C}), 94.5(\mathrm{C}), 86.6(\mathrm{CH}), 21.9\left(\mathrm{CH}_{3}\right)$; IR (neat) $2191,1628,1583,1481,1398,1298,1180,1163,1087,1005,814,741,672$, $535 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103}$

3.5.19. 1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (26s)

4-Chlorobenzoyl chloride ($560.2 \mathrm{mg}, 3.20 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(37.5 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(323.3 \mathrm{mg}, 3.20 \mathrm{mmol}), \mathrm{CuI}(10.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ and 1-ethynyl-4methylbenzene ($310.0 \mathrm{mg}, 2.70 \mathrm{mmol}$) were employed to afford $516.4 \mathrm{mg}(76 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.8(\mathrm{CO}), 141.9(\mathrm{C}), 140.7(\mathrm{C}), 135.6(\mathrm{C}), 133.3(\mathrm{CH})$, $131.0(\mathrm{CH}), 129.7(\mathrm{CH}), 129.1(\mathrm{CH}), 116.9(\mathrm{C}), 94.5(\mathrm{C}), 86.6(\mathrm{CH}), 21.9\left(\mathrm{CH}_{3}\right)$; IR (neat) 2191, 1628, 1583, 1481, 1398, 1298, 1180, 1163, 1087, 1005, 814, 741, 672, $535 \mathrm{~cm}^{-1}$. The spectral data were in agreement with those reported previously for this compound. ${ }^{103}$

3.5.20. 3-Ferrocenyl-1-phenylprop-2-yn-1-one (26t)

Benzoyl chloride ($152.6 \mathrm{mg}, 1.09 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(12.6 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ $(110.0 \mathrm{mg}, 1.09 \mathrm{mmol})$, $\mathrm{CuI}(3.42 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene (190.0 mg , $0.90 \mathrm{mmol})$ were employed to afford $243.1 \mathrm{mg}(86 \%)$ of the indicated product as a red solid ($R_{f}=0.52$ in 9:1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{t}, J=1.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}), 4.43(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.7(\mathrm{CO})$, 137.4 (C), $133.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7(\mathrm{CH}), 96.7(\mathrm{C}), 85.7(\mathrm{C}), 73.3(\mathrm{CH}), 71.0$ $(\mathrm{CH}), 70.6(\mathrm{CH}), 60.5(\mathrm{C})$; IR (neat) 3087, 2213, 2169, 1617, 1596, 1573, 1452, 1315, 1291, 1224, 1169, 948, 821, 795, 702, $633 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 314.04 [M] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{OFe}$: 314.0394 [M] ${ }^{+}$, found: 314.0407. The spectral data are in agreement with those reported previously for this compound. ${ }^{111,112}$

3.5.21. 3-Ferrocenyl-1-(p-tolyl)prop-2-yn-1-one (26u)

4-Methylbenzoyl chloride $(182.3 \mathrm{mg}, 1.18 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.0 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(119.2 \mathrm{mg}, 1.18 \mathrm{mmol}), \mathrm{CuI}(3.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene ($205.8 \mathrm{mg}, 0.98 \mathrm{mmol}$) were employed to afford $273.3 \mathrm{mg}(85 \%)$ of the indicated product as a orange-red solid ($R_{f}=0.50$ in 9:1 hexane/ethyl acetate; mp 155-156 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.70 (t, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 5 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4(\mathrm{CO}), 144.8(\mathrm{C}), 135.0(\mathrm{C}), 129.6(\mathrm{CH}), 129.3(\mathrm{CH}), 96.0(\mathrm{C})$, 85.6 (C), $73.2(\mathrm{CH}), 70.8(\mathrm{CH}), 70.5(\mathrm{CH}), 60.6(\mathrm{C}), 21.9\left(\mathrm{CH}_{3}\right)$; IR (neat) 3089, 2185, 2167, 1618, 1597, 1564, 1410, 1285, 1221, 1169, 1109, 1006, 823, 740, 678, 600, 524 $\mathrm{cm}^{-1} ;$ MS (ESI, m/z): $328.06[M]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{OFe}: 328.0551[\mathrm{M}]^{+}$, found: 328.0562.

3.5.22. 3-Ferrocenyl-1-(4-methoxyphenyl)prop-2-yn-1-one (26v)

4-Methoxybenzoyl chloride ($214.9 \mathrm{mg}, 1.26 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.7 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(127.3 \mathrm{mg}, 1.26 \mathrm{mmol}), \mathrm{CuI}(4.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene ($205.8 \mathrm{mg}, 1.05 \mathrm{mmol}$) were employed to afford $310.7 \mathrm{mg}(86 \%)$ of the indicated product as a red solid ($R_{f}=0.47$ in 9:1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.40$ (br $\mathrm{s}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 5 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.5(\mathrm{CO}), 164.3$ (C), $131.8(\mathrm{CH}), 130.7(\mathrm{C}), 113.9(\mathrm{CH}), 95.5(\mathrm{C}), 85.5(\mathrm{C}), 73.1(\mathrm{CH}), 70.7(\mathrm{CH})$, $70.5(\mathrm{CH}), 60.8(\mathrm{C}), 55.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 3085, 2173, 1613, 1593, 1566, 1506, 1421, 1290, 1263, 1227, 1158, 1108, 1029, 1010, 823, 756, 684, $604 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 344.05 [M] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Fe}: 344.0500$ [M] ${ }^{+}$, found: 344.0516. The spectral data are in agreement with those reported previously for this compound. ${ }^{111,112}$

3.5.23. 1-(4-Chlorophenyl)-3-ferrocenylprop-2-yn-1-one (26w)

4-Chlorobenzoyl chloride ($217.0 \mathrm{mg}, 1.24 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.5 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(125.2 \mathrm{mg}, 1.03 \mathrm{mmol}), \mathrm{CuI}(3.9 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene ($217.0 \mathrm{mg}, 1.03 \mathrm{mmol}$) were employed to afford 305.2 mg (85%) of the indicated product as a reddish violet solid ($R_{f}=0.55$ in 9:1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ (br s, 2H), 4.42 (br s, 2H), 4.27 (s, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2$ (CO), 140.2 (C), 135.6 (C) , 130.7 (CH), 128.9 (CH), 97.4 (C), 85.4 (C), 73.2 (CH), $71.0(\mathrm{CH}), 70.6(\mathrm{CH})$, 60.0 (C); IR (neat) 2979, 1734, 1668, 1577, 1554, 1478, 1410, 1372, 1283, 1238, 1105, 1044, 1029, 925, 817, 779, 740, 646, 630, $520 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $348.00[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{OClFe}$: 348.0005 [M] ${ }^{+}$, found: 347.9999. The spectral data are in agreement with those reported previously for this compound. ${ }^{111}$

3.5.24. 1-(2-Bromophenyl)-3-ferrocenylprop-2-yn-1-one (26x)

2-Bromobenzoyl chloride ($259.1 \mathrm{mg}, 1.18 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(13.8 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(119.2 \mathrm{mg}, 1.18 \mathrm{mmol}), \mathrm{CuI}(3.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene ($205.0 \mathrm{mg}, 0.98 \mathrm{mmol}$) were employed to afford 288.9 mg (75%) of the indicated product as a dark red solid ($R_{f}=0.53$ in 9:1 hexane/ethyl acetate; $\mathrm{mp} 82-83^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (pseudo $\mathrm{t}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.41 (pseudo t, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.27 (s, 5 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2$ (CO), 138.2 (C), $134.8(\mathrm{CH}), 133.0(\mathrm{CH}), 132.3(\mathrm{CH}), 127.4(\mathrm{CH}), 121.0(\mathrm{C}), 98.6$ (C), 86.9 (C), 73.2 (CH), 71.1 (CH), 70.5 (CH), 60.1 (C); IR (neat) 3098, 2172, 1622, 1582, 1560, 1459, 1432, 1295, 1204, 1135, 1055, 1033, 996, 896, 828, 730, 673, 629, $513 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 391.95 [M] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{BrOFe}$: $391.9501[\mathrm{M}]^{+}$, found: 391.9493.

3.5.25. 3-Ferrocenyl-1-(4-nitrophenyl)prop-2-yn-1-one (26y)

4-Nitrobenzoyl chloride ($202.3 \mathrm{mg}, 1.09 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(12.8 \mathrm{mg}, 0.02 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(110.1 \mathrm{mg}, 1.09 \mathrm{mmol}), \mathrm{CuI}(3.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ and ethynylferrocene (191.2 $\mathrm{mg}, 0.91 \mathrm{mmol}$) were employed to afford $261.2 \mathrm{mg}(80 \%)$ of the indicated product as a dark violet solid ($R_{f}=0.44$ in 9:1 hexane/ethyl acetate; mp 182-183 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34$ (pseudo q, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$), 4.72 (pseudo $\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.49 (pseudo t, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.30(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4$ (CO), 150.8 (C), 141.6 (C) , 130.4 (CH), 123.9 (CH), 99.9 (C), 85.8 (C), 73.6 (CH), 71.5 (CH), 70.8 (CH), 59.5 (C); IR (neat) 3091, 2179, 1629, 1598, 1519, 1457, 1409, 1341, 1321, 1213, 1104, 1003, 915, 868, 819, 708, 679, $635 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $359.02[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Fe}: 359.0245$ [M] ${ }^{+}$, found: 359.0232. The spectral data are in agreement with those reported previously for this compound. ${ }^{11,112}$

3.6. General Procedure for the Synthesis of N-Propargylic $\boldsymbol{\beta}$-Enaminones 32, 50 and 61

To a stirred solution of the corresponding α, β-alkynic ketone 26 (2.5 mmol) in absolute $\mathrm{MeOH}(10 \mathrm{~mL})$ under argon was added propargylamine (48), 1ethynylcyclohexylamine or 2-methylbut-3-yn-2-amine (3.0 mmol). The resulting mixture was heated at $65^{\circ} \mathrm{C}$ for approximately 6 h for propargylamine and $18-24 \mathrm{~h}$ for 1-ethynylcyclohexylamine or 2-methylbut-3-yn-2-amine (Note that the progress of the reaction was monitored by routine TLC for the completion of the reaction). After the reaction was over, the solvent was removed on a rotary evaporator, and ethyl acetate $(50 \mathrm{~mL})$ and a saturated NaCl solution $(50 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding β-enaminone32a-d, 50a-q and 61a-c.

3.6.1. 1,3-Diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32a)

1,3-Diphenylprop-2-yn-1-one (26a) (515.6 mg, 2.50 mmol$)$ and propargylamine ($165.3 \mathrm{mg}, 3.00 \mathrm{mmol}$) were employed to afford 640.3 mg (98%) of the indicated product. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.94-7.89 (m, 2H), 7.54-7.38 (m, 8H), 5.86 (br s, 1H), 3.96 (dd, $J=6.3$ and 2.5 $\mathrm{Hz}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4(\mathrm{CO})$, 166.1 (C), 140.2 (C), 135.1 (C), 131.2 (CH), 130.0 (CH), 128.9 (CH), 128.4 $(\mathrm{CH}), 128.1(\mathrm{CH}), 127.4(\mathrm{CH}), 94.9(\mathrm{CH}), 80.0(\mathrm{C}), 72.6(\mathrm{CH}), 34.4\left(\mathrm{CH}_{2}\right)$. The spectral data were in agreement with those reported previously for this compound. ${ }^{21}$

3.6.2. 3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32b)

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (26d) (590.7 mg, 2.50 mmol) and propargylamine $(165.3 \mathrm{mg}, 3.00 \mathrm{mmol})$ were employed to afford 713.8 mg (98%) of the indicated product. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.94-7.88 (m, 2H), 7.49-7.38 (m, 5H), 7.02-6.97 (m, 2H), $5.85(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{dd}$, $J=6.3$ and $2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 189.1(\mathrm{CO}), 166.1(\mathrm{C}), 161.1(\mathrm{C}), 140.3(\mathrm{C}), 131.1(\mathrm{CH}), 129.6$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.3(\mathrm{CH}), 114.3(\mathrm{CH}), 94.8(\mathrm{CH}), 80.2(\mathrm{C}), 72.6(\mathrm{CH})$, $55.6\left(\mathrm{CH}_{3}\right), 34.5\left(\mathrm{CH}_{2}\right)($ Two C peaks overlap with each other); IR (neat): 3285, $3056,2931,2837,1593,1559,1497,1247,1173,1142,1023,836,757,689 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $292.13[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}$: $292.1338[\mathrm{M}+\mathrm{H}]^{+}$, found: 292.1337 .

3.6.3. 1-Phenyl-3-(prop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1-one (32c)

1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (26e) (530.7 mg, 2.50 mmol) and propargylamine $(165.3 \mathrm{mg}, 3.00 \mathrm{mmol})$ were employed to afford $628.3 \mathrm{mg}(94 \%)$ of the indicated product. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.44(\mathrm{brt}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-$ $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=2.8$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{dd}, J=5.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=6.4$ and $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 188.6$ (CO), 160.3 (C), 139.7 (C), $135.2(\mathrm{C})$, $130.8(\mathrm{CH}), 128.1(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 126.5(\mathrm{CH}), 126.2(\mathrm{CH}), 94.0(\mathrm{CH})$, $79.9(\mathrm{C}), 72.6(\mathrm{CH}), 34.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3249, 3214, 1653, 1593, 1577, 1290, 1247, 1227, 1079, 1057, 799, 754, $720 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $268.08[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NOS}: 268.0796[\mathrm{M}+\mathrm{H}]^{+}$, found: 268.0775 .

3.6.4. 4-Cyclopentyl-1-phenyl-3-(prop-2-yn-1-ylamino)but-2-en-1-one (32d)

4-Cyclopentyl-1-phenylbut-2-yn-1-one (261) (637.0 mg, 3.00 mmol$)$ and propargylamine ($198.0 \mathrm{mg}, 3.60 \mathrm{mmol}$) were employed to afford $801.0 \mathrm{mg}(99 \%)$ of the indicated product as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.51(\mathrm{~d}, J=5.5$ Hz, 1H), 7.95-7.79 (m, 2H), 7.52-7.29 (m, 3H), 5.76-5.68 (m, 1H), 4.12-3.98 (m, 2 H), 2.43-2.27 (m, 2H), 2.19-2.01 (m, 1H), 1.94-1.74 (m, 2H), 1.72-1.45 (m, 4H), 1.36-1.00 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.9$ (CO), 167.1 (C), 140.13 (C), $130.4(\mathrm{CH}), 127.9(\mathrm{CH}), 126.7(\mathrm{CH}), 92.5(\mathrm{CH}), 79.0(\mathrm{C}), 72.3(\mathrm{C}), 38.2\left(\mathrm{CH}_{2}\right), 37.6$ (CH), $32.4\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right)$. IR (neat): 3289, 2947, 2865, 1732, 1594, 1549, 1516, 1328, 1289, 1176, 1061, 1025, 742, 698, $661 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 254.16 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}: 254.1540[\mathrm{M}+\mathrm{H}]^{+}$, found: 254.1551.

3.6.5. 3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a)

1,3-Diphenylprop-2-yn-1-one (26a) (312.6 mg, 1.52 mmol$)$ and 1 ethynylcyclohexylamine ($221.8 \mathrm{mg}, 1.82 \mathrm{mmol}$) were employed to afford 286.6 mg (56\%) of the indicated product as a light yellow solid ($R_{f}=0.41$ in $4: 1$ hexane/ethyl acetate; mp 107.5-109.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.75(\mathrm{~s}, 1 \mathrm{H}), 7.92-7.87$ (m, 2H), 7.61-7.54 (m, 2H), 7.47-7.36 (m, 6H), 5.73 (s, 1H), $2.30(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.7(\mathrm{CO}), 166.7(\mathrm{C}), 140.3(\mathrm{C}), 137.1(\mathrm{C}), 131.0(\mathrm{CH})$, $129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 96.4(\mathrm{CH}), 86.7(\mathrm{C})$, $73.6(\mathrm{CH}), 53.7(\mathrm{C}), 40.0\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$; IR (neat) 3231, 2932, 2855, 1607, 1546, 1440, 1327, 1294, 1258, 1146, 1055, 748, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1849.

3.6.6. 3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (50b)

1-Phenyl-3-(p-tolyl)prop-2-yn-1-one (26b) (295.4 mg, 1.34 mmol) and 1ethynylcyclohexylamine ($198.3 \mathrm{mg}, 1.61 \mathrm{mmol}$) were employed to afford 325.9 mg (73\%) of the indicated product as a light brown solid ($R_{f}=0.52$ in 4:1 hexane/ethyl acetate; mp 91.4-93.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.76$ (s, 1H), $7.90(\mathrm{dd}, J=$ $8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.19$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $5.73(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=9.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}$, $4 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.4$ (CO), 166.9 (C) , 140.1 (C), 139.2 (C), 134.1 (C), 130.8 (CH), 128.5 (CH), 128.4 $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.1(\mathrm{CH}), 96.2(\mathrm{CH}), 86.8(\mathrm{C}), 73.3(\mathrm{CH}), 53.5(\mathrm{C}), 39.7\left(\mathrm{CH}_{2}\right)$, $25.0\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 3221, 2934, 2856, 1550, 1501, 1446, 1330, 1303, 1259, 1147, 1058, 1025, 826, 732, $695 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 344.20 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 344.2009[\mathrm{M}+\mathrm{H}]^{+}$, found: 344.2007.

3.6.7. 3-((1-Ethynylcyclohexyl)amino)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (50c)

3-(4-Methoxyphenyl)-1-phenylprop-2-yn-1-one (26d) ($332.0 \mathrm{mg}, 1.40 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($209.4 \mathrm{mg}, 1.69 \mathrm{mmol}$) were employed to afford 292.2 mg (58\%) of the indicated product as an orangish-yellow solid $\left(R_{f}=0.54\right.$ in 4:1 hexane/ethyl acetate); mp $140.5{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.69(\mathrm{~s}, 1 \mathrm{H})$, $7.88 \mathrm{dd},(\mathrm{J}=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.72 ($\mathrm{s}, 1 \mathrm{H}$), 3.84 (s, 3H), 2.34 ($\mathrm{s}, 1 \mathrm{H}$), 1.86 (dd, J = 11.1, $4.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74$1.59(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 188.4 (CO), 166.7 (C), 160.5 (C), 140.3 (C), 130.9 (CH), 130.1 (CH), 129.5 (C), 128.3 $(\mathrm{CH}), 127.2(\mathrm{CH}), 113.2(\mathrm{CH}), 96.4(\mathrm{CH}), 86.9(\mathrm{C}), 73.4(\mathrm{CH}), 55.4(\mathrm{C}), 53.6\left(\mathrm{CH}_{3}\right)$, $39.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) 3228, 2939, 2958, 1612, 1577, 1501, 1482, 1332, 1292, 1245, 1173, 1058, 1030, 834, 763, $698 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 360.20 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}: 360.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 360.1963.

3.6.8. 3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1one (50d)

1-Phenyl-3-(thiophen-3-yl)prop-2-yn-1-one (26e) ($340.8 \mathrm{mg}, 1.61 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($237.4 \mathrm{mg}, 1.93 \mathrm{mmol}$) were employed to afford 296.2 mg (55\%) of the indicated product as a dark yellow solid ($R_{f}=0.55$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 88.0-90.7^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.76(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.63(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70$ (ddd, $J=12.9,9.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.4$ (CO), 161.3 (C), 140.1 (C), 137.2 (C), 130.9 (CH), 128.7 (CH), 128.3 (CH), $127.1(\mathrm{CH}), 126.2(\mathrm{CH}), 125.1(\mathrm{CH}), 95.9(\mathrm{CH}), 86.9$ (C), $73.2(\mathrm{CH}), 53.4(\mathrm{C}), 39.4\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) 3219, 2942, 2854, 1580, 1544, 1499, 1444, 1317, 1296, 1245, 1161, 1146, 1055, 996, 891, 749, 687, $568 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $336.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NOS}$: $336.1417[\mathrm{M}+\mathrm{H}]^{+}$, found: 336.1416.

3.6.9. 3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-phenylprop-2-en-1one (50e)

3-(3-Fluorophenyl)-1-phenylprop-2-yn-1-one ($\mathbf{2 6 f}$) ($337.5 \mathrm{mg}, 1.51 \mathrm{mmol}$) and 1 ethynylcyclohexylamine ($222.5 \mathrm{mg}, 1.81 \mathrm{mmol}$) were employed to afford 313.8 mg (60%) of the indicated product as a dark yellow solid ($R_{f}=0.61$ in $4: 1$ hexane/ethyl acetate; mp 68.2-70.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}$, $2 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}$, $2 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 188.9(\mathrm{CO}), 164.9(\mathrm{C}), 162.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=246.9 \mathrm{~Hz}, \mathrm{C}\right), 139.9(\mathrm{C}), 138.8(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CF}}=7.8 \mathrm{~Hz}, \mathrm{C}\right), 131.1(\mathrm{CH}), 129.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 128.3(\mathrm{CH}), 127.2(\mathrm{CH})$, $124.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.0 \mathrm{~Hz}, \mathrm{CH}\right), 116.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=20.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=22.9 \mathrm{~Hz}\right.$, $\mathrm{CH}), 96.2(\mathrm{CH}), 86.3(\mathrm{C}), 73.9(\mathrm{CH}), 53.7(\mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$;

IR (neat) 3255, 2931, 2857, 1580, 1551, 1443, 1331, 1260, 1232, 1126, 1055, 923 , 886, 750, $686 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $348.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNO}: 348.1758[\mathrm{M}+\mathrm{H}]^{+}$, found: 348.1761 .

3.6.10. 3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-

 1-one (50f)3-(4-Chlorophenyl)-1-phenylprop-2-yn-1-one ($\mathbf{2 6 g}$) ($360.8 \mathrm{mg}, 1.50 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($221.6 \mathrm{mg}, 1.80 \mathrm{mmol}$) were employed to afford 360.0 mg (66%) of the indicated product as a yellow solid ($R_{f}=0.58$ in $4: 1$ hexane/ethyl acetate; mp 132.9-135.2 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.64(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}$, 1 H), 1.91-1.82 (m, 2H), 1.73-1.61 (m, 4H), 1.57-1.46 (m, 3H), 1.34-1.25 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9$ (CO), 165.3 (C), 140.0 (C), 135.4 (C), 131.2 (C), $130.2(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH}), 96.4(\mathrm{C}), 86.5(\mathrm{CH}), 74.0(\mathrm{CH})$, 53.7 (C), $40.0\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$ (Two CH peaks overlap with each other.); IR (neat) 3280, 2932, 2850, 1575, 1559, 1474, 1327, 1296, 1144, 1089, 1055, 1015, 832, 758, 648, $573 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $364.15[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}: 364.1463[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1469.

3.6.11. 3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50 g)

3-(4-Bromophenyl)-1-phenylprop-2-yn-1-one ($\mathbf{2 6 h}$) ($378.3 \mathrm{mg}, 1.34 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($196.1 \mathrm{mg}, 1.60 \mathrm{mmol}$) were employed to afford 314.0 mg (58\%) of the indicated product as a yellow solid ($R_{f}=0.62$ in $4: 1$ hexane/ethyl acetate; $\mathrm{mp} 126.0-128.8^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.63$ ($\mathrm{s}, 1 \mathrm{H}$), 7.87 (dd, $J=8.1$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.92-$ $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.8$ (CO), 165.2 (C), 139.9 (C), 135.9 (C), 131.2 (CH), 131.0
$(\mathrm{CH}), 130.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.2(\mathrm{CH}), 123.6(\mathrm{C}), 96.4(\mathrm{CH}), 86.5(\mathrm{C}), 74.0(\mathrm{CH})$, $53.7(\mathrm{C}), 40.0\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) 3282, 2932, 2850, 1592, 1557, 1472, 1326, 1296, 1170, 1055, 1022, 830, 759, $650 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 408.10 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}: 408.0958[\mathrm{M}+\mathrm{H}]^{+}$, found: 408.0949 .

3.6.12. 3-((1-Ethynylcyclohexyl)amino)-3-(4-nitrophenyl)-1-phenylprop-2-en-1one (50h)

3-(4-Nitrophenyl)-1-phenylprop-2-yn-1-oneone (26i) ($317.0 \mathrm{mg}, 1.26 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($186.5 \mathrm{mg}, 1.51 \mathrm{mmol}$) were employed to afford 283.5 mg (60%) of the indicated product as a dark yellow solid ($R_{f}=0.40$ in 4:1 hexane/ethyl acetate; mp 134.8-136.0 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}$, $3 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.46(\mathrm{~m}$, 3H), 1.34-1.25 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.2$ (CO), 163.6 (C), 148.3 (C), $143.2(\mathrm{C}), 139.6(\mathrm{C}), 131.5(\mathrm{CH}), 130.1(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 123.0$ $(\mathrm{CH}), 96.5(\mathrm{CH}), 86.1(\mathrm{C}), 74.8(\mathrm{CH}), 53.9(\mathrm{C}), 40.2\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) $3221,2935,2852,1574,1510,1477,1306,1231,1145,1055,1023,849$, $750,687 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $375.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$: $375.1703[\mathrm{M}+\mathrm{H}]^{+}$, found: 375.1711.

3.6.13. 3-((1-Ethynylcyclohexyl)amino)-1-phenylhept-2-en-1-one (50i)

1-Phenylhept-2-yn-1-one ($\mathbf{2 6 j}$) ($296.5 \mathrm{mg}, 1.6 \mathrm{mmol}$) and 1-ethynylcyclohexylamine $(235.4 \mathrm{mg}, 1.91 \mathrm{mmol})$ were employed to afford 408.9 mg (83%) of the indicated product as a light orange solid ($R_{f}=0.58$ in 4:1 hexane/ethyl acetate; mp 67.5-69.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.07(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}$, 3 H), $5.73(\mathrm{~s}, 1 \mathrm{H}), 2.70$ (pseudo $\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.52(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H})$, $1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (sextet, $J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.8$
(CO), 170.4 (C), 140.6 (C), $130.5(\mathrm{CH}), 128.2(\mathrm{CH}), 127.0(\mathrm{CH}), 92.4(\mathrm{CH}), 85.8(\mathrm{C})$, $73.7(\mathrm{CH}), 52.5(\mathrm{C}), 39.7\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 22.3$ $\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right)$; IR (neat) $3286,2933,2852,1589,1554,1514,1443,1348,1290$, 1253, 1167, 1095, 895, 741, $634 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $310.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}: 310.2165[\mathrm{M}+\mathrm{H}]^{+}$, found: 310.2165.

3.6.14. 3-((1-Ethynylcyclohexyl)amino)-1-phenyloct-2-en-1-one (50j)

1-Phenyloct-2-yn-1-one (26k) ($310.7 \mathrm{mg}, 1.55 \mathrm{mmol}$) and 1-ethynylcyclohexylamine ($229.4 \mathrm{mg}, 1.86 \mathrm{mmol}$) were employed to afford 336.2 mg (67%) of the indicated product as an orange oil ($R_{f}=0.49$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 12.07(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 2.70-$ 2.65 (m, 2H), 2.51 (s, 1H), 2.14-2.08 (m, 2H), 1.85-1.77 (m, 2H), 1.74-1.64 (m, 6H), $1.56-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 187.7(\mathrm{CO}), 170.3(\mathrm{C}), 140.6(\mathrm{C}), 130.4(\mathrm{CH}), 128.1(\mathrm{CH}), 126.9(\mathrm{CH}), 92.3$ $(\mathrm{CH}), 85.7(\mathrm{C}), 73.6(\mathrm{CH}), 52.4(\mathrm{C}), 39.6\left(\mathrm{CH}_{2}\right), 32.4\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{2}\right)$; IR (neat) $3295,2930,2856,1584$, 1555, 1445, 1320, 1257, 1169, 1094, 899, 744, $648 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 324.23 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}: 324.2322[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.2325.

3.6.15. 3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (50k)

1-(4-Methoxyphenyl)-3-phenylprop-2-yn-1-one ($\mathbf{2 6 m}$) ($329.4 \mathrm{mg}, 1.39 \mathrm{mmol}$) and 1ethynylcyclohexylamine ($206.1 \mathrm{mg}, 1.67 \mathrm{mmol}$) were employed to afford 255.6 mg (51\%) of the indicated product as a yellow solid ($R_{f}=0.40$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 119.2-121.5{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.63(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2H), 7.58-7.54 (m, 2H), 7.43-7.34 (m, 3H), 6.88 (d, J = 8.9 Hz, 2H), 5.69 (s, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 3 \mathrm{H})$, $1.32-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.8(\mathrm{CO}), 166.1(\mathrm{C}), 162.0(\mathrm{C})$,
137.1 (C), $132.8(\mathrm{C}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 113.5(\mathrm{CH})$, $95.9(\mathrm{CH}), 86.7(\mathrm{C}), 73.4(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 53.5(\mathrm{C}), 39.8\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.2$ $\left(\mathrm{CH}_{2}\right)$; IR (neat) $3241,2936,1573,1545,1443,1415,1321,1255,1233,1185,1146$, 1062, 1023, 847, 785, $692 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $360.20[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}: 360.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 360.1968.

3.6.16. 3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-2-en-1-one (501)

1-(4-Methoxyphenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (26n) (305.8 mg, 1.26 mmol) and 1-ethynylcyclohexylamine ($186.6 \mathrm{mg}, 1.51 \mathrm{mmol}$) were employed to afford $249.1 \mathrm{mg}(54 \%)$ of the indicated product as a yellow oil $\left(R_{f}=0.41\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.62$ ($\mathrm{s}, 1 \mathrm{H}$), $7.87(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.61(\mathrm{dd}, J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=$ $5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H})$, $1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.33-$ $1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.8(\mathrm{CO}), 162.0(\mathrm{C}), 160.8(\mathrm{C}), 137.5$ (C), 132.8 (C), $129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 126.1(\mathrm{CH}), 125.0(\mathrm{CH}), 113.5(\mathrm{CH}), 95.6$ $(\mathrm{CH}), 87.1(\mathrm{C}), 73.1(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 53.4(\mathrm{C}), 39.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) 3235, 2934, 1580, 1541, 1472, 1439, 1320, 1238, 1175, 1123, 1021, 925, 854, 780, $689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $366.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}: 366.1522[\mathrm{M}+\mathrm{H}]^{+}$, found: 366.1518.

3.6.17. 3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (50m)

3-(3-Fluorophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (260) (319.4 mg, 1.26 mmol) and 1-ethynylcyclohexylamine ($185.7 \mathrm{mg}, 1.51 \mathrm{mmol}$) were employed to afford $265.5 \mathrm{mg}(56 \%)$ of the indicated product as an orangish-yellow solid ($R_{f}=0.46$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 147.2-149.3^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.51$
(s, 1H), 7.87 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.59(\mathrm{~m}$, $4 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.2$ (CO), $164.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 162.3(\mathrm{C}), 162.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246.7 \mathrm{~Hz}, \mathrm{C}\right), 139.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}\right.$ $=7.9 \mathrm{~Hz}, \mathrm{C}), 132.8(\mathrm{C}), 129.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 129.2(\mathrm{CH}), 124.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.1\right.$ $\mathrm{Hz}, \mathrm{CH}), 116.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=20.8 \mathrm{~Hz}, \mathrm{CH}\right), 113.6(\mathrm{CH}), 96.1$ $(\mathrm{CH}), 86.7(\mathrm{C}), 73.8(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 53.7(\mathrm{C}), 40.0\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$; IR (neat) $3241,2933,1578,1544,1477,1438,1322,1235,1174,1126,1020,923$, 853, 783, $683 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $378.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FNO}_{2}: 378.1864[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1854.

3.6.18. 3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)prop-2-en-1-one (50n)

3-(4-Bromophenyl)-1-(4-methoxyphenyl)prop-2-yn-1-one (26p) ($480.2 \mathrm{mg}, 1.52$ mmol) and 1-ethynylcyclohexylamine ($225.3 \mathrm{mg}, 1.83 \mathrm{mmol}$) were employed to afford 354.0 mg (53%) of the indicated product as a light yellow solid ($R_{f}=0.47$ in 4:1 hexane/ethyl acetate: $\mathrm{mp} 86.5-89.8{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.50(\mathrm{~s}$, $1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.9$ (CO), 164.6 (C), 162.1 (C), 136.1 (C), 132.6 (C), 130.9 (CH), $130.5(\mathrm{CH}), 129.1(\mathrm{CH})$, $123.4(\mathrm{C}), 113.5(\mathrm{CH}), 96.1(\mathrm{CH}), 86.6(\mathrm{C}), 73.8(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 53.5(\mathrm{C}), 40.0$ $\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$; IR (neat) 3225, 2934, 1570, 1544, 1475, 1327, 1301, 1253, 1228, 1160, 1145, 1059, 1023, 827, 782, $662 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 438.11 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNO}_{2}: 438.1063[\mathrm{M}+\mathrm{H}]^{+}$, found: 438.1051.

3.6.19. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-phenylprop-2-en-

 1-one (500)1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (26q) $(336.5 \mathrm{mg}, 1.40 \mathrm{mmol})$ and 1ethynylcyclohexylamine ($206.7 \mathrm{mg}, 1.68 \mathrm{mmol}$) were employed to afford 345.9 mg (68%) of the indicated product as a brownish-yellow solid $\left(R_{f}=0.54\right.$ in $4: 1$ hexane/ethyl acetate; mp 100.0-102.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 11.76$ (s, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.42(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{dd}, J=8.6,3.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 186.9$ (CO), 167.0 (C), 138.5 (C), 137.0 (C), 136.7 $(\mathrm{C}), 129.3(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 127.7(\mathrm{CH}), 95.8(\mathrm{CH}), 86.4(\mathrm{C}), 73.7(\mathrm{CH})$, $53.7(\mathrm{C}), 39.8\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{2}\right)$. (Two CH peaks overlap with each other); IR (neat) $3287,2935,2860,1588,1570,1474,1445,1324,1256,1166,1146$, 1060, 1005, 847, 759, $628 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $364.15[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}: 364.1463[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1455 .

3.6.20. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(p-tolyl)prop-2-en-1-one (50p)

1-(4-Chlorophenyl)-3-(p-tolyl)prop-2-yn-1-one (26r) (306.1 mg, 1.20 mmol) and 1ethynylcyclohexylamine ($177.7 \mathrm{mg}, 1.44 \mathrm{mmol}$) were employed to afford 286.1 mg (63%) of the indicated product as a light yellow solid ($R_{f}=0.41$ in $4: 1$ hexane/ethyl acetate; mp $\left.109.6-111.6^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.74(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 4 \mathrm{H})$, 1.56-1.42 (m, 3H), 1.35-1.25 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 186.9(\mathrm{CO})$, 167.3 (C), 139.4 (C), 138.7 (C), 136.9 (C), 134.0 (C), 128.6 (CH), 128.5 (CH), 128.47 $(\mathrm{CH}), 128.45(\mathrm{CH}), 95.9(\mathrm{CH}), 86.7(\mathrm{C}), 73.5(\mathrm{CH}), 53.7(\mathrm{C}), 39.7\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right)$, $22.2\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 3299, 2935, 2861, 1582, 1551, 1494, 1476, 1322,

1258, 1170, 1145, 1061, 1005, 826, 778, $631 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $378.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{CINO}$: $378.1619[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1625.

3.6.21. 1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(3-

 fluorophenyl)prop-2-en-1-one (50q)1-(4-Chlorophenyl)-3-(3-fluorophenyl)prop-2-yn-1-one (26s) ($314.3 \mathrm{mg}, 1.22 \mathrm{mmol}$) and 1-ethynylcyclohexylamine ($179.6 \mathrm{mg}, 1.46 \mathrm{mmol}$) were employed to afford 287.7 $\mathrm{mg}(62 \%)$ of the indicated product as an orangish-yellow solid ($R_{f}=0.52$ in $4: 1$ hexane/ethyl acetate; mp 99.0-101.9 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.65(\mathrm{~s}, 1 \mathrm{H})$, 7.82 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.4(\mathrm{CO}), 165.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=1.8 \mathrm{~Hz}, \mathrm{C}\right), 162.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}\right.$ $=246.7 \mathrm{~Hz}, \mathrm{C}), 138.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.9 \mathrm{~Hz}, \mathrm{C}\right), 138.3$ (C), 137.3 (C), 129.6 ($\mathrm{d},{ }^{3} J_{\mathrm{CF}}=8.2$ $\mathrm{Hz}, \mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 124.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.1 \mathrm{~Hz}, \mathrm{CH}\right), 116.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.0\right.$ $\mathrm{Hz}, \mathrm{CH}), 116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.8 \mathrm{~Hz}, \mathrm{CH}\right), 95.8(\mathrm{CH}), 86.3(\mathrm{C}), 74.1(\mathrm{CH}), 53.9(\mathrm{C}), 40.0$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right)$; IR (neat) 3287, 2936, 2856, 1577, 1552, 1470, 1324, 1256, 1232, 1166, 1060, 1006, 886, 777, $628 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $382.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CIFNO}$: $382.1369[\mathrm{M}+\mathrm{H}]^{+}$, found: 382.1363.

3.6.22. 3-((2-Methylbut-3-yn-2-yl)amino)-1,3-diphenylprop-2-en-1-one (61a)

1,3-Diphenylprop-2-yn-1-one (26a) ($300.2 \mathrm{mg}, 1.46 \mathrm{mmol}$) and 2-methylbut-3-yn-2amine ($145.2 \mathrm{mg}, 1.75 \mathrm{mmol}$) were employed to afford $290.3 \mathrm{mg}(69 \%)$ of the indicated product as a pale orange solid ($R_{f}=0.49$ in 4:1 hexane/ethyl acetate; mp $127.2-129.1^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.78(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.0,1.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.56 (dd, $J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H})$, 1.51 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.5$ (CO), 166.4 (C), 139.9 (C), 136.4 (C), 130.9 (CH), $129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 96.2$ (CH), $87.6(\mathrm{C}), 71.3(\mathrm{CH}), 49.3(\mathrm{C}), 32.2\left(\mathrm{CH}_{3}\right)$; IR (neat) 3243, 2986, 1572, 1549,

1476, 1441, 1328, 1282, 1218, 1174, 1053, 1023, 998, 811, 783, $672 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $290.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}: 290.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 290.1539.

3.6.23. 3-((2-Methylbut-3-yn-2-yl)amino)-1-phenyl-3-(m-tolyl)prop-2-en-1-one (61b)

1-Phenyl-3-(m-tolyl)prop-2-yn-1-one (26c) ($308.3 \mathrm{mg}, 1.40 \mathrm{mmol}$) and 2-methylbut3 -yn-2-amine ($139.6 \mathrm{mg}, 1.68 \mathrm{mmol}$) were employed to afford $267.5 \mathrm{mg}(63 \%)$ of the indicated product as a pinkish orange solid ($R_{f}=0.44$ in 4:1 hexane/ethyl acetate; mp 75.2-77.9 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.41(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 2.34(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6(\mathrm{CO}), 166.8(\mathrm{C})$, 140.0 (C), 137.4 (C), 136.4 (C), 130.9 (CH), $130.0(\mathrm{CH}), 129.5(\mathrm{CH}), 128.2$ (CH), $127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 125.8(\mathrm{CH}), 96.1(\mathrm{CH}), 88.0(\mathrm{C}), 71.0(\mathrm{CH}), 49.4(\mathrm{C}), 32.2$ $\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 3221, 2980, 1574, 1549, 1473, 1445, 1330, 1290, 1221, 1174, 1154, 1055, 999, 757, $695 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 304.17 [M+H] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}: 304.1696[\mathrm{M}+\mathrm{H}]^{+}$, found: 304.1700.

3.6.24. 1-(4-Chlorophenyl)-3-((2-methylbut-3-yn-2-yl)amino)-3-phenylprop-2-en-1-one (61c)

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one ($\mathbf{2 6 q}$) $(324.1 \mathrm{mg}, 1.35 \mathrm{mmol})$ and 2-methylbut-3-yn-2-amine ($134.3 \mathrm{mg}, 1.62 \mathrm{mmol}$) were employed to afford 261.6 mg (60%) of the indicated product as a light yellow solid ($R_{f}=0.54$ in 4:1 hexane/ethyl acetate; mp 82.6-84.9 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.77(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (dd, $J=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 187.0$ (CO), 166.8 (C), 138.4 (C), 137.0 (C), 136.3 (C), $129.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH})$, $128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 95.8(\mathrm{CH}), 87.5(\mathrm{C}), 71.5(\mathrm{CH}), 49.5(\mathrm{C}), 32.2\left(\mathrm{CH}_{3}\right)$; IR
(neat) $3291,3208,2980,1583,1567,1474,1443,1326,1295,1216,1090,1056,1010$, 850, 761, $661 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $324.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClNO}: 324.1150[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.1143.

3.7. General Procedure for the Synthesis of N-Propargylic β-enaminones 10 and 52

To a stirred solution of the corresponding β-enaminone $\mathbf{3 2}$ or $\mathbf{5 0}(1.8 \mathrm{mmol})$ in DMF $(0.45 \mathrm{~mL})$ at room temperature under argon was added $(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6$ $\mathrm{mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.036 \mathrm{mmol})$ and $\mathrm{CuI}(0.036 \mathrm{mmol})$ in turn and the reaction mixture was stirred for 10 min . The appropriate aryl iodide (2.8 mmol) was then added and the resulting mixture was stirred at room temperature for approximately $3-5 \mathrm{~h}$ (Note that stirring was continued until β-enaminone 32 or 50 was completely consumed as monitored by routine TLC). After the reaction was over, ethyl acetate (50 mL) was added, and the resulting solution was washed with $0.1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ and subsequently with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) in a separatory funnel. After the layers were separated, organic phase was dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding β-enaminone 10a-d and 52a-h.

3.7.1. 1,3-Diphenyl-3-(3-phenylprop-2-ynylamino)prop-2-en-1-one (10a)

1,3-Diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32a) (470.8 mg, 1.80 $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036 \mathrm{mmol}), \mathrm{CuI}(6.9 \mathrm{mg}$, 0.036 mmol) and iodobenzene ($571.3 \mathrm{mg}, 2.79 \mathrm{mmol}$) were employed to afford $534.5 \mathrm{mg}(88 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.43$ (br s, 1H), 7.96-7.90 (m, 2H), 7.59-7.53 (m, 2H), 7.52-7.47 (m, 3H), 7.47-7.39 $(\mathrm{m}, 5 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.1$ (CO), $166.0(\mathrm{C}), 140.1(\mathrm{C}), 135.1(\mathrm{C}), 131.8(\mathrm{CH})$, $131.0(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.2(\mathrm{CH}), 122.6(\mathrm{C}), 94.6(\mathrm{CH}), 85.2(\mathrm{C}), 84.2(\mathrm{C}), 35.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3056, 3031, 2922, 2853, 1594, 1582, 1559, 1476, 1293, 1224, 1139, 1054, 1023, 747, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $338.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NO}: 338.1545[\mathrm{M}+\mathrm{H}]^{+}$, found: 338.1548 .

3.7.2. 3-(4-Methoxyphenyl)-1-phenyl-3-(3-phenylprop-2-ynylamino)prop-2-en-

 1-one (10b)3-(4-Methoxyphenyl)-1-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one (32b) ($524.5 \mathrm{mg}, 1.80 \mathrm{mmol}$), $(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.8 \mathrm{mg}, 0.036$ $\mathrm{mmol})$, $\mathrm{CuI}(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$ and iodobenzene ($571.3 \mathrm{mg}, 2.79 \mathrm{mmol}$) were employed to afford $555.6 \mathrm{mg}(84 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.49$ (br t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96-7.91 (m, 2H), 7.54-7.49 (m, 2H), 7.48-7.39 (m, 5H), 7.35-7.30 (m, 3H), 7.04-6.99 (m, 2H), 5.88 ($\mathrm{s}, 1 \mathrm{H}$), $4.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.9$ (CO), 166.1 (C), $161.0(\mathrm{C}), 140.3$ (C), $131.9(\mathrm{CH}), 131.0(\mathrm{CH}), 129.6(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 127.5(\mathrm{C}), 127.3(\mathrm{CH}), 122.7(\mathrm{C}), 114.2$ $(\mathrm{CH}), 94.6(\mathrm{CH}), 85.5(\mathrm{C}), 84.2(\mathrm{C}), 55.5\left(\mathrm{CH}_{3}\right), 35.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3057, 3003, 2934, 2838, 1667, 1594, 1582, 1560, 1498, 1295, 1250, 1176, 837, 760, $699 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $368.16[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2}$: $368.1651[\mathrm{M}+\mathrm{H}]^{+}$, found: 368.1644 .
3.7.3. 1-Phenyl-3-(3-phenylprop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1-one (10c)

1-Phenyl-3-(prop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1-one
($481.3 \mathrm{mg}, 1.80 \mathrm{mmol}$), $(i-\mathrm{Pr})_{2} \mathrm{NH}(3.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(25.3 \mathrm{mg}, 0.036$ $\mathrm{mmol})$, $\mathrm{CuI}(6.9 \mathrm{mg}, 0.036 \mathrm{mmol})$ and iodobenzene ($571.3 \mathrm{mg}, 2.79 \mathrm{mmol}$)
were employed to afford $513.1 \mathrm{mg}(83 \%)$ of the indicated product. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 11.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.53-7.38 (m, 6H), 7.37-7.27 (m, 4H), 6.01 ($\mathrm{s}, 1 \mathrm{H}$), 4.26 (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 188.8$ (CO), 160.5 (C), 140.0 (C), 135.5 (C), $131.6(\mathrm{CH}), 130.9(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 127.3(\mathrm{CH})$, $127.0(\mathrm{CH}), 126.6(\mathrm{CH}), 126.2(\mathrm{CH}), 122.4(\mathrm{C}), 94.1(\mathrm{CH}), 85.3(\mathrm{C}), 84.2(\mathrm{C})$, $35.0\left(\mathrm{CH}_{2}\right)$; IR (neat): $3095,3063,2922,1559,1507,1273,1226,1174,1068$, 1022, 754, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $344.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NOS}: 344.1109[\mathrm{M}+\mathrm{H}]^{+}$, found: 344.1107.
3.7.4. 4-Cyclopentyl-1-phenyl-3-((3-phenylprop-2-yn-1-yl)amino)but-2-en-1-one (10d)

4-Cyclopentyl-1-phenyl-3-(prop-2-yn-1-ylamino)but-2-en-1-one (32d) (323.0 mg, $1.21 \mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(2.4 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(16.9 \mathrm{mg}, 0.024 \mathrm{mmol}), \mathrm{CuI}(4.6 \mathrm{mg}$, $0.024 \mathrm{mmol})$ and iodobenzene ($382.0 \mathrm{mg}, 1.87 \mathrm{mmol}$) were employed to afford 415.0 $\mathrm{mg}(77 \%)$ of the indicated product as a brownish orange oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 11.65(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.29$ (m, 3H), 5.80 ($\mathrm{s}, 1 \mathrm{H}$), 4.35 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.48$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.24 (septet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.23(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.4(\mathrm{CO}), 167.5(\mathrm{C}), 140.5(\mathrm{C}), 131.72(\mathrm{CH}), 130.6(\mathrm{CH})$, 128.5 (CH), 128.3 (CH), 128.2 (CH), 127.0 (CH), 122.5 (C), 92.9 (CH), 84.6 (C), 84.1 (C), $38.6\left(\mathrm{CH}_{2}\right), 38.0\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{CH}), 32.8\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right)$; IR (neat): 2948, 2865, 1734, 1594, 1578, 1551, 1238, 1175, 1061, 1025, 753, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 330.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1864.

3.7.5. 1,3-Diphenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52a)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) ($266.0 \mathrm{mg}, 0.81$ $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(1.6 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(11.5 \mathrm{mg}, 0.016 \mathrm{mmol}), \mathrm{CuI}(3.1 \mathrm{mg}, 0.016$ mmol) and iodobenzene ($255.2 \mathrm{mg}, 1.25 \mathrm{mmol}$) were employed to afford 268.4 mg (82%) of the indicated product as a yellow oil ($R_{f}=0.65$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.78(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H})$, $7.35-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{td}, J=$ $9.9,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 188.5$ (CO), 166.9 (C), 140.2 (C), 137.0 (C), 131.6 (CH), 130.9 (CH), 129.1 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), $127.2(\mathrm{CH}), 123.0(\mathrm{C})$, $96.2(\mathrm{CH}), 92.2(\mathrm{C}), 85.8(\mathrm{C}), 54.3(\mathrm{C}), 40.2\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$; IR (neat) 3058, 2931, 2855, 1736, 1584, 1567, 1475, 1443, 1327, 1299, 1258, 1157, 1054, 1024,752, $689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $406.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NO}: 406.2165[\mathrm{M}+\mathrm{H}]^{+}$, found: 406.2175 .
3.7.6. 1,3-Diphenyl-3-((1-(p-tolylethynyl)cyclohexyl)amino)prop-2-en-1-one (52b)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) ($269.2 \mathrm{mg}, 0.82$ $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(1.63 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(11.5 \mathrm{mg}, 0.016 \mathrm{mmol}), \mathrm{CuI}(3.1 \mathrm{mg}, 0.016$ mmol) and 1-iodo-4-methylbenzene ($276.1 \mathrm{mg}, 1.27 \mathrm{mmol}$) were employed to afford $246.8 \mathrm{mg}(72 \%)$ of the indicated product as a yellow oil ($R_{f}=0.61$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.90(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.59$ (m, 2H), 7.46-7.33 (m, 6H), 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.75 ($\mathrm{s}, 1 \mathrm{H}$), $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{td}, J=9.9,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.58(\mathrm{~m}$, $4 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.4$ (CO), 166.9 (C), 140.2 (C), 138.2 (C), 137.1 (C), $131.5(\mathrm{CH}), 130.9(\mathrm{CH}), 129.1(\mathrm{CH})$, $129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.2(\mathrm{CH}), 120.0(\mathrm{C}), 96.1(\mathrm{CH})$,
$91.5(\mathrm{C}), 85.9(\mathrm{C}), 54.3(\mathrm{C}), 40.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 3057, 2931, 2855, 1736, 1584, 1567, 1509, 1475, 1443, 1327, 1298, 1259, 1226, 1157, 1076, 1054, 815, 748, $691 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $420.23[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{NO}: 420.2322[\mathrm{M}+\mathrm{H}]^{+}$, found: 420.2323.

3.7.7. 3-((1-((4-Fluorophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52c)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) ($240.4 \mathrm{mg}, 0.73$ $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(1.46 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10.2 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{CuI}(2.8 \mathrm{mg}, 0.015$ mmol) and 1-fluoro-4-iodobenzene ($251.2 \mathrm{mg}, 1.13 \mathrm{mmol}$) were employed to afford 259.7 mg (84%) of the indicated product as a yellow oil ($R_{f}=0.64$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.76(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45$ (m, 2H), 7.35-7.22 (m, 6H), 7.16-7.10 (m, 2H), 6.92-6.84 (m, 2H), 5.64 (s, 1H), 1.93$1.86(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.21$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.5(\mathrm{CO}), 166.7(\mathrm{C}), 162.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=249.4\right.$ $\mathrm{Hz}, \mathrm{C}), 140.1(\mathrm{C}), 137.0(\mathrm{C}), 133.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.4 \mathrm{~Hz}, \mathrm{CH}\right), 130.9(\mathrm{CH}), 129.1(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 119.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=3.5 \mathrm{~Hz}, \mathrm{C}\right), 115.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CF}}=22.0 \mathrm{~Hz}, \mathrm{CH}\right), 96.2(\mathrm{CH}), 91.8(\mathrm{C}), 84.8(\mathrm{C}), 54.2(\mathrm{C}), 40.2\left(\mathrm{CH}_{2}\right), 25.0$ $\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right)$; IR (neat) 3059, 2931, 2855, 1736, 1584, 1567, 1504, 1475, 1327, 1299, 1260, 1219, 1153, 1054, 1024, 834, 748, $691 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 424.21 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{FNO}: 424.2071[\mathrm{M}+\mathrm{H}]^{+}$, found: 424.2075.

3.7.8. 3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52d)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) ($227.5 \mathrm{mg}, 0.69$ $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(1.38 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9.7 \mathrm{mg}, 0.014 \mathrm{mmol}), \mathrm{CuI}(2.6 \mathrm{mg}, 0.014$ mmol) and 1-bromo-3-iodobenzene ($303.0 \mathrm{mg}, 1.07 \mathrm{mmol}$) were employed to afford $294.0 \mathrm{mg}(88 \%)$ of the indicated product as a yellow solid $\left(R_{f}=0.57\right.$ in $4: 1$
hexane/ethyl acetate; mp 98.2-99.7 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.87(\mathrm{~s}, 1 \mathrm{H})$, 7.94-7.89 (m, 2H), 7.60-7.55 (m, 2H), 7.44-7.34 (m, 8H), 7.20-7.12 (m, 2H), 5.76 ($\mathrm{s}, 1 \mathrm{H}$), 2.04-1.98 (m, 2H), 1.87-1.78 (m, 2H), 1.75-1.67 (m, 2H), 1.65-1.50 (m, 3H), $1.40-1.31(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6$ (CO), 166.6 (C), $140.1(\mathrm{C})$, 137.0 (C), 134.4 (CH), 131.3 (CH), 130.9 (CH), $130.1(\mathrm{CH}), 129.7(\mathrm{CH}), 129.2(\mathrm{CH})$, 128.6 (CH), 128.3 (CH), 127.8 (CH), 127.2 (CH), 124.9 (C), 122.0 (C), $96.4(\mathrm{CH})$, 93.5 (C), $84.5(\mathrm{C}), 54.2(\mathrm{C}), 40.3\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$; IR (neat) 3068, 2936, 2854, 1738, 1585, 1551, 1471, 1404, 1259, 1229, 1150, 1056, 1025, 812, 792, 749, $680 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $484.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{BrNO}$: $484.1271[\mathrm{M}+\mathrm{H}]^{+}$, found: 484.1282 .

3.7.9. 3-((1-((4-Nitrophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52e)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) (308.9 mg, 0.94 $\mathrm{mmol}),(i-\mathrm{Pr})_{2} \mathrm{NH}(1.88 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(13.2 \mathrm{mg}, 0.019 \mathrm{mmol}), \mathrm{CuI}(3.6 \mathrm{mg}, 0.019$ mmol) and 1-iodo-4-nitrobenzene ($362.0 \mathrm{mg}, 1.45 \mathrm{mmol}$) were employed to afford $316.9 \mathrm{mg}(75 \%)$ of the indicated product as an orange solid ($R_{f}=0.62$ in $4: 1$ hexane/ethyl acetate; mp 129.1-131.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.82$ (s, 1 H), 8.15 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.92-7.87 (m, 2H), 7.58-7.52 (m, 2H), 7.46-7.30 (m, $8 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.48(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.9(\mathrm{CO}), 166.5$ (C), 147.1 (C), 140.0 (C), 137.0 (C), 132.4 (CH), 131.1 (CH), 129.9 (C), 129.4 (CH), $128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 123.6(\mathrm{CH}), 97.7(\mathrm{C}), 96.7(\mathrm{CH})$, $84.4(\mathrm{C}), 54.3(\mathrm{C}), 40.2\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$; IR (neat) 3077, 2932, 2857, 1737, 1578, 1555, 1521, 1475, 1442, 1346, 1325, 1295, 1257, 1161, 1145, 1054, 1023, 854, 749, $689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $451.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: $451.2016[\mathrm{M}+\mathrm{H}]^{+}$, found: 451.2029.

3.7.10. 3-(4-Chlorophenyl)-1-phenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52f)

3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50f) ($377.5 \mathrm{mg}, 1.04 \mathrm{mmol}$), ($i-\mathrm{Pr})_{2} \mathrm{NH}(2.07 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.6 \mathrm{mg}, 0.021 \mathrm{mmol})$, $\mathrm{CuI}(3.9 \mathrm{mg}, 0.021 \mathrm{mmol})$ and iodobenzene ($327.9 \mathrm{mg}, 1.61 \mathrm{mmol}$) were employed to afford $369.6 \mathrm{mg}(81 \%)$ of the indicated product as a yellow oil $\left(R_{f}=0.64\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.84(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.91$ (m, $2 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H})$, $5.74(\mathrm{~s}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.51(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.29(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.6$ (CO), 165.3 (C), 139.9 (C), 135.4 (C), $135.2(\mathrm{C}), 131.5(\mathrm{CH}), 131.0(\mathrm{CH}), 130.0(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.1(\mathrm{CH})$, 122.7 (C), $96.2(\mathrm{CH}), 91.8(\mathrm{C}), 86.4(\mathrm{C}), 54.3(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$ ($2 \times$ Two CH peaks overlap with each other); IR (neat) 3058 , 2931, 2855, 1736, 1578, $1560,1473,1443,1326,1298,1259,1226,1157,1090,1053,1023,833,752,689 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $440.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{ClNO}: 440.1776$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 440.1785.

3.7.11. 3-(4-Chlorophenyl)-1-phenyl-3-((1-(p-tolylethynyl)cyclohexyl)amino)prop-2-en-1-one (52g)

3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50f) ($331.3 \mathrm{mg}, 0.91 \mathrm{mmol}$), ($i-\mathrm{Pr})_{2} \mathrm{NH}(1.82 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(12.8 \mathrm{mg}, 0.018 \mathrm{mmol})$, $\mathrm{CuI}(3.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ and1-iodo-4-methylbenzene ($307.9 \mathrm{mg}, 1.41 \mathrm{mmol}$) were employed to afford $289.2 \mathrm{mg}(70 \%)$ of the indicated product as a yellow oil $\left(R_{f}=0.59\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.81(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.86$ $(\mathrm{m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}$, $4 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}$, $4 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.6$ (CO), 165.4 (C), 140.0 (C), 138.4 (C), 135.5 (C), 135.2 (C), 131.5 (CH), 131.0 (CH),
$130.1(\mathrm{CH}), 129.1(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.2(\mathrm{CH}), 119.8(\mathrm{C}), 96.1(\mathrm{CH})$, $91.2(\mathrm{C}), 86.5(\mathrm{C}), 54.4(\mathrm{C}), 40.5\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 3056, 2931, 2856, 1737, 1578, 1560, 1473, 1326, 1298, 1259, 1226, 1157, 1090, 1053, 1015, 814, 753, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $454.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{ClNO}: 454.1932[\mathrm{M}+\mathrm{H}]^{+}$, found: 454.1934.

3.7.12. 3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (52h)

3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50f) ($346.4 \mathrm{mg}, 0.95 \mathrm{mmol}$), ($i-\mathrm{Pr})_{2} \mathrm{NH}(1.90 \mathrm{~mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(13.4 \mathrm{mg}, 0.019 \mathrm{mmol})$, $\mathrm{CuI}(3.6 \mathrm{mg}, 0.019 \mathrm{mmol})$ and 1-bromo-3-iodobenzene ($417.4 \mathrm{mg}, 1.48 \mathrm{mmol}$) were employed to afford 439.6 mg (89%) of the indicated product as a yellow oil $\left(R_{f}=0.65\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.77(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.86$ (m, 2H), 7.49 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.36 (m, 5H), 7.32 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18$7.12(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.49 (m, 3H), 1.39-1.28 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 188.7(\mathrm{CO})$, 165.1 (C), 139.9 (C), 135.4 (C), 135.3 (C), 134.3 (CH), 131.5 (CH), 131.1 (CH), 130.1 $(\mathrm{CH}), 130.0(\mathrm{CH}), 129.7(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.2(\mathrm{CH}), 124.7(\mathrm{C}), 122.1$ (C), $96.4(\mathrm{CH}), 93.1(\mathrm{C}), 85.0(\mathrm{C}), 54.32(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$; IR (neat) $3060,2931,2855,1736,1578,1556,1471,1325,1299,1257,1226,1158,1090$, 1053, 1023, 833, 781, $680 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $518.09[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrClNO}: 518.0881[\mathrm{M}+\mathrm{H}]^{+}$, found: 518.0890.

3.8. General Procedure for the Synthesis of Iodopyridines 44

To a stirred solution of the corresponding N-propargylic β-enaminone $\mathbf{1 0}(0.25 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ were added iodine $(0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.75 \mathrm{mmol})$. The resulting mixture was then refluxed at $82^{\circ} \mathrm{C}$ under air for approximately $8-10 \mathrm{~h}$ (Note that stirring was continued until β-enaminone $\mathbf{1 0}$ was completely consumed as
monitored by routine TLC). After the reaction was over, the solventwas removed on a rotary evaporator, and ethylacetate (30 mL) and a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$ were added (Note that the treatment of the reaction mixture with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution removes the unreacted/excess I_{2}). After the layers were separated, the aqueous layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatographyon silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding iodopyridine 44a-d.

3.8.1. (5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a)

1,3-Diphenyl-3-(3-phenylprop-2-ynylamino)prop-2-en-1-one (10a) (84.4 mg, 0.25 mmol), $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford $92.3 \mathrm{mg}(80 \%)$ of the indicated product as an off-white solid; mp 166.9-167.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.27(\mathrm{tt}, J=7.4$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-6.92(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.8$ (CO), 157.5 (CH), 156.0 (C), 152.6 (C), 139.4 (C), 138.5 (C), 137.2 (C), 135.4(C), $133.5(\mathrm{CH}), 129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH}), 128.0(\mathrm{CH}), 98.6(\mathrm{C}) ;$ IR (neat): 3066,1667, 1503, 1443, 1421, 1311, 1279, 1225, 945, 762, 698, 683, 653, $570 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $462.03[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI): calcd. for $\mathrm{C}_{24} \mathrm{H}_{17}$ INO: $462.0349[\mathrm{M}+\mathrm{H}]^{+}$, found: 462.0345 .

3.8.2. (5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b)

3-(4-Methoxyphenyl)-1-phenyl-3-(3-phenylprop-2-ynylamino)prop-2-en-1-one (10b) $(91.9 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75$ mmol) were employed to afford $76.2 \mathrm{mg}(62 \%)$ of the indicated product as a yellow
solid; mp 175.2-176.4 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}$, $4 \mathrm{H}), 7.27(\mathrm{tt}, J=7.4$ and $1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.74(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 6.70-6.64(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0(\mathrm{CO}), 160.3$ (C), $157.4(\mathrm{CH}), 155.5(\mathrm{C}), 152.5(\mathrm{C}), 139.5(\mathrm{C}), 137.2(\mathrm{C}), 134.9(\mathrm{C}), 133.5(\mathrm{CH})$, $131.0(\mathrm{C}), 130.6(\mathrm{CH}), 129.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1(\mathrm{CH})$, $114.0(\mathrm{CH}), 98.0(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2963, 2839, 1658, 1535, 1471, 1411, 1327, 1228, 1160, 1012, 837, 777, 633, 614, $582 \mathrm{~cm}^{-1}$; MS(ESI, m/z): $492.05[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{INO}_{2}: 492.0460[\mathrm{M}+\mathrm{H}]^{+}$, found: 492.0454.

3.8.3. (5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (44c)

1-Phenyl-3-(3-phenylprop-2-ynylamino)-3-(thiophen-3-yl)prop-2-en-1-one ($85.9 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{I}_{2}(190.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(63.0 \mathrm{mg}, 0.75 \mathrm{mmol})$ were employed to afford 87.3 mg (75%) of the indicated product as a light yellow solid; mp 154.8-155.7 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}$, $3 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19$ (dd, $J=5.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (br $\mathrm{s}, 1 \mathrm{H}), 6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.2(\mathrm{CO}), 157.4(\mathrm{CH}), 152.3$ (C), 150.5 (C), 139.5 (C), 139.2 (C), 137.0 (C), 134.5 (C), 133.7 (CH), 129.3 (CH), $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 126.9(\mathrm{CH}), 126.0$ (CH), 98.0 (C); IR (neat): 2963, 1652, 1590, 1540, 1514, 1493,1431, 1310, 1285, 1229, 940, 782, 759, 695, $666 \mathrm{~cm}^{-1}$; MS (ESI, m/z):467.99 [M+H] ${ }^{+}$; HRMS (ESI): calcd. for $\mathrm{C}_{22} \mathrm{H}_{15}$ INOS: $467.9919[\mathrm{M}+\mathrm{H}]^{+}$, found: 467.9913.

3.8.4. (2-(Cyclopentylmethyl)-5-iodo-4-phenylpyridin-3-yl)(phenyl)methanone (44d)

4-Cyclopentyl-1-phenyl-3-((3-phenylprop-2-yn-1-yl)amino)but-2-en-1-one ($345.0 \mathrm{mg}, 1.05 \mathrm{mmol}$), $\mathrm{I}_{2}(799.1 \mathrm{mg}, 3.10 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(264.3 \mathrm{mg}, 3.10 \mathrm{mmol})$ were employed to afford 323.9 mg (66%) of the indicated product as an orange oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H})$,
$7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-6.81(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.37 (septet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.13$ (br s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1$ (CO), $158.0(\mathrm{CH}), 157.0(\mathrm{CH}), 150.9$ (C), 139.1 (CH), 137.0 (C), 135.7 (C), 133.7 (CH), 129.3 (CH), 128.5 (CH), 128.5 (CH), $128.0(\mathrm{C}), 127.9(\mathrm{C}), 96.4(\mathrm{C}), 41.3\left(\mathrm{CH}_{2}\right), 39.9(\mathrm{CH}), 32.4\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{2}\right)$; IR (neat): 2945, 2862, 1735, 1668, 1595, 1520, 1425, 1372, 1227, 1175, 880, 757, 696, 665, $546 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $468.09[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{23}$ INO: $468.0819[\mathrm{M}+\mathrm{H}]^{+}$, found: 468.0862.

3.9. General Procedure for the Synthesis of 5-Aryl-substituted Pyridines 46

To a stirred solution of 5-iodopyridines $44(0.25 \mathrm{mmol})$ and boronic acid $45(0.35$ mmol) in DMF/ $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{ml}: 1 \mathrm{ml})$ under argon was added $\mathrm{KHCO}_{3}(0.35 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.0125 \mathrm{mmol})$ and resulting solution was allowed to stir under reflux at $110{ }^{\circ} \mathrm{C}$ for approximately 8 h . The reaction was monitored by TLC to establish completion. When the reaction was over, the mixture was quenched by adding saturated aqueous NaCl solution (30 mL) and extracted twice with ethyl acetate (2×30 $\mathrm{mL})$. The combined ethyl acetate fractions were dried over MgSO_{4} and removed under reduced pressure. The residue was purified by flash column chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding 5-arylpyridines 46a-r.

3.9.1. Phenyl(2,4,5-triphenylpyridin-3-yl)methanone(46a)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) (140.7 mg, 0.31 mmol), phenylboronic acid ($52.1 \mathrm{mg}, 0.43 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(42.7 \mathrm{mg}, 0.43 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ were employed to afford $117.5 \mathrm{mg}(94 \%)$ of the indicated product as an off-white solid ($R_{f}=0.24$ in 9:1 hexane/ethyl acetate; mp 169$170{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.04(\mathrm{~m}, 13 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.2(\mathrm{CO}), 155.6(\mathrm{C}), 150.8(\mathrm{CH}), 147.1(\mathrm{C}), 139.4(\mathrm{C})$, 137.8 (C), 137.1 (C), 136.0 (C), 135.3 (C), 134.5 (C), 133.2 (CH), 130.1 (CH), 129.4 (CH), 129.3 (CH), 128.7 (CH), $128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.26(\mathrm{CH}), 127.9(\mathrm{CH})$, $127.8(\mathrm{CH}), 127.5(\mathrm{CH})$ (Two C peaks overlap with each other); IR (neat) 3049, 1672, $1595,1529,1433,1371,1317,1217,1172,1024,948,753,722,695,578,516 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $412.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{NO}: 412.1696$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 412.1707.

3.9.2. (5-(4-Ethylphenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46b)

5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($83.0 \mathrm{mg}, 0.18 \mathrm{mmol}$), 4ethylphenylboronic acid ($37.7 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(25.2 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $77.0 \mathrm{mg}(98 \%)$ of the indicated product as a yellowish white solid ($R_{f}=0.26$ in 9:1 hexane/ethyl acetate; mp $164-165{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.57$ $(\mathrm{m}, 8 \mathrm{H}), 2.51(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.3(\mathrm{CO}), 155.3$ (C), 150.9 (CH), 147.0 (C), 143.6 (CH), 139.5 (C), 137.8 (C), 136.2 (C), 135.2 (C), 134.5 (C), 134.2 (C), 133.1 (CH), 130.0 (CH), 129.4 (CH), 129.3 (CH), 128.6 (C), 128.3 (CH), 128.25 (CH), 127.8 (CH), 127.77 (CH), 127.7 (CH), $28.5\left(\mathrm{CH}_{2}\right), 15.4\left(\mathrm{CH}_{3}\right)$ (Two C peaks overlap with each other); IR (neat) 3050, 1670, 1557, 1524, 1435, 1315, 1285, 1215, 1019, 949, 833, 807, 752, 688, 544, 520 cm^{-1}; MS (ESI, m/z): $440.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}: 440.2009$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 440.2007.

3.9.3. (5-(4-Chlorophenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46c)

5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($78.4 \mathrm{mg}, 0.17 \mathrm{mmol}$), 4chlorophenylboronic acid ($37.9 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(24.2 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $67.0 \mathrm{mg}(87 \%)$ of the
indicated product as a yellowish white solid ($R_{f}=0.3$ in 9:1 hexane/ethyl acetate; mp $\left.224-225{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.14-6.54(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0(\mathrm{CO}), 155.9(\mathrm{C}), 150.6(\mathrm{CH}), 147.1(\mathrm{C}), 139.3(\mathrm{C}), 137.7$ (CH), 135.7 (C), 135.6 (C), 134.6 (C), 134.1 (C), 133.9 (C), 133.3 (CH), 131.3 (CH), 129.4 (CH), 129.3 (CH), 128.8 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 128.1 (C), 128.0 (CH) (Two C peaks overlap with each other); IR (neat) 3051, 1671, 1578, 1557, 1440, 1322, 1217, 1093, 1011, 947, 832, 807, 762, 697, 585, $527 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $446.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{ClNO}: 446.1306[\mathrm{M}+\mathrm{H}]^{+}$, found: 446.1318 .

3.9.4. (5-(4-Ethoxy-3-fluorophenyl)-2,4-diphenylpyridin-3yl)(phenyl)methanone (46d)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($73.8 \mathrm{mg}, 0.16 \mathrm{mmol}$), 4-ethoxy-3-fluorophenylboronic acid ($40.7 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(22.1 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $53.0 \mathrm{mg}(72 \%)$ of the indicated product as a brown solid ($R_{f}=0.16$ in 9:1 hexane/ethyl acetate; mp $117-119{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ 7.39 (m, 2H), 7.25 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$, $6.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.50(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}){ }^{13}{ }^{2} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1(\mathrm{CO}), 155.5(\mathrm{CH}), 152.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=\right.$ $246.6 \mathrm{~Hz}, \mathrm{C}), 150.6(\mathrm{CH}), 147.0(\mathrm{CH}), 146.5\left(\mathrm{~d},{ }^{2} J_{C F}=10.8 \mathrm{~Hz}, \mathrm{C}\right), 139.2$ (C), 137.7 (CH), 135.8 (CH), 134.6 (C), 133.9 (C), 133.2 (CH), 129.7 (d, $\left.{ }^{3} J_{C F}=6.9 \mathrm{~Hz}, \mathrm{C}\right), 129.4$ (CH), 129.3 (CH), 128.8 (C), 128.4 (CH), 128.3 (CH), $128.0(\mathrm{C}), 127.8(\mathrm{CH}), 125.9$ (d, $\left.{ }^{4} J_{C F}=3.4 \mathrm{~Hz}, \mathrm{CH}\right), 117.8\left(\mathrm{~d},{ }^{2} J_{C F}=19.5 \mathrm{~Hz}, \mathrm{CH}\right), 114.3(\mathrm{CH}), 114.2(\mathrm{C}), 64.9$ $\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right)$; IR (neat) 2980, 1736, 1666, 1595, 1513, 1440, 1390, 1298, 1243, 1139, 1042, 976, 922, 754, 692, 606, $523 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $474.19[\mathrm{M}+\mathrm{H}]^{+} ; H R M S$ (ESI) calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{FNO}_{2}$: $474.1864[\mathrm{M}+\mathrm{H}]^{+}$, found: 474.1874.

3.9.5. (6'-Methoxy-4,6-diphenyl-[3,3'-bipyridin]-5-yl)(phenyl)methanone (46e)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) (73.8 mg, 0.16 mmol), 6-methoxy-3-pyridinylboronic acid ($33.7 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(22.1 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $52.0 \mathrm{mg}(75 \%)$ of the indicated product as a yellowish brown solid ($R_{f}=0.1$ in 9:1 hexane/ethyl acetate; mp 152-154 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.14-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0(\mathrm{CO}), 163.5(\mathrm{CH}), 155.9(\mathrm{C}), 150.4(\mathrm{CH}), 147.4$ (C), $147.2(\mathrm{CH}), 140.0(\mathrm{CH}), 139.2(\mathrm{C}), 139.1(\mathrm{C}), 137.6(\mathrm{C}), 135.6(\mathrm{CH}), 134.7(\mathrm{C})$, $133.3(\mathrm{CH}), 131.8(\mathrm{C}), 129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{C}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH})$, $128.1(\mathrm{CH}), 127.9(\mathrm{C}), 126.0(\mathrm{CH}), 110.4(\mathrm{CH}), 53.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2979, 1666, $1602,1580,1490,1439,1382,1356,1249,1213,1160,1024,947,816,751,691,582$, $524 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $443.18[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: $443.1754[\mathrm{M}+\mathrm{H}]^{+}$, found: 443.1769.

3.9.6. (5-(3-Nitrophenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46f)

5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($92.2 \mathrm{mg}, 0.20 \mathrm{mmol}$), 3nitrophenylboronic acid ($46.1 \mathrm{mg}, 0.28 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(27.6 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $72.0 \mathrm{mg}(80 \%)$ of the indicated product as a white solid ($R_{f}=0.13$ in 9:1 hexane/ethyl acetate; mp 168-169 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.03-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}$, 2 H), 7.45-7.40 (m, 2H), 7.37 (dt, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.42$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7(\mathrm{CO}), 156.7(\mathrm{C}), 150.3(\mathrm{CH}), 148.2(\mathrm{C})$, 147.4 (C), 139.0 (C) , 138.9 (CH), 137.49 (C), 135.92 (CH), 135.07 (C), $134.70(\mathrm{CH})$, $133.40(\mathrm{CH}), 132.93(\mathrm{C}), 129.35(\mathrm{CH}), 129.30(\mathrm{CH}), 129.25(\mathrm{CH}), 129.01(\mathrm{CH})$, $128.43(\mathrm{CH}), 128.37(\mathrm{CH}), 128.34(\mathrm{CH}), 128.21(\mathrm{C}), 128.20(\mathrm{C}), 124.80(\mathrm{CH}), 122.51$
(CH); IR (neat) 3059, 1672, 1557, 1535, 1447, 1346, 1321, 1216, 1176, 968, 881, 758, 737, 694, 582, $518 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $457.16[\mathrm{M}+\mathrm{H}]^{+} ; H R M S ~(E S I) ~ c a l c d . ~ f o r ~$ $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}$: $457.1547[\mathrm{M}+\mathrm{H}]^{+}$, found: 457.1560.

3.9.7. (5-(Furan-2-yl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone (46g)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($96.9 \mathrm{mg}, 0.21 \mathrm{mmol}$), 2furanylboronic acid ($32.8 \mathrm{mg}, 0.29 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(29.3 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $70.0 \mathrm{mg}(83 \%)$ of the indicated product as an orange solid ($R_{f}=0.31$ in 9:1 hexane/ethyl acetate; mp 175$176{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47$ (m, 2H), 7.46-7.44 (m, 1H), 7.36 (tt, $J=7.4,1.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-6.75(\mathrm{~m}, 9 \mathrm{H})$, $6.24(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=3.5,0.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.8(\mathrm{CO}), 154.3$ (C), 149.5 (C), $147.8(\mathrm{CH}), 144.5(\mathrm{C}), 142.7(\mathrm{CH}), 139.2$ (CH), 137.7 (C), $136.1(\mathrm{CH}), 134.5(\mathrm{C}), 133.3(\mathrm{CH}), 129.3(\mathrm{CH}), 129.27(\mathrm{CH}), 128.8$ (CH), 128.6 (C), 128.5 (C), 128.4 (CH), 128.3 (CH), 128.28 (CH), 124.4 (C), 111.8 (CH), 111.4 (CH); IR (neat) 2914, 1668, 1558, 1540, 1436, 1385, 1315, 1229, 1161, 1027, 960, 900, 768, 743, 698, 585, $523 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $402.15[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NO}_{2}: 402.1489[\mathrm{M}+\mathrm{H}]^{+}$, found: 402.1497.

3.9.8. (2,4-Diphenyl-5-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (46h)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($92.2 \mathrm{mg}, 0.20 \mathrm{mmol}$), 3thienylboronic acid ($36.4 \mathrm{mg}, 0.28 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(27.6 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $74.0 \mathrm{mg}(87 \%)$ of the indicated product as an off-white solid ($R_{f}=0.26$ in 9:1 hexane/ethyl acetate; mp 191$192{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-6.83(\mathrm{~m}, 12 \mathrm{H}), 6.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1$ (CO), 155.3 (C), 150.4 (CH), 146.7 (C), 139.4 (C), 137.8 (C), 137.3 (C), 136.2 (CH), 134.6 (C), 133.2 (CH), $133.2(\mathrm{CH}), 130.2(\mathrm{C})$,
$129.4(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.1$ (CH), 128.06 (C), $125.5(\mathrm{CH}), 124.6(\mathrm{CH})$ (Two C peaks overlap with each other); IR (neat) 2980, 1736, 1666, 1595, 1529, 1440, 1390, 1372, 1243, 1139, 1042, 976, 922, 754, 692, 637, $523 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $418.13[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NOS}: 418.1260[\mathrm{M}+\mathrm{H}]^{+}$, found: 418.1264.

3.9.9. (5-(Ferrocenyl)-2,4-diphenylpyridin-3-yl)(phenyl)methanone(46i)

(5-Iodo-2,4-diphenylpyridin-3-yl)(phenyl)methanone (44a) ($96.9 \mathrm{mg}, 0.21 \mathrm{mmol}$), ferrocene boronic acid ($66.9 \mathrm{mg}, 0.291 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(29.3 \mathrm{mg}, 0.29 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $71.0 \mathrm{mg}(88 \%)$ of the indicated product as an orange solid ($R_{f}=0.36$ in 9:1 hexane/ethyl acetate; mp 146$148{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.41$ (m, 2H), 7.38-7.08 (m, 9H), 6.95 (br s, 1H), 6.67 (br s, 1H), 4.35 (br s, 1H), 4.29-3.95 (m, 7H), 3.73 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.4$ (CO), 153.0 (C), 151.8 (CH), 145.9 (C), 139.5 (C), 137.8 (CH), 136.5 (C), 134.0 (C), 133.1 (CH), 132.8 (C), $129.4(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{C}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{C})$, $127.9(\mathrm{CH}), 81.2(\mathrm{CH}), 69.9(\mathrm{CH}), 68.9(\mathrm{CH})$ (Two C peaks overlap with each other); IR (neat) 2925, 1669, 1615, 1593, 1557, 1443, 1427, 1363, 1250, 1046, 988, 894, 857, 758, 698, 572, $524 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $520.14[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{NOFe}$: $520.1359[\mathrm{M}+\mathrm{H}]^{+}$, found: 520.1370.

3.9.10. (2-(4-Methoxyphenyl)-4,5-diphenylpyridin-3-yl)(phenyl)methanone (46j)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (172.0 $\mathrm{mg}, 0.35 \mathrm{mmol}$), phenylboronic acid ($59.7 \mathrm{mg}, 0.49 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(49.0 \mathrm{mg}, 0.49$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ were employed to afford 130.0 mg (85%) of the indicated product as a beige solid ($R_{f}=0.24$ in $9: 1$ hexane/ethyl acetate; $\left.\mathrm{mp} 178-179{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.28-$ $7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-6.99(\mathrm{~m}, 9 \mathrm{H}), 6.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.38(\mathrm{~m}, 3 \mathrm{H}), 3.64$
(s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5$ (CO), 160.0 (C), 155.1 (CH), 150.7 (CH), 147.0 (C), 137.8 (C), 137.1 (C), 136.0 (C), 134.7 (CH), 134.1 (C), 133.2 (CH), $131.9(\mathrm{C}), 130.7(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{C})$, $127.8(\mathrm{C}), 127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 113.8(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat) 2927, 1668, 1606, 1513, 1432, 1316, 1253, 1214, 1176, 1030, 947, 837, 760, 698, 578, $518 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $442.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NO}_{2}: 442.1802$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 442.1817.

3.9.11. (5-(4-Ethylphenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3yl)(phenyl)methanone (46k)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (157.2 $\mathrm{mg}, 0.32 \mathrm{mmol}$), 4-ethylphenylboronic acid ($66.1 \mathrm{mg}, 0.44 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(44 \mathrm{mg}$, $0.44 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}, 0.02 \mathrm{mmol})$ were employed to afford 121.0 mg (82%) of the indicated product as a pale yellow solid ($R_{f}=0.32$ in $9: 1$ hexane/ethyl acetate; mp 179-180 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.52(\mathrm{~m}$, $4 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.11-6.90(\mathrm{~m}, 7 \mathrm{H}), 6.86-6.53(\mathrm{~m}$, $3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.5$ (CO), $160.0(\mathrm{C}), 154.8(\mathrm{C}), 150.8(\mathrm{CH}), 147.0(\mathrm{C}), 143.5(\mathrm{CH})$, 137.8 (C), $136.2(\mathrm{CH}), 134.7(\mathrm{CH}), 134.3(\mathrm{C}), 134.1(\mathrm{C}), 133.1(\mathrm{CH}), 132.0(\mathrm{C}), 130.7$ $(\mathrm{CH}), 129.9(\mathrm{CH}), 129.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{C}), 127.8(\mathrm{C}), 127.7(\mathrm{CH}), 127.6$ (C), $113.8(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 15.3\left(\mathrm{CH}_{3}\right)$; IR (neat) 2961, 1662, 1606, $1576,1511,1437,1308,1248,1215,1174,1045,948,832,763,698,682,536 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $470.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{2}: 470.2115$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 470.2132.

3.9.12. (5-(4-Chlorophenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3yl)(phenyl)methanone (46l)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (117.9 $\mathrm{mg}, 0.242 \mathrm{mmol}$), 4-chlorophenylboronic acid ($53.2 \mathrm{mg}, 0.34 \mathrm{mmol}$), KHCO_{3} (34.0 $\mathrm{mg}, 0.34 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.012 \mathrm{mmol})$ were employed to afford 74.0 $\mathrm{mg}(65 \%)$ of the indicated product as a dark beige solid ($R_{f}=0.41$ in $9: 1$ hexane/ethyl acetate; mp 213-214 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.06$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.79$ (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3$ (CO), 160.2 (CH) , 155.4 (C), $150.5(\mathrm{CH}), 147.1$ (C), 137.7 (C), 135.8 (CH), 135.7 (C), 134.2 (C), 133.7 (C), 133.6 (C), 133.3 (CH), 131.8 (C), 131.3 (CH), 130.8 (CH), 130.1 (C), 129.4 (CH), 128.6 (CH), 128.4 (CH), 128.0 (C), 127.9 (CH), 113.9 (CH), $55.3\left(\mathrm{CH}_{3}\right)$; IR (neat) $2928,1670,1605,1514,1436,1371,1250,1213,1175,1094$, 1029, 947, 828, 763, 698, 576, $523 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $476.15[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{ClNO}_{2}$: $476.1412[\mathrm{M}+\mathrm{H}]^{+}$, found: 476.1420.

3.9.13. (5-(4-Ethoxy-3-fluorophenyl)-2-(4-methoxyphenyl)-4-phenylpyridin-3yl)(phenyl)methanone (46m)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (108.1 $\mathrm{mg}, 0.22 \mathrm{mmol}$), 4-ethoxy-3-fluorophenylboronic acid ($57.0 \mathrm{mg}, 0.31 \mathrm{mmol}$), KHCO_{3} ($31.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $108.0 \mathrm{mg}(98 \%)$ of the indicated product as a pale yellow solid $\left(R_{f}=0.46\right.$ in $9: 1$ hexane/ethyl acetate; mp $175-176{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H})$, 7.61-7.48 (m, 4H), 7.42-7.29 (m, 1H), 7.26-7.15 (m, 3H), 7.13-6.96 (m, 2H), 6.95$6.54(\mathrm{~m}, 7 \mathrm{H}), 4.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3(\mathrm{CO}), 160.0(\mathrm{CH}), 155.0(\mathrm{CH}), 153.3(\mathrm{C}), 152.1\left(\mathrm{~d},{ }^{1} J_{C F}=\right.$ $245.9 \mathrm{~Hz}, \mathrm{C}), 150.5(\mathrm{CH}), 146.9(\mathrm{CH}), 146.4$ (d, $\left.{ }^{2} J_{C F}=10.0 \mathrm{~Hz}, \mathrm{C}\right), 137.7$ (C) , 135.8 (C), 134.1 (C), 133.3 (C), $133.2(\mathrm{CH}), 131.8(\mathrm{C}), 130.7(\mathrm{CH}), 129.8\left(\mathrm{~d},{ }^{3} J_{C F}=6.6 \mathrm{~Hz}\right.$,
C), $129.3(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{C}), 127.85(\mathrm{CH}), 125.9\left(\mathrm{~d},{ }^{4} J_{C F}=3.4 \mathrm{~Hz}, \mathrm{CH}\right)$, $117.7\left(\mathrm{~d},{ }^{2} J_{C F}=19.5 \mathrm{~Hz}, \mathrm{CH}\right), 114.2(\mathrm{C}), 113.8(\mathrm{CH}), 64.8\left(\mathrm{CH}_{2}\right), 55.2\left(\mathrm{CH}_{3}\right), 14.8$ $\left(\mathrm{CH}_{3}\right)$;IR (neat) 2933, 1666, 1528, 1518, 1426, 1395, 1267, 1219, 1179, 1029, 970, 884, 809, 765, 687, $543 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $504.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{FNO}_{3}: 504.1970[\mathrm{M}+\mathrm{H}]^{+}$, found: 504.1974.

3.9.14. (5-(Furan-2-yl)-2-(4-methoxyphenyl)-4-phenylpyridin-3yl)(phenyl)methanone (46n)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (122.8 $\mathrm{mg}, 0.25 \mathrm{mmol}$), 2-furanylboronic acid ($39.2 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(35.0 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $80.0 \mathrm{mg}(75 \%)$ of the indicated product as a brownish red solid ($R_{f}=0.39$ in 9:1 hexane/ethyl acetate; $\mathrm{mp} 150-151^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.16$ $(\mathrm{m}, 4 \mathrm{H}), 7.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.22(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0(\mathrm{CO}), 160.1$ (CH), 153.7 (C), 149.5 (C), 147.6 (CH), 144.6 (C), 142.6 (CH), 137.7 (C), $136.1(\mathrm{CH})$, 134.1 (C), 133.3 (CH), 131.6 (C), $130.7(\mathrm{CH}), 129.3(\mathrm{CH}), 128.5(\mathrm{C}), 128.48(\mathrm{C})$, $128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 124.0(\mathrm{C}), 113.9(\mathrm{CH}), 111.7(\mathrm{CH}), 111.2(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat) 2918, 1662, 1607, 1579, 1513, 1489, 1437, 1306, 1249, 1226, 1174, 1026, 956, 898, 839, 747, 698, 688, $574 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $432.16[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}_{3}: 432.1594[\mathrm{M}+\mathrm{H}]^{+}$, found: 432.1596 .

3.9.15. (2-(4-Methoxyphenyl)-4-phenyl-5-(thiophen-3-yl)pyridin-3yl)(phenyl)methanone (460)

(5-Iodo-2-(4-methoxyphenyl)-4-phenylpyridin-3-yl)(phenyl)methanone (44b) (147.4 $\mathrm{mg}, 0.30 \mathrm{mmol}$), 3-thienylboronic acid ($53.7 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(42.0 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ were employed to afford 99.0 mg
(84%) of the indicated product as a beige solid ($R_{f}=0.35$ in $9: 1$ hexane/ethyl acetate; $\left.\mathrm{mp} 197-198{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{dd}, J=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.00-6.87 (m, 1H), 6.85-6.74 (m, 3H), 6.71 (dd, $J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3$ (CO), 160.1 (C), 154.7 (C), $150.2(\mathrm{CH}), 146.8$ (C), 137.8 (C), 137.3 (CH), 136.2 (CH), 134.2 (C), 133.2 (CH), 131.8 (C), 130.7 (CH), 129.7 (C), $129.4(\mathrm{CH}), 128.6$ (CH), 128.3 (CH), 128.2 (C), $128.0(\mathrm{CH}), 127.9$ (C), $125.4(\mathrm{CH}), 124.4(\mathrm{CH}), 113.9(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right)$; IR (neat) $3050,1667,1605,1575$, 1511, 1438, 1375, 1294, 1250, 1227, 1177, 1028, 971, 895, 837, 771, 699, $563 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $448.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}: 448.1366$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 448.1359 .

3.9.16. (4,5-Diphenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (46p)

5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (44c) (107.5 mg, 0.23 mmol), phenylboronic acid ($39.0 \mathrm{mg}, 0.32 \mathrm{mmol}$), $\mathrm{KHCO}_{3}(32.0 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $74.0 \mathrm{mg}(77 \%)$ of the indicated product as a yellow solid ($R_{f}=0.37$ in 9:1 hexane/ethyl acetate; mp 172-174 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (dd, $J=3.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (dd, $J=5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 7 \mathrm{H})$, 7.06 (m, 2H), 7.00-6.43 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.7$ (CO), 150.8 (CH), 150.2 (C), 146.9 (C), 140.4 (C), 137.6 (C), 137.0 (C), 135.9 (CH), 135.0 (C), $133.8(\mathrm{C}), 133.4(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH})$, $127.9(\mathrm{C}), 127.8(\mathrm{CH}) 127.5(\mathrm{CH}), 126.5(\mathrm{CH}), 125.7(\mathrm{CH})$ (Two C peaks overlap with each other); IR (neat) 2920, 1672, 1594, 1556, 1528, 1438, 1316, 1220, 1174, 1023, 949, 813, 760, 698, 571, 520 $\mathrm{cm}^{-1} ;$ MS (ESI, m/z): $418.13[\mathrm{M}+\mathrm{H}]^{+} ; H R M S ~(E S I) ~$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NOS}$: $418.1260[\mathrm{M}+\mathrm{H}]^{+}$, found: 418.1262.

3.9.17. (5-(4-Ethylphenyl)-4-phenyl-2-(thiophen-3-yl)pyridin-3yl)(phenyl)methanone (46q)

(5-Iodo-4-phenyl-2-(thiophen-3-yl)pyridin-3-yl)(phenyl)methanone (44c) (112.2 mg, 0.24 mmol), 4-ethylphenylboronic acid ($51.0 \mathrm{mg}, 0.34 \mathrm{mmol}$), KHCO_{3} ($34.0 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were employed to afford $84.0 \mathrm{mg}(78 \%)$ of the indicated product as a yellow solid ($R_{f}=0.25$ in 9:1 hexane/ethyl acetate; mp $\left.145-147{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}$, $J=2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.19$ $(\mathrm{m}, 4 \mathrm{H}), 7.11-6.83(\mathrm{~m}, 7 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.8(\mathrm{CO}), 150.9(\mathrm{CH}), 149.9(\mathrm{C})$, 146.8 (C) 143.6 (C), 140.4 (C), 137.6 (CH), $136.0(\mathrm{CH}), 135.0$ (C), 134.2 (C), 133.8 (C), $133.4(\mathrm{CH}), 129.9(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9(\mathrm{C}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8$ $(\mathrm{CH}), 127.76(\mathrm{CH}), 126.5(\mathrm{CH}), 125.7(\mathrm{CH}), 115.3(\mathrm{C}), 28.6\left(\mathrm{CH}_{2}\right), 15.4\left(\mathrm{CH}_{3}\right) ;$ IR (neat) $2966,1670,1593,1514,1442,1314,1206,1171,1020,930,834,808,761$, 701, 680, 606, $545 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $446.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{NOS}: 446.1573[\mathrm{M}+\mathrm{H}]^{+}$, found: 446.1567 .

3.9.18. (4'-(Cyclopentylmethyl)-[1,1':2',1'-terphenyl]-3'-yl)(phenyl)methanone (46r)

(3-(Cyclopentylmethyl)-6-iodo-[1,1'-biphenyl]-2-yl)(phenyl)methanone (44d) (229.0 $\mathrm{mg}, 0.49 \mathrm{mmol}$), phenylboronic acid $(84.1 \mathrm{mg}, 0.69 \mathrm{mmol}), \mathrm{KHCO}_{3}(69.0 \mathrm{mg}, 0.69$ $\mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(21.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ were employed to afford 164.0 mg (80%) of the indicated product as a brownish white solid ($R_{f}=0.34$ in 9:1 hexane/ethyl acetate; mp 117-118 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}$, $1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10$ $(\mathrm{m}, 3 \mathrm{H}), 6.99(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.52(\mathrm{~m}, 3 \mathrm{H}), 2.88-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.45$ (septet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.33-1.02(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.9(\mathrm{CO}), 157.4(\mathrm{CH}), 150.3(\mathrm{CH}), 145.8(\mathrm{C}), 137.5(\mathrm{C}), 137.1(\mathrm{C}), 136.1(\mathrm{CH})$,
134.6 (C), 133.8 (C), $133.4(\mathrm{CH}), 129.9(\mathrm{CH}), 129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH})$, $127.7(\mathrm{C}), 127.72(\mathrm{C}), 127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 40.1(\mathrm{CH}), 32.6\left(\mathrm{CH}_{2}\right)$, $24.9\left(\mathrm{CH}_{2}\right)$; IR (neat) 2943, 1667, 1578, 1559, 1439, 1316, 1273, 1213, 1027, 951, 758, 699, $568 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $418.22[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}: 418.2165[\mathrm{M}+\mathrm{H}]^{+}$, found: 418.2162 .

3.10. General Procedure for the Synthesis of 2-Ferrocenyl-Substituted Pyridines

 49To a stirred solution of ferrocenyl-substituted α, β-alkynic ketone $26(0.25 \mathrm{mmol})$ and propargylamine (48) (0.30 mmol) in DMF (3 mL) under air was added $\mathrm{CuCl}(0.25$ mmol) and the resulting solution was allowed to stir at $110^{\circ} \mathrm{C}$ for approximately 2 h (Note that the progress of the reaction was monitored by routine TLC for the completion of the reaction). When the reaction was over, a saturated NaCl solution $(10 \mathrm{~mL})$ and ethyl acetate $(10 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding 2 -ferrocenylsubstituted pyridines 49a-f.

3.10.1. (2-Ferrocenylpyridin-3-yl)(phenyl)methanone (49a)

3-Ferrocenyl-1-phenylprop-2-yn-1-one (26t) ($103.4 \mathrm{mg}, 0.33 \mathrm{mmol}$), propargylamine ($21.7 \mathrm{mg}, 0.39 \mathrm{mmol}$) and $\mathrm{CuCl}(32.7 \mathrm{mg}, 0.33 \mathrm{mmol})$ were employed to afford 93.3 $\mathrm{mg}(77 \%)$ of indicated product as an orangish brown solid $\left(R_{f}=0.55\right.$ in $4: 1$ hexane/ethyl acetate; mp $125-126{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69$ (dd, $J=$ $4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.19$ (dd, $J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 5 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.6(\mathrm{CO}), 156.6(\mathrm{C}), 150.2(\mathrm{CH}), 136.9(\mathrm{C}), 135.5$ $(\mathrm{CH}), 133.8(\mathrm{CH}), 133.1(\mathrm{C}), 130.1(\mathrm{CH}), 128.8(\mathrm{CH}), 119.7(\mathrm{CH}), 83.1(\mathrm{C}), 70.0$ $(\mathrm{CH}), 69.9(\mathrm{CH}), 69.6(\mathrm{CH})$; IR (neat) 2919, 2173, 1735, 1665, 1623, 1578, 1482, 1411, 1272, 1202, 1135, 1032, 997, 926, 823, 776, 712, 671, $508 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 367.07 [M] ${ }^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ONFe}$: 367.0660 [M] ${ }^{+}$, found: 367.0657.

3.10.2. (2-Ferrocenylpyridin-3-yl)(p-tolyl)methanone (49b)

3-Ferrocenyl-1-(p-tolyl)prop-2-yn-1-one (26u) (112.4 mg, 0.34 mmol$)$, propargylamine ($22.6 \mathrm{mg}, 0.41 \mathrm{mmol}$) and $\mathrm{CuCl}(33.7 \mathrm{mg}, 0.34 \mathrm{mmol})$ were employed to afford $89.4 \mathrm{mg}(69 \%)$ of indicated product as a dark brown solid ($R_{f}=0.47$ in $4: 1$ hexane/ethyl acetate; mp $122-123{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67(\mathrm{dd}, J=$ $4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.15$ (m, 3H), $4.68(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 5 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 197.3$ (CO), 156.5 (C), 150.1 (CH), 145.0 (C), 135.6 $(\mathrm{CH}), 134.5(\mathrm{C}), 133.4(\mathrm{C}), 130.3(\mathrm{CH}), 129.6(\mathrm{CH}), 119.7(\mathrm{CH}), 83.0(\mathrm{C}), 70.1(\mathrm{CH})$, $69.9(\mathrm{CH}), 69.7(\mathrm{CH}), 22.0\left(\mathrm{CH}_{3}\right)$; IR (neat) 3032, 2172, 1660, 1598, 1576, 1557, 1411, 1278, 1241, 1203, 1150, 1119, 1059, 1033, 997, 926, 839, 815, 776, 756, 672, $608,524 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $381.08[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ONFe}$: $381.0816[\mathrm{M}]^{+}$, found: 381.0808.

3.10.3. (2-Ferrocenylpyridin-3-yl)(4-methoxyphenyl)methanone (49c)

3-Ferrocenyl-1-(4-methoxyphenyl)prop-2-yn-1-one (26v) ($108.7 \mathrm{mg}, 0.32 \mathrm{mmol}$), propargylamine ($20.9 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $\mathrm{CuCl}(31.3 \mathrm{mg}, 0.32 \mathrm{mmol})$ were employed to afford $87.9 \mathrm{mg}(70 \%)$ of indicated product as an orangish brown oil ($R_{f}=0.41 \mathrm{in}$ 4:1 hexane/ethyl acetate): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67$ (pseudo d, $J=3.2 \mathrm{~Hz}$, 1 H), 7.76 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (dd, $J=7.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.70 (br s, 2H), 4.23 (br s, 2H), $4.02(\mathrm{~s}, 5 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1$ (CO), 164.1 (C), 156.2 (C), $150.0(\mathrm{CH}), 135.4$
$(\mathrm{CH}), 133.4(\mathrm{C}), 132.5(\mathrm{CH}), 130.0(\mathrm{C}), 119.6(\mathrm{CH}), 114.0(\mathrm{CH}), 82.9(\mathrm{C}), 70.0(\mathrm{CH})$, $69.9(\mathrm{CH}), 69.6(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2931, 1734, 1657, 1593, 1508, 1410, 1258, 1175, 1148, 1106, 1083, 1028, 927, 844, 816, 781, 765, 608, $514 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $397.08[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{NFe}: 397.0765[\mathrm{M}]^{+}$, found: 397.0761.

3.10.4. (4-Chlorophenyl)(2-ferrocenylpyridin-3-yl)methanone (49d)

1-(4-Chlorophenyl)-3-ferrocenylprop-2-yn-1-one (26w) (103.4 mg, 0.30 mmol), propargylamine ($19.6 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $\mathrm{CuCl}(29.4 \mathrm{mg}, 0.30 \mathrm{mmol})$ were employed to afford $96.5 \mathrm{mg}(81 \%)$ of indicated product as a reddish violet solid ($R_{f}=0.58$ in $4: 1$ hexane/ethyl acetate; mp $153-154{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69$ (dd, $J=$ $4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.19(\mathrm{dd}, J=7.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 4.02 (s, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4$ (CO), 156.7 (C), 150.4 (CH), 140.2 (C), $135.6(\mathrm{CH}), 135.2(\mathrm{C}), 132.6(\mathrm{C}), 131.3(\mathrm{CH}), 129.1(\mathrm{CH}), 119.8(\mathrm{CH}), 83.2(\mathrm{C})$, $70.0(\mathrm{CH}), 69.9(\mathrm{CH}), 69.6$ (CH); IR (neat) 3029, 2174, 1657, 1580, 1556, 1557, 1412, 1276, 1240, 1083, 998, 924, 893, 839, 812, 778, 756, 673, 630, $513 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $401.03[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ONClFe}: 401.0270[\mathrm{M}]^{+}$, found: 401.0264 .

3.10.5. (2-Bromophenyl)(2-ferrocenylpyridin-3-yl)methanone (49e)

1-(2-Bromophenyl)-3-ferrocenylprop-2-yn-1-one (26x) ($98.2 \mathrm{mg}, 0.25 \mathrm{mmol}$), propargylamine ($16.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{CuCl}(24.7 \mathrm{mg}, 0.25 \mathrm{mmol})$ were employed to afford $100.3 \mathrm{mg}(90 \%)$ of indicated product as an orange-red oil $\left(R_{f}=0.56\right.$ in $4: 1$ hexane/ethyl acetate): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{dd}, J=4.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66 (dd, $J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.15(\mathrm{~m}, 4 \mathrm{H}), 4.69$ (pseudo $\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.22 (pseudo $\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.08(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.3(\mathrm{CO}), 158.3(\mathrm{C}), 150.8(\mathrm{CH}), 138.3(\mathrm{C}), 136.9(\mathrm{CH}), 134.6$
$(\mathrm{CH}), 133.4(\mathrm{C}), 132.9(\mathrm{CH}), 132.1(\mathrm{CH}), 127.1(\mathrm{CH}), 121.8(\mathrm{C}), 119.9(\mathrm{CH}), 84.1$ (C), 70.2 (CH), 69.9 (CH), 69.6 (CH); IR (neat) 2980, 1734, 1668, 1577, 1554, 1478, 1411, 1284, 1238, 1157, 1105, 1044, 1029, 1004, 925, 892, 817, 779, 740, 679, 631, $520 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $444.98[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{ONBrFe}$: $444.9766[\mathrm{M}]^{+}$, found: 444.9767.

3.10.6. (2-Ferrocenylpyridin-3-yl)(4-nitrophenyl)methanone (49f)

3-Ferrocenyl-1-(4-nitrophenyl)prop-2-yn-1-one (26y) (101.4 mg, 0.28 mmol), propargylamine ($18.6 \mathrm{mg}, 0.34 \mathrm{mmol}$) and $\mathrm{CuCl}(27.9 \mathrm{mg}, 0.28 \mathrm{mmol})$ were employed to afford $82.6 \mathrm{mg}(71 \%)$ of indicated product as a dark brown solid ($R_{f}=0.52$ in $4: 1$ hexane/ethyl acetate; mp 173-174 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.78$ (dd, $J=$ $4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.83$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (dd, $J=7.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $4.06(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.0$ (CO), 157.4 (C), 151.2 (CH), 150.4 (C), 141.4 (C), 136.2 (CH), 132.1 (C), 130.6 (CH), 123.8 (CH), 120.2 (CH), 83.9 (C), 70.1 (CH), $70.0(\mathrm{CH}), 69.9(\mathrm{CH})$; IR (neat) 2978, 1677, 1599, 1578, 1520, 1477, 1410, 1345, 1269, 1237, 1146, 1104, 1083, 1031, 999, 925, 867, 809, 782, 714, 692, 639, $595 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $412.05[\mathrm{M}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Fe}$: 412.0511 [M] ${ }^{+}$, found: 412.0516.

3.11. General Procedure for the Synthesis of Spiro-2H-Pyrroles 51 and $\mathbf{2 H}$ Pyrroles 72

To a stirred solution of N-propargylic β-enaminones 50 and 61 (0.30 mmol) in acetonitrile (3 mL) under argon was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.90 \mathrm{mmol})$ and the resulting solution was allowed to stir at $82{ }^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$ (Note that the progress of the reaction was monitored by routine TLC for the completion of the reaction). When the reaction was over, a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and ethyl acetate $(10 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was extracted with ethyl acetate (2
x 10 mL). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding spiro-2H-pyrroles 51a-q and 2 H -pyrroles 72a-c.

3.11.1. (4-Methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51a)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) (123.8 mg, 0.38 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($371.4 \mathrm{mg}, 1.14 \mathrm{mmol}$) were employed to afford 118.9 mg (95%) of indicated product as an orangish-red solid ($R_{f}=0.64$ in $4: 1$ hexane/ethyl acetate; mp 118.4-120.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}$, 2 H), 7.49 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26-7.19 (m, 3H), 2.15 (qt, J $=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.43$ $(\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.0 (CO), 174.2 (C), 168.2 (C), 137.5 (C), 134.7 (C), 134.3 (C), 133.6 (CH), 129.5 $(\mathrm{CH}), 129.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{CH}), 82.5(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6$ $\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$ (Two CH peaks overlap with each other); IR (neat) 2932, 2856, 1645, 1619, 1577, 1444, 1341, 1261, 1227, 1158, 1072, 974, 873, 739, $695 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $330.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1861.

3.11.2. (4-Methyl-2-(p-tolyl)-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51b)

3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (50b) (126.4 $\mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(368.1 \mathrm{mg}, 1.11 \mathrm{mmol})$ were employed to afford 119.5 $\mathrm{mg}(94 \%)$ of indicated product as a light orange oil ($R_{f}=0.53$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.26(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{qt}, J=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$, $1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.3$ (CO), 173.8 (C), $168.0(\mathrm{C}), 139.6$ (C), 137.5 (C), 134.4 (C), $133.6(\mathrm{CH}), 131.9(\mathrm{C}), 129.5(\mathrm{CH}), 129.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.2(\mathrm{CH}), 82.3$ (C), $33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2926, 2852, 1659, 1616, 1508, 1446, 1328, 1258, 1233, 1181, 966, 898, 823, 733, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $344.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 344.2009[\mathrm{M}+\mathrm{H}]^{+}$, found: 344.2020 .

3.11.3. (2-(4-Methoxyphenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51c)

3-((1-Ethynylcyclohexyl)amino)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one (50c) ($104.2 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(283.5 \mathrm{mg}, 0.87 \mathrm{mmol})$ were employed to afford $94.9 \mathrm{mg}(91 \%)$ of indicated product as a reddish-orange oil ($R_{f}=0.57$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81$ (dd, $J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 2.14 (qt, $J=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.96$ (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (s, 3H), 1.85-1.73 (m, $4 \mathrm{H}), 1.42(\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 195.4$ (CO), 173.7 (C), 167.4 (C), 160.8 (C), 137.5 (C), 134.4 (C), 133.7 $(\mathrm{CH}), 129.9(\mathrm{CH}), 129.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.3(\mathrm{C}), 113.7(\mathrm{CH}), 82.1(\mathrm{C}), 55.3$ $\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2929, 2850, 1659, 1607, 1504, 1446, 1303, 1248, 1174, 1026, 965, 898, 835, 732, $688 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $360.20[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}: 360.1959[\mathrm{M}+\mathrm{H}]^{+}$, found: 360.1967.

3.11.4. (4-Methyl-2-(thiophen-3-yl)-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51d)

3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1-one (50d) ($138.0 \mathrm{mg}, 0.41 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(402.1 \mathrm{mg}, 1.23 \mathrm{mmol})$ were employed to afford $124.2 \mathrm{mg}(90 \%)$ of indicated product as an orangish-brown solid ($R_{f}=0.62$ in $4: 1$ hexane/ethyl acetate; mp 120.2-122.6 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.83$ $(\mathrm{m}, 2 \mathrm{H}), 7.54(\mathrm{tt}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (dd, $J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{qt}, J=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.5$ (CO), 173.2 (C), 162.4 (C), 137.4 (C), 136.7 (C), 134.1 (C), 133.8 (CH), $129.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.8(\mathrm{CH}), 126.7(\mathrm{CH})$, $125.4(\mathrm{CH}), 82.1(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 12.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 2926, 2853, 1653, 1623, 1577, 1445, 1330, 1258, 1197, 1070, 910, 874, 804, 742, $692 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $336.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NOS}: 336.1417$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 336.1413.

3.11.5. (2-(3-Fluorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51e)

3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-phenylprop-2-en-1-one (50e) ($122.0 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(343.2 \mathrm{mg}, 1.05 \mathrm{mmol})$ were employed to afford $108.6 \mathrm{mg}(89 \%)$ of indicated product as an orange solid ($R_{f}=0.50$ in $4: 1$ hexane/ethyl acetate; mp 131.1-133.9 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55$ (tt, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.26$ (m, 1H), 7.19 (td, $J=7.9,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98$ (tdd, $J=8.4,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{qt}, J=13.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{tt}, J=13.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.34$ (d, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8$ (CO), 174.9 (C), 167.3 (d, $\left.{ }^{4} J_{\mathrm{CF}}=2.3 \mathrm{~Hz}, \mathrm{C}\right), 162.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=246.0 \mathrm{~Hz}, \mathrm{C}\right), 137.4(\mathrm{C}), 136.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right.$, C), $134.0(\mathrm{C}), 133.8(\mathrm{CH}), 129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.2 \mathrm{~Hz}, \mathrm{CH}\right), 129.5(\mathrm{CH}), 128.9(\mathrm{CH})$,
$124.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.3 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.7 \mathrm{~Hz}\right.$, CH), $82.7(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2933, 2855, 1660, 1582, 1442, 1309, 1260, 1206, 1158, 1074, 912, 854, 829, 787, $684 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $348.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. forC $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNO}: 348.1758[\mathrm{M}+\mathrm{H}]^{+}$, found: 348.1763.

3.11.6. (2-(4-Chlorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51f)

3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50f) ($138.6 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(371.4 \mathrm{mg}, 1.14 \mathrm{mmol})$ were employed to afford $126.1 \mathrm{mg}(91 \%)$ of indicated product as a reddish-orange oil $\left(R_{f}=0.69\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79$ (dd, $J=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{qt}, J=$ $13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{tt}$, $J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9$ (CO), 174.8 (C), 167.2 (C), 137.4 (C), 135.7 (C), 134.0 (C), 133.9 (CH), 133.1 (C), $129.7(\mathrm{CH}), 129.5(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 82.7(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2929, 2852, 1736, 1658, 1596, 1401, 1313, 1233, 1159, 1092, 1014, 965, 836, 746, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $364.15[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CINO}$: $364.1463[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1452.

3.11.7. (2-(4-Bromophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3$\mathrm{yl})$ (phenyl)methanone (51g)

3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50g) ($155.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(371.4 \mathrm{mg}, 1.14 \mathrm{mmol})$ were employed to afford $128.7 \mathrm{mg}(83 \%)$ of indicated product as an orangish-brown oil ($R_{f}=0.47$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H})$,
2.19-2.07 (m, 2H), 1.96 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.41$ ($\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.32(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.8 (CO), 174.9 (C), 167.5 (C), 137.3 (C), 133.9 (C), 133.8 (C), 131.5 (CH), 130.0 $(\mathrm{CH}), 129.5(\mathrm{CH}), 128.9(\mathrm{CH}), 124.3(\mathrm{CH}), 82.7(\mathrm{C}), 33.3\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$ (Two CH peak overlap with each other); IR (neat) 2928, 2852, 1664, 1649, 1595, 1446, 1342, 1231, 1175, 1009, 876, 831, 743, $695 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $408.10[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}: 408.0958[\mathrm{M}+\mathrm{H}]^{+}$, found: 408.0953.

3.11.8. (4-Methyl-2-(4-nitrophenyl)-1-azaspiro[4.5]deca-1,3-dien-3yl)(phenyl)methanone (51h)

3-((1-Ethynylcyclohexyl)amino)-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (50h) ($103.4 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(270.4 \mathrm{mg}, 0.83 \mathrm{mmol})$ were employed to afford $91.0 \mathrm{mg}(88 \%)$ of indicated product as a reddish-brown oil $\left(R_{f}=0.42\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.81-$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H), 2.11-2.05 (m, 2H), 1.98 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (s, 3H), 1.88-1.78 (m, 4H), $1.44(\mathrm{tt}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.33$ (d, $J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.3$ (CO), 176.0 (C), 166.8 (C), 148.4 (C), 140.8 (C), 137.3 (C), 134.1 (CH), 133.6 (C), $129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 129.0(\mathrm{CH}), 123.5(\mathrm{CH}), 83.4(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 12.9\left(\mathrm{CH}_{3}\right)$; IR (neat) 2930, 2852, 1656, 1597, 1518, 1446, 1343, 1232, 1108, 1045, 974, 850, 735, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $375.17[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$: $375.1703[\mathrm{M}+\mathrm{H}]^{+}$, found: 375.1694.

3.11.9. (2-Butyl-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(phenyl)methanone (51i)

3-((1-Ethynylcyclohexyl)amino)-1-phenylhept-2-en-1-one (50i) (128.3 mg, 0.41 $\mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(400.8 \mathrm{mg}, 1.23 \mathrm{mmol})$ were employed to afford $118.0 \mathrm{mg}(92 \%)$
of indicated product as a reddish-brown oil ($R_{f}=0.53$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{qt}, J=13.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{td}, J=13.0,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.35$ $(\mathrm{m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.74$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8(\mathrm{CO}), 173.5(\mathrm{C}), 171.6(\mathrm{C})$, $138.0(\mathrm{C}), 134.1(\mathrm{C}), 133.5(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 81.5(\mathrm{C}), 33.2\left(\mathrm{CH}_{2}\right), 31.5$ $\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right)$; IR (neat) 2928, 2857, 1655, 1597, 1447, 1343, 1231, 1175, 1093, 898, 850, 733, $693 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $310.22[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}: 310.2165$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 310.2157.

3.11.10. (4-Methyl-2-pentyl-1-azaspiro[4.5]deca-1,3-dien-3-

yl)(phenyl)methanone (51j)

3-((1-Ethynylcyclohexyl)amino)-1-phenyloct-2-en-1-one (50j) (104.8 mg, 0.32 $\mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(312.8 \mathrm{mg}, 0.96 \mathrm{mmol})$ were employed to afford $94.3 \mathrm{mg}(90 \%)$ of indicated product as a reddish-orange oil ($R_{f}=0.54$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{tt}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{qt}, J=13.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{td}, J=13.0,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{qt}, J=13.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.12(\mathrm{~m}, 6 \mathrm{H}), 0.78-0.72(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8$ (CO), 173.4 (C), 171.6 (C), 138.0 (C), 134.2 (C), $133.5(\mathrm{CH}), 129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 81.6(\mathrm{C}), 33.2\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right), 31.5$ $\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right)$; IR (neat) 2928, 2855, 1657, 1595, 1449, 1341, 1235, 1178, 1097, 896, 851, 736, $695 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $324.23[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}: 324.2322$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.2316.

3.11.11. (4-Methoxyphenyl)(4-methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3yl)methanone (51k)

3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (50k) ($118.2 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(322.6 \mathrm{mg}, 0.99 \mathrm{mmol})$ were employed to afford $107.6 \mathrm{mg}(91 \%)$ of indicated product as a light yellow solid ($R_{f}=0.49$ in 4:1 hexane/ethyl acetate; mp 138.2-140.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (dd, $J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31-7.23 (m, 3H), $6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.86-$ $1.75(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{tt}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.6$ (CO), 173.1 (C), 168.4 (C), 164.0 (C), 134.5 (C), 134.4 (C), $131.9(\mathrm{CH}), 130.6(\mathrm{C}), 129.7(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 114.0(\mathrm{CH}), 82.2(\mathrm{C})$, $55.5\left(\mathrm{CH}_{3}\right), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2928, 2849, 1650, 1594, 1571, 1445, 1342, 1257, 1237, 1174, 1144, 1027, 882, 780, $699 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $360.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}: 360.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 360.1949.

3.11.12. (4-Methoxyphenyl)(4-methyl-2-(thiophen-3-yl)-1-azaspiro[4.5]deca-1,3-dien-3-yl)methanone (511)

3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-2-en-1-one ($\mathbf{5 0 1}$) ($118.2 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(322.6 \mathrm{mg}, 0.99 \mathrm{mmol})$ were employed to afford $96.9 \mathrm{mg}(82 \%)$ of indicated product as a light brown solid ($R_{f}=$ 0.57 in $4: 1$ hexane/ethyl acetate; mp 119.4-121.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.83 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (dd, $J=4.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 2.12 (qt, $J=13.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2$ (CO), 172.1 (C), 164.3 (C), 162.5 (C), 136.9 (C), 134.4 (C), $132.0(\mathrm{CH}), 130.7(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{C}), 125.3(\mathrm{CH})$, $114.2(\mathrm{CH}), 82.0(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 33.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.3\left(\mathrm{CH}_{3}\right)$; IR
(neat) $2928,2852,1648,1589,1562,1423,1330,1255,1236,1171,1136,1026,913$, 850, $774,627 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $366.15[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}: 366.1522[\mathrm{M}+\mathrm{H}]^{+}$, found: 366.1517 .

3.11.13. (2-(3-Fluorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(4methoxyphenyl)methanone (51m)

3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one ($\mathbf{5 0 m}$) ($136.7 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(351.9 \mathrm{mg}, 1.08 \mathrm{mmol})$ were employed to afford $127.1 \mathrm{mg}(93 \%)$ of indicated product as a light orange solid ($R_{f}=$ 0.58 in $4: 1$ hexane/ethyl acetate; $\mathrm{mp} 98.1-100.9{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{ddd}, J=9.8,2.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{td}, J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{tdd}, J=8.5,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{qt}, J=13.5,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ $(\mathrm{s}, 3 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 193.4$ (CO), 173.5 (C), 167.1 (C), 164.2 (C) 162.7 (d, $\left.{ }^{1} J_{\mathrm{CF}}=245.9 \mathrm{~Hz}, \mathrm{C}\right), 137.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.6 \mathrm{~Hz}, \mathrm{C}\right), 134.2(\mathrm{C}), 131.9(\mathrm{CH}), 130.6(\mathrm{C})$, $129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 124.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right.$, $\mathrm{CH}), 115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.7 \mathrm{~Hz}, \mathrm{CH}\right), 114.1(\mathrm{CH}), 82.5(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 33.4\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2931, 2852, 1649, 1593, 1571, 1487, 1343, 1257, 1171, 1028, 909, 858, 780, $682 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $378.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FNO}_{2}: 378.1864[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1853 .

3.11.14. (2-(4-Bromophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)(4methoxyphenyl)methanone (51n)

3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)prop-2-en-1-one ($\mathbf{5 0 n}$) ($106.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(234.6 \mathrm{mg}, 0.72 \mathrm{mmol})$ were employed to afford $92.2 \mathrm{mg}(87 \%)$ of indicated product as a yellow oil ($R_{f}=0.52$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$
(d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $2.10(\mathrm{qt}, J=13.1,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.71(\mathrm{~m}$, $4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 193.5(\mathrm{CO}), 173.5(\mathrm{C}), 167.2$ (C), 164.2 (C), 134.2 (C), 133.7 (C), 131.9 $(\mathrm{CH}), 131.5(\mathrm{CH}), 130.5(\mathrm{C}), 129.9(\mathrm{CH}), 124.1(\mathrm{C}), 114.2(\mathrm{CH}), 82.5(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right)$, $33.4\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2928, 2845, 1650, 1593, 1571, 1485, 1307, 1255, 1238, 1141, 1108, 1010, 965, 864, 782, $623 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $438.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNO}_{2}: 438.1063[\mathrm{M}+\mathrm{H}]^{+}$, found: 438.1058 .

3.11.15. 4-Chlorophenyl)(4-methyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-3yl)methanone (510)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-phenylprop-2-en-1-one (500) ($112.3 \mathrm{mg}, 0.31 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(303.0 \mathrm{mg}, 0.93 \mathrm{mmol})$ were employed to afford $107.8 \mathrm{mg}(96 \%)$ of indicated product as a brown solid ($R_{f}=0.53$ in $4: 1$ hexane/ethyl acetate; mp 138.0-140.2 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.53 (dd, $J=7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.19$ (m, 3H), 2.13 (qt, J $=13.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.2$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7(\mathrm{CO})$, 174.9 (C), 167.9 (C), 140.1 (C), 135.8 (C), 134.6 (C), 134.0 (C), 130.8 (CH), 129.7 $(\mathrm{CH}), 129.1(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 82.6(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 12.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2927, 2842, 1645, 1584, 1568, 1440, 1329, 1225, 1158, 1085, 974, 876, 773, $699 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $363.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}: 364.1463[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1455 .

3.11.16. (4-Chlorophenyl)(4-methyl-2-(p-tolyl)-1-azaspiro[4.5]deca-1,3-dien-3yl)methanone (51p)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(p-tolyl)prop-2-en-1-one (50p) $(135.9 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(351.9 \mathrm{mg}, 1.08 \mathrm{mmol})$ were employed to afford $131.8 \mathrm{mg}(97 \%)$ of indicated product as a brownish-orange solid $\left(R_{f}=0.52\right.$ in 4:1 hexane/ethyl acetate; mp $119.5-121.2{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{qt}, J=13.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}$, $3 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tt}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 193.9$ (CO), 174.5 (C), 167.7 (C), 140.1 (C), 139.8 (C), 135.9 (C), $134.1(\mathrm{C}), 131.8(\mathrm{C}), 130.9(\mathrm{CH}), 129.1(\mathrm{CH}), 129.0(\mathrm{CH}), 128.2(\mathrm{CH})$, $82.5(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat) 2937, $2847,1658,1629,1584,1435,1399,1322,1279,1229,1086,965,889,820,767 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $378.16[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClNO}: 378.1619$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1614 .

3.11.17. (4-Chlorophenyl)(2-(3-fluorophenyl)-4-methyl-1-azaspiro[4.5]deca-1,3-dien-3-yl)methanone (51q)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(3-fluorophenyl)prop-2-en-1one ($\mathbf{5 0 q}$) $(99.6 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(254.1 \mathrm{mg}, 0.78 \mathrm{mmol})$ were employed to afford $94.6 \mathrm{mg}(95 \%)$ of indicated product as an orange solid $\left(R_{f}=0.54\right.$ in $4: 1$ hexane/ethyl acetate; mp 107.0-109.6 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39-7.32 (m, 3H), 7.25-7.14 (m, 2H), 6.98 (ddd, $J=9.4,2.5,1.4 \mathrm{~Hz}$, 1H), 2.19-2.06 (m, 2H), 1.97 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (s, 3H), 1.86-1.73 (m, 4H), $1.41(\mathrm{tt}, J=13.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.5$ (CO), 175.5 (C), 166.9 (C), 162.7 (d, $\left.{ }^{1} J_{\mathrm{CF}}=246.9 \mathrm{~Hz}, \mathrm{C}\right), 140.4$ (C), 136.8 (d, $\left.{ }^{3} J_{\mathrm{CF}}=5.6 \mathrm{~Hz}, \mathrm{C}\right), 135.8(\mathrm{C}), 133.6(\mathrm{C}), 130.8(\mathrm{CH}), 130.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right)$, $129.3(\mathrm{CH}), 124.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.8 \mathrm{~Hz}, \mathrm{CH}\right), 116.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}\right.$
$=22.3 \mathrm{~Hz}, \mathrm{CH}), 82.9(\mathrm{C}), 33.4\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 12.7\left(\mathrm{CH}_{3}\right)$; IR (neat) 2927, 2855, 1649, 1584, 1483, 1442, 1329, 1228, 1198, 1088, 908, 845, 771, $677 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI, m/z): $382.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CIFNO}: 382.1369$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 382.1362 .

3.11.18. Phenyl(2,2,3-trimethyl-5-phenyl-2H-pyrrol-4-yl)methanone (72a)

3-((2-Methylbut-3-yn-2-yl)amino)-1,3-diphenylprop-2-en-1-one (61a) (112.6 mg, $0.39 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(381.2 \mathrm{mg}, 1.17 \mathrm{mmol})$ were employed to afford 103.6 mg (92%) of indicated product as a dark red solid ($R_{f}=0.54$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 84.6-87.8^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.49$ (tt, $J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 1.94$ ($\mathrm{s}, 3 \mathrm{H}$), 1.44 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6$ (CO), 173.8 (C), 168.4 (C), 137.3 (C), 134.1 (C), 133.9 (C), 133.7 (CH), 129.8 (CH), $129.4(\mathrm{CH}), 128.7(\mathrm{CH})$, $128.3(\mathrm{CH}), 128.1(\mathrm{CH}), 79.4(\mathrm{C}), 23.3\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 2974, 2929, 1655, 1625, 1579, 1445, 1320, 1252, 1176, 1073, 914, 880, $747 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 290.15 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}: 290.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 290.1533 .

3.11.19. Phenyl(2,2,3-trimethyl-5-(m-tolyl)-2H-pyrrol-4-yl)methanone (72b)

3-((2-Methylbut-3-yn-2-yl)amino)-1-phenyl-3-(m-tolyl)prop-2-en-1-one
(61b) ($106.2 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(342.1 \mathrm{mg}, 1.05 \mathrm{mmol})$ were employed to afford $94.5 \mathrm{mg}(89 \%)$ of indicated product as a brown solid ($R_{f}=0.45$ in $4: 1$ hexane/ethyl acetate; mp 105.1-107.2 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.51-7.43 (m, 2H), 7.39-7.32 (m, 2H), 7.23-7.18 (m, 1H), 7.08-7.03 (m, 2H), 2.22 (s, 3H), 1.94 (s, 3H), 1.43 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6$ (CO), 173.8 (C), 168.6 (C), 138.0 (C), 137.3 (C), 134.0 (C), 133.9 (C), 133.6 (CH), 130.6 (CH), $129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 125.2(\mathrm{CH}), 79.2(\mathrm{C}), 23.2\left(\mathrm{CH}_{3}\right), 21.2\left(\mathrm{CH}_{3}\right)$, $12.4\left(\mathrm{CH}_{3}\right)$ (Two CH peaks overlap with each other); IR (neat) 2967, 2925, 1656, 1626, 1594, 1445, 1308, 1254, 1202, 1171, 1072, 913, 899, 736, 688, $609 \mathrm{~cm}^{-1}$; MS
(ESI, m/z): $304.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}: 304.1696[\mathrm{M}+\mathrm{H}]^{+}$, found: 304.1696.

3.11.20. (4-Chlorophenyl)(2,2,3-trimethyl-5-phenyl-2H-pyrrol-4-yl)methanone (72c)

1-(4-Chlorophenyl)-3-((2-methylbut-3-yn-2-yl)amino)-3-phenylprop-2-en-1-one (61c) $(86.6 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(263.9 \mathrm{mg}, 0.81 \mathrm{mmol})$ were employed to afford $73.6 \mathrm{mg}(85 \%)$ of indicated product as a light yellow solid ($R_{f}=0.40$ in $4: 1$ hexane/ethyl acetate; mp 168.7-171.9 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{~s}$, 3H), 1.48 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3$ (CO), 174.6 (C), 168.3 (C), 140.3 (C), 135.7 (C), 134.0 (C), 133.6 (C), 130.9 (CH), 130.1 (CH), 129.2 (CH), 128.5 (CH), 128.2 (CH), 79.6 (C), $23.3\left(\mathrm{CH}_{3}\right), 12.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2974, 2928, 1655, 1626, 1582, 1569, 1400, 1306, 1288, 1257, 1199, 1088, 964, 879, 776, 692, $546 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $324.12[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClNO}: 324.1150[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.1146 .

3.12. General Procedure for the Synthesis of Spiro-2H-Pyrroles with Two Carbonyl Groups 53

To a stirred solution of spiro-containing N-propargylic β-enaminone $52(0.30 \mathrm{mmol})$ in DMSO (3 mL) under air was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.90 \mathrm{mmol})$ and the resulting solution was allowed to stir at $80{ }^{\circ} \mathrm{C}$ for approximately $30-75 \mathrm{~min}$ (Note that the progress of the reaction was monitored by routine TLC for the completion of the reaction). After completion of the reaction, the reaction mixture was cooled to room temperature and diluted with chloroform (30 mL). To the diluted reaction mixture, equal volume of ice was added, stirred for 10 minutes and separated the organic layer. The aqueous layer was extracted twice with chloroform ($2 \times 15 \mathrm{~mL}$) to minimize the loss of product. The combined organic layers were dried over MgSO_{4} and evaporated on a rotary
evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate ($9: 1$ followed by $4: 1$) as the eluent to afford the corresponding spiro- 2 H -pyrroles 53a-h.

3.12.1. (2-Phenyl-1-azaspiro[4.5]deca-1,3-diene-3,4-diyl)bis(phenylmethanone) (53a)

1,3-Diphenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1-one (52a) (106.5 $\mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(256.7 \mathrm{mg}, 0.79 \mathrm{mmol})$ were employed to afford 76.1 $\mathrm{mg}(69 \%)$ of indicated product as a yellow solid ($R_{f}=0.44$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 172.4-174.6^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}$, 2 H), 7.45-7.42 (m, 2H), 7.41-7.34 (m, 2H), 7.30-7.15 (m, 7H), 2.13-1.97 (m, 4H), 1.83 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.24$ (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.5$ (CO), 192.9 (CO), 170.9 (C), 166.7 (C), 137.8 (C), 137.2 (C), 137.1 (C), 134.0 (CH), 133.9 (CH), 133.7 (C), 130.1 (CH), 129.5 $(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.5(\mathrm{CH}), 85.3(\mathrm{C}), 33.8$ $\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right)$; IR (neat) 3057, 2913, 2857, 1657, 1597, 1578, 1445, 1337, 1315, 1296, 1258, 1154, 1071, 866, 744, 720, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 420.20 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2}: 420.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 420.1968.

3.12.2. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(ptolyl)methanone (53b)

1,3-Diphenyl-3-((1-(p-tolylethynyl)cyclohexyl)amino)prop-2-en-1-one (52b) (175.2 $\mathrm{mg}, 0.42 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(408.2 \mathrm{mg}, 1.25 \mathrm{mmol})$ were employed to afford 130.5 $\mathrm{mg}(72 \%)$ of indicated product as a yellow oil ($R_{f}=0.47$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}$, 5 H), 7.11 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 194.1$ (CO), 193.0 (CO), 171.2 (C), 166.7 (C), 145.1 (C), 137.1 (C), 137.0
(C), 134.6 (C), $134.0(\mathrm{CH}), 133.7$ (C), $130.0(\mathrm{CH}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 85.2(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 23.8$ $\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right)$; IR (neat) $3059,2928,2854,1736,1652,1600,1446,1314,1289$, 1241, 1169, 1044, 1018, 872,764, 744, $690 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $434.21[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{2}$: $434.2115[\mathrm{M}+\mathrm{H}]^{+}$, found: 434.2122.

3.12.3. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(4fluorophenyl)methanone (53c)

3-((1-((4-Fluorophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52c) $(152.7 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(352.4 \mathrm{mg}, 1.08 \mathrm{mmol})$ were employed to afford $94.8 \mathrm{mg}(60 \%)$ of indicated product as a yellow oil $\left(R_{f}=0.53\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.54$ (m, 6H), 7.51-7.45 (m, 1H), 7.39-7.28 (m, 5H), 6.98-6.91 (m, 2H), 2.20-2.06 (m, 4H), 1.91 (d, $J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.9(\mathrm{CO}), 192.88(\mathrm{CO}), 170.5(\mathrm{C}), 166.6(\mathrm{C}), 166.2\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=\right.$ $256.9 \mathrm{~Hz}, \mathrm{C}), 137.8$ (C), 136.9 (C), $134.2(\mathrm{CH}), 133.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{CF}}=2.6 \mathrm{~Hz}, \mathrm{C}\right), 133.5(\mathrm{C})$, $132.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=9.7 \mathrm{~Hz}, \mathrm{CH}\right), 130.2(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 115.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.1 \mathrm{~Hz}, \mathrm{CH}\right), 85.3(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right) ;$ IR (neat) $3062,2930,2855,1736,1656,1593,1446,1410,1295,1237,1150,1045,1019$, 969, 873, 848,768, 745, $632 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $438.19[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{FNO}_{2}$: $438.1864[\mathrm{M}+\mathrm{H}]^{+}$, found: 438.1876.

3.12.4. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(3bromophenyl)methanone (53d)

3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52d) $(168.3 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(339.6 \mathrm{mg}, 1.04 \mathrm{mmol})$ were employed to afford $110.7 \mathrm{mg}(64 \%)$ of indicated product as a yellow oil $\left(R_{f}=0.49\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.53$
(m, 4H), $7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.92(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.9$ (CO), 192.6 (CO), 170.1 (C), 166.6 (C), 139.0 (C), 138.7 (C), 136.9 (C), 136.5 (CH), 134.1 (CH), 133.5 (C), $131.5(\mathrm{CH}), 130.2(\mathrm{CH}), 130.1(\mathrm{CH}), 129.4(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 122.9(\mathrm{C}), 85.4(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right)$, $23.8\left(\mathrm{CH}_{2}\right)$; IR (neat) 3061, 2929, 2854, 1736, 1656, 1596, 1446, 1291, 1239, 1171, 1068, 1045, 1019, 873, 746, 714, $691 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $498.11[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrNO}_{2}$: $498.1063[\mathrm{M}+\mathrm{H}]^{+}$, found: 498.1075.

3.12.5. (3-Benzoyl-2-phenyl-1-azaspiro[4.5]deca-1,3-dien-4-yl)(4nitrophenyl)methanone (53e)

3-((1-((4-Nitrophenyl)ethynyl)cyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (52e) ($141.7 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(307.4 \mathrm{mg}, 0.94 \mathrm{mmol})$ were employed to afford $98.7 \mathrm{mg}(67 \%)$ of indicated product as an orangish-yellow solid ($R_{f}=0.48$ in 4:1 hexane/ethyl acetate; mp 139.1-140.3 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.47$ (m, 3H), 7.38-7.27 (m, 5H), 2.25-2.07 (m, 4H), $1.94(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-$ $1.35(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7$ (CO), 192.5 (CO), 169.3 (C), 166.4 (C), 150.4 (C), 141.6 (C), 139.4 (C), 136.7 (C), 134.5 (CH), 133.2 (C), 130.3 $(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 123.6(\mathrm{CH}), 85.6(\mathrm{C}), 33.8$ $\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$ (Two CH peaks overlap with each other); IR (neat) 3067, 2920, 2855, 1651, 1596, 1521, 1444, 1345, 1301, 1260, 1167, 1072, 1019, 876, 840, 746, 725, $687 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $465.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}: 465.1809[\mathrm{M}+\mathrm{H}]^{+}$, found: 465.1822.

3.12.6. (2-(4-Chlorophenyl)-1-azaspiro[4.5]deca-1,3-diene-3,4diyl)bis(phenylmethanone) (53f)

3-(4-Chlorophenyl)-1-phenyl-3-((1-(phenylethynyl)cyclohexyl)amino)prop-2-en-1one ($\mathbf{5 2 f}$) ($151.8 \mathrm{mg}, 0.35 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(337.2 \mathrm{mg}, 1.04 \mathrm{mmol})$ were employed to afford $117.5 \mathrm{mg}(75 \%)$ of indicated product as a yellow solid ($R_{f}=0.46$ in $4: 1$ hexane/ethyl acetate; mp 148.8-150.6 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.57$ $(\mathrm{m}, 4 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 6 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.94(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.2$ (CO), 192.7 (CO), 171.3 (C), 165.6 (C), 137.3 (C), 137.1 (C), 136.9 (C), 136.2 (C), $134.1(\mathrm{CH}), 133.9(\mathrm{CH}), 132.1(\mathrm{C}), 130.0(\mathrm{CH}), 129.5(\mathrm{CH})$, $129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 85.4(\mathrm{C}), 33.7\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right)$ (Two CH peaks overlap with each other); IR (neat) 3061, 2922, 2855, 1654, 1595, 1492, 1445, 1402,1316, 1294, 1255, 1155, 1093, 1015, 867, 833, 764, 726, $687 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $454.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClNO}_{2}: 454.1568$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 454.1579.

3.12.7. (3-Benzoyl-2-(4-chlorophenyl)-1-azaspiro[4.5]deca-1,3-dien-4-yl)(ptolyl)methanone (53g)

3-(4-Chlorophenyl)-1-phenyl-3-((1-(p-tolylethynyl)cyclohexyl)amino)prop-2-en-1one ($\mathbf{5 2 g}$) ($142.9 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(307.7 \mathrm{mg}, 0.94 \mathrm{mmol})$ were employed to afford 101.7 mg (69%) of indicated product as an orangish-yellow oil ($R_{f}=0.41 \mathrm{in}$ 4:1 hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.51-$ $7.46(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (d, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9(\mathrm{CO})$, 192.9 (CO), 171.6 (C), 165.6 (C), 145.2 (C), 136.9 (C), 136.7 (C), 136.2 (C), 134.6 (C), $134.2(\mathrm{CH}), 132.2(\mathrm{C}), 130.0(\mathrm{CH}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 85.3(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right)$; IR (neat)

3061, 2927, 2853, 1655, 1599, 1488, 1447, 1401, 1311, 1291, 1260, 1169, 1091, 1012, 872, 835, 752, $741,689 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $468.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClNO}_{2}$: $468.1725[\mathrm{M}+\mathrm{H}]^{+}$, found: 468.1736 .

3.12.8. (3-Benzoyl-2-(4-chlorophenyl)-1-azaspiro[4.5]deca-1,3-dien-4-yl)(3bromophenyl)methanone (53h)

3-((1-((3-Bromophenyl)ethynyl)cyclohexyl)amino)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one (52h) ($165.4 \mathrm{mg}, 0.32 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(311.6 \mathrm{mg}, 0.96$ mmol) were employed to afford $127.5 \mathrm{mg}(75 \%)$ of indicated product as an orange oil $\left(R_{f}=0.53\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.49(\mathrm{~m}$, $6 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.8$ Hz, 1H), 2.23-2.06 (m, 4H), 1.92 (d, $J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.77$ (m, 2H), 1.60 (d, J $=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8(\mathrm{CO}), 192.6$ (CO), 170.5 (C), 165.5 (C), 139.0 (C), 138.3 (C), 136.9 (C), 136.6 (CH), 136.4 (C), $134.4(\mathrm{CH}), 132.0(\mathrm{C}), 131.5(\mathrm{CH}), 130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 129.4(\mathrm{CH}), 128.9(\mathrm{CH})$, $128.8(\mathrm{CH}), 128.1(\mathrm{CH}), 123.0(\mathrm{C}), 85.5(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right)$; IR (neat) $3062,2927,2853,1658,1596,1487,1447,1401,1292,1246,1172,1091,1012$, 873, 835, 740, 713, $687 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $532.07[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{BrClNO}_{2}: 532.0674[\mathrm{M}+\mathrm{H}]^{+}$, found: 532.0674

3.13. General Procedure for the Synthesis of Spiro-1,4-Oxazepines 54 and 1,4Oxazepines 86

To a stirred solution of N-propargylic β-enaminones $\mathbf{5 0}$ or $\mathbf{6 1}(0.30 \mathrm{mmol})$ in DCE (3 $\mathrm{mL})$ under argon was added $\mathrm{ZnI}_{2}(0.60 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(0.045 \mathrm{mmol})$. The resulting solution was allowed to stir at $84{ }^{\circ} \mathrm{C}$. (Note that reaction was continued until N propargylic β-enaminone was completely consumed as monitored by routine TLC). After the reaction was over, ethyl acetate (20 mL) and a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ were added. After the layers were separated, the aqueous layer was
extracted with ethyl acetate ($2 \times 15 \mathrm{~mL}$). The combined organic layers were dried over MgSO_{4} and evaporated on a rotary evaporator to give the crude product, which was purified by flash chromatography on silica gel using hexane/ethyl acetate (9:1 followed by $4: 1$) as the eluent to afford the corresponding spiro-1,4-oxazepines 54an and1,4-oxazepines 78a-c.

3.13.1. 12-Methylene-8,10-diphenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54a)

3-((1-Ethynylcyclohexyl)amino)-1,3-diphenylprop-2-en-1-one (50a) (113.5 mg, 0.35 mmol), ZnI_{2} ($220.0 \mathrm{mg}, 0.69 \mathrm{mmol}$) and $\mathrm{AgSbF}_{6}(17.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ were employed to afford 82.9 mg (73%) of indicated product as a yellow solid $\left(R_{f}=0.62\right.$ in $4: 1$ hexane/ethyl acetate; mp 94.2-95.7 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.75(\mathrm{~m}$, $4 \mathrm{H}), 7.45$ (dd, $J=5.1,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}$, 2 H), 1.68-1.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5$ (C), 159.4 (C), 142.6 (C), $135.1(\mathrm{C}), 130.2(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.6(\mathrm{CH}), 126.6$ (CH), $96.9(\mathrm{CH}), 96.8\left(\mathrm{CH}_{2}\right), 64.8(\mathrm{C}), 34.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$ (Two C peaks overlap with each other.); IR (neat) 2924, 2847, 1636, 1588, 1569, 1492, 1446, 1369, 1359, 1288, 1257, 1220, 1191, 1179, 1113, 1020, 915, 884, 762, $690 \mathrm{~cm}^{-1} ;$ MS (ESI, m/z): $330.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}: 330.1852[\mathrm{M}+\mathrm{H}]^{+}$, found: 330.1862.

3.13.2. 12-Methylene-10-phenyl-8-(p-tolyl)-11-oxa-7-azaspiro[5.6]dodeca-7,9diene (54b)

3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(p-tolyl)prop-2-en-1-one (50b) (180.7 $\mathrm{mg}, 0.53 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(335.9 \mathrm{mg}, 1.05 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(27.1 \mathrm{mg}, 0.079 \mathrm{mmol})$ were employed to afford $113.8 \mathrm{mg}(63 \%)$ of indicated product as ayellow solid $\left(R_{f}=\right.$ 0.57 in 4:1 hexane/ethyl acetate; mp 107.2-109.5 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$7.81-7.77$ (m, 2H), 7.66 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.03$ (br s, 2H), 1.96-1.88 (m, 2H), 1.86-1.76 (m, 2H), 1.67-1.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3$ (C), 159.5 (C), 159.2 (C), 140.2 (C), 139.2 (C), 135.1 (C), 130.1 $(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.5(\mathrm{CH}), 126.6(\mathrm{CH}), 97.0(\mathrm{CH}), 96.7\left(\mathrm{CH}_{2}\right), 64.7$ (C), $34.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 2933, 2853, 1635, 1585, 1493, 1445, 1369, 1290, 1255, 1179, 1144, 1062, 1048, 964, 886, 811, 766, 690 cm^{-1}; MS (ESI, m/z): $344.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}: 344.2009$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 344.2016.

3.13.3. 12-Methylene-10-phenyl-8-(thiophen-3-yl)-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54c)

3-((1-Ethynylcyclohexyl)amino)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1-one (50d) $(114.8 \mathrm{mg}, 0.34 \mathrm{mmol}), \mathrm{ZnI}_{2}(218.5 \mathrm{mg}, 0.68 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(17.7 \mathrm{mg}, 0.05$ mmol) were employed to afford $85.0 \mathrm{mg}(74 \%)$ of indicated product as a yellow solid $\left(R_{f}=0.64\right.$ in $4: 1$ hexane/ethyl acetate; mp 103.5-105.4 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=0.9$ Hz, 1H), 4.64 (d, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74$ (m, 2H), 1.66-1.53 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4$ (C), 159.0 (C), 155.4 (C), 145.6 (C), 135.0 (C), 130.2 (CH), 128.7 (CH), 127.7 (CH), 126.6 (CH), 125.6 $(\mathrm{CH}), 124.6(\mathrm{CH}), 96.9(\mathrm{CH}), 96.6\left(\mathrm{CH}_{2}\right), 64.8(\mathrm{C}), 34.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7$ $\left(\mathrm{CH}_{2}\right)$; IR (neat) 2927, 2852, 1632, 1577, 1493, 1448, 1358, 1276, 1222, 1112, 1062, 981, 939, 849, 788, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $336.14[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22}$ NOS: $336.1417[\mathrm{M}+\mathrm{H}]^{+}$, found: 336.1426.

3.13.4. 8-(3-Fluorophenyl)-12-methylene-10-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54d)

3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-phenylprop-2-en-1-one (50e) ($124.3 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(228.4 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(18.6 \mathrm{mg}, 0.05$ mmol) were employed to afford $104.4 \mathrm{mg}(84 \%)$ of indicated product as a yellow solid $\left(R_{f}=0.60\right.$ in 4:1 hexane/ethyl acetate; mp 93.8-95.7 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) § 7.84-7.78 (m, 2H), 7.57-7.50 (m, 2H), 7.48-7.42 (m, 3H), 7.37 (td, J=8.0, 5.9 Hz, $1 \mathrm{H}), 7.10(\mathrm{tdd}, J=8.4,2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.54$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CF}}=245.4 \mathrm{~Hz}, \mathrm{C}\right), 159.9(\mathrm{C})$, $159.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.5 \mathrm{~Hz}, \mathrm{C}\right), 159.2(\mathrm{C}), 145.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=7.0 \mathrm{~Hz}, \mathrm{C}\right), 134.8(\mathrm{C}), 130.3$ $(\mathrm{CH}), 129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}, \mathrm{CH}\right), 128.7(\mathrm{CH}), 126.6(\mathrm{CH}), 123.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.3 \mathrm{~Hz}\right.$, $\mathrm{CH}), 116.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.2 \mathrm{~Hz}, \mathrm{CH}\right), 114.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.5 \mathrm{~Hz}, \mathrm{CH}\right), 97.0(\mathrm{CH}), 96.3$ $\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{C}), 34.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2924, 2847, 1635, 1573, 1483, 1439, 1369, 1360, 1248, 1174, 1103, 1062, 971, 891, 768, $691 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $348.18[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNO}: 348.1758[\mathrm{M}+\mathrm{H}]^{+}$, found: 348.1763 .

3.13.5. 8-(4-Chlorophenyl)-12-methylene-10-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54e)

3-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50f) ($122.1 \mathrm{mg}, 0.34 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(214.2 \mathrm{mg}, 0.67 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(17.3 \mathrm{mg}, 0.05$ mmol) were employed to afford $98.9 \mathrm{mg}(81 \%)$ of indicated product as an orangishyellow solid ($R_{f}=0.41$ in 4:1 hexane/ethyl acetate; mp 121.7-123.1 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.8(\mathrm{C}), 159.4(\mathrm{C}), 159.3$ (C), 141.3 (C), 135.3 (C), 134.9 (C), $130.3(\mathrm{CH})$,
$129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 126.6(\mathrm{CH}), 97.0(\mathrm{CH}), 96.3\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{C})$, $34.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2923, 2858, 1620, 1592, 1571, 1489, 1397, 1284, 1190, 1076, 1009, 940, 892, 878, 764, $685 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 364.15 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClNO}: 364.1463[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1466.

3.13.6. 8-(4-Bromophenyl)-12-methylene-10-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54f)

3-(4-Bromophenyl)-3-((1-ethynylcyclohexyl)amino)-1-phenylprop-2-en-1-one (50g) $(125.9 \mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{ZnI}_{2}(196.8 \mathrm{mg}, 0.62 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(15.9 \mathrm{mg}, 0.05$ mmol) were employed to afford $100.7 \mathrm{mg}(80 \%)$ of indicated product as an orangishyellow solid ($R_{f}=0.64$ in 4:1 hexane/ethyl acetate; mp 105.1-107.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.9$ (C), 159.5 (C), 159.2 (C), 141.7 (C), 134.8 (C), 131.4 (CH), 130.4 $(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 126.6(\mathrm{CH}), 123.7(\mathrm{C}), 97.1(\mathrm{CH}), 96.3\left(\mathrm{CH}_{2}\right), 65.0$ (C), $34.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2923, 2857, 1652, 1620, 1569, 1556, 1486, 1445, 1372, 1283, 1190, 1071, 1007, 940, 876, 764, $686 \mathrm{~cm}^{-1}$; MS (ESI, m / z): $408.10[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrNO}: 408.0958[\mathrm{M}+\mathrm{H}]^{+}$, found: 408.0964.

3.13.7. 12-Methylene-8-(4-nitrophenyl)-10-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54g)

3-((1-Ethynylcyclohexyl)amino)-3-(4-nitrophenyl)-1-phenylprop-2-en-1-one (50h) ($103.2 \mathrm{mg}, 0.28 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(176.0 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(14.2 \mathrm{mg}, 0.04$ $\mathrm{mmol})$ were employed to afford $70.2 \mathrm{mg}(68 \%)$ of indicated product as a brownishorange solid ($R_{f}=0.61$ in 4:1 hexane/ethyl acetate; mp 127.2-128.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42$
$(\mathrm{m}, 3 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88$ (m, 2H), 1.83-1.73 (m, 2H), 1.67-1.55 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8$ (C), 158.9 (C), 158.8 (C), 148.7 (C), 148.4 (C), 134.6 (C), $130.7(\mathrm{CH}), 128.8(\mathrm{CH})$, $128.6(\mathrm{CH}), 126.7(\mathrm{CH}), 123.6(\mathrm{CH}), 97.6(\mathrm{CH}), 95.8\left(\mathrm{CH}_{2}\right), 65.6(\mathrm{C}), 34.2\left(\mathrm{CH}_{2}\right)$, $26.1\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2912, 2852, 1629, 1567, 1507, 1446, 1343, 1288, 1225, 1106, 1047, 964, 857, 823, 770, $692 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $375.17[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}: 375.1703[\mathrm{M}+\mathrm{H}]^{+}$, found: 375.1707.

3.13.8. 10-(4-Methoxyphenyl)-12-methylene-8-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54h)

3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (50k) ($104.0 \mathrm{mg}, 0.29 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(184.7 \mathrm{mg}, 0.58 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(14.9 \mathrm{mg}, 0.04$ mmol) were employed to afford $65.5 \mathrm{mg}(63 \%)$ of indicated product as a yellow oil $\left(R_{f}=0.46\right.$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.70(\mathrm{~m}$, $4 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 3 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.61 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.98$ (m, 2H), 1.95-1.87 (m, 2H), 1.84$1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{C}), 160.7(\mathrm{C})$, 159.5 (C), 159.4 (C), 143.2 (C), 129.2 (CH), 128.3 (CH), 128.2 (CH), 127.6 (CH), $127.4(\mathrm{C}), 114.0(\mathrm{CH}), 96.7(\mathrm{CH}), 95.6\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 34.3\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2929, 2852, 1623, 1606, 1560, 1509, 1443, 1373, 1254, 1226, 1176, 1027, 821, 767, $696 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $360.20[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}: 360.1958[\mathrm{M}+\mathrm{H}]^{+}$, found: 360.1961 .

3.13.9. 10-(4-Methoxyphenyl)-12-methylene-8-(thiophen-3-yl)-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54i)

3-((1-Ethynylcyclohexyl)amino)-1-(4-methoxyphenyl)-3-(thiophen-3-yl)prop-2-en-1-one (501) ($131.6 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(230.0 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(18.6$ $\mathrm{mg}, 0.05 \mathrm{mmol})$ were employed to afford $101.3 \mathrm{mg}(77 \%)$ of indicated product as a
brownish-yellow solid ($R_{f}=0.56$ in 4:1 hexane/ethyl acetate; mp 91.2-92.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=$ $5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.80$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), 1.88 (br s, 2H), 1.85-1.76 (m, 2H), 1.72-1.63 (m, 2H), 1.54-1.41 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4$ (C), 159.5 (C), 159.1 (C), 155.5 (C), 145.8 (C), 128.2 (CH), 127.8 (CH), 127.4 (C), $125.5(\mathrm{CH}), 124.5(\mathrm{CH}), 114.0(\mathrm{CH}), 96.8(\mathrm{CH}), 95.2\left(\mathrm{CH}_{2}\right), 64.7(\mathrm{C}), 55.5\left(\mathrm{CH}_{3}\right)$, $34.4\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2923, 2853, 1619, 1604, 1563, 1509, 1452, 1359, 1253, 1229, 1171, 1070, 974, 822, 785, $694 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 366.15 $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}: 366.1522[\mathrm{M}+\mathrm{H}]^{+}$, found: 366.1528.

3.13.10. 8-(3-Fluorophenyl)-10-(4-methoxyphenyl)-12-methylene-11-oxa-7-

 azaspiro[5.6]dodeca-7,9-diene (54j)3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (50m) ($152.1 \mathrm{mg}, 0.40 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(257.3 \mathrm{mg}, 0.81 \mathrm{mmol})$ and AgSbF_{6} (20.8 $\mathrm{mg}, 0.06 \mathrm{mmol})$ were employed to afford $103.4 \mathrm{mg}(68 \%)$ of indicated product as a yellow oil ($R_{f}=0.52$ in $4: 1$ hexane/ethyl acetate). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-$ $7.71(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{dt}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=8.0,5.9$ Hz, 1H), 7.07 (tdd, $J=8.4,2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92$ (m, 2H), 6.15 (s, 1H), 4.91 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.85$ (m, 2H), 1.83-1.73 (m, 2H), 1.66-1.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9$ (d, $\left.{ }^{1} J_{\mathrm{CF}}=245.5 \mathrm{~Hz}, \mathrm{C}\right), 161.5$ (C), 159.8 (C), 159.5 (C), 159.3 (C), 145.5 (d, ${ }^{3} J_{\mathrm{CF}}=$ $6.9 \mathrm{~Hz}, \mathrm{C}), 129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.2(\mathrm{CH}), 127.2(\mathrm{C}), 123.2\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.0\right.$ $\mathrm{Hz}, \mathrm{CH}), 116.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 114.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.4 \mathrm{~Hz}, \mathrm{CH}\right), 114.1(\mathrm{CH})$, $96.9(\mathrm{CH}), 95.0\left(\mathrm{CH}_{2}\right), 64.9(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2931, 2854, 1623, 1607, 1562, 1509, 1440, 1372, 1246, 1177, 1032, 977, 881, 785, 710, $586 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $378.19[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{FNO}_{2}: 378.1864[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1868.

3.13.11. 8-(4-Bromophenyl)-10-(4-methoxyphenyl)-12-methylene-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54k)

3-((1-Ethynylcyclohexyl)amino)-3-(3-fluorophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (50n) ($110.0 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(160.2 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(12.9$ $\mathrm{mg}, 0.04 \mathrm{mmol})$ were employed to afford $78.1 \mathrm{mg}(71 \%)$ of indicated product as a yellow solid ($R_{f}=0.57$ in 4:1 hexane/ethyl acetate; mp 104.7-106.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91$ $(\mathrm{m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 1.98 (br s, 2H), 1.94-1.85 (m, 2H), 1.82-1.72 (m, 2H), 1.64-1.52 (m, 4H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5$ (C), 159.9 (C), 159.7 (C), 159.3 (C), 142.0 (C), 131.4 (CH), 129.3 (CH), $128.2(\mathrm{CH}), 127.2(\mathrm{C}), 123.6(\mathrm{C}), 114.0(\mathrm{CH}), 96.9(\mathrm{CH}), 94.9$ $\left(\mathrm{CH}_{2}\right), 64.9(\mathrm{C}), 55.6\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2937, 2847, 1632, 1588, 1509, 1484, 1417, 1367, 1251, 1225, 1117, 1030, 1008, 916, 804, 720, $641 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $438.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{BrNO}_{2}$: $438.1063[\mathrm{M}+\mathrm{H}]^{+}$, found: 438.1068.

3.13.12. 10-(4-Chlorophenyl)-12-methylene-8-phenyl-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54I)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-phenylprop-2-en-1-one (500) $(124.8 \mathrm{mg}, 0.34 \mathrm{mmol}), \mathrm{ZnI}_{2}(219.0 \mathrm{mg}, 0.69 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(17.7 \mathrm{mg}, 0.05$ mmol) were employed to afford $93.6 \mathrm{mg}(75 \%)$ of indicated product as an orange solid ($R_{f}=0.54$ in 4:1 hexane/ethyl acetate; mp 125.5-127.9 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 7.77-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.92$ (brs, 1H), 4.64 (brs, 1H), 2.02 (br s, 2H), 1.94-1.85 (m, 2H), 1.84-1.75 (s, 2H), 1.65-1.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3$ (C), 159.3 (C), 158.2 (C), 142.8 (C), 136.2 (C), $133.5(\mathrm{C}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 97.0\left(\mathrm{CH}_{2}\right)$, $96.9(\mathrm{CH}), 64.9(\mathrm{C}), 34.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right)$; IR (neat) 2927, 2852, 1637, 1592, 1572, 1487, 1403, 1359, 1221, 1191, 1114, 1090, 1010, 915, 867, 767, $695 \mathrm{~cm}^{-}$
${ }^{1}$; MS (ESI, m/z): $364.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CINO}: 364.1463$ $[\mathrm{M}+\mathrm{H}]^{+}$, found: 364.1464.

3.13.13. 10-(4-Chlorophenyl)-12-methylene-8-(p-tolyl)-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54m)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(p-tolyl)prop-2-en-1-one ($\mathbf{5 0 p}$) $(135.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{ZnI}_{2}(228.7 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(18.6 \mathrm{mg}, 0.05$ mmol) were employed to afford $98.9 \mathrm{mg}(73 \%)$ of indicated product as a light yellow solid ($R_{f}=0.60$ in $4: 1$ hexane/ethyl acetate; mp 147.2-149.8 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, 3 H), 2.01 (br s, 2H), 1.94-1.85 (m, 2H), 1.84-1.75 (m, 2H), 1.64-1.48 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 160.0$ (C), 159.5 (C), 158.0 (C), 140.1 (C), 139.3 (C), $136.2(\mathrm{C}), 133.6(\mathrm{C}), 129.1(\mathrm{CH}), 128.9(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 97.1(\mathrm{CH})$, $96.8\left(\mathrm{CH}_{2}\right), 64.8(\mathrm{C}), 34.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 22.7\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$; IR (neat) 2937, 2852, 1621, 1575, 1556, 1487, 1402, 1369, 1285, 1178, 1088, 1010, 950, 864, 807, $678 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $378.16[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClNO}$: $378.1619[\mathrm{M}+\mathrm{H}]^{+}$, found: 378.1625 .

3.13.14. 10-(4-Chlorophenyl)-8-(3-fluorophenyl)-12-methylene-11-oxa-7-azaspiro[5.6]dodeca-7,9-diene (54n)

1-(4-Chlorophenyl)-3-((1-ethynylcyclohexyl)amino)-3-(3-fluorophenyl)prop-2-en-1one ($\mathbf{5 0 q}$) ($119.7 \mathrm{mg}, 0.31 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(200.1 \mathrm{mg}, 0.63 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(16.2 \mathrm{mg}$, $0.05 \mathrm{mmol})$ were employed to afford $106.5 \mathrm{mg}(89 \%)$ of indicated product as a light orange solid ($R_{f}=0.63$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 116.6-118.9^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ $7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J=8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}$, $1 \mathrm{H}), 4.93(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.93-1.85(\mathrm{~m}$,

2 H), 1.84-1.73 (m, 2H), 1.65-1.51 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9$ (d, $\left.{ }^{1} J_{\mathrm{CF}}=245.8 \mathrm{~Hz}, \mathrm{C}\right), 159.1(\mathrm{C}), 158.7(\mathrm{C}), 145.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=6.9 \mathrm{~Hz}, \mathrm{C}\right), 136.4(\mathrm{C}), 133.2$ (C), $129.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.9(\mathrm{CH}), 127.9(\mathrm{CH}), 123.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{CF}}=2.5 \mathrm{~Hz}\right.$, $\mathrm{CH}), 116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21.4 \mathrm{~Hz}, \mathrm{CH}\right), 114.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=22.5 \mathrm{~Hz}, \mathrm{CH}\right), 97.2(\mathrm{CH}), 96.4$ $\left(\mathrm{CH}_{2}\right), 65.0(\mathrm{C}), 34.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{2}\right)$ (Two C peaks overlap with each other); IR (neat) 2926, 2848, 1634, 1575, 1484, 1439, 1361, 1292, 1249, 1196, 1064, 1044, 939, 819, 784, $676 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $382.14[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CIFNO}: 382.1369[\mathrm{M}+\mathrm{H}]^{+}$, found: 382.1378 .

3.13.15. 3,3-Dimethyl-2-methylene-5,7-diphenyl-2,3-dihydro-1,4-oxazepine (86a)

3-((2-Methylbut-3-yn-2-yl)amino)-1,3-diphenylprop-2-en-1-one (61a) (102.0 mg, $0.35 \mathrm{mmol}), \mathrm{ZnI}_{2}(225.0 \mathrm{mg}, 0.71 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(18.2 \mathrm{mg}, 0.05 \mathrm{mmol})$ were employed to afford $75.5 \mathrm{mg}(74 \%)$ of indicated product as a yellow solid ($R_{f}=0.59$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 90.7-92.5^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.80$ $(\mathrm{m}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 4.87$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.0$ (C), 160.8 (C), 159.2 (C), 142.8 (C), 135.0 (C), 130.2 (CH), 129.2 (CH), 128.6 (CH), $128.4(\mathrm{CH}), 127.4(\mathrm{CH}), 126.6(\mathrm{CH}), 97.2(\mathrm{CH}), 95.5\left(\mathrm{CH}_{2}\right), 61.7(\mathrm{C}), 26.5$ $\left(\mathrm{CH}_{3}\right)$; IR (neat) 2973, 2934, 1627, 1562, 1492, 1446, 1373, 1287, 1234, 1145, 1045, 868, 765, $676 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $290.15[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}: 290.1539[\mathrm{M}+\mathrm{H}]^{+}$, found: 290.1542 .

3.13.16. 3,3-Dimethyl-2-methylene-7-phenyl-5-(m-tolyl)-2,3-dihydro-1,4oxazepine (86b)

3-((2-Methylbut-3-yn-2-yl)amino)-1-phenyl-3-(m-tolyl)prop-2-en-1-one $(109.3 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{ZnI}_{2}(230.0 \mathrm{mg}, 0.72 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(18.6 \mathrm{mg}, 0.05$ mmol) were employed to afford $85.3 \mathrm{mg}(78 \%)$ of indicated product as a yellow solid $\left(R_{f}=0.65\right.$ in $4: 1$ hexane/ethyl acetate; mp 91.6-93.3 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.30$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.3 (C), 160.8 (C), 159.1 (C), 142.8 (C), 138.0 (C), 135.0 (C), 130.2 (CH), 129.9 (CH), $128.6(\mathrm{CH}), 128.2(\mathrm{CH}), 128.1(\mathrm{CH}), 126.6(\mathrm{CH}), 124.5(\mathrm{CH}), 97.4(\mathrm{CH}), 95.4$ $\left(\mathrm{CH}_{2}\right), 61.7(\mathrm{C}), 26.5\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2978, 2921, 1637, 1573, 1492, 1448, 1363, 1285, 1251, 1169, 1140, 1054, 881, 786, $688 \mathrm{~cm}^{-1}$; MS (ESI, m/z): 304.17 $[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}: 304.1696[\mathrm{M}+\mathrm{H}]^{+}$, found: 304.1705.

3.13.17. 7-(4-Chlorophenyl)-3,3-dimethyl-2-methylene-5-phenyl-2,3-dihydro-

 1,4-oxazepine (86 c)1-(4-Chlorophenyl)-3-((2-methylbut-3-yn-2-yl)amino)-3-phenylprop-2-en-1-one (61c) $(101.8 \mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{ZnI}_{2}(200.7 \mathrm{mg}, 0.63 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(16.2 \mathrm{mg}, 0.05$ $\mathrm{mmol})$ were employed to afford $66.2 \mathrm{mg}(65 \%)$ of indicated product as a yellow solid ($R_{f}=0.48$ in 4:1 hexane/ethyl acetate; $\mathrm{mp} 126.3-128.2{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.75-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 5 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9$ (C), 160.7 (C), 158.2 (C), 142.7 (C), 136.4 (C), 133.5 (C), 129.3 (CH), 128.9 (CH), 128.4 $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 97.4(\mathrm{CH}), 95.8\left(\mathrm{CH}_{2}\right), 61.8(\mathrm{C}), 26.6\left(\mathrm{CH}_{3}\right)$; IR (neat) 2984, 2927, 1626, 1581, 1561, 1487, 1405, 1371, 1286, 1231, 1177, 1149, 1090, 1010, 867, 821, 768, 697, $604 \mathrm{~cm}^{-1}$; MS (ESI, m/z): $324.11[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClNO}: 324.1150[\mathrm{M}+\mathrm{H}]^{+}$, found: 324.1155.

CHAPTER 4

CONCLUSION

In summary, many novel and potentially bioactive 5 -arylpyridines 46, 2ferrocenylpyridines $\mathbf{4 9}$, spiro- $2 H$-pyrroles 51 and $\mathbf{5 3}$ and spiro-1,4-oxazepines 54 were synthesized in good to high yields. Efficient methodologies for the synthesis of each class of heterocyclic molecules were developed successfully.

Firstly, starting materials were prepared by Pd- and Cu-catalyzed Sonogashira crosscoupling reaction of aryl chlorides with terminal alkynes. As a result of Sonogashira approach, we achieved the synthesis of twenty five α, β-alkynic ketone derivatives $\mathbf{2 6}$ in $65-99 \%$ yields. Conjugate addition of propargylamine, 1-ethynylcyclohexylamine and 2-methyl-3-butyn-2-amine to α, β-alkynic ketones 26 in refluxing methanol gave N-propargylic β-enaminone derivatives 32, 50 and $\mathbf{6 1}$ in $94-98 \%, 51-83 \%$ and $60-69 \%$ yields, respectively. Some of the N-propargylic β-enaminones were subjected to Sonogashira cross-coupling with aryl iodides in order to further functionalize these compounds. Therefore, arylated β-enaminone derivatives $\mathbf{1 0}$ and $\mathbf{5 2}$ were obtained in $77-88 \%$ and $70-89 \%$ yields. Then, when treated with 3.0 equiv. of molecular iodine and sodium bicarbonate in refluxing acetonitrile, N-propargylic β-enaminones $\mathbf{1 0}$ underwent electrophilic cyclization to provide 5-iodopridines 44 in 62-80\% yields.

After preparation of starting materials, suitable reaction conditions were explored for the facile synthesis of final compounds. In first part of the synthesis, a series of optimization reactions were carried out to synthesize 5 -arylpyridines $\mathbf{4 6}$ by using model reaction of 5-iodopyridine derivative 44a. As a result of these reactions, the best yield (94%) was achieved by using $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)$ and 1.4 equiv. of both boronic acids and KHCO_{3} in $4: 1$ ratio of $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ solution at $110{ }^{\circ} \mathrm{C}$. These
optimized reaction conditions were employed for Suzuki-Miyaura coupling reaction of 5 -iodopyridines 44 with boronic acids 45 . As a result, eighteen novel 5arylpyridines derivatives $\mathbf{4 6}$ were synthesized in good to excellent yields (65-98\%).

Secondly, one-pot method for the synthesis of 2-ferrocenylpyridines 49 from α, β alkynic ketones 26 and propargylamine 48 via in situ formation of N-propargylic β enaminone was described. After optimization studies, the highest yield (77\%) of 2ferrocenylpyridine 49 was obtained with 1.0 equiv. of CuCl in DMF at $110^{\circ} \mathrm{C}$ and open to air. By employing the optimized reaction conditions, six novel 2ferrocenylpyridines 49 were synthesized in good yields (69-90\%).

The basis of third section of the thesis study comprises investigation of cyclization of cyclohexane-embedded N-propargylic β-enaminones 50 in basic medium. In order optimize the reaction conditions, the representative reaction of cyclohexaneembedded N-propargylic β-enaminone 50a under different conditions was examined. Depending on optimization studies, the best yield (95\%) of cyclization reactions of cyclohexane-embedded N-propargylic β-enaminones to the spiro- $2 H$-pyrroles was afforded by using 3.0 equiv. of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere. Seventeen spiro- $2 H$-pyrroles 51 were synthesized in good to excellent yields (82$\mathbf{9 7 \%}$). In addition to these spiro- 2 H -pyrroles 51, three derivatives of 2,2-dimethyl- 2 H pyrroles $\mathbf{7 2}$ were prepared in $85-92 \%$ yields for comparison.

In the same manner, in order to obtain further functionalized spiro- $2 H$-pyrroles, cyclohexane-embedded N-propargylic β-enaminones $\mathbf{5 0}$ were subjected to Sonogashira cross-coupling with aryl iodides. These arylated β-enaminones 52 with internal alkyne functionality were exposed to base and the oxidized spiro- 2 H -pyrroles were obtained unexpectedly. Then, we proceeded a series of optimization reactions and the highest yield (69%) of product 53 was obtained when treated with 3 equivalents $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMSO at $80^{\circ} \mathrm{C}$ and open to air. By employing these conditions,
eight spiro- 2 H -pyrroles $\mathbf{5 3}$ with two carbonyl groups via benzylic C-H oxidation were obtained in good yields ($60-75 \%$).

In the last part of this thesis study, we investigated Lewis acid promoted electrophilic cyclization of cyclohexane-embedded N-propargylic β-enaminones 50 to spiro-1,4oxazepines 54. By using 2.0 equiv. of ZnI_{2} and 0.15 equiv. AgSbF_{6} in refluxing DCE under argon atmosphere, the highest yield of spiro-1,4-oxazepine 54 (73%) was obtained from corresponding cyclohexane-embedded N-propargylic β-enaminone 50 in optimization studies. According to the results, reaction proceeded smoothly and afforded fourteen spiro-1,4-oxazepines 54 in good to high yields ($60-89 \%$). In addition, we synthesized three derivatives of 3,3-dimethyl-1,4-oxazepines 86 as well, which contain two methyl groups, instead of a spiro-cyclohexane unit. These 1,4oxazepine derivatives were obtained in $65-78 \%$ yields, the yields of which are comparable with those of spiro-1,4-oxazepines 54.

REFERENCES

1. McMurry, J. Organic Chemisty, 7th ed.; Thomson Brooks/Cole: Belmont, 2008.
2. Mishraa, B. B.; Kumar, D.; Mishraa, A.; Mohapatrab, P. P.; Tiwari, V. K. Cyclo-Release Strategy in Heterocyclic Synthesis. Adv. Heterocycl. Chem. 2012, 107, 41.
3. Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485.
4. Kaur, R.; Bariwal, J.; Voskressensky, L. G.; Van der Eycken, E. V. Gold and Silver Nanoparticle-Catalyzed Synthesis of Heterocyclic Compounds. Chem. Hetrocycl. Compd. 2018, 54, 241.
5. Martins, P.; Jesus, J.; Santos, S.; Raposo, L. R.; Roma-Rodrigues, C.; Baptista, P. V.; Fernandes, A. R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine's Tool Box. Molecules 2015, 20, 16852.
6. Singh, G. S.; Tabane, T. H. Synthetic Approaches to Small- and Medium-Size Aza-Heterocycles in Aqueous Media, In Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G., Ed.; Elsevier: Oxford, 2015; Chapter 7, pp 163-184.
7. Banfi, L.; Basso, A.; Lambruschini, C.; Moni, L.; Riva, R. Synthesis of SevenMembered Nitrogen Heterocycles Through the Ugi Multicomponent Reaction. Chem. Heterocycl. Compd. 2017, 53, 382.
8. Sammes, M. P.; Katritzky, A. R. The $2 H$ - and $3 H$-Pyrroles. Adv. Heterocycl. Chem. 1982, 32, 233.
9. Gholap, S. S. Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents. Eur. J. Med. Chem. 2016, 110, 13.
10. (a) d'Ischia, M.; Napolitano, A.; Pezzella, A. Pyrroles and Their Benzo Derivatives: Structure, In Comprehensive Heterocyclic Chemistry III; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K.; Jones,
G., Eds.; Pergamon-Elsevier: Oxford, 2008; Vol. 3, pp 1-43 (Chapters 3.01). (b) Quin, L. D.; Tyrell, J. A. Fundamentals of Heterocyclic Chemistry; Wiley: New Jersey, 2010; Chapter 9.2, pp 222-225.
11. (a) Young, I. S.; Thornton, P. D.; Thompson, A. Synthesis of Natural Products Containing the Pyrrolic Ring. Nat. Prod. Rep. 2010, 27, 1801. (b) Ding, Y.; Tang, Y.; Zhu, W.; Xie, Y. Fluorescent and Colorimetric Ion Probes Based on Conjugated Oligopyrroles. Chem. Soc. Rev. 2015, 44, 1101. (c) Lakshmi, V.; Rao, M. R.; Ravikanth, M. Halogenated Boron-Dipyrromethenes: Synthesis, Properties and Applications. Org. Biomol. Chem. 2015, 13, 2501. (d) Patel, R. V.; Park, S. W. Pyrroloaryls and Pyrroloheteroaryls: Inhibitors of the HIV Fusion/Attachment, Reverse Transcriptase and Integrase. Bioorg. Med. Chem. 2015, 23, 5247. (e) Alfonso, M.; Tarrago, A.; Molina, P. Pyrrole, Imidazole, and Triazole Derivatives as Ion-Pair Recognition Receptors. Tetrahedron Lett. 2016, 57, 3053.
12. (a) Leeper, F. J. The Biosynthesis of Porphyrins, Chlorophylls, and Vitamin B12. Nat. Prod. Rep. 1989, 6, 171. (b) Thibaut, D.; Blanche, F.; Debussche, L.; Leeper, F. J.; Battersby, A. R. Biosynthesis of Vitamin B12: Structure of Precorrin-6x Octamethyl Ester. Proc. Natl. Acad. Sci. USA 1990, 87, 8800. (c) Kiuchi, F.; Leeper, F. J; Battersby, A. R. Biosynthesis of Porphyrins and Related Macrocycles, Part 43. Isolation and Characterization of Intermediates of Coenzyme B12 Biosynthesis, a Cobyrinic Acid Triamide, the a,c-Diamide and Their Co-(5'-deoxy-5'-adenosyl) Derivatives, from Propionibacterium Shermanii. Chem Biol. 1995, 2, 527.
13. (a) Fürstner, A. Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years. Angew. Chem. Int. Ed. 2003, 42, 3582. (b) Kumar, N. K.; Kumar, V. Prodigiosin Alkaloids: Recent Advancements in Total Synthesis and Their Biological Potential. RSC Adv. 2015, 5, 10899.
14. (a) Trofimov, B. A.; Mikhaleva, A. I.; Schmidt, E. Y.; Sobenina, L. N. Chemistry of Pyrroles; CRC Press: Boca Raton, USA, 2015. (b) Lopchuk, J. M. Five-Membered Ring Systems: Pyrroles and Benzo Analogs, In Progress in Heterocyclic Chemistry; Gribble, G. W.; Joule, J. A., Eds.; Elsevier: Oxford, UK, 2016; Vol. 28, Chapter 5.2, pp 165-218. (c) Vessally, E. A New Avenue to the Synthesis of Highly Substituted Pyrroles: Synthesis from N propargylamines. RSC Adv. 2016, 6, 18619. (d) Zhou, N. N.; Zhu, H. T.;

Yanga, D. S.; Guan, Z. H. Recent Developments in the Group-1B-metalcatalyzed Synthesis of Pyrroles. Org. Biomol. Chem. 2016, 14, 7136. (e) Sharma, A.; Piplani, P. J. Heterocyclic Chem. 2017, 54, 27.
15. (a) Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medicinal Hetero-Aromatics. RSC Adv. 2015, 5, 15233.
16. (a) Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891. (b) Estevez, V.; Villacampa, M.; Menendez, J. C. Multicomponent Reactions for the Synthesis of Pyrroles. Chem. Soc. Rev. 2010, 39, 4402. (c) Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Kevin Burgess, K. BODIPY Dyes in Photodynamic Therapy. Chem. Soc. Rev. 2013, 42, 77. (d) Lakshmi, V.; Rao, M. R.; Ravikanth, M. Halogenated Boron-dipyrromethenes: Synthesis, Properties and Applications. Org. Biomol. Chem. 2015, 13, 2501.
17. Khajuria, R.; Dham, S.; Kapoor, K. K. Active Methylenes in the Synthesis of a Pyrrole Motif: An Imperative Structural Unit of Pharmaceuticals, Natural Products and Optoelectronic Materials. $R S C$ Adv. 2016, 6, 37039.
18. Knorr, L. Synthese Von Pyrrolderivaten. Chem. Ber. 1884, 17, 1635.
19. Hantzsch, A. Neue Bildungsweise von Pyrrolderivaten. Chem. Ber. 1890, 23, 1474.
20. Gao, M.: He, C.: Chen, H.: Bai, R.: Cheng, B.: Lei, A. Synthesis of Pyrroles by Click Reaction: Silver-Catalyzed Cycloaddition of Terminal Alkynes with Isocyanides. Angew.Chem. Int. Ed., 2013, 52, 1.
21. Cacchi, S.; Fabrizi, G.; Filisti, E. N-Propargylic β-Enaminones: Common Intermediates for the Synthesis of Polysubstituted Pyrroles and Pyridines. Org. Lett. 2008, 10, 2629.
22. Saito, A.; Konishi, T.; Hanzawa, Y. Synthesis of Pyrroles by Gold(I)Catalyzed Amino-Claisen Rearrangement of N-Propargyl Enaminone Derivatives. Org. Lett. 2010, 12, 372.
23. Yang, X.; Wang, Y.; Hu, F.; Kan, X.; Yang, C.; Liu, J.; Liu, P.; Zhang, Q. Base-Promoted Intramolecular Cyclization of N-Alkyl, N-Propargylic β -

Enaminones for the Synthesis of Polysubstituted Pyrroles. RSC Adv. 2016, 6, 68454.
24. Chaubey, A.; Pandeya, S. N. Pyridine a Versatile Nucleuse In Pharmaceutical Field. Asian J. Pharm. Clin. Res. 2011, 4, 5.
25. Baumann, M.; Baxendale, I. R. An Overview of the Synthetic Routes to the Best Selling Drugs Containing 6-Membered Heterocycles. Beilstein J. Org. Chem. 2013, 9, 2265.
26. Johnson, C. D.; Comins, D. L.; Joseph, S. P.; Dennis, N.; Lounasmaa, M.; Tolvanen, A.; Jones, G.; Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; McKillop, A., Eds.; Pergamon: Oxford, 1996; Vol. 5; Chapter 5, p 1-15.
27. (a) Kubota, T.; Nishi, T.; Fukushi, E.; Kawabata, J.; Fromont, J.; Kobayashi, J. Nakinadine A, A Novel Bis-Pyridine Alkaloid With a β-Amino Acid Moiety From Sponge Amphimedonsp. Tetrahedron Lett. 2007, 48, 4983. (b) Jayasinghe, L.; Jayasooriya, C. P.; Hara, N.; Fujimoto, Y. A Pyridine RingContaining Ecdysteroid From Diploclisia Glaucescens. Tetrahedron Lett. 2003, 44, 8769
28. Dewick, P. M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; Wiley: Chichester, 2009; Chapter 6, p 331.
29. Deininger, M. W. N.; Druker, B. J. Specific Targeted Therapy of Chronic Myelogenous Leukemia with Imatinib. Pharmacol.Rev. 2003, 55, 401.
30. Gillies, P. S.; Dunn, C. J. Pioglitazone. Drugs 2000, 60, 333.
31. Horak, F.; Stübner, U. P.; Zieglmayer, R.; Harris, A. G. Effect of Desloratadine Versus Placebo on Nasal Airflow and Subjective Measures of Nasal Obstruction in Subjects with Grass Pollen-Induced Allergic Rhinitis in an Allergen-Exposure Unit. J. Allergy Clin. Immunol. 2002, 109, 956.
32. Harrison, T. S.; Scott, L. J. Atazanavir: A Review of Its Use in The Management of HIV Infection. Drugs 2005, 65, 2309.
33. Eastell, R.; Vrijens, B.; Cahall, D. L.; Ringe, J. D.; Garnero, P.; Watts, N. B. J. Bone Turnover Markers and Bone Mineral Density Response With

Risedronate Therapy: Relationship With Fracture Risk and Patient Adherence. Bone Miner. Res. 2011, 26, 1662.
34. McCrae, C. S.; Ross, A.; Stripling, A.; Dautovich, N. D. Eszopiclone For LateLife Insomnia. Clin. Interv. Aging 2007, 2, 313.
35. Watts, G. F.; Chan, D. C. Of Mice and Men Blowing Away the Cobwebs From the Mechanism of Action of Niacin on HDL Metabolism. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1892.
36. Stedman, C. A.; Barclay, M. L. Review Article: Comparison of The Pharmacokinetics, Acid Suppression and Efficacy of Proton Pump Inhibitors Aliment. Pharmacol. Ther. 2000, 14, 963.
37. Wang, Y. Z.; Epstein, A. Interface Control of Light-Emitting Devices Based on Pyridine-Containing Conjugated Polymers. J. Acc. Chem. Res. 1999, 32, 217.
38. Neely, J. M.; Rovis, T. Pyridine Synthesis by [4+2] Cycloadditions of 1Azadienes: Hetero-Diels Alder and Transition Metal-Catalysed Approaches. Org. Chem. Front. 2014, 1, 1010.
39. Vardanyan, R. Piperidine-Based Drug Discovery; Elsevier: Oxford, 2017; Chapter 1, pp 1-57.
40. (a) Bagley, M. C.; Lunn, R.; Xiong, X. A New One-Step Synthesis of Pyridines Under Microwave-Assisted Conditions. Tetrahedron Lett. 2002, 43, 8331. (b) Lu, J. Y.; Keith, J. A.; Shen, W. Z.; Schurmann, M.; Preut, H.; Jacob, T.; Arndt, H. D. Regioselective De Novo Synthesis of Cyanohydroxypyridines with a Concerted Cycloaddition Mechanism. J. Am. Chem. Soc. 2008, 130, 13219.
41. Yamamoto, S.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Rhenium-Catalyzed Regioselective Synthesis of Multisubstituted Pyridines from β-Enamino Ketones and Alkynes via C-C Bond Cleavage. Org. Lett. 2012, 14, 3182.
42. Reddy, C. R.; Panda, S. A.; Reddy, M. D. Aza-Annulation of Enynyl Azides: A New Approach to Substituted Pyridines. Org. Lett. 2015, 17, 896.
43. Hilf, J. A.; Holzwarth, M. S.; Rychnovsky, S. D. Route to Highly Substituted Pyridines. J. Org. Chem. 2016, 81, 10376.
44. Reck, F.; Zhou, F.; Eyermann, C. J.; Kern, G.; Carcanague, D.; Ioannidis, G.; Illingworth, R.; Poon, G.; Gravestock, M. B. Novel Substituted (Pyridin-3yl)phenyloxazolidinones: Antibacterial Agents with Reduced Activity Against Monoamine Oxidase A and Increased Solubility. J. Med. Chem. 2007, 50, 4868.
45. Masner, P.; Kerkenaar, A. Effect of the Fungicide Pyrifenox on Sterol Biosynthesis in Ustilago Maydis. Pestic. Sci. 1988, 22, 61.
46. Martina, S. D.; Vesta, K. S.; Ripley, T. L. Etoricoxib: a Highly Selective COX-2 Inhibitor. Ann. Pharmacother. 2005, 39, 854.
47. Younis, Y.; Douelle, F.; Cabrera, D. G.; Manach, C. L.; Nchinda, A. T.; Paquet, T.; Street, L. J.; White, K. L.; Zabiulla, K. M.; Joseph, J. T.; Bashyam, S.; Waterson, D.; Witty, M. J.; Wittlin, S.; Charman, S. A.; Chibale, K. Structure-Activity-Relationship Studies around the 2-Amino Group and Pyridine Core of Antimalarial 3,5-Diarylaminopyridines Lead to a Novel Series of Pyrazine Analogues with Oral in Vivo Activity. J. Med. Chem. 2013, 56, 8860.
48. Son, J. K.; Zhao, L. X.; Basnet, A.; Thapa, P.; Karki, R.; Na, Y.; Jahng, Y.; Jeong, T. C.; Jeong, B. S.; Lee, C. S.; Lee, E. S. Synthesis of 2,6-diarylsubstituted pyridines and their antitumor activities. Eur. J. Med. Chem.2008, 43, 675.
49. Yang, W.; Ruan, Z.; Wang, Y.; Kirk, K. V.; Ma, Z.; Arey, B. J.; Cooper, C. B.; Seethala, R.; Feyen, J. H. M.; Dickson, J. K., Jr. Discovery and Structure-Activity Relationships of Trisubstituted Pyrimidines/Pyridines as Novel Calcium-Sensing Receptor Antagonists. J. Med. Chem. 2009, 52, 1204.
50. Shao, B.; Victory, S.; Ilyin, V. I.; Goehring, R. R.; Sun, Q.; Hogenkamp, D.; Hodges, D. D.; Islam, K.; Sha, D.; Zhang, C.; Nguyen, P.; Robledo, S.; Sakellaropoulos, G.; Carter, R. B. Phenoxyphenyl Pyridines as Novel StateDependent, High-Potency Sodium Channel Inhibitors. J. Med. Chem. 2004, 47, 4277.
51. Szczepankiewicz, B. G.; Kurukulasuriya, R. Aromatic Heterocycle-Based DPP-IV Inhibitors: Xanthines and Related Structural Types. Curr. Top. Med. Chem. 2007, 7, 569.
52. Zhao, L. X.; Sherchan, J.; Park, J. K.; Jahng, Y.; Jeong, B. S.; Jeong, T. C.; Lee, C. S.; Lee, E. S. Synthesis, Cytotoxicity and Structure-Activity Relationship Study of Terpyridines. Arch. Pharm. Res. 2006, 29, 1091.
53. Ornelas, C. Application of Ferrocene and Its Derivatives in Cancer Research. New J. Chem. 2011, 35, 1973.
54. Klimova, E. I.; Garcia, M. M.; Garcia, J. J. S.; Apan, T. R.; Churakov, A. V.; Beletskaya, I. P. Reactions of 2-Cyano-3-ferrocenylacrylonitrile With Malononitrile: Formation of 4-Ferrocenylpyridine-3,5-dicarbonitrile Derivatives and Sodium Polymeric Complexes Containing Carbanionic Ligands. Pure Appl. Chem. 2014, 86, 1839.
55. Rajput, J.; Hutton, A. T.; Moss, J. R.; Su, H.; Imrie, C. Ferrocenyl-Nitrogen Donor Ligands. Synthesis and Characterization of Rhodium(I) Complexes of Ferrocenylpyridine and Related Ligands. J. Organomet. Chem. 2006, 691, 4573.
56. Xu, C.; Li, H. M.; Liu, H.; Zhang, Z. Q.; Wang, Z. Q.; Fu, W. J.; Zhang, Y. Q. N-Heterocyclic Carbene Adducts of Cyclopalladated Ferrocenylpyridine: Synthesis, Structural Characterization and Reusable Catalytic System for Suzuki and Amination of Aryl Chlorides in Poly(Ethylene Glycol-400). Inorg. Chim. Acta 2012, 386, 22.
57. Hamak, K. F.; Eissa, H. H. Synthesis, Characterization, Biological Evaluation and Anti Corrosion Activity of Some Heterocyclic Compounds Oxazepine Derivatives from Schiff Bases. Org. Chem. Curr. Res. 2013, 2, 121.
58. Kwiecien, H.; Smist, M.; Wrzesniewska, A. Synthesis of Aryl-fused 1,4Oxazepines and their Oxo Derivatives: A Review. Curr. Org. Synth. 2012, 9, 828.
59. Hallinan, E. A.; Hagen, T. J.; Tsymbalov, S.; Stapelfeld, A.; Savage, M. A. 2,4-Disubstituted Oxazoles and Thiazoles as Latent Pharmacophores for Diacylhydrazine of SC-51089, a Potent PGE2 Antagonist. Bioorg. Med. Chem. 2001, 9,1 .
60. Coyne, W. E.; Cusic, J. W. Anticonvulsant Semicarbazides. J. Med. Chem. 1968, 11, 1158.
61. Coccaro, E. F.; Siever, L. J. Second Generation Antidepressants: A Comparative Review. J. Clin. Pharmacol. 1985, 25, 241.
62. Liao, Y.; Venhuis, B. J.; Rodenhuis, N.; Timmerman, W.; Wikstrom, H.; Meire, E.; Bartoszyk, G. D.; Bottcher, H.; Seyfried, C. A.; Sundell, S. New (Sulfonyloxy)piperazinyldibenzazepines as Potential Atypical Antipsychotics: Chemistry and Pharmacological Evaluation. J. Med. Chem. 1999, 42, 2235.
63. Binaschi, M.; Boldetti, A.; Gianni, M.; Maggi, C. A.; Gensini, M.; Bigioni, M.; Parlani, M.; Giolitti, A.; Fratelli, M.; Valli, C.; Terao, M.; Garattini, E. Antiproliferative and Differentiating Activities of a Novel Series of Histone Deacetylase Inhibitors. ACS Med. Chem. Lett. 2010, 1, 411.
64. Smits, R. A.; Lim, H. D.; Stegink, B.; Bakker, R. A.; de Esch, I. J. P.; Leurs, R. Characterization of the Histamine H_{4} Receptor Binding Site. Part 1.Synthesis and Pharmacological Evaluation of Dibenzodiazepine Derivatives. J. Med. Chem. 2006, 49, 4512.
65. Dols, P. P. M. A.; Folmer, B. J. B.; Hamersma, H.; Kuil, C. W.; Lucas, H.; Ollero, L.; Rewinkel, J. B. M.; Hermkens, P. H. H. SAR Study of 2,3,4,14b-Tetrahydro- $1 H$-dibenzo $[b, f]$ pyrido $[1,2-d][1,4]$ oxazepines as Progesterone Receptor Agonists. Bioorg. Med. Chem. Lett. 2008, 18, 1461.
66. Li, R.; Farmer, P. S.; Wang, J.; Boyd, R. J.; Cameron, T. S.; Quilliam, M. A.; Walter, J. A.; Howlett, S. E. Molecular Geometries of Dibenzothiazepinone and Dibenzoxazepinone Calcium Antagonists. Drug Des. Discovery 1995, 12, 337.
67. Hamidi, H.; Heravi, M. M.; Tajbakhsh, M.; Shiri, M.; Oskooie, H. A.; Shintre,S. A.; Koorbanally, N. A. Synthesis and Anti-Bacterial Evaluation of Novel Thio- and Oxazepino[7,6-B]Quinolines. J. Iran. Chem. Soc. 2015, 12, 2205.
68. Kapur, S.; Cho, R.; Jones, C.; McKay, G.; Zipursky, R. B. Is Amoxapine an A typical Antipsychotic? Positron-Emission Tomography Investigation of Its Dopamine2 and Serotonin2 Occupancy. Biol. Psychiatry 1999, 45, 1217.
69. Balani, N. D.; Parhate, S. M.; Thawani, V. R.; Deshpande, A. M. Effects of Nitroxazepine on Diastolic Blood Pressure in Mild Hypertensive Patients: A Short Term Clinical Study. Ind. J. Physiol. Pharmacol. 1995, 39, 293.
70. Umemiya, H.; Fukasawa, H.; Ebisawa, M.; Eyrolles, L.; Kawachi, E.; Eisenmann, G.; Gronemeyer, H.; Hashimoto, Y.; Shudo, K.; Kagechika, H. Regulation of Retinoidal Actions by Diazepinylbenzoic Acids.Retinoid Synergists Which Activate the RXR-RAR Heterodimers. J. Med. Chem. 1997, 40, 4222.
71. Yousif, E.; Hasan, A. Photostabilization of poly(vinyl chloride)-Still on the Run. J. Taibah. Univ. Sci. 2015, 9, 421.
72. Kurita, J.; Iwata, K.; Tsuchiya, T. Synthesis of the First Examples of Fully Unsaturated Monocyclic 1,4-Oxazepines. J. Chem. Soc., Chem. Commun. 1986, 1188.
73. François-Endelmond, C.; Carlin, T.; Thuery, P.; Loreau, O.; Taran, F. A Phosphine-Mediated Construction of 1,4-Oxazepines and 1,3-Oxazines. Org. Lett. 2010, 12, 40.
74. Nakamura, I.; Kudo, Y.; Terada, M. Oxazepine Synthesis by CopperCatalyzed Intermolecular Cascade Reactions between O-Propargylic Oximes and Dipolarophiles. Angew. Chem. Int. Ed. 2013, 52, 7536.
75. Goutham, K.; Kumar, D. A.; Suresh, S. ; Sridhar, B.; Narender, R.; Karunakar, G. V. Gold-Catalyzed Intramolecular Cyclization of N-Propargylic β-Enaminones for the Synthesis of 1,4-Oxazepine Derivatives. J. Org. Chem. 2015, 80, 11162.
76. Cheng, G.; Xue, L.; Weng, Y.; Cui, X. Transition-Metal-Free Cascade Approach toward 2-Alkoxy/2-Sulfenylpyridines and Dihydrofuro[2,3-b]pyridines by Trapping In Situ Generated 1,4-Oxazepine. J. Org. Chem. 2017, 82, 9515.
77. Ding, A.; Meazza, M.; Guo, H.; Yang, J. W.; Rios, R. New Development in the Enantioselective Synthesis of Spiro Compounds. Chem. Soc. Rev. 2018, 47, 5946.
78. Griggs, S. D.; Tape, D. T.; Clarke, P. A. Strategies for the Synthesis of Spiropiperidines-A Review of the Last 10 Years. Org. Biomol. Chem. 2018, 16, 6620.
79. Rios, R. Enantioselective Methodologies for the Synthesis of Spiro Compounds. Chem. Soc. Rev. 2012, 41, 1060.
80. Massie, B. M.; Carson, P. E.; McMurray, J. J.; Komajda, M.; McKelvie, R.; Zile, M. R.; Anderson, S.; Donovan, M.; Iverson, E.; Staiger, C.; Ptaszynska, A. Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. New Engl. J. Med. 2008, 359, 2456.
81. Wiesinger, H.; Berse, M.; Klein, S.; Gschwend, S.; Hochel, J.; Zollmann, F. S.; Schutt, B. Pharmacokinetic Interaction between the CYP3A4 Inhibitor Ketoconazole and the Hormone Drospirenone in Combination with Ethinylestradiol or Estradiol. Br. J. Clin. Pharmacol. 2015, 80, 1399.
82. Claire, M.; Faraj, H.; Grassy, G.; Aumelas, A.; Rondot, A.; Auzou, G. Synthesis of New 11 Beta-substituted Spirolactone Derivatives. Relationship with Affinity for Mineralocorticoid and Glucocorticoid Receptors. J. Med. Chem. 1993, 36, 2404.
83. Kotha, S.; Panguluri, N. R.; Ali, R. Design and Synthesis of Spirocycles. Eur. J. Org. Chem. 2017, 5316.
84. Sue, D.; Kawabata, T.; Sasamori, T.; Tokitoh, N.; Tsubaki, K. Synthesis of Spiro Compounds through Tandem Oxidative Coupling and a Framework Rearrangement Reaction. Org. Lett. 2010, 12, 256.
85. Butt, N. A.; Moody, C. J. Synthesis of Spirotetramates via a Diels-Alder Approach. Org. Lett. 2011, 13, 2224.
86. Wang, J.; Zhu, H. T.; Li, Y. X.; Wang, L. J.; Qiu, Y. F.; Qiu, Z. H.; Zhong, M.; Liu, X. Y.; Liang, Y. M. Facile Synthesis of Halogenated Spiroketals via a Tandem Iodocyclization. Org. Lett. 2014, 16, 2236.
87. Chen, L. W.; Xie, J. L.; Song, H. J.; Liu, Y. X.; Gu, Y. C.; Wang, Q. M. PdCatalyzed Cycloisomerization/Nucleophilic Addition/Reduction: an Efficient Method for the Synthesis of Spiro-Pseudoindoxyls Containing N,N'-Ketal. Org. Chem. Front. 2017, 4, 1731.
88. Martins, M. A. P.; Rossatto, M.; Frizzo, C. P.; Scapin, E.; Buriol, L.; Zanatta, N.; Bonacorso, H. G. Intramolecular Cyclization of N-Propargylic β Enaminones Catalyzed by Silver. Tetrahedron Lett. 2013, 54, 847.
89. Karabiyikoglu, S.; Kelgokmen, Y.; Zora, M. Facile Synthesis of Iodopyridines from N-Propargylic β-Enaminones via Iodine-Mediated Electrophilic Cyclization. Tetrahedron 2015, 71, 4324.
90. Karadeniz, E.; Kilicaslan, N.; Zora, M. Facile Synthesis of Aryl-substituted Pyridines via Suzuki-Miyaura Approach. Tetrahedron 2015, 47, 8943.
91. Karadeniz, E.; Zora, M. One-Pot Synthesis of 2-Ferrocenyl-substituted Pyridines. Tetrahedron Lett. 2016, 57, 4930.
92. Karadeniz, E.; Zora, M. Synthesis of 1-Azaspiro[4.5]deca-1,3-dienes from N Propargylic β-Enaminones in Basic Medium. Synthesis 2019, 51, 2157.
93. Karadeniz, E.; Zora, M. One-Pot Synthesis of Spiro-2H-pyrroles from N Propargylic β-Enaminones. Synlett 2019, 30, 1231.
94. Polin, J.; Schottenberger, H. In Organic Syntheses; Boeckman, R. K., Jr., Ed.; Wiley: New York, 1996; Vol. 73, p 262.
95. (a) Waldo, J. P.; Larock, R. C. The Synthesis of Highly Substituted Isoxazoles by Electrophilic Cyclization: An Efficient Synthesis of Valdecoxib. J. Org. Chem. 2007, 72, 9643. (b) Waldo, J. P.; Mehta, S.; Neuenswander, B.; Lushington, G. H.; Larock, R. C.Solution Phase Synthesis of a Diverse Library of Highly Substituted Isoxazoles. J. Comb. Chem. 2008, 10, 658.
96. Hamilton, A. E.; Buxton, A. M.; Peeples, C. J.; Chalker, J. M. An Operationally Simple Aqueous Suzuki-Miyaura Cross-Coupling Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2013, 90, 1509.
97. (a) Park, K. K.; Tsou, L. K.; Hamilton, A. D. Facile and Selective Aerobic Oxidation of Arylalkanes to Aryl Ketones Using Cesium Carbonate. Synthesis, 2006, 21, 3617. (b) Song, B.; Wang, S.; Sun, C.; Deng, H.; Xu, B. Cesium Carbonate Promoted Aerobic Oxidation of Arylacetamides: An Efficient Access to N-Substituted α-Keto Amides. Tetrahedron Lett. 2007, 48, 8982. (c) Santos, A. D.; Kaim, L. E.; Grimaud, L.Metal-Free Aerobic Oxidation of Benzazole Derivatives. Org. Biomol. Chem. 2013, 11, 3282.
98. (a) Park, K. K.; Tsou, L. K.; Hamilton, A. D. Facile and Selective Aerobic Oxidation of Arylalkanes to Aryl Ketones Using Cesium Carbonate. Synthesis 2006, 3617. (b) Chebolu, R.; Bahuguna, A.; Sharma, R.; Mishra, V. K.; Ravikumar, P. C. An Unusual Chemoselective Oxidation Strategy by an Unprecedented Exploration of an Electrophilic Center of DMSO: A New Facet to Classical DMSO Oxidation. Chem. Commun. 2015, 51, 15438.
99. (a) Zhdanko, A.; Maier, M. E. Explanation of "Silver Effects" in Gold(I)Catalyzed Hydroalkoxylation of Alkynes. ACS Catal. 2015, 5, 5994. (b) Vaidya, T.; Cheng, R.; Carlsen, P. N.; Frontier, A. J.; Eisenberg, R. Cationic Cyclizations and Rearrangements Promoted by a Heterogeneous Gold Catalyst. Org. Lett. 2014, 16, 800.
100. Dagar A.; Guin, S.; Samanta, S. AgSbF6-Catalyzed Tandem Reaction of 2Alkynylanilines with Cyclic Enynones: Efficient access to 3-Furo[3,2c]chromenylindoles and Related Scaffolds. Asian J. Org. Chem. 2018, 7, 123.
101. Gibson, S. E., Transition Metals in Organic Synthesis. Oxford University Press: Oxford, 1997.
102. Polin, J.; Schottenberger, H.; Anderson, B.; Martin, S. F. Conversion of Methyl Ketones Into Terminal Acetylenes: Ethynylferrocene. Org. Syth. 1996, 73, 262.
103. Atobe, S.; Masuno, H.; Sonoda, M.; Suzuki, Y.; Shinohara, H.; Shibata, S.; Ogawa, A. Pd-Catalyzed Coupling Reaction of Acid Chlorides with Terminal Alkynes Using 1-(2-Pyridylethynyl)-2-(2-thienylethynyl)benzene Ligand. Tetrahedron Lett. 2012, 53, 1764.
104. Chen, J. Y.; Lin, T. C.; Chen, S. C.; Chen, A. J.; Mou, C. Y.; Tsai, F. Y. Highly-Efficient and Recyclable Nanosized MCM-41 Anchored Palladium Bipyridyl Complex-Catalyzed Coupling of Acyl Chlorides and Terminal Alkynes for the Formation of Ynones. Tetrahedron 2009, 65, 10134.
105. Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmantc, J. P. H.; Kantacha, A. Room Temperature Palladium Catalysed Coupling of Acyl Chlorides with Terminal Alkynes. Chem. Commun. 2005, 1037.
106. Chen, L.; Li, C. A Remarkably Efficient Coupling of Acid Chlorides with Alkynes in Water. Org. Lett. 2004, 6, 3151.
107. Tan, H.; Li, H.; Ji, W.; Wang, L. Sunlight-Driven Decarboxylative Alkynylation of α-Keto Acids with Bromoacetylenes by Hypervalent Iodine Reagent Catalysis: A Facile Approach to Ynones. Angew. Chem. Int. Ed. 2015, 54, 8374.
108. Wang, B.; Bonin, M.; Micouin, L. A Straightforward Synthesis of Ynones by Reaction of Dimethylalkynylaluminum Reagents with Acid Chlorides. J. Org. Chem. 2005, 70, 6126.
109. Trost, B. M.; Bertogg, A. Si-Based Benzylic 1,4-Rearrangement/Cyclization Reaction. Org. Lett. 2009, 11, 511.
110. Alonso, D. A.; Najera, C.; Pacheco, M. C. Synthesis of Ynones by PalladiumCatalyzed Acylation of Terminal Alkynes with Acid Chlorides. J. Org. Chem. 2004, 69, 1615.
111. Lv, Q. R.; Meng, X.; Wu, J. S.; Gao, Y. J.; Li, C. L.; Zhu Q. Q.; Chen, B. H. Palladium-, Copper- and Water Solvent Facile Preparation of Ferrocenylethynyl Ketones by Coupling. Catal. Commun. 2008, 9, 2127.
112. Yin, J.; Wang, X.; Liang, Y.; Wu, X.; Chen, B. Synthesis of Some New Ethyl 4-(1,3-diarylpyrazol-4-yl)-6-methyl-2-thioxo-1,3,4-trihydropyrimidine-5carboxylates. Synthesis 2004, 3, 331.

APPENDIX A

NMR SPECTRA

Bruker Spectrospin Avance DPX400 Ultrashield spectromer was used for the records of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra. Chemical shifts are reported in parts per million (ppm) relative to CDCl_{3} (7.26 and 77.16 ppm in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively).

NMR spectra of synthesized starting materials and products are given below.

Figure A1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26a.

Figure A2. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26a.

Figure A3. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 b}$.

Figure A4. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 b}$.

Figure A5. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26 c .

Figure A6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 c}$.

Figure A7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 d}$.

Figure A8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26 d .

Figure A9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 e}$.

Figure A10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26e

Figure A11. ${ }^{1}$ H NMR spectrum of compound $\mathbf{2 6 f}$.

Figure A12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 f}$.

Figure A13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 g}$.

Figure A14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 g}$.

Figure A15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 h}$.

Figure A16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 h}$.

Figure A17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $26 \mathbf{i}$.

Figure A18. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 i}$.

Figure A19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 j}$.

Figure A20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 j}$.

Figure A21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26k.

Figure A22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26k.

Figure A23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 261.

Figure A24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 261.

Figure A25. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 m}$.

Figure A26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 m}$.

Figure A27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26 n.

Figure A28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 n}$.

Figure A29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 0}$.

Figure A30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 260.

Figure A31. ${ }^{1}$ HNMR spectrum of compound 26p.

Figure A32. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 p}$.

Figure A33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 q}$.

Figure A34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 q}$.

Figure A35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 r}$.

Figure A36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 r}$

Figure A37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26s.

Figure A38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26s.

Figure A39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 t}$.

Figure A40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 6 t}$.

Figure A41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 u}$.

Figure A42. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $26 \mathbf{u}$.

Figure A43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 v}$.

Figure A44. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $26 v$.

Figure A45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26w.

Figure A46. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26 w .

Figure A47. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 x}$.

Figure A48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26x.

Figure A49. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6 y}$.

Figure A50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 26y.

Figure A51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32a.

Figure A52. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32a.

Figure A53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32b.

Figure A54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 2 b}$.

Figure A55. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 2 c}$.

Figure A56. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32c.

Figure A57. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 32d.

Figure A58. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 32d.

Figure A59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50a.

Figure A60. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 a}$.

Figure A61. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 b}$.

Figure A62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 b}$.

Figure A63. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50 c .

Figure A64. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 c}$.

Figure A65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50d.

Figure A66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 d}$.

Figure A67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50 e .

Figure A68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 e}$.

Figure A69. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 50 f .

Figure A70. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 f}$.

Figure A71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 g}$.

Figure A72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 g}$.

Figure A73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 h}$.

Figure A74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 h}$.

Figure A75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 i}$.

Figure A76. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0}$.

Figure A77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 j}$.

Figure A78. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 j}$.

Figure A79. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 k}$.

Figure A80. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 k}$.

Figure A81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 1}$.

Figure A82. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 501.

Figure A83. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 m}$.

Figure A84. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 m}$.

Figure A85. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 n}$.

Figure A86. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 n}$.

Figure A87. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 0}$.

Figure A88. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 0}$.

Figure A89. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 p}$.

Figure A90. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 p}$.

Figure A91. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 0 q}$.

Figure A92. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 0 q}$.

Figure A93. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 61a.

Figure A94. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61a.

Figure A95. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 61 b .

Figure A96. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6 1 b}$.

Figure A97. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 61c.

Figure A98. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 61c.

Figure A99. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 a .

Figure A100. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 a}$.

Figure A101. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0 b}$.

Figure A102. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 b}$.

Figure A103. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 c .

Figure A104. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10 c .

Figure A105. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10 d .

Figure A106. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0 d}$.

Figure A107. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52a.

Figure A108. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 52a.

Figure A109. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 b}$.

Figure A110. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 b}$.

Figure A111. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52c.

Figure A112. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 52c.

Figure A113. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 52d.

Figure A114. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 52d.

Figure A115. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 e}$.

Figure A116. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 e}$.

Figure A117. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 f}$.

Figure A118. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 f}$.

Figure A119. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 2 g}$.

Figure A120. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 g}$.

Figure A121. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 2 h}$.

Figure A122. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 2 h}$.

Figure A123. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44a.

Figure A124. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 a}$.

Figure A125. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 4 b}$.

Figure A126. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 4 b}$.

Figure A127. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 44 c .

Figure A128. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 44 c .

Figure A129. ${ }^{1}$ H NMR spectrum of compound 44 d .

Figure A130. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 44 d .

Figure A131. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46a.

Figure A132. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46a.

Figure A133. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 b}$.

Figure A134. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 b}$.

Figure A135. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 c .

Figure A136. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46c.

Figure A137. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46d.

Figure A138. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 d}$.

Figure A139. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $46 e$.

Figure A140. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46 e .

Figure A141. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 .

Figure A142. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46 .

Figure A143. ${ }^{1} \mathrm{H}$ NMR spectrum ofcompound $\mathbf{4 6 g}$.

Figure A144. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 g}$.

Figure A145. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 h .

Figure A146. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 h}$.

Figure A147. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 i}$.

Figure A148. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 i}$.

Figure A149. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 j}$.

Figure A150. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 j}$.

Figure A151. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46 k .

Figure A152. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 k}$.

Figure A153. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 461.

Figure A154. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 461.

Figure A155. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 m}$.

Figure A156. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 m}$.

Figure A157. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 6 n}$.

Figure A158. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 n}$.

Figure A159. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 0}$.

Figure A160. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 460.

Figure A161. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 6 p}$.

Figure A162. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 p}$.

Figure A163. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46q.

Figure A164. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 6 q}$.

Figure A165. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 46r.

Figure A166. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 46r.

Figure A167. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49a.

Figure A168. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 a .

Figure A169. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49 b.

Figure A170. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 b .

Figure A171. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49c.

Figure A172. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 c .

Figure A173. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49d.

Figure A174. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 d .

Figure A175. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 49 e.

Figure A176. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 e .

Figure A177. ${ }^{1}$ H NMR spectrum of compound $49 f$.

Figure A178. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 49 .

Figure A179. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51a.

Figure A180. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 a}$.

Figure A181. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 1 b}$.

Figure A182. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 b}$.

Figure A183. ${ }^{1}$ H NMR spectrum of compound 51c.

Figure A184. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 c}$.

Figure A185. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51 d .

Figure A186. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 d}$.

Figure A187. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51e.

Figure A188. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51e.

Figure A189. ${ }^{1}$ H NMR spectrum of compound 51f.

Figure A190. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51f.

Figure A191. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 g}$.

Figure A192. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 g}$.

Figure A193. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 h}$.

Figure A194. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1} \mathrm{h}$.

Figure A195. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 i}$.

Figure A196. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1}$ i.

Figure A197. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 j}$.

Figure A198. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 j}$.

Figure A199. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51k.

Figure A200. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 k}$.

Figure A201. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 511.

Figure A202. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 511.

Figure A203. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 m}$.

Figure A204. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 51 m .

Figure A205. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 n}$.

Figure A206. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 n}$.

Figure A207. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 0}$.

Figure A208. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 510.

Figure A209. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 1 p}$.

Figure A210. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 p}$.

Figure A211. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 51q.

Figure A212. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1 q}$.

Figure A213. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72a.

Figure A214. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72a.

Figure A215. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{7 2 b}$.

Figure A216. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{7 2 b}$.

Figure A217. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 72c.

Figure A218. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 72c.

Figure A219. ${ }^{1}$ H NMR spectrum of compound 53a.

Figure A220. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53a.

Figure A221. ${ }^{1}$ H NMR spectrum of compound 53b.

Figure A222. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 b}$.

Figure A223. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53c.

Figure A224. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53 c .

Figure A225. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53d.

Figure A226. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 53d.

Figure A227. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53 e .

Figure A228. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 e}$.

Figure A229. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 f}$.

Figure A230. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3 f}$.

Figure A231. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 53 g .

Figure A232. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3}$.

Figure A233. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 3 h}$.

Figure A234. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 3}$.

Figure A235. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 54a.

Figure A236. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4}$.

Figure A237. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 4 b}$.

Figure A238. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 b}$.

Figure A239. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 c}$.

Figure A240. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 c}$.

Figure A241. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 54 d .

Figure A242. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 d}$.

Figure A243. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 54 e .

Figure A244. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 e}$.

Figure A245. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 54 f .

Figure A246. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 54 f .

Figure A247. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 g}$.

Figure A248. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 g}$.

Figure A249. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 4 h}$.

Figure A250. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 h}$.

Figure A251. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 i}$.

Figure A252. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 i}$.

Figure A253. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 j}$.

Figure A254. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 j}$.

Figure A255. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 k}$.

Figure A256. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 k}$.

Figure A257. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 541.

Figure A258. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 541 .

Figure A259. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 4 m}$.

Figure A260. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 m}$.

Figure A261. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 4 n}$.

Figure A262. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 4 n}$.

Figure A263. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 86a.

Figure A264. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 6 a}$.

Figure A265. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 6 b}$.

Figure A266. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 6 b}$.

Figure A267. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8 6 c}$.

Figure A268. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8 6 c}$.

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Karadeniz, Eda
Nationality: Turkish (T.C.)
Date and Place of Birth: 18 February 1988, Manavgat
Phone: +90 5365183250
email: eda.karadenz@gmail.com, karadeniz.eda@metu.edu.tr

EDUCATION

2011-2019: $\left.\begin{array}{ll}\text { Post-Bachelor's PhD } \\ \text { Middle East Technical University, } \\ \text { Department of Chemistry } \\ \text { CGPA: 3.79/4.00 }\end{array}\right\}$

WORK EXPERIENCE

2011-2019: \quad| Research and Teaching Asssistant, |
| :--- |
| Middle East Technical University |

FOREIGN LANGUAGE

Advanced level English

PUBLICATIONS

1. Karadeniz, E.; Zora, M. One-Pot Synthesis of Spiro-2H-pyrroles from N Propargylic β-Enaminones. Synlett 2019, 30, 1231. (DOI: 10.1055/s-0037-1611816)
2. Karadeniz, E.; Zora, M. Synthesis of 1-Azaspiro[4.5]deca-1,3-dienes from N Propargylic β-Enaminones in Basic Medium. Synthesis 2019, 51, 2157. (DOI: 10.1055/s-0037-1611723)
3. Karadeniz, E.; Zora, M. One-Pot Synthesis of 2-Ferrocenyl-substituted Pyridines. Tetrahedron Lett. 2016, 57, 4930. (DOI: 10.1016/j.tetlet.2016.09.080)
4. Karadeniz, E.; Kilicaslan, N.; Zora, M. Facile Synthesis of Aryl-substituted Pyridines via Suzuki-Miyaura Approach. Tetrahedron, 2015, 47, 8943. (DOI: 10.1016/j.tet.2015.09.063)

INTERNATIONAL CONFERENCE PROCEEDINGS

1. $255^{\text {th }}$ American Chemical Society National Meeting, Synthesis of Spiro-Containing 1,4-Oxazepines from N-Propargylic β-Enaminones. 18-22 March 2018, New Orleans, USA. (Poster presentation)
2. $253^{\text {rd }}$ American Chemical Society National Meeting, Synthesis of 1 -Azaspiro[4.5]deca-1,3-dienes from N-Propargylic β-Enaminones. 2-6 April 2017, San Francisco, USA. (Poster presentation)
3. Anatolian Conference on Synthetic Organic Chemistry, ACSOC II, An Efficient and Single-Step Approach for the Synthesis of Ferrocenylpyridines. 21-24 March 2016, Kuşadas1, Turkey. (Poster presentation)
4. Trans Mediterranean Colloquium on Heterocyclic Chemistry, TRAMECH VIII, One-Pot Synthesis of Ferrocenyl-Substituted Pyridines. 11-15 November 2015, Antalya, Turkey. (Poster presentation)

NATIONAL CONFERENCE PROCEEDING

1. 29. Ulusal Kimya Kongresi, Spiro-2H-pirol Türevlerinin Yeni Bir Metotla Sentezi. 10-14 September 2017, Ankara, Turkey. (Poster presentation)
1. 26. Ulusal Kimya Kongresi, Synthesis of 5-Iodopyridines via Electrophilic Cyclization of N-propargylic β-Enaminones. 1-6 October 2012, Muğla, Turkey. (Poster presentation)

[^0]: ${ }^{a}$ Isolated yields.

[^1]: ${ }^{a}$ Isolated yields.

[^2]: ${ }^{a}$ Isolated yields.

[^3]: ${ }^{\bar{a}}$ Isolated yields.

[^4]: ${ }^{a}$ Isolated yields.

[^5]: ${ }^{a}$ Reactions were carried out using α, β-alkynic ketone 26u (0.25 mmol), propargylamine 48 $(0.30 \mathrm{mmol})$, solvent (3 mL) under the indicated conditions.
 ${ }^{b}$ Isolated yields.

[^6]: ${ }^{a}$ Reagents and conditions: α, β-alkynic ketone $26(0.25 \mathrm{mmol})$, propargylamine $48(0.30$ $\mathrm{mmol}), \mathrm{CuCl}(0.25 \mathrm{mmol}), \mathrm{DMF}(3 \mathrm{~mL}), 110^{\circ} \mathrm{C}$.

[^7]: ${ }^{\bar{a}}$ Isolated yields.

[^8]: ${ }^{a}$ Isolated yields.

