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ABSTRACT

DESIGN OF KALMAN FILTER BASED ATTITUDE DETERMINATION
AND CONTROL ALGORITHMS FOR A LEO SATELLITE

Efendioglu, Gamze
Master of Science, Electrical and Electronic Engineering
Supervisor : Prof. Dr. Mehmet Kemal Leblebicioglu

November 2019, 189 pages

The design of different attitude controllers by using reaction wheels and magnetic
rods as torque sources and the design of a multi-sensor integrated navigation
system are developed for a three-axis stabilized Earth-orbiting microsatellite and
presented in this thesis. Firstly, the fundamental parameters relevant to satellite
attitude determination are presented, such as attitude sensors and actuators, space
environmental effects, coordinate frames, satellite dynamic/kinematic equations
with control components. These parameters are also used to set satellite linear and
nonlinear mathematical models. Reaction wheels and magnetic torque rods are
used to generate the required control torque for the purpose of providing attitude
control. The momentum dumping effects of magnetic rods are also implemented to
mathematical models and controlled by the help of Earth Magnetic Field.

Kalman Filter based attitude estimations with PID, LQR and SMC controllers were
designed to support satellite orientation with respect to a given reference attitude.
In addition to these controllers, a feedback controller is also designed for

stabilizing the satellite angular velocity after separating from launcher. Simulating



of multi-sensor navigation sensors, satellite mathematical model and controller
models under various internal and external disturbances and measurement noises
are carried out by means of MATLAB/Simulink software tool. The results obtained

from the simulations with related approaches were compared and analyzed.

Keywords: Satellite Attitude and Control System, Kalman Filters, PID Controller,
LQR Controller, Sliding Mode Controller.
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0z

ALCAK YORUNGELI BIiR UYDU iCiN KALMAN FiLTRE TABANLI
YONELIM BELIiRLEME VE KONTROL ALGORITMALARININ
TASARIMI

Efendioglu, Gamze
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Yoneticisi: Prof. Dr. Mehmet Kemal Leblebicioglu

Kasim 2019, 189 sayfa

Bu tez raporunda, {i¢ eksende duragan bir algak yoriinge mikro uydusu igin tepki
tekerlegi ve manyetik tork cubuklari kullanilarak geribeslemeli yonelim belirleme
ve kontrol algoritmalar1 ile entegre edilmis coklu sensdr navigasyon sisteminin
tasarim1 sunulmaktadir. Tezin ilk bdliimlerinde, kontrolcii tasarimi i¢in gerekli olan
uydunun dinamik ve kinematik denklemleri, uzay ortami, koordinat sistemleri ile
i¢/dis etkenlerden kaynaklanan bozucu kuvvetler sunulmustur. Tezin devaminda,
yonelim belirleme ve kontrol komponentleri detayli bir sekilde tanitilmistir. Tepki
tekerleri ve manyetik tork ¢ubuklar1 yonelim kontroliinii saglamak amaciyla gerekli
tork dretimi i¢in kullanilmistir. Tork g¢ubuklarinin, tekerlerde fazladan biriken
momentum miktarin1 bosaltma 06zelligi de modellere eklenmis ve bu durum

Diinya’nin manyetik alan verisinden faydalanilarak kontrol edilmistir.

I¢ ve dis bozucu etkenler ile sensor giiriiltiileri de goz dniine alinarak Kalman filtre
tabanli tahmini navigasyon degerleri ile birlikte uydunun dinamik/kinematik
denklemlerinden dogrusal ve dogrusal olmayan matematiksel modeller

olusturulmustur. Oransal integral tlirevsel kontrolcii (PID), dogrusal ikinci

vii



dereceden regiilator (LQR) ve kayan kipli kontrolcli (SMC) tasarimlari ile uydunun
referans verilen yonelimi gergeklestirmesi saglanmistir. Uydunun firlaticidan
ayrildiktan sonraki hizinin kararli hale getirilebilmesi amaciyla takla hareketini
soniimlemek icin geri beslemeli kontrolcli tasarlanmigtir. Tiim model ve
kontrolciiler MATLAB/ Simulink yazilim araglar1 kullanilarak tasarlanmis, elde

edilen sistem sonuglar1 karsilastirilip analiz edilmistir.

Anahtar Kelimeler: Uydu Y&nelim ve Kontrol Sistemi, Kalman Filtreleri, Oransal
Integral Tiirevsel Kontrolcii, Dogrusal Ikinci Dereceden Regiilatér, Kayan Kipli

Kontrolct.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

This thesis focuses on the issues of designing and developing satellite navigation and
attitude control system integrating the Kalman filter based controller algorithms by
utilizing the basic parameters of a microsatellite called Flying Laptop (FLP). The
primary objective of this thesis is to model different attitude controllers with reaction
wheels using as a momentum generator and magnetic torque rods using as both
torque generator and redundant momentum damper in order to obtain higher degree

of pointing accuracy for an Earth pointing microsatellite inserted in LEO orbit.

The selected microsatellite is designed by the Stuttgart University and launched in
2017 [17]. It is a Low Earth Orbit (LEO) satellite stabilized for its every three axes,
and its orbit is a sun-synchronous orbit. The mission altitude is between 500 km and
900 km, it can be assumed that is the mean of these altitudes, h = 700 km. It has a
rectangular shape with dimensions of 60 cm x 70 cm x 80 cm [9, 17].

The attitude determination and control subsystem of the selected satellite is
composed of sun sensors, magnetometers, star trackers, gyroscopes and GPS
receivers as satellite sensors. On the other hand, reaction wheels and magnetic torque
rods are accepted as attitude actuators. This thesis gives also nonlinear and linear
mathematical models which belong to these sensors and actuators, and describes
how to combine each of them into an attitude Kalman Filter estimator with a Gauss-
Newton method.



The Kalman filter is the estimation method to compound the processing of multi-
sensors navigation and satellite attitude determination. Kalman filter based
navigation algorithms are designed for both having an accurate estimation algorithm
and solving time synchronization problems. Extended Kalman Filter (EKF) submits
the satisfied estimation results for nonlinear systems wherever the first and second
order Taylor series linearization approximates nonlinear motion characteristics [1, 2,
4]. The satellite orientation concerning a reference frame is determined by means of
attitude determination process [18]. Furthermore, satellite sensors provide some
useful data which helps to determine the location in space. Attitude determination
process is in cooperation with control process in order to maintain the expected

satellite orientation.

Four reaction wheels accommodated in tetrahedron configuration with three
magnetic torque rods are used in control systems and their effects on satellite attitude
are analyzed by PID, LQR and SMC controller methods [2].

Controllers receive the estimated measurements from sensors, then generate the
appropriate control commands according to given reference attitude and transmit this

command to actuators in order to provide the expected orientation to a satellite.

1.2. Literature Review

In this thesis, the satellite is a sun-synchronous and three-axis stabilized. A three-
axis stabilized satellite generally use thrusters or reaction wheels for attitude control
including attitude maneuvers, since the Earth’s magnetic field is too weak to use
magnetic torque rods for the same functions [4, 48]. For a three-axis stabilized
system, six possible directions (roll, pitch, yaw directions and their negatives) are

available for attitude maneuvering.

In the past decade, Earth observation satellites such as CubeSat 12U ATISE have

been improved from relatively low resolution at about 5 meters to high resolution at



about 0.5 meters that can produce useful imagery products [59, 66, 67]. In addition
to detumbling, AAUSAT-II satellite uses both torque rods and momentum wheels to

manage controller problems for slew maneuvering [73].

Gravity gradient stabilization has been used for microsatellites to provide a low cost
attitude control and a good pointing accuracy. In the study of [65], this stabilization

is also provided with thrusters.

The linearization of nonlinear models [76, 51, 54] and applying the obtained linear
controllers such as Linear Quadratic Regulators are commonly handled in several
academic studies in order to facilitate the calculations of complex system equations
[3, 46, 71, 73]. Linear Quadratic Regulator (LQR) generally focuses on finding out a
suitable input from the initial state of a linear model to the final state of it in order to
minimize cost function [83]. Although input signal is recoverable from full state
feedback, gain values and gain matrix are not commonly estimated. In this case, a
Riccati equation can be accepted as a solution [1, 4, 6].

There are lots of different Lyapunov based controller techniques besides LQR such
as Sliding Mode Controller [52, 75] and PID controller [68, 73, 82] used to design a
reliable attitude determination and control system for a microsatellite. Another
simple controller called as B-dot controller is suggested to bring a satellite in a stable

state using magnetic torque rods in detumbling phase such as DTU-Sat [54].

Finding a set of gains is the main task of attitude controller design for linear models,
and the gain values are valid only around the equilibrium points. Multi-variable
controllers such as PID controllers can be compound with the gain scheduling

method to be able to apply founded gain values to the nonlinear models [5, 8, 45].

In literature, there are lots of studies on Kalman filter based attitude estimation
algorithms. Some of them are focusing on the linear model designs [6, 7], but mostly
on the nonlinear and complex aerospace applications. Kalman Filters combine the

different sensor data and produce more accurate attitude solution [45, 59].



The basic form of Kalman filter can be generalized to the Extended Kalman Filter
(EKF). In recent researches, the more enhanced Kalman Filter type is generally
utilized called Unscented Kalman Filter (UKF) and it is very beneficial especially

for poor initial filter conditions [1].

1.3. Microsatellites

The term "microsatellite™ is usually applied to the name of an artificial satellite with
a wet mass between 10 kg and 100 kg. However, this is not an official convention,
and sometimes those terms can refer to satellites larger than this weight range, or
smaller than this. The selected satellite for this study can be classified as a

microsatellite.

1.3.1. The Selected Microsatellite

The selected microsatellite is called FLP microsatellite. Its orbit is designed as a kind
of sun-synchronous orbit, and it has a circular shape. In the following table, the most
important attitude properties of the selected satellite are listed (Table 1-1):

Table 1-1 The Fundamental Flying Laptop Microsatellite Characteristics

FLP Microsatellite Characteristics
Dimensions 60 x 70 x 80 cm
Mass 117 kg
Desired Orbit Circular and Polar Orbit
Orbit Altitude ~ 700 km
Attitude Control Three Axis Stabilized
Solar Panels 3 Solar Panels (2 deployable)

The primary payload is a Multi-Spectral Imaging Camera (MICS), and the auxiliary
payload is a Panoramic Camera (PAMCAM) used to obtain a more comprehensive

overview of the observed area on the Earth surface.



This microsatellite consists of five fundamental subsystems are specified hereafter:

v' Data Handling Subsystem: This subsystem collects some useful data
(telemetries, images, etc.) from satellite payloads and sends this data to
ground stations throughout a communication subsystem. The collected data

can be recorded for later transmission.

v" Power Subsystem: This subsystem provides the necessary power to the
satellite in order to maintain its mission throughout its lifetime. It can change
the states of power lines of platform and payload equipment as open or

closed state and manages the battery charging/discharging control.

v’ Attitude Control Subsystem: The microsatellite is a three-axis stabilized by
the help of avionic sensors (star trackers, magnetometers, gyros and GPS)
and actuators (reaction wheels and magnetic torque rods). There is no
propulsion subsystem in the selected satellite. The focusing point is to design
three different attitude control systems as main controllers with an integration

of multi-sensors for this thesis.

Power

Platform
Telecommand/Telemetry

Figure 1-1 The FLP Platform Setup [17]

v' Telemetry Tracking and Control Subsystem: This subsystem consists of a
transceiver and omnidirectional antennas to be ensure there is a

communication link between satellite and ground stations. The uplink and



downlink frequencies are 2.0 GHz and 2.3 GHz respectively for the selected

satellite.

v" Thermal Control Subsystem (TCS): This subsystem keeps the satellite
platform and equipment temperature within the specified ranges. The satellite
is mainly covered with multi-layer insulations to decrease the heat changes
between satellite and space environment. The other element is radiator which

transmits the heat from satellite to space.

1.4. Problem Statements

In this study, the main concern is to be able to control a microsatellite attitude and its
orientation by changing the angular magnitudes of its rotational axes with multi-
sensor navigation approach. In order to perform these actions, it is required to pay
attention to time constraints and model accuracies. The detailed models of satellite
sensors and actuators must be designed and simulated in an appropriate medium.
The accuracy level of a satellite attitude determination can be affected negatively
due to sensor measurement noises. In order to have a sensitive model, sensor noises
and disturbance torques arising from internal and external parameters shall be taken

into consideration and removed from the system.

The torques generated from actuators is required to be controlled. Because of this
reason, the main goal is to advance system controllers such as PD, LQR and SMC
controllers which provide states control and help to track orbit trajectory under

environmental disturbance torques.

Satellite attitude dynamic and kinematic equations with their mathematical models
shall be derived using Euler angles in a quaternion vector form and coordinate frame
transformations. These equations are linearized under stable state conditions. After
implementing linearization steps, both linear and nonlinear state space equations are

obtained with their matrix representations to prepare system properties.



The satellite and its orbit properties shall be modelled to localize its angular velocity
and position according to Earth Reference Frames. Notably, the detailed model of
reaction wheels and magnetic coils, which are the most essential model items, is

appropriately made to be able to represent the control torques.

All models of navigation processor with Kalman filters were visualized with
graphics and compared the results in terms of some critical parameters such as the

accuracy, efficiency and robustness.

1.5. Publication from This Thesis

The publication of “Design of Attitude Control with Kalman Filter for a LEO
Microsatellite” was presented in a national conference called TOK2019 with the

supervisor of this thesis.

1.6. The Thesis Organization

This thesis consists of seven different chapters, and all these chapters have a close
relationship in terms of their contents. These chapters are organized, as mentioned

below:

v"In this chapter, there is an introduction for the navigation and attitude control
of microsatellites. The selected microsatellite is specified with its subsystems
and fundamental properties which are frequently mentioned for the following

chapters.

v Chapter-2 mentions about the non-linear mathematical modelling of the
attitude dynamics and kinematics of a microsatellite and their relevant state

space definitions with its measurement equations.



v" Chapter-3 includes mathematical modelling of space environment and its

adverse effects on satellite attitude.

v Chapter-4 proposes nonlinear and linear state-space models to control the
satellite attitude.

v Chapter-5 focuses on controller types (B-dot, PID, LQR and SMC) which are
put into use in different phases during a satellite life such as Detumbling

Phase and Tracking (Nominal) Phase.

v' Chapter-6 discusses the results obtained from controller outputs given

detailed information in the previous chapter.

v' Chapter-7 summarizes the conclusions of all analyses performed in this
study. Besides, this chapter provides some recommendations for future

research to enhance and improve navigation processors and main controllers.

All models relative to attitude sensors, actuators, navigation solutions and controllers
are designed and simulated with the most commonly used tools, MATLAB and
Simulink in R2018b version.



CHAPTER 2

SATELLITE ATTITUDE DYNAMICS and KINEMATICS

2.1. Introduction

The knowledge of satellite attitude dynamics and kinematics are mandatory to
control and stabilize its attitude. Attitude control process provides the satellite
control and its orbit orientation in space. Attitude maneuver process supplies to
reorient a satellite from one attitude to another by changing its angles between its
rotational axes specified in different coordinate frames. Attitude stabilization process
ensures to maintain the existing satellite attitude concerning the external reference

frames.

Firstly, coordinate frames and transformations between them are handled as an
introduction of a satellite attitude dynamics. Secondly, attitude representation
methods are defined, and then the dynamic and kinematic equations of motions are
clarified for a non-spinning satellite. The effects of rotating elements involved in the

satellite such as reaction wheels are also incorporated into these equations.

The first problem is to find the angular momentum vectors of satellite and reaction
wheels. The satellite is an Earth imaging satellite and its classification is termed as
Low Earth Orbit. Because of this situation, the gravity gradient moment shall be
taken into account to find out the total moments of a satellite. The dynamic
equations of a satellite are obtained with Euler angles, and then state-space equations

are acquired using Newton-Euler method for an attitude control simulation.

Assuming that the Local Navigation Frame and satellite Body Frame are coincident

at the stable position and this assumption can be used as a starting point of the



simulation before applying any maneuvers to the satellite. If there are any
disturbance torque sources in the space environment, the satellite starts to move on

its orbit and orient its body according to these torques applied on it.

2.2. Coordinate Frames

Coordinate frames are used to clarify the position of a point relating to other
specified reference frames for three-axis attitude stabilized system. Satellite attitude
for any reference frame can be defined using Euler angles with direction cosine
matrices or quaternion vectors, which are the different representation form of

coordinate frames and attitude transformations.

2.2.1. Earth Centered Inertial Frame (ECI)

ECI Frame is located at the center of Earth mass and oriented with respect to the
Earth’s spin axis and stars. The X-axis (X;) points towards the vernal equinox, Z-
axis (Z;) extends through the North Pole. Y-axis (Y;) is the orthogonal complement

of this frame, and it is in the equatorial plane together with X-axis.

NORTH POLE

VERNAL
EQUINOX

Y,

Xi

EQUATOR

Figure 2-1 Earth Centered Inertial Frame (ECI) [9]
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ECI Frame is fixed in space, and it means that it has not any rotations and
movements. On the other hand, this frame is not an ideal inertial frame since Earth

turns in its orbit and around the Sun.
2.2.2. Earth Centered Earth Fixed Frame (ECEF)

ECEF Frame origin is located at the Earth mass center. X-axis ( Xg) points to the
intersection of equatorial plane and the Greenwich reference meridian which defines
zero degrees longitude. Z-axis ( Zy) points to the North Pole, and it also aligned with

the satellite spin axis (rotation axis).

GREENWICH
MERIDIAN

Xk

EQUATOR

Figure 2-2 Earth Centered Earth Fixed Frame (ECEF) [9]

In order to find out the transformations between ECI and ECEF Frames, assuming
that the centers and Z axes (Z;, Zy) are coincident. X (X;, Xg) and Y (Y;, Yg) axes
are also overlapped at time t, then this frame rotates around Z axis at the specified
time interval (4t =t —t,) with a constant Earth angular velocity (w;z). The

rotation matrix ( CESET ) using the transformation from ECI to ECEF Frame is:

cos (W,E (At)) sin (W,E (At)) 0
CEr™ = | —sin (W,E(At)) cos (W,E(At)) 0 (2.1)
0 0 1
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This frame rotates one revolution in each sidereal day around Z-axis relative to ECI

Frame with a constant angular velocity (w;; = 7.292115x107° rad/s) [54].

The matrix CESL, providing the transformation in the opposite direction is equal to

the transpose of previous matrix ( [CESEF]T):

cos (wip(4))  —sin (w;z(40)) 0

sin (wig(4t))  cos (wip(4t)) 0 (2.2)
0 0 1

CEele = [CEEFF1T =

2.2.3. Local Orbit Frame (LLA)

Local Orbit Frame known as geodetic latitude, longitude, altitude (LLA) coordinate
frame is located at the satellite center. These values are required to determine
satellite orientation with respect to the WGS84 standard [63]:

x e,
Zecet y
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¢
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Ye(ef

Xe(e(

Figure 2-3 Local Orbit Frame wrt. ECEF and NED Frames [63]

The latitude angle (L) is between the equatorial plane and the normal to Earth
surface. It is positive for the northern hemisphere and negative for the southern

hemisphere (R is the norm of a satellite position vector in ECEF):
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R = \/(RECEF)Z + (R5CEF)2 + (RECEF)2 (2.3)

RECEF
) (2.4)

Lg = arcsin(

The longitude angle (1g) is between the Greenwich meridian and satellite. It is

counted positively towards the East and negatively towards the West.

RJL;'CEF
Ap = arctan <W> (2.5)

X

The altitude (h) is an approximation of the difference between the satellite and the

reference surface measured normal to the geoid (Rgg,en = 6378 km):
h = R — Rggren (2.6)

2.2.4. Body Frame

The origin of Body Frame locates at satellite mass center, and this frame moves with
satellite body. Rotations around X-Y-Z axes of orbit frame are denoted as roll, pitch
and yaw axis respectively [54]:

(a) (b)

Figure 2-4 (a) Body Frame (b) FLP Microsatellite Body Frame [14, 17]
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In the case of Euler angles have zero degrees in roll, pitch and yaw axes, Z-axis (Zz)
points the nadir direction; X (Xg) and Y (Yz) axes coincide with the orbit reference
frame axes at a stable position. The satellite can rotate all around its orthogonal axes
of its Body Frame under some undesirable disturbance torques applied on it.

2.3. Satellite Kinematic Equations

Before explaining some important satellite dynamic and kinematic equations, it is
mandatory to define what the rigid body is. It means that there are no moving
elements inside a body. The selected satellite cannot be assumed as a rigid body
since the rotating elements such as reaction wheels exist inside it. On the other hand,
this assumption provides to have a better understanding of dynamic equations and
the relationships between them. The most effective methods to exemplify attitude
kinematic equations are Direction Cosine Matrix (DCM) and quaternion vectors.

2.3.1. Satellite Kinematic Equations with Direction Cosine Matrix

The major three-axis attitude transformation is based upon direction cosine matrix
and it can be specified in terms of Euler angles. So long as all the matrix
transformations are performed in the same reference frame, it is not crucial whether

the reference frame is inertial or rotating with the orbit.

Direction cosine matrices [ C592Y = CE 1 have the critical property of mapping
vectors from a reference frame to Body Frame. This matrix is also a proper

orthogonal matrix, as shown below:

[Vl = [C51V]o @2.7)
Xp Ci1 Gz Ci3][Xo

[Vlg = |Ys| = |Ca1 Coz Coy3||Yo (2.8)
Zp (31 (3 (331lZp
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The inverse of a DCM is equal to the transposition of the same matrix:

[C5171 = [C5]" > [VIo = [C5][V]g (2.9)

Euler Angle Rotation: Euler angles describe the satellite attitude of Body Frame
with respect to Local Orbit Frame. These angles are defined at successive angular

rotations around body axes. There are two types of rotational arrangements [15]:

v" Successive rotations around each of three different axes are shown like:
XDYDZ, XDZIY, XYDPXDZ XY DZPX, Z>XDY, Z>Y X,

v" First and third rotations around the same axis and the second rotation around
one of two remaining axes are shown like the following (In this type of
sequence, singularities occur at zero and +180° degrees for second rotation
angles; at +90° degrees for non-repeated axis sequences [66]):

XDYDX, XDZDIX, YDXDY,YDZDY, ZDXDZ, Z>Y DL,

Euler roll angle (&) is a rotation around X body axis (Xg), pitch angle () is a
rotation around Y body axis (Yg), and yaw angle (y) is a rotation around Z body axis

(Zg). [Xg Yg Zg] vector represents satellite Body Frame in space.

In this study, the attitude transformation order is selected as Z—=>Y->X Euler angular
rotation (Aerospace Euler Sequence). It means that this rotation is the transformation
(v 2 6 > @) around Z, Y; and X, axis respectively. The transformation from Orbit
Frame [X, Yy Z,] to Body Frame [Xg Y Zg] is provided with the following action
items (It is assumed that [Xg Y5 Zg] is [X3 Y5 Z3] here):

1) Yaw Axis Rotation: First angular rotation about Z axis with iy angle

X, cos(yp) sin(y) 0 7[Xo Xo
| = [ —sin(y) cos(y) 0 || Yo[=1[Cz]| Yo (2.10)
Z 0 0 1117, Zo
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2) Pitch Axis Rotation: Second angular rotation about Y; axis with 8 angle

X, cos(8) 0 —sin(8) 77X X1
Y, =[ 0 1 0 Vi [=[G] 1N (2.11)
Z, sin(8) 0 cos(6) Z, Zy

3) Roll Axis Rotation: Third angular rotation about X, axis with @ angle

Xg1 X 1 0 0 X, X,
Ypl=| Y| = [O cos(®@) sin(@)|. |V, | =[Ck]]| Y (2.12)
Zg Z3 0 —sin(®) cos(®)] LZ, 2

These angular rotations with the given order are illustrated in the following figure:

X2=X3

Figure 2-5 Satellite Rotation Around Z-Axis, Y-Axis, X-Axis Respectively [19]

The transformation from Orbit Frame directly to Body Frame is provided with the

multiplication of the transformation matrices, respectively:

Xp X2 X Xo Xo
Yp| =[Cx] | V2| = [Cx] [Cy] | Vi | = [Cx] [Cy][Cr] Yo | = [Cavx] | Yo (2.13)
Zg Z, Zy Zo 0
[C8] = [Czvx] = [Cx] [Cy] [C2] (2.14)

16



After multiplying these matrices, it is obtained the following matrix (c denotes

cosine function, and s denotes sinus function here):

«(6) <) c(6)s() =50 | (215
—c(@)s(@) +5(@) SOV W) (@) ) +s@)sO)s®)  s(@)e®) |
S() S(Y) +c().5(0) c®))  —sin(®) c(Y) +c(P)S(O) W) (@) c(6)

The trigonometric functions in this matrix have singularity problems, especially for
large Euler angles. For example, these equations become singular as roll, pitch and
yaw angles (y, 6, ®) approach to 90°degrees. Because of this drawback, the
transformation can be obtained based on more effective kinematic expressions called

quaternion vectors. The reverse transformation for roll, pitch and yaw angles is:

Wop = atan2 ([CF112, [C5111) (2.16)
8o = —asin ([C{]13) (2.17)
®op = atan2 ([C5,3,[C5133) (2.18)

2.3.2. Satellite Kinematic Equations with Quaternions

One approach to eliminate singularity problems of Euler angles is to implement
quaternion vector that has the capability of quicker computations than direction
cosine matrices, being computationally efficient in comparison with Euler angles

and having less integration steps.

If the rotation angle of an axis is known, the related quaternion vector notation can
be expressed using the following equations (®, 6, y are roll, pitch and yaw angles
here) [47]:
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) (D

qX=cos(5)+1sm(5) (2.19)
0 . (9

qy=cos(§)+]sm(§) (2.20)
Y (Y

qz=cos(5)+ksm(5) (2.21)

Defining q notation as the rotation product of g, g, and g, is:

q=9z9y dx = q1i + q2j + qzk +q4 (2.22)

The last element (q,) of quaternion vector represents the scalar part and the first

three elements (q, = q1i + q2j + q3k) represent the vector part [11, 47] :

q= qii+ Goj + @3k +q.= gy, + a4 (2.23)

The transformation from Euler angles to quaternion vector is calculated like in the

following definition:

o
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The DCM can be expressed in terms of quaternion vectors using the following way,

[C(q)]5 is the representation of DCM matrix in quaternion vector form:
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[Co| = [C(@)]p = (4 — [4,1°) 1 +2[g,)a,)" —24,[ 2(q,)] (2.25)

0 —qs3 q2
[2(g,)] = [ q3 0 —q1] (2.26)
—qz 0
(@ +a5-0a3—-3d3)  2(q192 + q394) 2(q193 — 9294)
[C@I6 =] 2(q142—0q3qs) (@i-af+a5—af) 2(q203+@mds) | (2.27)
2(9195 + 924) 209203 — 019) (@5 —af — a3 +q3)

The different quaternion definition for [C(g)]5:

1-2(q5+493) 2(q1q2+9392) 2(9193 — 9294)
[C(@]6 =|2(q192 — 9394) 1-2(qf +a3) 2(q295 + q194) (2.28)
2(q193 + 9294)  2(q293 — 9194) 1—-2(qi+4q5)

[C(q)]5 matrix can be defined with respect to the following column definitions:

C@11 €@z C(@)13
[CI5=| C@21 C@22 C(@2s|=[C@)1 C(@): C(q)s] (2.29)
C(@)31 C(@32 C(@s3

The new matrix definition allows expressing quaternion vectors in terms of DCM
elements. Firstly, it is assumed that scalar quaternion element (q,) has the maximum

value and the other quaternion elements can be formulated line by line [3, 19]:

1
=5 V14 C(@)11+ C(@)22 + C(q)33 (2.30)

(C(q)23 — C(q)32) (2.31)
q4

_1
Q1—4
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g, = % (C(Q)31;1C(CI)13) (2.32)
G = % (€(@)12 — C(9)21) (2.33)
44

The time derivation of quaternion vector representing attitude kinematic equation is
also hereafter [11]:

o1
g =5[0wge) Iq (2.34)
|[ 0 Wng _Wng Wgsl]l
B B B
—Wop 0 Wop Wop
.Q(WB ) — I 3 1 2
oF l Wgs, —Wis, 0 Wi, (2.:35)
_WgBl _WgBZ _WgB3 0

The satellite velocity vector (w5z) can be rewritten using the second column of

DCM matrix (C(q),) and the definition of (W% =[0 —w, 0]7):

wog = wiz — [C(@)]5 - wip (2.36)
0 wig, + C(@)12 Wo |
wog = wiz — [C(@]F [_Wol = | wib, + C(@)22 wo (2.37)
0 Wi, + C(q)32 Wo |
WgBl Wﬁal + 2(q192 + q394) Wy
wop = |Wos, | = | Wik, +(af — a7 + a5 —a3) wo (2.38)
WgB3 Wﬁa3 + 2(q293 — q194) Wo
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The new representation for skew symmetric matrix of satellite angular velocity
(2(why)) according to angular velocity again, but defined with respect to ECI frame

(wh) is depicted here:

B —
N(wop) =
0 wip, + C(@)3,wo  —wip, — C(@)22Wwo  Wip, + C(q)12Wo
_Wﬁa3 = C(@)32wo 0 WIBB1 + C(@)12W0o Wﬁs’z + C(@)22Wo (239)
l wip, + C(@)2wo  —wip, — C(@)12Wo 0 wip, + C(CI)32W0J
_Wﬁal — C(q)12wo _WIBBZ = C(q)22-Wo _Wﬁs’3 = C(q)32wo 0

2.4. Satellite Dynamic Equations

Attitude dynamics are modelled mainly to be able to predict the rotational motion
and orientation of a satellite. The equations of attitude dynamics represented satellite
orbit and position are used to provide position propagations based on the predictions
of satellite orbit [1, 2, 15].

Satellite motion is specified with the following parameters [66]:

v" Position and speed vectors describe the translational motion and they are the
subject of orbit analysis and space navigation.
v Attitude angle and attitude rate vectors describe the rotational motion of

satellite body and they are the subject of attitude analysis and dynamics.

The external torque applied on a satellite is divided into two parts; control torques
and disturbance torques. The internal torque is generated by some internal effects
such as propulsion tank sloshing, deployable appendages, etc. In this study, all

internal torque sources are neglected and not included in dynamic equations.

The total external torque (My) is acting on the satellite comprised of both control

torques (M) and the torques generating by different disturbing environmental
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effects (Mp). In respect of this description, total torque can be defined with the

following equation [10, 12, 14]:
My = M¢ + Mp (2.40)

The most efficient disturbance torque values are gravity gradient and magnetic field
torques for the satellite altitude placed around 700 km. In conclusion, total
disturbance torque is about the order of 10> Nm and detailed explanations are

given in the related chapter (refer to 2.4.3 Disturbance Torques):
Mp = Mge + Magro + Msg + My (2.41)

Satellite dynamic and kinematic equations are derived through Newton - Euler
formulation. According to this formulation, the time derivative of satellite angular
momentum (H;) depends on the total external torque (called also angular moment)

acting on satellite in inertial reference frame [10, 13]:

_dh;

M, = — 2.42
r=— 242)

The vector quantity of M is also defined in Body Frame like as follows:

dH, dHy —  —
MT = W: _dt + wip X HB (243)

The equation of satellite angular momentum in Body Frame is (Hy = I wh) and

therefore a new definition of dynamic equation labeled as (2.43) can be represented

like the following equation:

My = Iswip + Wiz X Is wip) (2.44)
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The more compact form of the above equation for each satellite axes can be written

using a skew-symmetric matrix definition (2(w%)) of satellite angular velocity:

Mr = Is Wi + Q(wip) Iswip (2.45)
0 ~Wip, Wi,
Qwh) = | wiz, 0 —wjp (2.46)
~Wip,  Wip, 0

Case-1: Torque generators are only reaction wheels

The total angular momentum (Hg) can be extended by including both satellite
angular momentum (HZ) and the angular momentum belongs to momentum
exchange devices such as reaction wheels (H5,,). In this case, the new formulation

of satellite dynamic equation is [15, 51]:

Hg = H$ + HRy (2.47)
The angular moment definition of reaction wheels (MZ") is:

MEY = Hgy + (Wfiy X HEw) (2.48)
The angular moment definition is written with the help of the following definitions:
My = SoCHE + Bl )+ wy x (HE+ Hi) 249
Mp = (Hs +wip X Hs') + (Hgw + wiy X Hgw) (2.50)

If the derivative of satellite angular moment is written like (HZ = I; wk),

disturbance moment equation will be:
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Mp = Is Wiy + Wi X Is wip) + Hey + (wip X Hy,) (2.51)

The more compact form of the last equation can be written using skew-symmetric

matrix definitions (2(w5), 2(HE,) ):

Mp = Iswip + QW) Is wiz + HRy + 2(wip) HRy, (2.52)
Mp = Hrw,p = Is Wiz + 2Wip) Is wip — Q(HRy) wip (2.53)

These non-linear torque equations with respect to each frame axes are:

Mp, — HEy, = Il + (Is, — Is, ) wh,wib, — wi By, + Wi HE,  (254)
MDz - Hng = Isywl%z + (ISx - ISz)Wg?1W%3 + W%Sngl - Wﬁ31HgW3 (2.55)
Mp, — HEy, = Is, wih, + (Is, — Is, ) wis, wh, — wi, HEy, + Wi HE,,  (2.56)

The time derivatives of angular velocity can be defined using the last equation:

Wiy =I5t Mp — Hiyw — wip X (Is wip + Hgy) | (2.57)
Wiy = Is*[ My — HEy — Qi) Is wiy — Q(wi) HEy | (2.58)
Wiy = I Mp — HEy — Q(wip) Is wiy + 2(HE) wii | (2.59)

Case-2: Torque generators are only magnetic torque rods

If only magnetic torque rods are included in a satellite system as torque generators,
total external torque and the time derivative of satellite angular velocity are defined

with the following equations. In this case, there is no rotating element in satellite
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body and therefore the entire angular momentum is not included the momentum

generated by reaction wheels [54]:
Mr = M{"™R + Mp = Iswip + Q(wip) Is wip (2.60)
Wiy = I [ METR + Mp — 0(wip) Is wiy | (2.61)

Case-3: Torque generators are both magnetic torque rods and reaction wheels

The dynamic equations are specified with the following equations in the case of

using both torque rods and momentum wheels as torque generators:

My = MR + MEY + Mp = Is wip + Q(wip) Is wip (2.62)

wiy = I [ ME™® + Mp — Hyy — wiy X (Is wip + HEy) | (2.63)

2.4.1. The Torque and Angular Momentum of Satellite

The external torques cause to accelerate the satellite proportionally to this torques in
a stationary state, resulting in an increasing angular velocity. Conversely, if satellite
body initially spins about an axis perpendicular to the applied torque, then it moves
with a constant angular velocity proportional to this torque [66].

The selected satellite is assumed as a rigid body composed of m particles at the
beginning of calculations, and it is moving relative to inertial frame. Assuming that
there is no angular motion of this rigid body center, the angular momentum equation

is hereafter (I is satellite inertial moment matrix):

Hsp = Is wip (2.64)

25



Assuming that satellite Body axes are the principal axes of inertia and the general

definition of satellite torque (angular moment) equation is:

dH? 5 . B
Msp = dr + (wip X H) (2.65)
Msp = Iswip + (Wip X Is wip) = Is Wi + 2(wfp) Is wip (2.66)

2.4.1.1. Satellite Inertia Matrix

Inertia matrix represents the physical characteristic of a satellite, and each element of

this matrix can be specified as below [11, 12]:

s, —Is, —Is,
Is= |7k I, ik, (2.67)
—Is,, —Is,, I,

The inertia matrix of the selected satellite is approximated like that [9]:

7.066197 0.471470 0.129597
Is=|0.471470 6.950219 0.209866 (2.68)
0.129597 0.209866 8.555828

The diagonal terms of satellite inertia matrix are known as the principal moments of
inertia, and the corresponding axes are called principal axes of inertia. If Body
Frame axes intersect the principal axes of inertia, satellite inertia matrix can be

reduced to a diagonal matrix [12]:

Ig = 0 6.950219 0 > Is, =1L, = 6950219 ;g9
0 0 8.555828 Is, = Is, = 8.555828
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2.4.1.2. Satellite Angular Velocity

The satellite angular velocity vector defined in Body Frame can be oriented with

respect to both Orbit and ECI Frame. The satellite angular velocity vector of Body

Frame with respect to ECI Frame expressing in Body Frame (;f;) is defined in the

following form:

B _ B B B _ . B B
Wip = Wip + Wog 2 Wop = Wig — Wy (2.70)

The mean motion of satellite is (wy):

R = Ry +h = (6378.1370 + 700) km @.71)
= |2~ 00011 Hz = 0.0069 rad
Wo = |3 =0, z =0. rad/s (2.72)

v’ M is the Earth mass (M = 5.9742 x 10** kg ),
v' G is the universal gravitational constant ( G = 6.6720 x 10~ Nm?/kg?),
v'u is the Earth gravitational constant

(u=M.G =3.986004418 x 10° Nm?/kg — m3/s?).

The satellite angular velocity of Local Navigation Frame with respect to ECI Frame
expressing in Local Navigation Frame ( w3 = [0, —w,, 0] ) can be defined by
using satellite orbital mean motion (w,). For small angle approximations, the

satellite angular velocity of Orbit Frame with respect to ECI Frame (w5,) [15]:

1 vy -6 0 —Pwy
wip = [C5]wip = [—¢ 1 @ ||-wo|=| —wo (2.73)
6 - 1 0 @ wy
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The same rotational motion (Zz—>Yz, > Xp,) can be used for generating the angular
: T :
velocity vector (WS = [ Wos,» Wos,» Wos,] ) from Orbit Frame to Body Frame.

The time derivatives of rotation angles (i, 8, ®) represent satellite angular velocities

around Zg, Yg1, Xg, axis respectively.

The angular velocity around Z axis (wng) IS subject to three successive angular

transformations:

v" First angular transformation is around Zg axis (y angle),
v" Second angular transformation is around Yz, axis (6 angle),

v" Third angular transformation is around X, axis (@ angle).

The angular velocity around Yz, axis (wgBy) Is subject to two successive angular

transformations:

v" First angular transformation is around Yy, axis (6 angle),

v Second angular transformation is around X, axis (@ angle).

The angular velocity around Xz, axis (wng) is subject to only one attitude

transformation that is around Xg, axis (@ angle). These transformations can be

represented as a matrix form:

WG, 0 0 b
WgBy = [Cx][Cy][CA] | O |+ [CxllCy]| 8 |+ [Cx]| 0 (2.74)
WgBZ k4 0 0
After performing matrix multiplications specified in the previous equation is:
B .
WoB, —sin(0) || @
weg, |= cos (<D) cos(8) sin(®) (| 6 (2.75)
WgB —sin(®) cos(0)cos(@)|| ¢
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These equations are solved in terms of the derivative of Euler angular velocities:

wgp, = @ — 9 sin(6) (2.76)
WgBy = 0 cos(®) + Y cos(0) sin(P) 2.77)
wgps, = P cos(6) cos(P) — Osin(P) (2.78)

Satellite angular rate can be specified directly with the angular velocity vector in
Orbit Frame (wgp, = @, wip, = 6, wip, = ) supposed that using small angle
approximation (6 =~ @ =~ 0°). Angular rate is controlled and stabilized with B-dot

controller law in detumbling phase.

These equations can also have singularity problem like as direct cosine matrices
have. Because of this reason, a special order of rotation (Z->Y->X) can be chosen to
transform body frame to any reference frame in space. Through this assumption,
nonlinear equation can be linearized and expressed in terms of Euler angles. In this
study, the linearization process is applied using Taylor series expansion and
indicated with system states including satellite angular velocity, quaternion vector

and wheel angular momentum.
2.4.2. The Torque and Angular Momentum of Actuators

Two different kind of actuators such as reaction wheels as a momentum exchange
device and magnetic torque rods as an auxiliary device to unload the saturated
momentum on reaction wheels are located in the selected satellite. The rods can also
carried out the same function of reaction wheels whenever they are not available.

The actuator characteristics of the selected satellite are listed hereafter:
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Table 2-1 The Characteristics of Satellite Actuators [9, 17]

Reaction Wheels Magnetic Torque Rods
Quantity 4 RWs 3 MTRs
Sampling Time (T) 0.1 (10 Hz) 0.1's (10 Hz)

2.4.2.1. The Control Torque of Reaction Wheels

A reaction wheel applies a control torque to satellite resulting in the changes of its
angular momentum. The rotating elements in a satellite such as reaction wheels have
their angular momentum, and it is a part of the momentum of an entire system in
Euler’s moment equations. When a torque acts on a satellite along one axis, the
wheel reacts to this torque, absorbing it and maintaining its attitude. In these
situations, the spin rate of wheels is able to maintain a constant attitude by increasing
or decreasing it. When a reaction wheel rotates one way and its rotation speed
changes, satellite rotates proportionately the opposite way in response to external

torques imposed on it to ensure the conservation of angular moment [66].

It is not desirable to operate a reaction wheel at near saturation speeds. When wheel
speed is outside of its saturation limit (operational limit), a momentum exchange
device such as magnetic rods can be used to restore the wheel speed to its nominal

operating value.

Reaction wheels are used along all three axes and generally, there is one additional
wheel along the non-orthogonal axis to provide the redundancy. There are four
reaction wheels located in a tetrahedron configuration and known as a fundamental
actuator in the selected satellite. Assuming that all reaction wheels have the same
specifications such as mass, inertia and the distances from the satellite center, their

substantial performance parameters are listed hereafter:
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Table 2-2 Performance Parameters of Reaction Wheels (RWs)

Performance Parameters The Values of Reaction Wheels

Angular Momentum ( HE,, ) Hrwp = Ipw -Why g = £0.12 Nms (max.)

Operation Speed Range (Wgy) +2800 rpm (~293.215 rad/s)

Angular Moment (Mgy,) +5 mNm (at +2800 rpm)

+0.015 Nm (max.)
Inertial Moment (Igy,) 5x10~* kgm?
Speed Limit < 3000 rpm

The advantage of tetrahedral configuration is that the wheel assembly can provide
twice as much of maximum torque on rotation axis. The rotation axis of each
reaction wheel is aligned to the Y-axis in Body Frame to optimize this configuration

for the target pointing maneuver.

Figure 2-6 The Location of Reaction Wheels (Tetrahedron Configuration) [9, 17]

The orientation matrix is required to resolve control allocation problem between the
Euler angles and reaction wheels. This matrix for reaction wheels comprises of four
column vectors which represent the distribution of reaction wheel torques to each
satellite rotation axis. The distribution matrix which has three rows and several
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columns equal to the number of reaction wheels in the satellite. The power

performance properties of reaction wheels are defined below:

Table 2-3 Power Performance Parameters of Reaction Wheels (RWs)

Power Performance Parameters

The Values of Reaction Wheels

Steady-state (at nominal speed)

<2W

Max. torque (at nominal speed)

<4W

05V 20V (Vpar =20 V)

Supply voltage
Nominal voltage =5+ 0.25V

20V Iine) <0.20 A (Iyay = 0.20 A)

Input current .
(5Vline)<0.12 A (I,;n = 0.12 A)

The given distribution matrix of the layout configuration of reaction wheels is [17]:

0 0.4741 0.4741 —0.9482
CE9PY =(-0.9999 0.3333 0.3333 0.3333 (2.79)
0 —0.8165 0.8165 0

One of the possible distribution matrices for tetrahedral configuration to deliver the

command torque in an equal way can be selected such as the following matrix [48]:

V3/3 —+v3/3 —=+3/3 3/3
CRPY =|V3/3 —+3/3 ~3/3 —+3/3 (2.80)
V3/3 V3/3 -v3/3 —+3/3

The distribution matrix for each row is satisfied in the following equations. If all
four wheels provide equal torque, the total moments in satellite body frame are equal

to zero value with respect to these equations [48]:

CRWx Ci1 Gz Ciz Ciu
CR” = |Crwy | = | Co1 Cop Co3 Cou | =1[C; C; C5 G4 (2.81)

Crw, C31 C3p (33 (34
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Ci]_ + Ciz + Ci3 + Ci4 = O, l = 1, 2, 3 (282)

Each column vector of a distribution matrix has the following properties:

\/ (@) + (C) + (G) =15 j=1,2,3,4 (2.83)

Z

X NV Y,

Figure 2-7 Tetrahedron Configuration Diagram of RWs [48]

The distribution of satellite angular momentum (HZ,,) from satellite body to each

reaction wheel (Hgy,) can be defined with the inverse of distribution matrix (CESPY):

Hpw = [CRRPY 1 HRw (2.84)

-
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Figure 2-8 The Electrical Representation of Reaction Wheels [9, 17]

In order to make a system more reliable, brushless DC motors are chosen as

actuators. Each motor consists of an electrical part and a mechanical part. The
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electrical part of a motor can be modelled using Kirchhoff’s Voltage Law like as the
Figure 2-8 [47].

The source voltage (V,) is the sum of resistance voltage (V), inductance voltage (V)
and back electromotive force voltage (V,,). The detailed definition of source voltage
is declared such as the following equation (R is the resistance, L is the inductance, i

is the current and k), is the back electromotive force coefficient):

Va(®) = Va(®) + Vu(®) + Vig(©) (285
B
VA = R0+ L 2 4k wg 0) (2.86)

The mechanical part of the motor can be modelled by using torque definition. "k," is
the motor torque coefficient [Nms/A], "b" is the viscous friction coefficient
[Nms/rad] and therefore, "b wgy,, " represents the negative torque component in the

following equation:

The total angular momentum of reaction wheels (Hgy,) are equal to the sum of each

reaction wheels’ angular momentum Wgy = [Wrw1, Wrw2, Wrws» Werwa J7):

Hrw = Igw -Wrw ; Irw = Irw,, = Irw, = Irw, (2.88)
The reaction wheel torque has the same magnitude but it is in the opposite direction
of the torque produced from satellite rotation in the scope of energy conservation

principle. The rate change of total angular momentum from wheels is equal to the

opposite direction of satellite control moment:
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[ngx + HEWZWI%y o HEWJ’WI%Z ]
MEY = HE, + (wh x HE,) = lHﬁwy + Hiw,Wis, = Hiw, Wi, J (2:89)

1B B B B B
Hgy, + HRWyWIBx - HRWxWIBy

2.4.2.2. The Control Torque of Magnetic Torque Rods

It is common to take advantage of Earth magnetic field as a magnetic control torque
to counter the effects of disturbance torques. Magnetic control systems are relatively
lightweight and cheaper than momentum control systems. However, they also have
some disadvantages such as power constraints and dependability of magnetic field
configuration. Three coils generate a magnetic moment on each satellite axis and
create a torque interfering with Earth’s magnetic field to align satellite to the desired
attitude [66].

Magnetic torque rods are generally used to dumb the accumulated momentum on
reaction wheels and to create control torque interacting with Earth’s magnetic field
for small attitude maneuvers. Besides these fields of usages, torque rods are also
used for detumbling to decrease initial satellite angular velocity after deployment
phase, momentum/nutation dumping and precise orientation [79]. In this study, the
effects of detumbling and desaturation controllers are investigated in the following

sections with their simulation results.

Figure 2-9 Magnetic Torque Rods [9, 17]
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In most applications, at least three number of torque rods are preferred to produce
magnetic moment on the orthogonal axes of satellite Body Frame [49]. The torque
rods in the selected satellite are produced by ZARM-Technik, and they are also used

as control torque generators besides reaction wheels in Figure 2-9.

The performance parameters of ZARM-Technik torque rods are listed here:

Table 2-4 Performance Parameters of Magnetic Torque Rods (MTRs)

Performance Parameters MTRs Values
Magnetic dipole moment (m?) +6 Am? (max.)
Supply current 95 mA
Supply voltage t50V
Power consumption (P) P=05W
Current (I) I'=95mA
N=2

Number of turns (N)

D =145mm/R =7.25mm/ L =325 mm

Dia (D) / Radius (R) / Length (L)

Each magnetic rod (MTRO, MTR1, MTR2) is assigned to one of satellite body axes:

v" MTR-0 is aligned with X-Axis (Xp) of satellite Body Frame
v MTR-1 is aligned with Y-Axis (Y;) of satellite Body Frame
v MTR-2 is aligned with Z-Axis (Zp) of satellite Body Frame

Figure 2-10 The Location of Magnetic Torque Rods [9, 17]
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The current applied to magnetic rods creates a magnetic dipole moment (m?) along
the main axis of the unit (in a direction perpendicular to the plane of the rods), and
results in a control torque in Earth magnetic flux. The product of dipole moment and
Earth' magnetic field vector gives magnetic control torque value (MY™) given by

the following equation [52]:

MngR = m®? X B eas (2.90)

MngR = -Q(mB) Bﬁleas = -Q(_B#Leas) m? (2.91)
0 Brlr?leas,z _Brlr?leas,y mf?

Mé‘VITR = _Brlrazeas,z 0 B#Leas,x mg (2,92)
Brlfleas,y _Brlileas,x 0 mg

v mP is the magnetic dipole moment generated from torque rods,

v §,‘§leas is the measured Earth magnetic field vector in satellite Body Frame,

v M¥TR is the calculated magnetic control moment in satellite Body Frame.

The control torque only acts perpendicular to torque rods [74]:

B B
m- X Bmeas

|Beas]

1
X BReas = mop—2(m%) 2(m?)"'m” (2.93)

MMTR =
|Bricas|

Magnetic dipole moment (m? = [m£, mﬁ,mZB]T) is computed by the number of
turns in wire coil (N), the current passing through the coils (I) and the coils cross

area (A = mr?):

Nyl Ay
mf = NIA=| Ny, 4, (2.94)
N, 1.4,
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2.4.3. Disturbance Torques

Disturbance torques are space environmental torques, and never eliminated. Because
of this reason, they must be controlled by satellite attitude controllers. The
environmental disturbance torques derive from environmental conditions, varies

with time in a sinusoidal manner throughout an orbit such as [11, 12, 13, 66]:

v' Gravity Gradient Disturbance Torques (M),
v Solar Radiation Disturbance Torques (M),
v Aerodynamics Disturbance Torques (Mgro),

v" Magnetic Dipole Moment Disturbance Torques (My4¢)-

The most significant disturbance torques are magnetic field and gravity gradient
torques around the altitude of the selected satellite. The total disturbance torque in

satellite Body Frame is defined hereafter (M2, ,):

Mgy = Mgg + Mgp + Mgro + Myjac (2.95)

2.4.3.1. Gravity Gradient Disturbance Torque

The satellite is subject to gravitational torque because of the variations in Earth’s
gravitational force over the satellite body. If the satellite mass distribution is not
uniform, the force arising from Earth gravity is also distributed unevenly on a
satellite. General expressions for gravity gradient torque have been calculated for

both spherical and non-spherical Earth models.

For most applications, spherical mass distribution of Earth is sufficient to calculate

this torque value [12]:

3u

Mao = Tz

[R X (Is R)] (2.96)
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v' Mg is the gravity gradient torque,

v R is the distance between the Earth center and satellite geometric center,

v’ u is the Earth gravitational constant,

v’ I is the satellite moment of inertia matrix.

The satellite geometric center and mass center are represented by different points in

satellite Body Frame. Ignoring this difference, it is possible to calculate the gravity

gradient torque only by using the distance between the Earth center and the

geometric center of the selected satellite.

The torque magnitude is one of the largest torque sources. Therefore, it must be

taken into account as an input torque value for the controller design. This torque can

also be expressed in the dyadic form (R5 represents the last column of the DCM

matrix ([C(q)]5) and 2(R5) is the skew-symmetric matrix) [14]:
Mg = 3wg(R; X IsR3) = 3w 2(R3) Is Ry

Finally, gravity gradient torque can be written as follows:

C(9)13 2(9193 — 9294)
R; = C(Q)23] l 2(q2 935 + q194) |; wo = Ju/R3
C(q)33 1-2(qf +4q3)
0 —C(q)3z  C(Q)2s I, 0 0 C(q)13
Mg = 3w | C(q)33 0 —C(@)13 || O ISy 0[] C(@)2s
—C(@)2z  C(@13 0 0 0 I,]|[C(@)ss

Z

_(Isz - Isy) C(q)23C(q)33
Mga = 3wg (st - Isz) C(9)33C(q)13
_(Isy - st) C(9)13C(q)23
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|[ (Isz - Isy) (9293 + 91901 — 2(qf +q3)) ]l
M = 6wg| (U, Isz)(qlqg 0242 (1 = 2(qf +q3)) | (2.101)
[ Isy st (9193 — 9294)(q293 + q194) J

The last equation can be reduced using small angle approximations (6 is assumed

that the maximum deviation from its rotation axis):

3
Mg, = 5 wg |ISZ — 15y| sin(20) = 3 wé |IsZ — 15y| sin(0) cos(6) (2.102)

The model is carried out by using long-term equations, and the other approaches can
be performed as part of the future works. Generally, the effect level of this

disturbance torque on the selected satellite is in the order of 10™> Nm.
2.4.3.2. Solar Radiation Disturbance Torque

Solar radiation (incident radiation) on a satellite’s surface generates disturbance
torque around the center of satellite mass and this torque value is independent of
satellite position and velocity. The applied torque on satellite is always perpendicular

to the line of sun light affected by the following factors [11, 12]:

v The intensity of Sun incident radiation,

v The geometry of satellite surface,

v' The optical properties of satellite surface,

v The Sun vector orientation with respect to satellite.

Direct solar radiation is one of the dominated disturbance sources above ~1000 km
as disturbance torque. The torque produced by the solar wind is generally negligible,

and therefore it is not a part of the torque calculations in this study.
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In general situations, a satellite configuration can be approximated as a collection of
geometrical shapes such as nearly spherical or rectangular. In this thesis, it can be
assumed that the satellite is a rectangular shape with dimensions of 60 x 70 x 80 cm.
It is commonly supposed that solar radiation pressure can be calculated as if the
satellite absorbs all photons without considering its orientation with respect to the

Sun. In that case, incident angles can be ignored in these calculations:

Moz = Feop X AR;AR = AXT+AY ]+ AZ Kk (2.103)
_, k Isg Ag (Ay\? (R

B _ SR As (Ay
Msp = G — (7) <E> (2.104)

v' AR is the distance vector between the center of solar radiation pressure and

the center of satellite mass for each axis,

v ﬁSR is the solar radiation pressure force,

<\

C, is the radiation pressure coefficient (C, = 1.0),
v' k is the illumination (reflectance) factor:
o InEclipse Phase 2 k = 0,
o In llluminated Phase 2> 0 < k < 1,
Lgg is the mean solar flux or solar constant (I, = 1358 W/m?),
A, is the effective surface area normal to Sun vector (A, = [Ay, Ay, A,]7),
Ay is the astronomical unit (4, = 1.49597870 x 1011 m),
c is the speed of light (c = 300000 m/s),
Rg,: 1S the geocentric distance of satellite (Rg,: = 6378 + 700 km),

NN N N NN

R, s the geocentric distance of the Sun,
(Rsun = 149.597.870.700 m = 149.600.000 km) [23],

<\

R is the Sun position vector relative to satellite (ﬁ = ﬁsat — ﬁsun),

v R is the distance from Sun to satellite (R = ||Rsq: — Rsun || M).
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For the selected satellite;

v +X plane is a rectangle with the dimensions of Ay, = (60 x 80) cm?,
v +Y plane is a rectangle with the dimensions of 4, = (70 x 80) cm?,

v' +Z plane is a rectangle with the dimensions of A; = (60 x 70) cm?.

The solar disturbance torque equation can be rearranged taking into account all the

surface areas like in the following [16]:

_, k Iz Ay (Ap\* (R
Sox = Cr — — (?U) (f) (2.105)
_, k Isz Ay (Ap\% (R
My = € —— (7”) <7Y) (2.106)
_ kg Ay (Ap\% (R,

The sun position vector with respect to a satellite is provided by the Sun position
model designed as a space environment model and explained in the following
chapter. The worst condition is that all the surfaces placed on the three different
satellite axes are directly exposed to Sun radiation. In that case, total solar radiation

disturbance torque can be expressed as shown below:

Mgz = Mgpx + My + Mz 2 (2.108)
For enhancing the calculations using geometrical details, it can be assumed that the
center of solar radiation pressure for each satellite surface is the center of the related

surface area [22]. It means that the distance from the satellite mass center is 40 cm
for +Z plane (4Z = 0.40 m), 35 cm for +X plane (4X = 0.35m) and 30 cm for +Y
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plane (4Y = 0.30 m). These distances are precisely proportional to the half of

satellite dimensions (i is the Sun incidence angle):

I
Mg = — As(1+ k) cos(0) (2.109)

The most challenging part is to find out Sun incidence angle (¢, y), and Ephemeris

model can be used to express it for rectangular shaped satellite:

@ = arctan(Ry/Rx) and y = arcsin(Ry) (2.110)
B Is

Mgp x = - Ax (1 + k) cos(p) AX (2.111)
B IS .

Mspy = - Ay (1 + k) sin(p) 4Y (2.112)
B Is i

Msg 7 = " A;(1+ k)sin(y) AZ (2.113)

The first approach is accepted to make these calculations more manageable, and the
second method can be applied as part of future works in order to compare the
differences between the two models. Generally speaking, the magnitude of this

disturbance torque is the level of 107 Nm.

2.4.3.3. Aerodynamics Disturbance Torque

The interaction of upper atmosphere with the satellite surface results in the
disturbance torques around the satellite mass center. This torque is one of the least
dominant disturbance torques for Earth-orbiting satellites. Atmospheric drag may be
an important disturbance effect when the satellite altitude descends into Earth’s
atmosphere [19]. The aerodynamic torque equation can be formulated, such as the

following equations [11, 12]:
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ﬁfERO = %Asp CD‘_/2 (2.115)
v EB_.. is the aerodynamic drag vector in satellite Body Frame,
v’ A, is the effective surface area (4, = [Ax Ay A;]T = [0.48; 0.56; 0.42]7),
v’ p is the atmospheric density at low solar activity (o = 3.58 x 1071° kg/m?3),
v Cp is the aerodynamic drag coefficient (1 < Cp < 2),
vV is the satellite velocity vector (V = Vy — w,.7).

The second term of the velocity equation which includes Earth rotational velocity

can be negligible, and orbital velocity is equal to the satellite velocity (V = V).

The aerodynamic disturbance torque equation can be rearranged considering all the
diagonal distances of these surface areas like in the following (4X = 0.35m, AY =
0.30 m,AZ = 0.40 m):

— 1 —
MfERo,X =3 (AX P CDVZ)AX (2.116)
— 1 —
MABERO,Y =3 (AY PCDVZ)AY (2.117)
— 1 —
MABERO,Z =3 (AZ P CDVZ)AZ (2.118)

The total aerodynamic disturbance torque can be expressed as shown below:

Mgro = MABERO,X + MEERO,Y + MEERO,Z (2.119)

Generally, the magnitude of this disturbance torque level is about 1077 Nm

depending on the altitude of selected satellite (~ 700 km).
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2.4.3.4. Magnetic Dipole Moment Disturbance Torque

The interaction between the residual magnetic field of a satellite with Earth magnetic
field can result in magnetic field disturbance torque. There are several diverse
electronic components being used in a satellite and they are different from each other
in the sense of electronic characteristics [71]. Satellites are generally designed of
selective materials to decrease the negative effect of this disturbance torque. The

magnetic torque equation can be written like as:
Mfa =mxBE = 0(-BF) m = —0(B®) m (2.120)

v’ m is the satellite residual magnetic dipole (m = 1 Amp m?),
v BB is the local magnetic field vector in satellite Body Frame:
o BB = 2.M/R3 for points above the poles,
o BB = M/R3 for points above the equator,

v’ My4c is the Earth magnetic moment (My 4z = 7.96 x 10> Tesla m?3),
v' Ristheorbitradius (R = Rz + h = 6378 + 700 km).

For creating the worst case, the equation for points above the poles can be handled.
The Earth magnetic field vector is provided by Earth Magnetic Field model
described in the following chapter. The total magnetic disturbance torque is

calculated by the following equation:

Miiac = Mijagx + Mijagy + Mijac z (2.121)

In general, the magnitude of this disturbance torque is about the order of 107> Nm
and cannot be ignored in terms of simulations. In conclusion, the most efficient
disturbance torques is gravity gradient and magnetic field disturbance torques for the

satellite altitude around 700 km.
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The total disturbance torque is the level of 107> Nm.

GCDistTorqua

=‘.

GGDistTorque_Body

Sat_Inerta_Matrix

Gravity Gradient Disturbance Torgque Model

SuriVactor_Orbit SolarRadDistTarque

&
SunVector_Orbit

DCM_qOrbit2Body

SciarRadDistTorque_Body

Solar Radiation Disturbance Torque Model

SC_Velocity_Ol :_Orbit

&
SC_Velocity_Orbit

AgrodynamicDistTarque_Body

Agrodynamic Disturbance Torque Model

LLA degress  MagFialdDi ,_Ortit

MagFieldDistTorgue_Body

Magnatic Fisld Disturbance Torque Model

Dist_Torque_Crbit

Dist_Torque_Body

2.5. Satellite Sensor Measurements

The attitude control requirements are based on three-axis stabilized satellite system
with high pointing accuracy capabilities provided by fine pointing sensors such as

star trackers and gyroscopes (or in a different form like as IMU sensors).

Figure 2-11 Distribution Torque Model Blocks

The sensor characteristics of the selected satellite are listed in the following table:
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Table 2-5 The Characteristics of Satellite Sensors [9, 17]

MGM STR GPS SS FOG
Output Magnetic Quaternion Position Sun Angular
P Field Vector Vector Velocity Position Rate
Dimension (3x1) (4x1) (3x1) (3x1) (3x1)
Quantity | 2 MGM 2 STR 3 GPS 8 SS 4 FOG
Accuracy 5nT 5 arc sec 0110 r?:/s 50 mA | 2x10~°deg/s
Control | ;¢ 2 61y, 5 Hz 1 Hz 10 Hz 10 Hz
Rate "

These sensors are modelled to provide the measured values which are necessary to

calculate the error inputs sent to attitude controller design.

2.5.1. Sun Sensor Measurements

Sun sensors determine satellite attitude enabling the coarse Sun direction vector.
Two different types of sun sensors, analog and digital sun sensors, are employed to
provide Sun position vector to orient solar panels toward the Sun. Analog sun
sensors can provide sufficient accuracy for many specific tasks. These types of
sensors are based on silicon solar cells, and its output current is proportional to the

cosine function of incident angle [12].

At least two analog and single sun sensors are necessary to measure sun incident
angle in a defined plane. By orienting two sensors perpendicular to each other, the
direction of Sun can be fully determined [66]. The sensors located in the selected
satellite consist of GaAs solar cells manufactured by Azur Space and depicted
below. The solar cells included in sun sensors generate voltages (about 2.5V) in the
illuminated phase:
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Figure 2-12 Sun Sensors [9]

Eight piece of sun sensors are located in satellite and used to obtain the complete 4n
FOV instead of 2 FOV maximizing the exposed Sun light time [59]. Four number
of sun sensors (SuS0, SuS1, SuS2 and SuS3) are mounted at the edges of the satellite
structure. Two of sun sensors (SuS4 and SuS5) are mounted on each solar panel, and

the remaining two sensors (SuS6 and SuS7) are located in the solar panel directions.

YELe

Xeip

Solar Panel 1

Nsus2 Solar Panel 0

Figure 2-13 Location of Sun Sensor Units [9, 17]

2.5.2. Magnetometer Measurements

Magnetometers measure local magnetic field direction and magnitude vector which
is a combination of both Earth magnetic field and any magnetic field generated by
different sources. In a typical case, these measurements are used to estimate the

torque applied by magnetic torque rods in all three satellite axes. The satellite is
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equipped with two orthogonally arranged magnetometers (anisotropic magneto-
resistive sensors) manufactured by ZARM-Technik with the measurement range of
+200uTesla:

Figure 2-14 Magnetometer Located in The Selected Satellite [9,17]

The magnetometers are generally located on the satellite payload module, not very
close to magnetic torque rods. Because of the generated magnetic field, magnetic
torque rods can cause the saturation of measurements. The orientation of both
sensors with respect to the satellite coordinates is depicted below:

Figure 2-15 The Orientation of Magnetometers [9, 17]

2.5.3. Star Tracker Measurements

Star trackers identify the viewed star pattern and measure the satellite orientation
relative to Earth inertial reference frame in an accurate manner [66]. Star trackers
with sufficient operational field of view use the star light intensity and reduce the

number of attitude sensors required for fine attitude knowledge providing quaternion
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vectors [43, 44, 59]. The star tracker model is the micro-Advances Stellar Compass
(LASC) consisting of a processing unit, camera head units and baffles shown in the

following figures [42]:

Power
Connector

Figure 2-16 Star Tracker System Baffle and Camera Head Unit [9, 17]

During the operational phase, the processing unit creates a digital image every 0.5
seconds and this image is adjusted for bright objects. Star light sensitivity, star
detection threshold, the number of stars in the sensor field of view and the sky
coverage are fundamental elements to define a star tracker performance. The camera
head units are located on the satellite body so that simultaneous blinding or
occultation effect arising from the space objects (Earth, Moon, Sun and the other

satellites, etc.) is avoided. The location of each sensor is shown in Figure 2-17.

YVL-" = XFLP

o

FLP

Figure 2-17 The Location of Star Trackers [9, 17]
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2.5.4. Fiber Optic Gyroscope Measurements

There are two types of optical gyroscopes (ring laser, fiber optic gyroscopes) using
interferometer or interferometric method properties of electromagnetic radiation to
sense the rotation and angular motion of satellite [35]. In this satellite, fiber optic
gyroscope is a type of Commercial Fiber Optic Rate Sensor (LITEF C-FORS):

Figure 2-18 Fiber Optic Gyroscopes [9, 17]

In general, gyroscopes are not located in the neighbourhood of magnetometers. Four
gyroscopes are assembled in a tetrahedron configuration to avoid single sensor
failures. The measurement axis of each gyroscope is also aligned to the rotation axis

of the related reaction wheels and each sensor measurements are obtained around its

Z-axis as shown below [17, 36]:

TBrg:

—

JE

e

Figure 2-19 The Location of Fiber Optic Gyroscopes [9, 17]
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The angular velocity data is estimated as long as at least three of gyroscopes have
valid data. Based on this situation, there are three different sensor combinations such
as { ZFOGO ) ZFOGl ) ZFOGZ hA{ ZFOGO ) ZFOGZ ) Zpocs } and { ZFOGl ) ZFOGZ ) ZFOGS }-
The sensor measurement noise sources such as fixed bias (g-independent bias), g-
dependent bias, scale factor error, misalignment error, angular random walk, rate
random walk and rate ramp error are taken into consideration in a gyroscope model

[33, 60]. The performance parameters and error specifications are specified below:

Table 2-6 Performance Parameters of Fiber Optic Gyroscopes

Performance Parameters Fiber Optic Gyroscopes
Rate Bias 1575.42 Hz (<2°/h (10))
Angular Random Walk 17 dB (< 0.15°/v/h)
Scale Factor Error <1000 ppm (10), <0.2° % (10)
Misalignment Error +5 mrad (max)
Measurement range +1000°/s

2.5.5. GPS Sensor Measurements

Satellite navigation information such as position, velocity and time are provided by
GPS receivers for the development of orbit determination system. After measuring
the distance of at least four GPS satellites, satellite position and time can be
computed, and then GPS receivers can determine velocity and track information [37,
38].

Phoenix GPS receivers comprise of three independent receiver parts, each part is
connected to separate antennas and two cascaded low noise amplifiers, which reduce

the required antenna gain [40]:
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Figure 2-20 Phoenix (MG5001) GPS Receiver Board [39]

GPS antennas are located on the middle solar panel of satellite, and its direction is
opposite to the payload module. This specification also provides the optimum

reception of signals from GPS satellites.

Vi A

Figure 2-21 The Location of GPS Antenna [9, 17]

2.6. Summary

This chapter clarifies the coordinate frame transformations representing with Euler
angles and quaternion vectors as attitude parameterization. The most important
attitude representations such as inertia matrix, angular velocity and angular
momentum are also located in this chapter. The internal and external torque sources
applied on the selected satellite are classified and expressed with details. Satellite

dynamic and kinematic equations are clarified using all these information.
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Besides, sun sensors, magnetometers, GPS receivers, fiber optic gyroscopes and star
trackers are defined as satellite attitude sensors. On the other hand, reaction wheels

and magnetic torque rods are specified as satellite actuators.
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CHAPTER 3

SPACE ENVIRONMENT MODEL

3.1. Introduction

Modelling of space environment is an essential part of attitude determination in

order to develop and verify various attitude control algorithms in a correct manner.

The outputs from space environment model including Earth Magnetic Field Model
and Sun Position Model together with satellite dynamic-kinematic model are used as
inputs for attitude sensors. The torque outputs of actuators are also used for satellite

attitude determination and control systems.

3.2. Julian Date Model

Due to precession and nutation of Earth spin axis, ECI Frames have to be specified
at some epoch time. The commonly used ECI Frames is J2000 Frame. This frame
uses the mean equator and equinox of Universal Time Coordinated (UTC) January 1,
2000 [16, 49].

JD = 367(year) — floor

7 Ll (month+9>
7| vear floor 1

)] +day + 1721013.5 3.1)

month

+floor [275 (

1 (1 (second

-2 \go 0 + mtnute) + hour)
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The Julian Date (/D) can be converted to Modified Julian Date (MJD) using the

following equations [3, 4]:

JD2000 = JD — 2451545

MJD = JD — 2400000.5

3.3. Orbit Propagation Model

3.3.1. Kepler Parameters

(3.2)

(3.3)

The satellite orbits are specified using Kepler parameters which indicate the

orientation of an orbital ellipse and satellite position in this ellipse. These parameters

are visualized with the following figures [10, 11, 13]:

North pole

Semi-minor axis
Surface

Semi-maijor axis

| R

>

Equator =
Equatorial plane

Polar axis

South pole

K

Satellite

A P(‘Hgl‘c
i /H
y ~

4 Node line

¢
4

equatorial plane

Figure 3-1 Kepler Orbital Parameters [19]
Kepler parameters are listed as follows:

i = Inclination,
£ = Right Ascension of Ascending Node,

w = Argument of Perigee,

AR NERNEEN

e = Eccentricity,
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v'a = Semi-major AXis,

v' M = Mean Anomaly,
v" n=Mean Motion (n = /ug/a?).

The first four elements (i, 2, w, e) determine the orbital plane orientation in space.

On the other hand, mean motion (n) and mean anomaly (M) define the satellite

position in its orbit. The basic properties of Keplerian orbits for circular and

elliptical orbits are listed below:

Table 3-1 The Properties of Keplerian Orbits (Circular and Elliptic Orbits)

Orbits Eccentricity The Radius Energy
2 2 2
Circular Orbits e=0 r=p=h_= [r.v.cos(B)] E=_-2 o
W W 2h?
Elliptic Orbits o= p/(1+e) E= -2 <o
p 0<ex<l1 n = p/(1—e) a

The angle between orbital plane and equatorial plane is called inclination. By

convention, orbit period (T) is a number between the amount of time to complete

one revolution around Earth.

Mean motion is the mean angular velocity and mean anomaly gives the direction of

satellite motion at perigee and apogee points. There is a close relationship between

mean anomaly (M), eccentric anomaly (E) and true anomaly (v):

cos(v) = % ; sin(v) =
v 1+e E
tan (E) = 1o tan (E)

V1 —e?sin(E)
1 —ecos(E)
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The relationship between mean and eccentric anomaly can be denoted by:

E(t) = M(t) + esin(E(t)) (3.6)
The changes of mean anomaly are defined with an iteration equation:

M(ty +t) = M(ty)+nt> My, = M; + nt (3.7)

In order to calculate the mean anomaly changing with time M(t), time equation is

expressed in a discrete form and then propagated for each discrete point:

Eiy1 = M; + esin(E;) (3.8)

Mi +esi Tl(Ei) - El'

Biva = Ect —— e cos(E;) (3.9)

3.3.2. Two Lines of Elements Data (TLE)

TLE data is a set of two lines including orbital elements which describe an Earth-
orbiting satellite position (r) and velocity (v). In this study, the NORAD TLE data
of FLP microsatellite is modified and taken as an input argument for the calculations

of orbit propagator model.

The orbit information becomes available in the time frame of days after launch.
NORAD supplies the satellite tracking information in the form of TLE data set and
this data can be used as an input for orbit propagator model. There are two lines in

TLE Data Set shown in the following table:
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Table 3-2 TLE Data Set For Orbital Parameters [20]

Line

TLE Data Set (FLP)

1 |42831U 17042G 19164.90037843 +.00000129 +00000-0 +18434-4 0 9993

2 | 42831 097.5659 058.0490 0015745 077.4852 282.8127 14.91002723104220

This table includes the orbital parameters obtained from the second line of TLE data:

Table 3-3 Orbital Parameters Obtained From TLE Data

Orbital Parameters Abb. Value Value
Inclination i 097.5659 (deg) 1.7028462 rad
Right Ascension of Ascending Node | 612.9 (deQ) 10.697123 rad
Eccentricity e 0.015745 --
Argument of Perigee ) 077.4852 (deg) 1.3523718 rad
Mean Anomaly M 282.8127 (deg) 4.936013 rad
Mean Motion n 14.910027 (rev/day) | 0.00108 rad/s

The following table shows the useful orbital parameters obtained from TLE data:

Table 3-4 The Useful Orbital Parameters of Satellite

Orbital Parameters Abb. Value Dimension
Perigee Ty 591.0 km
Apogee Ty 612.9 km

Period T 96.6 minutes
Semi Major Axis a 6991.4 km
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The satellite semi-major axis is found by using the mean motion definition (n) [50]:

2n [md] 14.910027 0.00108 7
= - . = 0. -
"86400 " 1s 86400 s (3.10)
1 1
7 U3 (3.986004418 x1014)3
n3 (0.00108)3

The magnitude of the moving satellite position (r) is represented with Kepler

parameters such as semi-latus rectum (p) and true anomaly (v):

_ p _a(l-e?)
" 14ecos(v) 1+ ecos(v)

, (3.12)

The transformations from Keplerian parameters to Cartesian position (R°) and

velocity vector (V) in orbital plane are specified hereafter:

RZRET r cos(v) cos(E) —e
— ORBIT | _ . _
R% =|Ry = | rsin() | = a | /1 = e2sin(E) (3.13)
RZORBIT 0 0
VORBIT —/u/p sin(v) 2 —sin(E)
vo = | yoreir | — _amn
|y ~ |W/u/p (e +cos(w)| T T, 1 —e?cos(E) (3.14)
VZORBIT 0 0

The position and velocity vectors are also defined in ECI Frame (RE¢T, VECT) [49]:

Rl = [R][R°]; VE! = [R][V?] (3.15)

ccw—sswci —csw—scwci ssi
[Rl=[sco+cRswci —ssw+cRcwci —chsi (3.16)
Sw Si cw Si ci
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These definitions can be defined with the following alternative equations:

[RECT] = (IC;(D]" [Cx (D] T[Cz ()] T) [RY] (3.17)
[VES] = ([C2 (D] . [Cx (=D]- [Cz (=)D [V°] (3.18)

The position and velocity vectors can be defined in ECEF Frame (RECEF, VECEF)

with the following matrix multiplications (w;z = 7.292115x107° rad/s):

[RECEF] = ([C2(—2 + wip)] [Cx(—D] [Cz(—@)D) [RY] (3.19)

[VECEF] = ([C2(—=02 + wip)][Cx (=D][Cz(=)]) [V] (3.20)

3.3.3. Orbit Perturbations

Orbit perturbations result in small deviations of the satellite orbital motion. There are

various perturbing sources applied on satellite in space as listed below:

Earth gravity harmonics,
Earth tides effect,
Sun and Moon gravitational effect,

Solar radiation pressure,

D N N N N

Atmospheric drag.

Atmospheric drag and solar radiation pressure effects are disturbance torque sources.
In terms of the other perturbations, the adverse effects caused by Earth gravity

harmonics are only taken into consideration.
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3.3.4. Earth Gravitational Perturbations

Earth gravity harmonics represent the mathematical expansion of the deviations from
a perfect sphere shape. In ordinary situations, the second terms of zonal (J, =
0.00108263) and tesseral gravity harmonics (J,,) are encountered in computations
[49]. The J, term (flattening factor) is related to Earth equatorial oblateness, which is
the eccentricity depending on the difference between polar and equatorial radius.
This effect can be represented by the rate of argument of perigee (w), right ascension

of the ascending node (£2), and the correction of orbit mean motion (72):

. _ 3LRE_

2=-7" i cos (i) (3.21)
.3 J2R _(25.2.)

O =3 2 (1= e?)2 nl 5 Sin () (3.22)

3 J, R2 3 2
= H <1 + 5 jzsz (1 -3 sinz(i)> V(- 62)) (3.23)

3
ag

The J,, term is related to the ellipticity of Earth equatorial plane, and its effects
appear on geosynchronous orbits. Because of this reason, it is not evaluated as a part
of the perturbation computations. The position and velocity vectors can be defined
with integrating these perturbation terms in ECEF Frame:

[RECEF] = [CZ(_(Q +0t) + W,E)] [Cx(—D] [Cz(—(w + @t)] [R?] (3.24)

[VECEF] = [Co(—(Q + 2t) + wip)] [Cx (D] [C2(—(w + @)] [ VO] (3.25)
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The orbit propagator model placed in the previous figure is:
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3.4. Earth Magnetic Field Model

External references such as the Sun, other specific starts and Earth magnetic field

direction can be used to determine the orientation and attitude of a satellite.

The magnetic field model uses an International Geomagnetic Reference Field
(IGRF2015) standard model comprising a set of spherical harmonic coefficients and
is updated by the International Association of Geomagnetism and Aeronomy every
five years. This model as a truncated series expansion of a geomagnetic function (V)
is defined taking the first 10 harmonics [53, 54, 58, 62]:

V=a Z 2”: (%)n+1 (gnt cos(inA) + hy! sin(mA)) P*cos(6) (3.26)

n=1m=0

a is the mean radius of Earth,

r is the distance from Earth centre,

A is the longitude angle from Greenwich to eastward,

0 is the colatitude angle defined as 90° minus the latitude,

gnt and hy' are spherical harmonic coefficients of degree n and order m,

N is the maximal spherical harmonical degree of the series expansion,

AN N N N U N N

P™cos(0) is the Schmidt quasi-normalised associated Legendre functions of

degree nand order m (n>1 and m<n).

Although the strength of magnetic field is relatively stable over time, some
alterations in the ionosphere region deflect the surface magnetic fields of Earth. In

most cases, this field can be considered constant and not changes with time.

In this study, 12" generation IGRF model (IGRF-12) is implemented to the system

model for satellite location defined with latitude, longitude and altitude values [1, 2].
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An orbit propagator model supplies the satellite latitude, longitude and altitude

information to IGRF model. The magnitude of this field is about 10~> Tesla.

3.5. Sun Position Model

Determining the relative position of the Sun from the Earth involves a series of
calculations at any time of year, assuming that the Sun is in an ecliptic orbit around
the Earth [56]. The angles describing the solar position vector are shown in the

following figure [57]:

- ; P North
Ba

Figure 3-4 Sun Position Vector Illustration [57]

v 0, is the solar zenith angle,
v 0, is the solar azimuth angle,

v 0, is the solar elevation angle (90° - 6).

The report of [55] presents an algorithm in order to calculate the solar zenith and

azimuth angles with uncertainties of £0.0003 degrees.

The eccentric anomaly (E) from mean anomaly (M) and eccentricity (e) for very

near circular orbits shown in the below [54, 56]:

E =M + esin(M) (1.0 + e cos(M)) (3.27)
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The distance of Sun (Rgyy) and its true anomaly (vgyy) are:

Rsynx = Rsyn cos(vsyn) = a (cos(E) — e) (3.28)
Rsyuny = Rsyn sin(vsyy) = a (sin(E) V1 —e?) (3.29)
Rsyn = \/ (Rsun.x ) + (Rsuny )? (3.30)
_ (Rsvw,x > (3.31)
vgyny = atan2 | ——— .
Rsuny

The Sun centric longitude angle (longyy) is found from the argument at perihelion

( wsyy) and the true anomaly (vsyy):

longyy = wsyn + Vsyn (3.32)

The Sun position vector (Xsyn, Ysun, Zsyn) In @ coordinate system in the ecliptic

plane by using the trigonometric functions of the Sun longitude angle:

Xsun Rsyn- cos(longyy)
Ysun | = | Reyn. sin(longyy) (3.33)
Zsyn 0

The same definition in the inertial geocentric coordinate system (Xsyn g, Ysun ke,

Zsyn g) 1S given by:

XsunE Xsun
Ysune | = | Ysun-cos(e) ] (3.34)
ZsuNE Ysyn-sin(e)
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3.6. Summary

The space environment model designed in this chapter clarifies the propagation of
satellite orbit concerning Keplerian motion equations and orbital perturbations. It is

mandatory to simulate space environment which includes satellite trajectories.

This chapter also states the vector models of Earth magnetic field and Sun position

which are used to generate the required inputs for attitude sensor calculations.
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CHAPTER 4

SATELLITE ATTITUDE MODEL

4.1. Introduction

The state space definitions of both satellite nonlinear and linear attitude models are
handled in this chapter. Besides, the controllability and Lyapunov based stability

properties of the derived attitude equations are assessed under the following titles.
4.2. Satellite Nonlinear Attitude Control Model

The definition of nonlinear system and measurement models are expressed:

X1 = f(Xpe, Uk, Wi, K) (4.1)
Vi = h(Xy, Vi, k) 4.2)

In this study, the state vector (x;) is selected according to system dynamic
characteristics. The values of satellite angular velocity (w5), quaternion vector (q)
and reaction wheel angular momentum (HE,) change dynamically as simulation

time progressed:

xe=[wip q Hiwl" (4.3)

In this study, u, is the input function generating from control torques (MEY, MMTR)
and disturbance torques (Mp) exerted on satellite. The component numbers of input

vector are dependent on the torque generators integrated in satellite structure:
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we = [MEY M Mp)" (4.4)

4.2.1. Nonlinear State Space Definition in Discrete Time

The combined dynamic and kinematic equations give the general nonlinear model
definition for satellite’s angular motion. The nonlinear equation of satellite dynamics
(f1 (xx, ux)) is shown with the equation of satellite angular moments and torque
definitions when reaction wheels are used as torque generators [51]:

fy, = 152 ((Is, = 1s,) Wh, W8, + Wi, Wl — Wi, Ml + MEY + Fp,)  (4.5)
s, = 15} (s, = Is,) Wi, Wi, + Wi, A, — Wi AR, + MEY +Mp,) (45
fy, = 151 ((Is, = s ) Wi, s, + Wl i, — Whs, i, + MEY + Fp,) a7

If magnetic torque rods are using as torque generators, these dynamic equations are:

- — — — —MTR —
wh, =13 <(15y - ISZ) Wip, Wi, + Mc, ~ + MDI) (4.8)
- — — — —MTR —
WIB;BZ = ISyl ((ISZ - ISx) WIBB1W533 + MCz + MDZ) (4.9)
. _ _B — —RW | —
wh, =I5 ((lsx — Isy) Wip, Wip, + M, + MD3> (4.10)

The second nonlinear equation of satellite kinematics (f,(x, ux)) can be rewritten
using the satellite velocity vector (w5z) represented with the second column of
DCM matrix (C(q),) and the angular velocity specified in Orbit Frame (w{, =
[0 —wy, 0]7) like in the following equation. Before resolving the second

nonlinear equation, it is beneficial to recall this new angular velocity definition:
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wgg = wiz — [C(@)]6 - wip (4.11)

0 wip, + C(q)12 Wo
wop = wip — [C(@]5 [—Wol = Wﬁaz + C(9)22 Wo (4.12)
0 Wiz, + C(q)32 Wo
3

wig, + (@i — 41 + g5 — q3)wy (4.13)
Wﬁag + 2(q293 — 9194) Wo

W031 wip, + 2(q192 + q394) wo
WOB = WOB2

WOB3

The new representation for skew symmetric matrix (2(wjz)) according to the

satellite angular velocity (w5) is:

B —
N(wop) =
0 wip, + C(@)3wo  —Wip, — C(@)22Wo  Wip, + C(q)12Wo
~wip, — C(q)32Wo 0 wip, + C(@12Wo  Wip, + C(q)22Wo (4.14)
l wig, + C(@)22wo  —wip, — C(q)12Wo 0 Wi, + C(q)3,wo J
_Wﬁal — C(q@)12Wo _Wﬁaz — C(q)22Wo _WIBB3 — C(q)32Wo 0

The second nonlinear equation of satellite kinematics £, (x , uy) is:

Gy = 5 (%W, + C(@32w0) = Ta(Ws, + C(@22wo) + Ta(W, + C(@)12w0)) (4.15)
G, = %(—ql(w,a + C(@)52Wo) + Ts(Whh, + C(@)12w0) + T (W, + C(@)22w0)) (4.16)
ds = %(ql(wl%z + C(@)22Wo) — To(Whh, + C(@)12w0) + T (W, + C(@)32w0)) (4.17)
G = %(—m(»‘v,%l + C(@12Wo) — T (W, + C(@)22wo) — Ts(Whh, + C(@)32w0)) (4.18)

71



The third nonlinear equation of satellite kinematics f5(x, uy) is:
Hiy = —Mc" (4.19)

Case-1: Torque generators are only reaction wheels

The nonlinear dynamic and kinematic equations in the case of using reaction wheels

as torque generators are given hereafter:

IS [ Mp + MEY — Qwi)Iswis — Q(wip)HEy 1

fGaou) | [ wh /
f2(aewge) | = _‘7 = E'Q(WgB) q (4.20)
f3 (e ug) HRw | — MR ]

Case-2: Torque generators are only magnetic torque rods

The nonlinear dynamic and kinematic equations in the case of using torque rods as

torque generators are presented below:

fl(Xk,uk)] [W%:I IS_l[MD_I_MéVITR_.Q(WIBB)ISWIBB]

f2 G ) q (4.21)

1 B
EQ(WOB)q

Case-3: Torque generators are both magnetic torque rods and reaction wheels

The combined nonlinear dynamic and kinematic equations in the case of using both
reaction wheels and magnetic torque rods are depicted here:

WE, [Is' [ Mp+ ME" + MZ'™® — Q(wip)lswip — Q(wiz)HRw 1]

N 1 |
-Z = l > 2(wgp)q J (4.22)
H

RW —MEY
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4.2.2. Nonlinear Sensor Measurement Model in Discrete Time

The matrix (Hy) defines the changes of measurement vectors with time and it is

consisted of each sensor measurements. This matrix is commonly a function of

satellite kinematics such as Euler angles or quaternion vectors and calculated for

each iteration. The measurement equations of attitude sensors (v, = Hyxy + vy) are

defined with its noise vectors (v,) with respect to system states. The measurement

vector is configured as if all sensor measurements are available:

Yk =

r YGYROk T
YVsTR k
YMGM k
YVsus,k
YGpsik

L Yeps2,k

" Wineas
Qmeas

Bmeas

B SVmeas

rmeas

- vmeas -

[ Heyro 1

HSTR
Hyem
I{SuS
HGPSl

L Heps

xk+

r UVGYRO T

UsTR
Umem
Usus
VUgps1

L Ugps2 -

(4.23)

In a sensor model, the output measurements can be estimated around the satellite’s

position adding the effects of some noises generated by misalignment error (non-

orthogonality error), measurement error, scale factor, and bias. These noise sources

have a large negative contribution to total sensor measurement values and each

sensor is modelled considering these noise signals [29].

The measured quantities of sensor outputs can be shown in the following diagram:

TRUE
VALUE

NOISE

BIAS

SCALE
FACTOR

‘MISALIGNMENT

X

|

v

.
>

»( %
L4

Figure 4-1 Sensor Measurements with Noise Effects
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The general formula of sensor measurements is:

Ymeas = Ytrue T (vSF Ytrue T Vma Ytrue T vBIAS) (4_24)

v’ g is the error matrix representing scale factor,
v’ vy, is the error matrix representing misalignment,

v’ vg4s IS the sensor measurement bias error.

When a satellite goes into the eclipse phase, its attitude solution can be degraded and
then it is required to propagate the solution incorporating the other sensor model data
such as Star Tracker model [59].

Scale Factor Error (vsr):

The ratio between the measured output value and the change in input value is called
the scale factor. It also represents a linear approximation to sensor output error over
a given full input range as a dimensionless quantity. It is stated as a percentage or the
unit of parts per million. The combination of scale factor and misalignment error is

generally inserted into the sensor models especially for gyroscopes.
Misalignment Error (vy,):

Misalignment errors are derived from the angular difference between ideal and true
axis vectors. Sensor axes are not located orthogonally in the satellite, therefore the
measurement of these axes displacement is known as misalignment error. This error

signal is modelled as random constant value and unitless quantity.
Bias Error (vpjas):

Fixed sensor bias error is known as the most critical error source and a constant

value over a specified time and at a specified operating condition [64]. Bias stability
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and instability are modelled as random constant value and random walk value

respectively.

4.2.2.1. Nonlinear Model of Fiber Optic Gyroscopes

The error model equation of measured angular velocity for each gyroscope set can
be expressed like the following [31, 32, 33, 34]. The measurement equations of

magnetometers (Ysyro ) With its measurement matrix ([Hgyro]) are defined:

Whoas = Wi + (Usp Wp + Vaga Wp + Vpras + Varw + Vrrw + Vrr) (4.25)
Y6YROk = Winoas = Wi + Vgyro = [C§1Wo + Veyro (4.26)
Yevrox = [Hgyrolxk + [ReyrolVeyro (4.27)

v' wg and w,, are the true angular velocity vector in Body and Orbit Frame,

v wBI9DY is the measured angular velocity vector in satellite Body Frame,

v' Vggrw IS the rate random walk error,

v' vurw IS the angular random walk error,

V' wgpg is the rate ramp error,

v vgyro IS the measurement noise vector of gyroscopes represented with a

band limited white noise signal and its noise power is denoted by sensor

noise matrix (Rgyro)-

Rate random walk and angular random walk errors are generally represented by a
zero mean Gaussian random noise signals with a variance calculated from Allan
Variance Diagram [28, 29, 30, 59].

It is generally preferred to use a combination of star trackers and gyroscopes

whenever the mission requires the highest accuracy in measurements.
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4.2.2.2. Nonlinear Model of Star Trackers

Several conditions such as high radiation dose and different luminous objects
adversely impact the performance of star trackers. Therefore, a Gaussian random

noise with variance value is added to output measurements in the model.

The sensor model output is a form of quaternion vector to obtain the estimated
satellite position. The input is a quaternion vector defined in satellite Body Frame
delayed by multiplying its bias properties [66]. The measurement equations of star

trackers (ysrg ) With its measurement matrix ([Hsrz]) are defined:

Ystrik = dmeas = q° + vstr = [C51q0 + vsrr (4.28)
Ystrik = [Hsrrlxk + [Rsrrlvsrr (4.29)

v' gg and q, is the true quaternion vectors in satellite Body and Orbit Frame,

<

qZ9DY is the measured quaternion vector in satellite Body Frame,
V' wvgrg is the measurement noise vector of star trackers represented with a
band limited white noise signal and its noise power is denoted by sensor

noise matrix (Rsrg)-

4.2.2.3. Nonlinear Model of Magnetometers

In a magnetometer model, the direction and magnitude of magnetic field can be
estimated around satellite’s position adding the effects of some noises generated by
scale factor and misalignment error. The IGRF model is used as a reference input for

this sensor measurement.

Earth magnetic field strength which decreases with distance from Earth and residual
satellite magnetic bias dominate total magnetic field measurement. The combined

measurements of magnetometers integrated with amplifiers and low pass filters
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provide accurate outputs by decreasing the unwanted sensor noises. The local

magnetic field measurement of magnetometers is calculated with the following

equation (yamenm k) [59]:

Bjo2s = Bp + (vspBgp + vyaBp + Vsias) = [C51Bo + Vuen (4.30)
Yuomk = Brogs = [Huem]Xk + [Ruem]Vmem (4.31)

v Bgand B, are the local magnetic field vectors in Body and Orbit Frame,

<\

BBIDY is the measured magnetic field vector in Body Frame,
v' vyem 1S the measurement noise vector of magnetometers represented with a
band limited white noise signal and its noise power is denoted by sensor

noise matrix (Rygum)-

The magnetometer bias (vg;45) IS dependent on the sensor location in satellite. It
also includes the magnetic field of satellite electronics and magnetic torque rods.
Measurement noise, axes misalignment errors, the residual and saturation limits of
magnetic moment shall be taken into consideration in the modelling phase of

magnetic rods [66].
4.2.2.4. Nonlinear Model of Sun Sensors

The input signal is the incident angle of Sun position vector obtained from the
measured currents for each axis. The output signal is a voltage, indicating whether
the Sun is within the sensor's field of view or not. Although there are eight sun
sensors in the actual satellite, only three brightest orthogonal sensors are selected to
determine whether the satellite is in the eclipse phase or not. The measurement

equations of sun sensors (ysys ) With its measurement matrix ([Hs,s]) are defined:

SVias = [C51SVo + vsus = SV + (vspSVp + vyaSV + Vpras ) (4.32)
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Ysusik = SV meas = [Hsuslxk + [RouslVsys (4.33)

v' SVg and SV, are the Sun position vector in Body and Orbit Frame,

<\

SVBODY s the measured Sun position vector in Body Frame,
v vg,s IS the measurement noise vector of Sun sensors represented with a band
limited white noise signal and its noise power is denoted by sensor noise

matriX (Rgys)-
4.2.2.5. Nonlinear Model of GPS Receiver Sensor

The satellite ephemeris errors and ionospheric path delays are major error sources
for GPS sensor models and they limit navigation accuracy to around 10 meters [39,
41]. lonosphere error depends on the interaction between GPS signal and electrically
charged ions and this error reduces signal speed and introduces measurement error.
Satellite ephemeris error is derived from the difference between the expected and

actual orbital position of a GPS satellite.

The error model equation of measured Cartesian position and velocity vectors from
each GPS sensor can be expressed like the following [25, 26, 27]. The measurement
equations of GPS receivers (ygps1 k) With its measurement matrices ([Hgps1]) are
defined hereafter:

Tmeas = Tg + (Usp Tp + Vpa g + Vp1as) = [C5 1o + veps (4.34)

Yepsik = Tmows = [Heps1]xx + [Reps]veps (4.35)

v' rg and r, are the true position vectors in Body and Orbit Frame,

v 1BODY is the measured position vector in Body Frame,
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V' vgps is the measurement noise vector of GPS receivers represented with a
band limited white noise signal and its noise power is denoted by sensor

noise matrix (R¢ps).

The measurement equations of GPS receivers (ygpsz2x) With its measurement

matrices ([Hgps,]) are defined here:

Unmeas = Vg + (Usp Vg + Usp Vg + Vpias) = [C51vo + Vgps (4.36)
Yepsik = Vmoas = [Haps2]xy + [Raps]veps (4.37)

v' vy and v, are the true velocity vectors in Body and Orbit Frame,

<

vBIDY is the measured velocity vector in Body Frame,
v vgps IS the measurement noise vector of GPS receivers and its noise power is

denoted by the sensor noise matrix (Rsps)-
4.2.2.6. Nonlinear Model of Sensor Measurement Matrix

For nonlinear measurement equations (y, = Hyxy + Dy uy), assuming that there is
no input value in y, equation (D, = 0). The transformation matrix written with

respect to quaternion vector can be used to indicate the measured quantities in state

space form (C§ = {[C5 1., [C51,, [CE1.)):

¢ —492 —q3 Ga gl
[CBly=|% @ 492 @ g | = [Hila (4.38)
43 —q4 41 —q3
| 44 ]
e

q2 q1 —q4 —q3 >

[Cg]y=[—fh Q2 —q3 Qa4 ] ds = [H,]q (4.39)
qs 43 Q2 q1 au
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qs 94 41 Q2 N
q2

[C8l,=|-a 4 @ - = [H;]q (4.40)

—q1 —q2 (43 (qu s
44

The nonlinear measurement matrix definition in terms of each measurement in Orbit

Frame such as By, SV,, 1o and v, when reaction wheels are torque generators:

Wineas1 | [HGyrol3x3 034 0343 ]
Ameas 043 [HsrR laxa  Oaxs AwB
— Bmeas _ 03x3 [HAT}I(();%]3x4 03x3 A 'B
HkAxk =|s» - 0 non 0 q (441)
meas 3x3 [ susS ]3x4 3x3 AHB
Zmeas 033 [H gg?1]3x4 033 kw
- meas - 033 [HGps2lsxa  Osys
[Hivro = 1343 [0]3x4 [0]3x3 ]
[0] 43 [HsnTofgl =1 ]4x4 [0] 43
Hyhy s = Bo' . H,
_ B -
[0]3x3 HI\T/lI%TIbI,Z = BOT'HZ [0]3x3 AWIB1
T B
|Hiigms = Bo - Hs) 324 AW’;Z
(HE®, = SV, Hy | AXVIB3
q1
[0]3x3 HZT, = SV, . H, [0]3x3 Aq,
Hi = Hpon, = SVOT.H3_ . Aq, (4.42)
1 A
Hgg& 1= To .Hy AHLII;
[0]5x3 HERs1, = 10" Hy [0]5x3 };WI
gron - — o T H AHRWZ
| [1Gps1,3 o -H3];,, AlE
[ 1ynon T T - RW3 -
HGPSZ,l =vo .Hy
[0]3x3 HZ},??Z 2 = UoT- Hz [0]3x3
| HGpSa3 = Vo' - Hs] 3x4

When torque rods are using as torque generators, the nonlinear measurement matrix

will be shown here:
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F Wimeas 7 [ [Hg%o]sm 03x4 ]
Ameas 04x3 [ .Stl79}?]4x4
H.Ax, = Bmeas — O3x3 [ non ]3x4 AWI%]
KT | SVineas Ors  [HElons || Ag (4.43)
Tmeas Opxs  [HER% Jaxs
- Vmeas - 0343 [Heps2]axa

4.3. Satellite Linear Attitude Control Model

The linear function in a discrete-time case in terms of state (x;), input (u), and

system noise vector (w;) definitions are given hereafter:
J'Ck = Xkg+1 = f( Xk, Uk, Wk, k) - Akxk + Bkuk + Gka s Wi ~ N(O, Qk) (444)

The measurement vector (y,) is a set of system measurements which are the

functions of state vectors and measurement noise vector (vy):
Vi = h (xx, v, k) = Hpxy + Dyuy + vg s v ~ N(O,Ry) (4.45)

Qi and R, are system and measurement covariance matrices respectively. The
covariance between the zero mean Gaussian white noise distribution vectors w;, and

vy, 1S zero value and there is no correlation between these noise vectors:

E{w,v,"} =0 (4.46)

Case-1: Torque generators are only reaction wheels

The state space definition is written with the following representation (xX"W is state
vector and uR" is input vector for this configuration) in the case of reaction wheels

are used as torque generators [8, 16, 51]:
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. Wﬁ? wip MRW MRW
e=| q |= Al q9 |+ By IVZ) ] + Qg 1\/(;D ] (4.48)
Hgw Hgw

Case-2: Torque generators are only magnetic torque rods

The state space definition for this case is written like the following representation

(xMTR is state vector and u}!TR is input vector for this configuration):

X = xR = A xMTR + B ul™® + Gwd TR, wh™R ~ N(0, Q) (4.49)
: B : B MTR MTR
Xk [ q ] Ak [ q ] + Bk MD + Qk MD (450)

Case-3: Torque generators are both magnetic torque rods and reaction wheels

The state space definition of the nonlinear equations specified above is written with
the following representation (xx"*MTR js state vector and uf"+MTR js input vector

for this configuration):

Rp = xFWHMTR — g YRWAMTR | p  RWHMTR |, RW+MTR (4.51)
Wik Wi ME" me"

Ge=| 4 |=Ac| 4 |+Be|MITR|+ Qi |MYTR (4.52)
HRw Hiw Mp Mp

In this study, the simulation results are based on this model configuration.
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4.3.1. Linearization of Nonlinear Model Equations

Nonlinear satellite equations can be linearized using the steady-state satellite
conditions. In practice, the values of system (w,) and measurement (v,) noise

vectors are not to be involved into the linearization computations:

X = X1 = f (0 wg, k) = Apx + By (4.53)
Vi = h (e, U, k) = Hixpe+ Dy (4.54)

In order to obtain a linear model around a specific set of constant values called
operating or equilibrium points (%, %), the small deviations from these points

(Axy, Ayy, Auy) are introduced like the following:

Ax = x5, — Xy > X = Axp + X > X = Axk + 9._Ck (455)
Ayk =Yk — Yk 2 Vi =Ayx + Vi (4.56)
Aup = up — Uy 2w = Ay + Uy (4.57)

The first order of Taylor series expansion can be applied to first nonlinear scalar

equations by reducing the higher order components [51]:

. . _ of (xx, Uy, k) af(fk, Uy, k)
Ax;, + xk=f(xk,uk,k)+— ————| Aup+ -
duy, a (4.58)
_ o Oh(xy, iy, k)‘ ah(fk, Uy, k)
Ayic+ Fie = h(Fe T k) + 5= e T B Ay + -
Vi T Vi kr Uk oy o k (4.59)

Considering the definitions of X, = f(X,, i, k) and ¥y, = h(x, U, k), State-

space model is defined with the following equations by truncating to the first order
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of Taylor series. The Jacobian definitions of Ay, By, H, and D, matrices are
calculated by taking partial derivatives with respect to states and inputs around

operating points:

: af(fkl ak' k) af(fk' T'Lk! k)
Ax, = A, A B Auy =—— A — | A
X = ApAxy + B Auy 9%, ) Xk + 1y ] Ue  (4.60)
k k
ah(fk, T'Lkl k) ah(fkﬁ akl k)
Ay, = HiA DAy, =—— | A A
Vi kBXy + DAy 9%, ) Xy + 911y ) U (4.61)
k k
Ofi O Ofi] 94 O K
ox, 0x, ~—~ 0xp ou; Odu, — 0upy
of, 3  ofy of, o, 3f
Ay =] 0x;, 0x, 7 0xp | Be=|ou;, ou, T ou, (4.62)
Un n "~ O o Ofa O
[ 0x; Ox, ™ Oxp,d [Jdu, Odu, ™ OJduy,d
rdh, 0hy dhy dh, 0dhy 0hy 1
0x, 0x, =~ 0xpy ou, du, =~ Ouy
dh, O0dh, dh, dh, O0dh, dh,
Hy = [ox, 0x, = 0x,|5 De=|0u, ou, ™ odu, (4.63)
oh, oh, - 0h, oh, oh, - oh,
[0x; 0x, ™ Oxpd [du; du, 7 Jduy,d

4.3.1.1. Linearization of Satellite Nonlinear Attitude Model

A mathematical model of satellite attitude is separated into two sections. The first
one describes the behaviour under the effects of external forces, and the second one
defines the relation between Body Frame and Local Navigation Frame. Linearization
process is applied for the case of using both RWs and MTRs as actuators here.

However, this process can be adjusted in compliance with different actuator
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configurations. The derivative of nonlinear dynamic equation with respect to state
vector (A, xy):

A.&Ck = AkAxk + BkAuk 9 X = Akxk + Bkuk

(4.64)
[ 0fy %k, Uy) O0f1 (X, ) 0f1(Xk, Ug) T
owg, aq oHE,, B
Aox = 0fo (i, W) 0f2(%k, W)  0f2(Xk, Ug) qIB 465
kXK = — — — ,
OWis 07 OHwy ||z, o)
af3(xk' uk) af3(xk' uk) af3(xk' uk)
0w 0q dHg,
owh,  owh,  owk T
owp, dqg O0HE, .
p aq aq g WiB
'k =| 3wE a8 oHE, HZ (4.66)
- - - RW
oHE, O0HE, O0HE,
| owf, 0q O0HE, |
0 (s, = Is YWip, — Hiy, (s, = Is)Wi3, + Hew, ]
s, Is,
owlp | Us, = Is,)Wip, + Hiw, 0 (Is, — Is)Wf, — HBy,
owE, Is, Is, (4.67)
(s, — ISy)WIBBZ — HRy, (s, — Isy)"‘_’IBBl + HRy, 0
Is, s,
ows,
0 WfRB3 _WIBEZ_
Is, Is,
ows, Wig, wh,
—_— ] — O 1 — . -1 B
T L, |T 0 (4.69)
WIBEZ _WIBBl 0
I, Is,
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. qa —_‘73 ‘73
aq :1 B 4@ —O
owfp 2(~% @
—q1 —q2 —(q3
_ _ 1+ 245 _
q193 q:493 2 4344
_ _ _ —(1+237)
f; 1 (P 194 q294 4344 T
6_5_5[ (Wip)] + wo —(1+252) o B o
— 5 —q19> —q143 —q144
_ -(1+2g)  _ _ _
—q19> # —q293 —q294
g
—_— = 0
aHgW [ ]4x3
OHE, OHE, COHE, o
awg; - aﬁgw - 3x3 aq - 3x4

(4.70)

(4.71)

(4.72)

(4.73)

The state space definition of nonlinear dynamic/kinematic equations with respect to

input vector (uy) is:

[ 0f1 (X, )  Ofy(k, ) Of1(Xg, Uy) T
oM oM OMp o yrw
Bou, = 0fy (X, ) 0fa (%, W) 0f> (X, Uy) MIS,TR
KUk = = = —
oM oM My | m,
0fs(Xy, ) 0f3(xy, ) 0f3(%k, Uy)
aMEY MR oM,
[ dwh, owh, 0wl )
oME"  JMMTR 3,
=~ -~ -~ MRW
aq aq aq ¢
Biwe = | —=zw  FpmTR = MMTR
oHB, 0HB, 0HE, P
| 9MFY  9MMTR 3, |
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I8 0 0

owry  O0wrp  Owpp -1 N
o = ompme ~am, | 0 0 1= 4egls D (4.76)
0o 0 I

g 09 07 _ 0

oMy omy' "t oMy Olas (4.77)

aﬁB -1 0 0

—a,q%:[ 0 -1 0 |=diag(=1)ss (4.78)
¢ 0o 0 -1

oOHE,  OHE,

M, _ aMNTR [0]3x3 (4.79)

The Jacobian matrix definition of input vector (By):

diag(Is' )axs  diag(s? )axs  diag(Us? )sxs |[ MEY
By, = [0]4x3 [0] 43 [0]4x3 MR (4.80)
diag(—1)zxs3 [0]3x3 [0]3x3 My,

4.3.1.2. Linearization of Satellite Nonlinear Sensor Measurement Model

The matrix (H) defines the changes of measurement vectors with time and it is
consisted of each sensor measurements. This matrix is commonly a function of
satellite kinematics such as Euler angles or quaternion vectors and it is calculated for

each iteration.

The measurement equations of attitude sensors (y, = Hyxy + vy) are defined with

its noise vectors (v;) with respect to system states (x, = [wh, q, HE,17):
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"Y6YROkT [ Wmeas 1 [Herro] [ VGYRO 1
YSTR,k Ameas Hgrg UsTr
_ YmGm k _ Bmeas _ Hyem Umem
Yie = YSuS,k 1S Vmeas N HSuS i + Usus
YGpsik Tmeas Hcpgl Vgps1

L Yeps2,k 4 L Vmeas 1 L Hgpgy | L Ugps2

Linear Measurement Model of Fiber Optic Gyroscopes:

The measurement matrix for gyroscopes (Hgyro) is constructed as follows:

OHgyro

AYerrox = [Heyroldxy = — Axy
*k e=wh
H
HGYRO'l _ 0Hgyro _ 0wg _
[Heyrol = |Heyroz2| = 3 =3 = I3,3
Heyro3 Xk B Xi oy =wh,
’ X=Wip
AwE,
AYeyrok = [Heyro1 Hevroz Heyros 0Osxa Osx3] | Ag
AHE,,
AwE,
Ayeyrox = 323 Osxsa Osxs3]| Aq
AHE,,

Linear Measurement Model of Star Trackers:

The measurement matrix for star trackers ([Hgrg]) is constructed as follows:

aI-ISTR

0xy xX=q

Aysrri = [HsrrlAxy = Axy,
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HSTR,l

[Herp] =| Hsrr2 |= 0Hgrr _ aﬂ —
STR lHSTR,3 0xy Oxpcl _g xd (4.87)
Hgrp 4 =]
Awf;
Aysrrk = [Oaxs Hsrr1 Hsrra  Hsrr3z  Hstra Oaxz]| Aq (4.88)
AHE,
Awf,
Aystri = [Oaxz  laxa Oaxz]| Aq (4.89)
AHE,

Linear Measurement Model of Magnetometers:

If we define the derivative of transition matrix ([C5]) with respect to state quaternion
vector, the linearized measurement matrix can be written for sensor measurements

obtained from Orbit Frame:

a[Cg] [ 41 42 qs 1

3 =21 @2 —%1 Qs (4.90)
L P T

a[Cg] [ —q2 41 —q4 ]

3 =21 91 492 Q3 (4.91)
Xk XE=qz2 | 44 (43 —q |

G[Cg] [ —q3 (s (41 ]

3 =2 94 —q93 Q2 (4.92)
Xk XE=0s3 | 1 q; 43 |

G[Cg] [ ]4 4z  —q3]

3 =2.1793 42 1 (4.93)
Xk X=q4 | 42  —q1 (G4 |
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The measurement matrix of magnetometers ([Hyp ) is constructed as follows:

OHyeu
Ayuemi = [Huemldxy = 9%, xk=qAxk (4.94)
Huyem 1
oy | Hwoma | Ofwen| - _ OICE)
mom IHMGM,s o 2 (4.95)
Hygm a xy=]
Awh,
Ayyemr = [03x3 Humema Humemz Huemz Huema 0O3x3]| Aq (4.96)
AHE,,

Linear Measurement Model of Sun Sensors:

The measurement matrix for sun sensors ([Hs,s]) is extracted after applying

linearization method to sun sensor measurement model:

Aysusik = [Hsus]Axy = 3 x: - Axy (4.97)
[ Hgus ]
[H ] — I HSU,S,Z | — aHS‘LLS — a[Cg] SV
sus lHSuS,3 axk axk Xi=q 0 (498)
HSuS,4 Xk=q
AwE,
Ay_qus,k = [03x3 HSuS,l HSuS,Z HSuS,3 HSuS,4 03x3] Aq (4.99)
AHEW

Linear Measurement Model of GPS Receiver Sensors:

The measurement matrices for GPS receivers ([H;ps1], [Hgpsz]) in terms of position

and velocity values (r;222Y, 1B9DY) are constructed like the following:
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AyGPSl k 1 Hcp51 ]
kol — Ax (4.100)
Ayepsak | Hgps: &

" Hgps1,1 ]
’ (4.101)
[Hepe,] = Hgpsi,2 |= 0Hgps1 _ a[C4] .
GPst Hgpsa,3 dxy dxy, . 0
| Hgps1,4 Xe=q
[ Hepsz,1 1 (4.102)
(Hope] _ | Hepsaz | _ 0H¢ps, _ a[C4] ’
Gpsz lHGPSZ,B 0xp dxy o 0
Hepsz,4 =7
AwE
Ayepsik = [03x3 Hepsi1 Hepsi2  Hopsiz Hepsia Osxs]| Aq (4.103)
[AHRy |
AwE
Ayepsar = [03x3  Hgps21  Hepsz2  Heps2z Hepsza  Osxs]| Aq (4.104)
[AHRy |

Assuming that all the sensor measurements are available, the state space definition
of linearized measurement equations (Ay, = H,Ax;) around the operating points

(x, = (W5, g, H,,)) is represented hereafter:

FWineas T [ I3x3 03x4 03x3 1
Qmeas O4x3 Lyxa Osoc AwB
H.Ax, = Bmeas — O3x3 [HMGM]3x4 03x3 A(;B
k=" k SVineas O3x3  [Hsuslzxa Osx3 AHB (4.105)
Tmeas O3x3 [Hgpsilaxa Osxs Rw
- Vmeas - L 0343 [HGPSZ]3x4 0343 -
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4.3.1.3. Linear Satellite State Space Models

There are three different linear models that can be defined with respect to the
selected actuator in a plant model. The linear state space definition with Jacobian
matrices represents the case which is involving both RWs and MTRs as torque

generators. The matrix definitions of linear model are (A, By, Hy, Dy ):

— — ,B — A — 1JB
A = [AWk = W13|fk» Aqy = CI|fk» Ahrwy = HRWLEk]
AWk =
0 Us, — Is )Wip, — Hew, s, — Is )Wip, + Hiw,]
ISX ISX
(Is, = Is )Wip, + HRy, 0 (Is, = Is )Wip, — HRy,
Us, — ISy)WIBBZ — HRy, (s, — Isy)VT’ﬁal + HRy, 0
ISZ [SZ
1_ 1_ 1_
E‘h _E% EQZ
1_ 1_ 1_
E‘h E‘h _E 1
1_ 1_ 1_
_qu th 794
1_ 1_ 1_
—Eﬂh —ECIz —Eﬂls
0 0 0
0 0 0
0 0 0
Aqy =
0 0 0 0
0 0 0 0
0 0 0 0
—B —B —B
_ Wi _ _ Wig, Wy _ Wip __
Woq193 23 + Woq2q3 - 22 +7(1+ZCI32.) 21 + Woq3q,
—B —B —B
Wip _ _ _ Wip _ Wig, Wy _
- 23 + W14, Woq294 21 + Woq3q4 22 _7(1"'26112)
—B —B —B
Wig, Wy _ Wip __ __ Wip _
2 — — 1+ 2‘112) - t— Wodq192 —Woq143 2 — Woq194
2 2 2 2
—B —B —B
Wip _ Wig, Wo _ Wip _ _ _ _
- 21 — Woq19> _72_7(1 +2q§) - 23 — Wo(q24q3 —Woq244
0 0 0 0
0 0 0 0
0 0 0 0
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By =
- -1 -1 -1 .

Y0 0 I o0 0 I o0 0

0 It 0 0 IgF 0 0 ' 0

-1 -1 -1

0 0 I 0 0 I, 0 0 I

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

-1 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0
H, =

1 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
00 0 1 0 0 0 0 0O
00 0 0 1 0 0 0 0O
0 0 O 0 0 1 0 0 0 0
0 0 O 0 0 0 1 0 0 0
000 91 92  q3 ]|Box —q2 41 —q4]|Box —q3 qa Box =421 |Box

0 0 0 2|92 —q1 d4a ||Boy 2@ az az [|Boy 2|792 —q3 Boy 2 q1 [|Boy| 0 0 0
0 0 0 93 —q4 —q1l|By, 9s 493 —q21|By, q1 92 Bo, _‘h 90 1|By,

000 a1 92 SVox —q2 1 _‘h SVox —q3  qa 5V0x —q27|SVox

0 0 0 2|92 —q1 SVoy|l 2l @1 @2 SVoy| 2|92 —a3 SVDy a1 (|SVoy| 0 0 O
000 q3  —Yqa _‘h SVDZ qs g3 _qz SVo, q1 q2 SVoz _‘h 0 115Vy,

0 0 0 41 92 ox —q2 41 _114 er —q3 Q4 Tox ‘h q3 _qz TOx

0 0 0 2(9%2 —q1 ’h rDy 211 92 21792 —q3 ‘b Toy 2193 Q4 0 0 0
0 0 0 93 —Yqs Toz 9s g3 —‘Iz roz q1 92 q31l70; 92 —0 T0z

0 0 0 91 92 Vox —q2 q1 —‘h UOx =493 494 1] [Vox qa q3 —‘Iz Vox

0 0 0 2(9%2 —% Voy 211 92 21792 —q3 qz2||Voy —q3 Qa4 Voy 0 0 0
0 0 O q3 —qa _lh Voz qs g3 _‘h V0z q1 q2 31 1Voz 92 —0 Voz

i
&

I

o

The selected operating points for state vectors are hereafter and these points are

selected assuming that the satellite behaves like an inverted pendulum:

_ — _ _ T
v wh=[wp, Wik, Wk | =[0 0 0]

v g=[q q@ g3 q]"=[0 0 o 1]

_ — — — T
v HgW:[ngl Hng ng3] =[0 0 0]

The matrices around the operating points of state vector (4, = Akl LA, ), input

vector (By = Byl B ik, ) and measurement vector (Hk—Hkl HBW) are

WIB q,

hereafter:

93



(4.106)

0
0
0
0

0

0
0.010 0 0 O

0.0033

0

0.5

0

0.5

0
0
0
0
0

0
—0.0033

—0.0033

0 0.5

0

0

(4.107)

0.1415 0
0.1439

0

0
0.1169

0.1415 0
0.1439

0

0
0.1169

0

0.1439

1 0.1415

0
0.1169

0
0

0

0

0

0

0

0

Hk=

(4.108)

0
0
0

0
1
0

OO OO0 OO0 ©O O
C OO OO0 OO0 ©Oo o
C OO OO0 OO0 ©Oo o

———

[ [—

2 > 8 X 2> A RO N
Q. Q0,0 ¥ & N
SESLE S S8EFSS
hhh b B E N
] ~N N ]
yx —
= = =
LIRS Ol S S
S S
Bn_ﬁOSS TO_rOU_UO
_ — ———
N N N [\
N N % N N
S 2 RO S N
fo S Box o &5 3
I - = S
| —_—
o~ ~ N o~
5 2
N & MVO N & vau,
OBOB OWSOrO_rOWUU
o~ ~ N o~

OO O OO0 OO O OO O
OO O OO0 OO O OO o

OO OO0 OO0 © OO
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H;, matrix still shows a dynamic characterization and therefore some assumptions
can be made for the dynamically changed elements such as {B,, SVy, 1o, Vo}. This
matrix is directly taken as a unit matrix for linear optimal controller design (LQR) in
this study. The damping ratio ¢ and natural frequency w,, can be taken as -1 and
0.0057 or 0.0033 respectively for the linearized system with respect to the results of
MATLAB “damp()” function.

4.4. Controllability of Satellite Model

If every state vector is transferred from any initial state to any desired state in a finite
time period, this system is named as completely controllable. n is the dimension of A

matrix (n = 10)and Q; (Q- = [B AB .. A™ 1B]) isthe controllability matrix :

Cc=[B AB A*B APB A'B A°B A°B] (4.109)

The designed satellite model is completely controllable [70]:

v’ The first six rows are linearly independent,
v' Q. matrix has full row rank 2 rank(Q.) = 10 = n.

The measurements of star trackers and gyroscopes are sufficient to identify every

state, and then the system is completely observable. Q, is the observability matrix

Qo =[H" aTH" .. @Y H):
Q=[u" aTH" ('H @H'H @h'H @' @S'H] (@110)

The given satellite model is completely state observable [70]:

v" The first seven columns are linearly independent,
v' Q, matrix has full row rank 2> rank(Q,) = 10 = n.
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In conclusion, it can be said that the system model is both observable and

controllable according to the relevant theorems.
4.5. Stability of Satellite Model

For a linear system x(t) = Ax(t) + Bu(t) with the state-feedback controller u(t) =

—Kx(t) the closed loop system becomes:

v x(t) = (A— BK)x(t)
The linear closed-loop system is said to be stabilizable if all the eigenvalues of
(A — BK) matrix has strictly negative real parts. The definition of satellite kinetic
energy is determined like as below [4, 52]:

1
Exin = 5 (W) Is whp (4.1112)

The satellite potential energy is comprised of the energy of gravity gradient (E;g)

and the energy of gyroscopic motion (E¢yro):
3 2 B T B
E¢e = E(Wo) ( [(Co)3]" Is [(Co)s] — Ig, ) (4.112)

Eerro = 5 (o) (Is, ~ [(C)21"1s [(CE)1) @.113)

v (CBY, =[C11, Cyy1, C31]7 is the first column of transformation matrix,

v (CB); = [Cy3, Cy3, C35]T is the third column of transformation matrix.

The total energy (Eor) that is the sum of kinetic (Ek;y) and potential energy (Epor)

defined above can be selected as Lyapunov candidate function (V (x)):

V(x) = Eror = Exin + Epor = Exin + Ege + Egyro (4.114)
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=

V(x) ==5. (Whs) s wip

w N

+ 2 W02 (15,0C1)% + 15, (620)? +15,((C5)* = D) (4.115)

N

+ 2w (15,1~ (€ + I (Co)? + I (€)%

The new definition of Lyapunov function by considering the following statements

about matrix elements is:

V' (C13)* + (C23)* + (C33)> =1 (C33)2 =1 — (C13)* — (Cy3)?
Vo (C11)?* + (C21)* + (C31)* =1 (C11)* =1 = (C21)* = (C31)?

V() = % (w5p)"Is WG
> 2((Is, — I )(C13)? + (I, — Ig ) (Cy3)?
+ > (wo) (( Sy SZ)( 13)° + ( Sy~ SZ)( 23) ) (4.116)
1
+ > (Wo)? ((lsx - Isy) (C21)* + (st - Isz)(C31)2>

The state vector of V(x) can be taken asx = [wjg, Ci3, Cp3, Caq, C31]7. For
stability theorem, assuming that (x = 0) is an equilibrium point for x = f(x) and

V (x) is a continuously differentiable function such that;

v V(0)=0: V(&) >0inD—{0};DcRVN
v V(x) <0inD > x=0is stable
v V(x) <0inD —{0} > x =0 is asymptotically stable

Satellite inertia moments must have the sequence of I > Is, > Is, in order to meet

the first requirement relating about the positive definition of Lyapunov candidate

function (V(x) > 0). However, its sorting is Ig, > Is > Is,in the selected satellite
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and therefore the abovementioned limitation is not satisfied. The derivative of
V(x) = Eror is herein below with respect to [4] and [52, 75]:

V(x) = Is wgp + 3(wp)? ((lsx - ISZ)C13 + (Isy - Isz) Cz3>

(4.117)
+ (Wp)? ( (st - Isy) € + (st - 152)631)
The compact form of the derivative function is hereafter [71, 75]:
V(x) = Wop) " Mema (4.118)

This definition can be used to prove some attitude controllers are asymptotically
stable such as PID and linear quadratic regulator. On the other hand, it is required to
declare another Lyapunov function to show that sliding mode controller has also
stable behavior:

V(@) = (@) + (1 — q4)? (4.119)

4.6. Satellite Attitude Estimation with Kalman Filters

The Kalman Filter is a Bayesian estimation algorithm and designed as an optimal
state estimator. It is used when the variables of interest are measured indirectly and
the system measurements are available from various sensors. Kalman filter is an
iterative process that it predicts the system states such as position, velocity or
attitude vectors together with instrument errors, such as accelerometer and gyro
biases in a recursive way. It also updates the uncertainties in state estimates with the

help of integrating a stream of latest measurements [52, 59].

In Kalman filter equations, the initial values of the state vectors and covariance

matrix are generally set to constant values. The iteration process is maintained by
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calculating the weighted average of the previous measurement values. The time
variation of noise sources can be modelled using the white noise processing method.
The samples taken at different times are uncorrelated for white noise signals and its

variance is assumed to have zero-mean Gaussian distribution.

4.6.1. Kalman Filter Algorithm

Kalman filter algorithm uses measurement system models to maintain optimal state
estimates. In the absence of new measurements, state uncertainties increase with
time and state estimates go out of date, because of the unknown changes defined as
system noise. Kalman filter algorithm consists of system and measurement

propagation phases.

The system propagation phase: In this phase, state vector and system noise
covariance matrix are predicted from the time of the last valid measurements. This
phase consists of the following steps (the estimated state vector isXx; and its

propagation is X, ):

1. Calculation of the transition matrix (@,) which defines state vector changes
with time and it is calculated every iteration,

2. Calculation of the system noise covariance matrix (Q;) which defines the
degree of correlation between errors of state estimates,

3. Propagation of the state vector estimation (%;,) from z;,

4. Propagation of the error covariance matrix (P,,,) from P,
Its diagonal terms are the variances of each state estimate and its off-diagonal

terms are the correlations between errors of state estimates.

The measurement propagation phase: Measurement vector is iterated by updating
state estimates to incorporate the measurement data weighted with the Kalman gain.
Noise covariance matrix (R;) is also iterated by updating error covariance matrix

(Py) to find the new values. The phase is including the steps listed below:
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1. Calculation of measurement matrix (Hy),

2. Calculation of measurement noise covariance matrix (R;) which its diagonal
terms represent the variances of each measurement vector,

3. Calculation of Kalman gain matrix (Kj),

4. Updating of state vector estimate (x;) from x,

5. Updating of error covariance matrix (P;") from P, .

Old State Transition QOld Error
Estimate Matrix Covariance
STATE | Jv COVARIANCE s Mot
PROPAGATION " PROPAGATION .
Matrix
Mea;l;;:;nem o KALMAN » Measurement
e GAIN Matrix
Y i A 4
STATE » Y o COVARIANCE
UPDATE ® - UPDATE

1 1

P ( )
New State New Error
Measurememsw Covariance

Figure 4-2 The Diagram of Kalman Filter Algorithm

The system responses and outputs of both linear and extended Kalman filters are
illustrated in the following figures in the case of using gyroscopes and star trackers
as attitude sensors for different process and noise covariance matrices. The Kalman

filter basic equations are listed in the following table:

Table 4-1 The Equations of Kalman Filter Algorithm

Parameter Definition

System Model £k+1 = (pk.J,C\k + Fk.uk‘l' Gk'wk ; Wi ~ N(O, Qk)
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Parameter

Definition

Measurement Model

Vi = He. X + v 5 v ~N(O,Ry)

E{Uk.UjT} = Rk'6kj > Ry = E{vk.vg}; when k =j

Ry
Qk E{WkW]T} = Qk'akj > Qk =F {WkW]’f}, when k :]
Kalman Gain K, = P;.H{ . [H.. Py .HY + R ]!
Update 521-: = 521; - Kk'[yk - kal;]

State Estimate (X}
Error Covariance (Pj;)

P = E{(&Xf — x). (Rf — x)"}

Propagation
State Estimate (X}.4)
Error Covariance (Py,q)

52];_{_1 = (pij\]j + I—'k.uk
Py = Dp. PH.dL + G Qr. GE

Py = E{(Riy1 — Xra1) Ricyr — X1 )™}

The following test results are obtained from both Linear and Extended Kalman filter

blocks placed in satellite model.

Case - 1: No RW Failure & PID Controller

Table 4-2 The Simulation Parameters of State Estimatior (Case-1)

Parameters

Values

Initial satellite velocity wy =[0.1,0.1,0.1]

Initial / Desired Euler Angels

[lIJO' eO' (DO] = [0' 0,0]

(RO”, Pitch, Yaw = [L|J, 0, CD] ) [wd’ 04, q)d] — [20, 10,3]
System Noise Covariance Matrix 0, = 1x10~7
Measurement Noise Covariance Matrix Rgyro = 1x1077; Ry = 1x1077
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Figure 4-3 LKF Output For Satellite Angular Velocity of PID (Case-1)
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Figure 4-4 EKF Output For Satellite Angular Velocity of PID (Case-1)
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Figure 4-5 Euler Angler Response of PID (Case-1)
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In the next case, the same simulation parameters are handled like listed in the Table

4-2, but using with different covariance matrices.

Case - 2: No RW Failure & PID Controller

Table 4-3 The Simulation Parameters of State Estimator (Case-2)

Parameters Values
System Noise Covariance Matrix 0, = 1x1071°
i i i — -10. — -10
Measurement Noise Covariance Matrix Ryyro = 1x1071%; Ry, = 1x10
E sH I I;viIFE_B_meas
4l
;)
B
0 100 200 300 400 Tiiﬁlﬂe 600 700 800 900 1000

Figure 4-6 LKF Output For Satellite Angular Velocity of PID (Case-2)

I~ EKF
[ w_IB_B (X axis)
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I
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Time

Figure 4-7 EKF Output For Satellite Angular Velocity of PID (Case-2)
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Figure 4-8 Euler Angler Response of PID (Case-2)

In conclusion, the estimated measurements taken from the outputs of Extended

Kalman filter have higher accuracies than the results of Linear Kalman filter.

4.7. Summary

The implementation of linearization process on the nonlinear state-space equations
was detailed in this chapter. Furthermore, Lyapunov based system stability,
controllability and observability conceptions which are specific to the selected
satellite were analyzed. Both Linear and Extended Kalman filters were also

mentioned as a navigation solution for the usage of estimated sensor measurements.
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CHAPTER 5

SATELLITE ATTITUDE CONTROL

5.1. Introduction

The most common sources of control torques for active control systems are
propulsion subsystems with thrusters, magnetic torque rods and reaction wheels.
Beyond these control torque sources, there is also environmental disturbance torques

[3, 4, 5] effecting adversely on attitude control processing.

The controller design targets to provide stability and robustness to the modelled
system, to reject the disturbances arising from environmental effects, to avoid
actuator saturation and to perform attitude maneuvers by keeping the satellite
pointed in the right direction [53, 54]. Most of the cases, all these targets cannot be
achieved simultaneously. Therefore, it is mandatory to apply some optimization

process on system controller design according to the matter in hand.

Control system output is the measurement to demonstrate the controller status and
effectiveness. The controller design performance depends on stability, sensitivity,
disturbance and noise rejection and robustness for system uncertainties. It stabilizes

and orients the satellite in any direction relative to reference frames [21].

The fundamental concept of a closed loop control system relies on sensor
measurements; the measured attitude and its comparison with the desired attitude
drive controller process. The numerical differences between these two values result
in error signals used to achieve the desired attitude and corrective control torques are
generated by means of actuators in positive or negative axis relative to satellite body
axes [66].
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Attitude maneuvers are necessary to reorient the axes of attitude sensors to some
special celestial objects in initial phase or after a failure. Maneuvering capabilities
are also essential to give a new direction to the axes of payloads. This new direction
can be the coordinates of ground targets sent with telecommands as reference
coordinates from ground station to Earth imaging satellites.

Attitude control can be achieved by controlling the angular accelerations, which are
internal torques and external torques (magnetic or reaction torques) exerted on the
satellite. In common cases, the momentum and angular acceleration of wheels are

transformed to satellite to meet the required opposite torque for attitude stability.

The primary task of attitude control is to stabilize the satellite attitude against
external torque disturbances and it requires attitude maneuvers based on control
torques throughout its lifetime. Because of this reason, control law equations applied

in different ways are explained at the beginning of this section.

In a satellite attitude controller system, the measurements obtained from system
plant are observed continuously and compared with the desired position given as an
initial step. The difference between the measured and desired position values is
called as system error and used to generate control torque command [53, 66]. In
general, system error is defined with Euler angles for small attitude maneuvers. On
the other hand, it can be written in quaternion vector form for large attitude

maneuvers [1, 2].

Basically, a mathematical model of a satellite attitude control consists of an
amplifier model as a controller gain, DC motor model for each reaction wheels and a

plant model indicating motion equations [69]:
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Figure 5-1 Satellite Attitude Control Loop [46]

In the first step, a mathematical model of a satellite with its actuators were
developed using angular dynamic and kinematic equations in the previous sections.
The controller is applied to deal with nonlinearities, unknown parameters and
disturbance sources in these equations. The controller also receives the offset from
the desired position in a quaternion vector form, and propagates the control torque

command (M,,,4) as an output to system actuators.

A nonlinear satellite model is essential for the controller types of PID and sliding
mode. On the other side, LQR controller is needed to operate together with the

linearized form of a satellite nonlinear model.
5.2. Detumbling Control

The main purpose of detumbling controller called also B-dot controller is to slow
down the initial rotational motion (Ex;y) of a satellite and to minimize the changes
in its angular velocity to maintain stabilization in three axis. Magnetometer
measurements are implemented by B-dot controller in order to fulfill these

conditions after deployment [71, 72].

B-dot controller only responds to the changes in Earth magnetic field vector defined
in Body Frame (B®). Lyapunov candidate function can be taken as kinetic energy
function as stated below [73, 75, 82]:
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V= EKIN = (WI% )TMg/ITR (5.1)
V = Egy = (wfp)T(m? x BE) (5.2)
V= Egy = —(wh)T(BE x m”) (5.3)
Using the theorem of AT (B x C) = CT(A x B), the last equation can be rewritten:

V=Eqy=—-mB)T W xBB) <0 (5.4)
The last inequality can be resolved as stated below [79]:

Kpaot Wi X BF) (5.5)
IBZI

m? = Kpgoe(Wip X BF) =

v m? is the magnetic control output moment,
v Kggo: 1S a positive definite control gain,
If Kg4,: 1S too low > satellite angular velocity cannot be reduced,
If Kg4,: 1S t00 high = system is too sensitive and unstable,
v' BB is the time derivative of measured local magnetic field and it represents

the changes in this field.

Kg4o: 9ain has an important role to specify detumbling time, system stability and
sensitivity. In the reference article of [79], the simulation results exhibit that the
more controller gain is large, the more settling time is short. However, there are also
possibilities to cause disturbances on controllers according to the bias moments in

this case.

The changes in B-field vector are derived from both the satellite motions and Earth
rotations. The time derivative of magnetic field vector (B?) is perpendicular to the

vector of rotations and it cannot be directly measured from any sensors in the
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satellite. The controller is implemented by applying a magnetic torque in the
opposite direction of the rate of local magnetic field change with the following
equations [54, 81]:

) dBE <dBB> (5.6)
BB = =(—)-wBi xBB~ —w5B xB
dt R dt IB IB
B _ Kgaot Wi X BP) _ ~KpaoeB® (5.7)

B2l —IBE|

The geometric definition for B-field vector is illustrated hereafter:
tw

_ B(t1)

B/ %\JB

vl )

Figure 5-2 The Geometric Definition of Local Magnetic Field (B) [72]

The simulation time of detumbling controller is constrained with respect to the
magnetic moment capacity of torque rods and it is in the range of ¥6.0 Am? for the

selected satellite [81]. The control torque will be:

_KBdotBB

MMTR — mB X BB —
¢ IBE|

x BB (5.8)

When B-dot controller is applied to torque rods, they generate magnetic dipole

moment and magnetic torque in the opposite direction of local magnetic field vector.
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After performing a control command to a satellite system, its Kkinetic energy

decreases over time and its angular velocity reaches up to zero for each axis [71, 72].
5.3. Desaturation Control

The disturbance torques arising from gravitational and aerodynamic effects lead to
accumulate unwanted angular momentum on reaction wheels over time. This
momentum must be desaturated by torque rods interacting with Earth magnetic field
to apply an external torque in the reverse direction. After reaching their predefined
saturation limit, reaction wheels are not be able to create the control torque which is
necessary to orient the satellite to a desired attitude [73, 78]. In addition to this, the
angular velocity of reaction wheels can be taken to an acceptable level (operating

range) by the help of momentum dumping [66].

In some academic studies [80], both main attitude controller and desaturation
controller are formulated in a single problem. However, the operation of momentum
unloading is accomplished separately in this study as shown in the following

diagram:

Disturbance
Terque

Roll
Mext
Angle ~ P N l
Mc_RW

Pitch Euler To PID . Satellite Dynamic -
E— 8 s
Angle DCM > Controller - p—— Kinematic Model

A
Yaw _ Me_MTR
Angle Desired
Attitude
Momentum Magnetic Torque

Dumping Rods

Kalman
Filter

<« Sensors

Estimated
Attitude

Figure 5-3 Satellite Attitude Control with Momentum Dumping

The magnetic torque depends on the angle between Earth magnetic field vector and

angular momentum vector. It has the maximum value when these vectors are
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completely perpendicular to each other and it is equal to zero value when they are in
the same direction. The dipole moment can be calculated as stated below (K is a

constant controller gain here):

K
B_ _ __MD B B
AHI?W = HgW,nom - HgW,sim (5.10)

AHE,, is the bias error between the nominal (Hg, ,om) and simulated wheel angular
momentum (Hpgy si) and it must be kept at a minimum value. If error vector is
parallel to B-field vector in Body Frame, it is not possible to unload the unnecessary
angular momentum from wheels. If they are lying in an orthogonal plane,
desaturation is performed entirely [73]. In this circumstance, the desaturation control

torque is written like as follow:

(AHEy x B®)
IBE]2

MMTR — mB x BB = K, (5.11)

Momentum dumping maintains a stable attitude as long as the main controller shows
a stable behavior. It can be proposed that the desaturation controller can be

deactivated whenever redundant angular momentum is completely unloaded.

5.4. PID Control

5.4.1. PD Controller for Satellite

PD controller can be used to change the satellite orientation according to the desired
reference values specified as roll, pitch and yaw angles. It is proportional to the

position error and its derivative in a PD controller.

111



The selected satellite is a kind of light weight microsatellite and the elements of its
inertia matrix have comparatively small values. Because of this reason, the following
command torque equation (M.,,4) can be found by taking into account the stability
requirement of Lyapunov candidate function V(x) < 0 which is mentioned in the

section called “Stability of Satellite Model”:

— B
Mg = — KPCIv,errCIerrA» — KppWip (5.]_2)
B
Momax — Kp x9err19erra — KPD,xWIBx
B
Mcmd,y =1 KP,yCIerr,ZQerrA - KPD,yWIBy (5-13)
M B
cmd,z - KP,zqerr,3 QerrA - KPD,ZWIBZ

v’ Qyerr 1S the vector part of quaternion error (qyerr = [qerr s Qerr.2; Qerr3))s
V" Qerr4 IS the scalar part of quaternion error,

v' Kp is the positive definite proportional gain constant,

v

Kpp is the positive definite proportional and derivative gain constant.

Commanded torque can also be chosen one of the following equations. All these
equations satisfy the asymptotically stability theorem [72]:

Mg = — Kqu,errqerrA - KPDWgB (5_14)
Mg = — Kqu,errqerrA — KppQerr (5,15)
Mepg = — KPQv,err - KPDWI% + ISWI% + Wﬁ? X ISWﬁ? (5.16)

The gain matrices K, and Kpp, shall be selected to be compatible with asymptotically
stable. Attitude error value demonstrates the required rotation for each satellite axes
to arrive the commanded orientation. This error vector (q.,») is calculated by
multiplying the reference quaternion ( g,.) and estimated quaternion vectors with

its conjugate definition (q;s:). If this kind of multiplication is considered as a
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transition from a current state to an expected state, it can be denoted by these

equations:

— ref
Qref = Yest est (5.17)
CIreer_slt = (QZ_:{qest)CIe_slt 2 Qrefq;slt = q:stf (5.18)

The inverse of a quaternion vector (g,.) is equal to its conjugate equivalent (g;s,).

By means of this equality, a quaternion error vector can be accepted as the transition

vector which is specified above (g1 = qo,):

-1 q;St * T
Gest = 5> = Qest = [_Qest,l; —(est,2y —Yest,3; qestA-] (5.19)
|Gest ]
Qerr = Qref Q Gost = qest O Qref (5.20)

Qerra Qref,a Qref,3 —ref,2 Qref1 —(est1
qerr,z _Qref,3 CIrefA CIref,l Qref,z _qest,z

Qerr = Qerr,3 ‘ - I Aref,2 “ref1 Qref,4 Aref,3 ‘ I ~est,3 (5'21)
Qerra “Gref1  “Gref2 “Qref,3  Qref,a Gest,a

The following definition also gives the same results for an attitude error (qe--):

erra Qest,4 Gest,3 —Gest2 —Yest1 ref1
| berr2 | _ | ~est3 Qest,a Qest1  —Gest2 Aref,2 (5 22)
err err,3 Gest,2 —{est1 Gest,4 —{est,3 Qref,3 '
erra Qest,1 Gest,2 Gest,3 Gest,4 QrefA-
The derivative of quaternion error vector is [48]:
[ Gerr ] Qerr,a —Yerr,3 Qerr,2 WI%
. X
. _ I derr,2 | _ derr,3 erra —Gerra WB
Qerr Qerr3 —Gerr2  Yerra erra 1By (5.23)
. B
Gerra —Gerr1  —Yerr2 —Yerr3 Wig,
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5.4.2. PID Controller for Reaction Wheels DC Motor

The goal of attitude controller is to change the rotational speed of reaction wheels to
adjust the satellite orientation to meet the desired course. This means that the angular

velocities of RWs shall be changed to meet the desired performance specifications.

The chosen controller law for each reaction wheels is PID controller in a cascaded
form. The derivative controller is especially set to keep a constant rotation speed
until the command torque is received. The fundamental equations of reaction wheel

torque dynamics are hereafter:

My (s) = ki (s) = (Igws + b)wgy (s) (5.25)

After taking the Laplace transformation for the voltage equation of reaction wheels
(V4 = Ri+ L(di/dt) + kywgy), the following equation is obtained:

— ) _ kel(s)
V(s) = (R+Ls)I(S) + kywry (s) ;5 wry(s) = Tstb (5.26)
(R + Ls) (Igys + b) + kyk,
V(s) = I;r/s — M (s) 5.27)
I(S) _ IRWS +b
V(s) (Llgw)s? + (Rl + Lb)s + (Rb+kyk,) (5.28)

The cascaded PI controller design arises from the control of two sequential processes
where the output of the inner loop supplies the outer process in the sequence. The
main objective of cascaded control is to attenuate the effect of internal disturbances

on final output measurements.
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The data flow is illustrated in the following figure:

Disturbance
1 1
> K T o h >
V(s) s.L+R I(s) My(s) Igw.s +b Wew (8) Waw (5)
V(s) -> I(s) V(s) > wgw(s)
K

Figure 5-4 The Data Diagram of RW DC Motor

In general, the results of cascaded controller are better than a single loop controller
system. The inner loop reduces the gain uncertainty of whole system with the help of

inner loop processing. The general diagram of cascaded PID controllers is indicated:

Disturbances

d, d,

Setpoint ,
—SPENO—» PID, O PID, — /~

Y2

P

A

Saturation - ————————ooocceeem
Process

Figure 5-5 Cascade PID Controller General Diagram [85]

It is necessary to implement a couple of saturation blocks into the simulation model
to restrict the torque and rotation speed of reaction wheels. The following figure
shows a cascaded inner (PI) and outer (PID) controller design for each reaction

wheels:
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'@ PID / 'Q ¥ ews+b).(R+Ls)+K? " Lwsth >
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Angular Velocity
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Figure 5-6 Inner and Outer Loop of Cascade PI Controllers for RW-DC motors

For the torque controller loop (inner loop), the last equation can be written in terms

of the torque definition specified above:

M M
I(s) = “,f); Wiw () = ,W”g% (5.29)
M M
V(s) = (R + Ls) < IZt(S)> + ky (%) (5.30)

If assumed that the coefficients k, and k,, have equal values (k; = k;; = K) and the
damping ratio (b) is relatively small to be implemented, the transfer function of inner

loop will be:

My(s) K(Igws + b)
V(s)  (Izws +b)(R+Ls) + K2

(5.31)

The open-loop plant function which is a transfer function of speed controller loop

(outer loop) representing the transition from voltage input to angular speed output is:

Werw (S) _ My (s) waw(s) K
V(is)  V(s) My(s) (rgws+Db)(R+Ls)+K?

(5.32)

116



The following parameters are defined for the modelling of each DC motor:

Table 5-1 Reaction Wheel - DC Motor Parameters

RW- DC Motor Parameters Values
DC Motor Electromotive Force Constant (ky) 0.1V /rad/sec
DC Motor Torque Constant (ki) 0.1 N.m/Amp
DC Motor Viscous Friction Constant (b) 1x107> Nms
Armature Resistance (R) 2 Ohms
Armature Inductance (L) 52x1073 H
Moment of Inertia (Iy,) 5.0x 10~* kgm?

The design requirements are listed below for a reference motor speed (1 rad/s step):

v' Settling time shall be less than 3 seconds (< 3 s),
v Overshoot level shall be less than 5% (< 5%),
v' Steady-state error shall be less than 1% (< 1%).

Pole-Zero Map

Imaginary Axis (seconds'1)
S & o o o o o
[=>] = [y o nN = [=2] [s:]
x
x

o
co

fle
o
=1

-350 -300 -250 -200 -150 -100 -50 0
Real Axis (secmnds‘1)

Figure 5-7 The Open Loop Pole-Zero Map of Reaction Wheel DC Motor
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According to the pole locations of transfer function (-374.3404, -10.29) in the pole-
zero map diagram, there is no overshoot in the step response. The more negative

pole dominates the system dynamics in terms of the response speed.

The following Simulink diagrams show all the DC motor models of reaction wheels
and the commanded torque distribution for each of them:

Jouy 99se voey

dbdin dddce d090 dhain

Figure 5-8 Reaction Wheels Model Block Diagram

The DC motor model of each reaction wheel placed in the previous figure is:

.

Scope
Desired and controlled
RW-angular speed

o @
-
. Do
N Pl S
o -z A g A - )
RW1_Hdot_des — = s I ot
Speed wlimit Torque Vlimit
Controller Controller | I P 1

:
2

RW - DC Motor Model ‘

'elec_RW1

mim

Pmec_RW1

Figure 5-9 The Simulink Diagram of RW — DC Motors
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The operating frequency of inner loop shall have larger value than the outer loop’s

frequency value (RWf;, = 1000 Hz, RWf,,, = 100 Hz). The Simulink diagram

of DC motors of reaction wheels is defined hereafter:

After applying the automated PID tuning method provided by MATLAB/Simulink

software tool, the following gain parameters are obtained by considering the design

requirements. The PID torque and speed controller parameters are shown below with

some specifications of linear system analyses such as rise time and settling time:

Table 5-2 PID Controller Parameters of Inner Loop

Kp K, K N Settling Time Rise Time | Overshoot
2.503e-5 | 0.022215 0 100 0.995s 0.0735s 3.77%
Step Plot: Reference tracking
12 T T T
1 ifffff:fff::ﬁ_::::::fSyslem:Block I e
I LA "‘“\lDy‘
08k : System: Block response plitude: 1.04
° i lO:In(1) toy ot (%): 3.77
= i Rise time (seconds): 0.0735 jeconds): 0.474
SO06H | i ]
E i i i
< i i i
oalf | : :
o2 |
0 : 1 1 : Il 1 :\ 1 Il 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)
Figure 5-10 The Step Response of Inner Controller Loop
The parameters of outer PID loop and its step diagrams are hereafter:
Table 5-3 PID Controller Parameters of Outer Loop
Kp K, Kp N Settling Time | Rise Time | Overshoot
9.5605 | 13.4366 | 1.1625 | 2668.953 1.16s 0.0948 s 4.88 %
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Step Plot: Reference tracking
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Figure 5-11 The Step Response of Outer Controller Loop

5.5. LQR Control

Linear Quadratic Regulator method is based on linear attitude model. The only
negative effects of gravity gradient and aerodynamic drag can be taken into
consideration and the disturbance torques of solar radiation and magnetic dipole
moment can be ignored for linearization process [52, 71]. The linear quadratic cost

function is always positive and defined as the following:

1 oo
J(x,u) = E,f [xTQx + uTRu] dt (5.33)
0
0y .. 0]
Q= 0 Q ; xTQx =0 (5.34)
R, .. 0
R = 0 R ‘uTRu > 0 (5.35)

Q is a constant, real symmetric positive semi-definite matrix and it defines the cost

of state error. On the other hand, R is a constant, real symmetric positive definite
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matrix and it defines the cost of control effort. State vector (x) represents the error

between true and reference states in the cost function.

Solving the optimization problem is based on the minimization of cost function by
the help of full state feedback controller definition of u(t) = —K.x(t). When the
cost function is minimized, the state vectors reach to zero in infinite time and this

situation guarantees system stability [48]:

J= % J,” xT(Q + KTRK)x dt (5.36)
K is the optimal gain and computed from the solution to Riccati Equation:

ATS + SA—SBR™'BTS+Q =0 (5.37)

K=R'B'S>u=—(R'B"S)x (5.38)

A and B matrices are stabilizable by means of the cost function J(x, u). K matrix is
also adjusted by setting Q and R matrices. The selection of these matrices is based
on an iterative procedure using a trial and error method. They are commonly selected

to be diagonal in engineering problems and their initial values can be unit vectors:

Q = [Miox10: R =[lexe (5.39)

v Q matrix shall be bigger than R matrix for an aggressive controller,

v R matrix shall be bigger than Q matrix for a conservative controller.
The procedure for the implementation of LQR is:

1. Calculation of linearized system matrices (4 and B),
2. Calculation of state feedback matrices (Q and R),

3. Finding a solution to Riccati equation for sliding manifold (S),
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4, Computation of optimal gain (K = R™1BTS),
5. Selection of K solution to yield a stable system for (x = (A — BK)x),
The real part of eigenvalues should be negative for a stable system.

6. Calculation of control torque for actuators ( M g = —Kx(t))

Feedback gain matrix (Kor), System eigenvalues (E = eig(A — BK)) and the
solution of algebraic Riccati equation (S) can be obtained using the following

MATLAB command in the simulations:

[Kior, S, E] = lqr(4,B,Q,R) (5.40)

Disturbance

+ L

Guidance —> \ > y=K'x ——> »! | € Linear Plant
- Actuators | Applied Model
Torque

Demanded
Torque

Estimated

Angle / Rate Angle / Rate

Estimator «—————
Sensors

Figure 5-12 LQR Controller Diagram of Satellite Linear Attitude Model

5.6. Sliding Mode Control (SMC)

Sliding mode controller is a kind of nonlinear controller method and shows robust
characteristics against parameter changes, uncertainties and external disturbances. In
this controller process, there is a predefined sliding line or surface to force state

trajectories to lie on it.

When the system is out of a sliding surface, the system dynamics reach this surface

and the control torque is also needed to force the system states towards it. When the
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system is on the surface, its states provide the system stability and its control torque

is needed to keep the system at the surface.

The deviation between the equilibrium and the actual states is defined as the errors,

and denoted by w,,,- and q,,- respectively.

) 1

Qverr = 2 [-Q(CIU,err) + [13x3]q41»] WgB (5.41)
erra —Gerr,3 Gerr,2 1

Querr = > derr3 Qerra  —Qerri|whp = > S(qv,err)wgg (5.42)
—Gerr,2 Gerr erra

A sliding manifold denoted by (s) forces system states towards the manifold and
provides them to converge to the desired attitude. When the system is on the
manifold (s = 0), sliding variable can be rewritten as (Ksy is a positive sliding
manifold gain) [75]:

S = WgB + KSMCCIv,err =0-> WgB = _KSMCCIv,err (5.43)

The convergence towards a sliding surface is proven by the Lyapunov function such

as V(@) =(q,)"q, + (1 —q,)?) and its derivative with the expression of
(@,)7qy + (qu)* = 1:

V() = 2(1—q4) (5.44)

V(q) = 244 (5.45)

v' For an error quaternion e, = [qv,err q4,m]T =[0,0,0,1]" > V(0) =0

. 1 . T
v qs = _E(qv)TWgB -2 V(q) = _(Qv,err) KSMCCIv,err
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When Kgy,c is a positive definite weight matrix, then V(q) is smaller than zero
value. This situation satisfies the stability condition and the preferred sliding

manifold function is considered as asymptotically stable.

When the sliding function (s = 0) is multiplied by%S(qv,m):

1 . 1

ES(qv,err)WOB + Es(qv,err)KSMC- Querr =0 (5.46)
. 1

Querr T 2 S(Qv,err)KSMCCIv,err =0 (5.47)
The derivative of selected Lyapunov function (V = %sTs) is the following:
V=sTs= ST(WgB + KSMCC.Iv,err) (5.48)

V= STI.‘S_l(MD+Mcmd —wip X (Is wig + HRy) + ISKSMCéIv,eTT) (5.49)

The equivalent torque (M,,) versus to control torque (M,,,q) can be derived from the

previous equation:
Mg = wig X (Is Wi + Hiyw) — Mp — IsWwgp — IsKsycGv,err — IsGsucSign(s) (5.50)

The selected control torque in the last equation is replaced in the derivative

Lyapunov function:

V = —=sT(Wgp + Gsucsign(s)) (5.51)
1, s>0

sign(s) =4 0, s=0 (5.52)
-1, s<0
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Ggyc 1S a positive definite weight matrix, then the relationship between Gg and

w5 shall be Ggpc>|Whg | max 10 achieve the stability condition V < 0.

The function of sign(s) results in chattering problem (high frequency oscillation)
in a control torque simulation. There are several solutions in the literature being
proposed to eliminate this problem and modify the controller method. One of the
possible solutions is to design a switching controller by combining sliding mode
controller with PID controller in the same simulation. In this way, sliding mode
controller is applied till the attitude error is sufficiently small and then PID controller
takes its position to ensure system stabilization [77]. In this study, this problem is
removed by using saturation function (sat(s)) instead of sign(s) function. “&” is

the sliding thickness in the following function:

1, sS>¢
S S
sat(s) = tanh(g) =1 = IsI<Iel (5.53)
-1, s< —¢

The control torque (M,p,q) Will be:

. . S
Memg = wip X (Iswgg + Hiy) — Mp — IsWwig — IsKsyc Gy err — IsGsyctanh ( E) (5.54)

The procedure for the implementation of sliding mode controller can be divided into

three action steps:

1. Defining a sliding manifold function and its derivative (s,$) which satisfy
Lyapunov stability analysis,

2. Finding sliding control weight matrices empirically (Kspyc, Gspe),

3. Calculating control torque function with respect to Lyapunov candidate

function by the help of (s).
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The weight matrices can be chosen as the magnitude order of satellite inertia matrix
[75]. Another solution proposed for torque command function can be found by

multiplying with inertia matrix:
Is$ = IsWgp + IsKsmcqo (5.55)
§ =I5 "Meqy + I " Memg (5.56)

The equivalent torque (M,4,,) versus to control torque ( MEW) can be derived from

the previous equation:

Meqy = wgp X (Is wop + HRw) — Mp — Iswgp — IsKsmcGu,err (5.57)

When the controller gain is symbolized by (A) and it is selected as long as in an

appropriate way, the control torque can be determined like the following equation:

Mma = —Asign(s) (5.58)

In this case, chattering problem can be removed by using directly sliding function

((s)) instead of sign(s) function:
Mema = —4s (5.59)

5.7. Summary

In the first phase (detumbling) a specific controller named B-dot are applied to
satellite dynamics and kinematics. PID, LQR and SMC controllers are executed

afterwards.
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CHAPTER 6

RESULTS and DISCUSSIONS

6.1. Introduction

The simulation test results of attitude controllers with related requirements are
explained in this section for different configurations and gain values. Their
performance parameters are compared and analyzed based on the related graphical
results. The main purpose is to prove that whether the satellite model tracks the
reference points indicated as Euler angles or not. The satellite should keep its stable

state after reaching a given reference value and keep its power consumption low.

In this section, the simulation sampling time is chosen as 0.1 seconds for all main
controllers (PID, LQR, SMC). B-dot controller is implemented to meet the
demanded results for satellite initial phase. All these type of controllers are modelled

and simulated in MATLAB/Simulink environment with different test cases.

6.2. The Results of Detumbling Control

It is expected that detumbling controller should be capable of damping the tumble
motion of a satellite within a few orbits after deployment from a launcher. The aim

of detumbling phase is to decrease satellite Euler rates under 0.01 degree per second.

The initial value of satellite tumbling rate is assumed to be around 0.1 radian per
second in each axis for the first test case and the reference attitude is not applied in

this phase. The following graphics are generated for different test configurations.
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Case-1: No RW Failure & PID Controll

er Design

Table 6-1 The Simulation Parameters of Detumbling Phase (Case-2)

Parameters Values
Initial Satellite Velocity wy = [0.1,0.1,0.1]
Sampling Time T, = 0.01
System Noise Covariance Matrix 0, = 1x10710

Measurement Noise Covariance Matrix

Ryyro = 1x1071% Rger = 1x10712

Rmgm = Rsus = Rgps = 1x1077

Constant Controller Gain Kpaorx = 7.066197 x 10*
K, = 6.950219 x 10*
4 4 4 Bdot,
KBdot = [stx 10 Isyx 10 ISZX 10 ] Yy \
Kpaoty = 8.555828 x 10
0.02] I I I Moommand (x) [
Moommand (y)
0.015| - 1 | Moommand (z} | |
oo
B |
E’ 0005 I | | | | | |
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Time x10"

Figure 6-1 MTR Torque Command in Detumbling Phase (Case-1)
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Figure 6-2 Satellite Angular Velocity in Detumbling Phase (Case-1)

This test shows that B-dot controller is capable of reducing the satellite initial
angular velocity under 0.01 [rad/s] under 2000 seconds.

Case-2: No RW Failure & PID Controller with the same parameters like as the
previous case, but with the more aggressive initial angular velocity of a satellite
(wo =[0.5, 0.0, 0.5])

Meommand (x)
Mcommand (y)
Mcommand ()

Torgue Command (Nm)
o

0.015 TR R i

0 02 04 06 08 1 12 14 16 18 2
Time %104

Figure 6-3 MTR Torque Command in Detumbling Phase (Case-2)
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Figure 6-4 Satellite Angular Velocity in Detumbling Phase (Case-2)

In this case, the settling time is about ~13250 sec. and angular velocity is between

+0.01 and -0.01 after providing a stable state. The settling duration is much longer

whenever the initial conditions have higher values than the previous case.

Case-3: No RW Failure & PID Controller with the same parameters and initial

values like as in Case-1, but implementing lower gain value (Kgg4,; = 10)
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Figure 6-5 MTR Torque Command in Detumbling Phase (Case-3)
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Figure 6-6 Satellite Angular Velocity in Detumbling Phase (Case-3)

In this case, B-dot controller stabilizes the system by reducing its initial angular
velocity in the range of +0.007. However, its settling time is much higher than the
case of controller gain (Kg,4,:) has much higher value. The selection of gain value

affects the signal stability.

Case-4: No RW Failure & PID Controller with the same parameters like as in Case-

1, but performing higher gain value (Kggor = [stx 107, Ig x 107, Is,x 107])
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Figure 6-7 MTR Torque Command in Detumbling Phase (Case-4)
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Figure 6-8 Satellite Angular Velocity in Detumbling Phase (Case-4)

This test shows that B-dot controller is capable of reducing the satellite initial
angular velocity under 0.01 [rad/s] within almost three orbits. The time needed to

meet requirements is approximately ~14000 seconds for this case.

6.3. The Results of Desaturation Control

It can be seen that reaction wheels are desaturated by torque rods each time
whenever a new attitude maneuver is applied. The satellite initial conditions of
momentum unloading phase are defined in this section for each simulation test case.
The main controller can be selected as PID, SMC or LQR to generate the expected

graphical results.

Case-1: No RW Failure & PID Controller

Table 6-2 The Simulation Parameters of Desaturation Phase (Case-1)

Parameters Values

Initial Satellite Velocity wy =[0.0,0.0,0.0 ]

[l-|J0' 90' CI)0] = [O' 0'0]
[l-pd' ed' (Dd] = [_15' _5'5]

Initial / Desired Euler Angels
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Parameters Values

i — -6
Constant Controller Gain Kagump = 10
The Command Torque Mima = — Kp. Querr-Qerr,a — Kpp- Qerr
%107
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Figure 6-9 MTR Torque in Desaturation Phase of Satellite PID (Case-1)
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Figure 6-10 RW Angular Momentum Desaturation of PID (Case-1)

In the first test case, the final value of angular momentum in the range of
4+0.005 kgm? /sec. The settling time is about ~200 seconds.
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Case-2: No RW Failure & PID Controller with the same parameters like in the

previous test case, but using higher gain value (Kgympy = 10°).
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Figure 6-11 MTR Torque in Desaturation Phase of PID (Case-2)
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Figure 6-12 RW Angular Momentum Desaturation of PID (Case-2)

The angular momentum changes are stabilized in about 110 seconds and its value is
reduced to around +1x10~* kgm?/sec. MTR torque contains much noise while

dump gain is larger twelve times than the previous gain value.
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Case-3: RW-1 Failure & PID Controller with the same parameters and gain values

(Kgqump = 107°) like in the first test case, but implementing different PID controller

— B
law (M¢pmq = — Kp. Qv,err-Qerra — Kpp- Wop)-

|
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Figure 6-13 MTR Torque in Desaturation Phase of SMC (Case-3)
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Figure 6-14 RW Angular Momentum Desaturation of PID (Case-3)

This test proves that the selected controller law also affects the results of
desaturation controller design. In this case, the settling time is adversely effected by

this PID controller law.
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Case-4: No RW Failure & SMC Controller without chattering problem with the

same gain value (Kgym, = 107°)

Table 6-3 The Simulation Parameters of Desaturation Phase (Case-4)

Parameters Values

Initial Satellite Velocity wo =10.0,0.0,0.0 ]

NJO' 90! (DO] = [01 010]
[lle, ed' q)d] = [_151 —5,5]

Initial / Desired Euler Angels

Ksye = 0.5 % [I]343
Gspe = 1% [I]343

Constant Controller Gains

Sliding Manifold s = wgp + Ksuc- Querr
%107
1 MTR Torque (x) ||
MTR Torque (y)
MTR Torque (z)
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Figure 6-15 MTR Torque in Desaturation Phase of SMC (Case-4)
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Figure 6-16 RW Angular Momentum Desaturation of SMC (Case-4)

The change rates of RW angular momentum is between +0.2 kgm?/sec. After
dumping is completed in about 80 seconds, the angular momentum changes are

descended around +1x10~* kgm?/sec.

Case-5: No RW Failure & LQR Controller under the same conditions and gain

values used in the section of “The Results of LQR Controller / Case-1”

<107

I
MTR Terque (x)}
MTR Tergue (y)
MTR Targue ()

MTR Torque

Time

Figure 6-17 MTR Torque in Desaturation Phase of LQR (Case-5)
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Figure 6-18 RW Angular Momentum Desaturation of LQR (Case-5)

As it can be seen in the graphics, the torque changes of RWs and MTRs and settling
times are almost in the same level for each type of main controllers. The only
exception is seen in the case of using LQR controller due to the chosen weight
matrices. In addition to this, they are not in the same margins for different test cases.
It can also be observed that the biggest differences among the angular momentum

values are in the SMC test cases.
6.4. The Results of PID Control

For the usage of reaction wheels and magnetic torque rods as torque generators, the
matrices of measurement equation for the configuration of using all sensors are

specified in the following test cases.

Sensor Configuration: GYRO + STR + MGM + SS + GPS

YconNF = [Wmeas Ameas Bmeas SVmeaS Tmeas vmeas]T (61)

Yconr = [Heonr]Axy + [Reonr]vi (6.2)
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[ [1]343 0354 0353 7
0443 I4x4 043
B
O3:3  [Hhicml,,, O3 |[Awig
[HeonrlAxy, = 0343 [Hgl% 34 03,3 Ag (6.3)
AH
O3:3  [Hepsily,, O3x3 kw
| 033 [HEpS2],,, 033 |
[RCONF] =
13x3- RGYRO 03x4 03x3 03x3 03x3 03x3
04x3 I4x4- RSTR 04x3 04x3 04x3 04x3
033 Osxa  Isxa-Rugm  Oaxz 033 033 (6.4)
| 0343 O34 Osx3  Isxa-Rsus  Oaxs Os03 |
| 055 O34 0323 O3xs  lsxs-Repsi  Osxs |
05 O34 O35 O3 Oses  Iaxs Rops |

Rgyro = Rsrr = 1x107'%; Rygm = Rsys = Rgps1 = Rgpsz = 1x1071°

The controller gains are directly proportionate to the components of satellite inertia

matrix (Is,, Is,, Is ) according to the following attitude control law [15]:

Mcmd,x —2. KPXQerr,1Qerr,4 - KPDxQerr,l
Mcmd,y =|—2 KPerrr,Z err,a — KPDerrr,Z (6.5)
Mcmd,z —2. KPZQerr,3 Qerra — KPDZQerr,3

Case-1: No RW Failure & PID Controller

Table 6-4 The Simulation Parameters of PID Controller (Case-1)

Parameters Values
Initial Satellite Velocity wo =10.0,0.0,0.0 ]
Initial / Desired Euler Angels [Wo, 80, o] = [0,0,0]
[Lljd' ed' (Dd] = [_15' —5, 5]
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Parameters Values

Constant Controller Gains
pr_y_z = [7.0662/5, 6.9502/5, 8.5558/5]
Kpr‘y‘z = [14.1324, 13.9004, 17.1117]

KPx,y,z = [st/5: Isy/5: 152/5]

KPDx,y,Z =10 * pr‘y‘z

. . _ 6
Dumping Gain (Kgymp) Kaump = 10
[ I I
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Figure 6-19 RW Commanded Torque (PID / Case-1)
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Figure 6-20 RW Angular Velocities (PID/Case-1)
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Figure 6-21 Satellite Euler Angles (PID/Case-1)
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Figure 6-22 Satellite Angular Velocities (PID/Case-1)
The controller parameters obtained from the simulation for this case are hereafter:

Table 6-5 The Simulation Results of PID Controller for Case-1

Settling Time Rise/Fall Time Overshoot
Roll Angle ~50s ~17.905 s 1.983 %
Pitch Angle ~40's ~16.485s 1.994 %
Yaw Angle ~50's ~19.006 s 0.505 %
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The applied command torque equation gives appropriate results for small angular
maneuvers in the first test case. Another command equation is applied for high

angular maneuvers like in the following and third test case.

Case-2: No RW Failure with the same parameters applied in the previous test case,

but using different command torque law (M¢yng = — KpQy errqerra — KppWis)
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RW Torque (y)
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Figure 6-23 RW Commanded Torque (PID/Case-2)
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Figure 6-24 RW Angular Velocities (PID/Case-2)
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Figure 6-26 Satellite Angular Velocities (PID/Case-2)

The controller parameters obtained from the simulation for this case are hereafter:

Table 6-6 The Simulation Results of PID Controller for Case-2

Settling Time Rise/Fall Time Overshoot
Roll Angle ~120's ~40.304 s 2.011 %
Pitch Angle ~100s ~36.407 s 2.010 %
Yaw Angle ~100s ~44.104 s 0.504 %
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The settling time and rise time obtained from the results show that they have higher

values as compared with the results of previous test case.

Case-3: No RW Failure under the same conditions in terms of controller gains and
torque equations (Mg = — KpQy errerra — Kppwgg), but performing high Euler

reference angles ([W4, 04, ®4] = [120, 50, —30]) from zero initial angles.
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Figure 6-27 RW Commanded Torque (PID/Case-3)
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Figure 6-28 RW Angular Velocities (PID/Case-3)
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Figure 6-30 Satellite Angular Velocities (PID/Case-3)

The controller parameters obtained from the simulations for this case are hereafter:

Table 6-7 The Simulation Results of PID Controller for Case-3

Settling Time Rise/Fall Time Overshoot
Roll Angle ~120s ~56.606 s 0.504 %
Pitch Angle ~90s ~47.902 s 0.509 %
Yaw Angle ~70s ~21.908 s 2.252 %
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It can be concluded that the requested torque is increased than the case of applying

low reference angles. Similarly, it is the same situation for the timing properties of

this case.

Case-4: RW-1 Failure under the same conditions like in the first case, but with the
torque command of (Memag = — KpQuerrQerra — KppWog) and the expected last

Euler angular values are [{4, 04, 4] = [—15,— 5,5] from zero initial values.
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Figure 6-31 RW Commanded Torque (PID/Case-4)
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Figure 6-32 RW Angular Velocities (PID/Case-4)
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Figure 6-33 Satellite Euler Angles (PID/Case-4)
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Figure 6-34 Satellite Angular Velocities (PID/Case-4)
The simulation parameters obtained from this case are defined here:

Table 6-8 The Simulation Results of PID Controller for Case-4

Settling Time Rise/Fall Time Overshoot
Roll Angle ~90s ~39.503 s 2.000 %
Pitch Angle ~90s ~32.602s 2.001 %
Yaw Angle ~90s ~50.405 s 0.493 %

147




In the case of more than one reaction wheel failure, the expected attitude results are
not acquired properly. The power consumptions for both cases of a RW failure and

non-failure are also hereafter:
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Figure 6-35 RW Power Consumption for a Non-Failure Case (PID)
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Figure 6-36 RW Power Consumption for a RW Failure Case (PID)

The following equation is used for the calculation of RW power consumption:

P = HryyWrw (6.1)

The calculations of both RW electrical and mechanical power consumption are

implemented into DC motor model like in the following figure:
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Figure 6-37 The Calculation of Electrical and Mechanical Power Consmp.

6.5. The Results of LQR Control

The main controller consisting of optimal and desaturation controller to keep wheels

under their saturation limits in this section. The controlled state is a quaternion

vector and it is simulated by handling error rate according to the given reference

angles for LQR controller design.

The linearized satellite plant model is the base point for this controller type. H

measurement matrix is taken as a unit matrix which is sized suitably with the state

vector size. Two different test cases are analyzed taking into consideration the

failure situation of one reaction wheel and their graphical results are presented here.

Case-1: No RW Failure & LQR Controller using both RWs and MTRs using as

torque generators with the following simulation parameters:

Table 6-9 The Simulation Parameters of LQR Controller (Case-1)

Parameters

Values

Initial Satellite Velocity

Wy =

[0.0,0.0,0.0 ]
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Parameters Values

Initial / Desired Euler Angels [Wo, 80, ®o] = 0,0,0}
[Wa, 04, Pl = [-15,—5,5]
_ _ [13:3] 0 0
Constant Weight State Matrix Qrw =] © [I5,3 ] = (1000) 0
0 0 [4x4]
Constant Weight Input Matrix Rrw = [Isxs ] * (2500)

Controller Gain Matrix Kior = [Kwior Kqror KRrwigr |

The gain matrix in accordance with the selected weight matrices is obtained like:

KLQR =

[ 0.8895 0.0000 —0.0009 0.3640 —0.0000 0.0028 0.0000 —0.0164 —0.0000 —0.0000 1
—0.0000 0.9046 —0.0000 0.0000 0.3819 —0.0000 0.0066 —0.0000 -0.0164 —0.0000
—0.0007  0.0000 0.9745 -0.0035 —0.0000 0.3637 —0.0000 0.0000  —0.0000 —0.0164

0.9470 —0.0000 -0.0009 0.3657 —0.0000 0.0029 0.0000 0.0081 0.0000 —0.0000
—0.0000 0.9612 —0.0000 0.0000 0.3836  —0.0000 0.0077 —0.0000 0.0081 —0.0000
—0.0007 -0.0000 1.0441 —0.0035 —0.0000 0.3658 0.0000 0.0000 0.0000 0.0081

0.9470 —0.0000 -—0.0009 0.3657 —0.0000 0.0029 0.0000 0.0081 0.0000 —0.0000
—0.0000 0.9612 —0.0000 0.0000 0.3836  —0.0000 0.0077 —0.0000 0.0081 —0.0000

L —0.0007 —0.0000 1.0441 —0.0035 —0.0000 0.3658 0.0000 0.0000 0.0000 0.0081

The eigenvalues (E,og) of linearized plant model are specified here to prove system

stability. Their real parts are negative values and system stability is guaranteed by
using this specification:

Table 6-10 The Eigenvalues of Linearized Plant Model

Eigenvalues of LQR Values
Eror1 —0.1969 + 0.1968i
ELor: —0.1969 — 0.1968i
ELor: —0.1791 + 0.1787i
ELor: —0.1791 — 0.1787i
ELor: —0.2034 + 0.2032i
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Eigenvalues of LQR

Values

ELor: —0.2034 — 0.2032i
Eror2 —0.0001 + 0.0000i
Eror2 —0.0163 + 0.0000i
ELor2 —0.0163 — 0.0000i
ELor2 —0.0163 + 0.0000i

The graphical outputs acquired from this test case are depicted here:
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Figure 6-38 RW Commanded Torque (LQR/Case-1)
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Figure 6-39 RW Angular Velocities (LQR/Case-1)
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Figure 6-41 Satellite Angular Velocities (LQR/Case-1)
The simulation parameters obtained from this case are defined here:

Table 6-11 The Simulation Results of LQR Controller for Case-1

Settling Time Rise/Fall Time Overshoot
Roll Angle ~100s -11.606 s 8.028 %
Pitch Angle ~75s -8.005s 4.072 %
Yaw Angle ~60s +10.302 s 25.949 %
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It is observed that the satellite reaches to a stable state on the average of almost ~80
seconds with tolerable fluctuations in the range of +0.05 degrees especially for the

measured values taken from Y axis.

The system performances are affected by the changes in weight matrices determined
by trial and error method. For the sake of example, the settling time gets smaller

whenever R weight matrix has smaller values compared with its previous version.

Case-2: RW1 Failure & LQR Controller with the same parameters handled in the

DTEViOUS test case.

RW Torque (x)
RW Torgue (y) |
RW Torque (2)

RW Torque
=
.
o
4
[
)
!
|
i
\
!
|

| L | L
o 100 200 300 400 500 600 700 800 900 1000
Time

Figure 6-42 RW Commanded Torque (LQR/Case-2)
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Figure 6-43 RW Angular Velocities (LQR/Case-2)
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Figure 6-45 Satellite Angular Velocities (LQR/Case-1)

The simulation parameters obtained from this case are defined here:

Table 6-12 The Simulation Results of LQR Controller for Case-2

Settling Time (s) Rise/Fall Time (s) Overshoot (%)
Roll Angle ~ 600 - 16.903 -7.133
Pitch Angle ~ 600 8.654 / 8.337 38.072/6.877
Yaw Angle ~ 600 6.305 / 6.803 137.676 / 3.450

The usage of three RWs instead of four of them effects the system negatively. The

power consumptions for both cases of a RW failure and non-failure are here:
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6.6. The Results of Sliding Mode Control

The graphical evaluation of sliding mode controller design taking into account the

chattering problem with different configurations is presented in this section.

Case-1: No RW Failure & Sliding Mode Controller with chattering problem

Table 6-13 The Simulation Parameters of SM Controller (Case-1)

Parameters Values
Initial Satellite Velocity wy =[0.0,0.0,0.0 ]
Initial / Desired Euler Angels [Wo, 80, Po] =10, 0,0]
[Wa, 04, P4l = [-15,—-5,5]
Constant Controller Gains Ksye = 0.5 * [[Taxs ; Gspre = 1 % [Iaxs
Sliding Thickness e =0.02

The applied control torque definition with chattering problem will be:

Mema = wig X (Iswgp + Hgw) — Mp — Iswgp — IsKsycdyerr — IsGsucsign(s)
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Figure 6-48 Torque Command of SMC with Chattering Problem (Case-1)
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Figure 6-49 RW Angular Velocity of SMC with Chattering Problem (Case-1)

I I

[~ Estimatedw_IB_B (x) [
Estimated w_IB_B (y}
Estimated w_IB_B (z) [ ]

o
o

o o
o 2 o
[=] o -
o - o
——1
| I |

=

&
8
= —==

2

=1
2 &
o

EKF - Estimated Angular Velocity (rad/s)
b b
B

s
8
o

=]
]

100 150 200 250 300
Time

Figure 6-50 Satellite Ang. Vel. of SMC with Chattering Problem (Case-1)
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Figure 6-51 Euler Angles of SMC with Chattering Problem (Case-1)
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The simulation results of Euler angles for this test case are here:

Table 6-14 The Simulation Results of SMC Controller for Case-1

Settling Time Rise/Fall Time Overshoot
Roll Angle ~75s 5.703 s 4.479 %
Pitch Angle ~60s 7.005 s 13.333 %
Yaw Angle ~60s 7.407 s 14.368 %

Case-2: No RW Failure & Sliding Mode Controller with same parameters applied in

the previous test case, but without having chattering problem. The applied control

torque can be specified to eliminate the chattering problem:

. . S
Mema = WgB x (Is WgB + ng) — Mp — IngB — IsKspcQuerr — ISGSMCtanh(E)
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Figure 6-52 Torque Command of SMC without Chattering Problem (Case-2)
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Figure 6-53 Euler Angles of SMC without Chattering Problem (Case-2)

The simulation results of Euler angles for this test case are shown below:

Table 6-15 The Simulation Results of SMC Controller for Case-2

Settling Time Rise/Fall Time Overshoot
Roll Angle ~75s 5.502 s 4.217 %
Pitch Angle ~60s 7.006 s 12.459 %
Yaw Angle ~60s 7.602s 14.368 %

The angular velocity graphics of both satellite and RWs have almost the same
results. After momentum unloading is completed, it can be seen that there is a little
attitude error between the desired and estimated orientation angles for each axis in

the ratio of +0.1 degree for this test case.

Case-3: RW-1 Failure & Sliding Mode Controller with under same conditions

applied in the previous case. Controller gains have completely same values too.
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Figure 6-54 Torque Command of SMC without Chattering Problem (Case-3)
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Figure 6-55 Euler Angles of SMC without Chattering Problem (Case-3)

While the roll and pitch angles reach their reference values, the yaw angle has not
got successful outputs. It is necessary to change the controller gain (Kgy) to achieve

the given reference angles, in the case of a wheel failure.

Case-4: RW-1 Failure & Sliding Mode Controller with under same conditions
applied in the previous case, but controller gain is selected like as (Ksyc =
0.25[1]5x3 and Gsyc = 15[1]3x3)-
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Figure 6-57 Euler Angles of SMC without Chattering Problem (Case-4)

The simulation results of Euler angles for this modified case are listed in the
following table:

Table 6-16 The Simulation Results of SMC Controller for Case-2

Settling Time Rise/Fall Time Overshoot
Roll Angle ~100s 19.907 s 2.008 %
Pitch Angle ~90s 19.403 s 2.018 %
Yaw Angle ~120s 10.602 s 70.560 / 2.267 %
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It is important to state that there are some deviations for each rotation axis between
reference and measured angles in the range of + (0.1-0.2) degrees, when Ggpc gain
is not changed. However, these deviations are reduced by increasing Ggyc value.

The power consumptions for both cases of a RW failure and non-failure are:
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Figure 6-58 RW Power Consumption for a Non-Failure Case (SMC)
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Figure 6-59 RW Power Consumption for a RW Failure Case (SMC)

6.7. Summary

In this chapter, there are five different controller types implemented to satellite
system model including both plant model and space environment model. The
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simulation graphics of the main controllers called PID, LQR and SMC with several

test cases are compared and analyzed.

Even though detumbling and momentum desaturation controllers are supposed to be
auxiliary controllers, there is also a great deal of test cases related to demonstrate
their impact on attitude stabilization. The simulation results show that they are able
to fulfill the expected results and requirements about smooth maneuvering and

detumbling.
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CHAPTER 7

CONCLUSION

7.1. Summary

The main object of this thesis is to develop and design different types of satellite
attitude controllers, which includes four reaction wheels and torque rods under
external disturbance torques and sensor noises by integrating the measurements of

proper sensor combinations called multi-sensor integration.

Within the scope of this thesis, it will be mostly focused on the implementation of
different types of attitude controllers such as PID, LQR and SMC for both initial and
nominal satellite phases with multi-sensor integrated navigation systems. The most
popular and important sensor combination includes gyroscopes and star trackers.
However, the other auxiliary attitude sensors such as sun sensors, magnetometers

and GPS receivers were also modelled considering their noise components.

After several investigations on academic dissertations which deal with different
design methods of satellite controllers, the controller types required for detumbling
and momentum desaturation phases were designed in a software tool called
MATLAB/Simulink.

7.2. Conclusion

Microsatellites are not capable of reaching the specified orientation and tracking
points unless their initial angular velocities are decreased. In the first phase of
satellite life, B-dot controller was preferred to reduce the satellite tumbling rate and

stabilize its initial angular velocity. In the nominal phase where a satellite is able to
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track a commanded attitude, attitude controller types such as PD, LQR and SMC
were used as a main controller in this study. The results obtained from these methods
were analyzed and compared eliminating redundant momentum accumulated on
wheels by the help of using desaturation function. In the whole process, satellite

stability was provided with regard to the standard Lyapunov theorems.

The linear optimal controllers such as LQR controller use satellite linearized
dynamic/kinematic equations. This controller type eliminates the fluctuations on
output signals in finite time and provides much acceptable responses in terms of
attitude stabilization. The comparisons of these responses between linear and

nonlinear controllers were carried out by visualizing them on test graphics.

LQR has better performance in terms of the percentage of its signal overshoot and
rising time. In addition to the satellite maneuver time is shortened with LQR

controller which is more stable and lower settling time than PID controller.

As a result of analysis, it can be shown that the best performance belongs to SMC
controller design according to the simulation tests realized under the same
conditions. All main controller types (PID, LQR, and SMC) give stable results based
on Lyapunov stability theorem in terms of the desired orientation. Reaction wheel
detumbling and redundant momentum desaturations are brought under control with

satisfied results for each type of attitude controller.

In this study, SMC was also proposed to orient the motion of FLP satellite to its
desired trajectory. The recommended control equations and strategies guarantee that
there is no chattering issue in the graphics of torque command value. It can be
concluded that SMC design has the best results among of all controllers in terms of

settling time and robustness.

The Kalman filter provides better stability with low noise measurement and process
covariance matrices for roll, pitch and yaw axes like as the referenced study in [84].

The responses time of Kalman filters based controllers are nominally compatible
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with the real responses time. The controller performance is highly dependent on the
estimated parameters and noise covariance matrices. Since sensor estimation errors

can result in angular deviation from the reference attitude.

In any case of one reaction wheel failure, it was necessary to specify controller gains
again for all controller designs. This case induces signal distortion, increases the

settling time and power consumption.

7.3. Future Works

Different sensor configurations using with different noise covariance matrices can be
modeled and their system responses and Kalman filter analysis can be compared for
attitude actuators such as torque rods or reaction wheels. Even though there is not
any thrusters in the selected satellite to put it back its initial place in orbit, the effects

of them can be implemented to all type of controller models.

Multi-sensor integrated navigation process including different integration
architectures and different combinations of navigation sensors such as Inertial
Navigation System (INS) and GPS receivers can be applied to sensor model [24, 61].
The integration algorithms such as loosely coupled, tightly coupled and deeply
coupled integration shall provide the maximum processing accuracy, efficiency and
robustness. They shall also minimize the complexity of navigation solution [19].

There are some integration architectures for multi-sensor navigation processing such
as the simplest one, the least squares integration, then cascaded, centralized,
federated, and hybrid integration architectures. Each of them has different
advantages and disadvantages in terms of the selected sensors. The optimum solution
of navigation processing model is found out as a federated integration method by

applying Kalman Filters.

The results of following methods can be compared and analyzed for all attitude

sensors located in the selected satellite [19, 64]:
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v' Least Squares Integration

v" Cascaded Integration with EKF and UKF

v Centralized Integration with EKF and UKF

v" Federated Integration with EKF and UKF

There are also quite a few advanced and robust controller types can be performed for

the generated satellite model in this study:

v H-Infinity Controller (H,,)

v" Model Based Predictive Controller (MPC)
v Fuzzy Logic Controller

v" Neural Networks Controller

MATLAB/Simulink model files (.m and .sIx files) can be converted to C or C++
source and header files (.c,.cpp and .h files) using auto code generation tool in order
to realize these models in a cross platform environment. This situation provides them
to extend their operating scope and integrate with different simulation platforms
such as Eurosim that it can be interoperated with real time operating systems.

Machine learning algorithms can be performed for fine tuning on the results of main
controllers instead of traditional methods. These trendy algorithms have been hot

topics for a long time among the recent technological investigations.

There is one redundant wheel providing angular momentum and causing over
actuation for the system. An alternative optimal controller can be introduced for this
over-actuated system in order to determine an optimal path in terms of minimum

energy or minimum time problem.
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APPENDICES

A. The Properties of Quaternions

There is a mathematical approach used in modern spacecraft called quaternions that
has the capability of quicker computations and less integration steps than direction
cosine matrix. This approach also eliminates the singularities of Euler angles. It is
vital to have information about the different properties of quaternion vectors to be

able to calculate the quaternion vector multiplications accurately.

Quaternion vectors are based upon a special unit vector multiplication [47]:
i?=j2=k*=ijk= -1 (A1)
j=k= —jk; jk=1i= —kj; ki=j= —ik (A.2)
The quaternion vectors including both vector and scalar parts are shown below:

q= qii+ qoj + @k +q.= gy + qu (A.3)

p= pil+ p2j+ psk +ps= py + s (A4)
Vector elements of q4, q,, g3 and g, are real numbers and they have unit lengths:

qi +q5 +q3 +qi =1 (A.5)

The scalar multiplication of two different quaternion vectors:

178



t=qOp=(qi+ qo + sk +q4).(p1i + p2j + p3k +pa) (A.6)

qODP= quPs— Qv Py + qaPv + PaGv + qu X Dy (A7)
[t1] [ Pa Pz —P2 P1][%1
Op = t2|_| 7Ps P P1 P2 || 42

19P t3 P2 —P1 Ps DP3|]|43 (A8)
[ty |L—P1 P2 —P3 Psllda
(t1] [ 94 —93 492 q1][P1
||l 3 4 ~—q 9z ||P2

0P = ts3| | 92 & qs q3 || P3 (A-8)
[l L—91 —92 —q3 Q4 ||l DPa

The cross and dot products of quaternion vectors are defined respectively:

op=[ P ~
a0p=[ " o ] *9
The relation between vector product and dot product is:

g®p=p0Oq (A.10)
The conjugate of a quaternion vector (q*) is:

q=Qqs+ @y 2 @ =qs— qy (A.11)
The norm of a quaternion vector (N(q)) is:

N(@) =\a'q=ai +d; +q5 +q; (A.12)
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The inverse of a quaternion vector (g1) is:

a4 " =49 =q4— Qy

The derivative of a quaternion vector (g) is:

p 1 . q1
q qz B q2
i~ | 4 2[ (Wop)] ds

da qs

(A.13)

(A.14)

The derivative of a quaternion vector (¢) can be written using the definition of

q = [q; q4], where q,, is the first three components of quaternion vector. The scalar

part of a quaternion is g, and 2(w53) is a 3x3 skew-symmetric matrix [47, 51]:

_ 1 1 1
Gy = —EWEB X @y + sWhpqa = — = [QWEp)] q, +

2 2

o1 B 1 g _ 1 B
W =5 [2(q,)] wop + 5 qawiop = > [2(qy) + [I3x3]94]wop

2

s —q3
S(q) = [2(qy) + [I3x3]q4] = [ 93 qa
—q2 41

1 B
qv = E S(q)wop

_ 1 1
qs = —E(WEB)T% = _E(QU)TWgB

In more compact forms of a quaternion vector derivation are hereafter [47]:

o1 1
q= ES(CI) WgB ) [13x3](CIv)TWgB
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(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)



Gl l[Jz(wgB)]

1
AR AL lqv + = sxslWopqa (A.21)

B. Transfer Functions

The transfer functions of the following satellite plant model are explained in this

chapter:
Wik Wik mc” mc”
Xe=| 4 [=A| a [+ Be|MITR|+ Q| MITR
HI?W HgW MD MD

In the case of MZY is an input, the related transfer functions are:

wh(s) 0.1415

ML) s (B-1)
q:(s) 0.07075 s

MEY(s)  s3+1.089x1075s (B.2)
qs(s) _ —0.0002335

MRV (s) ~ s3 +1.089x1075s (B.3)

HgW,x(S) _ __1

MEV(s) s (B4)

In the case of MY is an input, the related transfer functions are:

wh () 0.1439

MEY(s) " s (B:3)
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q2(s) _ 0.07195s

MEY(s)  s3+3.3x1075s (B.6)
qs(s) _ —0.0002374

MEW(s)  s3+3.3x1075s (B.7)

HRWy(S) -1

MEY(s) s (B.8)

In the case of MEY is an input, the related transfer functions are:

wh ,(s) _ 0.1169

MEY(s) " s (B.9)
¢:(s) _ 0.0001929

MRV (s) ~ s3+1.089x1075s (B.10)
qs(s) 0.05845 s

MRV (s)  s3+1.089x1075s (B.11)

HgW,z(S) — __1

MEF(G) s ®12)

In the case of MZ'T is an input, the related transfer functions are:

wip.(s)  0.1415

MMTR (s) - (B.13)
q.1(s) B 0.07075 s

MYMTR(s) ~ 53 + 1.089x10-5s (B.14)
gs(s) _ —0.0002335

MYIR(s) ~ s34+ 1.089x1075s (B.15)
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MTR

In the case of M¢,,

wiy(s)  0.1439

Mé",’;R(s)_ s
q2(s) _ 0.07195s

MYTR(s) ~ s3 +3.3x1075s

q4(s) _0.0002374
MYTR(s) ~ s3 +3.3x1075s

In the case of MZ'T is an input, the related transfer functions are:

wh,(s) 01169
MYTR(s) s

¢:(s) _ 0.0001929
MYTR(s) s34 1.089x1075s

q3(s) 0.05845 s
MYTR(s) s34+ 1.089x1075s

In the case of Mp, , is an input, the related transfer functions are:

wip.(s) 0.1415
MD,x(S) S

q.1(s) B 0.07075 s
Mp(s)  s3+1.089x10 55

gs(s) _ —0.0002335
Mp(s)  s3+1.089x1075s
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is an input, the related transfer functions are:

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)



In the case of Mj,,, is an input, the related transfer functions are:

Wi,y (S) 01439
Mp ,, (s) S

q2(s) _ 0.07195s
Mp,(s)  s3+3.3x10"5s

q4(s) _ —0.0002374
Mp,(s)  s3+3.3x1075s

In the case of Mp, , is an input, the related transfer functions are:

wig 5 (s) _ 01169
MD,Z (S) S

a.(s) _ 0.0001929
Mp,(s) s34+ 1.089x105s

qs(s) 0.05845 s
Mp,(s) s34 1.089x105s

The transfer functions of reaction wheel model:

W () _ 1
My (s) 0.0005s + 10-©

Wew (s) B 0.1
V(s)  2.6x1076s2 4+ 0.001s + 0.1

My(s) 5x1075 +107°
V(s) 2.6x1076s2+ 0.001s + 0.1
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(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)

(B.33)



I(s) 5x107% + 107>
V(s) 2.6x1076s2+ 0.001s + 0.1 (B.34)

C. MATLAB /Simulink Functions and Model Files

MATLAB has some commands utilized in this study and helping to analyze the

properties of linear models, state space definitions and system stabilization.

Table 7-1 Useful MATLAB Functions

Func. Example Definition
0 sys = tf(numerator, tf() function is used to create transfer function
denominator) model represented in continuous time.

[A,B,C,D] = ssdata(tf) ssdata() function extracts matrix definitions

ssdata() .
[A,B.C,D] = ssdata(sys) from state space model or transfer functions.

ss() function is used to create state space
ss() sys = ss(A,B,C,D) _ _ _
model represented in continuous time.

damp() function gives the natural frequency,

wn,z,p] = damp(sys
damp() [ Pl P(sys) damping ratio and poles of a LTI model.

pole() function computes the system poles to

= pole(sys
pole() P = pole(sys) evaluate the stability.
pzmap() function computes both the system
pzmap() pzmap(sys) poles and zeros, plots them in a complex

plane.
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D. MATLAB /Simulink Model Blocks

The Simulink implementation for Detumbling Control (B-dot Control) of satellite attitude model:

TotallstTarque_Bocy

DM _givtit2Body.

EtmwTiansionFenineuls

Total Disturbance Tarque Mol

Ot Propagatee Medsl “Sun Posiion Made!

MaasuamaniFentineuls

Extenced Kaiman Fiter Mocel

Magresc Fargue Rod Model

-

Dipcte_Mamert

B cstEulerngles WOl B

Figure 8-1 B-dot Controller Design for Satellite Detumbling
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The Simulink implementation for PID Control of satellite attitude model:

Tolal Distuhance Targue Mol

Plis)

Fhis)

B} [

—8

Guaternion_Error

Quatemicn Ertar To Euler Angie Ertar

Cormaned_Torque

i

sunaTransianFakputs

o st o puts

esthnguiarveiodity_EKF

esstunermicn_EKF

8 By

MamDUTE o

» [ =

‘ctatar Madl MTR)

esttin_EHF

Guaiemion To Exier Angle

Ectmatad Angular Veiceity in

estEulsranges EKF

Figure 8-2 PID Controller Design with Desaturation for Satellite Attitude
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The Simulink implementation for LQR Control of satellite attitude model:

=
-
LA e —
bty EXF
B
Ortst Prugagece fodel Total Dsturtsin e Tocue Mosd —*
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i e
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Figure 8-3 LQR Controller Design with Desaturation for Satellite Attitude
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The Simulink implementation for SMC Control of satellite attitude model:

Julan Date Madel
w
TotalDistTorgue Body

<
-
o] =

Tetal Diturbance Terque Model

esbinguiarieiccly EKF
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S Ll i . . |
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Figure 8-4 SMC Controller Design with Desaturation for Satellite Attitude
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