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ABSTRACT 

 

DESIGN OF KALMAN FILTER BASED ATTITUDE DETERMINATION 

AND CONTROL ALGORITHMS FOR A LEO SATELLITE 

 

 

 

Efendioğlu, Gamze 

Master of Science, Electrical and Electronic Engineering 

Supervisor : Prof. Dr. Mehmet Kemal Leblebicioğlu 

 

 

November 2019, 189 pages 

 

 

The design of different attitude controllers by using reaction wheels and magnetic 

rods as torque sources and the design of a multi-sensor integrated navigation 

system are developed for a three-axis stabilized Earth-orbiting microsatellite and 

presented in this thesis. Firstly, the fundamental parameters relevant to satellite 

attitude determination are presented, such as attitude sensors and actuators, space 

environmental effects, coordinate frames, satellite dynamic/kinematic equations 

with control components. These parameters are also used to set satellite linear and 

nonlinear mathematical models. Reaction wheels and magnetic torque rods are 

used to generate the required control torque for the purpose of providing attitude 

control. The momentum dumping effects of magnetic rods are also implemented to 

mathematical models and controlled by the help of Earth Magnetic Field.  

Kalman Filter based attitude estimations with PID, LQR and SMC controllers were 

designed to support satellite orientation with respect to a given reference attitude. 

In addition to these controllers, a feedback controller is also designed for 

stabilizing the satellite angular velocity after separating from launcher. Simulating 
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of multi-sensor navigation sensors, satellite mathematical model and controller 

models under various internal and external disturbances and measurement noises 

are carried out by means of MATLAB/Simulink software tool. The results obtained 

from the simulations with related approaches were compared and analyzed. 

Keywords: Satellite Attitude and Control System, Kalman Filters, PID Controller, 

LQR Controller, Sliding Mode Controller. 
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ÖZ 

 

ALÇAK YÖRÜNGELİ BİR UYDU İÇİN KALMAN FİLTRE TABANLI 

YÖNELİM BELİRLEME VE KONTROL ALGORİTMALARININ 

TASARIMI 

 

 

 

Efendioğlu, Gamze 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Mehmet Kemal Leblebicioğlu 

 

 

Kasım 2019, 189 sayfa 

 

Bu tez raporunda, üç eksende durağan bir alçak yörünge mikro uydusu için tepki 

tekerleği ve manyetik tork çubukları kullanılarak geribeslemeli yönelim belirleme 

ve kontrol algoritmaları ile entegre edilmiş çoklu sensör navigasyon sisteminin 

tasarımı sunulmaktadır. Tezin ilk bölümlerinde, kontrolcü tasarımı için gerekli olan 

uydunun dinamik ve kinematik denklemleri, uzay ortamı, koordinat sistemleri ile 

iç/dış etkenlerden kaynaklanan bozucu kuvvetler sunulmuştur. Tezin devamında, 

yönelim belirleme ve kontrol komponentleri detaylı bir şekilde tanıtılmıştır. Tepki 

tekerleri ve manyetik tork çubukları yönelim kontrolünü sağlamak amacıyla gerekli 

tork üretimi için kullanılmıştır. Tork çubuklarının, tekerlerde fazladan biriken 

momentum miktarını boşaltma özelliği de modellere eklenmiş ve bu durum 

Dünya’nın manyetik alan verisinden faydalanılarak kontrol edilmiştir.  

İç ve dış bozucu etkenler ile sensör gürültüleri de göz önüne alınarak Kalman filtre 

tabanlı tahmini navigasyon değerleri ile birlikte uydunun dinamik/kinematik 

denklemlerinden doğrusal ve doğrusal olmayan matematiksel modeller 

oluşturulmuştur. Oransal integral türevsel kontrolcü (PID), doğrusal ikinci 
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dereceden regülatör (LQR) ve kayan kipli kontrolcü (SMC) tasarımları ile uydunun 

referans verilen yönelimi gerçekleştirmesi sağlanmıştır. Uydunun fırlatıcıdan 

ayrıldıktan sonraki hızının kararlı hale getirilebilmesi amacıyla takla hareketini 

sönümlemek için geri beslemeli kontrolcü tasarlanmıştır. Tüm model ve 

kontrolcüler MATLAB/ Simulink yazılım araçları kullanılarak tasarlanmış, elde 

edilen sistem sonuçları karşılaştırılıp analiz edilmiştir. 

Anahtar Kelimeler: Uydu Yönelim ve Kontrol Sistemi, Kalman Filtreleri, Oransal 

Integral Türevsel Kontrolcü, Doğrusal İkinci Dereceden Regülatör, Kayan Kipli 

Kontrolcü. 
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CHAPTER 1  

1. INTRODUCTION  

 

1.1. Introduction 

This thesis focuses on the issues of designing and developing satellite navigation and 

attitude control system integrating the Kalman filter based controller algorithms by 

utilizing the basic parameters of a microsatellite called Flying Laptop (FLP). The 

primary objective of this thesis is to model different attitude controllers with reaction 

wheels using as a momentum generator and magnetic torque rods using as both 

torque generator and redundant momentum damper in order to obtain higher degree 

of pointing accuracy for an Earth pointing microsatellite inserted in LEO orbit.  

The selected microsatellite is designed by the Stuttgart University and launched in 

2017 [17]. It is a Low Earth Orbit (LEO) satellite stabilized for its every three axes, 

and its orbit is a sun-synchronous orbit. The mission altitude is between 500 km and 

900 km, it can be assumed that is the mean of these altitudes, h = 700 km. It has a 

rectangular shape with dimensions of 60 cm x 70 cm x 80 cm [9, 17].  

The attitude determination and control subsystem of the selected satellite is 

composed of sun sensors, magnetometers, star trackers, gyroscopes and GPS 

receivers as satellite sensors. On the other hand, reaction wheels and magnetic torque 

rods are accepted as attitude actuators. This thesis gives also nonlinear and linear 

mathematical models which belong to these sensors and actuators, and describes 

how to combine each of them into an attitude Kalman Filter estimator with a Gauss-

Newton method. 
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The Kalman filter is the estimation method to compound the processing of multi-

sensors navigation and satellite attitude determination. Kalman filter based 

navigation algorithms are designed for both having an accurate estimation algorithm 

and solving time synchronization problems. Extended Kalman Filter (EKF) submits 

the satisfied estimation results for nonlinear systems wherever the first and second 

order Taylor series linearization approximates nonlinear motion characteristics [1, 2, 

4]. The satellite orientation concerning a reference frame is determined by means of 

attitude determination process [18]. Furthermore, satellite sensors provide some 

useful data which helps to determine the location in space. Attitude determination 

process is in cooperation with control process in order to maintain the expected 

satellite orientation.  

Four reaction wheels accommodated in tetrahedron configuration with three 

magnetic torque rods are used in control systems and their effects on satellite attitude 

are analyzed by PID, LQR and SMC controller methods [2]. 

Controllers receive the estimated measurements from sensors, then generate the 

appropriate control commands according to given reference attitude and transmit this 

command to actuators in order to provide the expected orientation to a satellite.  

1.2. Literature Review  

In this thesis, the satellite is a sun-synchronous and three-axis stabilized. A three-

axis stabilized satellite generally use thrusters or reaction wheels for attitude control 

including attitude maneuvers, since the Earth’s magnetic field is too weak to use 

magnetic torque rods for the same functions [4, 48]. For a three-axis stabilized 

system, six possible directions (roll, pitch, yaw directions and their negatives) are 

available for attitude maneuvering.  

In the past decade, Earth observation satellites such as CubeSat 12U ATISE have 

been improved from relatively low resolution at about 5 meters to high resolution at 
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about 0.5 meters that can produce useful imagery products [59, 66, 67]. In addition 

to detumbling, AAUSAT-II satellite uses both torque rods and momentum wheels to 

manage controller problems for slew maneuvering [73].  

Gravity gradient stabilization has been used for microsatellites to provide a low cost 

attitude control and a good pointing accuracy. In the study of [65], this stabilization 

is also provided with thrusters. 

The linearization of nonlinear models [76, 51, 54] and applying the obtained linear 

controllers such as Linear Quadratic Regulators are commonly handled in several 

academic studies in order to facilitate the calculations of complex system equations 

[3, 46, 71, 73]. Linear Quadratic Regulator (LQR) generally focuses on finding out a 

suitable input from the initial state of a linear model to the final state of it in order to 

minimize cost function [83]. Although input signal is recoverable from full state 

feedback, gain values and gain matrix are not commonly estimated. In this case, a 

Riccati equation can be accepted as a solution [1, 4, 6]. 

There are lots of different Lyapunov based controller techniques besides LQR such 

as Sliding Mode Controller [52, 75] and PID controller [68, 73, 82] used to design a 

reliable attitude determination and control system for a microsatellite. Another 

simple controller called as B-dot controller is suggested to bring a satellite in a stable 

state using magnetic torque rods in detumbling phase such as DTU-Sat [54]. 

Finding a set of gains is the main task of attitude controller design for linear models, 

and the gain values are valid only around the equilibrium points. Multi-variable 

controllers such as PID controllers can be compound with the gain scheduling 

method to be able to apply founded gain values to the nonlinear models [5, 8, 45].  

In literature, there are lots of studies on Kalman filter based attitude estimation 

algorithms. Some of them are focusing on the linear model designs [6, 7], but mostly 

on the nonlinear and complex aerospace applications. Kalman Filters combine the 

different sensor data and produce more accurate attitude solution [45, 59].  
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The basic form of Kalman filter can be generalized to the Extended Kalman Filter 

(EKF). In recent researches, the more enhanced Kalman Filter type is generally 

utilized called Unscented Kalman Filter (UKF) and it is very beneficial especially 

for poor initial filter conditions [1]. 

1.3. Microsatellites 

The term "microsatellite" is usually applied to the name of an artificial satellite with 

a wet mass between 10 kg and 100 kg. However, this is not an official convention, 

and sometimes those terms can refer to satellites larger than this weight range, or 

smaller than this. The selected satellite for this study can be classified as a 

microsatellite.  

1.3.1. The Selected Microsatellite 

The selected microsatellite is called FLP microsatellite. Its orbit is designed as a kind 

of sun-synchronous orbit, and it has a circular shape. In the following table, the most 

important attitude properties of the selected satellite are listed (Table 1-1):   

Table 1-1 The Fundamental Flying Laptop Microsatellite Characteristics   

FLP Microsatellite Characteristics 

Dimensions 60 × 70 × 80 cm 

Mass 117 kg 

Desired Orbit Circular and Polar Orbit 

Orbit Altitude ~ 700 km 

Attitude Control Three Axis Stabilized 

Solar Panels 3 Solar Panels (2 deployable) 

The primary payload is a Multi-Spectral Imaging Camera (MICS), and the auxiliary 

payload is a Panoramic Camera (PAMCAM) used to obtain a more comprehensive 

overview of the observed area on the Earth surface.  
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This microsatellite consists of five fundamental subsystems are specified hereafter: 

 Data Handling Subsystem: This subsystem collects some useful data 

(telemetries, images, etc.) from satellite payloads and sends this data to 

ground stations throughout a communication subsystem. The collected data 

can be recorded for later transmission.  

 

 Power Subsystem: This subsystem provides the necessary power to the 

satellite in order to maintain its mission throughout its lifetime. It can change 

the states of power lines of platform and payload equipment as open or 

closed state and manages the battery charging/discharging control.  

 

 Attitude Control Subsystem: The microsatellite is a three-axis stabilized by 

the help of avionic sensors (star trackers, magnetometers, gyros and GPS) 

and actuators (reaction wheels and magnetic torque rods). There is no 

propulsion subsystem in the selected satellite. The focusing point is to design 

three different attitude control systems as main controllers with an integration 

of multi-sensors for this thesis.   

 

Figure 1-1 The FLP Platform Setup [17] 

 Telemetry Tracking and Control Subsystem: This subsystem consists of a 

transceiver and omnidirectional antennas to be ensure there is a 

communication link between satellite and ground stations. The uplink and 
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downlink frequencies are 2.0 GHz and 2.3 GHz respectively for the selected 

satellite.  

 

 Thermal Control Subsystem (TCS): This subsystem keeps the satellite 

platform and equipment temperature within the specified ranges. The satellite 

is mainly covered with multi-layer insulations to decrease the heat changes 

between satellite and space environment. The other element is radiator which 

transmits the heat from satellite to space.  

1.4. Problem Statements 

In this study, the main concern is to be able to control a microsatellite attitude and its 

orientation by changing the angular magnitudes of its rotational axes with multi-

sensor navigation approach. In order to perform these actions, it is required to pay 

attention to time constraints and model accuracies. The detailed models of satellite 

sensors and actuators must be designed and simulated in an appropriate medium. 

The accuracy level of a satellite attitude determination can be affected negatively 

due to sensor measurement noises. In order to have a sensitive model, sensor noises 

and disturbance torques arising from internal and external parameters shall be taken 

into consideration and removed from the system.  

The torques generated from actuators is required to be controlled. Because of this 

reason, the main goal is to advance system controllers such as PD, LQR and SMC 

controllers which provide states control and help to track orbit trajectory under 

environmental disturbance torques.  

Satellite attitude dynamic and kinematic equations with their mathematical models 

shall be derived using Euler angles in a quaternion vector form and coordinate frame 

transformations. These equations are linearized under stable state conditions. After 

implementing linearization steps, both linear and nonlinear state space equations are 

obtained with their matrix representations to prepare system properties. 
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The satellite and its orbit properties shall be modelled to localize its angular velocity 

and position according to Earth Reference Frames. Notably, the detailed model of 

reaction wheels and magnetic coils, which are the most essential model items, is 

appropriately made to be able to represent the control torques.  

All models of navigation processor with Kalman filters were visualized with 

graphics and compared the results in terms of some critical parameters such as the 

accuracy, efficiency and robustness.  

1.5. Publication from This Thesis 

The publication of “Design of Attitude Control with Kalman Filter for a LEO 

Microsatellite” was presented in a national conference called TOK2019 with the 

supervisor of this thesis.   

1.6. The Thesis Organization 

This thesis consists of seven different chapters, and all these chapters have a close 

relationship in terms of their contents. These chapters are organized, as mentioned 

below:  

 In this chapter, there is an introduction for the navigation and attitude control 

of microsatellites. The selected microsatellite is specified with its subsystems 

and fundamental properties which are frequently mentioned for the following 

chapters.   

 

 Chapter-2 mentions about the non-linear mathematical modelling of the 

attitude dynamics and kinematics of a microsatellite and their relevant state 

space definitions with its measurement equations.  
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 Chapter-3 includes mathematical modelling of space environment and its 

adverse effects on satellite attitude.  

 

 Chapter-4 proposes nonlinear and linear state-space models to control the 

satellite attitude.  

 

 Chapter-5 focuses on controller types (B-dot, PID, LQR and SMC) which are 

put into use in different phases during a satellite life such as Detumbling 

Phase and Tracking (Nominal) Phase.  

 

 Chapter-6 discusses the results obtained from controller outputs given 

detailed information in the previous chapter.  

 

 Chapter-7 summarizes the conclusions of all analyses performed in this 

study. Besides, this chapter provides some recommendations for future 

research to enhance and improve navigation processors and main controllers. 

All models relative to attitude sensors, actuators, navigation solutions and controllers 

are designed and simulated with the most commonly used tools, MATLAB and 

Simulink in R2018b version. 

 



 

 

9 

 

CHAPTER 2  

 

2. SATELLITE ATTITUDE DYNAMICS and KINEMATICS 

 

2.1. Introduction 

The knowledge of satellite attitude dynamics and kinematics are mandatory to 

control and stabilize its attitude. Attitude control process provides the satellite 

control and its orbit orientation in space. Attitude maneuver process supplies to 

reorient a satellite from one attitude to another by changing its angles between its 

rotational axes specified in different coordinate frames. Attitude stabilization process 

ensures to maintain the existing satellite attitude concerning the external reference 

frames.  

Firstly, coordinate frames and transformations between them are handled as an 

introduction of a satellite attitude dynamics. Secondly, attitude representation 

methods are defined, and then the dynamic and kinematic equations of motions are 

clarified for a non-spinning satellite. The effects of rotating elements involved in the 

satellite such as reaction wheels are also incorporated into these equations.  

The first problem is to find the angular momentum vectors of satellite and reaction 

wheels. The satellite is an Earth imaging satellite and its classification is termed as 

Low Earth Orbit. Because of this situation, the gravity gradient moment shall be 

taken into account to find out the total moments of a satellite. The dynamic 

equations of a satellite are obtained with Euler angles, and then state-space equations 

are acquired using Newton-Euler method for an attitude control simulation.  

Assuming that the Local Navigation Frame and satellite Body Frame are coincident 

at the stable position and this assumption can be used as a starting point of the 
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simulation before applying any maneuvers to the satellite. If there are any 

disturbance torque sources in the space environment, the satellite starts to move on 

its orbit and orient its body according to these torques applied on it.  

2.2. Coordinate Frames 

Coordinate frames are used to clarify the position of a point relating to other 

specified reference frames for three-axis attitude stabilized system. Satellite attitude 

for any reference frame can be defined using Euler angles with direction cosine 

matrices or quaternion vectors, which are the different representation form of 

coordinate frames and attitude transformations.  

2.2.1. Earth Centered Inertial Frame (ECI) 

ECI Frame is located at the center of Earth mass and oriented with respect to the 

Earth’s spin axis and stars. The X-axis (𝑋𝐼) points towards the vernal equinox, Z-

axis (𝑍𝐼) extends through the North Pole. Y-axis (𝑌𝐼) is the orthogonal complement 

of this frame, and it is in the equatorial plane together with X-axis.  

 

Figure 2-1 Earth Centered Inertial Frame (ECI) [9] 
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ECI Frame is fixed in space, and it means that it has not any rotations and 

movements. On the other hand, this frame is not an ideal inertial frame since Earth 

turns in its orbit and around the Sun.  

2.2.2. Earth Centered Earth Fixed Frame (ECEF) 

ECEF Frame origin is located at the Earth mass center. X-axis ( 𝑋𝐸) points to the 

intersection of equatorial plane and the Greenwich reference meridian which defines 

zero degrees longitude. Z-axis ( 𝑍𝐸) points to the North Pole, and it also aligned with 

the satellite spin axis (rotation axis).  

 

Figure 2-2 Earth Centered Earth Fixed Frame (ECEF) [9] 

In order to find out the transformations between ECI and ECEF Frames, assuming 

that the centers and Z axes (𝑍𝐼 ,  𝑍𝐸) are coincident. X (𝑋𝐼 , 𝑋𝐸) and Y (𝑌𝐼 ,  𝑌𝐸) axes 

are also overlapped at time 𝑡0, then this frame rotates around Z axis at the specified 

time interval (𝛥𝑡 = 𝑡 − 𝑡0) with a constant Earth angular velocity (𝑤𝐼𝐸). The 

rotation matrix ( 𝐶𝐸𝐶𝐼
𝐸𝐶𝐸𝐹  ) using the transformation from ECI to ECEF Frame is:  

𝐶𝐸𝐶𝐼
𝐸𝐶𝐸𝐹 = [  

   𝑐𝑜𝑠 (𝑤𝐼𝐸(𝛥𝑡)) 𝑠𝑖𝑛 (𝑤𝐼𝐸(𝛥𝑡)) 0

−𝑠𝑖𝑛 (𝑤𝐼𝐸(𝛥𝑡)) 𝑐𝑜𝑠 (𝑤𝐼𝐸(𝛥𝑡)) 0

0 0 1

  ] (2.1) 
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This frame rotates one revolution in each sidereal day around Z-axis relative to ECI 

Frame with a constant angular velocity (𝑤𝐼𝐸 =  7.292115x10−5 rad/s) [54]. 

The matrix 𝐶𝐸𝐶𝐸𝐹
𝐸𝐶𝐼  providing the transformation in the opposite direction is equal to 

the transpose of previous matrix ( [𝐶𝐸𝐶𝐼
𝐸𝐶𝐸𝐹]𝑇 ):  

𝐶𝐸𝐶𝐸𝐹
𝐸𝐶𝐼 = [ 𝐶𝐸𝐶𝐼

𝐸𝐶𝐸𝐹  ] 𝑇 = [  

  𝑐𝑜𝑠 (𝑤𝐼𝐸(𝛥𝑡)) −𝑠𝑖𝑛 (𝑤𝐼𝐸(𝛥𝑡)) 0

 𝑠𝑖𝑛 (𝑤𝐼𝐸(𝛥𝑡)) 𝑐𝑜𝑠 (𝑤𝐼𝐸(𝛥𝑡)) 0

0 0 1

  ] (2.2) 

2.2.3. Local Orbit Frame (LLA) 

Local Orbit Frame known as geodetic latitude, longitude, altitude (LLA) coordinate 

frame is located at the satellite center. These values are required to determine 

satellite orientation with respect to the WGS84 standard [63]: 

 

Figure 2-3 Local Orbit Frame wrt. ECEF and NED Frames [63] 

The latitude angle (𝐿𝐵) is between the equatorial plane and the normal to Earth 

surface. It is positive for the northern hemisphere and negative for the southern 

hemisphere (𝑅  is the norm of a satellite position vector in ECEF): 
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𝑅 =  √(𝑅𝑥
𝐸𝐶𝐸𝐹)2 + (𝑅𝑦

𝐸𝐶𝐸𝐹)
2
+ (𝑅𝑧

𝐸𝐶𝐸𝐹)2 (2.3) 

𝐿𝐵 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑅𝑧

𝐸𝐶𝐸𝐹

𝑅
) (2.4) 

The longitude angle (𝐵) is between the Greenwich meridian and satellite. It is 

counted positively towards the East and negatively towards the West.   

𝐵 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑅𝑦

𝐸𝐶𝐸𝐹

𝑅𝑥
𝐸𝐶𝐸𝐹) (2.5) 

The altitude (ℎ) is an approximation of the difference between the satellite and the 

reference surface measured normal to the geoid (𝑅𝐸𝑎𝑟𝑡ℎ ≅ 6378 𝑘𝑚):  

ℎ =  𝑅 − 𝑅𝐸𝑎𝑟𝑡ℎ (2.6)  

2.2.4. Body Frame 

The origin of Body Frame locates at satellite mass center, and this frame moves with 

satellite body. Rotations around X-Y-Z axes of orbit frame are denoted as roll, pitch 

and yaw axis respectively [54]: 

      

(a)                                                   (b) 

Figure 2-4 (a) Body Frame (b) FLP Microsatellite Body Frame [14, 17] 
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In the case of Euler angles have zero degrees in roll, pitch and yaw axes, Z-axis (𝑍𝐵) 

points the nadir direction; X (𝑋𝐵) and Y (𝑌𝐵) axes coincide with the orbit reference 

frame axes at a stable position. The satellite can rotate all around its orthogonal axes 

of its Body Frame under some undesirable disturbance torques applied on it.  

2.3. Satellite Kinematic Equations  

Before explaining some important satellite dynamic and kinematic equations, it is 

mandatory to define what the rigid body is. It means that there are no moving 

elements inside a body. The selected satellite cannot be assumed as a rigid body 

since the rotating elements such as reaction wheels exist inside it. On the other hand, 

this assumption provides to have a better understanding of dynamic equations and 

the relationships between them. The most effective methods to exemplify attitude 

kinematic equations are Direction Cosine Matrix (DCM) and quaternion vectors.  

2.3.1. Satellite Kinematic Equations with Direction Cosine Matrix 

The major three-axis attitude transformation is based upon direction cosine matrix 

and it can be specified in terms of Euler angles. So long as all the matrix 

transformations are performed in the same reference frame, it is not crucial whether 

the reference frame is inertial or rotating with the orbit.  

Direction cosine matrices [ 𝐶𝑂𝑅𝐵𝐼𝑇
𝐵𝑂𝐷𝑌 = 𝐶𝑂

𝐵 ] have the critical property of mapping 

vectors from a reference frame to Body Frame. This matrix is also a proper 

orthogonal matrix, as shown below: 

[𝑉]𝐵 = [𝐶𝑂
𝐵][𝑉]𝑂 (2.7) 

[𝑉]𝐵 = [
𝑋𝐵

𝑌𝐵

𝑍𝐵

] =  [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑋𝑂

𝑌𝑂

𝑍𝑂

]  (2.8) 
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The inverse of a DCM is equal to the transposition of the same matrix: 

[𝐶𝑂
𝐵]−1 = [𝐶𝑂

𝐵]𝑇      [𝑉]𝑂 = [𝐶𝑂
𝐵]𝑇[𝑉]𝐵 (2.9) 

Euler Angle Rotation: Euler angles describe the satellite attitude of Body Frame 

with respect to Local Orbit Frame. These angles are defined at successive angular 

rotations around body axes. There are two types of rotational arrangements [15]:  

 Successive rotations around each of three different axes are shown like: 

XYZ, XZY, YXZ, YZX, ZXY, ZYX. 

 First and third rotations around the same axis and the second rotation around 

one of two remaining axes are shown like the following (In this type of 

sequence, singularities occur at zero and ±180° degrees for second rotation 

angles; at ±90° degrees for non-repeated axis sequences [66]): 

XYX, XZX, YXY, YZY, ZXZ, ZYZ. 

Euler roll angle (Φ) is a rotation around X body axis (𝑋𝐵), pitch angle (θ) is a 

rotation around Y body axis (𝑌𝐵), and yaw angle (ψ) is a rotation around Z body axis 

(𝑍𝐵). [XB YB ZB] vector represents satellite Body Frame in space.  

In this study, the attitude transformation order is selected as 𝑍𝑌𝑋 Euler angular 

rotation (Aerospace Euler Sequence). It means that this rotation is the transformation 

(ψ  θ  Φ) around 𝑍, 𝑌1 and 𝑋2 axis respectively. The transformation from Orbit 

Frame [𝑋𝑂 𝑌𝑂 𝑍𝑂] to Body Frame [𝑋𝐵 𝑌𝐵 𝑍𝐵] is provided with the following action 

items (It is assumed that [𝑋𝐵 𝑌𝐵 𝑍𝐵] is [𝑋3 𝑌3 𝑍3] here): 

1) Yaw Axis Rotation: First angular rotation about 𝑍 axis with 𝜓 angle  

[ 
𝑋1

𝑌1

𝑍1

 ] =  [  
cos(𝜓) sin (𝜓) 0

−sin (𝜓) cos(𝜓) 0
0 0 1

  ] [ 

𝑋𝑂

𝑌𝑂

𝑍𝑂

] = [𝐶𝑍] [ 

𝑋𝑂

𝑌𝑂

𝑍𝑂

] (2.10) 
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2) Pitch Axis Rotation: Second angular rotation about 𝑌1 axis with 𝜃 angle  

[ 
𝑋2

𝑌2

𝑍2

 ] = [  
cos(𝜃) 0 −sin (𝜃)

0 1 0
sin (𝜃) 0 cos(𝜃)

  ] [ 
𝑋1

𝑌1

𝑍1

 ] = [𝐶𝑌] [ 
𝑋1

𝑌1

𝑍1

] (2.11) 

3) Roll Axis Rotation: Third angular rotation about 𝑋2 axis with 𝛷 angle  

[ 
𝑋𝐵

𝑌𝐵

𝑍𝐵

] = [ 

𝑋3

𝑌3

𝑍3

] =  [ 

1 0 0
0 cos(𝛷) sin (𝛷)

0 −sin (𝛷) cos(𝛷)
]. [

𝑋2

 𝑌2 
𝑍2

] = [𝐶𝑋] [ 
𝑋2

𝑌2

𝑍2

 ]  (2.12) 

These angular rotations with the given order are illustrated in the following figure: 

 

Figure 2-5 Satellite Rotation Around Z-Axis, Y-Axis, X-Axis Respectively [19] 

The transformation from Orbit Frame directly to Body Frame is provided with the 

multiplication of the transformation matrices, respectively:   

[
𝑋𝐵

𝑌𝐵

𝑍𝐵

] = [𝐶𝑋] [
𝑋2

𝑌2

𝑍2

] = [𝐶𝑋] [𝐶𝑌] [
𝑋1

𝑌1

𝑍1

] = [𝐶𝑋] [𝐶𝑌] [𝐶𝑍] [

𝑋𝑂

𝑌𝑂

𝑍𝑂

] = [𝐶𝑍𝑌𝑋] [

𝑋𝑂

𝑌𝑂

𝑍𝑂

] (2.13) 

[𝐶𝑂
𝐵] = [𝐶𝑍𝑌𝑋] = [𝐶𝑋] [𝐶𝑌] [𝐶𝑍]  (2.14) 
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After multiplying these matrices, it is obtained the following matrix (c denotes 

cosine function, and s denotes sinus function here):  

[𝐶𝑂
𝐵] = 

[

   c(𝜃) c(𝜓) c(𝜃) s(𝜓) − s(𝜃)

−c(𝛷) s(𝜓) + s(𝛷) s(𝜃) c(𝜓) c(𝛷) c(𝜓) + s(𝛷) s(𝜃) s(𝜓) s(𝛷) c(𝜃)

    s(𝛷) s(𝜓) + c(𝛷). s(𝜃) c(𝜓) − sin(𝛷) c(𝜓) + c(𝛷) s(𝜃) s(𝜓)  c(𝛷) c(𝜃) 
] 

(2.15) 

The trigonometric functions in this matrix have singularity problems, especially for 

large Euler angles. For example, these equations become singular as roll, pitch and 

yaw angles (𝜓, 𝜃, 𝛷) approach to  900degrees. Because of this drawback, the 

transformation can be obtained based on more effective kinematic expressions called 

quaternion vectors. The reverse transformation for roll, pitch and yaw angles is: 

ψ𝑂𝐵 = 𝑎𝑡𝑎𝑛2 ([𝐶𝑂
𝐵]12 , [𝐶𝑂

𝐵]11 ) (2.16) 

θ𝑂𝐵 = −𝑎𝑠𝑖𝑛 ([𝐶𝑂
𝐵]13 ) (2.17) 

Φ𝑂𝐵 = 𝑎𝑡𝑎𝑛2 ([𝐶𝑂
𝐵]23 , [𝐶𝑂

𝐵]33) (2.18) 

2.3.2. Satellite Kinematic Equations with Quaternions 

One approach to eliminate singularity problems of Euler angles is to implement 

quaternion vector that has the capability of quicker computations than direction 

cosine matrices, being computationally efficient in comparison with Euler angles 

and having less integration steps.  

If the rotation angle of an axis is known, the related quaternion vector notation can 

be expressed using the following equations (Φ, θ, ψ are roll, pitch and yaw angles 

here) [47]:  
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qx = cos ( 
Φ

2
 ) + i sin ( 

Φ

2
 ) (2.19) 

qy = cos ( 
θ

2
 ) + j sin ( 

θ

2
 )  (2.20) 

𝑞𝑧 = cos ( 
𝜓

2
 ) + 𝑘 sin ( 

𝜓

2
 ) (2.21) 

Defining 𝑞 notation as the rotation product of 𝑞𝑥, 𝑞𝑦 and 𝑞𝑧 is: 

q = qz qy qx = q1i +  q2j +  q3k + q4 
(2.22) 

The last element (𝑞4) of quaternion vector represents the scalar part and the first 

three elements (𝑞𝑣 = 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘) represent the vector part [11, 47] : 

𝑞 =  𝑞1𝑖 +  𝑞2𝑗 + 𝑞3𝑘 + 𝑞4 = 𝑞𝑣 + 𝑞4 (2.23) 

The transformation from Euler angles to quaternion vector is calculated like in the 

following definition:  

[

q1

q2

q3
 q4

] =  

[
 
 
 
 
 
 
 
 sin (

Φ

2
) cos (

θ

2
) cos (

ψ

2
) − sin (

θ

2
) cos (

θ

2
) sin (

ψ

2
)

cos (
Φ

2
) sin (

θ

2
) cos (

ψ

2
) + sin (

Φ

2
) cos (

θ

2
) sin (

ψ

2
)

cos (
Φ

2
) cos (

θ

2
) sin (

ψ

2
) − sin (

Φ

2
) sin (

θ

2
) cos (

ψ

2
)

cos (
Φ

2
) cos (

θ

2
) cos (

ψ

2
) + sin (

Φ

2
) sin (

θ

2
) sin (

ψ

2
)]
 
 
 
 
 
 
 
 

 (2.24) 

The DCM can be expressed in terms of quaternion vectors using the following way, 

[𝐶(𝑞)]𝑂
𝐵 is the representation of DCM matrix in quaternion vector form: 
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[𝐶𝑂
𝐵
] = [𝐶(𝑞)]

𝑂

𝐵
= (𝑞4

2 − [𝑞𝑣]
2
) 𝐼 +2[𝑞𝑣][𝑞𝑣]

𝑇 −2𝑞4[ 𝛺(𝑞𝑣) ]     (2.25) 

[𝛺(𝑞𝑣)] = [

0 −𝑞3  𝑞2

 𝑞3 0 −𝑞1

−𝑞2 𝑞1 0
] (2.26) 

[𝐶(𝑞)]𝑂
𝐵 = [

(𝑞1
2 + 𝑞4

2 − 𝑞2
2 − 𝑞3

2) 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 −  𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) (𝑞4
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2) 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞1𝑞3 + 𝑞2𝑞4) 2(𝑞2𝑞3 − 𝑞1𝑞4) (𝑞4
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)

] (2.27) 

The different quaternion definition for [𝐶(𝑞)]𝑂
𝐵: 

[𝐶(𝑞)]𝑂
𝐵 = [

1 − 2( 𝑞2
2 + 𝑞3

2 ) 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 −  𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) 1 − 2( 𝑞1
2 + 𝑞3

2 ) 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞1𝑞3 + 𝑞2𝑞4) 2(𝑞2𝑞3 − 𝑞1𝑞4) 1 − 2( 𝑞1
2 + 𝑞2

2 )

] (2.28) 

[𝐶(𝑞)]𝑂
𝐵  matrix can be defined with respect to the following column definitions:  

[𝐶(𝑞)]𝑂
𝐵 = [  

𝐶(𝑞)11 𝐶(𝑞)12 𝐶(𝑞)13

𝐶(𝑞)21 𝐶(𝑞)22 𝐶(𝑞)23

𝐶(𝑞)31 𝐶(𝑞)32 𝐶(𝑞)33

] = [𝐶(𝑞)1 𝐶(𝑞)2 𝐶(𝑞)3]     (2.29) 

The new matrix definition allows expressing quaternion vectors in terms of DCM 

elements. Firstly, it is assumed that scalar quaternion element (𝑞4) has the maximum 

value and the other quaternion elements can be formulated line by line [3, 19]:  

𝑞4 = 
1

2
 √1 + 𝐶(𝑞)11 + 𝐶(𝑞)22 + 𝐶(𝑞)33 (2.30) 

𝑞1 =  
1

4
 
(𝐶(𝑞)23 − 𝐶(𝑞)32)

𝑞4
 (2.31) 
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𝑞2 =  
1

4
 
(𝐶(𝑞)31 − 𝐶(𝑞)13)

𝑞4
 (2.32) 

𝑞3 =  
1

4

(𝐶(𝑞)12 − 𝐶(𝑞)21)

𝑞4
 (2.33) 

The time derivation of quaternion vector representing attitude kinematic equation is 

also hereafter [11]: 

�̇� =
1

2
[ 𝛺(𝑤𝑂𝐵

𝐵 ) ]𝑞   (2.34) 

𝛺(𝑤𝑂𝐵
𝐵 ) =

[
 
 
 
 

0 𝑤𝑂𝐵3

𝐵 −𝑤𝑂𝐵2

𝐵 𝑤𝑂𝐵1

𝐵

−𝑤𝑂𝐵3

𝐵 0 𝑤𝑂𝐵1

𝐵 𝑤𝑂𝐵2

𝐵

𝑤𝑂𝐵2

𝐵 −𝑤𝑂𝐵1

𝐵 0 𝑤𝑂𝐵3

𝐵

−𝑤𝑂𝐵1

𝐵 −𝑤𝑂𝐵2

𝐵 −𝑤𝑂𝐵3

𝐵 0 ]
 
 
 
 

 (2.35) 

The satellite velocity vector (𝑤𝑂𝐵
𝐵 ) can be rewritten using the second column of 

DCM matrix (𝐶(𝑞)2) and the definition of (𝑤𝐼𝑂
𝑂 = [0 −𝑤0 0]𝑇):  

𝑤𝑂𝐵
𝐵 = 𝑤𝐼𝐵

𝐵 − [𝐶(𝑞)]𝑂
𝐵  . 𝑤𝐼𝑂

𝑂  (2.36) 

𝑤𝑂𝐵
𝐵 = 𝑤𝐼𝐵

𝐵 − [𝐶(𝑞)]𝑂
𝐵 [

 0
−𝑤0

 0
] = [ 

𝑤𝐼𝐵1

𝐵 + 𝐶(𝑞)12 𝑤0

𝑤𝐼𝐵2

𝐵 + 𝐶(𝑞)22 𝑤0

𝑤𝐼𝐵3

𝐵 + 𝐶(𝑞)32 𝑤0

 ] (2.37) 

𝑤𝑂𝐵
𝐵 = [

𝑤𝑂𝐵1

𝐵

𝑤𝑂𝐵2

𝐵

𝑤𝑂𝐵3

𝐵

] = [

𝑤𝐼𝐵1

𝐵 + 2(𝑞1𝑞2 + 𝑞3𝑞4) 𝑤0

   𝑤𝐼𝐵2

𝐵 + (𝑞4
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2) 𝑤0

𝑤𝐼𝐵3

𝐵 + 2(𝑞2𝑞3 − 𝑞1𝑞4) 𝑤0

 ] (2.38) 
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The new representation for skew symmetric matrix of satellite angular velocity 

(𝛺(𝑤𝑂𝐵
𝐵 )) according to angular velocity again, but defined with respect to ECI frame 

(𝑤𝐼𝐵
𝐵 ) is depicted here: 

𝛺(𝑤𝑂𝐵
𝐵 ) = 

[
 
 
 
 

0 𝑤𝐼𝐵3
𝐵 + 𝐶(𝑞)32𝑤0 −𝑤𝐼𝐵2

𝐵 − 𝐶(𝑞)22𝑤0 𝑤𝐼𝐵1
𝐵 + 𝐶(𝑞)12𝑤0

−𝑤𝐼𝐵3
𝐵 − 𝐶(𝑞)32𝑤0 0 𝑤𝐼𝐵1

𝐵 + 𝐶(𝑞)12𝑤0 𝑤𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0

𝑤𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0 −𝑤𝐼𝐵1

𝐵 − 𝐶(𝑞)12𝑤0 0 𝑤𝐼𝐵3
𝐵 + 𝐶(𝑞)32𝑤0

−𝑤𝐼𝐵1
𝐵 − 𝐶(𝑞)12𝑤0 −𝑤𝐼𝐵2

𝐵 − 𝐶(𝑞)22. 𝑤0 −𝑤𝐼𝐵3
𝐵 − 𝐶(𝑞)32𝑤0 0 ]

 
 
 
 

 
(2.39) 

2.4. Satellite Dynamic Equations  

Attitude dynamics are modelled mainly to be able to predict the rotational motion 

and orientation of a satellite. The equations of attitude dynamics represented satellite 

orbit and position are used to provide position propagations based on the predictions 

of satellite orbit [1, 2, 15]. 

Satellite motion is specified with the following parameters [66]:  

 Position and speed vectors describe the translational motion and they are the 

subject of orbit analysis and space navigation. 

 Attitude angle and attitude rate vectors describe the rotational motion of 

satellite body and they are the subject of attitude analysis and dynamics.  

The external torque applied on a satellite is divided into two parts; control torques 

and disturbance torques. The internal torque is generated by some internal effects 

such as propulsion tank sloshing, deployable appendages, etc. In this study, all 

internal torque sources are neglected and not included in dynamic equations.  

The total external torque (𝑀𝑇) is acting on the satellite comprised of both control 

torques (𝑀𝐶) and the torques generating by different disturbing environmental 
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effects (𝑀𝐷). In respect of this description, total torque can be defined with the 

following equation [10, 12, 14]: 

𝑀𝑇 = 𝑀𝐶 + 𝑀𝐷  (2.40) 

The most efficient disturbance torque values are gravity gradient and magnetic field 

torques for the satellite altitude placed around 700 km. In conclusion, total 

disturbance torque is about the order of 10−5 Nm and detailed explanations are 

given in the related chapter (refer to 2.4.3 Disturbance Torques):  

𝑀𝐷 = 𝑀𝐺𝐺 + 𝑀𝐴𝐸𝑅𝑂 + 𝑀𝑆𝑅 + 𝑀𝑀𝐴𝐺    (2.41) 

Satellite dynamic and kinematic equations are derived through Newton - Euler 

formulation. According to this formulation, the time derivative of satellite angular 

momentum (𝐻𝐼) depends on the total external torque (called also angular moment) 

acting on satellite in inertial reference frame [10, 13]: 

𝑀𝑇 = 
𝑑𝐻𝐼
⃗⃗⃗⃗ 

𝑑𝑡
 (2.42) 

The vector quantity of 𝑀𝑇 is also defined in Body Frame like as follows:  

𝑀𝑇 = 
𝑑𝐻𝐼
⃗⃗⃗⃗ 

𝑑𝑡
=  

𝑑𝐻𝐵
⃗⃗⃗⃗  ⃗

𝑑𝑡
+ 𝑤𝐼𝐵

𝐵⃗⃗ ⃗⃗ ⃗⃗    ×  𝐻𝐵
⃗⃗⃗⃗  ⃗  (2.43) 

The equation of satellite angular momentum in Body Frame is (𝐻𝐵 = 𝐼𝑆 𝑤𝐼𝐵
𝐵 ) and 

therefore a new definition of dynamic equation labeled as (2.43) can be represented 

like the following equation:  

𝑀𝑇 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + (𝑤𝐼𝐵

𝐵  ×  𝐼𝑆 𝑤𝐼𝐵
𝐵 )   (2.44) 
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The more compact form of the above equation for each satellite axes can be written 

using a skew-symmetric matrix definition (𝛺(𝑤𝐼𝐵
𝐵 )) of satellite angular velocity:  

𝑀𝑇 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵  (2.45) 

𝛺(𝑤𝐼𝐵
𝐵 ) =   [ 

0 −𝑤𝐼𝐵3

𝐵 𝑤𝐼𝐵2

𝐵

𝑤𝐼𝐵3

𝐵 0 −𝑤𝐼𝐵1

𝐵

−𝑤𝐼𝐵2

𝐵 𝑤𝐼𝐵1

𝐵 0

 ] (2.46) 

Case-1: Torque generators are only reaction wheels  

The total angular momentum (𝐻𝐵) can be extended by including both satellite 

angular momentum (𝐻𝑆
𝐵) and the angular momentum belongs to momentum 

exchange devices such as reaction wheels (𝐻𝑅𝑊
𝐵 ). In this case, the new formulation 

of satellite dynamic equation is [15, 51]:  

𝐻𝐵 =  𝐻𝑆
𝐵 +  𝐻𝑅𝑊

𝐵  (2.47) 

The angular moment definition of reaction wheels (𝑀𝐶
𝑅𝑊) is: 

𝑀𝐶
𝑅𝑊 = �̇�𝑅𝑊

𝐵 + (𝑤𝐼𝐵 
𝐵 ×  𝐻𝑅𝑊

𝐵 )  (2.48) 

The angular moment definition is written with the help of the following definitions:  

𝑀𝐷 = 
𝑑

𝑑𝑡
( 𝐻𝑆

𝐵 +  𝐻𝑅𝑊
𝐵  ) +  𝑤𝐼𝐵

𝐵  ×  ( 𝐻𝑆
𝐵 + 𝐻𝑅𝑊

𝐵 ) (2.49) 

𝑀𝐷 = ( �̇�𝑆
𝐵 + 𝑤𝐼𝐵

𝐵 ×  𝐻𝑆
𝐵) + ( �̇�𝑅𝑊

𝐵 + 𝑤𝐼𝐵
𝐵 × 𝐻𝑅𝑊

𝐵 )   (2.50) 

If the derivative of satellite angular moment is written like (𝐻𝑆
𝐵 = 𝐼𝑆 𝑤𝐼𝐵

𝐵 ), 

disturbance moment equation will be:   
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𝑀𝐷 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + (𝑤𝐼𝐵

𝐵 × 𝐼𝑆 𝑤𝐼𝐵
𝐵 ) + �̇�𝑅𝑊

𝐵 + ( 𝑤𝐼𝐵
𝐵 × 𝐻𝑅𝑊

𝐵 ) (2.51) 

The more compact form of the last equation can be written using skew-symmetric 

matrix definitions ( 𝛺(𝑤𝐼𝐵
𝐵 ), 𝛺(𝐻𝑅𝑊

𝐵 ) ): 

𝑀𝐷 = 𝐼𝑆�̇�𝐼𝐵
𝐵 + 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵 + �̇�𝑅𝑊

𝐵 + 𝛺(𝑤𝐼𝐵
𝐵 ) 𝐻𝑅𝑊

𝐵   (2.52) 

𝑀𝐷 − �̇�𝑅𝑊,𝐵 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵 − 𝛺(𝐻𝑅𝑊

𝐵 ) 𝑤𝐼𝐵
𝐵   (2.53) 

These non-linear torque equations with respect to each frame axes are:  

𝑀𝐷1
− �̇�𝑅𝑊1

𝐵 = 𝐼𝑆𝑥
�̇�𝐼𝐵1

𝐵 + (𝐼𝑆𝑧
− 𝐼𝑆𝑦

)𝑤𝐼𝐵2

𝐵 𝑤𝐼𝐵3

𝐵 − 𝑤𝐼𝐵3

𝐵 𝐻𝑅𝑊2

𝐵 + 𝑤𝐼𝐵2

𝐵 𝐻𝑅𝑊3

𝐵  (2.54) 

𝑀𝐷2
− �̇�𝑅𝑊2

𝐵 = 𝐼𝑆𝑦
�̇�𝐼𝐵2

𝐵 + (𝐼𝑆𝑥
− 𝐼𝑆𝑧

)𝑤𝐼𝐵1

𝐵 𝑤𝐼𝐵3

𝐵 + 𝑤𝐼𝐵3

𝐵 𝐻𝑅𝑊1

𝐵 − 𝑤𝐼𝐵1

𝐵 𝐻𝑅𝑊3

𝐵
 (2.55) 

𝑀𝐷3
− �̇�𝑅𝑊3

𝐵 = 𝐼𝑆𝑧
 �̇�𝐼𝐵3

𝐵 + (𝐼𝑆𝑦
− 𝐼𝑆𝑥

)𝑤𝐼𝐵1

𝐵 𝑤𝐼𝐵2

𝐵 − 𝑤𝐼𝐵2

𝐵 𝐻𝑅𝑊1

𝐵 + 𝑤𝐼𝐵1

𝐵 𝐻𝑅𝑊2

𝐵
 (2.56) 

The time derivatives of angular velocity can be defined using the last equation: 

�̇�𝐼𝐵
𝐵 = 𝐼𝑆

−1[ 𝑀𝐷 − �̇�𝑅𝑊
𝐵 − 𝑤𝐼𝐵

𝐵 × (𝐼𝑆 𝑤𝐼𝐵
𝐵 + 𝐻𝑅𝑊

𝐵 ) ] (2.57) 

�̇�𝐼𝐵
𝐵 = 𝐼𝑆

−1[ 𝑀𝐷 − �̇�𝑅𝑊
𝐵 − 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵 − 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐻𝑅𝑊
𝐵  ] (2.58) 

�̇�𝐼𝐵
𝐵 = 𝐼𝑆

−1[ 𝑀𝐷 − �̇�𝑅𝑊
𝐵 − 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵 + 𝛺(𝐻𝑅𝑊

𝐵 ) 𝑤𝐼𝐵 
𝐵 ] (2.59) 

Case-2: Torque generators are only magnetic torque rods  

If only magnetic torque rods are included in a satellite system as torque generators, 

total external torque and the time derivative of satellite angular velocity are defined 

with the following equations. In this case, there is no rotating element in satellite 
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body and therefore the entire angular momentum is not included the momentum 

generated by reaction wheels [54]: 

𝑀𝑇 = 𝑀𝐶
𝑀𝑇𝑅 + 𝑀𝐷 =  𝐼𝑆 �̇�𝐼𝐵

𝐵 + 𝛺(𝑤𝐼𝐵
𝐵 ) 𝐼𝑆 𝑤𝐼𝐵

𝐵  (2.60) 

�̇�𝐼𝐵
𝐵 = 𝐼𝑆

−1[ 𝑀𝐶
𝑀𝑇𝑅 + 𝑀𝐷  − 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵  ] (2.61) 

Case-3: Torque generators are both magnetic torque rods and reaction wheels  

The dynamic equations are specified with the following equations in the case of 

using both torque rods and momentum wheels as torque generators: 

𝑀𝑇 = 𝑀𝐶
𝑀𝑇𝑅 + 𝑀𝐶

𝑅𝑊 + 𝑀𝐷 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + 𝛺(𝑤𝐼𝐵

𝐵 ) 𝐼𝑆 𝑤𝐼𝐵
𝐵  (2.62) 

�̇�𝐼𝐵
𝐵 = 𝐼𝑆

−1[ 𝑀𝐶
𝑀𝑇𝑅 + 𝑀𝐷 − �̇�𝑅𝑊

𝐵 − 𝑤𝐼𝐵
𝐵 × (𝐼𝑆 𝑤𝐼𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) ] (2.63) 

2.4.1. The Torque and Angular Momentum of Satellite  

The external torques cause to accelerate the satellite proportionally to this torques in 

a stationary state, resulting in an increasing angular velocity. Conversely, if satellite 

body initially spins about an axis perpendicular to the applied torque, then it moves 

with a constant angular velocity proportional to this torque [66].  

The selected satellite is assumed as a rigid body composed of 𝑚 particles at the 

beginning of calculations, and it is moving relative to inertial frame. Assuming that 

there is no angular motion of this rigid body center, the angular momentum equation 

is hereafter (𝐼𝑆 is satellite inertial moment matrix): 

𝐻𝑆,𝐵 = 𝐼𝑆 𝑤𝐼𝐵
𝐵    (2.64) 



 

 

26 

 

Assuming that satellite Body axes are the principal axes of inertia and the general 

definition of satellite torque (angular moment) equation is:  

𝑀𝑆,𝐵 =
𝑑𝐻𝑆

𝐵

𝑑𝑡
+ (𝑤𝐼𝐵

𝐵 × 𝐻𝑆
𝐵) (2.65) 

𝑀𝑆,𝐵 = 𝐼𝑆 �̇�𝐼𝐵
𝐵 + (𝑤𝐼𝐵

𝐵 × 𝐼𝑆 𝑤𝐼𝐵
𝐵 ) = 𝐼𝑆 �̇�𝐼𝐵

𝐵 +  𝛺(𝑤𝐼𝐵
𝐵 ) 𝐼𝑆 𝑤𝐼𝐵

𝐵   (2.66) 

2.4.1.1. Satellite Inertia Matrix  

Inertia matrix represents the physical characteristic of a satellite, and each element of 

this matrix can be specified as below [11, 12]:  

𝐼𝑆 = [ 

𝐼𝑆𝑥𝑥
−𝐼𝑆𝑥𝑦

−𝐼𝑆𝑥𝑧

−𝐼𝑆𝑦𝑥
 𝐼𝑆𝑦𝑦

−𝐼𝑆𝑦𝑧

−𝐼𝑆𝑧𝑥
−𝐼𝑆𝑧𝑦

𝐼𝑆𝑧𝑧

 ] (2.67) 

The inertia matrix of the selected satellite is approximated like that [9]: 

𝐼𝑆 = [ 
7.066197 0.471470 0.129597
0.471470 6.950219 0.209866
0.129597 0.209866 8.555828

 ] (2.68) 

The diagonal terms of satellite inertia matrix are known as the principal moments of 

inertia, and the corresponding axes are called principal axes of inertia. If Body 

Frame axes intersect the principal axes of inertia, satellite inertia matrix can be 

reduced to a diagonal matrix [12]:  

𝐼𝑆 = [
7.066197 0 0

0 6.950219 0
0 0 8.555828

]       

𝐼𝑆𝑥𝑥
= 𝐼𝑆𝑥

=  7.066197

𝐼𝑆𝑦𝑦
= 𝐼𝑆𝑦

=  6.950219

𝐼𝑆𝑧𝑧
=  𝐼𝑆𝑧

=  8.555828

 (2.69) 
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2.4.1.2. Satellite Angular Velocity  

The satellite angular velocity vector defined in Body Frame can be oriented with 

respect to both Orbit and ECI Frame. The satellite angular velocity vector of Body 

Frame with respect to ECI Frame expressing in Body Frame (𝑤𝐼𝐵
𝐵⃗⃗ ⃗⃗ ⃗⃗  ) is defined in the 

following form:  

𝑤𝐼𝐵
𝐵⃗⃗ ⃗⃗ ⃗⃗  =  𝑤𝐼𝑂

𝐵⃗⃗ ⃗⃗ ⃗⃗  +  𝑤𝑂𝐵
𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗      𝑤𝑂𝐵

𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑤𝐼𝐵
𝐵⃗⃗ ⃗⃗ ⃗⃗  −  𝑤𝐼𝑂

𝐵⃗⃗ ⃗⃗ ⃗⃗   (2.70) 

The mean motion of satellite is (𝑤0):  

𝑅 =  𝑅𝐸 + ℎ = (6378.1370 + 700) 𝑘𝑚 (2.71) 

𝑤0 = √
𝜇

𝑅3
≅ 0,0011 𝐻𝑧 ≅ 0.0069 𝑟𝑎𝑑/𝑠 (2.72) 

 𝑀 is the Earth mass ( 𝑀 = 5.9742 𝑥 1024 𝑘𝑔 ),   

 𝐺 is the universal gravitational constant ( 𝐺 = 6.6720 𝑥 10−11  𝑁𝑚2 𝑘𝑔2⁄ ),   

 𝜇 is the Earth gravitational constant  

( 𝜇 = 𝑀.𝐺 = 3.986004418 𝑥 109 𝑁𝑚2 𝑘𝑔 − ⁄ 𝑚3 𝑠2⁄  ). 

The satellite angular velocity of Local Navigation Frame with respect to ECI Frame 

expressing in Local Navigation Frame ( 𝑤𝐼𝑂
𝑂 = [0, −𝑤0, 0]𝑇 ) can be defined by 

using satellite orbital mean motion (𝑤0). For small angle approximations, the 

satellite angular velocity of Orbit Frame with respect to ECI Frame (𝑤𝐼𝑂
𝐵 ) [15]:  

𝑤𝐼𝑂
𝐵 = [𝐶𝑂

𝐵] 𝑤𝐼𝑂
𝑂 = [

 1 𝜓 −𝜃
−𝜓 1 𝛷
𝜃 −𝛷 1

] [
 0

−𝑤0

 0
] = [

−𝜓 𝑤0

−𝑤0

𝛷 𝑤0

] (2.73) 
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The same rotational motion (𝑍𝐵𝑌𝐵1𝑋𝐵2) can be used for generating the angular 

velocity vector (𝑤𝑂𝐵
𝐵 = [ 𝑤𝑂𝐵𝑥

𝐵 ,  𝑤𝑂𝐵𝑦

𝐵 ,  𝑤𝑂𝐵𝑧

𝐵 ]
𝑇
) from Orbit Frame to Body Frame. 

The time derivatives of rotation angles (�̇�, �̇�, �̇�) represent satellite angular velocities 

around ZB, YB1, XB2 axis respectively.  

The angular velocity around 𝑍𝐵 axis (𝑤𝑂𝐵𝑧

𝐵 ) is subject to three successive angular 

transformations:  

 First angular transformation is around 𝑍𝐵 axis (𝜓 angle), 

 Second angular transformation is around 𝑌𝐵1 axis (𝜃 angle), 

 Third angular transformation is around 𝑋𝐵2 axis (𝛷 angle). 

The angular velocity around 𝑌𝐵1 axis (𝑤𝑂𝐵𝑦

𝐵 ) is subject to two successive angular 

transformations:  

 First angular transformation is around 𝑌𝐵1 axis (𝜃 angle), 

 Second angular transformation is around 𝑋𝐵2 axis (𝛷 angle). 

The angular velocity around 𝑋𝐵2 axis (𝑤𝑂𝐵𝑥

𝐵 ) is subject to only one attitude 

transformation that is around 𝑋𝐵2 axis (𝛷 angle). These transformations can be 

represented as a matrix form:  

[ 

 𝑤𝑂𝐵𝑥

𝐵

𝑤𝑂𝐵𝑦

𝐵

𝑤𝑂𝐵𝑧

𝐵

 ] =  [𝐶𝑋][𝐶𝑌][𝐶𝑍] [ 
0
0
�̇�

 ] + [𝐶𝑋][𝐶𝑌] [ 
0
θ̇
0
 ] + [𝐶𝑋] [ 

Φ̇
0
0

 ]  (2.74) 

After performing matrix multiplications specified in the previous equation is: 

[ 

 𝑤𝑂𝐵𝑥

𝐵

𝑤𝑂𝐵𝑦

𝐵

𝑤𝑂𝐵𝑧

𝐵

 ] = [ 

1                0                  − 𝑠𝑖𝑛(𝜃)

 0        𝑐𝑜𝑠(𝛷)    𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝛷)

  0    −𝑠𝑖𝑛 (𝛷)      𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛷)
] [

 �̇� 
�̇�
�̇�

] (2.75) 
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These equations are solved in terms of the derivative of Euler angular velocities:  

𝑤𝑂𝐵𝑥

𝐵 = �̇� − �̇� 𝑠𝑖𝑛 (𝜃) (2.76) 

𝑤𝑂𝐵𝑦

𝐵 = �̇� 𝑐𝑜𝑠(𝛷) + �̇� 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛 (𝛷) (2.77) 

𝑤𝑂𝐵𝑧

𝐵 =  �̇� 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝛷) − �̇�𝑠𝑖𝑛 (𝛷) (2.78) 

Satellite angular rate can be specified directly with the angular velocity vector in 

Orbit Frame ( 𝑤𝑂𝐵𝑥

𝐵 = Φ̇,  𝑤𝑂𝐵𝑦

𝐵 = θ̇, 𝑤𝑂𝐵𝑧

𝐵 = 𝜓 ̇ ) supposed that using small angle 

approximation (θ ≈ Φ ≈ 0°). Angular rate is controlled and stabilized with B-dot 

controller law in detumbling phase.  

These equations can also have singularity problem like as direct cosine matrices 

have. Because of this reason, a special order of rotation (𝑍𝑌𝑋) can be chosen to 

transform body frame to any reference frame in space. Through this assumption, 

nonlinear equation can be linearized and expressed in terms of Euler angles. In this 

study, the linearization process is applied using Taylor series expansion and 

indicated with system states including satellite angular velocity, quaternion vector 

and wheel angular momentum.  

2.4.2. The Torque and Angular Momentum of Actuators 

Two different kind of actuators such as reaction wheels as a momentum exchange 

device and magnetic torque rods as an auxiliary device to unload the saturated 

momentum on reaction wheels are located in the selected satellite. The rods can also 

carried out the same function of reaction wheels whenever they are not available. 

The actuator characteristics of the selected satellite are listed hereafter:  
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Table 2-1 The Characteristics of Satellite Actuators [9, 17] 

 Reaction Wheels Magnetic Torque Rods  

Quantity 4 RWs 3 MTRs 

Sampling Time (𝑻𝒔) 0.1 s (10 Hz) 0.1 s (10 Hz) 

2.4.2.1. The Control Torque of Reaction Wheels   

A reaction wheel applies a control torque to satellite resulting in the changes of its 

angular momentum. The rotating elements in a satellite such as reaction wheels have 

their angular momentum, and it is a part of the momentum of an entire system in 

Euler’s moment equations. When a torque acts on a satellite along one axis, the 

wheel reacts to this torque, absorbing it and maintaining its attitude. In these 

situations, the spin rate of wheels is able to maintain a constant attitude by increasing 

or decreasing it. When a reaction wheel rotates one way and its rotation speed 

changes, satellite rotates proportionately the opposite way in response to external 

torques imposed on it to ensure the conservation of angular moment [66].  

It is not desirable to operate a reaction wheel at near saturation speeds. When wheel 

speed is outside of its saturation limit (operational limit), a momentum exchange 

device such as magnetic rods can be used to restore the wheel speed to its nominal 

operating value.  

Reaction wheels are used along all three axes and generally, there is one additional 

wheel along the non-orthogonal axis to provide the redundancy. There are four 

reaction wheels located in a tetrahedron configuration and known as a fundamental 

actuator in the selected satellite. Assuming that all reaction wheels have the same 

specifications such as mass, inertia and the distances from the satellite center, their 

substantial performance parameters are listed hereafter: 
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Table 2-2 Performance Parameters of Reaction Wheels (RWs) 

Performance Parameters The Values of Reaction Wheels 

Angular Momentum ( 𝐻𝑅𝑊
𝐵  ) 𝐻𝑅𝑊,𝐵 = 𝐼𝑅𝑊 . 𝑤𝑅𝑊,𝐵

𝐵 = ±0.12 Nms (max.) 

Operation Speed Range (𝑤𝑅𝑊) ±2800 rpm  (~293.215 rad/s) 

Angular Moment (𝑀𝑅𝑊) 
±5 mNm (at +2800 rpm) 

±0.015 Nm (max.) 

Inertial Moment (𝐼𝑅𝑊) 5x10−4 kg𝑚2 

Speed Limit < 3000 rpm 

The advantage of tetrahedral configuration is that the wheel assembly can provide 

twice as much of maximum torque on rotation axis. The rotation axis of each 

reaction wheel is aligned to the Y-axis in Body Frame to optimize this configuration 

for the target pointing maneuver. 

        

Figure 2-6 The Location of Reaction Wheels (Tetrahedron Configuration) [9, 17] 

The orientation matrix is required to resolve control allocation problem between the 

Euler angles and reaction wheels. This matrix for reaction wheels comprises of four 

column vectors which represent the distribution of reaction wheel torques to each 

satellite rotation axis. The distribution matrix which has three rows and several 
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columns equal to the number of reaction wheels in the satellite. The power 

performance properties of reaction wheels are defined below: 

Table 2-3 Power Performance Parameters of Reaction Wheels (RWs) 

Power Performance Parameters The Values of Reaction Wheels 

Steady-state (at nominal speed) < 2 W 

Max. torque (at nominal speed) < 4 W 

Supply voltage 
0.5 V – 20 V  (𝑉𝑚𝑎𝑥 = 20 V) 

Nominal voltage = 5 ± 0.25 V 

Input current 
(20 V line)  < 0.20 A  (𝐼𝑚𝑎𝑥 = 0.20 A) 

(5 V line) < 0.12 A (𝐼𝑚𝑖𝑛 = 0.12 A) 

The given distribution matrix of the layout configuration of reaction wheels is [17]: 

𝐶𝑅𝑊
𝐵𝑂𝐷𝑌 = [

0
−0.9999

0
 
  0.4741
  0.3333
−0.8165

    
0.4741
0.3333
0.8165

  
−0.9482
   0.3333

0
]  (2.79) 

One of the possible distribution matrices for tetrahedral configuration to deliver the 

command torque in an equal way can be selected such as the following matrix [48]:  

𝐶𝑅𝑊
𝐵𝑂𝐷𝑌 = [ 

√3 3⁄ −√3 3⁄ −√3 3⁄ √3 3⁄

√3 3⁄ −√3 3⁄ √3 3⁄ −√3 3⁄

√3 3⁄ √3 3⁄ −√3 3⁄ −√3 3⁄

 ]  (2.80) 

The distribution matrix for each row is satisfied in the following equations. If all 

four wheels provide equal torque, the total moments in satellite body frame are equal 

to zero value with respect to these equations [48]:  

𝐶𝑅𝑊
𝐵𝑂𝐷𝑌 = [

𝐶𝑅𝑊𝑋

𝐶𝑅𝑊𝑌

𝐶𝑅𝑊𝑍

] =  [ 
𝐶11

𝐶21

𝐶31

  
  𝐶12

  𝐶22

𝐶32

    

𝐶13

𝐶23

𝐶33

  
 𝐶14

 𝐶24

𝐶34

 ] = [𝐶1 𝐶2 𝐶3 𝐶4] (2.81) 
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𝐶𝑖1 + 𝐶𝑖2 + 𝐶𝑖3 + 𝐶𝑖4 = 0 ;   𝑖 = 1, 2, 3 (2.82) 

Each column vector of a distribution matrix has the following properties: 

√(𝐶1𝑗)
2
+ (𝐶2𝑗)

2
+ (𝐶3𝑗)

2
= 1 ;   𝑗 = 1, 2, 3, 4 (2.83) 

 

 

Figure 2-7 Tetrahedron Configuration Diagram of RWs [48] 

The distribution of satellite angular momentum (𝐻𝑅𝑊
𝐵 ) from satellite body to each 

reaction wheel (𝐻𝑅𝑊) can be defined with the inverse of distribution matrix (𝐶𝑅𝑊
𝐵𝑂𝐷𝑌):  

𝐻𝑅𝑊 = [𝐶𝑅𝑊
𝐵𝑂𝐷𝑌]−1𝐻𝑅𝑊

𝐵   (2.84) 

 

    

Figure 2-8 The Electrical Representation of Reaction Wheels [9, 17] 

In order to make a system more reliable, brushless DC motors are chosen as 

actuators. Each motor consists of an electrical part and a mechanical part. The 
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electrical part of a motor can be modelled using Kirchhoff’s Voltage Law like as the 

Figure 2-8 [47]. 

The source voltage (𝑉𝐴) is the sum of resistance voltage (𝑉𝑅), inductance voltage (𝑉𝐿) 

and back electromotive force voltage (𝑉𝑀). The detailed definition of source voltage 

is declared such as the following equation (𝑅 is the resistance, 𝐿 is the inductance, 𝑖 

is the current and 𝑘𝑀 is the back electromotive force coefficient): 

𝑉𝐴(𝑡) =  𝑉𝑅(𝑡) + 𝑉𝐿(𝑡) + 𝑉𝑀(𝑡) (2.85) 

𝑉𝐴(𝑡) =  𝑅 𝑖(𝑡) + 𝐿 
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑘𝑀 𝑤𝑅𝑊(𝑡) (2.86) 

The mechanical part of the motor can be modelled by using torque definition. "𝑘𝑡" is 

the motor torque coefficient [𝑁𝑚𝑠/𝐴], "𝑏" is the viscous friction coefficient 

[𝑁𝑚𝑠/𝑟𝑎𝑑] and therefore, "𝑏 𝑤𝑅𝑊 " represents the negative torque component in the 

following equation: 

𝑀𝑀 = 𝑘𝑡𝑖 = 𝐼𝑅𝑊 �̇�𝑅𝑊 + 𝑏 𝑤𝑅𝑊  (2.87) 

The total angular momentum of reaction wheels (𝐻𝑅𝑊) are equal to the sum of each 

reaction wheels’ angular momentum (𝑤𝑅𝑊 = [𝑤𝑅𝑊1,  𝑤𝑅𝑊2, 𝑤𝑅𝑊3, 𝑤𝑅𝑊4 ]
𝑇):    

𝐻𝑅𝑊 = 𝐼𝑅𝑊 . 𝑤𝑅𝑊 ;   𝐼𝑅𝑊 = 𝐼𝑅𝑊𝑥
= 𝐼𝑅𝑊𝑦

= 𝐼𝑅𝑊𝑧
 

(2.88) 

The reaction wheel torque has the same magnitude but it is in the opposite direction 

of the torque produced from satellite rotation in the scope of energy conservation 

principle. The rate change of total angular momentum from wheels is equal to the 

opposite direction of satellite control moment:  
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𝑀𝐶
𝑅𝑊 = �̇�𝑅𝑊

𝐵 + (𝑤𝐼𝐵
𝐵 × 𝐻𝑅𝑊

𝐵 ) =

[
 
 
 
 

�̇�𝑅𝑊𝑥

𝐵 +  𝐻𝑅𝑊𝑧

𝐵 𝑤𝐼𝐵𝑦 
𝐵 −  𝐻𝑅𝑊𝑦

𝐵 𝑤𝐼𝐵𝑧 
𝐵

�̇�𝑅𝑊𝑦

𝐵 +  𝐻𝑅𝑊𝑥

𝐵 𝑤𝐼𝐵𝑧 
𝐵 −  𝐻𝑅𝑊𝑧

𝐵 𝑤𝐼𝐵𝑥 
𝐵

�̇�𝑅𝑊𝑧

𝐵 +  𝐻𝑅𝑊𝑦

𝐵 𝑤𝐼𝐵𝑥 
𝐵 −  𝐻𝑅𝑊𝑥

𝐵 𝑤𝐼𝐵𝑦 
𝐵

 

]
 
 
 
  (2.89) 

2.4.2.2. The Control Torque of Magnetic Torque Rods  

It is common to take advantage of Earth magnetic field as a magnetic control torque 

to counter the effects of disturbance torques. Magnetic control systems are relatively 

lightweight and cheaper than momentum control systems. However, they also have 

some disadvantages such as power constraints and dependability of magnetic field 

configuration. Three coils generate a magnetic moment on each satellite axis and 

create a torque interfering with Earth’s magnetic field to align satellite to the desired 

attitude [66]. 

Magnetic torque rods are generally used to dumb the accumulated momentum on 

reaction wheels and to create control torque interacting with Earth’s magnetic field 

for small attitude maneuvers. Besides these fields of usages, torque rods are also 

used for detumbling to decrease initial satellite angular velocity after deployment 

phase, momentum/nutation dumping and precise orientation [79]. In this study, the 

effects of detumbling and desaturation controllers are investigated in the following 

sections with their simulation results.  

 

Figure 2-9 Magnetic Torque Rods [9, 17] 
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In most applications, at least three number of torque rods are preferred to produce 

magnetic moment on the orthogonal axes of satellite Body Frame [49]. The torque 

rods in the selected satellite are produced by ZARM-Technik, and they are also used 

as control torque generators besides reaction wheels in Figure 2-9.  

The performance parameters of ZARM-Technik torque rods are listed here:  

Table 2-4 Performance Parameters of Magnetic Torque Rods (MTRs) 

Performance Parameters MTRs Values 

Magnetic dipole moment (𝑚𝐵) ±6 𝐴𝑚2 (max.) 

Supply current 95 𝑚𝐴 

Supply voltage  ± 5.0 V 

Power consumption (𝑃) 𝑃 = 0.5 W 

Current (𝐼) 𝐼 = 95 𝑚𝐴 

Number of turns (𝑁) 𝑁 = 2 

Dia (𝐷) / Radius (𝑅) / Length (𝐿) 𝐷 =14.5 mm / 𝑅 =7.25 mm / 𝐿 =325 mm 

Each magnetic rod (MTR0, MTR1, MTR2) is assigned to one of satellite body axes:  

 MTR-0 is aligned with X-Axis (𝑋𝐵) of satellite Body Frame 

 MTR-1 is aligned with Y-Axis (𝑌𝐵) of satellite Body Frame 

 MTR-2 is aligned with Z-Axis (𝑍𝐵) of satellite Body Frame 

 

Figure 2-10 The Location of Magnetic Torque Rods [9, 17] 
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The current applied to magnetic rods creates a magnetic dipole moment (𝑚𝐵) along 

the main axis of the unit (in a direction perpendicular to the plane of the rods), and 

results in a control torque in Earth magnetic flux. The product of dipole moment and 

Earth' magnetic field vector gives magnetic control torque value (𝑀𝐶
𝑀𝑇𝑅) given by 

the following equation [52]:  

�⃗⃗� 𝐶
𝑀𝑇𝑅 = 𝑚𝐵 × �⃗� 𝑚𝑒𝑎𝑠

𝐵  (2.90) 

𝑀𝐶
𝑀𝑇𝑅 =  𝛺(𝑚𝐵) 𝐵𝑚𝑒𝑎𝑠

𝐵 = 𝛺(−𝐵𝑚𝑒𝑎𝑠
𝐵 ) 𝑚𝐵 (2.91) 

𝑀𝐶
𝑀𝑇𝑅 = [ 

0 𝐵𝑚𝑒𝑎𝑠,𝑧
𝐵 −𝐵𝑚𝑒𝑎𝑠,𝑦

𝐵

−𝐵𝑚𝑒𝑎𝑠,𝑧
𝐵 0 𝐵𝑚𝑒𝑎𝑠,𝑥

𝐵

𝐵𝑚𝑒𝑎𝑠,𝑦
𝐵 −𝐵𝑚𝑒𝑎𝑠,𝑥

𝐵 0

 ] [ 

𝑚𝑥
𝐵

𝑚𝑦
𝐵

𝑚𝑧
𝐵

 ] (2.92) 

 𝑚𝐵 is the magnetic dipole moment generated from torque rods,  

 �⃗� 𝑚𝑒𝑎𝑠
𝐵  is the measured Earth magnetic field vector in satellite Body Frame, 

 𝑀𝐶
𝑀𝑇𝑅 is the calculated magnetic control moment in satellite Body Frame. 

The control torque only acts perpendicular to torque rods [74]: 

𝑀𝐶
𝑀𝑇𝑅 =

𝑚𝐵 × 𝐵𝑚𝑒𝑎𝑠
𝐵

|𝐵𝑚𝑒𝑎𝑠
𝐵 |

× 𝐵𝑚𝑒𝑎𝑠
𝐵 = 

1

|𝐵𝑚𝑒𝑎𝑠
𝐵 |

𝛺(𝑚𝐵)𝑇𝛺(𝑚𝐵)𝑇𝑚𝐵 (2.93) 

Magnetic dipole moment (𝑚𝐵 = [𝑚𝑥
𝐵,  𝑚𝑦

𝐵, 𝑚𝑧
𝐵]

𝑇
) is computed by the number of 

turns in wire coil (𝑁), the current passing through the coils (𝐼) and the coils cross 

area ( 𝐴 = 𝜋𝑟2): 

𝑚𝐵 =  𝑁 𝐼 𝐴 = [  

𝑁𝑥𝐼𝑥𝐴𝑥

𝑁𝑦𝐼𝑦𝐴𝑦

𝑁𝑧𝐼𝑧𝐴𝑧

 ] (2.94) 
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2.4.3. Disturbance Torques  

Disturbance torques are space environmental torques, and never eliminated. Because 

of this reason, they must be controlled by satellite attitude controllers. The 

environmental disturbance torques derive from environmental conditions, varies 

with time in a sinusoidal manner throughout an orbit such as [11, 12, 13, 66]: 

 Gravity Gradient Disturbance Torques (𝑀𝐺𝐺), 

 Solar Radiation Disturbance Torques (𝑀𝑆𝑅), 

 Aerodynamics Disturbance Torques (𝑀𝐴𝐸𝑅𝑂), 

 Magnetic Dipole Moment Disturbance Torques (𝑀𝑀𝐴𝐺). 

The most significant disturbance torques are magnetic field and gravity gradient 

torques around the altitude of the selected satellite. The total disturbance torque in 

satellite Body Frame is defined hereafter (𝑀𝐸𝑥𝑡
𝐵 ): 

𝑀𝐸𝑥𝑡
𝐵 = 𝑀𝐺𝐺

𝐵 + 𝑀𝑆𝑅
𝐵 + 𝑀𝐴𝐸𝑅𝑂

𝐵 + 𝑀𝑀𝐴𝐺
𝐵    (2.95) 

2.4.3.1. Gravity Gradient Disturbance Torque  

The satellite is subject to gravitational torque because of the variations in Earth’s 

gravitational force over the satellite body. If the satellite mass distribution is not 

uniform, the force arising from Earth gravity is also distributed unevenly on a 

satellite. General expressions for gravity gradient torque have been calculated for 

both spherical and non-spherical Earth models.  

For most applications, spherical mass distribution of Earth is sufficient to calculate 

this torque value [12]:  

𝑀𝐺𝐺 = 
3 𝜇

𝑅3
  [ 𝑅 × (𝐼𝑆 𝑅)] (2.96) 



 

 

39 

 

 𝑀𝐺𝐺  is the gravity gradient torque, 

 𝑅 is the distance between the Earth center and satellite geometric center,  

 𝜇 is the Earth gravitational constant,  

 𝐼𝑆 is the satellite moment of inertia matrix.  

The satellite geometric center and mass center are represented by different points in 

satellite Body Frame. Ignoring this difference, it is possible to calculate the gravity 

gradient torque only by using the distance between the Earth center and the 

geometric center of the selected satellite.  

The torque magnitude is one of the largest torque sources. Therefore, it must be 

taken into account as an input torque value for the controller design. This torque can 

also be expressed in the dyadic form (𝑅3 represents the last column of the DCM 

matrix ([𝐶(𝑞)]𝑂
𝐵) and 𝛺(𝑅3) is the skew-symmetric matrix) [14]:   

𝑀𝐺𝐺 =  3 𝑤0
2(𝑅3

⃗⃗ ⃗⃗ × 𝐼𝑆𝑅3
⃗⃗ ⃗⃗ )  = 3 𝑤0

2 𝛺(𝑅3) 𝐼𝑆 𝑅3 (2.97) 

Finally, gravity gradient torque can be written as follows: 

 𝑅3 = [ 

𝐶(𝑞)13

𝐶(𝑞)23

𝐶(𝑞)33

 ] = [ 

2(𝑞1𝑞3 −  𝑞2𝑞4)

2(𝑞2 𝑞3 + 𝑞1𝑞4)

1 − 2( 𝑞1
2 + 𝑞2

2 )

 ] ;   𝑤0 = √𝜇 𝑅3⁄  (2.98) 

𝑀𝐺𝐺
𝐵 = 3𝑤0

2 [

 0 −𝐶(𝑞)33 𝐶(𝑞)23

𝐶(𝑞)33 0 −𝐶(𝑞)13 
−𝐶(𝑞)23 𝐶(𝑞)13 0

] [

𝐼𝑆𝑥
0 0

0 𝐼𝑆𝑦
0

0 0 𝐼𝑆𝑧

] [ 

𝐶(𝑞)13

𝐶(𝑞)23

𝐶(𝑞)33

] (2.99) 

𝑀𝐺𝐺
𝐵 = 3𝑤0

2

[
 
 
 
 (𝐼𝑆𝑧

− 𝐼𝑆𝑦
) 𝐶(𝑞)23𝐶(𝑞)33

(𝐼𝑆𝑥
− 𝐼𝑆𝑧

) 𝐶(𝑞)33𝐶(𝑞)13

(𝐼𝑆𝑦
− 𝐼𝑆𝑥

)𝐶(𝑞)13𝐶(𝑞)23]
 
 
 
 

 (2.100) 
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𝑀𝐺𝐺
𝐵 = 6𝑤0

2

[
 
 
 
   (𝐼𝑆𝑧

− 𝐼𝑆𝑦
) (𝑞2𝑞3 + 𝑞1𝑞4)(1 − 2( 𝑞1

2 + 𝑞2
2 ))

     (𝐼𝑆𝑥
− 𝐼𝑆𝑧

)(𝑞1𝑞3 −  𝑞2𝑞4)(1 − 2( 𝑞1
2 + 𝑞2

2 )) 

2 (𝐼𝑆𝑦
− 𝐼𝑆𝑥

) (𝑞1𝑞3 −  𝑞2𝑞4)(𝑞2𝑞3 + 𝑞1𝑞4)

 

]
 
 
 
 

 (2.101) 

The last equation can be reduced using small angle approximations (𝜃 is assumed 

that the maximum deviation from its rotation axis): 

𝑀𝐺𝐺
𝐵 = 

3

2
 𝑤0

2 |𝐼𝑆𝑧
− 𝐼𝑆𝑦

| 𝑠𝑖𝑛(2𝜃) = 3 𝑤0
2 |𝐼𝑆𝑧

− 𝐼𝑆𝑦
| 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 (𝜃) (2.102) 

The model is carried out by using long-term equations, and the other approaches can 

be performed as part of the future works. Generally, the effect level of this 

disturbance torque on the selected satellite is in the order of 10−5 Nm. 

2.4.3.2. Solar Radiation Disturbance Torque  

Solar radiation (incident radiation) on a satellite’s surface generates disturbance 

torque around the center of satellite mass and this torque value is independent of 

satellite position and velocity. The applied torque on satellite is always perpendicular 

to the line of sun light affected by the following factors [11, 12]: 

 The intensity of Sun incident radiation,  

 The geometry of satellite surface,  

 The optical properties of satellite surface,  

 The Sun vector orientation with respect to satellite. 

Direct solar radiation is one of the dominated disturbance sources above ~1000 km 

as disturbance torque. The torque produced by the solar wind is generally negligible, 

and therefore it is not a part of the torque calculations in this study.  
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In general situations, a satellite configuration can be approximated as a collection of 

geometrical shapes such as nearly spherical or rectangular. In this thesis, it can be 

assumed that the satellite is a rectangular shape with dimensions of 60 x 70 x 80 cm. 

It is commonly supposed that solar radiation pressure can be calculated as if the 

satellite absorbs all photons without considering its orientation with respect to the 

Sun. In that case, incident angles can be ignored in these calculations:   

�⃗⃗� 𝑆𝑅 = 𝐹 𝑆𝑅  ×  𝛥�⃗�  ; 𝛥�⃗� =  𝛥𝑋 �⃗� + 𝛥𝑌 𝑗 + 𝛥𝑍 �⃗�  (2.103) 

�⃗⃗� 𝑆𝑅
𝐵 = 𝐶𝑟  

𝑘 𝐼𝑆𝑅  𝐴𝑆

𝑐
(
𝐴𝑈

𝑅
)
2

(
�⃗� 

𝑅
)   (2.104) 

 𝛥�⃗�  is the distance vector between the center of solar radiation pressure and 

the center of satellite mass for each axis, 

 𝐹 𝑆𝑅 is the solar radiation pressure force, 

 𝐶𝑟 is the radiation pressure coefficient (𝐶𝑟 =̃ 1.0), 

  𝑘 is the illumination (reflectance) factor:  

o In Eclipse Phase  𝑘 = 0, 

o In Illuminated Phase  0 < 𝑘 < 1, 

 𝐼𝑆𝑅 is the mean solar flux or solar constant ( 𝐼𝑠 =̃ 1358 W/m2), 

 𝐴𝑠 is the effective surface area normal to Sun vector (𝐴𝑠 = [𝐴𝑋 , 𝐴𝑌, 𝐴𝑍]𝑇),  

 𝐴𝑈 is the astronomical unit (𝐴𝑈 =̃ 1.49597870 x 1011 m), 

 𝑐 is the speed of light (c =̃ 300000 m/s), 

 𝑅𝑠𝑎𝑡 is the geocentric distance of satellite (𝑅𝑠𝑎𝑡 =̃  6378 + 700 𝑘𝑚), 

 𝑅𝑠𝑢𝑛 is the geocentric distance of the Sun,  

(𝑅𝑠𝑢𝑛 = 149.597.870.700 𝑚 =̃  149.600.000 𝑘𝑚) [23], 

 �⃗�  is the Sun position vector relative to satellite (�⃗�  =  �⃗� 𝑠𝑎𝑡 − �⃗� 𝑠𝑢𝑛), 

 𝑅 is the distance from Sun to satellite (𝑅 = ‖𝑅𝑠𝑎𝑡 − 𝑅𝑠𝑢𝑛 ‖ m). 
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For the selected satellite; 

 +X plane is a rectangle with the dimensions of 𝐴𝑋 = (60 𝑥 80) 𝑐𝑚2, 

 +Y plane is a rectangle with the dimensions of 𝐴𝑌 = (70 𝑥 80) 𝑐𝑚2, 

 +Z plane is a rectangle with the dimensions of 𝐴𝑍 = (60 𝑥 70) 𝑐𝑚2. 

The solar disturbance torque equation can be rearranged taking into account all the 

surface areas like in the following [16]:  

�⃗⃗� 𝑆𝑅,𝑋
𝐵 = 𝐶𝑟  

𝑘 𝐼𝑆𝑅 𝐴𝑋

𝑐
 (

𝐴𝑈

𝑅
)
2

(
�⃗� 𝑋
𝑅

)  (2.105) 

�⃗⃗� 𝑆𝑅,𝑌
𝐵 = 𝐶𝑟  

𝑘 𝐼𝑆𝑅 𝐴𝑌

𝑐
 (

𝐴𝑈

𝑅
)
2

(
�⃗� 𝑌
𝑅

)  (2.106) 

�⃗⃗� 𝑆𝑅,𝑍
𝐵 = 𝐶𝑟  

𝑘 𝐼𝑆𝑅 𝐴𝑍

𝑐
 (

𝐴𝑈

𝑅
)
2

(
�⃗� 𝑍
𝑅

)  (2.107) 

The sun position vector with respect to a satellite is provided by the Sun position 

model designed as a space environment model and explained in the following 

chapter. The worst condition is that all the surfaces placed on the three different 

satellite axes are directly exposed to Sun radiation. In that case, total solar radiation 

disturbance torque can be expressed as shown below:  

�⃗⃗� 𝑆𝑅
𝐵 = �⃗⃗� 𝑆𝑅,𝑋

𝐵 + �⃗⃗� 𝑆𝑅,𝑌
𝐵 + �⃗⃗� 𝑆𝑅,𝑍

𝐵  (2.108) 

For enhancing the calculations using geometrical details, it can be assumed that the 

center of solar radiation pressure for each satellite surface is the center of the related 

surface area [22]. It means that the distance from the satellite mass center is 40 cm 

for +𝑍 plane (𝛥𝑍 = 0.40 𝑚), 35 cm for +𝑋 plane (𝛥𝑋 = 0.35 𝑚) and 30 cm for +𝑌 



 

 

43 

 

plane (𝛥𝑌 = 0.30 𝑚). These distances are precisely proportional to the half of 

satellite dimensions (𝑖 is the Sun incidence angle):  

𝑀𝑆𝑅 = 
𝐼𝑠
𝑐
 𝐴𝑠(1 + 𝑘) cos (𝑖) (2.109) 

The most challenging part is to find out Sun incidence angle (𝜑,  ), and Ephemeris 

model can be used to express it for rectangular shaped satellite:  

𝜑 = arctan (𝑅𝑌 𝑅𝑋⁄ )  and   = arcsin (𝑅𝑍) (2.110) 

𝑀𝑆𝑅,𝑋
𝐵 = 

𝐼𝑠
𝑐
 𝐴𝑋(1 + 𝑘) cos(𝜑)𝛥𝑋 (2.111) 

𝑀𝑆𝑅,𝑌
𝐵 = 

𝐼𝑠
𝑐
 𝐴𝑌 (1 + 𝑘) sin(𝜑)𝛥𝑌 (2.112) 

𝑀𝑆𝑅,𝑍
𝐵 =  

𝐼𝑠
𝑐
 𝐴𝑍(1 + 𝑘) sin() 𝛥𝑍 (2.113) 

The first approach is accepted to make these calculations more manageable, and the 

second method can be applied as part of future works in order to compare the 

differences between the two models. Generally speaking, the magnitude of this 

disturbance torque is the level of 10−6 Nm.  

2.4.3.3. Aerodynamics Disturbance Torque 

The interaction of upper atmosphere with the satellite surface results in the 

disturbance torques around the satellite mass center. This torque is one of the least 

dominant disturbance torques for Earth-orbiting satellites. Atmospheric drag may be 

an important disturbance effect when the satellite altitude descends into Earth’s 

atmosphere [19]. The aerodynamic torque equation can be formulated, such as the 

following equations [11, 12]: 
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�⃗⃗� 𝐴𝐸𝑅𝑂 = 𝐹 𝐴𝐸𝑅𝑂 ×  𝛥�⃗�  ;  𝛥�⃗� =  𝛥𝑋 𝑖 + 𝛥𝑌 𝑗 + 𝛥𝑍 �⃗�   (2.114) 

𝐹 𝐴𝐸𝑅𝑂
𝐵 = 

1

2
𝐴𝑠 𝐶𝐷�⃗� 2  (2.115) 

 𝐹 𝐴𝐸𝑅𝑂
𝐵  is the aerodynamic drag vector in satellite Body Frame, 

 𝐴𝑠 is the effective surface area (𝐴𝑠 = [𝐴𝑋 𝐴𝑌  𝐴𝑍]𝑇 = [0.48;  0.56;  0.42]𝑇),  

   is the atmospheric density at low solar activity ( = 3.58 𝑥 10−15 𝑘𝑔/𝑚3), 

 𝐶𝐷 is the aerodynamic drag coefficient (1 <  𝐶𝐷 < 2), 

 𝑉 is the satellite velocity vector (𝑉 = 𝑉0 − 𝑤𝑒 . 𝑟). 

The second term of the velocity equation which includes Earth rotational velocity 

can be negligible, and orbital velocity is equal to the satellite velocity (𝑉 = 𝑉0). 

The aerodynamic disturbance torque equation can be rearranged considering all the 

diagonal distances of these surface areas like in the following (𝛥𝑋 = 0.35 𝑚, 𝛥𝑌 =

0.30 𝑚, 𝛥𝑍 = 0.40 𝑚): 

�⃗⃗� 𝐴𝐸𝑅𝑂,𝑋
𝐵 = 

1

2
(𝐴𝑋  𝐶𝐷�⃗� 2)𝛥𝑋 (2.116) 

�⃗⃗� 𝐴𝐸𝑅𝑂,𝑌
𝐵 = 

1

2
 (𝐴𝑌  𝐶𝐷�⃗� 2)𝛥𝑌 (2.117) 

�⃗⃗� 𝐴𝐸𝑅𝑂,𝑍
𝐵 = 

1

2
(𝐴𝑍  𝐶𝐷�⃗� 2)𝛥𝑍 (2.118) 

The total aerodynamic disturbance torque can be expressed as shown below: 

�⃗⃗� 𝐴𝐸𝑅𝑂
𝐵 = �⃗⃗� 𝐴𝐸𝑅𝑂,𝑋

𝐵 + �⃗⃗� 𝐴𝐸𝑅𝑂,𝑌
𝐵 + �⃗⃗� 𝐴𝐸𝑅𝑂,𝑍

𝐵  (2.119) 

Generally, the magnitude of this disturbance torque level is about 10−7 Nm 

depending on the altitude of selected satellite (~ 700 km).  
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2.4.3.4. Magnetic Dipole Moment Disturbance Torque 

The interaction between the residual magnetic field of a satellite with Earth magnetic 

field can result in magnetic field disturbance torque. There are several diverse 

electronic components being used in a satellite and they are different from each other 

in the sense of electronic characteristics [71]. Satellites are generally designed of 

selective materials to decrease the negative effect of this disturbance torque. The 

magnetic torque equation can be written like as: 

�⃗⃗� 𝑀𝐴𝐺
𝐵 = 𝑚 × �⃗� 𝐵 =  𝛺(−𝐵𝐵) 𝑚 = −𝛺(𝐵𝐵) 𝑚 (2.120) 

 𝑚 is the satellite residual magnetic dipole (𝑚 = 1 𝐴𝑚𝑝 𝑚2), 

 �⃗� 𝐵 is the local magnetic field vector in satellite Body Frame: 

o �⃗� 𝐵 = 2.𝑀 �⃗� 3⁄  for points above the poles, 

o �⃗� 𝐵 = 𝑀 �⃗� 3⁄  for points above the equator, 

 𝑀𝑀𝐴𝐺  is the Earth magnetic moment (𝑀𝑀𝐴𝐺 = 7.96 𝑥 1015 𝑇𝑒𝑠𝑙𝑎 𝑚3), 

 𝑅 is the orbit radius ( 𝑅 =  𝑅𝐸 + ℎ = 6378 + 700 𝑘𝑚 ). 

For creating the worst case, the equation for points above the poles can be handled. 

The Earth magnetic field vector is provided by Earth Magnetic Field model 

described in the following chapter. The total magnetic disturbance torque is 

calculated by the following equation: 

�⃗⃗� 𝑀𝐴𝐺
𝐵 = �⃗⃗� 𝑀𝐴𝐺,𝑋

𝐵 + �⃗⃗� 𝑀𝐴𝐺,𝑌
𝐵 + �⃗⃗� 𝑀𝐴𝐺,𝑍

𝐵  (2.121) 

In general, the magnitude of this disturbance torque is about the order of 10−5 Nm 

and cannot be ignored in terms of simulations. In conclusion, the most efficient 

disturbance torques is gravity gradient and magnetic field disturbance torques for the 

satellite altitude around 700 km.  
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The total disturbance torque is the level of 10−5 Nm.  

 

Figure 2-11 Distribution Torque Model Blocks 

2.5. Satellite Sensor Measurements 

The attitude control requirements are based on three-axis stabilized satellite system 

with high pointing accuracy capabilities provided by fine pointing sensors such as 

star trackers and gyroscopes (or in a different form like as IMU sensors).  

The sensor characteristics of the selected satellite are listed in the following table:  
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Table 2-5 The Characteristics of Satellite Sensors [9, 17] 

 MGM STR GPS SS FOG 

Output 
Magnetic 

Field Vector 

Quaternion 

Vector 

Position 

Velocity 

Sun 

Position  

Angular 

Rate 

Dimension  (3×1) (4×1) (3×1) (3×1) (3×1) 

Quantity 2 MGM 2 STR 3 GPS 8 SS 4 FOG 

Accuracy 5 nT 5 arc sec 
10 m 

0.1 m/s 
50 mA 2×10−6deg/s 

Control 

Rate 
1.5, 3, 6 Hz 5 Hz 1 Hz 10 Hz 10 Hz 

These sensors are modelled to provide the measured values which are necessary to 

calculate the error inputs sent to attitude controller design.  

2.5.1. Sun Sensor Measurements 

Sun sensors determine satellite attitude enabling the coarse Sun direction vector. 

Two different types of sun sensors, analog and digital sun sensors, are employed to 

provide Sun position vector to orient solar panels toward the Sun. Analog sun 

sensors can provide sufficient accuracy for many specific tasks. These types of 

sensors are based on silicon solar cells, and its output current is proportional to the 

cosine function of incident angle [12].  

At least two analog and single sun sensors are necessary to measure sun incident 

angle in a defined plane. By orienting two sensors perpendicular to each other, the 

direction of Sun can be fully determined [66]. The sensors located in the selected 

satellite consist of GaAs solar cells manufactured by Azur Space and depicted 

below. The solar cells included in sun sensors generate voltages (about 2.5V) in the 

illuminated phase: 
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Figure 2-12 Sun Sensors [9] 

Eight piece of sun sensors are located in satellite and used to obtain the complete 4π 

FOV instead of 2π FOV maximizing the exposed Sun light time [59]. Four number 

of sun sensors (SuS0, SuS1, SuS2 and SuS3) are mounted at the edges of the satellite 

structure. Two of sun sensors (SuS4 and SuS5) are mounted on each solar panel, and 

the remaining two sensors (SuS6 and SuS7) are located in the solar panel directions.  

 

Figure 2-13 Location of Sun Sensor Units [9, 17] 

2.5.2. Magnetometer Measurements 

Magnetometers measure local magnetic field direction and magnitude vector which 

is a combination of both Earth magnetic field and any magnetic field generated by 

different sources. In a typical case, these measurements are used to estimate the 

torque applied by magnetic torque rods in all three satellite axes. The satellite is 
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equipped with two orthogonally arranged magnetometers (anisotropic magneto-

resistive sensors) manufactured by ZARM-Technik with the measurement range of 

±200µTesla:  

 

Figure 2-14 Magnetometer Located in The Selected Satellite [9,17] 

The magnetometers are generally located on the satellite payload module, not very 

close to magnetic torque rods. Because of the generated magnetic field, magnetic 

torque rods can cause the saturation of measurements. The orientation of both 

sensors with respect to the satellite coordinates is depicted below: 

 

Figure 2-15 The Orientation of Magnetometers [9, 17] 

2.5.3. Star Tracker Measurements 

Star trackers identify the viewed star pattern and measure the satellite orientation 

relative to Earth inertial reference frame in an accurate manner [66]. Star trackers 

with sufficient operational field of view use the star light intensity and reduce the 

number of attitude sensors required for fine attitude knowledge providing quaternion 
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vectors [43, 44, 59]. The star tracker model is the micro-Advances Stellar Compass 

(μASC) consisting of a processing unit, camera head units and baffles shown in the 

following figures [42]:  

             

Figure 2-16 Star Tracker System Baffle and Camera Head Unit [9, 17] 

During the operational phase, the processing unit creates a digital image every 0.5 

seconds and this image is adjusted for bright objects. Star light sensitivity, star 

detection threshold, the number of stars in the sensor field of view and the sky 

coverage are fundamental elements to define a star tracker performance. The camera 

head units are located on the satellite body so that simultaneous blinding or 

occultation effect arising from the space objects (Earth, Moon, Sun and the other 

satellites, etc.) is avoided. The location of each sensor is shown in Figure 2-17. 

       

Figure 2-17 The Location of Star Trackers [9, 17] 
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2.5.4. Fiber Optic Gyroscope Measurements 

There are two types of optical gyroscopes (ring laser, fiber optic gyroscopes) using 

interferometer or interferometric method properties of electromagnetic radiation to 

sense the rotation and angular motion of satellite [35]. In this satellite, fiber optic 

gyroscope is a type of Commercial Fiber Optic Rate Sensor (LITEF C-FORS):  

 

Figure 2-18 Fiber Optic Gyroscopes [9, 17] 

In general, gyroscopes are not located in the neighbourhood of magnetometers. Four 

gyroscopes are assembled in a tetrahedron configuration to avoid single sensor 

failures. The measurement axis of each gyroscope is also aligned to the rotation axis 

of the related reaction wheels and each sensor measurements are obtained around its 

Z-axis as shown below [17, 36]: 

 

Figure 2-19 The Location of Fiber Optic Gyroscopes [9, 17] 
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The angular velocity data is estimated as long as at least three of gyroscopes have 

valid data. Based on this situation, there are three different sensor combinations such 

as { 𝑍 𝐹𝑂𝐺0 , 𝑍 𝐹𝑂𝐺1 , 𝑍 𝐹𝑂𝐺2 }, { 𝑍 𝐹𝑂𝐺0 , 𝑍 𝐹𝑂𝐺2 , 𝑍 𝐹𝑂𝐺3 } and { 𝑍 𝐹𝑂𝐺1 , 𝑍 𝐹𝑂𝐺2 , 𝑍 𝐹𝑂𝐺3 }. 

The sensor measurement noise sources such as fixed bias (g-independent bias), g-

dependent bias, scale factor error, misalignment error, angular random walk, rate 

random walk and rate ramp error are taken into consideration in a gyroscope model 

[33, 60]. The performance parameters and error specifications are specified below: 

Table 2-6 Performance Parameters of Fiber Optic Gyroscopes 

Performance Parameters Fiber Optic Gyroscopes 

Rate Bias 1575.42 Hz  ( ≤ 2°/ h (1𝜎) ) 

Angular Random Walk  17 dB (≤  0.15°/√h) 

Scale Factor Error ≤ 1000 ppm (1𝜎), ≤ 0.2° % (1𝜎) 

Misalignment Error ±5 mrad (max) 

Measurement range ±1000°/s 

2.5.5. GPS Sensor Measurements 

Satellite navigation information such as position, velocity and time are provided by 

GPS receivers for the development of orbit determination system. After measuring 

the distance of at least four GPS satellites, satellite position and time can be 

computed, and then GPS receivers can determine velocity and track information [37, 

38].  

Phoenix GPS receivers comprise of three independent receiver parts, each part is 

connected to separate antennas and two cascaded low noise amplifiers, which reduce 

the required antenna gain [40]: 
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Figure 2-20 Phoenix (MG5001) GPS Receiver Board [39] 

GPS antennas are located on the middle solar panel of satellite, and its direction is 

opposite to the payload module. This specification also provides the optimum 

reception of signals from GPS satellites.  

 

Figure 2-21 The Location of GPS Antenna [9, 17] 

2.6. Summary 

This chapter clarifies the coordinate frame transformations representing with Euler 

angles and quaternion vectors as attitude parameterization. The most important 

attitude representations such as inertia matrix, angular velocity and angular 

momentum are also located in this chapter. The internal and external torque sources 

applied on the selected satellite are classified and expressed with details. Satellite 

dynamic and kinematic equations are clarified using all these information. 
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Besides, sun sensors, magnetometers, GPS receivers, fiber optic gyroscopes and star 

trackers are defined as satellite attitude sensors. On the other hand, reaction wheels 

and magnetic torque rods are specified as satellite actuators. 

 



 

 

55 

 

CHAPTER 3  

 

3. SPACE ENVIRONMENT MODEL 

 

3.1. Introduction 

Modelling of space environment is an essential part of attitude determination in 

order to develop and verify various attitude control algorithms in a correct manner.  

The outputs from space environment model including Earth Magnetic Field Model 

and Sun Position Model together with satellite dynamic-kinematic model are used as 

inputs for attitude sensors. The torque outputs of actuators are also used for satellite 

attitude determination and control systems.  

3.2. Julian Date Model 

Due to precession and nutation of Earth spin axis, ECI Frames have to be specified 

at some epoch time. The commonly used ECI Frames is J2000 Frame. This frame 

uses the mean equator and equinox of Universal Time Coordinated (UTC) January 1, 

2000 [16, 49].  

𝐽𝐷 = 367(𝑦𝑒𝑎𝑟) − 𝑓𝑙𝑜𝑜𝑟 [
7

4
(𝑦𝑒𝑎𝑟 + 𝑓𝑙𝑜𝑜𝑟 (

𝑚𝑜𝑛𝑡ℎ + 9

12
))] 

        +𝑓𝑙𝑜𝑜𝑟 [275 (
𝑚𝑜𝑛𝑡ℎ

9
)]  + 𝑑𝑎𝑦 + 1721013.5 

        +
1

24
 (

1

60
  (

𝑠𝑒𝑐𝑜𝑛𝑑

60
+ 𝑚𝑖𝑛𝑢𝑡𝑒) + ℎ𝑜𝑢𝑟)  

(3.1) 
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The Julian Date (𝐽𝐷) can be converted to Modified Julian Date (𝑀𝐽𝐷) using the 

following equations [3, 4]:  

𝐽𝐷2000 = 𝐽𝐷 − 2451545 (3.2) 

𝑀𝐽𝐷 = 𝐽𝐷 − 2400000.5 (3.3) 

3.3. Orbit Propagation Model 

3.3.1. Kepler Parameters 

The satellite orbits are specified using Kepler parameters which indicate the 

orientation of an orbital ellipse and satellite position in this ellipse. These parameters 

are visualized with the following figures [10, 11, 13]:  

 

Figure 3-1 Kepler Orbital Parameters [19] 

Kepler parameters are listed as follows: 

 𝑖 = Inclination, 

 𝛺 = Right Ascension of Ascending Node,  

 𝜔 = Argument of Perigee, 

 𝑒 = Eccentricity, 
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 𝑎 = Semi-major Axis,  

 𝑀 = Mean Anomaly,  

 𝑛 = Mean Motion ( 𝑛 =  √µ𝐸 𝑎3⁄  ).  

The first four elements ( 𝑖, 𝛺, 𝜔, 𝑒) determine the orbital plane orientation in space. 

On the other hand, mean motion (𝑛) and mean anomaly (𝑀) define the satellite 

position in its orbit. The basic properties of Keplerian orbits for circular and 

elliptical orbits are listed below:  

Table 3-1 The Properties of Keplerian Orbits (Circular and Elliptic Orbits) 

Orbits Eccentricity The Radius Energy 

Circular Orbits 𝑒 = 0 𝑟 = 𝑝 =
ℎ2

µ
=  

 [𝑟 . 𝑣 . 𝑐𝑜𝑠(𝛽)]2

µ
 𝐸 = −

µ2

2ℎ2
< 0 

Elliptic Orbits 0 < 𝑒 < 1 
𝑟𝑎 = 𝑝 (1 + 𝑒)⁄  

𝑟𝑏 = 𝑝 (1 − 𝑒)⁄  
𝐸 =  −

µ

2𝑎
< 0 

The angle between orbital plane and equatorial plane is called inclination. By 

convention, orbit period (𝑇) is a number between the amount of time to complete 

one revolution around Earth.  

Mean motion is the mean angular velocity and mean anomaly gives the direction of 

satellite motion at perigee and apogee points. There is a close relationship between 

mean anomaly (𝑀), eccentric anomaly (𝐸) and true anomaly (𝑣): 

𝑐𝑜𝑠(𝑣) =  
𝑐𝑜𝑠(𝐸) − 𝑒

1 − 𝑒 𝑐𝑜𝑠(𝐸)
 ;  𝑠𝑖𝑛(𝑣) =  

√1 − 𝑒2 𝑠𝑖𝑛(𝐸)

1 − 𝑒 𝑐𝑜𝑠(𝐸)
 (3.4) 

𝑡𝑎𝑛 (
𝑣

2
) =   √

1 + 𝑒

1 − 𝑒
 𝑡𝑎𝑛 (

𝐸

2
) (3.5) 
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The relationship between mean and eccentric anomaly can be denoted by: 

𝐸(𝑡) = 𝑀(𝑡) +  𝑒 𝑠𝑖𝑛 (𝐸(𝑡)) (3.6) 

The changes of mean anomaly are defined with an iteration equation: 

𝑀(𝑡0 + 𝑡) =   𝑀(𝑡0 ) + 𝑛𝑡  𝑀𝑖+1 = 𝑀𝑖 +  𝑛𝑡 (3.7) 

In order to calculate the mean anomaly changing with time 𝑀(𝑡), time equation is 

expressed in a discrete form and then propagated for each discrete point:  

𝐸𝑖+1 = 𝑀𝑖 +  𝑒 𝑠𝑖𝑛 (𝐸𝑖) (3.8) 

𝐸𝑖+1 = 𝐸𝑖 + 
𝑀𝑖 + 𝑒 𝑠𝑖 𝑛(𝐸𝑖) − 𝐸𝑖

1 −  𝑒 𝑐𝑜𝑠(𝐸𝑖)
  (3.9) 

3.3.2. Two Lines of Elements Data (TLE) 

TLE data is a set of two lines including orbital elements which describe an Earth-

orbiting satellite position (𝑟) and velocity (𝑣). In this study, the NORAD TLE data 

of FLP microsatellite is modified and taken as an input argument for the calculations 

of orbit propagator model.  

The orbit information becomes available in the time frame of days after launch. 

NORAD supplies the satellite tracking information in the form of TLE data set and 

this data can be used as an input for orbit propagator model. There are two lines in 

TLE Data Set shown in the following table:  
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Table 3-2 TLE Data Set For Orbital Parameters [20] 

Line TLE Data Set (FLP) 

1 42831U 17042G   19164.90037843 +.00000129 +00000-0 +18434-4 0  9993 

2 42831 097.5659 058.0490 0015745 077.4852 282.8127 14.91002723104220 

This table includes the orbital parameters obtained from the second line of TLE data: 

Table 3-3 Orbital Parameters Obtained From TLE Data 

Orbital Parameters Abb. Value Value 

Inclination 𝑖 097.5659 (deg) 1.7028462 rad 

Right Ascension of Ascending Node 𝛺 612.9 (deg) 10.697123 rad 

Eccentricity 𝑒 0.015745 -- 

Argument of Perigee 𝜔 077.4852 (deg) 1.3523718 rad 

Mean Anomaly 𝑀 282.8127 (deg) 4.936013 rad 

Mean Motion 𝑛 14.910027 (rev/day) 0.00108 rad/s 

The following table shows the useful orbital parameters obtained from TLE data: 

Table 3-4 The Useful Orbital Parameters of Satellite 

Orbital Parameters Abb. Value Dimension 

Perigee 𝑟𝑝 591.0 km 

Apogee 𝑟𝑎 612.9 km 

Period 𝑇 96.6 minutes 

Semi Major Axis 𝑎 6991.4 km 

 

https://en.wikipedia.org/wiki/Orbital_inclination
https://en.wikipedia.org/wiki/Right_ascension_of_the_ascending_node
https://en.wikipedia.org/wiki/Orbital_eccentricity
https://en.wikipedia.org/wiki/Argument_of_perigee
https://en.wikipedia.org/wiki/Mean_Anomaly
https://en.wikipedia.org/wiki/Mean_Motion
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The satellite semi-major axis is found by using the mean motion definition (𝑛) [50]:  

𝑛 
2𝜋

86400
= 𝑛 [

𝑟𝑎𝑑

𝑠
] → 14.910027 

2𝜋

86400
≅ 0.00108 

𝑟𝑎𝑑

𝑠
 (3.10) 

𝑛 =  √
𝜇

𝑎3
 →  𝑎 =  

𝜇
1
3

𝑛
2
3

=
(3.986004418 𝑥1014)

1
3

(0.00108)
2
3

≅  6991.4 𝑘𝑚 (3.11) 

The magnitude of the moving satellite position (𝑟) is represented with Kepler 

parameters such as semi-latus rectum (𝑝) and true anomaly (𝑣): 

𝑟 =
𝑝

1 + 𝑒 cos(𝑣)
=  

𝑎(1 − 𝑒2)

1 + 𝑒 cos(𝑣)
 (3.12) 

The transformations from Keplerian parameters to Cartesian position (𝑅𝑂) and 

velocity vector ( 𝑉𝑂) in orbital plane are specified hereafter:  

𝑅𝑂 = [ 

𝑅𝑥
𝑂𝑅𝐵𝐼𝑇

𝑅𝑦
𝑂𝑅𝐵𝐼𝑇

𝑅𝑧
𝑂𝑅𝐵𝐼𝑇

 ] = [ 
𝑟 cos(𝑣)

𝑟 sin(𝑣)
0

 ] = 𝑎 [ 

𝑐𝑜𝑠(𝐸) − 𝑒

√1 − 𝑒2𝑠𝑖𝑛(𝐸)
0

 ] (3.13) 

 𝑉𝑂 = [ 

𝑉𝑥
𝑂𝑅𝐵𝐼𝑇

𝑉𝑦
𝑂𝑅𝐵𝐼𝑇

𝑉𝑧
𝑂𝑅𝐵𝐼𝑇

 ] = [

−√𝜇/𝑝  sin (𝑣)

√𝜇/𝑝 (𝑒 + cos(𝑣))

0

] =
𝑎2𝑛

𝑟
[ 

−𝑠𝑖𝑛(𝐸)

√1 − 𝑒2 𝑐𝑜𝑠(𝐸)
0

 ] (3.14) 

The position and velocity vectors are also defined in ECI Frame (𝑅𝐸𝐶𝐼 , 𝑉𝐸𝐶𝐼) [49]:  

𝑅𝐸𝐶𝐼 = [𝑅][𝑅𝑂] ;  𝑉𝐸𝐶𝐼 = [𝑅][ 𝑉𝑂] (3.15) 

[𝑅] = [
𝑐𝛺 𝑐𝜔 − 𝑠𝛺 𝑠𝜔 𝑐𝑖 −𝑐𝛺 𝑠𝜔 − 𝑠𝛺 𝑐𝜔 𝑐𝑖 𝑠𝛺 𝑠𝑖
𝑠𝛺 𝑐𝜔 + 𝑐𝛺 𝑠𝜔 𝑐𝑖 −𝑠𝛺 𝑠𝜔 + 𝑐𝛺 𝑐𝜔 𝑐𝑖 −𝑐𝛺 𝑠𝑖

𝑠𝜔 𝑠𝑖 𝑐𝜔 𝑠𝑖 𝑐𝑖
] (3.16) 
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These definitions can be defined with the following alternative equations:  

[𝑅𝐸𝐶𝐼] = ([𝐶𝑍(𝛺)]𝑇 [𝐶𝑋(𝑖)] 𝑇[𝐶𝑍(𝜔)] 𝑇) [𝑅𝑂]  (3.17) 

[𝑉𝐸𝐶𝐼] = ([𝐶𝑍(−𝛺)] . [𝐶𝑋(−𝑖)]. [𝐶𝑍(−𝜔)]) [ 𝑉𝑂] (3.18) 

The position and velocity vectors can be defined in ECEF Frame (𝑅𝐸𝐶𝐸𝐹 ,  𝑉𝐸𝐶𝐸𝐹) 

with the following matrix multiplications (𝑤𝐼𝐸 =  7.292115x10−5 rad/s): 

[𝑅𝐸𝐶𝐸𝐹] = ([𝐶𝑍(−𝛺 + 𝑤𝐼𝐸)] [𝐶𝑋(−𝑖)] [𝐶𝑍(−𝜔)]) [𝑅𝑂]  (3.19) 

[𝑉𝐸𝐶𝐸𝐹] = ([𝐶𝑍(−𝛺 + 𝑤𝐼𝐸)][𝐶𝑋(−𝑖)][𝐶𝑍(−𝜔)]) [ 𝑉𝑂] (3.20) 

3.3.3. Orbit Perturbations 

Orbit perturbations result in small deviations of the satellite orbital motion. There are 

various perturbing sources applied on satellite in space as listed below:  

 Earth gravity harmonics, 

 Earth tides effect, 

 Sun and Moon gravitational effect, 

 Solar radiation pressure,  

 Atmospheric drag. 

Atmospheric drag and solar radiation pressure effects are disturbance torque sources. 

In terms of the other perturbations, the adverse effects caused by Earth gravity 

harmonics are only taken into consideration.  
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3.3.4. Earth Gravitational Perturbations 

Earth gravity harmonics represent the mathematical expansion of the deviations from 

a perfect sphere shape. In ordinary situations, the second terms of zonal (𝐽2 =

 0.00108263) and tesseral gravity harmonics (𝐽22) are encountered in computations 

[49]. The 𝐽2 term (flattening factor) is related to Earth equatorial oblateness, which is 

the eccentricity depending on the difference between polar and equatorial radius. 

This effect can be represented by the rate of argument of perigee (�̇�), right ascension 

of the ascending node (�̇�), and the correction of orbit mean motion (�̅�): 

�̇� = − 
3

2
 
𝐽2 𝑅𝐸

2

𝑝2
 �̅� cos(𝑖) (3.21) 

�̇� =  
3

2
 

𝐽2 𝑅𝐸
2

𝑎0
2 (1 − 𝑒2)2

 �̅� (2 −
5

2
 𝑠𝑖𝑛2(𝑖)) (3.22) 

�̅� = √
µ

𝑎0
3  (1 + 

3

2
 
𝐽2 𝑅𝐸

2

𝑝2
(1 −

3

2
 𝑠𝑖𝑛2(𝑖)) √(1 − 𝑒2)

2
) (3.23) 

The 𝐽22 term is related to the ellipticity of Earth equatorial plane, and its effects 

appear on geosynchronous orbits. Because of this reason, it is not evaluated as a part 

of the perturbation computations. The position and velocity vectors can be defined 

with integrating these perturbation terms in ECEF Frame: 

[𝑅𝐸𝐶𝐸𝐹] = [𝐶𝑍(−(𝛺 + �̇�𝑡) + 𝑤𝐼𝐸)] [𝐶𝑋(−𝑖)] [𝐶𝑍(−(𝜔 + �̇�𝑡)] [𝑅𝑂]  (3.24) 

[𝑉𝐸𝐶𝐸𝐹] = [𝐶𝑍(−(𝛺 + �̇�𝑡) + 𝑤𝐼𝐸)] [𝐶𝑋(−𝑖)] [𝐶𝑍(−(𝜔 + �̇�𝑡)] [ 𝑉𝑂] (3.25) 
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Figure 3-2 Orbit Propagator and Perturbation Model 

The orbit propagator model placed in the previous figure is:  

 

Figure 3-3 Orbit Propagator Model 
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3.4. Earth Magnetic Field Model 

External references such as the Sun, other specific starts and Earth magnetic field 

direction can be used to determine the orientation and attitude of a satellite. 

The magnetic field model uses an International Geomagnetic Reference Field 

(IGRF2015) standard model comprising a set of spherical harmonic coefficients and 

is updated by the International Association of Geomagnetism and Aeronomy every 

five years. This model as a truncated series expansion of a geomagnetic function (𝑉) 

is defined taking the first 10 harmonics [53, 54, 58, 62]: 

𝑉 = 𝑎 ∑ ∑ (
𝑎

𝑟
)
𝑛+1

𝑛

𝑚=0

𝑁

𝑛=1

 (𝑔𝑛
𝑚 𝑐𝑜𝑠(𝑚) + ℎ𝑛

𝑚 𝑠𝑖𝑛(𝑚)) 𝑃𝑛
𝑚𝑐𝑜𝑠 (𝜃) (3.26) 

 a is the mean radius of Earth, 

 r is the distance from Earth centre, 

   is the longitude angle from Greenwich to eastward,  

 θ is the colatitude angle defined as 90 minus the latitude,  

 𝑔𝑛
𝑚 and ℎ𝑛

𝑚
 are spherical harmonic coefficients of degree n and order m, 

 N is the maximal spherical harmonical degree of the series expansion, 

 𝑃𝑛
𝑚cos (θ) is the Schmidt quasi-normalised associated Legendre functions of 

degree n and order m ( 1n  and nm  ). 

Although the strength of magnetic field is relatively stable over time, some 

alterations in the ionosphere region deflect the surface magnetic fields of Earth. In 

most cases, this field can be considered constant and not changes with time.  

In this study, 12
th

 generation IGRF model (IGRF-12) is implemented to the system 

model for satellite location defined with latitude, longitude and altitude values [1, 2]. 
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An orbit propagator model supplies the satellite latitude, longitude and altitude 

information to IGRF model. The magnitude of this field is about 10−5 Tesla.  

3.5. Sun Position Model 

Determining the relative position of the Sun from the Earth involves a series of 

calculations at any time of year, assuming that the Sun is in an ecliptic orbit around 

the Earth [56]. The angles describing the solar position vector are shown in the 

following figure [57]: 

 

Figure 3-4 Sun Position Vector Illustration [57] 

 𝜃𝑍 is the solar zenith angle,  

 𝜃𝐴 is the solar azimuth angle, 

 𝜃𝐸𝐿 is the solar elevation angle (90° - 𝜃𝑍). 

The report of [55] presents an algorithm in order to calculate the solar zenith and 

azimuth angles with uncertainties of ±0.0003 degrees.  

The eccentric anomaly (𝐸) from mean anomaly (𝑀) and eccentricity (𝑒) for very 

near circular orbits shown in the below [54, 56]: 

𝐸 = 𝑀 + 𝑒 sin(𝑀) (1.0 + 𝑒 cos (𝑀)) (3.27) 
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The distance of Sun (𝑅𝑆𝑈𝑁) and its true anomaly (𝑣𝑆𝑈𝑁) are: 

𝑅𝑆𝑈𝑁,𝑋 = 𝑅𝑆𝑈𝑁 𝑐𝑜𝑠(𝑣𝑆𝑈𝑁) = 𝑎 (𝑐𝑜𝑠(𝐸) − 𝑒)   (3.28) 

𝑅𝑆𝑈𝑁,𝑌 = 𝑅𝑆𝑈𝑁  𝑠𝑖𝑛(𝑣𝑆𝑈𝑁) = 𝑎 (𝑠𝑖𝑛(𝐸)√1 − 𝑒2 )  (3.29) 

𝑅𝑆𝑈𝑁 = √(𝑅𝑆𝑈𝑁,𝑋 )2 + (𝑅𝑆𝑈𝑁,𝑌 )2  (3.30) 

𝑣𝑆𝑈𝑁 = 𝑎𝑡𝑎𝑛2(
𝑅𝑆𝑈𝑁,𝑋 

𝑅𝑆𝑈𝑁,𝑌 
) (3.31) 

The Sun centric longitude angle (𝑙𝑜𝑛𝑆𝑈𝑁) is found from the argument at perihelion 

( 𝜔𝑆𝑈𝑁) and the true anomaly (𝑣𝑆𝑈𝑁):  

𝑙𝑜𝑛𝑆𝑈𝑁 = 𝜔𝑆𝑈𝑁 + 𝑣𝑆𝑈𝑁 (3.32) 

The Sun position vector (𝑋𝑆𝑈𝑁, 𝑌𝑆𝑈𝑁, 𝑍𝑆𝑈𝑁) in a coordinate system in the ecliptic 

plane by using the trigonometric functions of the Sun longitude angle: 

[ 

𝑋𝑆𝑈𝑁 

𝑌𝑆𝑈𝑁

𝑍𝑆𝑈𝑁

] = [ 
𝑅𝑆𝑈𝑁 . cos(𝑙𝑜𝑛𝑆𝑈𝑁)

𝑅𝑆𝑈𝑁 . sin(𝑙𝑜𝑛𝑆𝑈𝑁)
0

 ] (3.33) 

The same definition in the inertial geocentric coordinate system (𝑋𝑆𝑈𝑁,𝐸, 𝑌𝑆𝑈𝑁,𝐸, 

𝑍𝑆𝑈𝑁,𝐸) is given by: 

[ 

𝑋𝑆𝑈𝑁,𝐸

𝑌𝑆𝑈𝑁,𝐸

𝑍𝑆𝑈𝑁,𝐸

 ] = [ 

𝑋𝑆𝑈𝑁

𝑌𝑆𝑈𝑁 . 𝑐𝑜𝑠 (𝑒)
𝑌𝑆𝑈𝑁 . 𝑠𝑖𝑛(𝑒)

 ] (3.34) 
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3.6. Summary 

The space environment model designed in this chapter clarifies the propagation of 

satellite orbit concerning Keplerian motion equations and orbital perturbations. It is 

mandatory to simulate space environment which includes satellite trajectories.  

This chapter also states the vector models of Earth magnetic field and Sun position 

which are used to generate the required inputs for attitude sensor calculations.  
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CHAPTER 4  

 

4. SATELLITE ATTITUDE MODEL 

 

4.1. Introduction 

The state space definitions of both satellite nonlinear and linear attitude models are 

handled in this chapter. Besides, the controllability and Lyapunov based stability 

properties of the derived attitude equations are assessed under the following titles. 

4.2. Satellite Nonlinear Attitude Control Model  

The definition of nonlinear system and measurement models are expressed: 

𝑥𝑘+1 = 𝑓(𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘 , 𝑘) (4.1) 

�̃�𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘 , 𝑘) (4.2) 

In this study, the state vector (𝑥𝑘) is selected according to system dynamic 

characteristics. The values of satellite angular velocity (𝑤𝐼𝐵
𝐵 ), quaternion vector (𝑞) 

and reaction wheel angular momentum (𝐻𝑅𝑊
𝐵 ) change dynamically as simulation 

time progressed:   

𝑥𝑘 = [𝑤𝐼𝐵
𝐵 𝑞 𝐻𝑅𝑊

𝐵 ]𝑇 (4.3) 

In this study, 𝑢𝑘 is the input function generating from control torques (𝑀𝐶
𝑅𝑊,  𝑀𝐶

𝑀𝑇𝑅) 

and disturbance torques (𝑀𝐷) exerted on satellite. The component numbers of input 

vector are dependent on the torque generators integrated in satellite structure: 
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𝑢𝑘 =  [𝑀𝐶
𝑅𝑊 𝑀𝐶

𝑀𝑇𝑅 𝑀𝐷]𝑇 (4.4) 

4.2.1. Nonlinear State Space Definition in Discrete Time 

The combined dynamic and kinematic equations give the general nonlinear model 

definition for satellite’s angular motion. The nonlinear equation of satellite dynamics 

(𝑓1(𝑥𝑘, 𝑢𝑘)) is shown with the equation of satellite angular moments and torque 

definitions when reaction wheels are used as torque generators [51]: 

�̇̅�𝐼𝐵1

𝐵 = 𝐼𝑆𝑥

−1 ((𝐼𝑆𝑦
− 𝐼𝑆𝑧

) �̅�𝐼𝐵2

𝐵 �̅�𝐼𝐵3

𝐵 + �̅�𝐼𝐵3

𝐵 𝐻𝑅𝑊2

𝐵 − �̅�𝐼𝐵2

𝐵 �̅�𝑅𝑊3

𝐵 + �̅�𝐶1

𝑅𝑊 + �̅�𝐷1
) (4.5) 

�̇̅�𝐼𝐵2

𝐵 = 𝐼𝑆𝑦

−1 ((𝐼𝑆𝑧
− 𝐼𝑆𝑥

) �̅�𝐼𝐵1

𝐵 �̅�𝐼𝐵3

𝐵 + �̅�𝐼𝐵1

𝐵 �̅�𝑅𝑊3

𝐵 − �̅�𝐼𝐵3

𝐵 �̅�𝑅𝑊1

𝐵 + �̅�𝐶2

𝑅𝑊 + �̅�𝐷2
) (4.6) 

�̇̅�𝐼𝐵3

𝐵 = 𝐼𝑆𝑧

−1 ((𝐼𝑆𝑥
− 𝐼𝑆𝑦

) �̅�𝐼𝐵1

𝐵 �̅�𝐼𝐵2

𝐵 + �̅�𝐼𝐵2

𝐵 𝐻𝑅𝑊1

𝐵 − �̅�𝐼𝐵1

𝐵 �̅�𝑅𝑊2

𝐵 + �̅�𝐶3

𝑅𝑊 + �̅�𝐷3
) (4.7) 

If magnetic torque rods are using as torque generators, these dynamic equations are: 

�̇̅�𝐼𝐵1

𝐵 = 𝐼𝑆𝑥

−1 ((𝐼𝑆𝑦
− 𝐼𝑆𝑧

) �̅�𝐼𝐵2

𝐵 �̅�𝐼𝐵3

𝐵 + �̅�𝐶1

𝑀𝑇𝑅
+ �̅�𝐷1

) (4.8) 

�̇̅�𝐼𝐵2

𝐵 = 𝐼𝑆𝑦

−1 ((𝐼𝑆𝑧
− 𝐼𝑆𝑥

) �̅�𝐼𝐵1

𝐵 �̅�𝐼𝐵3

𝐵 + �̅�𝐶2

𝑀𝑇𝑅
+ �̅�𝐷2

) (4.9) 

�̇̅�𝐼𝐵3

𝐵 = 𝐼𝑆𝑧

−1 ((𝐼𝑆𝑥
− 𝐼𝑆𝑦

) �̅�𝐼𝐵1

𝐵 �̅�𝐼𝐵2

𝐵 + �̅�𝐶3

𝑅𝑊
+ �̅�𝐷3

) (4.10) 

The second nonlinear equation of satellite kinematics (𝑓2(𝑥𝑘, 𝑢𝑘)) can be rewritten 

using the satellite velocity vector (𝑤𝑂𝐵
𝐵 ) represented with the second column of 

DCM matrix (𝐶(𝑞)2) and the angular velocity specified in Orbit Frame (𝑤𝐼𝑂
𝑂 =

[0 −𝑤0 0]𝑇) like in the following equation. Before resolving the second 

nonlinear equation, it is beneficial to recall this new angular velocity definition:  
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𝑤𝑂𝐵
𝐵 = 𝑤𝐼𝐵

𝐵 − [𝐶(𝑞)]𝑂
𝐵  . 𝑤𝐼𝑂

𝑂  (4.11) 

𝑤𝑂𝐵
𝐵 = 𝑤𝐼𝐵

𝐵 − [𝐶(𝑞)]𝑂
𝐵 [

 0
−𝑤0

 0
] = [ 

𝑤𝐼𝐵1

𝐵 + 𝐶(𝑞)12 𝑤0

𝑤𝐼𝐵2

𝐵 + 𝐶(𝑞)22 𝑤0

𝑤𝐼𝐵3

𝐵 + 𝐶(𝑞)32 𝑤0

 ] (4.12) 

𝑤𝑂𝐵
𝐵 = [ 

𝑤𝑂𝐵1

𝐵

𝑤𝑂𝐵2

𝐵

𝑤𝑂𝐵3

𝐵

 ] = [

𝑤𝐼𝐵1

𝐵 + 2(𝑞1𝑞2 + 𝑞3𝑞4) 𝑤0

   𝑤𝐼𝐵2

𝐵 + (𝑞4
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2)𝑤0

𝑤𝐼𝐵3

𝐵 + 2(𝑞2𝑞3 − 𝑞1𝑞4) 𝑤0

 ] (4.13) 

The new representation for skew symmetric matrix (𝛺(𝑤𝑂𝐵
𝐵 )) according to the 

satellite angular velocity (𝑤𝐼𝐵
𝐵 ) is: 

𝛺(𝑤𝑂𝐵
𝐵 ) = 

[
 
 
 
 

 

0 𝑤𝐼𝐵3
𝐵 + 𝐶(𝑞)32𝑤0 −𝑤𝐼𝐵2

𝐵 − 𝐶(𝑞)22𝑤0 𝑤𝐼𝐵1
𝐵 + 𝐶(𝑞)12𝑤0

−𝑤𝐼𝐵3
𝐵 − 𝐶(𝑞)32𝑤0 0 𝑤𝐼𝐵1

𝐵 + 𝐶(𝑞)12𝑤0 𝑤𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0

𝑤𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0 −𝑤𝐼𝐵1

𝐵 − 𝐶(𝑞)12𝑤0 0 𝑤𝐼𝐵3
𝐵 + 𝐶(𝑞)32𝑤0

−𝑤𝐼𝐵1
𝐵 − 𝐶(𝑞)12𝑤0 −𝑤𝐼𝐵2

𝐵 − 𝐶(𝑞)22𝑤0 −𝑤𝐼𝐵3
𝐵 − 𝐶(𝑞)32𝑤0 0

  

]
 
 
 
 

 
(4.14) 

The second nonlinear equation of satellite kinematics 𝑓2(𝑥𝑘 , 𝑢𝑘) is:  

�̇̅�1 =
1

2
(�̅�2(�̅�𝐼𝐵3

𝐵 + 𝐶(𝑞)32𝑤0) − �̅�3(�̅�𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0) + �̅�4(�̅�𝐼𝐵1

𝐵 + 𝐶(𝑞)12𝑤0))  (4.15) 

�̇̅�2 =
1

2
(−�̅�1(�̅�𝐼𝐵3

𝐵 + 𝐶(𝑞)32𝑤0) + �̅�3(�̅�𝐼𝐵1
𝐵 + 𝐶(𝑞)12𝑤0) + �̅�4(�̅�𝐼𝐵2

𝐵 + 𝐶(𝑞)22𝑤0)) (4.16) 

�̇̅�3 =
1

2
(�̅�1(�̅�𝐼𝐵2

𝐵 + 𝐶(𝑞)22𝑤0) − �̅�2(�̅�𝐼𝐵1
𝐵 + 𝐶(𝑞)12𝑤0) + �̅�4(�̅�𝐼𝐵3

𝐵 + 𝐶(𝑞)32𝑤0)) (4.17) 

�̇̅�4 =
1

2
(−�̅�1(�̅�𝐼𝐵1

𝐵 + 𝐶(𝑞)12𝑤0) − �̅�2(�̅�𝐼𝐵2
𝐵 + 𝐶(𝑞)22𝑤0) − �̅�3(�̅�𝐼𝐵3

𝐵 + 𝐶(𝑞)32𝑤0)) (4.18) 
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The third nonlinear equation of satellite kinematics 𝑓3(𝑥𝑘, 𝑢𝑘) is:  

�̇�𝑅𝑊
𝐵 = −�̅�𝐶

𝑅𝑊 (4.19) 

Case-1: Torque generators are only reaction wheels  

The nonlinear dynamic and kinematic equations in the case of using reaction wheels 

as torque generators are given hereafter: 

[ 

𝑓1(𝑥𝑘, 𝑢𝑘)

𝑓2(𝑥𝑘, 𝑢𝑘)

𝑓3(𝑥𝑘, 𝑢𝑘)
 ] = [ 

�̇�𝐼𝐵
𝐵

�̇�

�̇�𝑅𝑊
𝐵

 ] =

[
 
 
 

 

𝐼𝑆
−1[ 𝑀𝐷 + 𝑀𝐶

𝑅𝑊 − 𝛺(𝑤𝐼𝐵
𝐵 )𝐼𝑆𝑤𝐼𝐵

𝐵 − 𝛺(𝑤𝐼𝐵
𝐵 )𝐻𝑅𝑊

𝐵  ]

1

2
𝛺(𝑤𝑂𝐵

𝐵 ) 𝑞

−𝑀𝐶
𝑅𝑊

 

]
 
 
 

 (4.20) 

Case-2: Torque generators are only magnetic torque rods  

The nonlinear dynamic and kinematic equations in the case of using torque rods as 

torque generators are presented below: 

[ 
𝑓1(𝑥𝑘 , 𝑢𝑘)

𝑓2(𝑥𝑘 , 𝑢𝑘)
 ] = [ 

�̇�𝐼𝐵
𝐵

�̇�
 ] = [ 

𝐼𝑆
−1[ 𝑀𝐷 + 𝑀𝐶

𝑀𝑇𝑅 − 𝛺(𝑤𝐼𝐵
𝐵 ) 𝐼𝑆 𝑤𝐼𝐵

𝐵  ]
1

2
𝛺(𝑤𝑂𝐵

𝐵 )𝑞
 ] (4.21) 

Case-3: Torque generators are both magnetic torque rods and reaction wheels  

The combined nonlinear dynamic and kinematic equations in the case of using both 

reaction wheels and magnetic torque rods are depicted here:  

[

�̇�𝐼𝐵
𝐵

�̇�

�̇�𝑅𝑊
𝐵

] =

[
 
 
 
𝐼𝑆
−1[ 𝑀𝐷+ 𝑀𝐶

𝑅𝑊 + 𝑀𝐶
𝑀𝑇𝑅 − 𝛺(𝑤𝐼𝐵

𝐵 )𝐼𝑆𝑤𝐼𝐵
𝐵 − 𝛺(𝑤𝐼𝐵

𝐵 )𝐻𝑅𝑊
𝐵  ]

1

2
 𝛺(𝑤𝑂𝐵

𝐵 )𝑞

−𝑀𝐶
𝑅𝑊 ]

 
 
 

 (4.22) 
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4.2.2. Nonlinear Sensor Measurement Model in Discrete Time 

The matrix (𝐻𝑘) defines the changes of measurement vectors with time and it is 

consisted of each sensor measurements. This matrix is commonly a function of 

satellite kinematics such as Euler angles or quaternion vectors and calculated for 

each iteration. The measurement equations of attitude sensors (𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘) are 

defined with its noise vectors (𝑣𝑘) with respect to system states. The measurement 

vector is configured as if all sensor measurements are available:  

𝑦𝑘 =

[
 
 
 
 
 

 

𝑦𝐺𝑌𝑅𝑂,𝑘

𝑦𝑆𝑇𝑅,𝑘

𝑦𝑀𝐺𝑀,𝑘

𝑦𝑆𝑢𝑆,𝑘

𝑦𝐺𝑃𝑆1,𝑘

𝑦𝐺𝑃𝑆2,𝑘

 

]
 
 
 
 
 

=

[
 
 
 
 
 

 

𝑤𝑚𝑒𝑎𝑠

𝑞𝑚𝑒𝑎𝑠

𝐵𝑚𝑒𝑎𝑠

𝑆𝑉𝑚𝑒𝑎𝑠

𝑟𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠

 

]
 
 
 
 
 

=

[
 
 
 
 
 

 

𝐻𝐺𝑌𝑅𝑂

𝐻𝑆𝑇𝑅

𝐻𝑀𝐺𝑀

𝐻𝑆𝑢𝑆

𝐻𝐺𝑃𝑆1

𝐻𝐺𝑃𝑆2

 

]
 
 
 
 
 

𝑥𝑘 +

[
 
 
 
 
 

 

𝑣𝐺𝑌𝑅𝑂

𝑣𝑆𝑇𝑅

𝑣𝑀𝐺𝑀

𝑣𝑆𝑢𝑆

𝑣𝐺𝑃𝑆1

𝑣𝐺𝑃𝑆2

 

]
 
 
 
 
 

 (4.23) 

In a sensor model, the output measurements can be estimated around the satellite’s 

position adding the effects of some noises generated by misalignment error (non-

orthogonality error), measurement error, scale factor, and bias. These noise sources 

have a large negative contribution to total sensor measurement values and each 

sensor is modelled considering these noise signals [29].  

The measured quantities of sensor outputs can be shown in the following diagram:   

 

Figure 4-1 Sensor Measurements with Noise Effects 
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The general formula of sensor measurements is:  

𝑦𝑚𝑒𝑎𝑠 = 𝑦𝑡𝑟𝑢𝑒 + (𝑣𝑆𝐹 𝑦𝑡𝑟𝑢𝑒 + 𝑣𝑀𝐴 𝑦𝑡𝑟𝑢𝑒 + 𝑣𝐵𝐼𝐴𝑆) 
(4.24) 

 𝑣𝑆𝐹  is the error matrix representing scale factor, 

 𝑣𝑀𝐴 is the error matrix representing misalignment,  

 𝑣𝐵𝐼𝐴𝑆 is the sensor measurement bias error.  

When a satellite goes into the eclipse phase, its attitude solution can be degraded and 

then it is required to propagate the solution incorporating the other sensor model data 

such as Star Tracker model [59]. 

Scale Factor Error (𝒗𝑺𝑭):  

The ratio between the measured output value and the change in input value is called 

the scale factor. It also represents a linear approximation to sensor output error over 

a given full input range as a dimensionless quantity. It is stated as a percentage or the 

unit of parts per million. The combination of scale factor and misalignment error is 

generally inserted into the sensor models especially for gyroscopes.   

Misalignment Error (𝒗𝑴𝑨):  

Misalignment errors are derived from the angular difference between ideal and true 

axis vectors. Sensor axes are not located orthogonally in the satellite, therefore the 

measurement of these axes displacement is known as misalignment error. This error 

signal is modelled as random constant value and unitless quantity.  

Bias Error (𝒗𝑩𝑰𝑨𝑺): 

Fixed sensor bias error is known as the most critical error source and a constant 

value over a specified time and at a specified operating condition [64]. Bias stability 
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and instability are modelled as random constant value and random walk value 

respectively.  

4.2.2.1. Nonlinear Model of Fiber Optic Gyroscopes 

The error model equation of measured angular velocity for each gyroscope set can 

be expressed like the following [31, 32, 33, 34]. The measurement equations of 

magnetometers (𝑦𝐺𝑌𝑅𝑂,𝑘) with its measurement matrix ([𝐻𝐺𝑌𝑅𝑂]) are defined:  

𝑤𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝑤𝐼𝐵

𝐵 + (𝑣𝑆𝐹 𝑤𝐵 + 𝑣𝑀𝐴 𝑤𝐵 + 𝑣𝐵𝐼𝐴𝑆 + 𝑣𝐴𝑅𝑊 + 𝑣𝑅𝑅𝑊 + 𝑣𝑅𝑅) (4.25) 

𝑦𝐺𝑌𝑅𝑂,𝑘 = 𝑤𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝑤𝐼𝐵

𝐵 + 𝑣𝐺𝑌𝑅𝑂 = [𝐶𝑂
𝐵]𝑤𝑂 + 𝑣𝐺𝑌𝑅𝑂 (4.26) 

𝑦𝐺𝑌𝑅𝑂,𝑘 = [𝐻𝐺𝑌𝑅𝑂]𝑥𝑘 + [𝑅𝐺𝑌𝑅𝑂]𝑣𝐺𝑌𝑅𝑂 (4.27) 

 𝑤𝐵 and 𝑤𝑂 are the true angular velocity vector in Body and Orbit Frame, 

 𝑤𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured angular velocity vector in satellite Body Frame, 

 𝑣𝑅𝑅𝑊 is the rate random walk error,  

 𝑣𝐴𝑅𝑊 is the angular random walk error, 

 𝑣𝑅𝑅 is the rate ramp error, 

 𝑣𝐺𝑌𝑅𝑂 is the measurement noise vector of gyroscopes represented with a 

band limited white noise signal and its noise power is denoted by sensor 

noise matrix (𝑅𝐺𝑌𝑅𝑂). 

Rate random walk and angular random walk errors are generally represented by a 

zero mean Gaussian random noise signals with a variance calculated from Allan 

Variance Diagram [28, 29, 30, 59]. 

It is generally preferred to use a combination of star trackers and gyroscopes 

whenever the mission requires the highest accuracy in measurements.  
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4.2.2.2. Nonlinear Model of Star Trackers 

Several conditions such as high radiation dose and different luminous objects 

adversely impact the performance of star trackers. Therefore, a Gaussian random 

noise with variance value is added to output measurements in the model.  

The sensor model output is a form of quaternion vector to obtain the estimated 

satellite position. The input is a quaternion vector defined in satellite Body Frame 

delayed by multiplying its bias properties [66]. The measurement equations of star 

trackers (𝑦𝑆𝑇𝑅,𝑘) with its measurement matrix ([𝐻𝑆𝑇𝑅]) are defined: 

𝑦𝑆𝑇𝑅,𝑘 = 𝑞𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝑞𝐵 + 𝑣𝑆𝑇𝑅 = [𝐶𝑂

𝐵]𝑞𝑂 + 𝑣𝑆𝑇𝑅  (4.28) 

𝑦𝑆𝑇𝑅,𝑘 = [𝐻𝑆𝑇𝑅]𝑥𝑘 + [𝑅𝑆𝑇𝑅]𝑣𝑆𝑇𝑅 (4.29) 

 𝑞𝐵 and 𝑞𝑂 is the true quaternion vectors in satellite Body and Orbit Frame, 

 𝑞𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured quaternion vector in satellite Body Frame, 

 𝑣𝑆𝑇𝑅 is the measurement noise vector of star trackers represented with a 

band limited white noise signal and its noise power is denoted by sensor 

noise matrix (𝑅𝑆𝑇𝑅). 

4.2.2.3. Nonlinear Model of Magnetometers 

In a magnetometer model, the direction and magnitude of magnetic field can be 

estimated around satellite’s position adding the effects of some noises generated by 

scale factor and misalignment error. The IGRF model is used as a reference input for 

this sensor measurement.  

Earth magnetic field strength which decreases with distance from Earth and residual 

satellite magnetic bias dominate total magnetic field measurement. The combined 

measurements of magnetometers integrated with amplifiers and low pass filters 
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provide accurate outputs by decreasing the unwanted sensor noises. The local 

magnetic field measurement of magnetometers is calculated with the following 

equation (𝑦𝑀𝐺𝑀,𝑘) [59]:  

𝐵𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝐵𝐵 + (𝑣𝑆𝐹𝐵𝐵 + 𝑣𝑀𝐴𝐵𝐵 + 𝑣𝐵𝐼𝐴𝑆) = [𝐶𝑂

𝐵]𝐵𝑂 + 𝑣𝑀𝐺𝑀 (4.30) 

𝑦𝑀𝐺𝑀,𝑘 = 𝐵𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = [𝐻𝑀𝐺𝑀]𝑥𝑘 + [𝑅𝑀𝐺𝑀]𝑣𝑀𝐺𝑀   (4.31) 

 𝐵𝐵and 𝐵𝑂 are the local magnetic field vectors in Body and Orbit Frame, 

 𝐵𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured magnetic field vector in Body Frame, 

 𝑣𝑀𝐺𝑀 is the measurement noise vector of magnetometers represented with a 

band limited white noise signal and its noise power is denoted by sensor 

noise matrix (𝑅𝑀𝐺𝑀). 

The magnetometer bias (𝑣𝐵𝐼𝐴𝑆) is dependent on the sensor location in satellite. It 

also includes the magnetic field of satellite electronics and magnetic torque rods. 

Measurement noise, axes misalignment errors, the residual and saturation limits of 

magnetic moment shall be taken into consideration in the modelling phase of 

magnetic rods [66]. 

4.2.2.4. Nonlinear Model of Sun Sensors 

The input signal is the incident angle of Sun position vector obtained from the 

measured currents for each axis. The output signal is a voltage, indicating whether 

the Sun is within the sensor's field of view or not. Although there are eight sun 

sensors in the actual satellite, only three brightest orthogonal sensors are selected to 

determine whether the satellite is in the eclipse phase or not. The measurement 

equations of sun sensors (𝑦𝑆𝑢𝑆,𝑘) with its measurement matrix ([𝐻𝑆𝑢𝑆]) are defined:    

𝑆𝑉  𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = [𝐶𝑂

𝐵]𝑆𝑉𝑂 + 𝑣𝑆𝑢𝑆 = 𝑆𝑉𝐵 + ( 𝑣𝑆𝐹𝑆𝑉𝐵 + 𝑣𝑀𝐴𝑆𝑉𝐵 + 𝑣𝐵𝐼𝐴𝑆 ) (4.32) 
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𝑦𝑆𝑢𝑆,𝑘 = 𝑆𝑉  𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = [𝐻𝑆𝑢𝑆]𝑥𝑘 + [𝑅𝑆𝑢𝑆]𝑣𝑆𝑢𝑆 (4.33) 

 𝑆𝑉𝐵 and 𝑆𝑉𝑂 are the Sun position vector in Body and Orbit Frame, 

 𝑆𝑉  𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured Sun position vector in Body Frame, 

 𝑣𝑆𝑢𝑆 is the measurement noise vector of Sun sensors represented with a band 

limited white noise signal and its noise power is denoted by sensor noise 

matrix (𝑅𝑆𝑢𝑆). 

4.2.2.5. Nonlinear Model of GPS Receiver Sensor 

The satellite ephemeris errors and ionospheric path delays are major error sources 

for GPS sensor models and they limit navigation accuracy to around 10 meters [39, 

41]. Ionosphere error depends on the interaction between GPS signal and electrically 

charged ions and this error reduces signal speed and introduces measurement error. 

Satellite ephemeris error is derived from the difference between the expected and 

actual orbital position of a GPS satellite.  

The error model equation of measured Cartesian position and velocity vectors from 

each GPS sensor can be expressed like the following [25, 26, 27]. The measurement 

equations of GPS receivers (𝑦𝐺𝑃𝑆1,𝑘) with its measurement matrices ([𝐻𝐺𝑃𝑆1]) are 

defined hereafter:  

𝑟𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝑟𝐵 + (𝑣𝑆𝐹 𝑟𝐵 + 𝑣𝑀𝐴 𝑟𝐵 + 𝑣𝐵𝐼𝐴𝑆) = [𝐶𝑂

𝐵]𝑟𝑂 + 𝑣𝐺𝑃𝑆 (4.34) 

𝑦𝐺𝑃𝑆1,𝑘 = 𝑟𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = [𝐻𝐺𝑃𝑆1]𝑥𝑘 + [𝑅𝐺𝑃𝑆]𝑣𝐺𝑃𝑆  (4.35) 

 𝑟𝐵 and 𝑟𝑂 are the true position vectors in Body and Orbit Frame, 

 𝑟𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured position vector in Body Frame,  
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 𝑣𝐺𝑃𝑆 is the measurement noise vector of GPS receivers represented with a 

band limited white noise signal and its noise power is denoted by sensor 

noise matrix (𝑅𝐺𝑃𝑆). 

The measurement equations of GPS receivers ( 𝑦𝐺𝑃𝑆2,𝑘) with its measurement 

matrices ([𝐻𝐺𝑃𝑆2]) are defined here:   

𝑣𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = 𝑣𝐵 + (𝑣𝑆𝐹  𝑣𝐵 + 𝑣𝑆𝐹  𝑣𝐵 + 𝑣𝐵𝐼𝐴𝑆) = [𝐶𝑂

𝐵]𝑣𝑂 + 𝑣𝐺𝑃𝑆  (4.36) 

𝑦𝐺𝑃𝑆1,𝑘 = 𝑣𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 = [𝐻𝐺𝑃𝑆2]𝑥𝑘 + [𝑅𝐺𝑃𝑆]𝑣𝐺𝑃𝑆   (4.37) 

 𝑣𝐵  and 𝑣𝑂 are the true velocity vectors in Body and Orbit Frame, 

 𝑣𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌 is the measured velocity vector in Body Frame, 

 𝑣𝐺𝑃𝑆 is the measurement noise vector of GPS receivers and its noise power is 

denoted by the sensor noise matrix (𝑅𝐺𝑃𝑆). 

4.2.2.6. Nonlinear Model of Sensor Measurement Matrix  

For nonlinear measurement equations (𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘), assuming that there is 

no input value in 𝑦𝑘 equation (𝐷𝑘 = 0).  The transformation matrix written with 

respect to quaternion vector can be used to indicate the measured quantities in state 

space form (𝐶𝑂
𝐵 = {[𝐶𝑂

𝐵]𝑥,  [𝐶𝑂
𝐵]𝑦,  [𝐶𝑂

𝐵]𝑧}):  

[𝐶𝑂
𝐵]𝑥 = [  

𝑞1 −𝑞2 −𝑞3 𝑞4

𝑞2 𝑞1 𝑞4 𝑞3

𝑞3 −𝑞4 𝑞1 −𝑞2

 ] [

𝑞1

𝑞2

𝑞3

𝑞4

] = [𝐻1]𝑞 (4.38) 

[𝐶𝑂
𝐵]𝑦 = [  

𝑞2 𝑞1 −𝑞4 −𝑞3

−𝑞1 𝑞2 −𝑞3 𝑞4

𝑞4 𝑞3 𝑞2 𝑞1

 ] [

𝑞1

𝑞2

𝑞3

𝑞4

] = [𝐻2]𝑞 (4.39) 
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[𝐶𝑂
𝐵]𝑦 = [−

𝑞3 𝑞4 𝑞1 𝑞2

𝑞4 𝑞3 𝑞2 −𝑞1

−𝑞1 −𝑞2 𝑞3 𝑞4

] [

𝑞1

𝑞2

𝑞3

𝑞4

] = [𝐻3]𝑞 (4.40) 

The nonlinear measurement matrix definition in terms of each measurement in Orbit 

Frame such as 𝐵𝑂,  𝑆𝑉𝑂,  𝑟𝑂 and 𝑣𝑂, when reaction wheels are torque generators:  

𝐻𝑘∆𝑥𝑘 =

[
 
 
 
 
 
𝑤𝑚𝑒𝑎𝑠

𝑞𝑚𝑒𝑎𝑠

𝐵𝑚𝑒𝑎𝑠

𝑆𝑉𝑚𝑒𝑎𝑠

𝑟𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠 ]
 
 
 
 
 

=

[
 
 
 
 
 
 

 

[𝐻𝐺𝑌𝑅𝑂
𝑛𝑜𝑛 ]3𝑥3 03𝑥4 03𝑥3

04𝑥3 [𝐻𝑆𝑇𝑅
𝑛𝑜𝑛]4𝑥4 04𝑥3

03𝑥3 [𝐻𝑀𝐺𝑀
𝑛𝑜𝑛 ]3𝑥4 03𝑥3

03𝑥3 [𝐻𝑆𝑢𝑆
𝑛𝑜𝑛]3𝑥4 03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆1
𝑛𝑜𝑛 ]3𝑥4 03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆2
𝑛𝑜𝑛 ]3𝑥4 03𝑥3

  

]
 
 
 
 
 
 

[

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.41) 

𝐻𝑘 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[𝐻𝐺𝑌𝑅𝑂

𝑛𝑜𝑛 = 𝐼]3𝑥3 [0]3𝑥4 [0]3𝑥3

[0]4𝑥3 [𝐻𝑆𝑇𝑅
𝑛𝑜𝑛 = 𝐼]4𝑥4 [0]4𝑥3

[0]3𝑥3 [

𝐻𝑀𝐺𝑀,1
𝑛𝑜𝑛 = 𝐵𝑂

𝑇
. 𝐻1

𝐻𝑀𝐺𝑀,2
𝑛𝑜𝑛 = 𝐵𝑂

𝑇 . 𝐻2

𝐻𝑀𝐺𝑀,3
𝑛𝑜𝑛 = 𝐵𝑂

𝑇
. 𝐻3

]

3𝑥4

[0]3𝑥3

[0]3𝑥3 [

𝐻𝑆𝑢𝑆,1
𝑛𝑜𝑛 = 𝑆𝑉𝑂

𝑇
. 𝐻1

𝐻𝑆𝑢𝑆,2
𝑛𝑜𝑛 = 𝑆𝑉𝑂

𝑇
. 𝐻2

𝐻𝑆𝑢𝑆,3
𝑛𝑜𝑛 = 𝑆𝑉𝑂

𝑇. 𝐻3

]

3𝑥4

[0]3𝑥3

[0]3𝑥3 [

𝐻𝐺𝑃𝑆1,1
𝑛𝑜𝑛 = 𝑟𝑂

𝑇
. 𝐻1

𝐻𝐺𝑃𝑆1,2
𝑛𝑜𝑛 = 𝑟𝑂

𝑇 . 𝐻2

𝐻𝐺𝑃𝑆1,3
𝑛𝑜𝑛 = 𝑟𝑂

𝑇
. 𝐻3

]

3𝑥4

[0]3𝑥3

[0]3𝑥3 [

𝐻𝐺𝑃𝑆2,1
𝑛𝑜𝑛 = 𝑣𝑂

𝑇
. 𝐻1

𝐻𝐺𝑃𝑆2,2
𝑛𝑜𝑛 = 𝑣𝑂

𝑇
. 𝐻2

𝐻𝐺𝑃𝑆2,3
𝑛𝑜𝑛 = 𝑣𝑂

𝑇 . 𝐻3

]

3𝑥4

[0]3𝑥3

   

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 

  

∆𝑤𝐼𝐵1

𝐵

∆𝑤𝐼𝐵2

𝐵

∆𝑤𝐼𝐵3

𝐵

∆𝑞1

∆𝑞2

∆𝑞3

∆𝑞4

∆𝐻𝑅𝑊1

𝐵

∆𝐻𝑅𝑊2

𝐵

∆𝐻𝑅𝑊3

𝐵

  

]
 
 
 
 
 
 
 
 
 
 
 

 (4.42) 

When torque rods are using as torque generators, the nonlinear measurement matrix 

will be shown here:  
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𝐻𝑘∆𝑥𝑘 =

[
 
 
 
 
 

 

𝑤𝑚𝑒𝑎𝑠

𝑞𝑚𝑒𝑎𝑠

𝐵𝑚𝑒𝑎𝑠

𝑆𝑉𝑚𝑒𝑎𝑠

𝑟𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠

 

]
 
 
 
 
 

=

[
 
 
 
 
 
 

 

[𝐻𝐺𝑌𝑅𝑂
𝑛𝑜𝑛 ]3𝑥3 03𝑥4

04𝑥3 [𝐻𝑆𝑇𝑅
𝑛𝑜𝑛]4𝑥4

03𝑥3 [𝐻𝑀𝐺𝑀
𝑛𝑜𝑛 ]3𝑥4

03𝑥3 [𝐻𝑆𝑢𝑆
𝑛𝑜𝑛]3𝑥4

03𝑥3 [𝐻𝐺𝑃𝑆1
𝑛𝑜𝑛 ]3𝑥4

03𝑥3 [𝐻𝐺𝑃𝑆2
𝑛𝑜𝑛 ]3𝑥4

  

]
 
 
 
 
 
 

[
∆𝑤𝐼𝐵

𝐵

∆𝑞
] (4.43) 

4.3. Satellite Linear Attitude Control Model 

The linear function in a discrete-time case in terms of state (𝑥𝑘), input (𝑢𝑘), and 

system noise vector (𝑤𝑘) definitions are given hereafter: 

�̇�𝑘 = 𝑥𝑘+1 = 𝑓( 𝑥𝑘, 𝑢𝑘, 𝑤𝑘, 𝑘) = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝐺𝑘𝑤𝑘 ; 𝑤𝑘 ~ 𝑁(0, 𝑄𝑘) (4.44) 

The measurement vector (𝑦𝑘) is a set of system measurements which are the 

functions of state vectors and measurement noise vector (𝑣𝑘): 

𝑦𝑘 = ℎ (𝑥𝑘, 𝑣𝑘 , 𝑘) =  𝐻𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘 ; 𝑣𝑘   ~ 𝑁(0, 𝑅𝑘) (4.45) 

𝑄𝑘 and 𝑅𝑘 are system and measurement covariance matrices respectively. The 

covariance between the zero mean Gaussian white noise distribution vectors 𝑤𝑘  and 

𝑣𝑘 is zero value and there is no correlation between these noise vectors:   

𝐸{𝑤𝑘 𝑣𝑗
𝑇} = 0 (4.46) 

Case-1: Torque generators are only reaction wheels  

The state space definition is written with the following representation (𝑥𝑘
𝑅𝑊 is state 

vector and 𝑢𝑘
𝑅𝑊 is input vector for this configuration) in the case of reaction wheels 

are used as torque generators [8, 16, 51]:  



 

 

82 

 

�̇�𝑘 = 𝑥𝑘+1
𝑅𝑊 = 𝐴𝑘𝑥𝑘

𝑅𝑊 + 𝐵𝑘𝑢𝑘
𝑅𝑊 + 𝐺𝑘𝑤𝑘

𝑅𝑊 ; 𝑤𝑘
𝑅𝑊 ~ 𝑁(0, 𝑄𝑘) (4.47) 

�̇�𝑘 = [ 

�̇�𝐼𝐵
𝐵

�̇�

�̇�𝑅𝑊
𝐵

 ] = 𝐴𝑘 [ 
𝑤𝐼𝐵

𝐵

𝑞

𝐻𝑅𝑊
𝐵

 ] + 𝐵𝑘 [ 
𝑀𝐶

𝑅𝑊

𝑀𝐷
 ] + 𝑄𝑘 [ 

𝑀𝐶
𝑅𝑊

𝑀𝐷
 ] (4.48) 

Case-2: Torque generators are only magnetic torque rods  

The state space definition for this case is written like the following representation 

(𝑥𝑘
𝑀𝑇𝑅 is state vector and 𝑢𝑘

𝑀𝑇𝑅 is input vector for this configuration):  

�̇�𝑘 = 𝑥𝑘+1
𝑀𝑇𝑅 = 𝐴𝑘𝑥𝑘

𝑀𝑇𝑅 + 𝐵𝑘𝑢𝑘
𝑀𝑇𝑅 + 𝐺𝑘𝑤𝑘

𝑀𝑇𝑅; 𝑤𝑘
𝑀𝑇𝑅 ~ 𝑁(0, 𝑄𝑘) (4.49) 

�̇�𝑘 = [
 �̇�𝐼𝐵

𝐵

�̇�
 ] = 𝐴𝑘 [ 

�̇�𝐼𝐵
𝐵

�̇�
 ] + 𝐵𝑘 [ 

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷
] + 𝑄𝑘 [ 

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷
] (4.50) 

Case-3: Torque generators are both magnetic torque rods and reaction wheels  

The state space definition of the nonlinear equations specified above is written with 

the following representation (𝑥𝑘
𝑅𝑊+𝑀𝑇𝑅 is state vector and 𝑢𝑘

𝑅𝑊+𝑀𝑇𝑅 is input vector 

for this configuration):  

�̇�𝑘 = 𝑥𝑘+1
𝑅𝑊+𝑀𝑇𝑅 = 𝐴𝑘𝑥𝑘

𝑅𝑊+𝑀𝑇𝑅 + 𝐵𝑘𝑢𝑘
𝑅𝑊+𝑀𝑇𝑅 + 𝐺𝑘𝑤𝑘

𝑅𝑊+𝑀𝑇𝑅 (4.51) 

�̇�𝑘 = [ 

�̇�𝐼𝐵
𝐵

�̇�

�̇�𝑅𝑊
𝐵

 ] = 𝐴𝑘 [
𝑤𝐼𝐵

𝐵

𝑞

𝐻𝑅𝑊
𝐵

] + 𝐵𝑘 [

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

] + 𝑄𝑘 [

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

] (4.52) 

In this study, the simulation results are based on this model configuration.  
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4.3.1. Linearization of Nonlinear Model Equations 

Nonlinear satellite equations can be linearized using the steady-state satellite 

conditions. In practice, the values of system (𝑤𝑘) and measurement (𝑣𝑘) noise 

vectors are not to be involved into the linearization computations: 

�̇�𝑘 = 𝑥𝑘+1 = 𝑓( 𝑥𝑘, 𝑢𝑘, 𝑘) =  𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘   (4.53) 

 𝑦𝑘 = ℎ (𝑥𝑘,  𝑢𝑘 , 𝑘) = 𝐻𝑘𝑥𝑘+ 𝐷𝑘𝑢𝑘  (4.54) 

In order to obtain a linear model around a specific set of constant values called 

operating or equilibrium points (�̅�𝑘, �̅�𝑘), the small deviations from these points 

(∆𝑥𝑘, ∆𝑦𝑘, ∆𝑢𝑘) are introduced like the following: 

∆𝑥𝑘 = 𝑥𝑘 − �̅�𝑘     𝑥𝑘 = ∆𝑥𝑘 + �̅�𝑘    �̇�𝑘 = ∆𝑥𝑘
̇ +  �̇̅�𝑘 (4.55) 

∆𝑦𝑘 = 𝑦𝑘 − �̅�𝑘     𝑦𝑘 = ∆𝑦𝑘 + �̅�𝑘 (4.56) 

∆𝑢𝑘 = 𝑢𝑘 − �̅�𝑘     𝑢𝑘 = ∆𝑢𝑘 + �̅�𝑘 (4.57) 

The first order of Taylor series expansion can be applied to first nonlinear scalar 

equations by reducing the higher order components [51]:  

∆𝑥𝑘
̇ +  �̇̅�𝑘 = 𝑓(�̅�𝑘, �̅�𝑘, 𝑘) +

𝜕𝑓(�̅�𝑘 ,  �̅�𝑘 , 𝑘)

𝜕𝑥𝑘
|
�̅�𝑘

∆𝑥𝑘 +
𝜕𝑓(�̅�𝑘 ,  �̅�𝑘 , 𝑘)

𝜕𝑢𝑘
|
�̅�𝑘

∆𝑢𝑘 + ⋯ (4.58) 

∆𝑦𝑘 + �̅�𝑘 = ℎ(�̅�𝑘 , �̅�𝑘 , 𝑘) +
𝜕ℎ(�̅�𝑘 , �̅�𝑘 , 𝑘)

𝜕𝑥𝑘
|
�̅�𝑘

∆𝑥𝑘 +
𝜕ℎ(�̅�𝑘 , �̅�𝑘 , 𝑘)

𝜕𝑢𝑘
|
�̅�𝑘

∆𝑢𝑘 + ⋯ (4.59) 

Considering the definitions of �̇̅�𝑘 = 𝑓(�̅�𝑘, �̅�𝑘, 𝑘) and �̅�𝑘 = ℎ(�̅�𝑘,  �̅�𝑘 , 𝑘), state-

space model is defined with the following equations by truncating to the first order 
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of Taylor series. The Jacobian definitions of 𝐴𝑘, 𝐵𝑘, 𝐻𝑘 and 𝐷𝑘 matrices are 

calculated by taking partial derivatives with respect to states and inputs around 

operating points: 

∆𝑥𝑘
̇ = 𝐴𝑘∆𝑥𝑘 + 𝐵𝑘∆𝑢𝑘 =

𝜕𝑓(�̅�𝑘,  �̅�𝑘, 𝑘)

𝜕𝑥𝑘
|
�̅�𝑘

∆𝑥𝑘 +
𝜕𝑓(�̅�𝑘,  �̅�𝑘, 𝑘)

𝜕𝑢𝑘
|
𝑢𝑘

∆𝑢𝑘 (4.60) 

∆𝑦𝑘 = 𝐻𝑘∆𝑥𝑘 + 𝐷𝑘∆𝑢𝑘 =
𝜕ℎ(�̅�𝑘,  �̅�𝑘 , 𝑘)

𝜕𝑥𝑘
|
�̅�𝑘

∆𝑥𝑘 +
𝜕ℎ(�̅�𝑘, �̅�𝑘 , 𝑘)

𝜕𝑢𝑘
|
𝑢𝑘

∆𝑢𝑘 (4.61) 

𝐴𝑘 =

[
 
 
 
 
 
 
 

  

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…
𝜕𝑓1
𝜕𝑥𝑚

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…
𝜕𝑓2
𝜕𝑥𝑚

 

⋮
𝜕𝑓𝑛
𝜕𝑥1

⋮
𝜕𝑓𝑛
𝜕𝑥2

⋱
…

⋮
𝜕𝑓𝑛
𝜕𝑥𝑚 ]

 
 
 
 
 
 
 

  ;   𝐵𝑘 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

…
𝜕𝑓1
𝜕𝑢𝑚

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

…
𝜕𝑓2
𝜕𝑢𝑚

⋮
𝜕𝑓𝑛
𝜕𝑢1

⋮
𝜕𝑓𝑛
𝜕𝑢2

⋱
…

⋮
𝜕𝑓𝑛
𝜕𝑢𝑚]

 
 
 
 
 
 
 

 (4.62) 

𝐻𝑘 = 

[
 
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2
…

𝜕ℎ1

𝜕𝑥𝑚

𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2
…

𝜕ℎ2

𝜕𝑥𝑚

⋮
𝜕ℎ𝑛

𝜕𝑥1

⋮
𝜕ℎ𝑛

𝜕𝑥2

⋱
…

⋮
𝜕ℎ𝑛

𝜕𝑥𝑚]
 
 
 
 
 
 
 

 ;   𝐷𝑘 =

[
 
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑢1

𝜕ℎ1

𝜕𝑢2
…

𝜕ℎ1

𝜕𝑢𝑚

𝜕ℎ2

𝜕𝑢1

𝜕ℎ2

𝜕𝑢2
…

𝜕ℎ2

𝜕𝑢𝑚

⋮
𝜕ℎ𝑛

𝜕𝑢1

⋮
𝜕ℎ𝑛

𝜕𝑢2

⋱
…

⋮
𝜕ℎ𝑛

𝜕𝑢𝑚]
 
 
 
 
 
 
 

 (4.63) 

4.3.1.1. Linearization of Satellite Nonlinear Attitude Model 

A mathematical model of satellite attitude is separated into two sections. The first 

one describes the behaviour under the effects of external forces, and the second one 

defines the relation between Body Frame and Local Navigation Frame. Linearization 

process is applied for the case of using both RWs and MTRs as actuators here. 

However, this process can be adjusted in compliance with different actuator 
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configurations. The derivative of nonlinear dynamic equation with respect to state 

vector (𝐴𝑘𝑥𝑘): 

∆𝑥𝑘
̇ = 𝐴𝑘∆𝑥𝑘 + 𝐵𝑘∆𝑢𝑘    �̇� = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 (4.64) 

𝐴𝑘𝑥𝑘 =

[
 
 
 
 
 
 

  

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐼𝐵
𝐵

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝑅𝑊
𝐵

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐼𝐵
𝐵

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝑅𝑊
𝐵

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐼𝐵
𝐵

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝑅𝑊
𝐵

  

]
 
 
 
 
 
 

 [ 
 𝑤𝐼𝐵

𝐵

𝑞

𝐻𝑅𝑊
𝐵

 ] (4.65) 

𝐴𝑘𝑥𝑘 =

[
 
 
 
 
 
 
 

  

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐼𝐵
𝐵

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝑅𝑊
𝐵

𝜕�̇̅�

𝜕�̅�𝐼𝐵
𝐵

𝜕�̇̅�

𝜕�̅�

𝜕�̇̅�

𝜕�̅�𝑅𝑊
𝐵

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐼𝐵
𝐵

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝑅𝑊
𝐵

  

]
 
 
 
 
 
 
 

[ 
 𝑤𝐼𝐵

𝐵

𝑞

𝐻𝑅𝑊
𝐵

 ]  (4.66) 

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐼𝐵
𝐵 =

[
 
 
 
 
 
 
 

 

0
(𝐼𝑆𝑦

− 𝐼𝑆𝑧
)�̅�𝐼𝐵3

𝐵 − 𝐻𝑅𝑊3
𝐵

𝐼𝑆𝑥

(𝐼𝑆𝑦
− 𝐼𝑆𝑧

)�̅�𝐼𝐵2
𝐵 + �̅�𝑅𝑊2

𝐵

𝐼𝑆𝑥

(𝐼𝑆𝑧
− 𝐼𝑆𝑥

)�̅�𝐼𝐵3
𝐵 + 𝐻𝑅𝑊3

𝐵

𝐼𝑆𝑦

0
(𝐼𝑆𝑧

− 𝐼𝑆𝑥
)�̅�𝐼𝐵1

𝐵 − 𝐻𝑅𝑊1
𝐵

𝐼𝑆𝑦

(𝐼𝑆𝑥
− 𝐼𝑆𝑦

)�̅�𝐼𝐵2
𝐵 − 𝐻𝑅𝑊2

𝐵

𝐼𝑆𝑧

(𝐼𝑆𝑥
− 𝐼𝑆𝑦

)�̅�𝐼𝐵1
𝐵 + 𝐻𝑅𝑊1

𝐵

𝐼𝑆𝑧

0

 

]
 
 
 
 
 
 
 

  (4.67) 

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�
= [0]3𝑥4 (4.68) 

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝑅𝑊
𝐵 =

[
 
 
 
 
 
 
 

 

0
�̅�𝐼𝐵3

𝐵

𝐼𝑆𝑥

−
�̅�𝐼𝐵2

𝐵

𝐼𝑆𝑥

−
�̅�𝐼𝐵3

𝐵

𝐼𝑆𝑦

0
�̅�𝐼𝐵1

𝐵

𝐼𝑆𝑦

�̅�𝐼𝐵2

𝐵

𝐼𝑆𝑧

−
�̅�𝐼𝐵1

𝐵

𝐼𝑆𝑧

0
]
 
 
 
 
 
 
 

= −𝐼𝑆
−1𝛺(�̅�𝐼𝐵

𝐵 ) (4.69) 
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𝜕�̇̅�

𝜕�̅�𝐼𝐵
𝐵 =

1

2
[ 

�̅�4 −�̅�3 �̅�2

�̅�3 �̅�4 −�̅�1

−�̅�2 �̅�1 �̅�4

−�̅�1 −�̅�2 −�̅�3

 ] (4.70) 

𝜕�̇̅�

𝜕�̅�
=

1

2
[𝛺(�̅�𝐼𝐵

𝐵 )] + 𝑤0

[
 
 
 
 
 
 
 
 �̅�1�̅�3 �̅�2�̅�3

1 + 2�̅�3
2

2
�̅�3�̅�4

�̅�1�̅�4 �̅�2�̅�4 �̅�3�̅�4

−(1 + 2�̅�1
2)

2
−(1 + 2�̅�1

2)

2
−�̅�1�̅�2 −�̅�1�̅�3 −�̅�1�̅�4

−�̅�1�̅�2

−(1 + 2�̅�2
2)

2
−�̅�2�̅�3 −�̅�2�̅�4

 

]
 
 
 
 
 
 
 
 

 (4.71) 

𝜕�̇̅�

𝜕�̅�𝑅𝑊
𝐵 = [0]4𝑥3 (4.72) 

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐼𝐵
𝐵 =

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝑅𝑊
𝐵 = [0]3𝑥3 ;   

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�
= [0]3𝑥4 (4.73) 

The state space definition of nonlinear dynamic/kinematic equations with respect to 

input vector (𝑢𝑘) is: 

𝐵𝑘𝑢𝑘 =

[
 
 
 
 
 
 

  

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑅𝑊

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕𝑓1(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐷

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑅𝑊

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕𝑓2(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐷

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑅𝑊

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕𝑓3(�̅�𝑘, �̅�𝑘)

𝜕�̅�𝐷

  

]
 
 
 
 
 
 

[ 

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

 ] (4.74) 

𝐵𝑘𝑢𝑘 =

[
 
 
 
 
 
 
 

 

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐶
𝑅𝑊

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐷

𝜕�̇̅�

𝜕�̅�𝐶
𝑅𝑊

𝜕�̇̅�

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕�̇̅�

𝜕�̅�𝐷

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐶
𝑅𝑊

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐶
𝑀𝑇𝑅

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐷

 

]
 
 
 
 
 
 
 

[ 

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

] (4.75) 
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𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐶
𝑅𝑊 =

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐶
𝑀𝑇𝑅 =

𝜕�̇̅�𝐼𝐵
𝐵

𝜕�̅�𝐷

= [ 

𝐼𝑆𝑥

−1 0 0

0 𝐼𝑆𝑦

−1 0

0 0 𝐼𝑆𝑧

−1

 ] = 𝑑𝑖𝑎𝑔(𝐼𝑆
−1 )3𝑥3 (4.76) 

𝜕�̇̅�

𝜕�̅�𝐶
𝑅𝑊 =

𝜕�̇̅�

𝜕�̅�𝐶
𝑀𝑇𝑅 =

𝜕�̇̅�

𝜕�̅�𝐷

= [0]4𝑥3 (4.77) 

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐶
𝑅𝑊 = [ 

−1 0 0
0 −1 0
0 0 −1

] = 𝑑𝑖𝑎𝑔(−1 )3𝑥3 (4.78) 

𝜕�̇̅�𝑅𝑊
𝐵

𝜕�̅�𝐷

=
𝜕�̇̅�𝑅𝑊

𝐵

𝜕�̅�𝐶
𝑀𝑇𝑅 = [0]3𝑥3 (4.79) 

The Jacobian matrix definition of input vector (𝐵𝑘):  

𝐵𝑘𝑢𝑘 = [ 

𝑑𝑖𝑎𝑔(𝐼𝑆
−1 )3𝑥3 𝑑𝑖𝑎𝑔(𝐼𝑆

−1 )3𝑥3 𝑑𝑖𝑎𝑔(𝐼𝑆
−1 )3𝑥3

[0]4𝑥3 [0]4𝑥3 [0]4𝑥3

𝑑𝑖𝑎𝑔(−1 )3𝑥3 [0]3𝑥3 [0]3𝑥3

 ] [ 

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

]  (4.80) 

4.3.1.2. Linearization of Satellite Nonlinear Sensor Measurement Model 

The matrix (𝐻𝑘) defines the changes of measurement vectors with time and it is 

consisted of each sensor measurements. This matrix is commonly a function of 

satellite kinematics such as Euler angles or quaternion vectors and it is calculated for 

each iteration.  

The measurement equations of attitude sensors (𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘) are defined with 

its noise vectors (𝑣𝑘) with respect to system states (𝑥𝑘 = [𝑤𝐼𝐵
𝐵 , 𝑞,  𝐻𝑅𝑊

𝐵 ]𝑇):  
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𝑦𝑘 =

[
 
 
 
 
 

 

𝑦𝐺𝑌𝑅𝑂,𝑘

𝑦𝑆𝑇𝑅,𝑘

𝑦𝑀𝐺𝑀,𝑘

𝑦𝑆𝑢𝑆,𝑘

𝑦𝐺𝑃𝑆1,𝑘

𝑦𝐺𝑃𝑆2,𝑘

 

]
 
 
 
 
 

=

[
 
 
 
 
 

 

𝑤𝑚𝑒𝑎𝑠

𝑞𝑚𝑒𝑎𝑠

𝐵𝑚𝑒𝑎𝑠

𝑆𝑉𝑚𝑒𝑎𝑠

𝑟𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠

 

]
 
 
 
 
 

=

[
 
 
 
 
 

 

𝐻𝐺𝑌𝑅𝑂

𝐻𝑆𝑇𝑅

𝐻𝑀𝐺𝑀

𝐻𝑆𝑢𝑆

𝐻𝐺𝑃𝑆1

𝐻𝐺𝑃𝑆2

 

]
 
 
 
 
 

. 𝑥𝑘 +

[
 
 
 
 
 

 

𝑣𝐺𝑌𝑅𝑂

𝑣𝑆𝑇𝑅

𝑣𝑀𝐺𝑀

𝑣𝑆𝑢𝑆

𝑣𝐺𝑃𝑆1

𝑣𝐺𝑃𝑆2

 

]
 
 
 
 
 

 (4.81) 

Linear Measurement Model of Fiber Optic Gyroscopes:  

The measurement matrix for gyroscopes (𝐻𝐺𝑌𝑅𝑂) is constructed as follows: 

∆𝑦𝐺𝑌𝑅𝑂,𝑘 = [𝐻𝐺𝑌𝑅𝑂]∆𝑥𝑘 =
𝜕𝐻𝐺𝑌𝑅𝑂

𝜕𝑥𝑘
|
𝑥𝑘=�̅�𝐼𝐵

𝐵

∆𝑥𝑘 (4.82) 

[𝐻𝐺𝑌𝑅𝑂] = [

𝐻𝐺𝑌𝑅𝑂,1

𝐻𝐺𝑌𝑅𝑂,2

𝐻𝐺𝑌𝑅𝑂,3

] =
𝜕𝐻𝐺𝑌𝑅𝑂

𝜕𝑥𝑘
|

𝑥𝑘=�̅�𝐼𝐵
𝐵

= 
𝜕𝑤𝐵

𝜕𝑥𝑘
|
𝑥𝑘=�̅�𝐼𝐵

𝐵

= 𝐼3𝑥3 (4.83) 

∆𝑦𝐺𝑌𝑅𝑂,𝑘 = [𝐻𝐺𝑌𝑅𝑂,1 𝐻𝐺𝑌𝑅𝑂,2 𝐻𝐺𝑌𝑅𝑂,3 03𝑥4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.84) 

∆𝑦𝐺𝑌𝑅𝑂,𝑘 = [𝐼3𝑥3 03𝑥4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.85) 

Linear Measurement Model of Star Trackers:  

The measurement matrix for star trackers ([𝐻𝑆𝑇𝑅]) is constructed as follows: 

∆𝑦𝑆𝑇𝑅,𝑘 = [𝐻𝑆𝑇𝑅]∆𝑥𝑘 =
𝜕𝐻𝑆𝑇𝑅

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

∆𝑥𝑘 (4.86) 
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[𝐻𝑆𝑇𝑅] =

[
 
 
 

 

𝐻𝑆𝑇𝑅,1

𝐻𝑆𝑇𝑅,2

𝐻𝑆𝑇𝑅,3

𝐻𝑆𝑇𝑅,4

 

]
 
 
 

=
𝜕𝐻𝑆𝑇𝑅

𝜕𝑥𝑘
||

𝑥𝑘=�̅�

=
𝜕𝑞𝐵

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

= 𝐼4𝑥4 (4.87) 

∆𝑦𝑆𝑇𝑅,𝑘 = [04𝑥3 𝐻𝑆𝑇𝑅,1 𝐻𝑆𝑇𝑅,2 𝐻𝑆𝑇𝑅,3 𝐻𝑆𝑇𝑅,4 04𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.88) 

∆𝑦𝑆𝑇𝑅,𝑘 = [04𝑥3 𝐼4𝑥4 04𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.89) 

Linear Measurement Model of Magnetometers:  

If we define the derivative of transition matrix ([𝐶𝑂
𝐵]) with respect to state quaternion 

vector, the linearized measurement matrix can be written for sensor measurements 

obtained from Orbit Frame: 

 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�1

= 2 [   

𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 𝑞4

𝑞3 −𝑞4 −𝑞1

 ] (4.90) 

 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�2

= 2 [ 

−𝑞2 𝑞1 −𝑞4

𝑞1 𝑞2 𝑞3

𝑞4 𝑞3 −𝑞2

   ] (4.91) 

 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�3

= 2 [  

−𝑞3 𝑞4 𝑞1

−𝑞4 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

  ] (4.92) 

𝜕[𝐶𝑂
𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�4

= 2. [ 

𝑞4 𝑞3 −𝑞2

−𝑞3 𝑞4 𝑞1

𝑞2 −𝑞1 𝑞4

] (4.93) 
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The measurement matrix of magnetometers ([𝐻𝑀𝐺𝑀]) is constructed as follows: 

∆𝑦𝑀𝐺𝑀,𝑘 = [𝐻𝑀𝐺𝑀]∆𝑥𝑘 =
𝜕𝐻𝑀𝐺𝑀

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

∆𝑥𝑘 (4.94) 

[𝐻𝑀𝐺𝑀] =

[
 
 
 

 

𝐻𝑀𝐺𝑀,1

𝐻𝑀𝐺𝑀,2

𝐻𝑀𝐺𝑀,3

𝐻𝑀𝐺𝑀,4

 

]
 
 
 

=
𝜕𝐻𝑀𝐺𝑀

𝜕𝑥𝑘
||

𝑥𝑘=�̅�

= 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

𝐵𝑂 (4.95) 

∆𝑦𝑀𝐺𝑀,𝑘 = [03𝑥3 𝐻𝑀𝐺𝑀,1 𝐻𝑀𝐺𝑀,2 𝐻𝑀𝐺𝑀,3 𝐻𝑀𝐺𝑀,4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.96) 

Linear Measurement Model of Sun Sensors:  

The measurement matrix for sun sensors ([𝐻𝑆𝑢𝑆]) is extracted after applying 

linearization method to sun sensor measurement model: 

∆𝑦𝑆𝑢𝑆,𝑘 = [𝐻𝑆𝑢𝑆]∆𝑥𝑘 =
𝜕𝐻𝑆𝑢𝑆

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

∆𝑥𝑘 (4.97) 

[𝐻𝑆𝑢𝑆] =

[
 
 
 

 

𝐻𝑆𝑢𝑆,1

𝐻𝑆𝑢𝑆,2

𝐻𝑆𝑢𝑆,3

𝐻𝑆𝑢𝑆,4

 

]
 
 
 

=
𝜕𝐻𝑆𝑢𝑆

𝜕𝑥𝑘
||

𝑥𝑘=�̅�

= 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

𝑆𝑉𝑂 (4.98) 

∆𝑦𝑆𝑢𝑆,𝑘 = [03𝑥3 𝐻𝑆𝑢𝑆,1 𝐻𝑆𝑢𝑆,2 𝐻𝑆𝑢𝑆,3 𝐻𝑆𝑢𝑆,4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.99) 

Linear Measurement Model of GPS Receiver Sensors:  

The measurement matrices for GPS receivers ([𝐻𝐺𝑃𝑆1], [𝐻𝐺𝑃𝑆2]) in terms of position 

and velocity values (𝑟𝑚𝑒𝑎𝑠
𝐵𝑂𝐷𝑌, 𝑣𝑚𝑒𝑎𝑠

𝐵𝑂𝐷𝑌) are constructed like the following: 
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[ 
∆𝑦𝐺𝑃𝑆1,𝑘

∆𝑦𝐺𝑃𝑆2,𝑘
 ] = [ 

𝐻𝐺𝑃𝑆1

𝐻𝐺𝑃𝑆2
 ] ∆𝑥𝑘 (4.100) 

[𝐻𝐺𝑃𝑆1] =

[
 
 
 

 

𝐻𝐺𝑃𝑆1,1

𝐻𝐺𝑃𝑆1,2

𝐻𝐺𝑃𝑆1,3

𝐻𝐺𝑃𝑆1,4

 

]
 
 
 

=
𝜕𝐻𝐺𝑃𝑆1

𝜕𝑥𝑘
||

𝑥𝑘=�̅�

= 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

𝑟𝑂 

(4.101) 

[𝐻𝐺𝑃𝑆2] =

[
 
 
 

 

𝐻𝐺𝑃𝑆2,1

𝐻𝐺𝑃𝑆2,2

𝐻𝐺𝑃𝑆2,3

𝐻𝐺𝑃𝑆2,4

 

]
 
 
 

=  
𝜕𝐻𝐺𝑃𝑆2

𝜕𝑥𝑘
||

𝑥𝑘=�̅�

= 
𝜕[𝐶𝑂

𝐵]

𝜕𝑥𝑘
|
𝑥𝑘=�̅�

𝑣𝑂 

(4.102) 

∆𝑦𝐺𝑃𝑆1,𝑘 = [03𝑥3 𝐻𝐺𝑃𝑆1,1 𝐻𝐺𝑃𝑆1,2 𝐻𝐺𝑃𝑆1,3 𝐻𝐺𝑃𝑆1,4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.103) 

∆𝑦𝐺𝑃𝑆2,𝑘 = [03𝑥3 𝐻𝐺𝑃𝑆2,1 𝐻𝐺𝑃𝑆2,2 𝐻𝐺𝑃𝑆2,3 𝐻𝐺𝑃𝑆2,4 03𝑥3] [

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.104) 

Assuming that all the sensor measurements are available, the state space definition 

of linearized measurement equations (∆𝑦𝑘 = 𝐻𝑘∆𝑥𝑘) around the operating points 

(�̅�𝑘 = (�̅�𝐼𝐵
𝐵 , �̅�,  �̅�𝑅𝑊

𝐵 ) ) is represented hereafter: 

𝐻𝑘∆𝑥𝑘 =

[
 
 
 
 
 
𝑤𝑚𝑒𝑎𝑠

𝑞𝑚𝑒𝑎𝑠

𝐵𝑚𝑒𝑎𝑠

𝑆𝑉𝑚𝑒𝑎𝑠

𝑟𝑚𝑒𝑎𝑠

𝑣𝑚𝑒𝑎𝑠 ]
 
 
 
 
 

=

[
 
 
 
 
 

 

𝐼3𝑥3 03𝑥4 03𝑥3

04𝑥3 𝐼4𝑥4 04𝑥3

03𝑥3 [𝐻𝑀𝐺𝑀]3𝑥4 03𝑥3

03𝑥3 [𝐻𝑆𝑢𝑆]3𝑥4 03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆1]3𝑥4 03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆2]3𝑥4 03𝑥3

  

]
 
 
 
 
 

[

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (4.105) 
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4.3.1.3. Linear Satellite State Space Models 

There are three different linear models that can be defined with respect to the 

selected actuator in a plant model.  The linear state space definition with Jacobian 

matrices represents the case which is involving both RWs and MTRs as torque 

generators. The matrix definitions of linear model are (𝐴𝑘,  𝐵𝑘,  𝐻𝑘, 𝐷𝑘 ): 

𝐴𝑘 = [ 𝐴𝑤𝑘 = �̇�𝐼𝐵
𝐵 |�̅�𝑘

, 𝐴𝑞𝑘 = �̇�|�̅�𝑘
, 𝐴ℎ𝑟𝑤𝑘 = �̇�𝑅𝑊

𝐵 |
�̅�𝑘

 ] 

𝐴𝑤𝑘 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0

(𝐼𝑆𝑦
− 𝐼𝑆𝑧

)�̅�𝐼𝐵3
𝐵 − 𝐻𝑅𝑊3

𝐵

𝐼𝑆𝑥

(𝐼𝑆𝑦
− 𝐼𝑆𝑧

)�̅�𝐼𝐵2
𝐵 + 𝐻𝑅𝑊2

𝐵

𝐼𝑆𝑥

(𝐼𝑆𝑧
− 𝐼𝑆𝑥

)�̅�𝐼𝐵3
𝐵 + 𝐻𝑅𝑊3

𝐵

𝐼𝑆𝑦

0
(𝐼𝑆𝑧

− 𝐼𝑆𝑥
)�̅�𝐼𝐵1

𝐵 − 𝐻𝑅𝑊1
𝐵

𝐼𝑆𝑦

(𝐼𝑆𝑥
− 𝐼𝑆𝑦

)�̅�𝐼𝐵2
𝐵 − �̅�𝑅𝑊2

𝐵

𝐼𝑆𝑧

(𝐼𝑆𝑥
− 𝐼𝑆𝑦

)�̅�𝐼𝐵1
𝐵 + 𝐻𝑅𝑊1

𝐵

𝐼𝑆𝑧

0

1

2
�̅�4 −

1

2
�̅�3

1

2
�̅�2

1

2
�̅�3

1

2
�̅�4 −

1

2
�̅�1

−
1

2
�̅�2

1

2
�̅�1

1

2
�̅�4

−
1

2
�̅�1 −

1

2
�̅�2 −

1

2
�̅�3

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐴𝑞𝑘 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0

𝑤0�̅�1�̅�3

�̅�𝐼𝐵3
𝐵

2
+ 𝑤0�̅�2�̅�3 −

�̅�𝐼𝐵2
𝐵

2
+

𝑤0

2
(1 + 2�̅�3

2)
�̅�𝐼𝐵1

𝐵

2
+ 𝑤0�̅�3�̅�4

−
�̅�𝐼𝐵3

𝐵

2
+ 𝑤0�̅�1�̅�4 𝑤0�̅�2�̅�4

�̅�𝐼𝐵1
𝐵

2
+ 𝑤0�̅�3�̅�4

�̅�𝐼𝐵2
𝐵

2
−

𝑤0

2
(1 + 2�̅�1

2)

�̅�𝐼𝐵2
𝐵

2
−

𝑤0

2
(1 + 2�̅�1

2) −
�̅�𝐼𝐵1

𝐵

2
− 𝑤0�̅�1�̅�2 −𝑤0�̅�1�̅�3

�̅�𝐼𝐵3
𝐵

2
− 𝑤0�̅�1�̅�4

−
�̅�𝐼𝐵1

𝐵

2
− 𝑤0�̅�1�̅�2 −

�̅�𝐼𝐵2
𝐵

2
−

𝑤0

2
(1 + 2�̅�2

2) −
�̅�𝐼𝐵3

𝐵

2
− 𝑤0�̅�2�̅�3 −𝑤0�̅�2�̅�4

0 0 0 0
0 0 0 0
0 0 0 0 ]
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𝐴ℎ𝑟𝑤𝑘 = [010𝑥3] 

𝐵𝑘 = 

[
 
 
 
 
 
 
 
 
 
 

 

𝐼𝑆𝑥

−1 0 0 𝐼𝑆𝑥

−1 0 0 𝐼𝑆𝑥

−1 0 0

0 𝐼𝑆𝑦

−1 0 0 𝐼𝑆𝑦

−1 0 0 𝐼𝑆𝑦

−1 0

0 0 𝐼𝑆𝑧

−1 0 0 𝐼𝑆𝑧

−1 0 0 𝐼𝑆𝑧

−1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

 

]
 
 
 
 
 
 
 
 
 
 

 

𝐻𝑘 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0
0
0

0
0
0

0
0
0

2 [ 

𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 𝑞4

𝑞3 −𝑞4 −𝑞1

] [

𝐵𝑂𝑥

𝐵𝑂𝑦

𝐵𝑂𝑧

] 2 [

−𝑞2 𝑞1 −𝑞4

𝑞1 𝑞2 𝑞3

𝑞4 𝑞3 −𝑞2

] [

𝐵𝑂𝑥

𝐵𝑂𝑦

𝐵𝑂𝑧

] 2 [

−𝑞3 𝑞4 𝑞1

−𝑞4 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

] [

𝐵𝑂𝑥

𝐵𝑂𝑦

𝐵𝑂𝑧

] 2 [

𝑞4 𝑞3 −𝑞2

−𝑞3 𝑞4 𝑞1

𝑞2 −𝑞1 𝑞0

] [

𝐵𝑂𝑥

𝐵𝑂𝑦

𝐵𝑂𝑧

] 0 0 0

0
0
0

0
0
0

0
0
0

2 [ 

𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 𝑞4

𝑞3 −𝑞4 −𝑞1

] [

𝑆𝑉𝑂𝑥

𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑧

] 2 [

−𝑞2 𝑞1 −𝑞4

𝑞1 𝑞2 𝑞3

𝑞4 𝑞3 −𝑞2

] [

𝑆𝑉𝑂𝑥

𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑧

] 2 [

−𝑞3 𝑞4 𝑞1

−𝑞4 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

] [

𝑆𝑉𝑂𝑥

𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑧

] 2 [

𝑞4 𝑞3 −𝑞2

−𝑞3 𝑞4 𝑞1

𝑞2 −𝑞1 𝑞0

] [

𝑆𝑉𝑂𝑥

𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑧

] 0 0 0

0
0
0

0
0
0

0
0
0

2 [ 

𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 𝑞4

𝑞3 −𝑞4 −𝑞1

] [

𝑟𝑂𝑥

𝑟𝑂𝑦

𝑟𝑂𝑧

] 2 [

−𝑞2 𝑞1 −𝑞4

𝑞1 𝑞2 𝑞3

𝑞4 𝑞3 −𝑞2

] [

𝑟𝑂𝑥

𝑟𝑂𝑦

𝑟𝑂𝑧

] 2 [

−𝑞3 𝑞4 𝑞1

−𝑞4 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

] [

𝑟𝑂𝑥

𝑟𝑂𝑦

𝑟𝑂𝑧

] 2 [

𝑞4 𝑞3 −𝑞2

−𝑞3 𝑞4 𝑞1

𝑞2 −𝑞1 𝑞0

] [

𝑟𝑂𝑥

𝑟𝑂𝑦

𝑟𝑂𝑧

] 0 0 0

0
0
0

0
0
0

0
0
0

2 [ 

𝑞1 𝑞2 𝑞3

𝑞2 −𝑞1 𝑞4

𝑞3 −𝑞4 −𝑞1

] [

𝑣𝑂𝑥

𝑣𝑂𝑦

𝑣𝑂𝑧

] 2 [

−𝑞2 𝑞1 −𝑞4

𝑞1 𝑞2 𝑞3

𝑞4 𝑞3 −𝑞2

] [

𝑣𝑂𝑥

𝑣𝑂𝑦

𝑣𝑂𝑧

] 2 [

−𝑞3 𝑞4 𝑞1

−𝑞4 −𝑞3 𝑞2

𝑞1 𝑞2 𝑞3

] [

𝑣𝑂𝑥

𝑣𝑂𝑦

𝑣𝑂𝑧

] 2 [

𝑞4 𝑞3 −𝑞2

−𝑞3 𝑞4 𝑞1

𝑞2 −𝑞1 𝑞0

] [

𝑣𝑂𝑥

𝑣𝑂𝑦

𝑣𝑂𝑧

] 0 0 0
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝐷𝑘 = 0 

The selected operating points for state vectors are hereafter and these points are 

selected assuming that the satellite behaves like an inverted pendulum: 

 �̅�𝐼𝐵
𝐵 = [ �̅�𝐼𝐵1

𝐵 �̅�𝐼𝐵2

𝐵 �̅�𝐼𝐵3

𝐵  ]
𝑇

= [ 0 0 0 ]𝑇, 

 �̅� = [ �̅�1 �̅�2 �̅�3 �̅�4 ]𝑇 = [ 0 0 0 1 ]𝑇, 

 �̅�𝑅𝑊
𝐵 = [ �̅�𝑅𝑊1

𝐵 �̅�𝑅𝑊2

𝐵 �̅�𝑅𝑊3

𝐵  ]
𝑇

= [ 0 0 0 ]𝑇. 

The matrices around the operating points of state vector (�̅�𝑘 = 𝐴𝑘|�̅�𝐼𝐵
𝐵 , �̅�,�̅�𝑅𝑊

𝐵 ,), input 

vector (�̅�𝑘 = 𝐵𝑘|�̅�𝐼𝐵
𝐵 , �̅�,�̅�𝑅𝑊

𝐵 ,) and measurement vector (�̅�𝑘 = 𝐻𝑘|�̅�𝐼𝐵
𝐵 , �̅�,�̅�𝑅𝑊

𝐵 ,) are 

hereafter: 
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�̅�𝑘 = 

[
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

  0.5 0 0 0 0 0.0033 0 0 0 0
0 0.5 0 0 0 0 0.010 0 0 0
0 0 0.5 −0.0033 0 0 0 0 0 0
0 0 0 0 −0.0033 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

   

]
 
 
 
 
 
 
 
 
 

 

(4.106) 

�̅�𝑘 = 

[
 
 
 
 
 
 
 
 
 

 

0.1415 0 0 0.1415 0 0 0.1415 0 0
0 0.1439 0 0 0.1439 0 0 0.1439 0
0 0 0.1169 0 0 0.1169 0 0 0.1169
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0

  

]
 
 
 
 
 
 
 
 
 

 
(4.107) 

𝐻𝑘 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0
0
0

0
0
0

0
0
0

2 [

0
𝐵𝑂𝑧

−𝐵𝑂𝑦

] 2 [

−𝐵𝑂𝑧

0
𝐵𝑂𝑥

] 2 [
𝐵𝑂𝑦

−𝐵𝑂𝑥

0

] 2 [

𝐵𝑂𝑥

𝐵𝑂𝑦

𝐵𝑂𝑧

]
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

2 [

0
𝑆𝑉𝑂𝑧

−𝑆𝑉𝑂𝑦

] 2 [

−𝑆𝑉𝑂𝑧

0
𝑆𝑉𝑂𝑥

] 2 [−
𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑥

0

] 2 [

𝑆𝑉𝑂𝑥

𝑆𝑉𝑂𝑦

𝑆𝑉𝑂𝑧

]
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

2 [

0
𝑟𝑂𝑧

−𝑟𝑂𝑦

] 2 [

−𝑟𝑂𝑧

0
𝑟𝑂𝑥

] 2 [

𝑟𝑂𝑦

−𝑟𝑂𝑥

0
] 2 [

𝑟𝑂𝑥

𝑟𝑂𝑦

𝑟𝑂𝑧

]
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

2 [

0
𝑣𝑂𝑧

−𝑣𝑂𝑦

] 2 [

−𝑣𝑂𝑧

0
𝑣𝑂𝑥

] 2 [
𝑣𝑂𝑦

−𝑣𝑂𝑥

0
] 2 [

𝑣𝑂𝑥

𝑣𝑂𝑦

𝑣𝑂𝑧

]
0
0
0

0
0
0

0
0
0

  

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.108) 
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𝐻𝑘 matrix still shows a dynamic characterization and therefore some assumptions 

can be made for the dynamically changed elements such as {𝐵𝑂, 𝑆𝑉𝑂 , 𝑟𝑂 , 𝑣𝑂}. This 

matrix is directly taken as a unit matrix for linear optimal controller design (LQR) in 

this study.  The damping ratio 𝜉 and natural frequency 𝜔𝑛 can be taken as -1 and 

0.0057 or 0.0033 respectively for the linearized system with respect to the results of 

MATLAB “damp()” function.   

4.4. Controllability of Satellite Model 

If every state vector is transferred from any initial state to any desired state in a finite 

time period, this system is named as completely controllable. 𝑛 is the dimension of 𝐴 

matrix (𝑛 = 10) and 𝑄𝐶 (𝑄𝐶 = [𝐵 𝐴𝐵 … 𝐴𝑛−1𝐵]) is the controllability matrix : 

𝑄𝐶 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵 𝐴4𝐵 𝐴5𝐵 𝐴6𝐵] (4.109) 

The designed satellite model is completely controllable [70]:  

 The first six rows are linearly independent, 

 𝑄𝐶 matrix has full row rank  𝑟𝑎𝑛𝑘(𝑄𝐶) = 10 = 𝑛. 

The measurements of star trackers and gyroscopes are sufficient to identify every 

state, and then the system is completely observable. 𝑄𝑜 is the observability matrix 

(𝑄𝑜 = [𝐻𝑇 𝐴𝑇𝐻𝑇 … (𝐴𝑛−1)
𝑇
𝐻𝑇]):   

𝑄𝑜 = [𝐻𝑇 𝐴𝑇𝐻𝑇 (𝐴2)
𝑇
𝐻𝑇 (𝐴3)

𝑇
𝐻𝑇 (𝐴4)

𝑇
𝐻𝑇 (𝐴5)

𝑇
𝐻𝑇 (𝐴6)

𝑇
𝐻𝑇] (4.110) 

The given satellite model is completely state observable [70]:  

 The first seven columns are linearly independent, 

 𝑄𝑜 matrix has full row rank  𝑟𝑎𝑛𝑘(𝑄𝑜) = 10 = 𝑛. 
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In conclusion, it can be said that the system model is both observable and 

controllable according to the relevant theorems.  

4.5. Stability of Satellite Model 

For a linear system �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) with the state-feedback controller 𝑢(𝑡) =

−𝐾𝑥(𝑡) the closed loop system becomes:  

 𝑥(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡) 

The linear closed-loop system is said to be stabilizable if all the eigenvalues of 

(𝐴 − 𝐵𝐾) matrix has strictly negative real parts. The definition of satellite kinetic 

energy is determined like as below [4, 52]: 

𝐸𝐾𝐼𝑁 = 
1

2
(𝑤𝑂𝐵

𝐵 )𝑇𝐼𝑆 𝑤𝑂𝐵
𝐵  (4.111) 

The satellite potential energy is comprised of the energy of gravity gradient (𝐸𝐺𝐺) 

and the energy of gyroscopic motion (𝐸𝐺𝑌𝑅𝑂): 

𝐸𝐺𝐺 = 
3

2
(𝑤0)

2( [(𝐶𝑂
𝐵)3]

𝑇𝐼𝑆 [(𝐶𝑂
𝐵)3]  − 𝐼𝑆𝑧

 ) (4.112) 

𝐸𝐺𝑌𝑅𝑂 = 
1

2
 (𝑤0)

2( 𝐼𝑆𝑥
− [(𝐶𝑂

𝐵)1]
𝑇𝐼𝑆 [(𝐶𝑂

𝐵)1] ) (4.113) 

 (𝐶𝑂
𝐵)1 = [𝐶11, 𝐶21,  𝐶31]

𝑇 is the first column of transformation matrix,   

 (𝐶𝑂
𝐵)3 = [𝐶13, 𝐶23,  𝐶33]

𝑇 is the third column of transformation matrix.   

 The total energy (𝐸𝑇𝑂𝑇) that is the sum of kinetic (𝐸𝐾𝐼𝑁) and potential energy (𝐸𝑃𝑂𝑇) 

defined above can be selected as Lyapunov candidate function (𝑉(𝑥)):  

𝑉(𝑥) =  𝐸𝑇𝑂𝑇 = 𝐸𝐾𝐼𝑁 + 𝐸𝑃𝑂𝑇 = 𝐸𝐾𝐼𝑁 + 𝐸𝐺𝐺 + 𝐸𝐺𝑌𝑅𝑂 (4.114) 
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𝑉(𝑥) =
1

2
. (𝑤𝑂𝐵

𝐵 )𝑇𝐼𝑆 𝑤𝑂𝐵
𝐵  

          + 
3

2
 (𝑤0)

2. (𝐼𝑆𝑥
(𝐶13)

2 + 𝐼𝑆𝑦
(𝐶23)

2 + 𝐼𝑆𝑧
((𝐶33)

2 − 1)) 

          + 
1

2
(𝑤0)

2 (𝐼𝑆𝑥
(1 − (𝐶11)

2)  + 𝐼𝑆𝑦
(𝐶21)

2 + 𝐼𝑆𝑧
(𝐶31)

2) 

(4.115) 

The new definition of Lyapunov function by considering the following statements 

about matrix elements is: 

 (𝐶13)
2 + (𝐶23)

2 + (𝐶33)
2 = 1  (𝐶33)

2 = 1 − (𝐶13)
2 − (𝐶23)

2 

 (𝐶11)
2 + (𝐶21)

2 + (𝐶31)
2 = 1  (𝐶11)

2 = 1 − (𝐶21)
2 − (𝐶31)

2 

𝑉(𝑥) =
1

2
 (𝑤𝑂𝐵

𝐵 )𝑇𝐼𝑆 𝑤𝑂𝐵
𝐵  

          + 
3

2
 (𝑤0)

2 ((𝐼𝑆𝑥
− 𝐼𝑆𝑧

)(𝐶13)
2 + (𝐼𝑆𝑦

− 𝐼𝑆𝑧
) (𝐶23)

2) 

          + 
1

2
 (𝑤0)

2 ((𝐼𝑆𝑥
− 𝐼𝑆𝑦

) (𝐶21)
2 + (𝐼𝑆𝑥

− 𝐼𝑆𝑧
)(𝐶31)

2) 

(4.116) 

The state vector of 𝑉(𝑥) can be taken as 𝑥 = [𝑤𝑂𝐵
𝐵 ,  𝐶13, 𝐶23, 𝐶21,  𝐶31]

𝑇. For 

stability theorem, assuming that (𝑥 = 0) is an equilibrium point for �̇� = 𝑓(𝑥) and 

𝑉(𝑥) is a continuously differentiable function such that; 

 𝑉(0) = 0 ;  𝑉(𝑥) > 0 in 𝐷 − {0} ; 𝐷 ⊂ 𝑅𝑁  

 �̇�(𝑥) ≤ 0 in 𝐷  x = 0 is stable 

 �̇�(𝑥) < 0 in 𝐷 − {0}  x = 0 is asymptotically stable 

Satellite inertia moments must have the sequence of  𝐼𝑆𝑥
> 𝐼𝑆𝑦

> 𝐼𝑆𝑧
 in order to meet 

the first requirement relating about the positive definition of Lyapunov candidate 

function (𝑉(𝑥) > 0). However, its sorting is  𝐼𝑆𝑧
> 𝐼𝑆𝑥

> 𝐼𝑆𝑦
in the selected satellite 
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and therefore the abovementioned limitation is not satisfied. The derivative of 

𝑉(𝑥) = 𝐸𝑇𝑂𝑇 is herein below with respect to [4] and [52, 75]: 

 �̇�(𝑥) = 𝐼𝑆 𝑤𝑂𝐵
𝐵 +  3(𝑤0)

2 ((𝐼𝑆𝑥
− 𝐼𝑆𝑧

)𝐶13 + (𝐼𝑆𝑦
− 𝐼𝑆𝑧

) 𝐶23) 

               + (𝑤0)
2 ( (𝐼𝑆𝑥

− 𝐼𝑆𝑦
)𝐶21 + (𝐼𝑆𝑥

− 𝐼𝑆𝑧
)𝐶31) 

(4.117) 

The compact form of the derivative function is hereafter [71, 75]:  

�̇�(𝑥) = (𝑤𝑂𝐵
𝐵 )𝑇𝑀𝑐𝑚𝑑 (4.118) 

This definition can be used to prove some attitude controllers are asymptotically 

stable such as PID and linear quadratic regulator. On the other hand, it is required to 

declare another Lyapunov function to show that sliding mode controller has also 

stable behavior: 

𝑉(𝑞) = (𝑞𝑣)
𝑇𝑞𝑣 + (1 − 𝑞4)

2 (4.119) 

4.6. Satellite Attitude Estimation with Kalman Filters 

The Kalman Filter is a Bayesian estimation algorithm and designed as an optimal 

state estimator. It is used when the variables of interest are measured indirectly and 

the system measurements are available from various sensors. Kalman filter is an 

iterative process that it predicts the system states such as position, velocity or 

attitude vectors together with instrument errors, such as accelerometer and gyro 

biases in a recursive way. It also updates the uncertainties in state estimates with the 

help of integrating a stream of latest measurements [52, 59]. 

In Kalman filter equations, the initial values of the state vectors and covariance 

matrix are generally set to constant values. The iteration process is maintained by 
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calculating the weighted average of the previous measurement values. The time 

variation of noise sources can be modelled using the white noise processing method. 

The samples taken at different times are uncorrelated for white noise signals and its 

variance is assumed to have zero-mean Gaussian distribution.  

4.6.1. Kalman Filter Algorithm 

Kalman filter algorithm uses measurement system models to maintain optimal state 

estimates. In the absence of new measurements, state uncertainties increase with 

time and state estimates go out of date, because of the unknown changes defined as 

system noise. Kalman filter algorithm consists of system and measurement 

propagation phases.  

The system propagation phase: In this phase, state vector and system noise 

covariance matrix are predicted from the time of the last valid measurements. This 

phase consists of the following steps (the estimated state vector is �̂�𝑘 and its 

propagation is �̂�𝑘+1
− ): 

1. Calculation of the transition matrix (𝛷𝑘) which defines state vector changes 

with time and it is calculated every iteration, 

2. Calculation of the system noise covariance matrix (𝑄𝑘) which defines the 

degree of correlation between errors of state estimates, 

3. Propagation of the state vector estimation (�̂�𝑘+1
− ) from �̂�𝑘

+, 

4. Propagation of the error covariance matrix (𝑃𝑘+1
− ) from 𝑃𝑘

+, 

Its diagonal terms are the variances of each state estimate and its off-diagonal 

terms are the correlations between errors of state estimates. 

The measurement propagation phase: Measurement vector is iterated by updating 

state estimates to incorporate the measurement data weighted with the Kalman gain. 

Noise covariance matrix (𝑅𝑘) is also iterated by updating error covariance matrix 

(𝑃𝑘) to find the new values. The phase is including the steps listed below: 
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1. Calculation of measurement matrix (𝐻𝑘), 

2. Calculation of measurement noise covariance matrix (𝑅𝑘) which its diagonal 

terms represent the variances of each measurement vector, 

3. Calculation of Kalman gain matrix (𝐾𝑘), 

4. Updating of state vector estimate (�̂�𝑘
+) from �̂�𝑘

−, 

5. Updating of error covariance matrix (𝑃𝑘
+) from 𝑃𝑘

−. 

 

 

Figure 4-2 The Diagram of Kalman Filter Algorithm 

The system responses and outputs of both linear and extended Kalman filters are 

illustrated in the following figures in the case of using gyroscopes and star trackers 

as attitude sensors for different process and noise covariance matrices.  The Kalman 

filter basic equations are listed in the following table: 

Table 4-1 The Equations of Kalman Filter Algorithm 

Parameter Definition 

System Model �̂�𝑘+1 = 𝛷𝑘 . �̂�𝑘 + 𝛤𝑘. 𝑢𝑘+ 𝐺𝑘. 𝑤𝑘 ;     𝑤𝑘  ~ 𝑁(0, 𝑄𝑘) 
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Parameter Definition 

Measurement Model �̃�𝑘 = 𝐻𝑘. �̂�𝑘 + 𝑣𝑘  ;  𝑣𝑘   ~ 𝑁(0, 𝑅𝑘) 

𝑹𝒌 𝐸{𝑣𝑘 . 𝑣𝑗
𝑇} = 𝑅𝑘. 𝛿𝑘𝑗    𝑅𝑘 = 𝐸{𝑣𝑘. 𝑣𝑘

𝑇}; when 𝑘 = 𝑗 

𝑸𝒌 𝐸{𝑤𝑘. 𝑤𝑗
𝑇} = 𝑄𝑘. 𝛿𝑘𝑗   𝑄𝑘 = 𝐸 {𝑤𝑘. 𝑤𝑘

𝑇}; when 𝑘 = 𝑗 

Kalman Gain 𝐾𝑘 = 𝑃𝑘
−. 𝐻𝑘

𝑇 .  [𝐻𝑘. 𝑃𝑘
−. 𝐻𝑘

𝑇 + 𝑅𝑘]
−1 

Update 

State Estimate (�̂�𝒌
+)  

Error Covariance (𝑷𝒌
+) 

�̂�𝑘
+ = �̂�𝑘

− − 𝐾𝑘. [�̃�𝑘 − 𝐻𝑘. �̂�𝑘
−] 

𝑃𝑘
+ = [ 𝐼 − 𝐾𝑘. 𝐻𝑘]. 𝑃𝑘

− 

𝑃𝑘
+ =  𝐸 {(�̂�𝑘

+ − 𝑥𝑘). (�̂�𝑘
+ − 𝑥𝑘 )

𝑇} 

Propagation 

State Estimate (𝒙𝒌+𝟏
− )  

Error Covariance (𝑷𝒌+𝟏
− ) 

�̂�𝑘+1
− = 𝛷𝑘 . �̂�𝑘

+ + 𝛤𝑘. 𝑢𝑘 

𝑃𝑘+1
− = 𝛷𝑘 . 𝑃𝑘

+. 𝛷𝑘
𝑇 + 𝐺𝑘. 𝑄𝑘. 𝐺𝑘

𝑇 

𝑃𝑘+1
− =  𝐸 {(�̂�𝑘+1

− − 𝑥𝑘+1). (�̂�𝑘+1
− − 𝑥𝑘+1 )

𝑇} 

The following test results are obtained from both Linear and Extended Kalman filter 

blocks placed in satellite model.  

Case - 1: No RW Failure & PID Controller  

Table 4-2 The Simulation Parameters of State Estimatior (Case-1) 

Parameters Values 

Initial satellite velocity 𝑤0 = [0.1, 0.1, 0.1] 

Initial / Desired Euler Angels 

(Roll, Pitch, Yaw = [ψ, θ,Φ] ) 

[ψ0, θ0, Φ0] = [0, 0,0] 

[ψ𝑑, θ𝑑 , Φ𝑑] = [20, 10,3] 

System Noise Covariance Matrix 𝑄𝑘 = 1𝑥10−7 

Measurement Noise Covariance Matrix 𝑅𝑔𝑦𝑟𝑜 =  1𝑥10−7; 𝑅𝑠𝑡𝑟 = 1𝑥10−7 
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Figure 4-3 LKF Output For Satellite Angular Velocity of PID (Case-1) 

 

Figure 4-4 EKF Output For Satellite Angular Velocity of PID (Case-1) 

 

Figure 4-5 Euler Angler Response of PID (Case-1) 
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In the next case, the same simulation parameters are handled like listed in the Table 

4-2, but using with different covariance matrices.   

Case - 2: No RW Failure & PID Controller 

Table 4-3 The Simulation Parameters of State Estimator (Case-2) 

Parameters Values 

System Noise Covariance Matrix 𝑄𝑘 = 1𝑥10−10 

Measurement Noise Covariance Matrix 𝑅𝑔𝑦𝑟𝑜 =  1𝑥10−10;  𝑅𝑠𝑡𝑟 = 1𝑥10−10 

 

 

Figure 4-6 LKF Output For Satellite Angular Velocity of PID (Case-2) 

 

Figure 4-7 EKF Output For Satellite Angular Velocity of PID (Case-2) 
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Figure 4-8 Euler Angler Response of PID (Case-2) 

In conclusion, the estimated measurements taken from the outputs of Extended 

Kalman filter have higher accuracies than the results of Linear Kalman filter.  

4.7. Summary 

The implementation of linearization process on the nonlinear state-space equations 

was detailed in this chapter. Furthermore, Lyapunov based system stability, 

controllability and observability conceptions which are specific to the selected 

satellite were analyzed. Both Linear and Extended Kalman filters were also 

mentioned as a navigation solution for the usage of estimated sensor measurements. 
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CHAPTER 5  

 

5. SATELLITE ATTITUDE CONTROL 

 

5.1. Introduction 

The most common sources of control torques for active control systems are 

propulsion subsystems with thrusters, magnetic torque rods and reaction wheels. 

Beyond these control torque sources, there is also environmental disturbance torques 

[3, 4, 5] effecting adversely on attitude control processing.  

The controller design targets to provide stability and robustness to the modelled 

system, to reject the disturbances arising from environmental effects, to avoid 

actuator saturation and to perform attitude maneuvers by keeping the satellite 

pointed in the right direction [53, 54]. Most of the cases, all these targets cannot be 

achieved simultaneously. Therefore, it is mandatory to apply some optimization 

process on system controller design according to the matter in hand.   

Control system output is the measurement to demonstrate the controller status and 

effectiveness. The controller design performance depends on stability, sensitivity, 

disturbance and noise rejection and robustness for system uncertainties. It stabilizes 

and orients the satellite in any direction relative to reference frames [21].  

The fundamental concept of a closed loop control system relies on sensor 

measurements; the measured attitude and its comparison with the desired attitude 

drive controller process. The numerical differences between these two values result 

in error signals used to achieve the desired attitude and corrective control torques are 

generated by means of actuators in positive or negative axis relative to satellite body 

axes [66]. 
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Attitude maneuvers are necessary to reorient the axes of attitude sensors to some 

special celestial objects in initial phase or after a failure. Maneuvering capabilities 

are also essential to give a new direction to the axes of payloads. This new direction 

can be the coordinates of ground targets sent with telecommands as reference 

coordinates from ground station to Earth imaging satellites.  

Attitude control can be achieved by controlling the angular accelerations, which are 

internal torques and external torques (magnetic or reaction torques) exerted on the 

satellite. In common cases, the momentum and angular acceleration of wheels are 

transformed to satellite to meet the required opposite torque for attitude stability.  

The primary task of attitude control is to stabilize the satellite attitude against 

external torque disturbances and it requires attitude maneuvers based on control 

torques throughout its lifetime. Because of this reason, control law equations applied 

in different ways are explained at the beginning of this section.  

In a satellite attitude controller system, the measurements obtained from system 

plant are observed continuously and compared with the desired position given as an 

initial step. The difference between the measured and desired position values is 

called as system error and used to generate control torque command [53, 66]. In 

general, system error is defined with Euler angles for small attitude maneuvers. On 

the other hand, it can be written in quaternion vector form for large attitude 

maneuvers [1, 2]. 

Basically, a mathematical model of a satellite attitude control consists of an 

amplifier model as a controller gain, DC motor model for each reaction wheels and a 

plant model indicating motion equations [69]: 
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Figure 5-1 Satellite Attitude Control Loop [46] 

In the first step, a mathematical model of a satellite with its actuators were 

developed using angular dynamic and kinematic equations in the previous sections. 

The controller is applied to deal with nonlinearities, unknown parameters and 

disturbance sources in these equations. The controller also receives the offset from 

the desired position in a quaternion vector form, and propagates the control torque 

command (𝑀𝑐𝑚𝑑) as an output to system actuators. 

A nonlinear satellite model is essential for the controller types of PID and sliding 

mode. On the other side, LQR controller is needed to operate together with the 

linearized form of a satellite nonlinear model.  

5.2. Detumbling Control 

The main purpose of detumbling controller called also B-dot controller is to slow 

down the initial rotational motion (𝐸𝐾𝐼𝑁) of a satellite and to minimize the changes 

in its angular velocity to maintain stabilization in three axis. Magnetometer 

measurements are implemented by B-dot controller in order to fulfill these 

conditions after deployment [71, 72].  

B-dot controller only responds to the changes in Earth magnetic field vector defined 

in Body Frame (𝐵𝐵). Lyapunov candidate function can be taken as kinetic energy 

function as stated below [73, 75, 82]: 
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�̇� = �̇�𝐾𝐼𝑁 = (𝑤𝐼𝐵 
𝐵 )𝑇𝑀𝐶

𝑀𝑇𝑅 (5.1) 

�̇� = �̇�𝐾𝐼𝑁 = (𝑤𝐼𝐵 
𝐵 )𝑇(𝑚𝐵 × 𝐵𝐵)  (5.2) 

�̇� = �̇�𝐾𝐼𝑁 = −(𝑤𝐼𝐵 
𝐵 )𝑇(𝐵𝐵 × 𝑚𝐵)  (5.3) 

Using the theorem of 𝐴𝑇(𝐵 × 𝐶) =  𝐶𝑇(𝐴 × 𝐵), the last equation can be rewritten:  

�̇� = �̇�𝐾𝐼𝑁 = −(𝑚𝐵)𝑇(𝑤𝐼𝐵 
𝐵 × 𝐵𝐵) < 0  (5.4) 

The last inequality can be resolved as stated below [79]:   

𝑚𝐵 = 𝐾𝐵𝑑𝑜𝑡(𝑤𝐼𝐵 
𝐵 × 𝐵𝐵) =

𝐾𝐵𝑑𝑜𝑡(𝑤𝐼𝐵 
𝐵 × 𝐵𝐵)

‖𝐵𝐵‖
  

(5.5) 

 𝑚𝐵 is the magnetic control output moment, 

 𝐾𝐵𝑑𝑜𝑡 is a positive definite control gain, 

If 𝐾𝐵𝑑𝑜𝑡 is too low  satellite angular velocity cannot be reduced, 

If 𝐾𝐵𝑑𝑜𝑡 is too high  system is too sensitive and unstable, 

 �̇�𝐵 is the time derivative of measured local magnetic field and it represents 

the changes in this field.  

𝐾𝐵𝑑𝑜𝑡 gain has an important role to specify detumbling time, system stability and 

sensitivity. In the reference article of [79], the simulation results exhibit that the 

more controller gain is large, the more settling time is short. However, there are also 

possibilities to cause disturbances on controllers according to the bias moments in 

this case.  

The changes in B-field vector are derived from both the satellite motions and Earth 

rotations. The time derivative of magnetic field vector (�̇�𝐵) is perpendicular to the 

vector of rotations and it cannot be directly measured from any sensors in the 
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satellite. The controller is implemented by applying a magnetic torque in the 

opposite direction of the rate of local magnetic field change with the following 

equations [54, 81]: 

�̇�𝐵 = 
𝑑𝐵𝐵

𝑑𝑡
 |

𝐵𝐵

= (
𝑑𝐵𝐵

𝑑𝑡
) − 𝑤𝐼𝐵

𝐵 × 𝐵𝐵 ≈ −𝑤𝐼𝐵
𝐵 × 𝐵 

(5.6) 

𝑚𝐵 =
𝐾𝐵𝑑𝑜𝑡(𝑤𝐼𝐵 

𝐵 × 𝐵𝐵)

‖𝐵𝐵‖
 =

−𝐾𝐵𝑑𝑜𝑡�̇�
𝐵

‖𝐵𝐵‖
  

(5.7) 

The geometric definition for B-field vector is illustrated hereafter:  

 

Figure 5-2 The Geometric Definition of Local Magnetic Field (B) [72] 

The simulation time of detumbling controller is constrained with respect to the 

magnetic moment capacity of torque rods and it is in the range of  ∓6.0 Am2 for the 

selected satellite [81]. The control torque will be:  

𝑀𝑐
𝑀𝑇𝑅 = 𝑚𝐵 × 𝐵𝐵 =

−𝐾𝐵𝑑𝑜𝑡�̇�
𝐵

‖𝐵𝐵‖
× 𝐵𝐵 (5.8) 

When B-dot controller is applied to torque rods, they generate magnetic dipole 

moment and magnetic torque in the opposite direction of local magnetic field vector. 
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After performing a control command to a satellite system, its kinetic energy 

decreases over time and its angular velocity reaches up to zero for each axis [71, 72]. 

5.3. Desaturation Control 

The disturbance torques arising from gravitational and aerodynamic effects lead to 

accumulate unwanted angular momentum on reaction wheels over time. This 

momentum must be desaturated by torque rods interacting with Earth magnetic field 

to apply an external torque in the reverse direction. After reaching their predefined 

saturation limit, reaction wheels are not be able to create the control torque which is 

necessary to orient the satellite to a desired attitude [73, 78]. In addition to this, the 

angular velocity of reaction wheels can be taken to an acceptable level (operating 

range) by the help of momentum dumping [66]. 

In some academic studies [80], both main attitude controller and desaturation 

controller are formulated in a single problem. However, the operation of momentum 

unloading is accomplished separately in this study as shown in the following 

diagram:  

 

Figure 5-3 Satellite Attitude Control with Momentum Dumping 

The magnetic torque depends on the angle between Earth magnetic field vector and 

angular momentum vector. It has the maximum value when these vectors are 
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completely perpendicular to each other and it is equal to zero value when they are in 

the same direction. The dipole moment can be calculated as stated below (𝐾 is a 

constant controller gain here):  

𝑚𝐵 = −
 𝐾𝑀𝐷

‖𝐵𝐵‖
(𝐵𝐵 × ∆𝐻𝑅𝑊

𝐵 ) (5.9) 

∆𝐻𝑅𝑊
𝐵 = 𝐻𝑅𝑊,𝑛𝑜𝑚

𝐵 − 𝐻𝑅𝑊,𝑠𝑖𝑚
𝐵  (5.10) 

∆𝐻𝑅𝑊
𝐵  is the bias error between the nominal (𝐻𝑅𝑊,𝑛𝑜𝑚

𝐵 ) and simulated wheel angular 

momentum (𝐻𝑅𝑊,𝑠𝑖𝑚
𝐵 ) and it must be kept at a minimum value. If error vector is 

parallel to B-field vector in Body Frame, it is not possible to unload the unnecessary 

angular momentum from wheels. If they are lying in an orthogonal plane, 

desaturation is performed entirely [73]. In this circumstance, the desaturation control 

torque is written like as follow: 

𝑀𝐶
𝑀𝑇𝑅 = 𝑚𝐵 × 𝐵𝐵 = 𝐾𝑀𝐷

( ∆𝐻𝑅𝑊
𝐵 × 𝐵𝐵 )

 ‖𝐵𝐵‖2
 (5.11) 

Momentum dumping maintains a stable attitude as long as the main controller shows 

a stable behavior. It can be proposed that the desaturation controller can be 

deactivated whenever redundant angular momentum is completely unloaded.  

5.4. PID Control 

5.4.1. PD Controller for Satellite 

PD controller can be used to change the satellite orientation according to the desired 

reference values specified as roll, pitch and yaw angles. It is proportional to the 

position error and its derivative in a PD controller.  
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The selected satellite is a kind of light weight microsatellite and the elements of its 

inertia matrix have comparatively small values. Because of this reason, the following 

command torque equation (𝑀𝑐𝑚𝑑) can be found by taking into account the stability 

requirement of Lyapunov candidate function �̇�(𝑥) < 0 which is mentioned in the 

section called “Stability of Satellite Model”: 

𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑤𝐼𝐵
𝐵  (5.12) 

[

𝑀𝑐𝑚𝑑,𝑥

𝑀𝑐𝑚𝑑,𝑦

𝑀𝑐𝑚𝑑,𝑧

] = [ 

− 𝐾𝑃,𝑥𝑞𝑒𝑟𝑟,1𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷,𝑥𝑤𝐼𝐵𝑥 
𝐵

− 𝐾𝑃,𝑦𝑞𝑒𝑟𝑟,2𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷,𝑦𝑤𝐼𝐵𝑦 
𝐵

− 𝐾𝑃,𝑧𝑞𝑒𝑟𝑟,3𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷,𝑧𝑤𝐼𝐵𝑧 
𝐵

 ] (5.13) 

 𝑞𝑣,𝑒𝑟𝑟 is the vector part of quaternion error (𝑞𝑣,𝑒𝑟𝑟 = [𝑞𝑒𝑟𝑟,1; 𝑞𝑒𝑟𝑟,2; 𝑞𝑒𝑟𝑟,3]), 

 𝑞𝑒𝑟𝑟,4 is the scalar part of quaternion error, 

 𝐾𝑃 is the positive definite proportional gain constant, 

 𝐾𝑃𝐷 is the positive definite proportional and derivative gain constant. 

Commanded torque can also be chosen one of the following equations. All these 

equations satisfy the asymptotically stability theorem [72]: 

𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑤𝑂𝐵
𝐵  (5.14) 

𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷�̇�𝑒𝑟𝑟 
(5.15) 

𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟 − 𝐾𝑃𝐷𝑤𝐼𝐵
𝐵 + 𝐼𝑆�̇�𝐼𝐵

𝐵 + 𝑤𝐼𝐵
𝐵 × 𝐼𝑆𝑤𝐼𝐵

𝐵  (5.16) 

The gain matrices 𝐾𝑃 and 𝐾𝑃𝐷 shall be selected to be compatible with asymptotically 

stable. Attitude error value demonstrates the required rotation for each satellite axes 

to arrive the commanded orientation. This error vector (𝑞𝑒𝑟𝑟) is calculated by 

multiplying the reference quaternion ( 𝑞𝑟𝑒𝑓) and estimated quaternion vectors with 

its conjugate definition (𝑞𝑒𝑠𝑡
∗ ). If this kind of multiplication is considered as a 
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transition from a current state to an expected state, it can be denoted by these 

equations: 

𝑞𝑟𝑒𝑓 = 𝑞𝑒𝑠𝑡
𝑟𝑒𝑓

𝑞𝑒𝑠𝑡 (5.17) 

𝑞𝑟𝑒𝑓𝑞𝑒𝑠𝑡
−1 = (𝑞𝑒𝑠𝑡

𝑟𝑒𝑓
𝑞𝑒𝑠𝑡)𝑞𝑒𝑠𝑡

−1     𝑞𝑟𝑒𝑓𝑞𝑒𝑠𝑡
−1 = 𝑞𝑒𝑠𝑡

𝑟𝑒𝑓
 (5.18) 

The inverse of a quaternion vector (𝑞𝑒𝑠𝑡
−1 ) is equal to its conjugate equivalent (𝑞𝑒𝑠𝑡

∗ ). 

By means of this equality, a quaternion error vector can be accepted as the transition 

vector which is specified above (𝑞𝑒𝑠𝑡
𝑟𝑒𝑓

≈ 𝑞𝑒𝑟𝑟): 

𝑞𝑒𝑠𝑡
−1 =

𝑞𝑒𝑠𝑡
∗

|𝑞𝑒𝑠𝑡|2
= 𝑞𝑒𝑠𝑡

∗ = [−𝑞𝑒𝑠𝑡,1;  −𝑞𝑒𝑠𝑡,2;  −𝑞𝑒𝑠𝑡,3;  𝑞𝑒𝑠𝑡,4]
𝑇
 (5.19) 

𝑞𝑒𝑟𝑟 = 𝑞𝑟𝑒𝑓 ⊗ 𝑞𝑒𝑠𝑡
∗ = 𝑞𝑒𝑠𝑡

∗ ⊙ 𝑞𝑟𝑒𝑓 (5.20) 

𝑞𝑒𝑟𝑟 = [ 

𝑞𝑒𝑟𝑟,1

𝑞𝑒𝑟𝑟,2

𝑞𝑒𝑟𝑟,3

𝑞𝑒𝑟𝑟,4

 ] = [ 

𝑞𝑟𝑒𝑓,4 𝑞𝑟𝑒𝑓,3 −𝑞𝑟𝑒𝑓,2  𝑞𝑟𝑒𝑓,1

−𝑞𝑟𝑒𝑓,3 𝑞𝑟𝑒𝑓,4  𝑞𝑟𝑒𝑓,1 𝑞𝑟𝑒𝑓,2

𝑞𝑟𝑒𝑓,2 −𝑞𝑟𝑒𝑓,1 𝑞𝑟𝑒𝑓,4 𝑞𝑟𝑒𝑓,3

−𝑞𝑟𝑒𝑓,1 −𝑞𝑟𝑒𝑓,2 −𝑞𝑟𝑒𝑓,3 𝑞𝑟𝑒𝑓,4

 ] [ 

−𝑞𝑒𝑠𝑡,1

−𝑞𝑒𝑠𝑡,2

−𝑞𝑒𝑠𝑡,3

𝑞𝑒𝑠𝑡,4

 ] (5.21) 

The following definition also gives the same results for an attitude error (𝑞𝑒𝑟𝑟):  

𝑞𝑒𝑟𝑟 = [ 

𝑞𝑒𝑟𝑟,1

𝑞𝑒𝑟𝑟,2

𝑞𝑒𝑟𝑟,3

𝑞𝑒𝑟𝑟,4

 ] = [ 

𝑞𝑒𝑠𝑡,4 𝑞𝑒𝑠𝑡,3 −𝑞𝑒𝑠𝑡,2 −𝑞𝑒𝑠𝑡,1

−𝑞𝑒𝑠𝑡,3 𝑞𝑒𝑠𝑡,4  𝑞𝑒𝑠𝑡,1 −𝑞𝑒𝑠𝑡,2

𝑞𝑒𝑠𝑡,2 −𝑞𝑒𝑠𝑡,1 𝑞𝑒𝑠𝑡,4 −𝑞𝑒𝑠𝑡,3

𝑞𝑒𝑠𝑡,1 𝑞𝑒𝑠𝑡,2 𝑞𝑒𝑠𝑡,3 𝑞𝑒𝑠𝑡,4

 ] [ 

𝑞𝑟𝑒𝑓,1

𝑞𝑟𝑒𝑓,2

𝑞𝑟𝑒𝑓,3

𝑞𝑟𝑒𝑓,4

 ] (5.22) 

The derivative of quaternion error vector is [48]:  

�̇�𝑒𝑟𝑟 =

[
 
 
 

 

�̇�𝑒𝑟𝑟,1

�̇�𝑒𝑟𝑟,2

�̇�𝑒𝑟𝑟,3

�̇�𝑒𝑟𝑟,4

 

]
 
 
 

= [ 

𝑞𝑒𝑟𝑟,4 −𝑞𝑒𝑟𝑟,3 𝑞𝑒𝑟𝑟,2

𝑞𝑒𝑟𝑟,3 𝑞𝑒𝑟𝑟,4 −𝑞𝑒𝑟𝑟,1

−𝑞𝑒𝑟𝑟,2 𝑞𝑒𝑟𝑟,1 𝑞𝑒𝑟𝑟,4

−𝑞𝑒𝑟𝑟,1 −𝑞𝑒𝑟𝑟,2 −𝑞𝑒𝑟𝑟,3

 ] [ 

𝑤𝐼𝐵𝑥 
𝐵

𝑤𝐼𝐵𝑦 
𝐵

𝑤𝐼𝐵𝑧 
𝐵

] (5.23) 
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5.4.2. PID Controller for Reaction Wheels DC Motor 

The goal of attitude controller is to change the rotational speed of reaction wheels to 

adjust the satellite orientation to meet the desired course. This means that the angular 

velocities of RWs shall be changed to meet the desired performance specifications.  

The chosen controller law for each reaction wheels is PID controller in a cascaded 

form. The derivative controller is especially set to keep a constant rotation speed 

until the command torque is received. The fundamental equations of reaction wheel 

torque dynamics are hereafter:  

𝑀𝑀 = 𝑘𝑡𝑖 = 𝐼𝑅𝑊 �̇�𝑅𝑊 + 𝑏𝑤𝑅𝑊  
(5.24) 

𝑀𝑀(𝑠) = 𝑘𝑡𝐼(𝑠) =  (𝐼𝑅𝑊𝑠 + 𝑏)𝑤𝑅𝑊(𝑠)  
(5.25) 

After taking the Laplace transformation for the voltage equation of reaction wheels 

(𝑉𝐴 =  𝑅𝑖 + 𝐿(𝑑𝑖 𝑑𝑡⁄ ) + 𝑘𝑀𝑤𝑅𝑊), the following equation is obtained:   

𝑉(𝑠) = (𝑅 + 𝐿𝑠)𝐼(𝑠) + 𝑘𝑀𝑤𝑅𝑊(𝑠)   ; 𝑤𝑅𝑊(𝑠) =
𝑘𝑡𝐼(𝑠)

𝐼𝑅𝑊𝑠 + 𝑏
 (5.26) 

𝑉(𝑠) =
(𝑅 + 𝐿𝑠) (𝐼𝑅𝑊𝑠 + 𝑏) + 𝑘𝑀𝑘𝑡

𝐼𝑅𝑊𝑠 + 𝑏
𝐼(𝑠) (5.27) 

𝐼(𝑠)

𝑉(𝑠)
=

𝐼𝑅𝑊𝑠 + 𝑏

(𝐿𝐼𝑅𝑊)𝑠2 + (𝑅𝐼𝑅𝑊 + 𝐿𝑏)𝑠 + (𝑅𝑏+𝑘𝑀𝑘𝑡)
 (5.28) 

The cascaded PI controller design arises from the control of two sequential processes 

where the output of the inner loop supplies the outer process in the sequence. The 

main objective of cascaded control is to attenuate the effect of internal disturbances 

on final output measurements.  
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The data flow is illustrated in the following figure: 

 

Figure 5-4 The Data Diagram of RW DC Motor 

In general, the results of cascaded controller are better than a single loop controller 

system. The inner loop reduces the gain uncertainty of whole system with the help of 

inner loop processing. The general diagram of cascaded PID controllers is indicated:  

 

Figure 5-5 Cascade PID Controller General Diagram [85] 

It is necessary to implement a couple of saturation blocks into the simulation model 

to restrict the torque and rotation speed of reaction wheels. The following figure 

shows a cascaded inner (PI) and outer (PID) controller design for each reaction 

wheels:  
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Figure 5-6 Inner and Outer Loop of Cascade PI Controllers for RW-DC motors 

For the torque controller loop (inner loop), the last equation can be written in terms 

of the torque definition specified above:  

𝐼(𝑠) =  
𝑀𝑀(𝑠)

𝑘𝑡
;    𝑤𝑅𝑊(𝑠) =

𝑀𝑀(𝑠)

𝐼𝑅𝑊𝑠 + 𝑏
 (5.29) 

𝑉(𝑠) = (𝑅 + 𝐿𝑠) (
𝑀𝑀(𝑠)

𝑘𝑡
) + 𝑘𝑀 (

𝑀𝑀(𝑠)

𝐼𝑅𝑊𝑠 + 𝑏
) (5.30) 

If assumed that the coefficients 𝑘𝑡 and 𝑘𝑀 have equal values (𝑘𝑡 = 𝑘𝑀 = 𝐾) and the 

damping ratio (𝑏) is relatively small to be implemented, the transfer function of inner 

loop will be: 

𝑀𝑀(𝑠)

𝑉(𝑠)
=

𝐾(𝐼𝑅𝑊𝑠 + 𝑏)

(𝐼𝑅𝑊𝑠 + 𝑏)(𝑅 + 𝐿𝑠) + 𝐾2
  (5.31) 

The open-loop plant function which is a transfer function of speed controller loop 

(outer loop) representing the transition from voltage input to angular speed output is: 

𝑤𝑅𝑊(𝑠)

𝑉(𝑠)
=

𝑀𝑀(𝑠)

𝑉(𝑠)

𝑤𝑅𝑊(𝑠)

𝑀𝑀(𝑠)
=

𝐾

(𝐼𝑅𝑊𝑠 + 𝑏)(𝑅 + 𝐿𝑠) + 𝐾2
 (5.32) 
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The following parameters are defined for the modelling of each DC motor: 

Table 5-1 Reaction Wheel - DC Motor Parameters 

RW- DC Motor Parameters Values 

DC Motor Electromotive Force Constant (kM) 0.1 𝑉/𝑟𝑎𝑑/𝑠𝑒𝑐  

DC Motor Torque Constant (kt) 0.1 𝑁.𝑚/𝐴𝑚𝑝  

DC Motor Viscous Friction Constant (𝑏) 1 x 10−5  𝑁𝑚𝑠 

Armature Resistance (𝑅) 2  𝑂ℎ𝑚𝑠 

Armature Inductance (𝐿) 5.2 x 10−3 𝐻 

Moment of Inertia (𝐼𝑅𝑊) 5.0 x 10−4 𝑘𝑔𝑚2 

The design requirements are listed below for a reference motor speed (1 rad/s step): 

 Settling time shall be less than 3 seconds (< 3 s), 

 Overshoot level shall be less than 5% (< 5%), 

 Steady-state error shall be less than 1%  (< 1%). 

 

Figure 5-7 The Open Loop Pole-Zero Map of Reaction Wheel DC Motor  
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According to the pole locations of transfer function (-374.3404, -10.29) in the pole-

zero map diagram, there is no overshoot in the step response. The more negative 

pole dominates the system dynamics in terms of the response speed.  

The following Simulink diagrams show all the DC motor models of reaction wheels 

and the commanded torque distribution for each of them:  

 

Figure 5-8 Reaction Wheels Model Block Diagram 

The DC motor model of each reaction wheel placed in the previous figure is: 

 

Figure 5-9 The Simulink Diagram of RW – DC Motors  
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The operating frequency of inner loop shall have larger value than the outer loop’s 

frequency value ( 𝑅𝑊𝑓𝑖𝑛 = 1000 𝐻𝑧,  𝑅𝑊𝑓𝑜𝑢𝑡 = 100 𝐻𝑧). The Simulink diagram 

of DC motors of reaction wheels is defined hereafter:  

After applying the automated PID tuning method provided by MATLAB/Simulink 

software tool, the following gain parameters are obtained by considering the design 

requirements. The PID torque and speed controller parameters are shown below with 

some specifications of linear system analyses such as rise time and settling time:  

Table 5-2 PID Controller Parameters of Inner Loop 

𝑲𝑷 𝑲𝑰 𝑲𝑫 𝑵 Settling Time Rise Time Overshoot 

2.503e-5 0.022215 0 100 0.99 s 0.0735 s 3.77 % 

 

 

Figure 5-10 The Step Response of Inner Controller Loop 

The parameters of outer PID loop and its step diagrams are hereafter: 

Table 5-3 PID Controller Parameters of Outer Loop 

𝑲𝑷 𝑲𝑰 𝑲𝑫 𝑵 Settling Time Rise Time Overshoot 

9.5605 13.4366 1.1625 2668.953 1.16 s 0.0948 s 4.88 % 
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Figure 5-11 The Step Response of Outer Controller Loop 

5.5. LQR Control 

Linear Quadratic Regulator method is based on linear attitude model. The only 

negative effects of gravity gradient and aerodynamic drag can be taken into 

consideration and the disturbance torques of solar radiation and magnetic dipole 

moment can be ignored for linearization process [52, 71]. The linear quadratic cost 

function is always positive and defined as the following: 

𝐽(𝑥, 𝑢) =
1

2
∫[ 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢] 𝑑𝑡

∞

0

 (5.33) 

𝑄 = [
𝑄1 … 0
⋮ ⋱ ⋮
0 … 𝑄𝑛

] ;  𝑥𝑇𝑄𝑥 ≥ 0 (5.34) 

𝑅 = [
𝑅1 … 0
⋮ ⋱ ⋮
0 … 𝑅𝑛

] ; 𝑢𝑇𝑅𝑢 > 0 (5.35) 

𝑄 is a constant, real symmetric positive semi-definite matrix and it defines the cost 

of state error. On the other hand,  𝑅 is a constant, real symmetric positive definite 
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matrix and it defines the cost of control effort. State vector (𝑥) represents the error 

between true and reference states in the cost function.  

Solving the optimization problem is based on the minimization of cost function by 

the help of full state feedback controller definition of  𝑢(𝑡) = −𝐾. 𝑥(𝑡). When the 

cost function is minimized, the state vectors reach to zero in infinite time and this 

situation guarantees system stability [48]: 

 𝐽 =
1

2
∫  𝑥𝑇(𝑄 + 𝐾𝑇𝑅𝐾)𝑥 𝑑𝑡

∞

0
 (5.36) 

𝐾 is the optimal gain and computed from the solution to Riccati Equation: 

𝐴𝑇𝑆 + 𝑆𝐴 − 𝑆𝐵𝑅−1𝐵𝑇𝑆 + 𝑄 = 0 (5.37) 

𝐾 = 𝑅−1𝐵𝑇𝑆  𝑢 = −(𝑅−1𝐵𝑇𝑆)𝑥 (5.38) 

A and B matrices are stabilizable by means of the cost function 𝐽(𝑥, 𝑢). 𝐾 matrix is 

also adjusted by setting 𝑄 and 𝑅 matrices. The selection of these matrices is based 

on an iterative procedure using a trial and error method. They are commonly selected 

to be diagonal in engineering problems and their initial values can be unit vectors: 

𝑄 =  [𝐼]10𝑥10;      𝑅 = [𝐼]6𝑥6 (5.39) 

 𝑄 matrix shall be bigger than 𝑅 matrix for an aggressive controller, 

 𝑅 matrix shall be bigger than 𝑄 matrix for a conservative controller. 

The procedure for the implementation of LQR is: 

1. Calculation of linearized system matrices (𝐴 and 𝐵), 

2. Calculation of state feedback matrices (𝑄 and 𝑅), 

3. Finding a solution to Riccati equation for sliding manifold (𝑆),  
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4. Computation of optimal gain (𝐾 = 𝑅−1𝐵𝑇𝑆), 

5. Selection of K solution to yield a stable system for (�̇� = (𝐴 − 𝐵𝐾)𝑥), 

The real part of eigenvalues should be negative for a stable system.  

6. Calculation of control torque for actuators ( 𝑀𝑐𝑚𝑑 = −𝐾𝑥(𝑡)) 

Feedback gain matrix (𝐾𝐿𝑄𝑅), system eigenvalues (𝐸 = 𝑒𝑖𝑔(𝐴 − 𝐵𝐾)) and the 

solution of algebraic Riccati equation (𝑆) can be obtained using the following 

MATLAB command in the simulations: 

[𝐾𝐿𝑄𝑅, 𝑆, 𝐸] = 𝑙𝑞𝑟(𝐴, 𝐵, 𝑄, 𝑅) (5.40) 

 

Figure 5-12 LQR Controller Diagram of Satellite Linear Attitude Model 

5.6. Sliding Mode Control (SMC) 

Sliding mode controller is a kind of nonlinear controller method and shows robust 

characteristics against parameter changes, uncertainties and external disturbances. In 

this controller process, there is a predefined sliding line or surface to force state 

trajectories  to lie on it.  

When the system is out of a sliding surface, the system dynamics reach this surface 

and the control torque is also needed to force the system states towards it. When the 

https://www.sciencedirect.com/topics/engineering/state-trajectory
https://www.sciencedirect.com/topics/engineering/state-trajectory
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system is on the surface, its states provide the system stability and its control torque 

is needed to keep the system at the surface. 

The deviation between the equilibrium and the actual states is defined as the errors, 

and denoted by 𝑤𝑒𝑟𝑟 and 𝑞𝑒𝑟𝑟 respectively. 

�̇�𝑣,𝑒𝑟𝑟 =
1

2
 [𝛺(𝑞𝑣,𝑒𝑟𝑟) + [𝐼3𝑥3]𝑞4] 𝑤𝑂𝐵

𝐵  (5.41) 

�̇�𝑣,𝑒𝑟𝑟 =
1

2
[

𝑞𝑒𝑟𝑟,4 −𝑞𝑒𝑟𝑟,3 𝑞𝑒𝑟𝑟,2

𝑞𝑒𝑟𝑟,3 𝑞𝑒𝑟𝑟,4 −𝑞𝑒𝑟𝑟,1

−𝑞𝑒𝑟𝑟,2 𝑞𝑒𝑟𝑟,1 𝑞𝑒𝑟𝑟,4

] 𝑤𝑂𝐵
𝐵 =

1

2
 𝑆(𝑞𝑣,𝑒𝑟𝑟)𝑤𝑂𝐵

𝐵  (5.42) 

A sliding manifold denoted by (𝑠) forces system states towards the manifold and 

provides them to converge to the desired attitude. When the system is on the 

manifold (𝑠 = 0), sliding variable can be rewritten as (𝐾𝑆𝑀𝐶  is a positive sliding 

manifold gain) [75]: 

𝑠 = 𝑤𝑂𝐵
𝐵 + 𝐾𝑆𝑀𝐶𝑞𝑣,𝑒𝑟𝑟  = 0  𝑤𝑂𝐵

𝐵 = −𝐾𝑆𝑀𝐶𝑞𝑣,𝑒𝑟𝑟 (5.43) 

The convergence towards a sliding surface is proven by the Lyapunov function such 

as (𝑉(𝑞) = (𝑞𝑣)
𝑇𝑞𝑣 + (1 − 𝑞4)

2) and its derivative with the expression of 

(𝑞𝑣)
𝑇𝑞𝑣 + (𝑞4)

2 = 1:  

𝑉(𝑞) = 2(1 − 𝑞4) (5.44) 

�̇�(𝑞) = 2�̇�4 (5.45) 

 For an error quaternion 𝑞𝑒𝑟𝑟 = [𝑞𝑣,𝑒𝑟𝑟, 𝑞4,𝑒𝑟𝑟]
𝑇

= [0,0,0,1]𝑇   𝑉(0) = 0 

  �̇�4 = −
1

2
(𝑞𝑣)

𝑇𝑤𝑂𝐵
𝐵   �̇�(𝑞) = −(𝑞𝑣,𝑒𝑟𝑟)

𝑇
𝐾𝑆𝑀𝐶𝑞𝑣,𝑒𝑟𝑟 



 

 

124 

 

When 𝐾𝑆𝑀𝐶  is a positive definite weight matrix, then �̇�(𝑞) is smaller than zero 

value. This situation satisfies the stability condition and the preferred sliding 

manifold function is considered as asymptotically stable.      

When the sliding function (𝑠 = 0) is multiplied by 
1

2
𝑆(𝑞𝑣,𝑒𝑟𝑟): 

1

2
𝑆(𝑞𝑣,𝑒𝑟𝑟)𝑤𝑂𝐵

𝐵 +
1

2
𝑆(𝑞𝑣,𝑒𝑟𝑟)𝐾𝑆𝑀𝐶 . 𝑞𝑣,𝑒𝑟𝑟 = 0 (5.46) 

�̇�𝑣,𝑒𝑟𝑟 +
1

2
 𝑆(𝑞𝑣,𝑒𝑟𝑟)𝐾𝑆𝑀𝐶𝑞𝑣,𝑒𝑟𝑟 = 0  (5.47) 

The derivative of selected Lyapunov function (𝑉 =
1

2
𝑠𝑇𝑠) is the following: 

�̇� = 𝑠𝑇�̇� = 𝑠𝑇(�̇�𝑂𝐵
𝐵 + 𝐾𝑆𝑀𝐶�̇�𝑣,𝑒𝑟𝑟) (5.48) 

�̇� = 𝑠𝑇𝐼𝑆
−1(𝑀𝐷+𝑀𝑐𝑚𝑑 − 𝑤𝑂𝐵

𝐵 × (𝐼𝑆 𝑤𝑂𝐵
𝐵 + 𝐻𝑅𝑊

𝐵 ) + 𝐼𝑆𝐾𝑆𝑀𝐶�̇�𝑣,𝑒𝑟𝑟) (5.49) 

The equivalent torque (𝑀𝑒𝑞) versus to control torque (𝑀𝑐𝑚𝑑) can be derived from the 

previous equation:  

𝑀𝑐𝑚𝑑 = 𝑤𝑂𝐵
𝐵 × (𝐼𝑆  𝑤𝑂𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) − 𝑀𝐷 − 𝐼𝑆�̇�𝑂𝐵

𝐵 − 𝐼𝑆𝐾𝑆𝑀𝐶 �̇�𝑣,𝑒𝑟𝑟 − 𝐼𝑆𝐺𝑆𝑀𝐶𝑠𝑖𝑔𝑛(𝑠) (5.50) 

The selected control torque in the last equation is replaced in the derivative 

Lyapunov function: 

�̇� = −𝑠𝑇(�̇�𝑂𝐵
𝐵 + 𝐺𝑆𝑀𝐶𝑠𝑖𝑔𝑛(𝑠)) (5.51) 

𝑠𝑖𝑔𝑛(𝑠) = {
   1, 𝑠 > 0 
   0, 𝑠 = 0
−1, 𝑠 < 0

 (5.52) 
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𝐺𝑆𝑀𝐶  is a positive definite weight matrix, then the relationship between 𝐺𝑆𝑀𝐶  and 

�̇�𝑂𝐵
𝐵  shall be 𝐺𝑆𝑀𝐶>|�̇�𝑂𝐵

𝐵 |𝑚𝑎𝑥 to achieve the stability condition �̇� < 0.  

The function of  𝑠𝑖𝑔𝑛(𝑠) results in chattering problem (high frequency oscillation) 

in a control torque simulation. There are several solutions in the literature being 

proposed to eliminate this problem and modify the controller method. One of the 

possible solutions is to design a switching controller by combining sliding mode 

controller with PID controller in the same simulation. In this way, sliding mode 

controller is applied till the attitude error is sufficiently small and then PID controller 

takes its position to ensure system stabilization [77]. In this study, this problem is 

removed by using saturation function (𝑠𝑎𝑡(𝑠)) instead of 𝑠𝑖𝑔𝑛(𝑠) function. “휀” is 

the sliding thickness in the following function:   

𝑠𝑎𝑡(𝑠) = 𝑡𝑎𝑛ℎ ( 
𝑠

휀
 ) = {

1, 𝑠 > 휀 

     
𝑠

휀
, |𝑠| ≤ |휀| 

−1, 𝑠 < −휀

 (5.53) 

The control torque (𝑀𝑐𝑚𝑑) will be: 

𝑀𝑐𝑚𝑑 = 𝑤𝑂𝐵
𝐵 × (𝐼𝑆𝑤𝑂𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) − 𝑀𝐷 − 𝐼𝑆�̇�𝑂𝐵

𝐵 − 𝐼𝑆𝐾𝑆𝑀𝐶 �̇�𝑣,𝑒𝑟𝑟 − 𝐼𝑆𝐺𝑆𝑀𝐶𝑡𝑎𝑛ℎ ( 
𝑠
휀
) (5.54) 

The procedure for the implementation of sliding mode controller can be divided into 

three action steps: 

1. Defining a sliding manifold function and its derivative (𝑠, �̇�) which satisfy 

Lyapunov stability analysis, 

2. Finding sliding control weight matrices empirically (𝐾𝑆𝑀𝐶 , 𝐺𝑆𝑀𝐶), 

3. Calculating control torque function with respect to Lyapunov candidate 

function by the help of (�̇�). 
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The weight matrices can be chosen as the magnitude order of satellite inertia matrix 

[75]. Another solution proposed for torque command function can be found by 

multiplying with inertia matrix: 

𝐼𝑆�̇� = 𝐼𝑆�̇�𝑂𝐵
𝐵 + 𝐼𝑆𝐾𝑆𝑀𝐶�̇�𝑣 (5.55) 

�̇� = 𝐼𝑆
−1𝑀𝑒𝑞𝑣 + 𝐼𝑆

−1𝑀𝑐𝑚𝑑 (5.56) 

The equivalent torque (𝑀𝑒𝑞𝑣) versus to control torque ( 𝑀𝐶
𝑅𝑊) can be derived from 

the previous equation:  

𝑀𝑒𝑞𝑣 = 𝑤𝑂𝐵
𝐵 × (𝐼𝑆 𝑤𝑂𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) − 𝑀𝐷 − 𝐼𝑆�̇�𝑂𝐵

𝐵 − 𝐼𝑆𝐾𝑆𝑀𝐶�̇�𝑣,𝑒𝑟𝑟 (5.57) 

When the controller gain is symbolized by () and it is selected as long as in an 

appropriate way, the control torque can be determined like the following equation: 

𝑀𝑐𝑚𝑑 = − 𝑠𝑖𝑔𝑛(𝑠) (5.58) 

In this case, chattering problem can be removed by using directly sliding function 

((𝑠)) instead of  𝑠𝑖𝑔𝑛(𝑠) function: 

𝑀𝑐𝑚𝑑 = −𝑠 (5.59) 

5.7. Summary 

In the first phase (detumbling) a specific controller named B-dot are applied to 

satellite dynamics and kinematics. PID, LQR and SMC controllers are executed 

afterwards.      
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CHAPTER 6  

 

6. RESULTS and DISCUSSIONS 

 

6.1. Introduction  

The simulation test results of attitude controllers with related requirements are 

explained in this section for different configurations and gain values. Their 

performance parameters are compared and analyzed based on the related graphical 

results.  The main purpose is to prove that whether the satellite model tracks the 

reference points indicated as Euler angles or not. The satellite should keep its stable 

state after reaching a given reference value and keep its power consumption low.  

In this section, the simulation sampling time is chosen as 0.1 seconds for all main 

controllers (PID, LQR, SMC). B-dot controller is implemented to meet the 

demanded results for satellite initial phase. All these type of controllers are modelled 

and simulated in MATLAB/Simulink environment with different test cases. 

6.2. The Results of Detumbling Control  

It is expected that detumbling controller should be capable of damping the tumble 

motion of a satellite within a few orbits after deployment from a launcher. The aim 

of detumbling phase is to decrease satellite Euler rates under 0.01 degree per second. 

The initial value of satellite tumbling rate is assumed to be around 0.1 radian per 

second in each axis for the first test case and the reference attitude is not applied in 

this phase. The following graphics are generated for different test configurations. 
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Case-1: No RW Failure & PID Controller Design 

Table 6-1 The Simulation Parameters of Detumbling Phase (Case-2) 

Parameters  Values 

Initial Satellite Velocity 𝑤0 = [0.1, 0.1, 0.1] 

Sampling Time 𝑇𝑠 = 0.01 

System Noise Covariance Matrix 𝑄𝑘 = 1𝑥10−10 

Measurement Noise Covariance Matrix 
𝑅𝑔𝑦𝑟𝑜 =  1𝑥10−12; 𝑅𝑠𝑡𝑟 = 1𝑥10−12 

𝑅𝑚𝑔𝑚 = 𝑅𝑠𝑢𝑠 = 𝑅𝑔𝑝𝑠 = 1𝑥10−7 

Constant Controller Gain 

𝐾𝐵𝑑𝑜𝑡 = [ 𝐼𝑆𝑥
𝑥 104 𝐼𝑆𝑦

𝑥 104 𝐼𝑆𝑧
𝑥 104 ] 

𝐾𝐵𝑑𝑜𝑡,𝑥 = 7.066197 x 104 

𝐾𝐵𝑑𝑜𝑡,𝑦 = 6.950219 x 104 

𝐾𝐵𝑑𝑜𝑡,𝑦 = 8.555828  𝑥 104 

 

 

Figure 6-1 MTR Torque Command in Detumbling Phase (Case-1) 
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Figure 6-2 Satellite Angular Velocity in Detumbling Phase (Case-1) 

This test shows that B-dot controller is capable of reducing the satellite initial 

angular velocity under 0.01 [rad/s] under 2000 seconds.  

Case-2: No RW Failure & PID Controller with the same parameters like as the 

previous case, but with the more aggressive initial angular velocity of a satellite 

(𝑤0 = [0.5, 0.0, 0.5]) 

 

Figure 6-3 MTR Torque Command in Detumbling Phase (Case-2) 
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Figure 6-4 Satellite Angular Velocity in Detumbling Phase (Case-2) 

In this case, the settling time is about ~13250 sec. and angular velocity is between 

+0.01 and -0.01 after providing a stable state.  The settling duration is much longer 

whenever the initial conditions have higher values than the previous case.  

Case-3: No RW Failure & PID Controller with the same parameters and initial 

values like as in Case-1, but implementing lower gain value (𝐾𝐵𝑑𝑜𝑡 = 10) 

 

Figure 6-5 MTR Torque Command in Detumbling Phase (Case-3) 
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Figure 6-6 Satellite Angular Velocity in Detumbling Phase (Case-3) 

In this case, B-dot controller stabilizes the system by reducing its initial angular 

velocity in the range of ±0.007. However, its settling time is much higher than the 

case of controller gain (𝐾𝐵𝑑𝑜𝑡) has much higher value. The selection of gain value 

affects the signal stability.  

Case-4: No RW Failure & PID Controller with the same parameters like as in Case-

1, but performing higher gain value (𝐾𝐵𝑑𝑜𝑡 = [𝐼𝑆𝑥
𝑥 107, 𝐼𝑆𝑦

𝑥 107, 𝐼𝑆𝑧
𝑥 107]) 

 

Figure 6-7 MTR Torque Command in Detumbling Phase (Case-4) 
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Figure 6-8 Satellite Angular Velocity in Detumbling Phase (Case-4) 

This test shows that B-dot controller is capable of reducing the satellite initial 

angular velocity under 0.01 [rad/s] within almost three orbits. The time needed to 

meet requirements is approximately ~14000 seconds for this case.  

6.3. The Results of Desaturation Control 

It can be seen that reaction wheels are desaturated by torque rods each time 

whenever a new attitude maneuver is applied. The satellite initial conditions of 

momentum unloading phase are defined in this section for each simulation test case. 

The main controller can be selected as PID, SMC or LQR to generate the expected 

graphical results.  

Case-1: No RW Failure & PID Controller  

Table 6-2 The Simulation Parameters of Desaturation Phase (Case-1) 

Parameters  Values 

Initial Satellite Velocity 𝑤0 = [ 0.0, 0.0, 0.0 ] 

Initial / Desired Euler Angels 
[ψ0, θ0, Φ0] = [0, 0,0] 

 [ψ𝑑 , θ𝑑, Φ𝑑] = [−15,−5,5] 
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Parameters  Values 

Constant Controller Gain 𝐾𝑑𝑢𝑚𝑝 = 10−6 

The Command Torque 𝑀𝑐𝑚𝑑 = − 𝐾𝑃. 𝑞𝑣,𝑒𝑟𝑟. 𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷 . �̇�𝑒𝑟𝑟 

 

 

Figure 6-9 MTR Torque in Desaturation Phase of Satellite PID (Case-1) 

 

Figure 6-10 RW Angular Momentum Desaturation of PID (Case-1) 

In the first test case, the final value of angular momentum in the range of 

±0.005 𝑘𝑔𝑚2 𝑠𝑒𝑐⁄ . The settling time is about ~200 seconds.  
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Case-2: No RW Failure & PID Controller with the same parameters like in the 

previous test case, but using higher gain value (𝐾𝑑𝑢𝑚𝑝 = 106).   

 

 

Figure 6-11 MTR Torque in Desaturation Phase of PID (Case-2) 

 

Figure 6-12 RW Angular Momentum Desaturation of PID (Case-2) 

The angular momentum changes are stabilized in about 110 seconds and its value is 

reduced to around ±1𝑥10−4  𝑘𝑔𝑚2 𝑠𝑒𝑐⁄ . MTR torque contains much noise while 

dump gain is larger twelve times than the previous gain value.  
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Case-3: RW-1 Failure & PID Controller with the same parameters and gain values 

(𝐾𝑑𝑢𝑚𝑝 = 10−6) like in the first test case, but implementing different PID controller 

law (𝑀𝑐𝑚𝑑 = − 𝐾𝑃. 𝑞𝑣,𝑒𝑟𝑟 . 𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷 . 𝑤𝑂𝐵
𝐵 ). 

 

 

Figure 6-13 MTR Torque in Desaturation Phase of SMC (Case-3) 

 

Figure 6-14 RW Angular Momentum Desaturation of PID (Case-3) 

This test proves that the selected controller law also affects the results of 

desaturation controller design. In this case, the settling time is adversely effected by 

this PID controller law.  
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Case-4: No RW Failure & SMC Controller without chattering problem with the 

same gain value (𝐾𝑑𝑢𝑚𝑝 = 10−6) 

Table 6-3 The Simulation Parameters of Desaturation Phase (Case-4) 

Parameters Values 

Initial Satellite Velocity 𝑤0 = [ 0.0, 0.0, 0.0 ] 

Initial / Desired Euler Angels 
[ψ0, θ0, Φ0] = [0, 0,0] 

[ψ𝑑, θ𝑑, Φ𝑑] = [−15,−5,5] 

Constant Controller Gains 
𝐾𝑆𝑀𝐶 = 0.5 ∗ [𝐼]3𝑥3 

𝐺𝑆𝑀𝐶 = 1 ∗ [𝐼]3𝑥3 

Sliding Manifold 𝑠 = 𝑤𝑂𝐵
𝐵 + 𝐾𝑆𝑀𝐶 . 𝑞𝑣,𝑒𝑟𝑟 

 

 

Figure 6-15 MTR Torque in Desaturation Phase of SMC (Case-4) 



 

 

137 

 

 

Figure 6-16 RW Angular Momentum Desaturation of SMC (Case-4) 

The change rates of RW angular momentum is between ±0.2  𝑘𝑔𝑚2 𝑠𝑒𝑐⁄ .  After 

dumping is completed in about 80 seconds, the angular momentum changes are 

descended around ±1𝑥10−4  𝑘𝑔𝑚2 𝑠𝑒𝑐⁄ .  

Case-5: No RW Failure & LQR Controller under the same conditions and gain 

values used in the section of “The Results of LQR Controller / Case-1” 

 

 

Figure 6-17 MTR Torque in Desaturation Phase of LQR (Case-5) 
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Figure 6-18 RW Angular Momentum Desaturation of LQR (Case-5) 

As it can be seen in the graphics, the torque changes of RWs and MTRs and settling 

times are almost in the same level for each type of main controllers. The only 

exception is seen in the case of using LQR controller due to the chosen weight 

matrices. In addition to this, they are not in the same margins for different test cases. 

It can also be observed that the biggest differences among the angular momentum 

values are in the SMC test cases.  

6.4. The Results of PID Control 

For the usage of reaction wheels and magnetic torque rods as torque generators, the 

matrices of measurement equation for the configuration of using all sensors are 

specified in the following test cases.  

Sensor Configuration: GYRO + STR + MGM + SS + GPS 

𝑦𝐶𝑂𝑁𝐹 = [𝑤𝑚𝑒𝑎𝑠 𝑞𝑚𝑒𝑎𝑠 𝐵𝑚𝑒𝑎𝑠 𝑆𝑉𝑚𝑒𝑎𝑠 𝑟𝑚𝑒𝑎𝑠 𝑣𝑚𝑒𝑎𝑠]
𝑇 (6.1) 

𝑦𝐶𝑂𝑁𝐹 = [𝐻𝐶𝑂𝑁𝐹]∆𝑥𝑘 + [𝑅𝐶𝑂𝑁𝐹]𝑣𝑘 (6.2) 
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[𝐻𝐶𝑂𝑁𝐹]∆𝑥𝑘 =

[
 
 
 
 
 
 
 

 

[𝐼]3𝑥3 03𝑥4 03𝑥3

04𝑥3 [𝐼]4𝑥4 04𝑥3

03𝑥3 [𝐻𝑀𝐺𝑀
𝑛𝑜𝑛

]
3𝑥4

03𝑥3

03𝑥3 [𝐻𝑆𝑢𝑆
𝑛𝑜𝑛

]
3𝑥4

03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆1
𝑛𝑜𝑛

]
3𝑥4

03𝑥3

03𝑥3 [𝐻𝐺𝑃𝑆2
𝑛𝑜𝑛

]
3𝑥4

03𝑥3

  

]
 
 
 
 
 
 
 

[

∆𝑤𝐼𝐵
𝐵

∆𝑞

∆𝐻𝑅𝑊
𝐵

] (6.3) 

[𝑅𝐶𝑂𝑁𝐹] = 

[
 
 
 
 
 

 

𝐼3𝑥3. 𝑅𝐺𝑌𝑅𝑂 03𝑥4 03𝑥3 03𝑥3 03𝑥3 03𝑥3

04𝑥3 𝐼4𝑥4. 𝑅𝑆𝑇𝑅 04𝑥3 04𝑥3 04𝑥3 04𝑥3

03𝑥3 03𝑥4 𝐼3𝑥3. 𝑅𝑀𝐺𝑀 03𝑥3 03𝑥3 03𝑥3

03𝑥3 03𝑥4 03𝑥3 𝐼3𝑥3. 𝑅𝑆𝑢𝑆 03𝑥3 03𝑥3

03𝑥3 03𝑥4 03𝑥3 03𝑥3 𝐼3𝑥3. 𝑅𝐺𝑃𝑆1 03𝑥3

03𝑥3 03𝑥4 03𝑥3 03𝑥3 03𝑥3 𝐼3𝑥3. 𝑅𝐺𝑃𝑆2

 

]
 
 
 
 
 

 
(6.4) 

𝑅𝐺𝑌𝑅𝑂 = 𝑅𝑆𝑇𝑅 =  1𝑥10−12 ;  𝑅𝑀𝐺𝑀 = 𝑅𝑆𝑢𝑆 = 𝑅𝐺𝑃𝑆1 = 𝑅𝐺𝑃𝑆2 = 1𝑥10−10 

The controller gains are directly proportionate to the components of satellite inertia 

matrix (𝐼𝑆𝑥
,   𝐼𝑆𝑦

,   𝐼𝑆𝑧
) according to the following attitude control law [15]: 

[ 

𝑀𝑐𝑚𝑑,𝑥

𝑀𝑐𝑚𝑑,𝑦

𝑀𝑐𝑚𝑑,𝑧

 ] = [ 

−2. 𝐾𝑃𝑥
𝑞𝑒𝑟𝑟,1𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑥

�̇�𝑒𝑟𝑟,1

−2.𝐾𝑃𝑦
𝑞𝑒𝑟𝑟,2𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑦

�̇�𝑒𝑟𝑟,2

−2.𝐾𝑃𝑧
𝑞𝑒𝑟𝑟,3𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑧

�̇�𝑒𝑟𝑟,3

 ] (6.5) 

Case-1: No RW Failure & PID Controller 

Table 6-4 The Simulation Parameters of PID Controller (Case-1) 

Parameters Values 

Initial Satellite Velocity 𝑤0 = [ 0.0, 0.0, 0.0 ] 

Initial / Desired Euler Angels 
[ψ0, θ0, Φ0] = [0, 0, 0] 

[ψ𝑑 , θ𝑑 , Φ𝑑] = [−15,−5, 5] 
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Parameters Values 

Constant Controller Gains 

𝐾𝑃𝑥,𝑦,𝑧
= [𝐼𝑆𝑥

5⁄ ,   𝐼𝑆𝑦
5⁄ ,   𝐼𝑆𝑧

5⁄ ] 

𝐾𝑃𝐷𝑥,𝑦,𝑧
= 10 ∗ 𝐾𝑃𝑥,𝑦,𝑧

 

𝐾𝑃𝑥,𝑦,𝑧
= [7.0662/5,   6.9502/5,   8.5558/5] 

𝐾𝑃𝐷𝑥,𝑦,𝑧
= [14.1324,   13.9004,   17.1117] 

Dumping Gain (𝐾𝑑𝑢𝑚𝑝) 𝐾𝑑𝑢𝑚𝑝 = 10−6  

 

 

Figure 6-19 RW Commanded Torque (PID / Case-1) 

 

Figure 6-20 RW Angular Velocities (PID/Case-1) 
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Figure 6-21 Satellite Euler Angles (PID/Case-1) 

 

Figure 6-22 Satellite Angular Velocities (PID/Case-1) 

The controller parameters obtained from the simulation for this case are hereafter: 

Table 6-5 The Simulation Results of PID Controller for Case-1 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~50 s ~17.905 s 1.983 % 

Pitch Angle ~40 s ~16.485 s 1.994 % 

Yaw Angle ~50 s ~19.006 s 0.505 % 
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The applied command torque equation gives appropriate results for small angular 

maneuvers in the first test case. Another command equation is applied for high 

angular maneuvers like in the following and third test case.  

Case-2: No RW Failure with the same parameters applied in the previous test case, 

but using different command torque law (𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑤𝑂𝐵
𝐵 ) 

 

 

Figure 6-23 RW Commanded Torque (PID/Case-2) 

 

Figure 6-24 RW Angular Velocities (PID/Case-2) 
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Figure 6-25 Satellite Euler Angles (PID/Case-2) 

 

Figure 6-26 Satellite Angular Velocities (PID/Case-2) 

The controller parameters obtained from the simulation for this case are hereafter: 

Table 6-6 The Simulation Results of PID Controller for Case-2 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~120 s ~40.304 s 2.011 % 

Pitch Angle ~100 s ~36.407 s 2.010 % 

Yaw Angle ~100 s ~44.104 s 0.504 % 
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The settling time and rise time obtained from the results show that they have higher 

values as compared with the results of previous test case.  

Case-3: No RW Failure under the same conditions in terms of controller gains and 

torque equations (𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑤𝑂𝐵
𝐵 ), but performing high Euler 

reference angles ([ψ𝑑, θ𝑑 , Φ𝑑] = [120, 50, −30]) from zero initial angles.  

 

 

Figure 6-27 RW Commanded Torque (PID/Case-3) 

 

Figure 6-28 RW Angular Velocities (PID/Case-3) 
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Figure 6-29 Satellite Euler Angles (PID/Case-3) 

 

Figure 6-30 Satellite Angular Velocities (PID/Case-3) 

The controller parameters obtained from the simulations for this case are hereafter:  

Table 6-7 The Simulation Results of PID Controller for Case-3 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~120 s ~56.606 s 0.504 % 

Pitch Angle ~90 s ~47.902 s 0.509 % 

Yaw Angle ~70 s ~21.908 s 2.252 % 
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It can be concluded that the requested torque is increased than the case of applying 

low reference angles. Similarly, it is the same situation for the timing properties of 

this case.  

Case-4: RW-1 Failure under the same conditions like in the first case, but with the 

torque command of (𝑀𝑐𝑚𝑑 = − 𝐾𝑃𝑞𝑣,𝑒𝑟𝑟𝑞𝑒𝑟𝑟,4 − 𝐾𝑃𝐷𝑤𝑂𝐵
𝐵 ) and the expected last 

Euler angular values are [ψ𝑑 , θ𝑑, Φ𝑑] = [−15,− 5,5] from zero initial values.  

 

 

Figure 6-31 RW Commanded Torque (PID/Case-4) 

 

Figure 6-32 RW Angular Velocities (PID/Case-4) 
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Figure 6-33 Satellite Euler Angles (PID/Case-4) 

 

Figure 6-34 Satellite Angular Velocities (PID/Case-4) 

The simulation parameters obtained from this case are defined here:  

Table 6-8  The Simulation Results of PID Controller for Case-4 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~90 s ~39.503 s 2.000 % 

Pitch Angle ~90 s ~32.602 s 2.001 % 

Yaw Angle ~90 s ~50.405 s 0.493 % 
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In the case of more than one reaction wheel failure, the expected attitude results are 

not acquired properly. The power consumptions for both cases of a RW failure and 

non-failure are also hereafter:  

 

Figure 6-35 RW Power Consumption for a Non-Failure Case (PID) 

 

Figure 6-36 RW Power Consumption for a RW Failure Case (PID) 

The following equation is used for the calculation of RW power consumption:  

𝑃 = �̇�𝑅𝑊𝑤𝑅𝑊 (6.1) 

The calculations of both RW electrical and mechanical power consumption are 

implemented into DC motor model like in the following figure:   
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Figure 6-37 The Calculation of Electrical and Mechanical Power Consmp. 

6.5. The Results of LQR Control  

The main controller consisting of optimal and desaturation controller to keep wheels 

under their saturation limits in this section. The controlled state is a quaternion 

vector and it is simulated by handling error rate according to the given reference 

angles for LQR controller design.  

The linearized satellite plant model is the base point for this controller type. H 

measurement matrix is taken as a unit matrix which is sized suitably with the state 

vector size. Two different test cases are analyzed taking into consideration the 

failure situation of one reaction wheel and their graphical results are presented here. 

Case-1: No RW Failure & LQR Controller using both RWs and MTRs using as 

torque generators with the following simulation parameters:  

Table 6-9 The Simulation Parameters of LQR Controller (Case-1) 

Parameters Values 

Initial Satellite Velocity 𝑤0 = [ 0.0, 0.0, 0.0 ] 
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Parameters Values 

Initial / Desired Euler Angels 
[ψ0, θ0, Φ0] = [0, 0,0] 

[ψ𝑑 , θ𝑑, Φ𝑑] = [−15, − 5, 5] 

Constant Weight State Matrix 𝑄𝑅𝑊 = [

[𝐼3𝑥3 ] 0 0

0 [𝐼3𝑥3 ] ∗ (1000) 0

0 0 [𝐼4𝑥4 ]
] 

Constant Weight Input Matrix 𝑅𝑅𝑊 = [𝐼6𝑥6 ] ∗ (2500) 

Controller Gain Matrix 𝐾𝐿𝑄𝑅 = [𝐾𝑤𝐿𝑄𝑅,𝐾𝑞𝐿𝑄𝑅,𝐾ℎ𝑟𝑤𝐿𝑄𝑅,] 

The gain matrix in accordance with the selected weight matrices is obtained like:   

𝐾𝐿𝑄𝑅 = 

[
 
 
 
 
 
 
 
 

 

   0.8895   0.0000 −0.0009  0.3640 −0.0000 0.0028 0.0000  −0.0164   −0.0000   −0.0000 
−0.0000   0.9046 −0.0000  0.0000    0.3819  −0.0000    0.0066 −0.0000   −0.0164   −0.0000
−0.0007   0.0000    0.9745 −0.0035   −0.0000  0.3637 −0.0000    0.0000 −0.0000   −0.0164
   0.9470 −0.0000 −0.0009   0.3657 −0.0000  0.0029 0.0000 0.0081 0.0000 −0.0000
−0.0000    0.9612 −0.0000    0.0000    0.3836 −0.0000 0.0077 −0.0000 0.0081 −0.0000
−0.0007 −0.0000    1.0441 −0.0035 −0.0000  0.3658 0.0000 0.0000 0.0000    0.0081
    0.9470 −0.0000 −0.0009    0.3657 −0.0000  0.0029 0.0000 0.0081 0.0000 −0.0000
−0.0000    0.9612 −0.0000    0.0000    0.3836 −0.0000 0.0077 −0.0000 0.0081 −0.0000
−0.0007 −0.0000    1.0441 −0.0035 −0.0000   0.3658 0.0000 0.0000 0.0000    0.0081

 

]
 
 
 
 
 
 
 
 

 

The eigenvalues (𝐸𝐿𝑄𝑅) of linearized plant model are specified here to prove system 

stability. Their real parts are negative values and system stability is guaranteed by 

using this specification:  

Table 6-10 The Eigenvalues of Linearized Plant Model 

Eigenvalues of LQR Values 

𝐸𝐿𝑄𝑅,1 −0.1969 +  0.1968i 

𝐸𝐿𝑄𝑅,2 −0.1969 −  0.1968i 

𝐸𝐿𝑄𝑅,2 −0.1791 +  0.1787i 

𝐸𝐿𝑄𝑅,2 −0.1791 −  0.1787i 

𝐸𝐿𝑄𝑅,2 −0.2034 +  0.2032i 
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Eigenvalues of LQR Values 

𝐸𝐿𝑄𝑅,2 −0.2034 −  0.2032i 

𝐸𝐿𝑄𝑅,2 −0.0001 +  0.0000i 

𝐸𝐿𝑄𝑅,2 −0.0163 +  0.0000i 

𝐸𝐿𝑄𝑅,2 −0.0163 −  0.0000i 

𝐸𝐿𝑄𝑅,2 −0.0163 +  0.0000i 

The graphical outputs acquired from this test case are depicted here: 

 

Figure 6-38 RW Commanded Torque (LQR/Case-1) 

 

Figure 6-39 RW Angular Velocities (LQR/Case-1) 
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Figure 6-40 Satellite Euler Angles (LQR/Case-1) 

 

Figure 6-41 Satellite Angular Velocities (LQR/Case-1) 

The simulation parameters obtained from this case are defined here:  

Table 6-11 The Simulation Results of LQR Controller for Case-1 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~100 s - 11.606 s 8.028 % 

Pitch Angle ~75 s  - 8.005 s 4.072 % 

Yaw Angle ~60 s +10.302 s 25.949 % 
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It is observed that the satellite reaches to a stable state on the average of almost ~80 

seconds with tolerable fluctuations in the range of ±0.05 degrees especially for the 

measured values taken from Y axis.  

The system performances are affected by the changes in weight matrices determined 

by trial and error method. For the sake of example, the settling time gets smaller 

whenever R weight matrix has smaller values compared with its previous version.  

Case-2: RW1 Failure & LQR Controller with the same parameters handled in the 

previous test case.  

 

Figure 6-42 RW Commanded Torque (LQR/Case-2) 

 

Figure 6-43 RW Angular Velocities (LQR/Case-2) 
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Figure 6-44 Satellite Euler Angles (LQR/Case-2) 

 

Figure 6-45 Satellite Angular Velocities (LQR/Case-1) 

The simulation parameters obtained from this case are defined here:  

Table 6-12 The Simulation Results of LQR Controller for Case-2 

 Settling Time (s) Rise/Fall Time (s) Overshoot (%) 

Roll Angle ~ 600 - 16.903 - 7.133 

Pitch Angle ~ 600  8.654 / 8.337 38.072 / 6.877  

Yaw Angle ~ 600 6.305 / 6.803 137.676 / 3.450 

The usage of three RWs instead of four of them effects the system negatively. The 

power consumptions for both cases of a RW failure and non-failure are here: 
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Figure 6-46 RW Power Consumption for a Non-Failure Case (LQR) 

 

Figure 6-47 RW Power Consumption for a RW Failure Case (LQR) 
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6.6. The Results of Sliding Mode Control 

The graphical evaluation of sliding mode controller design taking into account the 

chattering problem with different configurations is presented in this section.  

Case-1: No RW Failure & Sliding Mode Controller with chattering problem  

Table 6-13 The Simulation Parameters of SM Controller (Case-1) 

Parameters Values 

Initial Satellite Velocity 𝑤0 = [ 0.0, 0.0, 0.0 ] 

Initial / Desired Euler Angels 
[ψ0, θ0, Φ0] = [0, 0,0] 

[ψ𝑑 , θ𝑑, Φ𝑑] = [−15,− 5, 5] 

Constant Controller Gains 𝐾𝑆𝑀𝐶 = 0.5 ∗ [𝐼]3𝑥3 ; 𝐺𝑆𝑀𝐶 = 1 ∗ [𝐼]3𝑥3  

Sliding Thickness 휀 = 0.02 

The applied control torque definition with chattering problem will be:  

𝑀𝑐𝑚𝑑 = 𝑤𝑂𝐵
𝐵 × (𝐼𝑆𝑤𝑂𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) − 𝑀𝐷 − 𝐼𝑆�̇�𝑂𝐵

𝐵 − 𝐼𝑆𝐾𝑆𝑀𝐶�̇�𝑣,𝑒𝑟𝑟 − 𝐼𝑆𝐺𝑆𝑀𝐶𝑠𝑖𝑔𝑛(𝑠) 

 

Figure 6-48 Torque Command of SMC with Chattering Problem (Case-1) 
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Figure 6-49 RW Angular Velocity of SMC with Chattering Problem (Case-1) 

 

Figure 6-50 Satellite Ang. Vel. of SMC with Chattering Problem (Case-1) 

 

Figure 6-51 Euler Angles of SMC with Chattering Problem (Case-1) 
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The simulation results of Euler angles for this test case are here:  

Table 6-14 The Simulation Results of SMC Controller for Case-1 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~75 s 5.703 s 4.479 % 

Pitch Angle ~60 s 7.005 s 13.333 % 

Yaw Angle ~60 s 7.407 s  14.368 % 

Case-2: No RW Failure & Sliding Mode Controller with same parameters applied in 

the previous test case, but without having chattering problem. The applied control 

torque can be specified to eliminate the chattering problem:  

𝑀𝑐𝑚𝑑 = 𝑤𝑂𝐵
𝐵 × (𝐼𝑆 𝑤𝑂𝐵

𝐵 + 𝐻𝑅𝑊
𝐵 ) − 𝑀𝐷 − 𝐼𝑆�̇�𝑂𝐵

𝐵 − 𝐼𝑆𝐾𝑆𝑀𝐶�̇�𝑣,𝑒𝑟𝑟 − 𝐼𝑆𝐺𝑆𝑀𝐶𝑡𝑎𝑛ℎ ( 
𝑠

휀
) 

 

Figure 6-52 Torque Command of SMC without Chattering Problem (Case-2) 
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Figure 6-53 Euler Angles of SMC without Chattering Problem (Case-2) 

The simulation results of Euler angles for this test case are shown below:  

Table 6-15 The Simulation Results of SMC Controller for Case-2 

 Settling Time Rise/Fall Time Overshoot  

Roll Angle ~75 s 5.502 s 4.217 % 

Pitch Angle ~60 s 7.006 s 12.459 % 

Yaw Angle ~60 s 7.602 s 14.368 % 

The angular velocity graphics of both satellite and RWs have almost the same 

results. After momentum unloading is completed, it can be seen that there is a little 

attitude error between the desired and estimated orientation angles for each axis in 

the ratio of ±0.1 degree for this test case.  

Case-3: RW-1 Failure & Sliding Mode Controller with under same conditions 

applied in the previous case. Controller gains have completely same values too.  



 

 

160 

 

 

Figure 6-54 Torque Command of SMC without Chattering Problem (Case-3) 

 

Figure 6-55 Euler Angles of SMC without Chattering Problem (Case-3) 

While the roll and pitch angles reach their reference values, the yaw angle has not 

got successful outputs. It is necessary to change the controller gain (𝐾𝑆𝑀𝐶) to achieve 

the given reference angles, in the case of a wheel failure.  

Case-4: RW-1 Failure & Sliding Mode Controller with under same conditions 

applied in the previous case, but controller gain is selected like as (𝐾𝑆𝑀𝐶 =

0.25[𝐼]3𝑥3 and 𝐺𝑆𝑀𝐶 = 15[𝐼]3𝑥3). 
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Figure 6-56 Torque Command of SMC without Chattering Problem (Case-4) 

 

Figure 6-57 Euler Angles of SMC without Chattering Problem (Case-4) 

The simulation results of Euler angles for this modified case are listed in the 

following table:  

Table 6-16 The Simulation Results of SMC Controller for Case-2 

 Settling Time Rise/Fall Time Overshoot 

Roll Angle ~100 s  19.907 s  2.008 % 

Pitch Angle ~90 s 19.403 s 2.018 % 

Yaw Angle ~120 s  10.602 s 70.560 / 2.267 % 
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It is important to state that there are some deviations for each rotation axis between 

reference and measured angles in the range of ± (0.1-0.2) degrees, when 𝐺𝑆𝑀𝐶  gain 

is not changed. However, these deviations are reduced by increasing 𝐺𝑆𝑀𝐶  value. 

The power consumptions for both cases of a RW failure and non-failure are: 

 

Figure 6-58 RW Power Consumption for a Non-Failure Case (SMC) 

 

Figure 6-59 RW Power Consumption for a RW Failure Case (SMC) 

6.7. Summary 

In this chapter, there are five different controller types implemented to satellite 

system model including both plant model and space environment model. The 
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simulation graphics of the main controllers called PID, LQR and SMC with several 

test cases are compared and analyzed.  

Even though detumbling and momentum desaturation controllers are supposed to be 

auxiliary controllers, there is also a great deal of test cases related to demonstrate 

their impact on attitude stabilization. The simulation results show that they are able 

to fulfill the expected results and requirements about smooth maneuvering and 

detumbling.
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CHAPTER 7  

 

7. CONCLUSION 

 

7.1. Summary 

The main object of this thesis is to develop and design different types of satellite 

attitude controllers, which includes four reaction wheels and torque rods under 

external disturbance torques and sensor noises by integrating the measurements of 

proper sensor combinations called multi-sensor integration.  

Within the scope of this thesis, it will be mostly focused on the implementation of 

different types of attitude controllers such as PID, LQR and SMC for both initial and 

nominal satellite phases with multi-sensor integrated navigation systems. The most 

popular and important sensor combination includes gyroscopes and star trackers. 

However, the other auxiliary attitude sensors such as sun sensors, magnetometers 

and GPS receivers were also modelled considering their noise components.  

After several investigations on academic dissertations which deal with different 

design methods of satellite controllers, the controller types required for detumbling 

and momentum desaturation phases were designed in a software tool called 

MATLAB/Simulink.  

7.2. Conclusion 

Microsatellites are not capable of reaching the specified orientation and tracking 

points unless their initial angular velocities are decreased. In the first phase of 

satellite life, B-dot controller was preferred to reduce the satellite tumbling rate and 

stabilize its initial angular velocity. In the nominal phase where a satellite is able to 
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track a commanded attitude, attitude controller types such as PD, LQR and SMC 

were used as a main controller in this study. The results obtained from these methods 

were analyzed and compared eliminating redundant momentum accumulated on 

wheels by the help of using desaturation function. In the whole process, satellite 

stability was provided with regard to the standard Lyapunov theorems. 

The linear optimal controllers such as LQR controller use satellite linearized 

dynamic/kinematic equations. This controller type eliminates the fluctuations on 

output signals in finite time and provides much acceptable responses in terms of 

attitude stabilization. The comparisons of these responses between linear and 

nonlinear controllers were carried out by visualizing them on test graphics.  

LQR has better performance in terms of the percentage of its signal overshoot and 

rising time. In addition to the satellite maneuver time is shortened with LQR 

controller which is more stable and lower settling time than PID controller. 

As a result of analysis, it can be shown that the best performance belongs to SMC 

controller design according to the simulation tests realized under the same 

conditions. All main controller types (PID, LQR, and SMC) give stable results based 

on Lyapunov stability theorem in terms of the desired orientation. Reaction wheel 

detumbling and redundant momentum desaturations are brought under control with 

satisfied results for each type of attitude controller.  

In this study, SMC was also proposed to orient the motion of FLP satellite to its 

desired trajectory. The recommended control equations and strategies guarantee that 

there is no chattering issue in the graphics of torque command value. It can be 

concluded that SMC design has the best results among of all controllers in terms of 

settling time and robustness.  

The Kalman filter provides better stability with low noise measurement and process 

covariance matrices for roll, pitch and yaw axes like as the referenced study in [84]. 

The responses time of Kalman filters based controllers are nominally compatible 
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with the real responses time. The controller performance is highly dependent on the 

estimated parameters and noise covariance matrices. Since sensor estimation errors 

can result in angular deviation from the reference attitude. 

In any case of one reaction wheel failure, it was necessary to specify controller gains 

again for all controller designs. This case induces signal distortion, increases the 

settling time and power consumption.  

7.3. Future Works 

Different sensor configurations using with different noise covariance matrices can be 

modeled and their system responses and Kalman filter analysis can be compared for 

attitude actuators such as torque rods or reaction wheels. Even though there is not 

any thrusters in the selected satellite to put it back its initial place in orbit, the effects 

of them can be implemented to all type of controller models.   

Multi-sensor integrated navigation process including different integration 

architectures and different combinations of navigation sensors such as Inertial 

Navigation System (INS) and GPS receivers can be applied to sensor model [24, 61]. 

The integration algorithms such as loosely coupled, tightly coupled and deeply 

coupled integration shall provide the maximum processing accuracy, efficiency and 

robustness. They shall also minimize the complexity of navigation solution [19].   

There are some integration architectures for multi-sensor navigation processing such 

as the simplest one, the least squares integration, then cascaded, centralized, 

federated, and hybrid integration architectures. Each of them has different 

advantages and disadvantages in terms of the selected sensors. The optimum solution 

of navigation processing model is found out as a federated integration method by 

applying Kalman Filters.  

The results of following methods can be compared and analyzed for all attitude 

sensors located in the selected satellite [19, 64]:  
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 Least Squares Integration 

 Cascaded Integration with EKF and UKF 

 Centralized Integration with EKF and UKF 

 Federated Integration with EKF and UKF 

There are also quite a few advanced and robust controller types can be performed for 

the generated satellite model in this study: 

 H-Infinity Controller (𝐻∞)  

 Model Based Predictive Controller (MPC) 

 Fuzzy Logic Controller 

 Neural Networks Controller 

MATLAB/Simulink model files (.m and .slx files) can be converted to C or C++ 

source and header files (.c,.cpp and .h files) using auto code generation tool in order 

to realize these models in a cross platform environment. This situation provides them 

to extend their operating scope and integrate with different simulation platforms 

such as Eurosim that it can be interoperated with real time operating systems. 

Machine learning algorithms can be performed for fine tuning on the results of main 

controllers instead of traditional methods. These trendy algorithms have been hot 

topics for a long time among the recent technological investigations.  

There is one redundant wheel providing angular momentum and causing over 

actuation for the system. An alternative optimal controller can be introduced for this 

over-actuated system in order to determine an optimal path in terms of minimum 

energy or minimum time problem.  
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APPENDICES 

 

A. The Properties of Quaternions 

There is a mathematical approach used in modern spacecraft called quaternions that 

has the capability of quicker computations and less integration steps than direction 

cosine matrix. This approach also eliminates the singularities of Euler angles. It is 

vital to have information about the different properties of quaternion vectors to be 

able to calculate the quaternion vector multiplications accurately. 

Quaternion vectors are based upon a special unit vector multiplication [47]:  

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 =  −1    (A.1) 

𝑖𝑗 =  𝑘 =  −𝑗𝑘 ;    𝑗𝑘 =  𝑖 =  −𝑘𝑗 ;    𝑘𝑖 =  𝑗 =  −𝑖𝑘  (A.2) 

The quaternion vectors including both vector and scalar parts are shown below: 

𝑞 =  𝑞1𝑖 +  𝑞2𝑗 + 𝑞3𝑘 + 𝑞4 = 𝑞𝑣 + 𝑞4   (A.3) 

𝑝 =  𝑝1𝑖 +  𝑝2𝑗 + 𝑝3𝑘 + 𝑝4 = 𝑝𝑣 + 𝑝4    (A.4) 

Vector elements of 𝑞1, 𝑞2, 𝑞3 and 𝑞4 are real numbers and they have unit lengths: 

 𝑞1 
2 + 𝑞2 

2 + 𝑞3 
2 + 𝑞4 

2 = 1 (A.5) 

The scalar multiplication of two different quaternion vectors: 
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𝑡 = 𝑞 ⊙ 𝑝 = ( 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 + 𝑞4). ( 𝑝1𝑖 + 𝑝2𝑗 + 𝑝3𝑘 + 𝑝4) (A.6) 

𝑞 ⊙ 𝑝 = 𝑞4𝑝4 − 𝑞𝑣 𝑝𝑣 + 𝑞4𝑝𝑣 + 𝑝4𝑞𝑣 + 𝑞𝑣 × 𝑝𝑣 (A.7) 

𝑞 ⊙ 𝑝 = [ 

𝑡1
𝑡2
𝑡3
𝑡4

 ] = [ 

𝑝4 𝑝3 −𝑝2  𝑝1

−𝑝3 𝑝4  𝑝1 𝑝2

𝑝2 − 𝑝1 𝑝4 𝑝3

− 𝑝1 −𝑝2 −𝑝3 𝑝4

 ] [ 

𝑞1

𝑞2

𝑞3

𝑞4

 ] (A.8) 

𝑞 ⊙ 𝑝 = [ 

𝑡1
𝑡2
𝑡3
𝑡4

 ] = [ 

𝑞4 −𝑞3 𝑞2  𝑞1

𝑞3 𝑞4 −𝑞1 𝑞2

−𝑞2 𝑞1 𝑞4 𝑞3

− 𝑞1 −𝑞2 −𝑞3 𝑞4

 ] [ 

𝑝1

𝑝2

𝑝3

𝑝4

 ] (A.8) 

The cross and dot products of quaternion vectors are defined respectively: 

𝑞 ⊗ 𝑝 = [  
𝑝4𝑞𝑣 + 𝑞4𝑝𝑣 − 𝑞𝑣 × 𝑝𝑣 

𝑞4𝑝4 − 𝑞𝑣𝑝𝑣
]   (A.8) 

𝑞 ⊙ 𝑝 = [ 
 𝑝4𝑞𝑣 + 𝑞4𝑝𝑣 + 𝑞𝑣 × 𝑝𝑣

𝑞4𝑝4 − 𝑞𝑣𝑝𝑣
 ]   (A.9) 

The relation between vector product and dot product is:  

𝑞 ⊗ 𝑝 =  𝑝 ⊙ 𝑞  (A.10) 

The conjugate of a quaternion vector (𝑞∗) is: 

𝑞 = 𝑞4 + 𝑞𝑣    𝑞∗ = 𝑞4 − 𝑞𝑣  (A.11) 

The norm of a quaternion vector (𝑁(𝑞)) is: 

𝑁(𝑞) = √𝑞∗𝑞 = √𝑞1 
2 + 𝑞2 

2 + 𝑞3 
2 + 𝑞4 

2   (A.12) 
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The inverse of a quaternion vector (𝑞−1) is: 

𝑞−1 = 𝑞∗ = 𝑞4 − 𝑞𝑣   (A.13) 

The derivative of a quaternion vector (�̇�) is: 

𝑑𝑞

𝑑𝑡
= [ 

�̇�1

�̇�2

�̇�3

�̇�4

 ] =
1

2
[𝛺(𝑤𝑂𝐵

𝐵 )] [ 

𝑞1

𝑞2

𝑞3
𝑞4

 ] (A.14) 

The derivative of a quaternion vector (�̇�) can be written using the definition of 

𝑞 = [𝑞𝑣;  𝑞4], where 𝑞𝑣 is the first three components of quaternion vector. The scalar 

part of a quaternion is  𝑞4 and 𝛺(𝑤𝑂𝐵
𝐵 ) is a 3x3 skew-symmetric matrix [47, 51]: 

𝑞�̇� = −
1

2
𝑤𝑂𝐵

𝐵 × 𝑞𝑣 + 
1

2
𝑤𝑂𝐵

𝐵 𝑞4 = − 
1

2
 [𝛺(𝑤𝑂𝐵

𝐵 )] 𝑞𝑣 + 
1

2
𝑞4𝑤𝑂𝐵

𝐵  (A.15) 

𝑞�̇� =
1

2
[𝛺(𝑞𝑣)] 𝑤𝑂𝐵

𝐵 + 
1

2
𝑞4𝑤𝑂𝐵

𝐵 =
1

2
[𝛺(𝑞𝑣) + [𝐼3𝑥3]𝑞4]𝑤𝑂𝐵

𝐵  (A.16) 

𝑆(𝑞) = [𝛺(𝑞𝑣) + [𝐼3𝑥3]𝑞4] = [

𝑞4 −𝑞3 𝑞2

𝑞3 𝑞4 −𝑞1

−𝑞2 𝑞1 𝑞4

] (A.17) 

𝑞�̇� =
1

2
 𝑆(𝑞)𝑤𝑂𝐵

𝐵  (A.18) 

 �̇�4 = −
1

2
(𝑤𝑂𝐵

𝐵 )𝑇𝑞𝑣 = −
1

2
(𝑞𝑣)

𝑇𝑤𝑂𝐵
𝐵   (A.19) 

In more compact forms of a quaternion vector derivation are hereafter [47]:   

�̇� =
1

2
𝑆(𝑞) 𝑤𝑂𝐵

𝐵 −
1

2
 [𝐼3𝑥3](𝑞𝑣)

𝑇𝑤𝑂𝐵
𝐵  (A.20) 
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�̇� = −
1

2
[
[𝛺(𝑤𝑂𝐵

𝐵 )]

(𝑤𝑂𝐵
𝐵 )𝑇 ] 𝑞𝑣 + 

1

2
[𝐼3𝑥3]𝑤𝑂𝐵

𝐵 𝑞4 (A.21) 

B. Transfer Functions  

The transfer functions of the following satellite plant model are explained in this 

chapter: 

�̇�𝑘 = [ 

�̇�𝐼𝐵
𝐵

�̇�

�̇�𝑅𝑊
𝐵

 ] = 𝐴𝑘 [
𝑤𝐼𝐵

𝐵

𝑞

𝐻𝑅𝑊
𝐵

] + 𝐵𝑘 [

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

] + 𝑄𝑘 [

𝑀𝐶
𝑅𝑊

𝑀𝐶
𝑀𝑇𝑅

𝑀𝐷

] 

In the case of 𝑀𝐶,𝑥
𝑅𝑊 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑥
𝐵 (𝑠)

𝑀𝐶,𝑥
𝑅𝑊(𝑠)

=
0.1415

𝑠
 (B.1) 

𝑞1(𝑠)

𝑀𝐶,𝑥
𝑅𝑊(𝑠)

=
0.07075 𝑠

𝑠3 + 1.089𝑥10−6𝑠
 (B.2) 

𝑞3(𝑠)

𝑀𝐶,𝑥
𝑅𝑊(𝑠)

=
−0.0002335

𝑠3 + 1.089𝑥10−5𝑠
 (B.3) 

𝐻𝑅𝑊,𝑥
𝐵 (𝑠)

𝑀𝐶,𝑥
𝑅𝑊(𝑠)

=
−1

𝑠
 (B.4) 

In the case of 𝑀𝐶,𝑦
𝑅𝑊 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑦
𝐵 (𝑠)

𝑀𝐶,𝑦
𝑅𝑊(𝑠)

=
0.1439

𝑠
 (B.5) 
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𝑞2(𝑠)

𝑀𝐶,𝑦
𝑅𝑊(𝑠)

=
0.07195 𝑠

𝑠3 + 3.3𝑥10−5𝑠
 (B.6) 

𝑞4(𝑠)

𝑀𝐶,𝑦
𝑅𝑊(𝑠)

=
−0.0002374

𝑠3 + 3.3𝑥10−5𝑠
 (B.7) 

𝐻𝑅𝑊,𝑦
𝐵 (𝑠)

𝑀𝐶,𝑦
𝑅𝑊(𝑠)

=
−1

𝑠
 (B.8) 

In the case of 𝑀𝐶,𝑧
𝑅𝑊 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑧
𝐵 (𝑠)

𝑀𝐶,𝑧
𝑅𝑊(𝑠)

=
0.1169

𝑠
 (B.9) 

𝑞1(𝑠)

𝑀𝐶,𝑧
𝑅𝑊(𝑠)

=
0.0001929

𝑠3 + 1.089𝑥10−5𝑠
 (B.10) 

𝑞3(𝑠)

𝑀𝐶,𝑧
𝑅𝑊(𝑠)

=
0.05845 𝑠

𝑠3 + 1.089𝑥10−5𝑠
 (B.11) 

𝐻𝑅𝑊,𝑧
𝐵 (𝑠)

𝑀𝐶,𝑧
𝑅𝑊(𝑠)

=
−1

𝑠
 (B.12) 

In the case of 𝑀𝐶,𝑥
𝑀𝑇𝑅 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑥
𝐵 (𝑠)

𝑀𝐶,𝑥
𝑀𝑇𝑅(𝑠)

=
0.1415

𝑠
 (B.13) 

𝑞1(𝑠)

𝑀𝐶,𝑥
𝑀𝑇𝑅(𝑠)

=
0.07075 𝑠

𝑠3 + 1.089𝑥10−5𝑠
 (B.14) 

𝑞3(𝑠)

𝑀𝐶,𝑥
𝑀𝑇𝑅(𝑠)

=
−0.0002335

𝑠3 + 1.089𝑥10−5𝑠
 (B.15) 
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In the case of 𝑀𝐶,𝑦
𝑀𝑇𝑅 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑦
𝐵 (𝑠)

𝑀𝐶,𝑦
𝑀𝑇𝑅(𝑠)

=
0.1439

𝑠
 (B.16) 

𝑞2(𝑠)

𝑀𝐶,𝑦
𝑀𝑇𝑅(𝑠)

=
0.07195 𝑠

𝑠3 + 3.3𝑥10−5𝑠
 (B.17) 

𝑞4(𝑠)

𝑀𝐶,𝑦
𝑀𝑇𝑅(𝑠)

=
0.0002374

𝑠3 + 3.3𝑥10−5𝑠
 (B.18) 

In the case of 𝑀𝐶,𝑧
𝑀𝑇𝑅 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑧
𝐵 (𝑠)

𝑀𝐶,𝑧
𝑀𝑇𝑅(𝑠)

=
0.1169

𝑠
 (B.19) 

𝑞1(𝑠)

𝑀𝐶,𝑧
𝑀𝑇𝑅(𝑠)

=
0.0001929

𝑠3 + 1.089𝑥10−5𝑠
 (B.20) 

𝑞3(𝑠)

𝑀𝐶,𝑧
𝑀𝑇𝑅(𝑠)

=
0.05845 𝑠

𝑠3 + 1.089𝑥10−5𝑠
 (B.21) 

In the case of 𝑀𝐷,𝑥 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑥
𝐵 (𝑠)

𝑀𝐷,𝑥(𝑠)
=

0.1415

𝑠
 (B.22) 

𝑞1(𝑠)

𝑀𝐷,𝑥(𝑠)
=

0.07075 𝑠

𝑠3 + 1.089𝑥10−5𝑠
 (B.23) 

𝑞3(𝑠)

𝑀𝐷,𝑥(𝑠)
=

−0.0002335

𝑠3 + 1.089𝑥10−5𝑠
 (B.24) 
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In the case of 𝑀𝐷,𝑦 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑦
𝐵 (𝑠)

𝑀𝐷,𝑦(𝑠)
=

0.1439

𝑠
 (B.25) 

𝑞2(𝑠)

𝑀𝐷,𝑦(𝑠)
=

0.07195 𝑠

𝑠3 + 3.3𝑥10−5𝑠
 (B.26) 

𝑞4(𝑠)

𝑀𝐷,𝑦(𝑠)
=

−0.0002374

𝑠3 + 3.3𝑥10−5𝑠
 (B.27) 

In the case of 𝑀𝐷,𝑧 is an input, the related transfer functions are:  

𝑤𝐼𝐵,𝑧
𝐵 (𝑠)

𝑀𝐷,𝑧 (𝑠)
=

0.1169

𝑠
 (B.28) 

𝑞1(𝑠)

𝑀𝐷,𝑧(𝑠)
=

0.0001929

𝑠3 + 1.089𝑥10−5𝑠
 (B.29) 

𝑞3(𝑠)

𝑀𝐷,𝑧(𝑠)
=

0.05845 𝑠

𝑠3 + 1.089𝑥10−5𝑠
 (B.30) 

The transfer functions of reaction wheel model:   

𝑤𝑅𝑊(𝑠)

𝑀𝑀(𝑠)
=

1

0.0005𝑠 + 10−6
 (B.31) 

𝑤𝑅𝑊(𝑠)

𝑉(𝑠)
=

0.1

2.6𝑥10−6𝑠2 + 0.001𝑠 + 0.1
 (B.32) 

𝑀𝑀(𝑠)

𝑉(𝑠)
=

5𝑥10−5 + 10−6

2.6𝑥10−6𝑠2 + 0.001𝑠 + 0.1
 (B.33) 
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𝐼(𝑠)

𝑉(𝑠)
=

5𝑥10−4 + 10−5

2.6𝑥10−6𝑠2 + 0.001𝑠 + 0.1
 (B.34) 

C. MATLAB / Simulink Functions and Model Files 

MATLAB has some commands utilized in this study and helping to analyze the 

properties of linear models, state space definitions and system stabilization. 

Table 7-1 Useful MATLAB Functions  

Func. Example Definition 

tf() 
sys = tf(numerator, 

denominator) 

tf() function is used to create transfer function 

model represented in continuous time. 

ssdata() 

[A,B,C,D] = ssdata(tf) 

[A,B,C,D] = ssdata(sys) 

ssdata() function extracts matrix definitions 

from state space model or transfer functions.  

ss() sys = ss(A,B,C,D) 
ss() function is used to create state space 

model represented in continuous time.  

damp() [wn,z,p] = damp(sys) 
damp() function gives the natural frequency, 

damping ratio and poles of a LTI model.  

pole() p = pole(sys) 
pole() function computes the system poles to 

evaluate the stability. 

pzmap() pzmap(sys) 

pzmap() function computes both the system 

poles and zeros, plots them in a complex 

plane. 
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D. MATLAB / Simulink Model Blocks 

The Simulink implementation for Detumbling Control (B-dot Control) of satellite attitude model:  

 

Figure 8-1 B-dot Controller Design for Satellite Detumbling 
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The Simulink implementation for PID Control of satellite attitude model:  

 

 

Figure 8-2 PID Controller Design with Desaturation for Satellite Attitude 
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The Simulink implementation for LQR Control of satellite attitude model:  

 

 

Figure 8-3 LQR Controller Design with Desaturation for Satellite Attitude 



 

 

189 

 

The Simulink implementation for SMC Control of satellite attitude model:  

 

  Figure 8-4 SMC Controller Design with Desaturation for Satellite Attitude 


