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ABSTRACT

HUMAN AWARE NAVIGATION OF A MOBILE ROBOT IN CROWDED
DYNAMIC ENVIRONMENTS

Hacınecipoğlu, Akif

Ph.D., Department of Mechanical Engineering

Supervisor: Prof. Dr. Erhan İlhan Konukseven

Co-Supervisor : Assist. Prof. Dr. Ahmet Buğra Koku

September 2019, 144 pages

As mobile robots start operating in dynamic environments crowded with humans,

human-aware and human-like navigation is required to make these robots navigate

safely, efficiently and in socially compliant manner. People can navigate in an inter-

active and cooperative fashion so that, they are able to find their path to a destination

even if there is no clear path leading to it. This is clearly a dexterity of humans.

But the mobile robots which have to navigate in such environments lack this feature.

Even perfect trajectory prediction of people is not sufficient if crowd density is above

a certain level. Interactive and cooperative navigation ability of humans should be

incorporated into navigation algorithms. Therefore, the scope of this study is to de-

velop a navigation method that can be implemented in mobile robots which will make

them able to navigate in crowded dynamic environments without freezing and/or frus-

tration. For this purpose, pose-invariant and real-time people detection and tracking

methods are developed initially. Then, an interactive and cooperative trajectory pre-

diction algorithm is introduced. A mobile robot is regarded just as another agent, like

other humans in the scene, so that, predicted trajectory for the robot itself becomes
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the planned path which results in human-like and human-aware navigation. All the

developed components are tested and validated separately, and finally, together on

a mobile robot. Results of the real world experiments showed that the developed

method can effectively make a mobile robot navigate in human-aware fashion in dy-

namic environments crowded with humans.

Keywords: Human navigation, Trajectory prediction, Mobile robots, Path planning,

Machine vision, Autonomous navigation, Human awareness, Social robots
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ÖZ

MOBİL ROBOTLARIN KALABALIK VE DİNAMİK ORTAMLARDA
İNSAN FARKINDALIKLI NAVİGASYONU

Hacınecipoğlu, Akif

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Erhan İlhan Konukseven

Ortak Tez Yöneticisi : Dr. Öğr. Üyesi. Ahmet Buğra Koku

Eylül 2019 , 144 sayfa

Mobil robotlar insanların bulunduğu dinamik ortamlarda yer almaya başladıkça, bu

ortamlarda güvenli, verimli ve sosyal beklentilere uygun hareket edebilmek için insan-

farkındalıklı ve insansı özel navigasyon yöntemlerine ihtiyaç duymaktadırlar. İnsan-

lar, hedeflerine giden açık bir yol olmasa bile sahip oldukları etkileşimli ve işbirlikçi

navigasyon becerileri sayesinde hedeflerine ulaşabilmektedirler. Bu, insanların sahip

olduğu bir yetenek olmakla birlikte, benzer ortamlarda hareket etmesi gereken ro-

botlar bu özelliğe sahip değildir. Etraftaki insanların hareketlerinin mükemmel bir

şekilde tahmin edilmesi bile, insan kalabalığı belli bir seviyenin üzerindeyse, navi-

gasyon için yeterli değildir. İnsanların etkileşimli ve işbirlikçi hareket kabiliyetlerinin

navigasyon algoritmalarına eklenmesi gerekmektedir. Bu çalışmanın kapsamı mobil

robotlara uygulandığında onların karışıklık yaşamadan kalabalık ortamlarda hareket

etmelerini sağlayacak bir navigasyon yönteminin geliştirilmesidir. Bu amaçla önce-

likle insanların duruşundan bağımsız ve gerçek zamanlı çalışan insan tespit ve takip

sistemleri geliştirilmiştir. Daha sonra ise etkileşimli ve işbirlikçi bir şekilde çalışan

bir navigasyon yöntemi geliştirilmiştir. Bu yöntemde mobil robot da ortamdaki diğer
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insandan birisi gibi modellenmiş, bu sayede robotun kendisi için tahmin ettiği yol,

planlanmış yol olarak kabul edilebilmiştir. Sonuç olarak insansı ve insan-farkındalıklı

navigasyon yöntemi elde edilmiştir. Geliştirilen bütün bileşenler önce ayrı ayrı, daha

sonra ise bir bütün olarak bir mobil robot üzerinde test edilmiş ve doğrulanmıştır.

Gerçek dünya deneyleri neticesinde, geliştirlen yöntemin bir mobil robotun kalaba-

lık ve dinamik ortamlarda insan farkındalıklı olarak hareket edebilmesini sağladığı

gösterilmiştir.

Anahtar Kelimeler: İnsan navigasyonu, Hareket tahmini, Mobil robotlar, Yol planla-

ması, Makine görmesi, Otonom navigasyon, İnsan farkındalığı, Sosyal robotlar

viii



To my lovely wife Fatmanur and my dear son Ömer Tuna...

ix



ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my advisors Prof. Dr. E.
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CHAPTER 1

INTRODUCTION

1.1 Mobile Robots

About a half-century ago, automated machines started to take place in industry. Their

tasks were very well-defined, therefore, they were confined to move in a certain en-

vironment and do necessary movements at desired time intervals. Production and

assembly lines were ideal for this innovation because movements like welding, pick-

ing and placing objects were not subject to change during operations. Because of

these reasons, there was no need to human interference and intelligence applications

under normal working conditions.

The need for robotic applications has grown throughout past years. People started to

include robotic agents outside of the assembly lines for hard and/or time consuming

applications. As a result, mobile robotics has emerged. Starting from early 90s up

to recent years, robotic applications moved out from their predefined paths and struc-

tured environments to dynamic environments. These new environments have unpre-

dictable moving objects around, and traversable areas are not well defined. Therefore,

a robotic agent should sense an object and take precautions according to its state.

1.2 Social Robots

As mobile robotics developed, robots started to carry out their tasks in environments

which are also populated with humans. In this new world, like humans do, these

agents had to interact with people. This interaction can be the source of control,

movement and action. A robot can get control commands from a human or can inter-
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act with him to fulfill its mission. Even this interaction can be a part of a socialization

progress. Then the question is; how should a robot and a human interact with each

other? How can these two populations live together, sharing same environments?

One of the early attempts to make mobile robots operate in environments crowded

with people is the Rhino robot, which is deployed in the Deutsches Museum Bonn

for six days in 1997 [1]. Its purpose was to guide visitors in the museum while

employing probabilistic reliable navigation in dynamic environments. Rhino project

provided an extensive insight to researchers on the need for safe and reliable naviga-

tion and human-robot interaction. After a short period of time from the deployment

of Rhino, another museum tour-guide robot, Minerva is developed and deployed in

Smithsonian’s National Museum of American History for two weeks [2]. With gath-

ered experiences from Rhino project, the focus for Minerva was more on human-robot

interaction research. Authors shared their experiences with these projects and pointed

out that there is a considerable need for research on mobile robots sharing the same

environment with people [3]. After positive impression of these two projects, re-

searchers from different parts of the world focused on development of service and

social robots to make them operate among humans. Robots designed to work in

environments like museums, shopping malls, offices and homes are developed in fol-

lowing years [4–7].

Social robotics topic is a multi-disciplinary field that includes control engineering,

cognitive science, mechanical engineering, computer science, even sociology and hu-

man psychology. Since these robots started to share environments with humans, they

have to incorporate human psychology, movement behaviors and society rules in their

algorithms. Without this blend, it would be difficult to integrate robots into our daily

life.

1.3 Problem and the Motivation

While sharing the same environment, robots should not disrupt human beings. How-

ever, with this constraint, still they have to carry out their missions efficiently and

effectively. In the navigation aspect, a mobile robot navigation should be safe, reli-
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able, human-aware and human-like while avoiding the uncanny valley problem [8].

As noted in related chapters, without behaving similarly to humans in navigation, it

may become impossible for a robot to move in dynamic environments crowded with

people. For this purpose, we have to understand how people live, how we share infor-

mation and how we behave while navigating around other humans and objects. Then,

we need to blend this behavior into navigation algorithms of mobile robots operating

in crowded dynamic environments.

The motivation for this study originated from the need for a safe and cooperative

navigation method with high human-likeness and awareness. We believe that, as

previous studies in this topic did, this effort will pave the road for the future of mobile

robots helping to overcome difficult and/or dangerous tasks or chores for humans.

1.4 Methodology

The main focus of this study is to develop a navigation method for mobile robots

which will operate in dynamic environments crowded with people. As mentioned

earlier, developed navigation algorithm should be human-aware and human-like, i.e.,

interactive and cooperative. Therefore, detecting people around a mobile robot is

an essential part of a successful navigation algorithm. We start our research with

development of a fast running, yet, a robust detection method. Without detecting

people reliably and fast enough to be employed on a moving robot, prediction of

trajectories of people would be impossible.

Detected people should be tracked by a tracking algorithm to keep history of their

trajectories. Past trajectory information becomes crucial for predicting next steps of

people to act accordingly. Tracking algorithm also should be fast and computationally

efficient since it will run on a moving robot.

Finally comes the navigation algorithm which is the most essential part of this study.

Using tracking information of people, especially in close vicinity of the robot, navi-

gation algorithm predicts future trajectories of all agents. During this prediction, core

research is on interaction and cooperation modeling of humans. We believed that,

if we can model this navigation behavior of humans, we can achieve a human-like
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navigation method that will be well-accepted by people.

Each developed component is implemented, tested and verified individually. Then,

all components are brought together and as aimed, deployed on a mobile robot. Ex-

tensive real-world experiments are carried out with humans, and it is shown that com-

ponents developed during this study are successfully functioning together to achieve

human-aware navigation for a mobile robot.

1.5 Contributions and Novelties

In this study, we have different essential components like people detection, tracking,

trajectory prediction and path planning. Each of these parts has its own research topics

and novelties. To summarize these novelties by topics, our primary contributions to

the literature can be listed as follows:

People detection:

• Using an efficient scene simplification technique,

• Developing a point cloud slicing method to gather human body parts in arbitrary

poses,

• Iteratively using Principal Component Analysis (PCA) to extract pose invariant

head region of human body,

• Introducing the Adjacent Features Histogram (AFH) 3D shape descriptor,

• Implementing the algorithm in low resource intensive and real-time manner

using depth information only.

People tracking:

• Implementing an efficient track management, and accurate high speed tracking.

Trajectory prediction and path planning:

• Developing a combined cost-based interaction and cooperation model,
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• Introducing the online future conditioning and sampling of Gaussian processes

on prediction space,

• Using a step-wise prediction model for each agent on a scene,

• Blending penalized velocity sampling due to human metabolic energy costs

based on speed changes,

• Implementing the algorithm in low resource intensive and real-time manner to

be used on a mobile robot.

Other:

• Being the first study to provide a complete navigation solution for a human-

aware mobile robot,

• Developing all components in a way to make them run relying only on a CPU

(i.e., computer with no GPU hardware).

1.6 The Outline of the Thesis

After the introduction to the topic and to the study in the recent chapter, we provide

details of our people detection method in Chapter 2. Related work in the literature

about people detection, details of our pipeline and experiments are presented. Then,

we move on to people tracking application in Chapter 3. Again, literature review

on tracking methods, our implementation and experiments conducted on a dataset are

given. Chapter 4 is dedicated to our main research on this study which is the trajectory

prediction and path planning. We state the problem and provide the literature review.

Then, we explain the details of the proposed method. Results of the experiments on a

widely used public dataset are also given in this chapter. After these results, Chapter

4 is finished. In Chapter 5, we have comprehensive real-world experiments which

include all components developed during this study. We provide the results again in

Chapter 5, then, we conclude the whole study in Chapter 6.
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CHAPTER 2

PEOPLE DETECTION

2.1 Introduction

Robots are becoming an integral part of our daily life. Social, advertisement, secu-

rity, search and rescue robots are examples of robots that share same environments

with people. The key point for operating in these environments is the ability to detect

human-beings around. Robots have to distinguish people from objects and behave

accordingly. People detection is a complicated process especially in dynamic and

cluttered environments. Although people share some properties in common, each

human can move, pose and behave differently in an environment. Changing envi-

ronmental conditions (ambient light, occlusions, etc.) are also other factors making

robust people detection difficult.

For decades, researchers developed different methods to solve this problem. With

help of developing computation and sensor technologies, more satisfying results are

obtained in recent years. Especially having affordable and simple sensors like Mi-

crosoft Kinect, Asus Xtion and Intel Realsense made researchers use RGB-D sensors

in their studies. However, recent human detection methods are far from being appli-

cable to social mobile robots sharing same environment with people. Due to human

nature, people can be present in different poses (standing, bent, laying, sitting, etc.)

and can behave different from each other. Recent human detectors generally assume

that people are standing upright or walking to be detected. However, in dynamic en-

vironments where people act naturally, detection of arbitrary poses is a challenge. In

addition, since people detection systems evolve from stationary systems to mobile

robots, a good people detection method should be computationally effective and run
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Figure 2.1: Detection results of proposed method in sample challenging arbitrary

poses.

in real-time. Therefore, we aimed to develop a novel people detection method which

can run on a computationally limited mobile robot effectively, detecting people in

arbitrary poses and under changing light conditions.

This chapter is organized as follows: the first section is the introduction to the topic.

The second section includes related work in the literature. Developed method is de-

scribed in third part. Results are given and this study is concluded in last two sections.

2.2 Related Work

People detection has been an active research area in the last two decades resulting in

various methods. Especially for people detection in outdoor scenes like pedestrian

detection, most widely used method is Histogram of Oriented Gradients (HOG) in

2D images [9]. Dalal and Triggs defined a fixed size window for detection and sub-

divided it into grid of cells. Orientations of gradients in each cell are computed and

a 1D histogram is constructed. This histogram is used for training a linear SVM. In

classification stage, fixed-size windows are used in different scales over the image.
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The method performs better in upright and non-occluded poses. However, it fails to

classify in changing light conditions and body postures. Since there is no depth infor-

mation, small image patches resulting in similar HOG descriptors may lead to false

positives. To describe the pedestrian appearance and motion features, Hua et al. use

the spatio-temporal histogram of oriented gradient (STHOG) [10]. They used this

descriptor for pedestrian detection at large distance interval on a normally driven ve-

hicle with monocular camera. In the last decade, researchers have incorporated depth

information besides color for human detection. Ess et al. used stereo camera pair

to detect and track people [11]. They propose a tracking-by-detection method which

provides satisfactory results even in challenging scenes. However, their approach is

highly resource intensive where each frame is processed in about 30 seconds. This is

far from being real-time to be applicable.

With evolving technology in sensor hardware, incorporation of depth information

into people detection methods became affordable. Even though we had stereo vision

cameras before, RGB-D sensors like Microsoft Kinect, Intel Realsense or Asus Xtion

made depth perception available besides color information in a simpler and affordable

way. These sensors perform best when there is no direct sunlight in the environment

due to infrared light interference, therefore, they are used in indoor people detection

applications especially. In a more recent study, Spinello et al. used RGB-D data

along HOG descriptors [12]. The method is similar to HOG, but authors incorporated

depth information also and developed a method called Histogram of Oriented Depths

(HOD). They combined HOG and HOD descriptors to achieve best performance in

different distance ranges. However, their method densely scans each frame for people

and relies on GPU implementation for a real time performance. They do not provide

a test result for articulated human bodies or other arbitrary poses. Still, due to nature

of the descriptors they use, it can be concluded that their method will perform best

for people standing upright with the help of GPU implementation which may be a

limitation for computational resources of mobile robots. HOD is also used in another

study [13]. Choi et al. segment the depth image into an initial number of regions and

then eliminate regions which are not consistent with some heuristics like width and

height. Remaining regions are classified using HOD descriptors with SVMs.

Top-down/bottom-up segmentation is used along Local Surface Normals (LSN) de-
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scriptor by Hegger et al. [14]. They split the depth cloud into smaller clusters using

a layered subdivision and a top-down/bottom up segmentation. Descriptor consists

of local surface normals and additional statistical features. Their method runs at 5Hz

which is a low frame rate for a mobile robot moving in a dynamic environment pop-

ulated with people. Pesenti et al. study people detection for mobile robots where the

RGB-D sensor is located at knee level [15]. Hence, people detection is performed

using lower part of human body, namely legs only. Since legs are not very distinctive

features of a human body, they use a large training set, i.e. 26000 instance training

samples are acquired in 15 different real-world environments. Two new features for

people detection are introduced by Liu et al. with RGB-D sensors [16]. Histogram

of Height Difference (HOHD) and Joint Histogram of Color and Height (JHCH) are

used to classify clusters as human or not. Before classification, authors gather human

body plausible positions using a height map. Local height maxima are assumed as

head crowns. However, this assumption yields false results when there is a person

with his hand raised over his head. Therefore, this method may not be applicable for

detecting people in arbitrary poses. In a more recent study, Zhang et al. employed a

similar method and generate depth contours, detect candidate head locations and then

use a deep network to train and classify also using RGB information [17]. However,

they are assuming that maxima in depth contours will represent head tops. This as-

sumption fails when one raises a hand or bends, etc. Therefore, it is not applicable to

arbitrary poses.

Tseng et al. used top-view depth cameras to detect people [18]. To have an occlusion-

free view, they position depth cameras overhead and they detect heads using hemiel-

lipsoidal head model. They have satisfactory results for a stationary surveillance sys-

tem positioned on a level above people but it is not applicable to mobile robots. Also

it may fail in other poses than upright standing pose due to its dependency of hemiel-

lipsoidal head shape. A similar setup is used in [19]. Dan et al. use a human model

with head and shoulders shape to detect humans in top-down depth views. Another

method with a top-down camera has been used by Migniot et al. [20] where they filter

the depth data and fit two ellipsoids representing head and shoulder part of the body.

Using these two ellipsoids, they estimate body and head orientation. Bajracharya et

al. [21] filter depth data geometrically and apply a linear classifier to each prefiltered
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region’s point clouds. They use features like variances of point clouds and eigen-

values computed from the scatter matrix of point clouds and constraints like width,

height, depth, and volume.

A similar study by Munaro and Menegatti uses RGB-D sensor to detect people and

provides satisfactory results in upright human poses [22]. They downsize the point

cloud with a voxel grid filter to make it easier to work with and to have constant

point density along the depth. The assumption for removing the ground plane is that

people walk on a ground plane in all scenes. When clusters are separated with re-

moval of the ground plane, they label remaining clusters using Euclidean distances

between points. To avoid over-segmentation problem (clustering parts of a body in

different sets), they merge clusters that are very close in ground plane coordinates.

To solve under-segmentation problem (clustering more than one human into one set),

they implement a head detection method using a height map. Local maxima in height

map are regarded as heads of people in the scene and a bounding box is associated

with a certain region around these detected head positions as candidate people lo-

cations. Finally, corresponding regions in RGB image are used for classification of

these patches. HOG detector is used with SVM in 2D image to detect people in these

regions of interest (ROI). Although this method detects people in 23 fps with reduced

depth resolution of QQVGA (160x120 pixels) instead of VGA resolution available in

Kinect, it is apparent that it fails in non-upright postures due to HOG descriptor and

head-local maximum matching assumption. If a person raises his hand above his head

level, similar to the case in [16], assumption of local maxima as being head positions

will not hold.

2.3 The Method

We propose a novel approach that is able to detect people in poses also other than

upright position (Fig. 2.1). The method has eight steps shown in Fig 2.2 and imple-

mented using Robot Operating System (ROS) [23] and Point Cloud Library (PCL)

[24].
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Figure 2.2: People detection pipeline of the proposed method

2.3.1 Ground Plane Removal

Assuming humans are connected via a ground plane, removing it makes people dis-

connected from each other physically. We select bottom-most three points on the

cloud to compute the ground plane coefficients. We use a RANSAC-based least

square method [25] and remove all points present within a distance threshold (0.1

m), due to sensor noise and shoes. Since we represent a ground plane with;

G(x, y, z) = ax+ by + cz + d = 0 (2.1)

we estimate coefficients a, b, c, d. Removed points set (G∗) is expressed as follows,

G∗ = {v :
|G(v)|
h

< 0.1, h =
√
a2 + b2 + c2, v ∈ V } (2.2)

This process makes processing step faster since considerable amount of points be-

longing to the ground plane are removed from the scene. In a fixed physical configu-

ration, ground plane coefficients can be input before the operation.

2.3.2 Connected Component Labeling

Depth cloud gathered from a sensor is originally in organized form which means

that row-column information is preserved in grid structure (i.e., depth image). This

makes neighboring operations (like connected component labeling) more efficient

since we do not need to construct a search tree and do resource intensive search op-

erations. Since downsampling (like voxel grid filter) destroys organized structure,
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before downsampling we apply connected component labeling. The purpose in this

step is to segment the scene regarding the distance between points.

The method used in this stage is borrowed from Trevor et al. [26]. In this method, each

point P (x, y) in organized point cloud P is labeled as L(x, y) and divided into set of

segments B. Points are compared with a comparison function C which is denoted in

general form as;

C (P (x1, y1), P (x2, y2)) =

true if similar

false otherwise
(2.3)

In our implementation we have used a comparison function regarding the Euclidean

distance (i.e., L2 norm) of 0.01 meters between two points. If we label our coordi-

nates in 3D as x, y and z, we can represent our comparison function for two points

P1 = P (x1, y1, z1) and P2 = P (x2, y2, z2) as follows;

dist =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

C(P1, P2) =

true if dist < 0.01

false otherwise

(2.4)

Note that, this method may result in under-segmentation if two objects are in direct

contact. We resolve this problem using our novel cluster slicing and head extraction

steps.

2.3.3 Voxel Grid Filtering

The point cloud data from set of segments (B) have high resolution and also density

of points decreases with the increasing distance from the sensor. Voxel grid filter

creates a 3D voxel grid (V k) in space over the point cloud. Superscript k corresponds

to kth cluster. Points (bkj ) in each voxel (i.e., a cube with a fixed size) of kth cluster

are represented with their centroid (vki ). Each cluster Bk ∈ B is downsampled with
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Figure 2.3: Before planar surface removal, one person is segmented with the wall he

is in contact with (left, Cluster 0). After planar surface removal, he is extracted from

the over-segmented cluster without being merged with the wall (right, Cluster 0).

voxel grid filter. This filter can be expressed as;

vki =
1

Nk
i

Nk
i∑

j=1

bkj (2.5)

where vki ∈ V k and bkj ∈ Bk. Here, Nk
i represents number of points lying in ith voxel

of cluster Bk.

This reduces (downsamples) point cloud to a reasonable number of points which

makes processing easier without losing important features. For example, in a scene,

we have 160709 points originally, while this is reduced to 19236 with voxel grid fil-

ter. Our default voxel size (i.e., edge length of cubic voxel) is 0.03 meters which

provides us the detailed enough point cloud for further processing and classification

while keeping computational loads low.

2.3.4 Planar Surface Removal

Removing planar surfaces like walls, tables, doors, etc. simplifies the scene and re-

sults in faster processing. Also, it helps to separate humans from planar objects (like

walls) they are possibly in contact with (Fig. 2.3).

To detect possible plane coefficients, we again use RANSAC-based method for each

cluster obtained from the previous step. We have used 2-degrees angular and 2/3 ×
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voxel size distance threshold. If F is the plane we fit to cluster B, we define a

planarity ratio, κ, for each cluster as number of points in fitted plane (NF ) over total

number of points in a cluster (NB), i.e., we define κ and its thresholds as follows;

κ =
NF

NB

(2.6)

B →


is a pure plane if κ ≥ 0.9

includes a plane if 0.9 > κ ≥ 0.5

includes no plane if κ < 0.5

(2.7)

One example scene for the second case can be seen in Fig 2.3. In this figure, κ for

"Cluster 0" is calculated as 0.73. As a result, planar surface (which is a wall the

person is in contact with) is removed from "Cluster 0" revealing the human body.

2.3.5 Euclidean Clustering

After removing planar surfaces from clusters, there may be disconnected point cloud

blobs in clusters. One example to this scenario can be two people in contact with

a wall. When we remove the wall as a planar surface, two different human bodies

remain unconnected in the same cluster. Therefore, we apply another clustering al-

gorithm to these clusters. We use Euclidean distance as a metric. We generate a K-D

search tree for an efficient loop through every point in point cloud. Then we get a

seed point and compare it with its neighbors. If Euclidean distance between these

two points is below a certain threshold (twice the voxel side length, 0.06 m, in this

case), we assume that these two points belong to the same cluster (Ei) [27].

2.3.6 Cluster Slicing

Extracting head region of human bodies in different postures in cluttered and dynamic

environments is important since head provides 1-to-1 matching for a human and it is

the most possible non-occluded part of a human body. We propose a method similar
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Figure 2.4: Cluster slicing stage with two hands raised (left) and bent (right) cases.

to a sliding window which is slicing a point cloud vertically with consecutive zones

intersecting in a pattern, i.e., next slice starts at a fixed distance before the end of

the previous one. With this approach, it is guaranteed that at least one of the slices

will contain full head region of a person even in non-standard poses (Fig. 2.4). To

determine a single slice width, anthropometric data for humans are used [28, 29].

Mean shoulder and elbow-to-elbow breadths for adults are given as approximately

0.45 to 0.50 m. To compensate for additional width from cloths, we select slice width

as 0.60 m and intersection width between adjacent slices as the 2/3 of the slice width,

i.e., 0.40 m. Each slice (Sj) can be defined with Eqn. 2.8, 2.9 and 2.10. In Eqn. 2.10,

Ew is total width of cluster, Sw is width of a single slice (0.6 m) and So is overlap

amount between slices (0.4 m). Total number of slices necessary becomes N + 1.

Ss = Sw − So (2.8)

Sj = {p : Ssj < px − px,min < Ssj + Sw,p ∈ Ei} (2.9)

j = {0, ...N} N = dEw − Sw
Ss

e (2.10)

To eliminate the possibility to slice the point cloud with head region divided into two

sub-clusters, we use consecutive slicing with intersection. Slicing is carried out ver-

tically, starting from left-most point towards right (on x-axis of Kinect). For example
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Figure 2.5: Alignment of eigenvectors with the vertical and horizontal axes.

in Fig. 2.4, we have a cluster with width of 0.94 meters including a person. We divide

this cluster into 3 sub clusters as: Cluster 1 (0.0 m - 0.60 m), Cluster 2 (0.20 m - 0.80

m), Cluster 3 (0.40 m - 0.94 m). Therefore it is provided that as least one slice (middle

one in this case) would contain the whole head portion. This method eliminates the

assumption that highest part of the body should be the head [22]. Even if hands are

raised above head level (Fig. 2.4), it is obvious that slice in the middle will contain

head portion for further processing.

2.3.7 Head Extraction

After having sub clusters which are candidates for possible human detections, we

need to extract head and shoulders region to be able to classify it in next step. For

this purpose, PCA is used. The assumption is that, the eigenvector corresponding to

the largest eigenvalue of the covariance matrix of point cloud is along the line that

points from lower part of human body towards the head, i.e., largest variance of a

human body is along height. Also, since RGB-D sensor is providing frontal surface

points, depth variance should be always smaller than width variance, which means

that we can also use the second largest eigenvalue and its corresponding eigenvector

for aligning a cluster with camera field of view in the horizontal axis (i.e., x-axis of

Kinect). Centroid of the point cloud ~̄p is calculated first where N is the number of
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Figure 2.6: Head extraction pipeline for different scenarios; Two hands raised (left),

bent (middle) and sitting behind a table (right). Note that in all scenarios we can

extract head region at last (12th) step for classification.

points and ~pi is iterator for all points in the slice.

~̄p =
1

N

N∑
i=1

~pi (2.11)

Covariance matrix C of the point cloud is obtained with Eqn. 2.12 for further PCA

application. In Eqn. 2.13, ~vj and λj represent eigenvectors and eigenvalues respec-

tively where j = 1 for the smallest eigenvalue and j = 3 for the largest one.

C =
1

N

N∑
i=1

(~pi − ~̄p)(~pi − ~̄p)T (2.12)

C~vj = λj ~vj, j ∈ {1, 2, 3} (2.13)

To be able to detect people in various poses, despite state of art methods in the liter-

ature [22], in our approach we do not have the assumption of having people standing

upright. People can be in various poses, therefore, we align clusters to upright posi-

tion (Fig. 2.5) while cropping them to keep including possible head sections. This

novel approach enables us to have head sections of people even if they are bending or

leaning in any direction since we extract the head section from rest of the cluster with

a fixed bounding box in x and y axis (i.e., width and height respectively) of RGB-D

sensor. This approach results in pose invariant human detection.

We start our head extraction pipeline with the first alignment (Fig. 2.6, Step 2). Hav-

ing eigenvalues and corresponding eigenvectors using Eqn. 2.12 and 2.13, we align
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the eigenvector, ~v2, corresponding to the second largest eigenvalue, λ2, with hori-

zontal x-axis of the optical frame. In other words, we rotate the cluster to face its

maximum width to the camera view. Details of rotation process is given for align-

ment with the vertical axis, but procedure is the same if we exchange ~v3 for ~v2 and ~ej

for ~ei. As the second ration, we align the eigenvector, ~v3, corresponding to the largest

eigenvalue, λ3, with the vertical y-axis of the optical frame, i.e., we rotate the cluster

around its centroid to align the direction of maximum variance with the vertical axis

(Fig. 2.6, Step 3). Rotation axis is ~r and rotation angle is θ ()Eqn. 2.14, 2.15). Here

~ei and ~ej are unit vectors along x-axis and y-axis respectively (Fig. 2.5) and ‖~v‖ = 1.

~r2 = ~v2 × ~ei

~r3 = ~v3 × ~ej
(2.14)

θ2 = cos−1(~v2 · ~ei)

θ3 = cos−1(~v3 · ~ej)
(2.15)

To rotate the point cloud around its centroid, we first need to translate it to the origin

using translation matrix T in homogenous coordinates which is defined as,

T =


1 0 0 −p̄x
0 1 0 −p̄y
0 0 1 −p̄z
0 0 0 1

 (2.16)

This translation is followed by a rotation by an angle of θ around ~r, i.e., R~r(θ).

Rotation axis ~r is arbitrary, therefore, we normalize ~r and calculate R~r(θ) using Ro-

drigues’ rotation formula.

R~r(θ) = I + ~̃rsin(θ) + ~̃r2(1− cos(θ)) (2.17)

where ~̃r is an antisymmetric matrix of form,

˜̃r =


0 −rz ry

rz 0 −rx
−ry rx 0

 (2.18)
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Once we rotate and align the point cloud, we translate it back to its original posi-

tion using translation matrix T−1. If we assume R~r(θ) is expressed in homogenous

coordinates, then aligned point cloud P
′ is,

P
′
= T−1 ×R~r3(θ3)×R~r2(θ2)×T×P (2.19)

After the first two alignments, we aim to gather upper body part of the person in

the slice. We know that for a human, average shoulder breadth is about 0.5 m and

upper body height (i.e., stature-crotch height) is about 0.9 m [30]. Therefore, we crop

the slice with these dimensions consecutively (Fig. 2.6, Step 4 and 5). Height is

cropped starting from the centroid to the top. At this point, if the target slice contains

a human, we assume that we have the upper body in the cropped cluster. These

cropping operations are followed by alignment again to keep the possible head at the

top in upright position (Fig. 2.6, Step 6).

Since we aim to extract head, we need to crop further to average head size while

always keeping a possible head at the top with alignment. Average human head width

is taken as 0.25 m [30]. When we crop the cluster to width of 0.25 m, we also

eliminate shoulders, arms and other parts of body in width (Fig. 2.6, Step 7). Cropped

cluster is aligned again since the maximum variance direction can be changed with

cropping (Fig. 2.6, Step 8). By cropping the width to 0.25 m, to keep the aspect ratio

same with 5/9 we also crop the height to 0.45 m starting from centroid to top and

align (Fig. 2.6, Step 9 and 10).

Finally, we crop the cluster to 0.35 m in height referenced from the top most point

(py,max) and align the resulting cluster again in horizontal axis (Fig. 2.6, Step 11 and

12). Our purpose at this step is to gather the final portrait pose of the head in 0.25 m

x 0.35 m fixed size in x and y axis respectively. These fixed dimensions for a possible

head region provide a fixed size test sample for classification process.

2.3.8 Classification

At the last step we make use of machine learning techniques to decide whether a

candidate head cluster belongs to a human or not. SVM is used as the classification
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method at this stage. Implementation of the method is carried out using LIBSVM,

which is an open-source library developed for SVM applications [31]. To train the

SVM, we extracted training samples from the processed clouds. In total 2873 samples

are gathered from an indoor test environment, and they are labeled by hand as human

or not. Training set contains 1571 negative and 1302 positive samples. SVM is

trained with these samples using Radial Basis Function (RBF) kernel and probability

estimation option. Probability estimation feature of LIBSVM fits a sigmoid function

to outputs and maps them to a probability scale [32]. This allows us to grade the

output of the classifier based on 0 to 1 scale with probability of 0 being non-human

while 1 is certainly a human.

To be able to classify clusters correctly, we need to have a descriptor which can dis-

tinguish a head shape from other ordinary objects in the world. There exist different

descriptors in the literature. Rusu et al. introduced Viewpoint Feature Histogram

(VFH) [33] as a global descriptor for object recognition. They compute the vector

between the viewpoint and the centroid of point cloud. For all points in the cloud,

the angle between this vector and normal vector of the point is calculated, and a his-

togram is constructed. Additionally three angles are computed between the normal

of the centroid and normal of each point resulting in total of four histograms. The

Ensemble of Shape Functions (ESF) is developed by Wohlkinger et al. [34] which

is a combination of three different shape functions like distances, angles and area.

This descriptor does not rely on surface normals. These descriptors are designed for

object recognition which covers generic shapes, not for a specific shape like human

head. They try to describe generic 3D shapes as much as possible while a part of

them using RGB data [35]. Since we aim to use only depth data to be resistant to

light and brightness changes, we did not use descriptors incorporating color data.

Majority of the descriptors, which do not use color information, rely on surface nor-

mals [33,36,37]. Calculation of these normal vectors for each point in the point cloud

adds extra overhead which makes them poor choice for a real-time classifier. Addi-

tionally, since we capture scenes only from a single point of view, we do not have

all surrounding points of objects. Therefore, normal vectors can be misleading in our

case.

Due to the method we use to crop and align candidate head clusters described in previ-
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ous sections, the head shape we search is nearly invariant to viewpoint and rotations.

Even a bent over person will be aligned with the vertical axis eventually. This elimi-

nates the need for such complicated shape descriptors and enables us to use a simpler

descriptor for head shapes. To keep the calculations fast and to describe a head shape

sufficiently, we came up with a basic shape descriptor: Adjacent Features Histogram.

2.3.8.1 Adjacent Features Histogram (AFH)

After head extraction operation, we have point clouds, with constant size and fixed

viewing angle, ready to be classified. Therefore, instead of working with resource

intensive or view dependent descriptors, we introduce a new simple descriptor which

divides whole cluster volume into adjacent volumetric histogram bins in 3D. So, we

call this descriptor Adjacent Features Histogram.

AFH divides a volume in the radial, angular and depth directions. Number of bins

can vary depending on the application. In our case, with 0.03 m voxel size, we found

that 0.05 m in radial direction, 30◦ in angular direction and 0.05 m in depth provide

best results. However, for a lower voxel resolution, number of histogram bins can be

made smaller to describe shapes better. As descriptor, we set values of bins to number

of points they contain.

First, we calculate the 3D centroid of the point cloud. We coincide the center of the

descriptor with this centroid. We number the bins starting from zero angle, smallest

radius and foremost one as 1 and increase bin number in radial direction first, in

angular direction second and in depth third.

For each point we calculate three values dx,y, dz and θx,y using the 3D centroid (p̄) of

the point cloud as:

dx,y =
√

(pi,y − p̄y)2 + (pi,x − p̄x)2 (2.20)

dz = pi,z − pz,min (2.21)

θx,y = atan2(pi,y − p̄y, pi,x − p̄x) (2.22)
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Figure 2.7: AFH Descriptor. (a) Bin numbering for the foremost layer, (b) bins with

a sample point cloud belongs to a human, (c) different layers of bins in depth and (d)

isometric view of the descriptor.

Corresponding histogram bin index (hind) is calculated with radial step size (∆dx,y),

number of radial steps (nr), angular step size (∆θx,y), number of angular steps (nθ)

and depth step size (∆dz) as shown in Eqn. 2.23 and as a result, value of this bin is

incremented by one.

hind = d dx,y
∆dx,y

e+ b θx,y
∆θx,y

cnr + b dz
∆dz
cnrnθ (2.23)

An example of 48 bins for a single layer can be seen in Fig. 2.7. We number the

bin with zero angle and smallest radius as one, and adjacent bins in radial direction

have consecutive numbers. Then come the next angle and its radial direction. This is

repeated for the full layer, then, same numbering scheme is applied for the upcoming

layers in depth. If we have five layers in depth, our histogram will have 240 bins in

total as seen in Fig. 2.7 (c) and (d).

The resultant clusters from the head extraction stage are classified based on AFH

using SVM classifier. If the same head region is present in two different slices of

clusters due to intersecting slices, they are both classified as people. However, in such

a case we merge two results into one classified as people if they are not apart more

than 0.15 meters in 3D coordinates. A decision threshold is defined for probability

estimates. By adjusting this threshold, we can change precision and recall values to a

reasonable level.
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Figure 2.8: Comparison of detection performance of our method with [22].

2.4 Experiments

We evaluated the classification and generalization performance of our method using

state of art Kinect Tracking Precision (KTP) dataset from the literature which is dis-

tributed with ground truth positions labeled [22]. Due to their method, this dataset

contains no scene with arbitrary poses like bent, lean, sit, hands up, etc. Still, we

tested with this dataset to be able to compare our results and see generalization per-

formance. Besides KTP, we also implemented our algorithm on a mobile industrial

robot to see its real case performance. For 2D object detection, PASCAL VOC chal-

lenge [38] defines a minimum of 50% overlap for bounding boxes of detection and

ground truth to be regarded as a match. Munaro et al. extends this threshold to 3D

case as maximum of 0.3 meters distance in 2D (ground plane) coordinates only. They

disregard the height difference in evaluation of results. Instead, we use 0.15 m of 3D

Euclidean distance (regarding the height) as our threshold. We consider a result as

true positive if ground truth position of head and the detected bounding box centroid

are not apart more than 0.15 meters in 3D coordinates. 0.15 m is chosen because it

is nearly half-width of a human head [30] so there can only be a single head at this

proximity.
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Figure 2.9: Precision and recall curve for our detection method.

2.4.1 Results with KTP Dataset

Besides occlusions and crowded scenes, RGB-D datasets generally lack arbitrary

pose like KTP and Freiburg RGB-D People Dataset by [12]. However, it is still a

good evaluation set for detection and generalization performance since it is recorded

with older Kinect device with various people movements in it.

Results are evaluated using Detection Error Tradeoff (DET) curves [39] which plots

the False Rejection Rate (FRR) versus the number of False Positives Per Frame

(FPPF) in log-log scale. From Fig. 2.8, it can be seen that our method performs

comparable with [22] up to FPPF about 0.015. After this point our method becomes

superior and FRR decreases rapidly to 3.5% with 0.6 FPPF, i.e., even before reaching

1 FPPF which is the benchmark point to compare results [39].

2.4.2 Results with Mobile Robot

We also evaluate our results on a mobile robot (SEIT 100) from Milvus Robotics.

We mounted Kinect v2 on a configuration shown in Fig. 5.2. It is placed on 1.6

m height (similar to a human) and 10° inclination for better coverage. We captured

various poses shown in Fig. 2.1, 2.4 and 2.6. In total, we have recorded 2.7 minutes
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Table 2.1: Frame processing frequency with different processors

Processor FPS

Core i3 2.4 GHz 28

Core i7 3.4 GHz 37

long stream in real time and evaluated results. Ground truth is labeled by hand using

another stationary Kinect camera. Results are shown with precision and recall (PR)

data. Our PR curve (Fig. 2.9) shows that we can obtain high precision even with

high recall rate. Equal Error Rate (EER), which is the point where precision equals

to recall is 92%. For comparison, with their own dataset, authors achieved EER of

86% with one of their methods which relies only on depth information [12]. We did

not compare with results of other proposed methods, because they incorporate 2D

detection and color information from RGB-D sensors.

Besides accuracy, with voxel size of 0.03 m, we achieved an average processing rate

of 28 frames per second which is considered to be satisfactory for a mobile robot

moving in a dynamic cluttered environment. The computer we used in tests has Intel

i3 processor with 2.4 GHz clock frequency (Table 2.1).

2.5 Conclusions

In this chapter, we introduced a novel method for detecting people in various poses

using only depth data gathered using RGB-D sensors. Since head region of a human

body is the most representative part for classification, we extract this part even in

challenging scenes using the proposed method. In this process, we also proposed a

new feature descriptor for head classification. We evaluated our method on a pub-

lic dataset (KTP) and on a mobile robot. Robustness of our method results in high

performance in both scenarios, i.e., one including upright standard poses and another

with non-standard poses.

The method provides high detection rate with a high frame rate relying solely on

the CPU of an average laptop computer. This enables the proposed method to be
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implemented on mobile robots without requiring high computational resources. Also,

since the algorithm uses only depth information, light and contrast changes in indoor

environments should not affect classification results directly.

By developing this people detection method, the first stage of the proposed human-

aware mobile robot navigation method is completed. Once people can be detected

robustly, they can be tracked for further trajectory prediction operations.
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CHAPTER 3

PEOPLE TRACKING

3.1 Introduction

This study covers developing navigation methods which can make mobile robots navi-

gate safely and in a socially compliant manner in environments crowded with humans.

In order to plan a path and act according to people around, a robot has to detect and

track these people reliably. People detection stage is handled with the previously

proposed method. To plan a path in crowded environments, robots need to estimate

future locations of people around. Therefore, a tracking process is necessary after

detection phase. In this chapter, tracking methods in the literature are investigated.

Since the experiment results for the proposed detection method is satisfactory and

running at high frequency, a reliable tracking method in the literature is chosen and

implemented, instead of developing a new one. Efficient track management method

is developed to keep track information updated and accurate.

3.2 Related Work

Tracking phase generally takes people locations as input from detection algorithms.

Depending on the tracking method, measures for similarity of detected persons in

adjacent frames are investigated. If these matches get scores higher than a threshold,

they are considered as same persons and tracked accordingly. In the study by Munaro

and Menegatti [22], detection modules provide human positions to tracking module

and then, the tracking module associates these detections with trackings by maximiz-

ing a joint likelihood of probability of color, being human and motion. They use an
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online classifier with features composed of color histograms. However this type of

methods generally suffer in changing light conditions if they rely heavily on color

appearance.

For matching detections to their predicted positions, majority of studies use 3D dis-

tance metric [16, 21, 40]. The main reason behind this idea is that, when objects oc-

clude each other while passing, 3D location information provides better handling of

trajectories especially in camera’s viewpoint. Salas and Tomasi [41] use a likelihood

formulation blending candidates’ 3D positions with their appearance and motion.

Han et al. do not use 3D distance for tracking [42]. Instead, their method relies on

similarities in color and depth variations between frames. Even though Bansal et al.

use 3D coordinates in detection stage for ROI selection, they carry out matching in

2D [43]. Also in [44], tracking with Kalman filter is carried out in 2D image plane.

There are studies in the literature suggesting that combining color and depth infor-

mation results in more consistent matching of detections to tracks. As an example,

Luber et al. used color information from RGB image together with Haar-like features

in depth and intensity images [45]. Full body color and height histogram is used as an

appearance model by Liu et al. [16]. Bhattacharyya similarity measure is computed

for matching this appearance model to newly detected candidates.

Combination of overlap of two 3D shapes and Bhattacharyya measure of similarity

of their color histograms is used for association in a study by Dan et al. [19]. In [46],

authors use a bit more complicated correspondence measure by assuming planarity

of standing people. They compute depth-based likelihood of the detection where the

mean of normal distribution being the distance to the camera and standard devia-

tion being a heuristically chosen value, inversely proportional with the confidence in

depth. These likelihoods are computed for both head and torso, separately. Addi-

tionally, color based appearance models are used for head and torso. For the head,

Bhattacharyya similarity measure is used while for the torso, fitting an ellipse at the

estimated head location on the image, using image gradients.
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Figure 3.1: Overall pipeline of detection and tracking methods.

3.3 The Method

There are different methods for tracking in the literature. A summary of these meth-

ods was provided in the previous section. Most widely used methods rely on (ex-

tended) Kalman filter or particle filter. In both of these methods, tracking pipeline is

generally composed of prediction, data association and update (or correction) steps.

Tracking algorithms gather measurement of human positions from detection algo-

rithms. Any previously detected person is associated with a track according to a

threshold for consistency (e.g. number of frames that the person is present). At each

loop, state of previously tracked people is predicted with a motion model (kinetic or

social). After, these predictions are associated with measurements taken from de-

tection phase regarding a measure (Euclidean distance, Mahalanobis distance, etc.).

Using this pairing, state of tracked people is updated as a combination of predicted

state and measured state.

For estimation of trajectories of people around the robot, we implemented a tracking

method after the detection phase. In the tracking phase, detection results gathered

from people detection algorithm are used. We match these detections with previously

created tracks with a data association method. If detections are associated with tracks,

those tracks are updated. If not, new tracks are created if detections meet certain

criteria. The overall pipeline of detection and tracking is given in 3.1.

To maintain positions and velocities of people on the ground plane, we use Kalman

filter. For state estimation, we assume that we have a discrete linear dynamic system.
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We model the dynamic system as Eqn. 3.1. Here, ξ(k) is the process noise which is

modeled as zero-mean normal distribution (Eqn. 3.2).

x(k + 1) = F (k)x(k) + ξ(k) (3.1)

ξ(k) ∼ N(0, Q(k)) (3.2)

Measurement model is given as Eqn. 3.3. Since we have noise in the sensor, we need

to add ε(k) as normally distributed measurement noise (Eqn. 3.4).

z(k + 1) = H(k)x(k) + ε(k) (3.3)

ε(k) ∼ N(0, R(k)) (3.4)

The filter consists of four steps; state prediction, measurement prediction, data asso-

ciation and update.

3.3.1 State Prediction

First step of the filter is state prediction. The last state of a track from the previous

tracking cycle is updated using state transition matrix F (k). To be able to define a

state transition matrix, we need to have a model for human motion. There are different

methods to capture and model human motion in tracking. To handle full occlusions,

a constant velocity model can be considered, as described in [47]. Data is gathered

from RGB-D sensor at a rate of 30 Hz. In such a rate, it is safe to assume human

motion locally linear, i.e., constant velocity. For constant velocity model, we define

the state vector and state transition matrix as Eqn. 3.5 and 3.5 where dt is the time

interval between frames. We define the state only in two ground plane axes which are

x and y.

x =
[
x y ẋ ẏ

]
(3.5)
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F =


1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 (3.6)

State prediction is carried out with Eqn. 3.7 and 3.8. At this step, we have a new

state which is predicted only using the motion model of the system and noise of this

motion model.

x̂(k + 1|k) = F (k)x̂(k|k) (3.7)

P̂ (k + 1|k) = F (k)P̂ (k|k)F T (k) +Q(k) (3.8)

3.3.2 Measurement Prediction

After having the new state predicted using motion model, we predict the measurement

using this new state using Eqn. 3.9 and 3.10.

ẑ(k) = H(k)x̂(k + 1|k) (3.9)

Ŝ(k) = H(k)P̂ (k + 1|k)HT (k) +R(k) (3.10)

With RGB-D sensor we measure only positions derived from centroids of detected

people. So we define the measurement vector and measurement model as Eqn. 3.11

and 3.12 to include positions in two axis.

x =
[
x y

]T
(3.11)
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H =

1 0 0 0

0 1 0 0

 (3.12)

3.3.3 Data Association

For a robust tracking performance we need to associate existing tracks with detections

taken from the people detector. There are various data association methods in the

literature such as Nearest Neighbor (NN), Probability Hypothesis Density and Joint

Probabilistic Data Association [48]. However in [49], authors state that these methods

perform similar in environments with high complexity when tracking from a mobile

robot. Therefore, we implement Nearest Neighbor method for data association due

to its low computational complexity. We use Hungarion (or Munkres) method [50]

with NN to solve the complete linear assignment problem between existing tracks

and detections. For the calculation of the cost matrix we use Mahalanobis distance

between prediction and detection to include uncertainty.

The difference between measurement z and measurement prediction ẑ is called as

innovation. To calculate Mahalanobis distance we use innovation (Eqn. 3.13), inno-

vation covariance (Eqn. 3.14) and squared Mahalanobis distance (Eqn. 3.15).

vij(k) = zi(k)− ẑj(k) (3.13)

Ŝij(k) = H(k)P̂j(k + 1|k)HT (k) +Ri(k) (3.14)

d2ij = vij(k)T Ŝij(k)−1vij(k) (3.15)

Pairings supplied by the Hungarian method are accepted if the Mahalanobis distance

is smaller than a threshold. We select this threshold to be 0.5 empirically. If the

distance is larger, we create a new track for the detection since it does not match with

existing tracks.
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3.3.4 Update

If data association is successful for a track and detection pair, we update the state of

the track in the last step of the filter. Kalman gain is calculated (Eqn. 3.16), state and

state covariance matrix are updated (Eqn. 3.17, 3.18) using this Kalman gain.

K(k) = P̂ (k + 1|k)HT (k)Ŝ(k)−1 (3.16)

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k)v(k) (3.17)

P̂ (k + 1|k + 1) = (I −K(k)H(k))P̂ (k + 1|k) (3.18)

After this update we have a better state estimation incorporating measurement and

prediction in a weighted manner.

3.3.5 Track Management

Creation of new tracks, update of existing tracks and removal of old tracks are man-

aged depending on certain criteria. We have four labels assigned to tracks according

to their states; appearing, live, disappearing and terminated (Fig. 3.2). Only tracks

with the label “live” are accepted as real people for further processing.

When we have an unassociated detection, we create a new track and label it as "ap-

pearing". We do not regard this track as "live" track until we get same detection for 2

seconds. If not, we terminate this track. Similarly, if we have an unassociated track,

we label it as "disappearing". If it does not get associated for 5 seconds, we termi-

nate the track. If it is associated during this time, it switches to “appearing” state and

the same procedure is applied as a new track generation. Since terminated tracks are

regarded as tracks which are not recoverable, they are removed from the track list in

the next cycle.
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Figure 3.2: Possible routes for track states.

3.4 Experiments

Human-aware path planning depends on correct tracking of people around. Our

tracker implementation on top of our detector performs satisfactorily by visual in-

spection. Yet, we have validated the performance also by comparing the results with

ground truth position data provided in KTP dataset.

In scenes with people having abrupt velocity changes, or people leaving the scene

and returning back, our tracker may switch track IDs or create new tracks. However,

for path planning, trajectories of the closest people to the robot are more important

since we do not deal with a recognition problem. Also, the time span needed is

generally a few seconds. Therefore, these situations do not cause problems in the

general navigation method.

3.4.1 Results Obtained Using KTP Dataset

KTP dataset contains five different scenarios (Fig. 3.3) as,

1. back and forth: a person walking back and forth respect to the camera,

2. random walk: three people walking with random trajectories for about 20 sec-

onds,

3. side by side: two people walking side-by-side with a linear trajectory,

4. running: one person running across the room,

5. group: five people who gather in a group and then leave the room.
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Figure 3.3: Five different scenarios present in KTP dataset [22]

Among these five scenarios we used “random walk” (Fig. 3.4) case since it is the most

similar case to our target scenario which we assume there will be multiple people

walking around randomly.

This scenario includes three people walking around randomly. Our detection and

tracking system is expected to detect all three people in the scene and track them till

the end. This scene takes about 25 seconds to complete. There are strong occlusions

in some parts of the dataset. When we run our program against this scene, it detects

three people and labels them as P0, P1 and P2 (Fig. 3.5). During the scene, it can

perfectly track each individual with correct labeling. Also it does not fail to track

even in persistent full occlusions.

During the tests, we recorded our tracker output. At each cycle of the algorithm, we

recorded the ID of the tracked person with ground plane coordinates. KTP dataset

provides ground truth position information of labeled people in the scene. 3D posi-

tions of people have been obtained by a motion capture system operating by detecting

an infrared marker placed on each person’s head in the scene. However, they have re-
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Figure 3.4: A screenshot from scenario three, random walk.

Figure 3.5: Tracker in action. It detects and tracks three people in the scene. Top

view and labels are provided on the left.
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Table 3.1: Mean and standard deviations of differences between trackings and true

positions for three people in Fig. 3.5.

Person Mean St. Dev.

P0 0.192 0.170

P1 0.246 0.167

P2 0.206 0.119

moved ground truth data of people if they are occluded in 2D image. Therefore, we

have unconnected paths in ground truth position data. After running a tracking ses-

sion, we compared our tracker results with ground truth positions (Fig. 3.6a-b-c). As

it can be seen in Fig. 3.6 and in Table 3.1, our system tracks three people in ran-

dom walk scenario satisfactorily. The mean differences between trackings and true

positions are at about 0.2 meters. The main reason for these differences is differ-

ent tracking points of the dataset and our method. KTP dataset records positions by

tracking infrared markers centered on human head-tops. However, in our method,

due to the nature of the sensor, data from RGB-D sensor provides only frontal surface

points. Since we track centroids of point clouds, this half surface shifts the centroid

towards the sensor. Density of points is different because the dataset is recorded at 30

Hz while our system with tracking is operating just above 20 Hz due to overhead of

the algorithm.

3.5 Conclusions

In this chapter, the people tracking component is implemented. Detected people in-

formation from the previously introduced detector is used as the input. Using constant

velocity motion model, a Kalman filter is implemented. Data association stage is car-

ried out with using a nearest neighbor matching algorithm coupled with Munkres (or

Hungarian) algorithm.

With constant velocity motion model, long occlusions and abrupt direction changes

become difficult to track. However, in the context of this study, putting large effort
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(a)

(b)

(c)

Figure 3.6: Tracked path (left) and ground truth path (right) of person P0 (a), P1 (b)

and P2 (c)
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onto solving these problems would be redundant because navigation of a mobile robot

is more related with people in close vicinity. In other words, few identity changes or

renewals do not pose a problem since what we are trying to solve is not a recognition

problem. Accurately tracking people for last few seconds is sufficient for predict-

ing future trajectories because as trajectory information gets old, its influence on the

future trajectory also gets lowered.

Testing of the implemented tracking algorithm is again carried out with the previously

developed detector on KTP dataset. Tracking information generated by the tracker is

recorded and compared with the ground truth positions in the dataset. Results are

satisfactory for using the method as a component in development of a human-aware

navigation method.
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CHAPTER 4

TRAJECTORY PREDICTION AND PATH PLANNING

4.1 Introduction

The main scope of this doctoral study is to develop a human-aware navigation system

for mobile robots. The first phase was developing a robust people detection method.

The second phase was about tracking the detected people which we have managed

by implementing constant velocity motion model with Kalman filter. The third phase

of the study is to develop a path planning method regarding the information gathered

from the people tracking phase. As the first step in this section, we define and explain

the problem, namely "the freezing robot problem". Then, we have implemented a

classical planning method to demonstrate the problem, see the drawbacks clearly.

After providing the related work on the topic, we explain the proposed method and

test the method on a public dataset. Results are compared with other state-of-art

methods and shown to be superior in terms of different evaluation metrics.

4.2 The Freezing Robot Problem

In dynamic environments, especially crowded with people, it is a challenging task for

a robot to navigate to a goal position. As we aimed with this study, a robot should

be able to predict the trajectories of other agents at least in close vicinity. When this

prediction is carried out up to a certain extent, an uncertainty grows at each step. This

uncertainty explosion is one of the reasons for preventing robots from generating

reasonable paths for navigating among humans (Figure 4.1). This is called as the

freezing robot problem [51].
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Figure 4.1: Uncertainy explosion causing the robot to freeze [52].

Although uncertainty explosion is the primary reason behind the freezing robot prob-

lem, it is shown that even in perfect knowledge of individual trajectories (or with

insignificant uncertainty), problem still occurs in certain crowd configurations. The

reason behind this is the lack of human cooperation in path planning models. For ex-

ample, when people walk shoulder to shoulder any independent planner will assume

the path is blocked and will try to navigate around the crowd. However, in human nav-

igation, even while walking shoulder to shoulder, humans cooperate and make room

for others [53–55]. Lack of this model causes planners to fail or navigate through a

sub-optimal path. This behavior is shown in Figure 4.2. If the crowd is dense enough,

the freezing robot problem will always occur. Therefore, a human-aware navigation

algorithm should incorporate human cooperation while predicting trajectories and

planning paths. Usefulness of this cooperation (or joint collision avoidance) is shown

in different studies like [56], [57] and [58].

4.3 Problem Demonstration

Our motivation for developing a human-aware navigation method is fed from prob-

lems of classical methods which treat humans as one of the ordinary objects in the

environment. Without regarding human navigation behavior and motion prediction,

these classical methods fail to plan a path to the goal in an environment crowded with

humans. To be able to demonstrate these problems of classical methods, we have

developed a case with using KTP dataset and a grid based A* planner.
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Figure 4.2: When people walk shoulder to shoulder, independent planners navigates

around crowd intead of allowing them to make room in cooperation [51].

For the test of the planner, we implemented a 2D costmap which consists of grids with

0.05 m side length. This allows us to discretize the area to create plans on. Each grid

has a cost varying between 0 and 255. A cost of 0 means free space and 255 means

a lethal obstacle. To assign costs to grids, we generated 2D laser scan from 3D point

cloud data of KTP dataset. Laser scan is simulated as if it is at the same height with

RGBD camera. Laser readings of obstacles (and humans in this case) correspond to

cost of 255. Costs of the surrounding area of that grid decay exponentially.

We defined a goal behind the three people moving around and A* path planner tried

to plan a path to this goal starting from sensor location. As people move around

randomly, costs in costmap are updated. Some of the grids which were free before

became occupied. Therefore, the planner updated the plan at every instance. Even

in some cases it could not find any possible path because there was no empty space

left to move through. Few screenshots of movement of people and changing plans are

shown in Figure 4.3.

As our test results show, classical path planning methods, if they can find any, always

change the planned path due to dynamic movement of people. If all free space is

occupied by people, classical methods fail to find a path to the goal. As a result,
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(a)

(b)

Figure 4.3: Classical A* planning to a predefined target. Abrupt plan changes (blue

lines) are observed between two different frames which are 3 seconds apart.
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the robot becomes halted and as mentioned early, this is called as “freezing robot

problem” in the literature [51]. We aim to solve this problem with developed methods

throughout this study.

4.4 Related Work

After incorporating humans into navigation algorithms there has been a considerable

amount of study that develop human motion models ( [59], [60]). The underlying

assumption was that if the human motion prediction is accurate enough, it will lead

to a good navigation performance. Methods are developed to model goal-directed

trajectories of pedestrians with collecting data from pedestrian movements [61]. In

all of these studies, moving agents in the environment are modeled independently.

Therefore, in dense crowds, robots fail to move which is called “the freezing robot

problem” [51]. In this situation, once the environment becomes complex up to a cer-

tain level, the planner of the robot cannot find out a safe path, and the robot performs

unnecessary movements or just freezes in place to avoid collisions.

According to the “social forces model” [53], people typically engage in joint collision

avoidance i.e., they adapt their trajectories according to each other to make necessary

space for navigation. This model suggests that human effort to avoid obstacles and

to reach a goal (i.e., internal objectives) can model human motion. Even though the

social forces model simulates crowds well, it is found that the model is insufficient

for individual movement prediction. Especially, sudden evasive maneuvers are not

captured satisfactorily with the social forces model. Therefore, Trautman developed

Interacting Gaussian Processes (IGP), a non-parametric statistical model based on

dependent output Gaussian processes that can estimate crowd interaction from data

[51]. His model captures the non-Markov fashion of human trajectories while they

are navigation to their goals.

Pradhan et al. developed a path planner to navigate in environments crowded with

people [62]. Their method relies on potential fields with probabilistic data and mo-

tion information. Since their method is strongly sensitive on parameter changes, it

is not applicable to general cases of the problem. In [63], Morioka used monocular
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omnidirectional sequential images to gather features from the environment. These

features are selected as stable features and a learning phase is implemented. In the

learning phase, a human teleoperator controls a mobile robot and the robot learns the

route. In the navigation phase, the mobile robot autonomously plans the path using

the learned route and navigates to a position using that path. Kuderer et al. pre-

sented a model for predicting pedestrian movements using important features of the

trajectories to determine the probability distribution representing human navigation

behavior [64]. Learning methods rely on principle of maximum entropy in human

navigation behavior. But, it is a fact that humans may behave differently to robots

than to people. Yet, similarity (human likeness) in motion is accepted to be a factor

that improves anthropomorphism [65].

In [66], it is argued that the navigation with obstacle avoidance in dynamic environ-

ments is a learning from demonstrations (LfD) without the use of a path planner but

with proper feature sets. The main assumption of their approach is that the demon-

strator (i.e., human) would always pick the same policy during the demonstration

process. Kruse et al. stated that selecting the shortest path to the target destination

for crossing scenarios seems to be the preferred human behavior in experiments [67].

Therefore, this behavior should be taken into account while developing algorithms

for mobile robots. Kidokoro studied on a different aspect of the problem [68]. The

author stated that even after operating long time, i.e. 3 years, people (especially chil-

dren) still gathered around the robot. So congestion and crowd are caused by the

robot itself.

In [69], authors state that from an engineering point of view, robot navigation needs

to be scalable to different crowd densities, effective in following trajectories, robust

to sensor noises and errors, and not relying on any external infrastructure to navigate

effectively. Also from a societal point of view, robot navigation needs to be human-

friendly, predictable and safe. With these conclusions, they have developed a bio-

inspired, local navigation algorithm which can generate human-aware and human-like

trajectories. Trautman et al. used the concept of cooperation for navigation [52]. They

argue that their experimental results, evaluated with previous results in [51], showed

that a human-robot cooperation model is important for safe and efficient navigation

in dense crowds. They tested their Interacting Gaussian Process (IGP) method in a
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Figure 4.4: Overhead still of the crowded university cafeteria test bed in [52].

university cafeteria (Figure 4.4). IGP method assumes known final destinations (i.e.,

goals) for all agents. This is a strong assumption which is generally not the case

except some specially designed scenes. Kuderer et al. developed another cooperative

approach which uses maximum entropy inverse reinforcement learning method to

compute a policy of the desired interaction behavior [70]. In the experiment, first, the

pedestrians walk side by side, blocking the corridor (Figure 4.5). It is obvious that a

conventional path planner would not be able to find a clear path to the goal in such a

situation. In contrast, with their method, the robot expects humans to cooperatively

navigate with joint collision avoidance behavior. During the encounter, the robot

constantly computes the most possible cooperative scenario with the humans, which

makes the wheelchair able to navigate in natural joint collision avoidance. But this

method is not tested with overcrowded environments.

In the literature there is also an outdoor study on navigating in crowded environments.

Kümmerle et al. developed a navigation system for urban environments [71]. Their

system navigates as pedestrian-like autonomously. They also incorporated a SLAM

method for dealing with large city center maps. Terrain and traversable regions are

recognized for safe navigation. Tests are conducted on a 3.3 km route successfully.

However their fixed 2D laser configuration requires a movement to detect objects

in 3D. Therefore, it may not be applicable to different robotic configurations. For

crossing road the robot cannot act autonomously since traffic lights are not enough

for a safe crossing. A police car or an emergence situation may be encountered,
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therefore, the robot cannot rely on traffic lights. This is another drawback of this

application.

(a)

(b)

Figure 4.5: Steps of the cooperative navigation experiment in [70].

Considering dynamic obstacles as individual rational agents which maintain social

relations and follow rules of social behavior is the approach that is necessary to make

mobile robots share environments with humans. In this aspect, there are different

approaches in the literature. One group of researchers apply models from social psy-

chology and cognitive sciences, while the second group rely on machine learning

techniques. In [72], [73], [74] and [75] human sciences models are incorporated.

Mostly used models are Proxemics Theory [76], social forces [53] and back space

model [77]. This approach is promising but these methods may not be applicable to

human-robot interaction cases in uncontrolled conditions. On the other hand, learn-

ing methods tend to incorporate human behavior by statistical learning from observa-
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tional data from humans. Ziebart et al. studied the human movement in static envi-

ronments [61]. They used maximum entropy inverse reinforcement learning (IRL) to

predict movements. Henry et al. addressed dynamic environments in [78]. They use

IRL to make a simulated agent learn to join the flow of pedestrians using features like

average flow direction and density. Another study with the maximum-entropy algo-

rithm was introduced by Kudererer et al. [64]. To predict socially compliant trajec-

tories, their algorithm learns a behavior model with maximum-entropy method. Kim

et al. in [79] applied a Bayesian method with IRL for social navigation. They incor-

porated depth-augmented optical flow features as input. Vasquez et al. published an

experimental comparison of IRL algorithms and features for the robot navigation in

crowds [80]. They argue that IRL allows modeling the factors that motivate people’s

actions instead of the actions themselves. They developed evaluation metrics and

methodologies as a first effort to fully benchmark this kind of techniques. In [81], au-

thors introduced non-cooperative game theoretic approach. They solved the decision

process behind human interaction behavior using the Nash equilibrium. They argue

that Nash’s theory is suitable for the problem because humans behave rationally in

a sense that while navigating they aim to minimize their own cost. They validated

their assumption for five different cost functions. This approach is applied to decision

making of multiple agents passing each other. They concluded that the solution with

Nash equilibria in non-cooperative games selects trajectories similar to humans. Au-

thors also extended their work and used this method to develop a path planner using

rapidly-exploring random trees (RRTs) [82]. Vemula et al. [83] model cooperative

human navigation by learning interaction from real data using Gaussian processes.

They use an occupancy grid in close vicinity of each agent and a goal to train and

predict future velocities, thus, trajectories. This method requires known final desti-

nation information of each agent during training, which is not the case in realistic

applications. Also, this assumption limits the generalizability of the approach, since

the model needs to be trained for each different environment.

Deep learning methods are also used in crowd prediction problem. Alahi et al. [84]

proposed a method incorporating Long-Short Term Memory (LSTM) for human tra-

jectory prediction. They used one LSTM for each trajectory also exchanging informa-

tion among LSTMs through a pooling layer. For this purpose, they collect millions of
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training samples [85]. Since the method does not consider uncertainty, it is possible to

have assertive predictions resulting in unsafe robot navigation among humans. Also,

in [86], Trautman asks the question of "can social navigation be learned?" and con-

cludes that due to the combinatorics of social navigation explained in [86] and [87],

it becomes infeasible to have tractable inference about trajectories especially without

exploiting the structure of the space.

4.5 Cooperative Trajectory Prediction

Our main idea in this thesis is to develop a human-aware navigation method for mo-

bile robots. This human awareness includes joint collision avoidance. We base our

study on the idea of joint collision avoidance of humans which is thoroughly showed

to be existent in human navigation. Without regarding this cooperation among hu-

mans, human trajectory prediction and mobile robot path planning studies fail to rep-

resent human-likeness.

Postulate 1: There is a joint collision avoidance and cooperation between humans

while navigating [51, 88].

Since we aim to solve human-aware robot navigation problem as our ultimate goal,

modeling the mobile robot as one of other agents is required. Questions may arise

on human reaction and cooperation with a mobile robot instead of another human.

However, it is clear in the literature that if a mobile robot acts similar to a human

while navigating, it is accepted as a human-like rational agent by other humans. This

can be stated as,

Postulate 2: Similarity (human-likeness) in motion increases the scale of anthropo-

morphism [65].

We conclude that, if we can generate human-like trajectories, we can increase the

perception of anthropomorphism so that, a mobile robot can be treated as just another

human.

Previously described people detection and tracking algorithms provide a trajectory

history for each agent on the scene. We use these past trajectories to estimate ref-
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erence future trajectories. Using a cost based method on occupancy grid maps, we

update these trajectories at each future step. At the end, we generate a collision-free,

cooperative trajectories for each agent (including the robot). Details of each step are

given on upcoming sections. We have tested our method on a simulation environment

before experiments on real robot platform. Results also show that our model-based

cooperative path planner performs superior to comparable methods in the literature.

4.5.1 Human-like Trajectories

We start our pipeline with generating human-like trajectories for each agent based on

their trajectory before the processed time step. Humans generally move on smooth

paths minimizing their path length but avoiding collision while maintaining their

speed [81]. We state this behavior as:

Postulate 3: People move on smooth paths minimizing their path length to a goal

[81, 89, 90].

This composite nature of inherent human path planning brings non-parametric meth-

ods forward for trajectory prediction. At this point, Gaussian Process (GP) can repre-

sent or help to generate human-like trajectories if kernel functions are selected prop-

erly and hyper-parameters are tuned accordingly, as in [91], [92] and [88].

4.5.1.1 Gaussian Processes

A Gaussian Process (GP) defines a prior distribution over functions. It is a stochas-

tic process relating each point in input space with a target variable that is normally

distributed. Every finite subset of random variables is in the form of multivariate

normal distribution [93–97]. Prior distribution can be converted into a posterior over

functions once we gather data and condition GP accordingly. GP is analogous to a

Gaussian distribution over random variables. Scalar random variables are defined by a

mean and a variance, and vectorial random variables are defined by a mean vector and

a covariance matrix. A Gaussian Process can be perceived as a distribution over func-

tions, defined by a mean function µ(x) and a covariance Σ(x) with Σij = κ(xi,xj),
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(a) (b)

Figure 4.6: Ten samples from GP prior (a) and posterior (b). Note decrease in vari-

ances (shaded area) around observed points at −3,−1.5,−1 and 0.

where κ is a positive definite kernel function for two inputs of xi and xj . We can

denote prior distribution over function f(x) by

f(x) ∼ GP (m(x), κ(x,x′)) (4.1)

where,

m(x) = E [f(x)] (4.2)

κ(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (4.3)

It is a common practice to set m(x) = 0, and still, model the mean arbitrarily without

loss of generality. If we have noiseless observations, we will have the joint distribu-

tion of  f

f∗

 ∼ N
m(x)

m(x∗)

 ,

 K K∗

KT
∗ K∗∗

 (4.4)

If we have n sized observations for training the GP and n∗ sized test set, K = κ(x,x)

will have size of n×n while K∗ = κ(x,x∗) is n×n∗ and K∗∗ = κ(x∗,x∗) is n∗×n∗.
We can write the posterior as,

p(f∗|x∗,x, f) = N (f∗|µ∗,Σ∗) (4.5)
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µ∗ = m(x∗) + KT
∗ K−1(f −m(x)) (4.6)

Σ∗ = K∗∗ −KT
∗ K−1K∗ (4.7)

If we incorporate noise for observations, we can define

y = f(x) + ε (4.8)

and the new joint distribution as,y

f∗

 ∼ N
0,

Ky K∗

KT
∗ K∗∗

 (4.9)

where Ky = K + σ2
yI. Note the zero mean and the noise term, ε ∼ N (0, σ2

y). Now,

we can update the posterior density,

p(f∗|x∗,x,y) = N (f∗|µ∗,Σ∗) (4.10)

µ∗ = KT
∗ K−1y y (4.11)

Σ∗ = K∗∗ −KT
∗ K−1y K∗ (4.12)

If we reduce the case to single input, posterior mean becomes f̄∗ = kT
∗ K−1y y and

covariance becomes k∗∗ − k∗
TK−1y k∗. Instead of inverting K−1y directly, we use

Cholesky decomposition as Ky = LLT due to numerical and computational con-

cerns. Then, the posterior function becomes f∗ ∼ µ+LN(0, I) and calculating mean

and variance reduces to Algorithm 1 [93].

Algorithm 1 GP regression

1: L = cholesky(K + σ2
yI)

2: α = LT \ (L \ y)

3: E [f∗] = kT
∗ α

4: v = L \ k∗

5: var [f∗] = κ(x∗,x∗)− vTv

An example of prior and posterior sampling can be seen in Figure 4.6. Before gath-

ering any observations and training the GP, ten samples are drawn. However, after
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training (i.e. conditioning) the GP with four points (−3,−1.5,−1.0 and 0), another

ten samples are drawn and it is seen that variance is bounded around these points.

Since we plan paths for a mobile robot together with humans, we use two dimen-

sional world with x and y coordinates. Therefore, we model two Gaussian processes

for x and y separately for simplicity.

In contrast to [91] and [98], we use time steps as our finite points set similar to [88],

i.e., f(t) : t ∈ [1, T ]. Trajectory up to time T for agent i is expressed as

f
(i)
1:T =

(
f (i)(1), f (i)(2), . . . , f (i)(T )

)
(4.13)

where

f (i)(t) = (x(t), y(t)) ∈ R2

i ∈ {1, 2, . . . , N}

Up to a time step t, we have observations for each agent as

z1:t =
(
z
(1)
1:t , z

(2)
1:t , . . . , z

(N)
1:t

)
(4.14)

Then, the probability density is

p (f1:T | z1:t) (4.15)

which represents distribution over each agent’s trajectory. Random function (or tra-

jectory), f (i), can be represented via Gaussian process as

f (i) ∼ GP
(
m(i), k(i)

)
(4.16)

where locations in different time steps, t and t′, are related with the kernel function

k(t, t′). Structure of this kernel function defines the behavior of resultant trajectories.

To be consistent with the literature, we use similar kernel function with [88]. How-

ever, we do not consider joint distribution like p(f (R)
1:T , f1:T | z1:t) as in the literature,

since we model the robot just as another agent (Postulate 2). This density function

does not incorporate interaction and cooperation. It just suggests that if we know the

measurements up to time t, we can predict each agent trajectory up to a final time

T . This is not the case in human navigation due to necessity of interaction and co-

operation modeling. Therefore, we need to model an interaction between each agent

(including the robot). Trautman et al., with IGP [88], incorporated this interaction
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by using an interaction potential. Use of this potential term results in non-Gaussian

models which can not be sampled directly. Also, IGP strongly depends on known-

goal assumption to be able to infer IGPs up to time T . Another drawback of IGP is

that, large number of samples are drawn and weighted with an importance sampling

approach which results in computationally ineffective prediction cycles. Since candi-

date trajectories are sampled already without any interaction process, resultant paths

cannot satisfactorily cover abrupt avoidance maneuvers of pedestrians.

Instead of sampling trajectories from Gaussian process posteriors as predictions, we

implicitly model interactions (and cooperation) as future measurements again for con-

ditioning a temporary duplicate of GP of each agent.

p (f1:T | z1:t, z̃t+1:T ) = GP
(
m

(i)
T , k

(i)
T

)
(4.17)

Future measurements, z̃t+1:T , are generated using a cost-based interaction between

all agents. Note that, z̃T designates final destinations of agents. If known, they can

be used to condition GPs for better prediction, but our model does not rely on known

goal assumption. This density allows us to reduce planning to inference as,

argmax
f1:T

p (f1:T | z1:t, z̃t+1:T ) (4.18)

4.5.1.2 Kernel Functions

Gaussian process kernel is a real-valued function that relates two inputs, say t and

t′, i.e., κ(t, t′) ∈ R. It may be stated as measure of similarity between two objects.

In other words, if the kernel relates t and t′ as similar, we expect the output of the

function at these points to be similar too. In Figure 4.6b, one can see that as we move

towards training points we get values similar to them also. This is the visualization of

the similarity measure property of kernel functions. Kernels must be positive-definite

by definiton (i.e., κ(t, t′) = κ(t′, t) and κ(t, t′) > 0).

There are some commonly used kernels in the literature. Squared-exponential (SE)

kernel, Matern kernel and linear kernel are three of these most widely used kernels.
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SE kernel is defined as,

κ(t, t′) = exp

(
−1

2
(t− t′)TΣ−1(t− t′)

)
(4.19)

or for single dimensional input,

κ(t, t′) = exp

(
−(t− t′)2

2l2

)
(4.20)

Here, l is the characteristic length scale (or hyper-parameter). Lengthscale parameter

specifies the width of the kernel and the smoothness of the samples.

Matern kernel can be stated as generalized form of SE kernel. Its general form is,

κ(t, t′) =
21−ν

Γ(ν)

(√
2ν||t− t′||

l

)ν

Kν

(√
2ν||t− t′||

l

)
(4.21)

and ν > 0, l > 0 where Kν is a modified Bessel function. ν controls the smoothness

of the samples, i.e., as ν gets smaller, paths get rougher. If ν → ∞, Matern kernel

approaches to SE kernel. We will use ν = 5/2 and for single input, Matern kernel

will be,

κ(t, t′) = s

(
1 +

√
5(t− t′)
l

+
5(t− t′)2

3l2

)
exp

(
−
√

5(t− t′)
l

)
(4.22)

with s and l being hyper-parameters of the kernel.

Linear kernel is defined as,

κ(t, t′) = tT t′ (4.23)

or in single input form,

κ(t, t′) = t · t′ (4.24)

To account for noises of measurements, generally a noise kernel is incorporated,

κ(t, t′) = σ2δ(t, t′) (4.25)

We aim to generate human-like trajectories using GPs. The shape of trajectories is

defined primarily by the kernels used and their parameters. Among commonly used

kernels; we use the linear kernel since people tend to move on a straight line to a goal

if there are no obstacles, the Matern kernel to account for abrupt directional changes
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due to obstacles and other elements, and the noise kernel to incorporate noises from

measurements, etc. Summing these three kernels gives us the final composite kernel

as,

κ(t, t′) = t · t′ + s

(
1 +

√
5(t− t′)
l

+
5(t− t′)2

3l2

)
exp

(
−
√

5(t− t′)
l

)
+ σ2δ(t, t′)

(4.26)

Squared-exponential kernel is a stationary kernel [93]. Therefore, it tends to move

towards the mean wherever there is no data. This behavior does not resemble a human

trajectory yet it may be used for velocities as in [91] and [98].

4.5.1.3 Hyper-parameters

Hyper-parameters are other factors defining the shape of trajectories. Modifying these

parameters will vary the output significantly. Therefore, we need to tune them for

human-like trajectories. One way of determining hyper-parameters is learning from

a training data. If we have a set of input and outputs as t and z pairs, we can opti-

mize hyper-parameters and also validate the kernel functions we use. To allow faster

optimization, we consider maximizing the marginal likelihood.

If θ is a vector of hyper-parameters, we can write log marginal likelihood as,

log p(z|t, θ) = −1

2
log |Kz| −

1

2
(z− µ)TK−1z (z− µ)− t

2
log(2π) (4.27)

Note that, Kz = K + σ2
noiseI. The first term of log marginal likelihood, −1

2
log |Kz|

is called a complexity penalty term. As the model gets complex, this term applies

penatly, i.e., Kz becomes almost diagonal and log |Kz| becomes large. Second term,

−1

2
(z − µ)TK−1z (z − µ) is data fit measure while the last term, − t

2
log(2π) is log

normalization term.

For maximizing the log likelihood, we use partial derivatives with respect to hyper-

parameters,

∂

∂θj
log p(z|t, θ) =

1

2
zTK−1z

∂Kz

∂θj
K−1z z− 1

2
tr

(
K−1z

∂Kz

∂θj

)
(4.28)
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After having derivative of log marginal likelihood, hyper-parameters can be optimized

using a gradient based optimizer.

4.5.1.4 Goal Estimation

Generating realistic, human-like trajectories depends on goal selection also. If the

goal position is known for an agent, Gaussian process can be trained with goal posi-

tion associated with last time step as input. This significantly increases the accuracy

of generated trajectories. Trautman et al. assumes that a goal is known for each

agent [88]. For example, if a scene includes a narrow corridor, the inlet and the outlet

to the corridor can be accepted (with relatively high uncertainty) as goal positions de-

pending on the moving direction of agents. However, this is generally not the case for

a generalized navigation scene. At this point, goal estimation techniques are present

in the literature. However, accurate goal estimation is not in the scope of this study.

Therefore, we use a very simple goal estimation using past velocities of agents for a

short prediction horizon.

ṽ(i) =
1

n

n−1∑
j=0

v
(i)
t−j (4.29)

z
(i)
T = ṽ(i)h (4.30)

ṽ being the estimated velocity for agent i using last n measurements, h being the

prediction horizon (seconds) and z
(i)
T being goal position (i.e., measurement at last

time step T ).

As agents move, the planner updates the plan at high frequency, therefore, goal po-

sition constantly changes (i.e., brought towards the real goal). Accordingly, GP is

trained again at each step using the new goal position estimation (without the previ-

ous one).

4.5.1.5 Gaussian Process Prior Testing

In this test, our purpose is to generate reference trajectories in the absence of any

other agents or obstacles. Assumption is that; we can generate trajectories for people
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Figure 4.7: Ten samples generated for each pedestrian.

Figure 4.8: Hundred samples generated for each pedestrian.
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Figure 4.9: The means of samples (green) and actual paths (pink) are shown.

without cooperation if there is no obstacle (or another human) on the scene between

the agent and its goal. Then, we use these reference trajectories for assigning costs

during cooperation.

We test selected kernels and optimized hyper-parameters on a dataset [57]. ETH

BIWI Walking Pedestrians dataset consists of hand-annotated frames with people

moving in and out from a library. As goal positions are known already, we used these

information also while training GPs. Figure 4.7 shows ten samples from posteriors of

each agent. When this sample size is increased (for example to hundred as in Figure

4.8), it is nearly guaranteed that one of the samples coincides with the real trajectory

in expense of serious computational resource. Even the mean of GPs may represent

the true trajectories (Figure 4.9, agents 4 and 5). However, this is of course not the

case when there exists an obstacle or moving agent crossing the trajectory. In [88],

authors use an interaction potential function to weight samples with a measure of

inter-agent distance and path length.
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4.5.2 Individual Cost Hypotheses

Each agent on the scene has its own belief (hypothesis) about upcoming poses of

other agents and adjusts its own trajectory accordingly. This is somehow an implicit

handshake between people. Other people’s past trajectories and especially last veloc-

ity vectors give insight about their possible future trajectories. If they tend to intersect

our planned trajectory at a future time step, we change our course accordingly. Re-

ciprocal Velocity Obstacles [99] which is extended from the Velocity Obstacles [100]

emerges from a similar idea however, amount of noise in human navigation causes

erratic behaviors. A simple but similar approach to ours is taken in [101] with use of

potential fields. They generate potential fields depending on a few factors like prox-

emic distances, distance to goal, etc. Then, they use RRT ( [102, 103]) for finding a

path to the goal. However, this planner is not cooperative, i.e., does not account for

other people to cooperate with the robot for better navigation for all. Our method de-

fines a costmap for each agent and each agent considers predictive cooperation while

predicting others and its own trajectory.

4.5.2.1 Costmaps

Occupancy grid represents a grid structure with value of each grid being the probabil-

ity that there is an obstacle there [104,105]. It is used extensively for mobile robot lo-

calization research [106,107]. In costmaps, instead of probability of being occupied, a

cost value generated from various inputs is used for each grid. These costmaps can be

binary (occupied or not) or can represent more complex cost assignments. Using dif-

ferent cost assignment methods, one can put constraints on traversable area [108,109].

We use byte-type for our grid structure as in ROS navigation stack [6] (Figure 4.10).

Each grid can have a cost ranging from 0 (free) to 254 (occupied), where 255 is

regarded as unknown. Using values between 0-253, we can put soft constraints on

traversable area. In our implementation, we have two sources of costs: mean trajec-

tory valleys and Gaussian agent costs. Combining these two for each agent generates

their individual costmap for each time step. Therefore, any cost at specific time, t, in
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Figure 4.10: An example costmap where darker grids mean higher costs.

costmap is modeled as,

C(zt) = max (cm(zt), ca(zt)) (4.31)

Here, cm(zt) is the cost component generated using mean trajectory valleys (MTV)

while ca(zt) is generated using Gaussian costs of other agents. Details of these cost

components are given in next two sections.

4.5.2.2 Mean Trajectory Valleys

People tracking stage explained in Chapter 3, provides tracks for n people in the scene

up to time step t (i.e., recent time),

T =
[
z
(1)
1:t z

(2)
1:t . . . z

(n)
1:t

]T
(4.32)

where measurements for each human are provided as tuples of x and y coordinates

with respect to a fixed reference frame as,

z
(i)
1:t =

{
(x, y)

(i)
1 , (x, y)

(i)
2 , . . . , (x, y)

(i)
t

}
(4.33)
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Figure 4.11: Mean trajectory (red curve) is starting from red dot (current pose) and

ending at red star (goal). Assigning gradual costs around this curve forms a valley

shape.

Goal position, explained in Section 4.5.1.4, is added to these measurements as the

measurement taken at time step T ,

z
(i)
1:t,T =

[
z
(i)
1:t z

(i)
T

]
(4.34)

In guidance of Postulate 1, we generate smooth and human-like trajectories from

start to goal. Each individual (including the robot) has its own Gaussian process,

conditioned with previous tracking information, p(f (i) | z1:t). Trajectories are gener-

ated by sampling the most probable trajectory (i.e., mean, m(i)
t ) for each agent from

their corresponding GPs. Since humans tend to move on smooth paths while min-

imizing the path length, we regard this mean sample as reference trajectory that an

agent prefers to follow if no interaction is required. When we predict future trajecto-

ries using step by step cost-based interaction and cooperation processes, we condition

GPs as p(f (i) | z1:t, z̃t′) and re-sample their means for further steps. In final predic-

tion step at time step T , these mean functions become final predicted trajectories as
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p(f
(i)
1:T | z1:t, z̃t+1:T ).

We implement a valley shaped cost distribution around these mean trajectories which

we call mean trajectory valleys. Costs are assigned in an occupancy grid structure

(i.e., costmap) around each agent. Cost is zero for grids intersecting m
(i)
t and in-

creases gradually as we move further away. For any agent, i, and any point x = (x, y)

on the costmap, cost of the corresponding grid c(i)m (x) is,

c(i)m (x) =
dmin(x,m

(i)
t )
(
cmax
m − cmin

m

)
dmax
m

+ cmin
m (4.35)

Here, dmin function provides minimum Euclidean distance between a grid point, x,

and the mean trajectory m(i)
t . cmax

m and cmin
m are maximum and minimum cost values

to be assigned for mean trajectory valleys while dmax
m is the maximum distance that

the valley will expand to (i.e., the distance from the man trajectory which will have

maximum cost). By assigning different values to dmax
m , cmax

m and cmin
m , i.e., changing

the slope, we can alter how aggressive the valley tends to pull an agent towards the

valley floor, i.e., the mean trajectory. mt for one agent can be seen as red curve in

Figure 4.11. This curve is the initial (or ideal) reference for an agent. We assume that

this trajectory represents the possible trajectory for a human if no obstacles or other

agents are present in the scene.

4.5.2.3 Gaussian Agent Costs

In the literature, there has been an extensive research on human personal space, i.e.,

proxemics. Space around a human is categorized in several studies as [76, 110],

• Intimate space (up to 0.45m)

• Personal space (0.45m to 1.2m)

• Social space (1.2m to 3.6m)

• Public space (3.6m to 7.6m)

Of course, these distances can vary depending on the geography and culture but the

main idea is that; people attempt to keep a personal space around themselves and oth-

ers [111, 112]. These space is assumed to be asymmetric, changing with the moving
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Figure 4.12: Two people moving one after another with defined cost functions. Note

the lethal cost circles at human positions.

direction, speed, etc. [109, 113]. Personal space is generally modeled as a Gaussian

distribution or mixture of multiple Gaussian distributions. Also in [75, 114], authors

concluded that people tend to assume similar personal space for robots in the same

environment. We summarize this assumption as

Postulate 4: Each individual (including robots) has a personal space which can be

modeled as an asymmetric Gaussian function [109, 110, 113].

Kirby et al. divides personal space into two, symmetrical function at the back and an

elliptical function at the front which their sizes are altered according to the relative

velocity between the person and the robot [109]. We use this model with an extension

for marking other agents in individual costmaps. Instead of defining only a Gaus-

sian cost distribution, we add a circular lethal cost (i.e., 254) centered at agent posi-

tions (Figure 4.12) because path planning through a circle centered at human position

which is about 0.30m in radius means colliding the people. Therefore, a planned path

should never go through this lethal cost circle. Gaussian cost distribution with this

lethal circle is together called Gaussian agent cost (GAC). Two dimensional Gaussian

function can be defined as,

f(x, y) = exp

(
−
(

(x− x0)2

2σ2
x

+
(y − y0)2

2σ2
y

))
(4.36)

Two 2D Gaussian functions are used one for the front one for the back while sharing

the same σx but having two different σy. Of course, this is generalized to any orienta-

tion with x and y axes. Variance along heading direction is σh, along sides is σs and
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towards back side is σr with a relation as,

σh = max(2v, 1/2) (4.37)

σs =
2

3
σh (4.38)

σr =
1

2
σh (4.39)

where v is the velocity of the agent. The combined Gaussian cost of other agents for

ith agent is

c(i)g (x, y) =
N⋃
i 6=j

exp
(
−
(
a
(
x− x(j)a

)2
+ b
(
x− x(j)a

) (
y − y(j)a

))
+ c
(
y − y(j)a

)2)
(4.40)

with i 6= j. Terms a, b and c are defined as,

a =

(
(cos θ)2

2σ2
+

(sin θ)2

2σ2
s

)
(4.41)

b =

(
2 sin 2θ

4σ2
− 2 sin 2θ

4σ2
s

)
(4.42)

c =

(
(sin θ)2

2σ2
+

(cos θ)2

2σ2
s

)
(4.43)

σ =

σh if α > 0

σr otherwise
(4.44)

where, α = atan2(y− y(j)a , x−x(j)a )− θ+π/2, θ is the heading angle and (x
(j)
a , y

(j)
a )

is the center point coordinates for agents other than the agent who owns the costmap.

α being larger than zero means that we are talking about the Gaussian distribution for

the front side and otherwise for the back side.

Total Gaussian agent cost becomes,

c(i)a (x, y) =

c
(i)
g (x, y) if

√
(y − y(j)a )2, (x− x(j)a )2 > 0.3

254 otherwise
(4.45)
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Figure 4.13: Three people with their cost functions where one of them is combined

with the mean trajectory valley.

We combine two costs, cm and ca, as cf according to,

c
(i)
f = max

(
c(i)m , c

(i)
a

)
(4.46)

We should note that, if an agent is behind another agent, i.e. atan2(y(i) − y(j), x(i) −
x(j))− θ(j) + π/2 < 0, we disregard agent i in agent j’s costmap. This is due to fact

that, people generally do not adjust their plan w.r.t. people behind them. This also

simplifies computational load.

A sample cost combination can be seen in Fig. 4.13. Three people are present in

the scene other than the robot. Their Gaussian costs are defined according to their

velocity and these costs are merged with the mean trajectory valley of the robot.

4.5.3 Preferred Speed and Cost Gain

Humans tend to walk or run at some particular speeds which are related mainly to

metabolic energy consumption of body. This can be stated as:
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Figure 4.14: CoT values for male and female individuals at their self-selected walking

speeds [115].

Postulate 5: People tend to walk and run at certain preferred speed and they are ea-

ger to maintain their navigation speed to minimize their energy consumption [115–

117].

The metabolic energy cost to travel a certain distance is called cost of transport (CoT).

There are numerous research in the literature showing that CoT is related with pre-

ferred running and walking speeds in a curvilinear (i.e., U-shaped) fashion (Figure

4.14) [118, 119]. In different studies ( [115, 119, 120]) the relation between walking

speed (V in m/s) and metabolic power (P in W/kg) and as a result, the cost (C in

J/kg ·m) are shown to be best described by a second-order polynomial function:

C = aV 2 + bV + c (4.47)

In the light of these studies, it is apparent that, humans tend to minimize their CoT

while walking or running. They do this by preferring optimal speeds, thus, reducing

their energy expenditure to maintain fertility [116, 117, 121, 122]. Deviation from

these optimal speeds results in higher metabolic energy expenditure meaning higher

CoT. Body anthropometrics like mass, lower limb length, etc. are shown to be the

main factors determining the optimal speed of an individual [115]. This results in
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different optimal speeds for different people, yet, what they have in common is the

trend of CoT versus speed. Although different individuals with different physical

properties, including their sex, have different preferred speeds, this relation is shown

to be consistent among all humans [115]. Coefficients from the same study result in

average optimal speeds of 1.45 m/s and 1.31 m/s for male and female, respectively

and an average of 1.38 m/s. Since the optimal speed changes among individuals,

we assume that each person in a scene moves with their own preferred speed. Due

to increasing costs when moving slower or faster than preferred speed, we penalize

speed changes via a cost gain in prediction steps. We choose a quadratic model for

this cost gain to be consistent with human metabolic dynamics and behavior as α =

ad2 + c where d is the difference between last track velocity and candidate prediction

velocity divided by step time (time between frames). We limit the cost gain, α, to

maximum value of 2.0 due to costmap structure. Therefore, we set coefficients as

a = 1.6 and c = 1.

−1 −0.5 0 0.5 1

1

2

d(m/s)

α

Figure 4.15: Cost gain function with respect to speed difference.

4.5.4 Velocity Samples and Best Velocity

After marking costs on costmap for each individual agent at a time step t, we need to

predict a velocity and corresponding position for each future time step t′ up to final

time T . If we predict the full trajectory at once for each agent, we would disregard

the interaction and cooperation which we believe to be the key point in human-aware

navigation. Instead, at each future time step, we update each agent’s Gaussian process
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with the prediction of the previous time step. All other agents use this updated version

of Gaussian process for estimating the trajectories of other agents. We encode the

cooperation between agents by using this step-wise technique.

Generated samples should cover possible step-wise movements as much as possible.

We use an arc in front of each agent at a radius computed using the difference of

last predicted position and the current mean position (Figure 4.16) while keeping the

magnitude same (as described in Section 4.5.3). We derive this magnitude (i.e., walk-

ing speed) from Gaussian process of agents. Base sample vector and corresponding

velocity are defined as,

r
(i)
t′ =

m
(i)
t′ − z̃

(i)
t′−1

||m(i)
t′ − z̃

(i)
t′−1||

||m(i)
t′ −m

(i)
t′−1|| (4.48)

v
(i)
t′ = r

(i)
t′ /∆t (4.49)

v
(i)
t′ ∈ V(i) (4.50)

where ∆t is the time step and V(i) is the set of admissible velocities for the ith agent.

Samples are generated by changing the direction of this vector uniformly, while keep-

ing its magnitude same. Note that we use difference of mean trajectory, m
(i)
t′ , and last

predicted position, z̃
(i)
t′−1, divided by time step instead of directly using the last ve-

locity from the previous time step. The rationale behind this is that, people tend to

return back to the shortest path to their goal after maneuvering to avoid obstacles

due to energy minimization principle [117]. Using the last predicted velocity would

make samples move away from the mean trajectory. Therefore, we generate velocity

samples towards to the next step of mean trajectory.

Besides r̃
(i)
t′ , we also account for acceleration, deceleration and stopping, which add

additional costs with calculated cost gains. For acceleration, we generate another

set of samples at radius ra, for deceleration at rd. Empirically, we use a ratio of

%20 w.r.t r̃
(i)
t′ for acceleration and deceleration though it can be altered for other

cultural variations, etc. Note that, any sampling ratio can be used since they will

be weighted with cost gain. Finally, we add previous predicted position, z̃
(i)
t′−1, as

another sample in case an agent may want to stop to avoid collision. To prevent an
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z̃
(i)
t−1

r̃
(i)
t′

r̃d
(i)
t′

r̃a
(i)
t′

Figure 4.16: Velocity samples generated for prediction of next position.

agent to stop always due to a low cost, we assign a cost of 253 to this stopping sample.

Assigning 253 means that, this is only selectable if a collision will be present with

all other samples. A sample view for generated samples can be seen in Fig. 4.17.

Number of samples and angles between them can be changed according to available

computational resources.

Selection of best velocity among V is carried out by multiplying cost of each sample

with its cost gain, and selecting the one with lowest cost. This is an expected behavior

and derived from,

Postulate 6: Individuals behave rationally if they maximize their expected utility or

minimize expected cost [123].

Since the best velocity, ṽ
(i)
t′ , is the one with lowest cost, we express this minimization

problem as,

ṽ
(i)
t′ = argmin

v
(i)

t′ ∈V
(i)

t′

((
a(||ṽ(i)

t′−1|| − ||v
(i)
t′ ||)

2 + 1
)
c
(i)
f (v

(i)
t′ ∆t)

)
(4.51)

We multiply cost of each velocity sample with corresponding cost gain, α, described

in Section 4.5.3. Among generated velocity samples, we select the one with the

lowest cost as our next prediction. The combined individual costmap of each agent

multiplied with cost gain determines the sample with the lowest cost. Therefore, this

selected sample becomes the next predicted position, z̃
(i)
t , of the agent. Cost gain also

functions as a clamp and prevents continuous acceleration or deceleration, similar to

explained human behavior.
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Algorithm 2 Proposed human-aware navigation method
1: function PREDICTTRAJECTORIES(T)

2: T← Tracks, P← Predictions

3: t← Prediction horizon

4: GP← TrainGP (T) . Train predictions with tracks

5: m← SampleGP (GP, t) . Generate initial mean trajectories

6: steps← t/step_time

7: GP′ ← GP . Copy GP for temporary prediction steps

8: for i← 1, steps do

9: for j ← 1, size(P) do

10: vs(j)← velocity samples

11: costmap(j)←MTV (m(j)) . Own mean trajectory valley

12: for k ← 1, size(P) do

13: if j 6= k then

14: costmap(j)← GAC(P (k)) . Other Gaussian agent costs

15: end if

16: end for

17: ps(j) = vs(j)× step_time

18: costmap(j)← α(vs(j))× costmap(ps(j)) . Apply cost gains

19: p(i) = argmincostmap(j)(ps(j)) . Predicted position for step i

20: P (j)← p(i) . Add new predicted position to Prediction

21: GP ′(j)← TrainGP (p(i)) . Condition GP with new prediction

22: m(j)← SampleGP (GP ′(i), t) . Update mean with new GP

23: end for

24: end for

25: for i← 1, size(P) do . Generate final trajectories

26: f(i)← SampleGP (GP ′(i), t)

27: end for

28: end function

74



Figure 4.17: Generated velocity samples throughout a full prediction cycle. Red

curve is the mean trajectory for the agent.

4.5.5 Path Planning from Inference

When a predicted position, z̃
(i)
t′ , is computed for a time step for agent i, we condi-

tion the temporary Gaussian process belonging to that agent with this new predic-

tion. This results in better estimated mean trajectories for generating valleys on own

costmap and marking own Gaussian agent cost in other agents’ costmaps for up-

coming prediction steps. In other words, we do not use the initial mean trajectories

throughout the prediction horizon, instead, at each prediction step we update mean

trajectories with latest predictions from previous steps. After each step, we condition

temporary GPs of each individual. This process is carried out until we reach time

step T . When all steps are predicted up to the time step, T , belonging to goal, we

get the mean from each Gaussian process for each individual as our final predicted

trajectory, p (f1:T | z1:t, z̃t+1:T ) = GP
(
m

(i)
T , k

(i)
T

)
. This reduces planning to infer-

ence so that we can use predicted trajectory for the mobile robot directly as planned

path. The algorithm for the whole method is presented in Algorithm 2. Reasons we

use Gaussian process of individuals are explained in Section 4.5.1. We can generate

human-like trajectories with these Gaussian processes. Additionally, since we train

GPs with predicted positions, generated trajectories will go through these positions

while keeping human-likeness between these steps.
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4.6 Dataset Experiments

The developed trajectory prediction method should be validated with real data to be

able to deploy it on a physical platform. People detection and tracking methods are

not tested in this stage since they are well-tested in previous chapters, and imple-

mented on a physical platform as a whole in the next section.

As in Section 4.5.1.5, we used ETH BIWI Walking Pedestrians dataset [57], since it is

used commonly in the literature to validate pedestrian trajectory prediction methods.

Dataset consists of hand annotated frames with people moving in and out from a

library building. About 12000 frames are present in the dataset with two dimensional

position and velocity annotation in a world coordinate frame. However, annotation

is carried out in 2.5 Hz (i.e., 0.4 seconds between). In total, there are 365 different

persons identified.

Since we have full ground truth trajectories for each person, we make use of the last

position in trajectory as goal position and we train Gaussian processes with these

goals. Known goal for each person is a strong assumption and helps for generating

better estimates. In the literature there are different methods for human aware tra-

jectory prediction with both known ( [57, 88]) and unknown goals ( [83, 84]). To be

able to compare our method with different methods with different assumptions, we

prepared two versions of experiments: with known goal, and with unknown goal. For

the case with known goal, goal information is taken from dataset observation matrix.

For the case with unknown goal, we simply average last three velocity vectors and use

this velocity for a certain period of time (or number of time steps) to estimate a goal

position. Final goal estimation research is not in the scope of this study, therefore, we

did not put a strong effort to estimate final goal positions using different inputs like

trajectory history, environmental conditions, crowd density, etc.

Challenging and descriptive frames are selected within this dataset and these frames

are used to validate our method. We tried to select frames with high number of people

moving towards each other, expressing cooperation to avoid and make room to each

other.
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Dataset Publisher Trajectory
Predictor

annotations tracks

predictions

Figure 4.18: Test setup for validation of the trajectory prediction method.

4.6.1 Setup

Tracks are the inputs for Trajectory Predictor (TP). In the complete system, People

Detector (PD) provides positions of people with respect to a world-fixed coordinate

frame. Then, People Tracker (PT) keeps track of each person with a specific ID and

publishes tracks. Finally, TP gathers these tracks and predicts trajectories of each

person. In the test setup, since we only test TP, tracks should be generated from the

dataset. As seen in Figure 4.18, a publisher node is developed for this purpose. This

node reads annotation data from the dataset, generates tracks for each frame, and

publishes this track information as if they are provided by PT.

Trajectory Predictor is not aware of the dataset or real data. It just processes the track

information supplied. After processing, TP generates a predictions list for further

usage. In the test setup we fed these predictions back to Publisher, so that it can

compare predictions with ground truth to generate results.

For validating our method, we select different frames regarding their crowd configu-

ration and their presence in the literature. Selected frames generally consist of con-

figurations with multiple persons encountering in different directions which require

interaction and cooperation for navigation. Simple scenes which do not require coop-

eration are omitted.

77



4.6.2 Results

A sample scene from ETH BIWI Walking Pedestrians dataset can be seen in Figure

4.19. There are four people moving towards the library (down) and three people in

the opposite direction (up). Small squares designate ground truth annotations from

dataset which are connected with straight lines. On the other hand, circles desig-

nate predictions generated by our trajectory predictor. Person ID numbers are posi-

tioned with recent position of the corresponding person. Thus, predicted trajectory

and ground truth start from the recent time step position.

We evaluate test results in terms of three different metrics:

1. Trajectory length error, ∆L: The absolute difference between the length of true

trajectory and predicted trajectory. We use this metric to measure how well the

predicted trajectories resemble human trajectories because humans move in a

way to minimize the global length of their trajectories [124]. Even observed for

infants, it is accepted that a reasonable person would take the shortest trajectory

to reach a goal [125]. Therefore, difference in length of a trajectory is taken as

a metric to measure human-likeness.

2. Average displacement error, ∆ave: The mean squared error of all time-indexed

points in the predicted and corresponding true trajectory. This metric is intro-

duced in [57]. This error is calculated for each person in each frame and used

to measure how much a predicted trajectory is deviated from the corresponding

true trajectory.

3. Final displacement error, ∆f : The Euclidean distance between the predicted

last position and the corresponding true last position for a predefined prediction

horizon (time steps). This metric is used in [84] and [83]. If remaining time

step size is smaller than the prediction horizon for an agent, final displacement

error is calculated as the distance between the last positions of prediction and

true trajectories regardless of prediction horizon.

First, we present results for sample challenging scenes with different configurations:

a) 1 person vs. 8 people, b) 1 person vs. 7 people, c) 7 people vs. 11 people, d)
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overtaking. Then, we provide overall results for the dataset. These tests are carried

out for both known goal and unknown goal cases. Finally, we compare our results

with two state-of-art methods for the more challenging unknown goal case.

(a) (b) (c)

Figure 4.19: A sample scene from the dataset. On the left (a), original scene is shown

while on the right, ground truth positions (squares connected with lines) and predicted

trajectories (circles connected with lines) are shown for the original scene (b), and for

12 frames later (c).

4.6.2.1 Known Goal

In the first case, we assume that we know final goal positions and corresponding

time steps for each person in the scene. This may not be the case for open areas but

for structured environments there may be scenarios that make the algorithm know

(or at least, estimate precisely) the goal positions. For example, a scenario in a hall

with two entry points suggests assuming these two entry points as goal positions for

persons moving through that hall. Another example can be a scenario with certain

food buffets [88] or payment points which also can be regarded as goal points of
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persons moving around.

In ETH library walking pedestrians dataset, we use last position of each true trajectory

as final goals. Since we train the GPs with this information, in results we notice that

even a prediction deviates from the true trajectory, as time step approaches to end,

prediction converges to true trajectory. This is a natural result of Gaussian processes

and selected kernel functions. In all tests carried out under known goal assumption,

we did not limit the prediction horizon, i.e., predictions are calculated throughout the

full trajectory (up to final goal) for each pedestrian.

1 Person vs. 8 People Cooperation: We provide one sample scene to fully demon-

strate our method. Figure 4.20 shows a scene with interactions and corresponding

predictions in five different frames. One person (#176) is moving against other eight

people. In the beginning there is no room for #176 to pass. A non-cooperative plan-

ner would plan a trajectory on left or right side of this people cluster. However, our

cooperative planner predicts trajectories for each person and truly predicts that people

#183 and #184 will cooperate and make room for #176 to pass between them (Figure

4.20b to 4.20f). Besides this interaction and cooperation, note that, we predict future

trajectory of each person with a high accuracy. In this scene, we ignore person #171

since he just wanders around with an unrealistic navigation pattern. In Table 4.1, in-

dividual results for Figure 4.20b are given. In this frame, 10 people are annotated as

moving downwards while person #176 is moving upwards. It is shown that, trajec-

tory lengths are very close to true trajectories (i.e., the difference in trajectory length,

∆L, is relatively low for each person, and averaging at about 0.04 meters). Average

displacement errors are also below 1 meter, while for interacting agents #176, #183

and #184, this value becomes 0.329, 0.236 and 0.273 respectively. These results, with

final displacement errors, show that our method behaves similar to humans in terms of

trajectory selection and joint collision avoidance. Further results with total averages

are also given in upcoming sections.

For the scene presented in Figure 4.20b, individual displacement errors are plotted

in Figure 4.21. Errors are relatively low (less than 1 meter) throughout agents’ tra-

jectories. Only persons #182 and #178 deviate from true trajectory about 1.5 meters

and then converge again. In early prediction steps, errors for these people are still
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low, however, after prediction step 8, errors become larger than 1 meter. Then again,

errors decrease and converge to final goal. This behavior is a natural result of Gaus-

sian processes. Since we train the GP with known goal information, as time steps

approach to final step, trajectory approaches to final goal. Yet, note that displacement

errors shown in Figure 4.21 do not represent path distance error, instead they show

spatio-temporal (trajectory) errors. This is because, we compare predicted and true

trajectories as time indexed series. Even if prediction and true paths match spatially,

accelerations and decelerations yield displacement errors.
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(a) (b) (c)

(d) (e) (f)

Figure 4.20: A sample scene shows cooperative navigation. Note the predicted trajec-

tory of person #176 which shows the cooperative human navigation prediction ability

of our method in consecutive frames.
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Table 4.1: Results for scenes shown in Figure 4.20.

(a) Scene in Figure 4.20b.

Person ∆L ∆ave ∆f

176 0.028 0.329 0.354

177 0.004 0.408 0.638

178 0.040 0.768 1.372

179 0.054 0.165 0.323

182 0.103 0.802 1.544

184 0.087 0.273 0.408

183 0.004 0.236 0.341

181 0.098 0.419 0.168

180 0.006 0.282 0.293

Ave. 0.039 0.369 0.522

(b) Scene in Figure 4.20c.

Person ∆L ∆ave ∆f

176 0.081 0.143 0.015

177 0.090 0.307 0.313

178 0.095 0.652 1.066

179 0.009 0.267 0.269

182 0.178 0.638 1.021

184 0.083 0.129 0.077

183 0.036 0.284 0.496

181 0.083 0.296 0.006

180 0.026 0.231 0.273

Ave. 0.070 0.297 0.364

(c) Scene in Figure 4.20d.

Person ∆L ∆ave ∆f

176 0.038 0.192 0.262

177 0.145 0.289 0.225

178 0.037 0.486 0.591

179 0.054 0.272 0.157

182 0.189 0.646 0.971

184 0.054 0.147 0.170

183 0.100 0.332 0.494

181 0.069 0.401 0.520

180 0.018 0.333 0.013

Ave. 0.072 0.323 0.354

(d) Scene in Figure 4.20e.

Person ∆L ∆ave ∆f

176 0.030 0.224 0.313

177 0.037 0.301 0.371

178 0.029 0.480 0.497

179 0.002 0.259 0.204

182 0.109 0.382 0.304

184 0.006 0.296 0.267

183 0.015 0.422 0.404

181 0.098 0.282 0.375

180 0.002 0.274 0.211

Ave. 0.043 0.306 0.312
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Figure 4.21: Individual displacement errors for scene shown at Figure 4.20b (upper

left), Figure 4.20c (upper right), Figure 4.20d (lower left) and Figure 4.20e (lower

right).
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1 Person vs. 7 People Cooperation: Another scenario for demonstrating the per-

formance of our method is shown in Figure 4.22. Seven people are moving down-

wards (towards the library entrance), while one person (#236) is moving against them.

A non-cooperative planner would pass to the left of this people cluster, however as

humans, we do not avoid such people clusters. Instead, we prefer to cooperate and

gain room to pass. Also, in the figure, even there is no room to pass, eventually, we

see that person #236 passes between persons #238 and #239. This is a good example

of interaction and cooperation between people. Predicted trajectories foresee this be-

havior steps ago (about 5 seconds). In later steps, non-interacting agents deviate from

the prediction a bit (but still lower than 2 meters). Especially, short-term (up to 10

steps) prediction of trajectories matches with true trajectories. Changes in displace-

ment error of each individual are plotted in Figure 4.23. Also average values of our

metrics (trajectory length error, average displacement error and final displacement er-

ror) are listed for each person in Table 4.2. We show that we can capture this natural

human behavior with our proposed method.

Table 4.2: Results for scenes shown in Figure 4.22.

(a) Scene in Figure 4.22b.

Person ∆L ∆ave ∆f

236 0.174 0.201 0.148

241 0.004 0.424 0.747

242 0.002 0.347 0.622

243 0.033 0.975 0.093

240 0.141 0.874 0.778

237 0.131 0.833 0.897

239 0.045 0.495 0.945

238 0.261 0.688 1.076

Ave. 0.129 0.536 0.606

(b) Scene in Figure 4.22c.

Person ∆L ∆ave ∆f

236 0.093 0.146 0.121

241 0.035 0.270 0.064

242 0.025 0.418 0.053

243 0.102 0.376 0.595

240 0.060 0.552 0.996

237 0.037 0.680 0.080

239 0.109 0.527 0.589

238 1.034 0.458 0.729

Ave. 0.187 0.429 0.403
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(a) (b) (c)

Figure 4.22: The predicted and true trajectories for 1 person vs. 7 people scene.
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Figure 4.23: Individual displacement errors for scene shown at Figure 4.22b (left)

and Figure 4.22c (right).
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7 People vs. 11 People Cooperation: The most crowded and challenging scene

in the dataset is shown in Figure 4.24. In this scene, there are seven people moving

upwards (i.e., #250, #255, #256, #257, #260, #261 and #262) while eleven people

are moving in opposite direction. Interactions of these 18 people are predicted by our

algorithm, and their predicted trajectories are drawn. However, due to the excessive

crowd, it is very difficult to interpret the predicted trajectories visually. Also, provid-

ing errors for each pedestrian is not efficient due to high number of people, therefore,

for this scene we provide averages for each frame. In Table 4.3, frame number 1 is

corresponding to Figure 4.24a and consecutive figures are 6 frames apart from each

other (due to annotation frequency of the dataset). The scene lasts for seven anno-

tated frames, and their total averages are also provided in the last row. Average path

length error is 0.226 meters while average displacement error and final displacement

error are 0.667 and 0.793, respectively. Results show that even with 18 people inter-

acting with each other, our method is able to predict each individual trajectory with

high accuracy averaging with much less than 1 meter. Also, note that these errors are

calculated with full prediction horizon (i.e., from starting point to goal point of each

individual).

(a) (b) (c)

Figure 4.24: The predicted and true trajectories for 7 people vs. 11 people scene.
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Table 4.3: Results for consecutive 7 annotated frames starting with the scene shown

in Figure 4.24b.

Frame ∆L ∆ave ∆f

1 0.303 0.915 1.017

2 0.262 0.799 0.989

3 0.249 0.768 0.998

4 0.174 0.577 0.710

5 0.200 0.532 0.614

6 0.221 0.537 0.584

7 0.171 0.543 0.642

Ave. 0.226 0.667 0.793

Overtaking: One interesting example scene is shown in Figure 4.25. Here, all peo-

ple are moving downwards, but with considerably different speeds. Especially, person

#357 and #358 are walking rather slowly (they may be elders). Meanwhile, person

#366 is walking faster and approaching from behind of these two people. Obviously,

to be able to reach his target in time, person #366 should overtake slow-walking #357

and #358. Figure 4.25a to 4.25f show that our method successfully predicts that #366

will overtake other two people. Figures are from consecutive scenes which are 0.4

seconds apart from each other. We can see that predictions are very consistent over

consecutive frames and overtaking is well presented even before there is an intention

to overtake. This is an interesting example because here we do not have a coopera-

tion. The slow-moving people, possibly, even do not know the presence of the person

#366 before the overtaking. This proves that, our method also captures avoiding and

overtaking behaviors of humans.

Individual errors for the six scenes present in Figure 4.25 are listed in Table 4.4. In

this table, we regard only five people present throughout the scene (i.e., #357, #358,

#364, #365 and #366). Especially, note the average displacement errors of slow-

moving pedestrians (#357 and #358) and the person #366 overtaking them. These
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low errors indicate that a reasonable human-aware trajectory predictor is developed.

Average displacement errors of all pedestrians are also around 0.18 meters which

prove very good trajectory prediction even in this overtaking scenario.

(a) (b) (c)

(d) (e) (f)

Figure 4.25: The predicted and true trajectories for the overtaking scene.

89



Table 4.4: Results for scenes shown in Figure 4.25.

(a) Scene in Figure 4.25a.

Person ∆L ∆ave ∆f

358 0.015 0.200 0.151

357 0.029 0.215 0.132

366 0.094 0.484 0.275

364 0.009 0.098 0.087

365 0.002 0.183 0.161

Ave. 0.030 0.236 0.161

(b) Scene in Figure 4.25b.

Person ∆L ∆ave ∆f

358 0.023 0.190 0.019

357 0.031 0.194 0.071

366 0.076 0.414 0.144

364 0.018 0.141 0.057

365 0.011 0.260 0.061

Ave. 0.032 0.240 0.070

(c) Scene in Figure 4.25c.

Person ∆L ∆ave ∆f

358 0.029 0.208 0.296

357 0.031 0.152 0.240

366 0.091 0.201 0.241

364 0.022 0.129 0.148

365 0.001 0.161 0.136

Ave. 0.035 0.170 0.212

(d) Scene in Figure 4.25d.

Person ∆L ∆ave ∆f

358 0.043 0.106 0.162

357 0.038 0.137 0.230

366 0.031 0.197 0.332

364 0.037 0.182 0.306

365 0.011 0.162 0.150

Ave. 0.032 0.157 0.236

(e) Scene in Figure 4.25e.

Person ∆L ∆ave ∆f

358 0.044 0.074 0.073

357 0.041 0.105 0.125

366 0.023 0.369 0.452

364 0.038 0.166 0.250

365 0.028 0.132 0.194

Ave. 0.035 0.169 0.219

(f) Scene in Figure 4.25f.

Person ∆L ∆ave ∆f

358 0.029 0.034 0.004

357 0.042 0.065 0.051

366 0.004 0.186 0.120

364 0.048 0.137 0.151

365 0.036 0.134 0.235

Ave. 0.032 0.111 0.112
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Overall Results for Known Goal: After presenting different cases with their re-

sults, we test our algorithm for the whole dataset. For each annotated frame, full

trajectory predictions are generated. Errors are averaged for each prediction step.

Then, these results are averaged for a frame (for all pedestrians). Finally, a grand

average is calculated for all annotated frames in the dataset. This result generation

method is also used in [83]. Final results are listed in Table 4.5. We calculate av-

erages with respect to the prediction horizon to see results with changing prediction

steps. 20+ prediction horizon means that there is no limit for the number of steps for

prediction. Each pedestrian trajectory is predicted up to their known goal step.

It is important to note that, while changing the prediction horizon, we did not changed

the final goal information for training. In other words, for example, for 5-steps-

horizon we still used the true final goal information. Of course, if we use 5th true

position as our goal for 5-step-horizon, we would have smaller errors. However, we

thought that always using the final goal for changing horizons is more applicable in

real world scenarios because in some cases, true final goals can be extracted from

environmental conditions.

Table 4.5: Overall average results for known goal case.

Steps ∆L ∆ave ∆f

1 0.093 0.147 0.147

2 0.145 0.180 0.213

5 0.269 0.260 0.365

10 0.370 0.355 0.493

20 0.227 0.411 0.374

20+ 0.203 0.425 0.153

As prediction horizon increases, naturally, errors are expected to increase. It becomes

harder to predict future positions similar to true trajectory as prediction steps increase.

In known goal case, as we approach to a goal, errors should start decreasing since we

train GP with the goal information. In Table 4.5, we interpret the results for 20+

prediction horizon case (since it is the most challenging one). The path length error
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is about 0.2 meters, while our average displacement error is 0.425 meters which is a

low for such a prediction. Final displacement error average is 0.153 which is quite

low due to known goal assumption as explained before. Final displacement error is

more meaningful for other defined prediction horizons (i.e., 1, 2, 5, 10 and 20) and

for the unknown goal case.

4.6.2.2 Unknown Goal

After testing our method with known goal case, we move further to see generalization

performance. Known goal assumption may not be the case in all scenarios. Open

areas or environments with high number of possible movement directions require

trajectory predictor to still function with unknown goal assumption. For these cases,

we need to estimate a temporary goal position and time step. However, we do not go

deep in goal estimation since it is not in the scope of this study. Instead, we employ

a simple goal estimator using past n trajectory points. Details of our simple goal

estimator is explained in Section 4.5.1.4.

In this section, we present test results for the same scenarios presented in Section

4.6.2.1. For unknown goal case, since we do not train each Gaussian process with

true final goal information, errors are expected to increase as prediction steps increase.

This is the case because estimated temporary goal deviates more and more from the

true goal as steps increase. We show the results for different prediction horizons, and

we compare our results with other important algorithms in the literature.

We set five different prediction horizons for our unknown goal tests. First, we predict

just one step further, which nearly always results in very close predictions to true

trajectory. Then, we increase the prediction horizon to 2 steps, then 5, 10 and 20

steps. Since we have different prediction horizons besides different pedestrians, in

contrast to known goal case, we provide only averages instead of pedestrian-based

results. Also, for the figures, we provide the same scene for different horizons, where

for the known goal case we provide consecutive frames.
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1 Person vs. 8 People Cooperation: Same scenario tested in known goal case is

also tested here with five different prediction horizons and unknown goal assumption.

In Figure 4.26, 1 vs 8 people cooperative navigation scenario is shown with changing

prediction steps. Predictions for 1 step and 2 steps are very close to true trajectories.

Predictions for 5 steps (Figure 4.26d) and 10 steps (Figure 4.26e) are still represent-

ing the true trajectory reasonably. Also, in Figure 4.26d, we see that cooperative

navigation takes place between persons #176, #183 and #184. Still, our algorithm

predicts trajectories including this interaction. As prediction steps increase, errors

start to increase as expected due to invalidation of estimated goal positions. However,

if estimated goal is close to the true goal, then the behavior is similar to known goal

case and errors are still low. If we have abrupt direction changes like we have with

person #177, of course, the goal estimation becomes invalid and errors become large

with 20 steps prediction horizon (Figure 4.26f). Average errors for the scene shown

in Figure 4.26 are listed in Table 4.6a. Errors increase with increasing prediction

horizon. However, even with 20 steps, average displacement error is below 1 meter.

Final displacement error becomes larger than 1 meter when we have 20 steps due to

unknown goal assumption.

1 Person vs. 7 People Cooperation: In this scenario, 1 vs 7 people are interacting

with each other in opposite directions (Figure 4.27). Even with prediction horizon

of 20 steps, interacting agents #236, #238 and #239 follow similar pattern to their

true trajectories. Our prediction algorithm still predicts that #238 and #239 will make

room for #236 to pass in between. Starting from Figure 4.27d, interaction and coop-

erative movements can be observed both from the true and the predicted trajectories.

Average results are provided in Table 4.6b.

7 People vs. 11 People Cooperation: The most crowded and challenging scene

in the dataset is again shown in Figure 4.28. In this scene, there are seven people

moving upwards (i.e., #250, #255, #256, #257, #260, #261 and #262) while eleven

people are moving in opposite direction. With prediction horizon of 5 (Figure 4.28d),

interactions begin. However, due to people density of the scene, figures become

overcrowded and hard to interpret. Average errors are listed in Table 4.6c.
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(a) (b) (c)

(d) (e) (f)

Figure 4.26: 1 person vs 8 people scene with unknown goal assumption for different

prediction horizons.
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(a) (b) (c)

(d) (e) (f)

Figure 4.27: 1 person vs 7 people scene with unknown goal assumption for different

prediction horizons.
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(a) (b) (c)

(d) (e) (f)

Figure 4.28: 7 vs 11 people scene with unknown goal assumption for different pre-

diction horizons.
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Table 4.6: Average results for scenes shown in Figures 4.26, 4.27, 4.28 and 4.29

respectively.

(a) Scene in Figure 4.26.

Steps ∆L ∆ave ∆f

1 0.066 0.087 0.087

2 0.077 0.103 0.108

5 0.174 0.200 0.270

10 0.320 0.355 0.569

20 0.768 0.814 1.263

(b) Scene in Figure 4.27.

Steps ∆L ∆ave ∆f

1 0.053 0.074 0.074

2 0.082 0.116 0.148

5 0.294 0.219 0.225

10 0.433 0.354 0.461

20 0.838 0.787 1.277

(c) Scene in Figure 4.28.

Steps ∆L ∆ave ∆f

1 0.074 0.145 0.145

2 0.112 0.186 0.233

5 0.273 0.322 0.505

10 0.549 0.565 0.840

20 0.873 1.051 1.454

(d) Scene in Figure 4.29.

Steps ∆L ∆ave ∆f

1 0.045 0.073 0.073

2 0.083 0.089 0.097

5 0.236 0.189 0.273

10 0.649 0.404 0.717

20 1.298 0.656 1.020

Overtaking: Overtaking scene provided in known goal case is also shown in Figure

4.29. Here, all people are moving downwards, but with considerably different speeds.

Person #357 and #358 are walking slowly and person #366 is walking faster and

approaching from behind of these two people. Also in unknown goal case, due to

velocity difference, the need to overtake becomes obvious and our algorithm predicts

this behavior. Only difference is that, after deviating for overtake, person #366 does

not return back to his original path in predicted trajectory because we do not know

the exact final goal in this case. Still, average errors are relatively low as provided in

Table 4.6d.
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(a) (b) (c)

(d) (e) (f)

Figure 4.29: The overtaking scene with unknown goal assumption for different pre-

diction horizons.

98



Overall Results for Unknown Goal: After presenting different cases with their

results, we test our algorithm for the whole dataset. For each annotated frame, full

trajectory predictions are generated for different prediction horizons. Errors are av-

eraged for each prediction step. Then, these results are averaged for a frame (for all

pedestrians). Finally, a grand average is calculated for all annotated frames in the

dataset. Final results are listed in Table 4.7.

Table 4.7: Overall average results for unknown goal case.

Steps ∆L ∆ave ∆f

1 0.074 0.111 0.111

2 0.120 0.143 0.175

5 0.239 0.251 0.359

10 0.453 0.430 0.645

20 0.867 0.746 1.104

4.6.2.3 Comparison of Known and Unknown Goal

First, we compare two cases of our trajectory prediction algorithm: known goal and

unknown goal. For prediction horizons of 1, 2 and 5 steps, average results are similar

for both cases. Even the unknown goal case results in slightly better results. This can

be originated from the fact that, for small horizons even we estimate it, the goal is not

far from the starting position. Training Gaussian processes with this low uncertainty

goal information results in better predictions for short horizons. However, after pre-

diction horizon of 5, the known goal case becomes superior due to trained exact goal

information, as expected. Results are plotted for both cases in Figure 4.30. In both

cases, average errors are quite low compared to other methods in the literature. Now

we compare our method with other methods.
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Figure 4.30: Error comparison of Known Goal and Unknown Goal cases.
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4.6.2.4 Comparison with Other Methods

Among human-aware navigation methods mentioned in Section 4.4, we compare our

method with two most cited and promising algorithms; Interacting Gaussian Pro-

cesses (IGP) model by Trautman et al. [88] and local interactive model by Vemula et

al. [83]. Original IGP relies on known goal assumption. However, to be consistent

and not to create an unfair comparison, we used estimated goal for all three methods

(unknown goal case for our method). Evaluation is carried out on the same dataset

(i.e., ETH Walking pedestrians dataset) [57]. Method and metrics are the same as

described in Section 4.6.2.

Errors for different metrics and prediction horizons are listed in Table 4.8 and for bet-

ter visualization, plotted in Figure 4.31. All three methods perform similar for short

horizons like 1 step and 2 steps. In short horizons, possibility to have interactions is

low, and velocity change of each individual is small. Therefore, it is likely to predict 1

or 2 steps further close to the true trajectory. However, generally starting with a hori-

zon of 5, interaction and cooperative navigation takes place and modeling of these

behaviors becomes the key point. IGP method by Trautman et al. performs satisfac-

torily for short horizons but as the horizon increases it becomes worse because IGP

generates smooth paths up to a predicted goal coupled with an interaction potential.

It does not deal with local interactions. On the other hand, Vemula et al. train their

model from real data and infer agent velocities depending on the surrounding peo-

ple configuration. Therefore, their method depends on the quality and generalization

performance of training data. Using only spatial orientations of other people may not

be the only input for inferring agent velocities. Our interaction model is well-defined

and does not rely on a training data. As a result, our method generates lower errors

meaning that it predicts trajectories closer to true ones.

4.7 Conclusions

Incorporating navigation behaviors of humans is the key point in achieving human-

aware and human-like navigation methods. Cooperative and interaction-based navi-

gation of humans can be modeled and blended in robot navigation. In this chapter,
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Table 4.8: Comparison of our method with Trautman et al. [88] and Vemula et al. [83].

Metric Horizon Trautman et al. Vemula et al. Our method

Traj. length error

1 0.08 0.10 0.07

2 0.12 0.14 0.12

5 0.43 0.40 0.24

10 0.79 0.72 0.45

20 1.30 1.14 0.87

Average disp. error

1 0.10 0.12 0.11

2 0.16 0.17 0.14

5 0.44 0.34 0.25

10 0.58 0.60 0.43

20 1.16 0.97 0.75

Final disp. error

1 0.10 0.12 0.11

2 0.20 0.22 0.18

5 0.65 0.55 0.36

10 1.08 1.09 0.65

20 1.89 1.52 1.10
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Figure 4.31: Error comparison of our method with two other state-of-art methods.
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we developed a trajectory prediction and path planning method for mobile robots.

The proposed method makes use of Gaussian processes for sampling trajectories in

intermediate and final prediction steps. Cooperation is modeled as cost-based interac-

tion on a costmap. Each individual (including the robot) has a costmap representing

its belief about the other agents in the scene. Costs are derived from two different

sources: mean trajectory valleys and Gaussian agent costs. Mean trajectory valleys

account for the deviation from obstacle-free, ideal trajectories while Gaussian agent

costs deal with personal space of other agents. Costs are also multiplied with a cost

gain originated from human metabolic power consumption model. Deviations from

optimum speeds for agents are penalized using this cost gain and the best velocity is

selected with lowest cost for each agent. Gaussian processes of each agent is con-

ditioned with these predicted measurements. After reaching to final step, means are

sampled from conditioned Gaussian processes to obtain final predicted trajectories.

The planned path of the robot becomes the one predicted for itself. Therefore, there

is no need to have additional algorithms and methods to generate a plan.

The developed method is tested on a public dataset with two different assumptions:

known goal and unknown goal. With both assumptions, results are quite similar the

true trajectories. Even in long prediction horizons, we can achieve low errors in terms

of defined evaluation metrics. As the final step in this chapter, the method is also

compared with two state-of-art methods. Results show that the proposed algorithm

performs superior especially for long prediction horizons.
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CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Introduction

Human-aware navigation has different aspects as people detection, tracking, trajec-

tory prediction and path planning. Throughout the study, we developed different

novel methods for these components. We tested people detection and tracking on a

dataset and obtained high performance even for non-standard poses. Then, we tested

our trajectory prediction and path planning algorithm on a different dataset and com-

pared our results with state-of-art techniques. We concluded that our method can

predict trajectories similar to that of humans. This ability is the key for human-aware

navigation. Now we combine all developed algorithms and implement them on a mo-

bile robot base. This is the ultimate test to show that all developed components of this

study work in harmony with high success rate.

5.2 Experimental Setup

To test the whole system, we needed to implement our algorithms on a mobile robot

and then conduct experiments with people while navigating in a human-aware fash-

ion. Three different scenarios are designed, and results are evaluated in terms of

important metrics from literature.
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Figure 5.1: SEIT 100 robot from Milvus Robotics [126].

5.2.1 The Robot

As the mobile robot base, we used SEIT 100 (Figure 5.1)) from Milvus Robotics

[126]. SEIT 100 is developed primarily for logistics purposes. It can carry loads

up to 100 kg. It has differential drive. Its size is suitable for indoor navigation in

environments crowded with people.

Due to high internal computation needs, SEIT 100 is equipped with a powerful com-

puter. It also provides extension ports for other attachments and applications.

Table 5.1: Specifications of SEIT 100.

Payload: 100 kg

Drive: Differential

Dimensions: 890 mm x 650 mm x 297 mm

Maximum Speed: 1.5 m/s

Processor: Intel Core i7 3.4 GHz

Communication: Wi-Fi

We installed a Microsoft Kinect v2 camera on top of this robot (Figure 5.2). To
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resemble a human in size, Kinect is placed at 1.60 m height from the ground plane.

Higher positions for Kinect would help for better field of view but making the robot

higher than an average human height may result in artificial reactions to robot by

humans (like aggressively avoiding it). Kinect is tilted down about 10° from the

horizontal plane for better scene coverage.

1.
60

m

10°

Figure 5.2: Kinect camera is mounted on SEIT 100 mobile robot.

SEIT 100 is equipped with a commercial navigation algorithm for safe and efficient

navigation while carrying loads. For our experiments, we changed its path planner to

our human aware path planner and used pure pursuit algorithm ( [127–129]) for path

tracking purposes.
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5.2.2 Implementation

For experiments, the robot is equipped with our algorithms for people detection,

tracking, trajectory prediction and path planning. We used Robot Operating Sys-

tem (ROS) as a base to implement our algorithms. Each component of this study

is developed as a ROS package and at the end these packages are made to function

together.

People detector runs continuously and processes each new frame gathered from Kinect

which provides frames at 30 Hz. When people detector processes a frame and extracts

people coordinates on the scene, it publishes this information over the network. Peo-

ple tracker, which also runs continuously, gets this message from people detector, and

matches people identities with existing tracks or creates new tracks for new people

in the scene. Generated tracks message is again published over the network. At this

point, trajectory predictor and path planner gathers this tracks message. Additionally,

besides people, trajectory planner adds the robot itself as another track to the tracks

list. Trajectory predictor incorporates past trajectory information of each track to train

predictions’ Gaussian processes. With applying steps described in previous chapter,

trajectory predictor estimates trajectories for each track. The prediction calculated for

the robot itself is used as the planned path and sent to the mobile base controller to

make it follow. The whole implementation is shown in Fig. 5.3.
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Figure 5.3: The implementation diagram on the mobile robot.
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A B C D E

(a) (b)

Figure 5.4: Grid-based illustration of the scene (a) and developed tracking system for

ground truth positions (b).

5.2.3 Scene

As the test scene, an empty room is used. Possible start and goal positions are marked

on the ground as A, B, C, D, E on one side and as 1, 2, 3, 4, 5 on the other side.

Position markers on one side are placed 0.4 meters apart from each other. Opposite

sides are positioned 6 meters apart from each other. People (or robot) starting from

positions marked with letters ended up at those marked with numbers and vice versa.

For gathering ground truth positions of people during experiments, another Kinect-

based setup is implemented. Kinect sensor is positioned at a certain height and angle

towards the scene and configured to detect and track people using its proprietary

software. Coordinates of people taken from Kinect are transformed into world co-

ordinates and then projected to the ground plane. Algorithm runs at 30 Hz which is

high enough to extract ground truth positions.
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Figure 5.5: Test scene and ground markings.

5.2.4 Scenarios

We design three different experiments to verify human-likeness and human-awareness

of our predicted trajectories. For the first configuration, two people walk directly to-

wards each other and expected to avoid collision and reach final positions (Fig. 5.7a).

With this configuration, the aim is to show avoidance capabilities of the method in

direct encounter in opposite directions. Second configuration again includes two peo-

ple however, this time they move diagonally which again results in collision around

the middle of their trajectories (Fig. 5.7b). In third setup, two people move one way

while one person moves opposite to them (Fig. 5.7c). This is the most representative

scene to demonstrate human-aware navigation ability of the proposed method.

After all-human experiments, one of the participants is replaced with the mobile

robot. In the third configuration, the participant moving towards two people is re-

placed, not one of the two people moving the same direction. Same tests are repeated

with the robot, and results are recorded.

Finally, navigation algorithm of the robot is switched to a reactive planner based on

dynamic window approach by Fox et al. [130] and all three configurations are tested

again. The purpose is to compare and evaluate the improvement of the navigation

with predicted cooperation included in the proposed method.

In experiments, there were 12 participants with 10 males and 2 females. They are

informed about their target destinations for each configuration. Also, they are told to
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Figure 5.6: When the lights of the robot turn from red to green and a buzzer sound is

heard, experiment starts.

1 2 3 4 5

A B C D E

(a)

1 2 3 4 5

A B C D E

(b)

1 2 3 4 5

A B C D E

(c)

Figure 5.7: Three test configurations: one-to-one direct (a), one-to-one diagonal (b)

and two-to-one direct (c).

111



behave naturally as if there is a human-being instead of the robot. Participants are

positioned at starting points opposite to the robot. The robot is programmed to lit

red indicator lights when idle (Fig. 5.6). The experiment start when red lights on

the robot turn green (Fig. 5.6) and a buzzer sound is heard simultaneously. With

both audio and visual indicators, participants start walking towards their goal while

naturally avoiding other agents around. When both the robot and the participants

reach their goal, the experiment is ended.

Every participant carries out each experiment two times. For the third scenario, par-

ticipants changed starting position at each iteration. In total, each scenario is tested

for three different methods 24 times which results in 216 runs in overall.

5.2.5 Evaluation

To evaluate the navigation performance of the algorithm on a mobile robot, two per-

formance metrics from [52] are used: path length and safety margin. Path length is the

Euclidean distance traveled by the robot in 2D plane, and safety margin is the closest

Euclidean distance of the robot ever came to a pedestrian during a trial. Safety margin

is also shown to be an important element in human-likeness perception in [82]. These

two metrics are evaluated for experiments with and without the robot and results are

compared with each other. We expect to have similar average results for the tests

carried out with the robot equipped with our cooperative planner and for those with a

human instead of the robot.

During each trial, the data from the robot and the camera (i.e., positions of the robot

and participants) are recorded. In the post-processing step, positions of the robot

and participants are synchronized using their time stamps. Then, the path lengths

and safety margins are calculated for each run. Finally, they are averaged for each

scenario with and without the robot, and results are compared.
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5.3 Results

Among three test configurations, third one is the most demonstrative configuration for

human-aware and human-like navigation. Second configuration shows the predictive

capability of the algorithm. First configuration is a kind of obstacle avoidance sce-

nario, yet, trajectory prediction on human, results in more user-friendly and human-

like paths. Therefore, we will discuss results of all three configurations but we will

mostly emphasize the results of the third configuration.
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Figure 5.8: First test scenario with two persons (a), one person and the robot with

proposed method (b), and one person and the robot with reactive planner (c).

First scenario is one-to-one direct encounter case. Two persons started walking to-

wards starting positions of each other, avoiding collision while moving. Then, one of

the people is replaced with the robot equipped with the proposed method and the test

is repeated. Finally, same test is carried out again, this time, with the reactive planner.

Note that, paths belong to people are a bit wavy in contrast to the robot’s paths which

are smoother. This is due to walking dynamics of people. Since we track heads for

ground truth position, swinging motion of head in biped locomotion results in such
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path trends.

Fig. 5.8 shows recorded paths of humans and the robot for all three methods: human-

to-human, human-to-robot with the cooperative planner, and human-to-robot with

the reactive planner. In Fig. 5.8a, paths traveled by humans are nearly symmetric

and well-formed. Our method (Fig. 5.8b) records similar paths to that of human-

to-human. We should note that, as also verified numerically in Table 5.2, average

safety margin between the robot and the human is a bit larger in the cooperative robot

test. This difference may be originated from the human behavior towards the robot

especially in head-on encounter case. People tend to keep larger distance from the

robot than from another human. The improvement of the navigation over a classic

reactive planner is obvious when we compare Fig. 5.8b and Fig. 5.8c. The reactive

planner, since it is not human aware, tries to navigate to its goal directly (see path

lengths in Table 5.2). Paths of the robot are concentrated at the center of the image

in Fig. 5.8c. This behavior obviously disrupts human, and causes them to take longer

paths. Also since the robot is not predictive, it approaches human too much resulting

in smaller safety margins (see safety margins in Table 5.2).

The second configuration again has two people, this time, navigating diagonally. The

scenario is set up in a way that in normal navigation two people will have to avoid

collision at around the middle of their trajectories. The expected human behavior is to

Table 5.2: Path lengths and minimum distances achieved between agents for the first

test scenario with different methods: Human to Human (HH), Human to Robot -

Cooperative (HR-C), and Human to Robot - Reactive (HR-R).

Method Agent Safety Margin Path Length

HH
Human 1 0.774 6.197

Human R - 6.211

HR-C
Human 0.894 6.338

Robot - 6.107

HR-R
Human 0.714 6.494

Robot - 6.118
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Figure 5.9: Second test scenario with two persons (a), one person and the robot with

proposed method (b), and one person and the robot with reactive planner (c).

Table 5.3: Path lengths and minimum distances achieved between agents for the sec-

ond test scenario with different methods: Human to Human (HH), Human to Robot -

Cooperative (HR-C), and Human to Robot - Reactive (HR-R).

Method Agent Safety Margin Path Length

HH
Human 1 0.829 6.418

Human R - 6.424

HR-C
Human 0.910 6.475

Robot - 6.297

HR-R
Human 0.929 6.643

Robot - 6.233
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estimate the trajectory of the other human and adjust his/her path accordingly, keeping

a safety margin in between. This expected behavior is verified with human-to-human

tests as seen in Fig. 5.9a. Path lengths given in Table 5.3 for human-to-human case are

also representative of this behavior as they are very close to each other. Safety margin

is larger than the previous configuration because agents move diagonally, allowing

short period of time to come close to each other. Here, the proposed method (i.e.,

human-to-robot with the cooperative planner, Fig. 5.9b) can be seen as very similar

to that of human-to-human case. Our cooperative planner estimates the trajectory

of the human and adjusts its path accordingly, and resembles the human-to-human

case. Even though there is a small difference (about 0.15 meters), path lengths are

still close to each other. Increased path length of human is due to the larger safety

margin the human keeps to the robot than to a human. Yet, safety margins are similar

to each other. The reactive planner fails to adjust any path, since it does not regard

the human until it approaches to close vicinity. Robot paths with the reactive planner

are mostly linear, disregarding the human, and the human takes evasive maneuvers

keeping a larger safety margin due to uncooperative behavior of the robot.

Table 5.4: Path lengths and minimum distances achieved between agents for the third

test scenario with different methods: Human to Human (HH), Human to Robot -

Cooperative (HR-C), and Human to Robot - Reactive (HR-R).

Method Agent Safety Margin Path Length

HH

Human 1 0.741 6.178

Human 2 0.727 6.183

Human R - 6.180

HR-C

Human 1 0.721 6.274

Human 2 0.795 6.228

Robot - 6.127

HR-R

Human 1 1.120 6.401

Human 2 0.933 6.592

Robot - 6.428

The success of the proposed method is best represented in the third configuration
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Figure 5.10: Third test scenario with three persons (a), two persons and the robot with

proposed method (b), and two persons and the robot with reactive planner (c).

where two people move towards the robot without any room in between for the robot

to pass. Here, the robot has to predict and mimic the cooperative behavior of peo-

ple and navigate accordingly. As seen in Fig. 5.10a, even though there is no room

initially, while approaching, two people generally cooperate and make room for the

other human to pass in between. This is the expected and the verified behavior of

human navigation. Only in few trials, the human, representing the robot, preferred to

pass on the outer side. At Table 5.4, it is seen that path lengths of all three humans are

similar. Also, safety margins kept to the human representing the robot ("Human R")

are also nearly the same. This navigation behavior is replicated by our cooperative

human-aware path planner. Paths traveled by the robot and humans are very similar

to the human-to-human case as seen in Fig. 5.10a and 5.10b. Numerical results on

path lengths and safety margins (Table 5.4) also prove the method to be human-like

and human-aware. Safety margins in human-to-human and human-to-robot with the

cooperative planner scenarios are nearly the same. This indicates that the robot is ac-

cepted as a rational agent by other people and they did not need to employ unnatural

navigation behavior. Human-to-robot with the reactive planner scenario demonstrates
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failure of classic non-cooperative planners. The reactive planner does not account any

human intention or cooperation, therefore, it generally plans on the outer parts of the

scene since the direct path to the goal is blocked by two people. If the number of

people increases to an amount that will block the whole passage, the reactive planner

obviously will halt and "the freezing robot problem" will occur. Also, with the reac-

tive planner, people tend to keep larger distances to the robot, and the robot tends to

move farther away than people which increases safety margins above 1 meter.

5.3.1 Statistical Analysis

The third configuration, two-to-one direct encounter, is the one which proves the

cooperation and interaction prediction capability of the proposed method. Recorded

trajectories are very similar with the all-human case. Even though the results in Table

5.4 show the human-like trajectory prediction and path planning performance of our

method with mean values of safety margin and path length, we further carried out a

statistical analysis for this configuration to validate the results in terms of statistical

significance. We state two hypotheses as,

Hypothesis 1: Path lengths, traveled by humans and the robot equipped with our

human-aware navigation method, cannot be distinguished from each other. They are

formed as equally human-like motions.

Hypothesis 2: Safety margins, occurred between humans and the robot equipped

with our human-aware navigation method, cannot be distinguished from each other.

They are formed as equally human-like motions.

Samples of path length and safety margin are tested with a Shapiro-Wilk test. The p

values of all tests are larger than 0.05; hence, all data are normally distributed. Then,

independent t-test is applied to see if there are statistically significant differences

between path lengths and safety margins in three methods.
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Table 5.5: Enumeration of path lengths of humans (located on left, middle and right

of the scene) and the robot for interpretation of statistical analysis.

HH Case HR-C Case HR-R Case

L1 → human (left) L4 → human (left) L7 → human (left)

L2 → human (middle) L5 → the robot L8 → the robot

L3 → human (right) L6 → human (right) L9 → human (right)

Table 5.6: Pairwise comparisons of path lengths of the robots and the corresponding

human, and resulting p values.

Variable L2 L8

L5 0.074 < 0.001

L6 < 0.001 −

Table 5.7: Pairwise comparisons of path lengths of humans on the left and the right,

and resulting p values.

Variable L1 L4 L7

L3 0.903 − −

L6 − 0.307 −

L9 − − 0.012

To test the Hypothesis 1, path lengths of three agents in three methods are enumerated

in Table 5.5. Calculated p values using independent t-test are tabulated in Table 5.6.

There is no significant difference between path lengths of the human in the middle of

the all-human experiment and the robot in the cooperative case. Also, it can be seen

that the reactive planner produces significantly different paths as p values are even

less than 0.001. These results confirm the Hypothesis 1, yet, we still examine the dif-

ferences of people on the right and the left of scenes (i.e., symmetry) in experiments
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Table 5.8: Enumeration of safety margins of humans (located on left, middle and right

of the scene) and the robot for interpretation of statistical analysis.

HH Case HR-C Case HR-R Case

S1 → left & middle S3 → left & robot S5 → left & robot

S2 → right & middle S4 → right & robot S6 → right & robot

Table 5.9: Pairwise comparisons of safety margins between humans on the left and

agents in the middle in all three methods, and resulting p values.

Variable S1 S5

S3 0.322 0.046

S5 0.005 −

with three different methods. In Table 5.7, it is shown that there is no statistically

significant difference on path lengths of people on each side of the scenes for the all-

human and the cooperative robot cases. This also supports the Hypothesis 1. In the

reactive robot method, there is a difference (p < 0.05) due to unpredictable behavior

of the robot and necessary avoidance maneuvers of people.

To test the Hypothesis 2, similarly, safety margins between different agents in three

methods are enumerated in Table 5.8. Calculated p values using independent t-test

are tabulated in Table 5.9 and 5.10. Safety margin between the human on the left and

at the middle in the all-human case is not different significantly (p > 0.05) from the

margin between the human on the left and the robot in cooperative case. Similarly,

the safety margin between the human on the left and at the middle in the all-human

case is not different significantly (p > 0.05) from the margin between the human

on the left and the robot in cooperative case. This approves the Hypothesis 2. For

the two cases, however, differences are significant for the reactive robot (p < 0.05).

Safety margins for two humans walking in the same direction in the all-human and

cooperative robot cases do not differ significantly (Table 5.11). This also supports the

Hypothesis2.
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Table 5.10: Pairwise comparisons of safety margins between humans on the right and

agents in the middle in all three methods, and resulting p values.

Variable S2 S6

S4 0.696 < 0.001

S6 0.001 −

Table 5.11: Pairwise comparisons of safety margins for humans on the left and the

right to agents in the middle, and resulting p values.

Variable S1 S3 S5

S2 0.841 − −

S4 − 0.138 −

S6 − − 0.021

5.4 Conclusions

In previous chapters, different components of the proposed human-aware navigation

method is presented. People detection and tracking methods are tested and verified.

The developed trajectory prediction and path planning algorithm is described in the

previous chapter and tested on a publicly available dataset. Results are also compared

with state-of-art methods and shown that our proposed method performs superior.

In this chapter, the aim was to combine all components, implement on a mobile robot

and prove its success for human-aware navigation. For this purpose, we developed

a software package which includes all components proposed in this study and con-

ducted experiments with real conditions and humans. Three different experiment

configurations are tested with human-to-human, human-to-robot with our coopera-

tive planner and human-to-robot with the reactive planner cases. During tests, peo-

ple detection, tracking, trajectory prediction and path planning components were all
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active and functioning. Obtained results are compared and it is shown that our coop-

erative planner behaves very similarly to real humans in terms of human-awareness

and human-likeness during navigation. Also, by comparing with a reactive planner,

improvement of navigation over classical reactive methods is shown. Overall results

obtained in this chapter verify and conclude this study successfully.
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CHAPTER 6

CONCLUSIONS

As mobile robots become more integrated into our daily life, classical navigation

methods become insufficient. Environments crowded with people are dynamic and

stochastic so that to be able to navigate effectively, mobile robots should inherit hu-

man navigational behaviors. In this study, our aim was to develop an efficient and

robust navigation method which is human-like and human-aware. Mobile robots have

to detect people around to be able to predict their movements and navigate accord-

ingly. Therefore, in Chapter 2, we developed a lightweight people detection method

which uses 3-D depth information gathered from an RGB-D camera. Algorithm runs

in real-time, solely on a CPU without any GPU implementation. This allows imple-

mentation of the method on low-resource mobile robots. Its success is verified on a

public dataset first, and then on a custom one. Besides being real-time and depending

only on depth (not on RGB), contributions of the Chapter 2 include pose invariant

people detection. Using eigenvectors and eigenvalues of point clouds, we processed

clusters in a special pipeline and used support vector machines to classify them as

human or not.

In Chapter 3, a people tracking method is implemented. Detected people in the previ-

ous chapter need to be tracked for trajectory estimation. Occlusions and direction

changes may result in identity switching, however, implemented tracking method

with Kalman filter and nearest neighbor algorithm running in real-time made it pos-

sible to track people around a mobile robot. This implementation is also tested and

verified on a public dataset.

When we can detect and track people, we can predict their trajectories and navigate

accordingly. Chapter 4 is devoted to this core component of the study. Research in
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the literature showed that even with perfect detection and tracking, without human

interaction and cooperation modeling, a navigation algorithm will fail with so-called

"freezing robot problem". Therefore, the aim was to model this cooperation which,

as humans, we have and use in our daily life. To generate human-like trajectories,

we used Gaussian processes which is trained with real observed data (i.e., the past

trajectory of people) taken from the people tracker. However, generating human-like

trajectories is not sufficient without cooperation modeling. We developed a step-

based interactive prediction stage. In addition to past trajectories of people, in each

future time step, we trained Gaussian processes with estimated future positions of

people extracted from a cost-based interaction method. Costs of an individual map of

each agent are penalized with accelerations and deceleration, and final costs are used

in next best velocity selection. We modeled the mobile robot as just another human

in the scene. Therefore, when we predict cooperative trajectories of all agents in the

scene, path planning of the mobile robot becomes just an inference from probability

density function of the robot. The mean (the most likely sample) of the Gaussian

process is used as the planned path of the robot.

Findings of Chapter 4 are tested on a public dataset which has pedestrians walking

in front of a library, recorded from a top camera. Positions of people are labeled

with their identities. The developed trajectory prediction method is tested on chal-

lenging scenes of this dataset. Especially, crowded scenes which require cooperation

and interaction between people, are selected. Developed method does not need to

incorporate true goal information prior to prediction. Still, tests are conducted on two

different configurations: known goal and unknown goal cases. Results for the most

challenging scenes are presented in detail. Then, overall results are presented for both

known and unknown goal cases. Finally, our method is compared with two state-of-

art methods in the literature and shown to perform superior than these methods even

in long prediction horizon. Development of a scene and data independent interaction

and cooperation model for humans using future conditioning of Gaussian processes

with cost-based velocity selection is the main contribution of the Chapter 4.

Three different components, i.e., people detection, people tracking, and trajectory

prediction and path planning, are developed and tested individually during the study.

In Chapter 5, all components are brought together and implemented on a mobile
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robot. An RGB-D camera is mounted on the robot and developed algorithms are im-

plemented. To test all components together, experiments are designed. Three differ-

ent scenarios are prepared: one-to-one direct movement, one-to-one diagonal move-

ment, and two-to-one direct movement. These three configurations are tested for

three different cases: human-to-human, human-to-robot with the cooperative planner,

and human-to-robot with the reactive planner. Human-to-human cases are taken as

benchmarks. Human participants instructed, experiments are carried out and data are

recorded. In the Results section of the Chapter 5, it is shown that, paths traveled

in human-to-human and human-to-robot with the cooperative planner cases are very

similar. Findings are supported in terms of path lengths and safety distances. Also,

results are compared with the reactive planner, and improvement in navigation is indi-

cated. Results of Chapter 5 verify that output of this study, with all components, suc-

cessfully makes a mobile robot be able to navigate in human-like and human-aware

fashion. We believe that; this study made a considerable contribution to achieve more

human-aware and human-like robots in near future.
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Platformu, 2012-2014, Funded by TUBITAK.

• Researcher, Uzaktan Erişimli Yarı Otonom İnsansız Kara Aracı Platformunun
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• Çakıcı Özkök, Ç., Lafcı, A., Şirin, H. O., Gürlek, T. T., Hacinecipoglu, A.,
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