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Abstract

The resolved and direct photon contributions to the single lepto-

quark (L) production process γp → Le are analysed for both scalar (S)

and vector (V) leptoquarks in detail. It is shown that resolved pho-

ton contribution dominates for ML ≤ 300GeV . For MV ≥ 1TeV and

MS ≥ 0.5TeV cross section is completely determined by the direct

photon conribution. The vector leptoquarks are discussed for both

gauge- and non-gauge cases seperately.
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1 Introduction

The theories beyond the Standard Model (SM) such as composite models[1],

grand unified theories[2], and E6 superstring-inspired models[3] predict the

existence of leptoquarks carrying baryon and lepton numbers simultaneously

and having the electric charges ±5/3;±4/3;±2/3 and ±1/3 [4].

The production and possibility of the detection of leptoquarks have been

analysed in detail for, for instance, ep [5-7], hadronic [8], and e+e− colliders

[4,9]. It is well known that high enery ep colliders can be converted into a

high energy γp collider with the help of backscattered laser beams [10]. The

single and double leptoquark production in γp colliders are also analysed in

the literature [11,12] without taking the hadronic structure of photon into

account. Namely they neglected the resolved photon contribution. Further-

more in these works the distribution of quarks and gluons in the proton are

described by a Q2 independent parametrisation which may be misleading

since the c.m. energy for each subprocess supporting γp → Le is not iden-

tical. In this work we shall analyse the production of vector (L = V ) and

scalar leptoquarks (L = S) in γp colliders by considering the resolved photon

contribution as well.

The article is organized as follows: Section 2 describes the theoretical

basis and Section 3 is devoted to the numerical analysis and discussions.

2 Total Cross Section for γp→ Le Scattering

The production of leptoquarks in γp collisions can occur either by direct or

resolved photon processes. In the latter case photon interacts with the proton

through its hadronic components.It is clear that the following processes are
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responsible for the γp→ Le scattering:

γq → Le

γg → Le (1)

γqg → Le

γgq → Le (2)

where processes in (1) defines the direct photon scattering and those in (2)

defines resolved photon scattering.

The complete SU(3)c × SU(2)L ×U(1)Y invariant Lagrangian in the low

energy range (ML ≈ 1TeV ),conserving baryon (B) and lepton (L) numbers,

is given by [4]

L = L
f
F=2 + L

f
F=0 + L

scalar + L
vector (3)

where F =| 3B +L |. The first two terms in the lagrangian are given by the

following expressions

L
f
F=2 = g1(q̄

c
Liτ2lL + ūcReR)S1

+ g̃1d̄
c
ReRS̃1 + g3q̄

c
Liτ2~τ lL.

~S3

+ g2(d̄
c
Rγ

µ
lL + d̄cLγ

µ
eR)V2µ

+ g̃2ū
c
Rγ

µ
lLṼ2µ + h.c. (4)

L
f
F=0 = h2(q̄Liτ2eR + ūRlL)R2

+ h̃2d̄RlLR̃2 + h3q̄L~τ lL.~U3

+ h1(q̄Lγ
µ
lL + d̄Rγ

µeR)U1µ

+ h̃1ūRγ
µeRŨ1µ + h.c. (5)
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In L
f
F=0 and L

f
F=2 there exist various kinds of leptoquarks interacting with

leptons and quarks. Here qL and lL are SU(2)L left handed quark and lepton

doublets, ψc = Cp̄si
T
is the charge conjugated fermion field. Among vec-

tor leptoquarks, U1, Ũ1 are SU(2)L singlets, V2, Ṽ2 are left handed SU(2)L

doublets, and ~U3 is SU(2)L triplet. Among scalar leptoquarks, S1, S̃1 are

SU(2)L singlets, R2, R̃2 are left handed SU(2)L doublets, and ~S3 is SU(2)L

triplet. Note that there are certain constraints on the leptoquark masses and

coupling constants from low energy experiments, which follows, for instance,

from the absence of FCNC at the tree level, and from D0− D̄0 and B0− B̄0

mixings [13-16].

L
scalar in the Lagrangian describes the interaction of scalar leptoquarks

with the neutral gauge bosons, and is given by

L
scalar =

∑
i

[(DµS
i)†(DµSi)−M2

SS
†S] (6)

where Si is the i-th scalar leptoquark field and Dµ = ∂µ − ieAµ − igs
λa

2
Aa

µ is

the covariant derivative.

Unlike the scalar leptoquark case, V V γ and V V g vertices involve an

ambiguity depending on the nature of vector leptoquarks. For example, if

the vector leptoquarks are gauge bosons of an extended gauge group, then

the trilinear vertices are completely and unambigiously fixed by the gauge

invariance. When they are not gauge bosons, then the vector leptoquark

lagrangian can be regarded as an effective theory. It is clear that in this

effective theory there are many free parameters. In order to restrict the

number of these parameters, in addition to SU(3)c×SU(2)L×U(1)Y invari-

ance and B and L conservations, we impose the CP invariance in the effective

lagrangian. Moreover we restrict ourselves to operators of dimensionality 4

or less. There is only one operator igκV µVµνV
ν complying with these condi-
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tions and it describes the anomalous magnetic moment contribution to the

trilinear vertex.

Thus the effective gauge boson- vector leptoquark lagrangian L
vector con-

serving CP and containing operators of dimension 4 or less is given by (see,

for example, [17])

L
vector =

∑
i

{−1

2
V †
iµνV

iµν +M2

V V
†
iµV

iµ

− i
∑
j=γ,g

gjκjViµG
jµνViν} (7)

where i runs over all vector leptoquarks, Vµν = DµVν−DνVµ is the leptoquark

field strength and Gjµν is the field strength tensor of photon (j = γ) or gluon

(j = g). In what follows we shall take anomalous couplings of photon and

gluon identical; κγ = κg = κ.

One can readily obtain the Feynman rules for trilinear vertices immedi-

ately from L
vector

V V { γ
g
} = { ieQ

igs
λa

2

}{(k2 − k3)µgαβ + (k3 − κk1)αgµβ

+ (k1(1 + κ)− k2)βgµβ} (8)

where all momenta are incoming. Here k1, k2 and k3 are the 4- momenta of

photon (gluon) and leptoquarks respectively. We will next turn our attention

to the calculation of the cross section for γp→ Le scattering.

The total cross section for γp→ Le scattering has the form

σ(γp→ Le) = σdir(γp→ Le) + σres(γp→ Le) (9)

where σdir and σres represent the contributions of the direct and resolved

photons respectively. The total cross section for the leptoquark production

by direct photon interaction can be obtained by folding the cross section for
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the elementary process (1) with the the photon distribution in electron and

quark distribution in the proton:

σdir(γp→ Le) =
∫

0.83

λ
dx

∫
1

λ
x

dy fγ/e(x) fq/p(y,
xys

2
) σγq(xys) (10)

In the same manner, the total cross section for leptoquark production by re-

solved photon contribution can be obtained by folding the cross section of the

elementary process (2) with quark (gluon) distribution in the photon, gluon

(quark) distribution in the proton and photon distribution in the electron:

σres(γp→ Le) =
∫

0.83

λ
dx

∫
1

λ
x

dy
∫

1

λ
xy

dzfγ/e(x)[fg/γ(y,
xys

2
)fq/p(z,

xyzs

2
)

+ fq/γ(y,
xys

2
)fg/p(z,

xyzs

2
)] σgq(xyzs) (11)

In (10) and (11) fa/b(x,Q
2) is the Q2 dependent distribution function of the

parton a in the hadron b (fγ/e(x) is an exception). In all these functions we

have set Q2 = ŝ
2
where ŝ is the invariant mass flow to the subprocess under

concern,
√
s is the c.m. energy of the collider and λ = (ML +mq)

2/s, where

ML and mq are the leptoquark and quark masses respectively.

Let us now discuss the construction of the formulae (10) and (11) in the

case of γgq → Le, as an example. Here s is the c.m. energy squared of ep

collider. Only fraction x of s enters the γp system, so sγp = xsep, 0 ≤ x ≤
1. Now hadronic components of photon mediate some fraction y of sγp, so

sgp = ysγp, 0 ≤ y ≤ 1. Similarly, quark coming off the proton takes away

some fraction z of sgp so sgq = zsgp, 0 ≤ z ≤ 1.

The total cross section of the elementary subprocess (1) is given by

σV
γq = Aγ{ln (

a− 1

b
)[4q22 − 8a(a− 1)q2(q3 − q1)] (12)

+ ln a[4q3q1(κ+ 1) + q23(κ
2 + 6κ+ 1) + +8aq3(q3 + a(q1 − q2))
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+
q3(κ− 1)

a
{2(q2 + q1)− q3(κ + 1))}]

+ 8a2{q2q1 − 8q3(q3 + q1) + 2q21}+ a{q22 − q2q3(κ+ 1)− 6q2q1

+ (1/4)q23κ(κ + 2) + (33/4)q23 − q3q1(−5κ+ 3)− 3q21}

+
1

a
{q22 + q2q3(κ− 3) + 2q2q1 + (1/4)q23(κ

2 + 26κ+ 9)

+ q3q1(κ− 3) + q21} − 2q22 + 4q2q3 − 4q2q1 − (1/2)q23(κ
2 + 14κ+ 5)

+ 4q3q1(κ+ 2)}

and

σS
γq = Aγ{ln (

1− a

b
)[2a(a− 1)q2(q1 − q3) + q22] (13)

+ ln a[2aq3{q3 + a(q1 + q2)}] + a2{(1/2)q21 − 2q1q2

− 2q1q3 − 2q23}+ a{−q21 + 4q1q2 + 2q1q3 + 2q23}

+ (1/2)q21 − 2q1q2}

where superscripts V and S refer to the vector and scalar leptoquark pro-

ductions respectively. In (4) and (5) a = M2
L/s, b = m2

q/s, q1 = q, q2 = 1,

q3 = q + 1 (q quark charge), and κ is the anomalous coupling of leptoquarks

to photon and gluon [17]. The factor Aγ is given by

Aγ =
πα2

2s
. (14)

The crossections σV
gq and σ

S
gq could be obtained from (4) and (5) with the

following replacements:

σV,S
gq = σV,S

γq (q1 = 1, q2 = 0, q3 = 1, Aγ → Ag) (15)

where

Ag =
πααs

12s
. (16)
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and αs is given by

αs(Q
2) =

12π

(33− 2f) lnQ2/Λ2
(17)

up to one-loop accuracy.

Now, let us consider the large s behaviour of the cross section for the

subprocess in (1) for the arbitrary values of κ. From (12) one can easily

obtain

σV
γq =

πα2(q + 1)2

M2
V

[
1

2
ln

s

m2
V

(κ− 1)2 +
1

8
(κ2 + 30κ+ 1)] (18)

in the limit s >> M2
V . We see that for κ 6= 1 the cross section grows loga-

rithmically. This is due to the t- channel contribution. As we noted before,

if V is a non- gauge particle (κ 6= 1) this logarithmic dependence can be

considered as the low energy manifestation of a more fundamental theory at

a higher energy scale. So, according to the effective theory description, the

behaviour of the cross section is acceptable as long as energy is sufficiently

low. At high energies, the effective theory is superseeded by a more funda-

mental theory, where the increase of the cross section with s is stopped and

unitarity is preserved. If V has the gauge nature (where κ = 1), the cross

section reaches the constant value

σV
γq =

4πα2(q + 1)2

M2
V

(19)

which is similar to the single W boson production in the reaction γp→WX

[17] in the standard model.

After giving the expression for subprocess cross sections we now turn to

the expicit expressions for the distribution functions in (10) and (11).

The function fγ/e(x,Q
2) is the energy spectrum of the backscattered laser
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photons [10]

fe/γ(x) =
1

D(ζ)
[1− x+

1

1− x
− 4x

ζ(1− x)
+

4x2

ζ2(1− x)2
] (20)

where

D(ζ) = (1− 4

ζ
− 8

ζ2
) ln (1− ζ)

1

2
+

8

ζ
− 1

2(1 + ζ)2
(21)

with ζ = 4.82. The maximum value of x is found as xmax = ζ
ζ+1

= 0.83

which is the upper limit of the x integral in (2) and (3).

In describing the quark and gluon distributions in the proton we shall

use the results of [18] where a Q2 dependent parametrisation is given. We

shall not reproduce all the details of the parametrisations here, instead we

summarize the general form of the functions and refer the reader to the

references for details. fq/p(x,Q
2) parametrizes the quark (sea plus valence)

distributions in the proton

xfq/p(x,Q
2) = N

A2

B(A3 + 1, A1/A2)
xA1(1− xA2)A3 (22)

+ A4(1 + A5x+ A6x
2)(1− x)A7 + A8e

−A9x (23)

where B(x, y) is the Euler’s Beta function, N equals 2 for u quark and 1

for d quark. The coefficients Ai (i=1,..,9) are tabulated in [18] and they are

explicit functions of

s̄ = ln { ln (Q
2/Λ2)

ln (Q2
0/Λ

2)
} (24)

where Q2
0 = 4GeV 2 and Λ = 0.4GeV .

The gluon distribution in the proton is parametrised by fg/p having the

expression [18]

xfg/p(x,Q
2) = B1(1 +B2x+B3x

2)(1− x)B4 +B5e
−B6x (25)
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and again the coefficients Bi are functions of s̄ and are tabulated in [18].

For the gluon and quark distributions in the photon we shall use the

Q2 dependent parametrisation given in [19]. The quark distribution in the

photon is parametrised by fg/γ(x,Q
2) which is given by

xfg/γ(x,Q
2) = C1x

C2(1− x)C3 (26)

where the coefficients Ci are functions of

t = ln (Q2

0/Λ
2)es̄ (27)

and are tabulated in [19].

The quark distribution (sea plus valence) in the photon is parametrised

by

fq/γ(x,Q
2) = Afqv(x,Q

2) +Bfqs(x,Q
2) (28)

where the coefficients Af and Bf [19] change as the number of flavours f

changes ( in connection with the momentum scale Q2) and the functions

qv(x,Q
2) and qs(x,Q

2) ( qγNS and Σγ respectively, in the notation of [19]) are

given by

xqj(x,Q
2) = x

x2 + (1− x)2

D1j −D2jln(1− x)
+D3jx

D4j (1− x)D5j (29)

where j = v, s, and the coefficients Dij (i = 1..5, j = v, s) are given in [19].

3 Numerical Analysis

We will now analyze the total cross section σ(γp → Le) defined in (9) for

vector and scalar leptoquarks. We based our analysis only to the first gen-

eration so that the quark entering the scattering process is either u or d,
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producing in the final state leptoquarks of electromagnetic charge 5/3 or

2/3 [4] respectively. Although there are many accelerators [11,12] deserving

analysis under such a work, for our purpose it is sufficient to analyze a single

accelerator which we choose to be LHC + TESLA with
√
s = 5.5TeV .

Fig.1 and Fig.2 show the total cross section in (9), at
√
s = 5.5TeV , for

V5/3 (gauge particle) and S5/3 respectively. We give Fig.1 and Fig.2 to demon-

strate the relative magnitude of the direct and resolved photon contributions

as the leptoquark mass changes. These two are typical examples applicable to

all other cases. From Fig. 1 and Fig. 2 we see that forML ≤ 300GeV the to-

tal cross section in (9) is strongly dominated by resolved photon contribution

in (11). Moreover, Fig. 1 and Fig. 2 show, respectively, that forMV ≥ 1TeV

and MS ≥ 0.5TeV the total cross section in (9) is completely determined by

the direct photon contribution in (10). We see that the leptoquark mass

range where the resolved photon contribution is non negligible is within the

mass bounds given in [17]; thus, the effects of the hadronic component of

photon in γp colliders are directly observable in future experiments.

Fig. 3 shows the dependence of the total cross section in (12) on MV

for different values of κ. From this figure we see that for non- gauge V , the

cross section in (12) is considerably enhanced (suppressed) as κ grows (falls)

to higher (lower) values from unity. Especially the κ ≥ 1 case is interesting,

because enhancement in the cross section is large for low values ofMV where

the resoved photon contribution dominates. Lastly, we observe from this

figure that the cross section for V5/3 is always larger than that for V2/3.

Finally, in Fig.4 we show the variation of the total cross section in (13)

with MS. We conclude from this figure that the total cross section for S5/3

is always larger than that for S2/3 ( see also [11,12]).

In conclusion, we have discussed the single leptoquark production in γp
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colliders for scalar and vector leptoquarks. We have analysed the contribution

of the hadronic component of the photon to the total cross section. Moreover,

gauge- and non- gauge- vector leptoquarks are discussed seperately in terms

of their contribution to the total cross section.
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Figure 1: For V5/3 (gauge particle) at
√
s = 5.5TeV , contributions of re-

solved photon (dashed) and direct photon (short- dashed) to the total

crossection (solid).

Figure 2: The same as in Fig. 1 but for S5/3

Figure 3: Variation of the total crossection for vector leptoquarks as a func-

tion of leptoquark mass for different values of anomalous coupling. Here

circle, square and triangle corresponds to κ = 0.5, κ = 1.0 and κ = 2.0

respectively.

Figure 4: Variation of the total crossection for scalar leptoquarks as a func-

tion of leptoquark mass.
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