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ABSTRACT

SPEAKER AND POSTURE CLASSIFICATION USING INSTANTANEOUS
ACOUSTIC FEATURES OF BREATH SIGNALS

İLERİALKAN, Atıl
M.S., Department of Modelling and Simulation

Supervisor: Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

Co-Supervisor : Prof. Dr. Alptekin Temizel

November 2019, 65 pages

Acoustic features extracted from speech are widely used for problems such as biomet-
ric speaker identification or first-person activity detection. However, use of speech
data raises concerns about privacy due to the explicit availability of the speech con-
tent. In this thesis, we propose a method for speech and posture classification using
intra-speech breathing sounds. The acoustical instantaneous side information was ex-
tracted from breath instances using the Hilbert-Huang transform. Instantaneous fre-
quency, magnitude, and phase features were extracted using intrinsic mode functions,
and different combinations of these were fed into a CNN-RNN network for classi-
fication. We also created a publicly available breath dataset, BreathBase, for both
our experiments in the thesis and future work. BreathBase contains more than 5000
breath instances detected on the recordings of 20 participants reading pre-prepared
random pseudo texts in 5 different postures with 4 different microphones. Using side
information acquired from breath sections of speech, 87% speaker classification and
98% posture classification accuracy is obtained among 20 speakers with this method.
The proposed method outperformed various other methods such as support vector ma-
chines, long-short term memory and combination of k-nearest neighbor and dynamic
time warping techniques.

Keywords: speaker recognition, posture recognition, hilbert huang transform, instan-
taneous frequency
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ÖZ

NEFES SİNYALLERİNİN ANLIK AKUSTİK ÖZELLİKLERİNİ
KULLANARAK KONUŞMACI VE DURUŞ SINIFLANDIRMASI

İLERİALKAN, Atıl
Yüksek Lisans, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi: Doç. Dr. Hüseyin Hacıhabiboğlu

Ortak Tez Yöneticisi : Prof. Dr. Alptekin Temizel

Kasım 2019 , 65 sayfa

Konuşmadan çıkarılan akustik özellikler, biyometrik konuşmacı tanımlama veya bi-
rinci şahıs eylemlerinin kestirimi gibi problemlerde yaygın olarak kullanılır. Ancak,
konuşma verilerinin kullanımı, konuşma içeriğinin açık bir şekilde kullanılabilir ol-
ması nedeniyle gizlilik konusundaki endişeleri artırmaktadır. Bu tezde konuşma ara-
larındaki nefes verilerini kullanarak konuşma ve vücut pozisyonu sınıflandırması için
bir yöntem öneriyoruz. Bu yöntemde akustik anlık yan bilgi, Hilbert-Huang dönü-
şümü kullanılarak nefes örneklerinden çıkarılır. Anlık frekans, büyüklük ve faz özel-
likleri, içsel kip işlevleri kullanılarak çıkarılır ve bunların farklı kombinasyonları, sı-
nıflandırma için CNN-RNN ağına beslenir. Ayrıca, hem bu tezdeki deneylerimiz hem
de gelecekteki çalışmalarımız için genel erişime açık bir nefes veri seti, BreathBase’i
oluşturduk. BreathBase, önceden hazırlanmış rastgele sözler içeren metinleri 4 farklı
mikrofonla 5 farklı vücut pozisyonunda okuyan 20 katılımcının kayıtlarında tespit
edilen 5000’den fazla nefes örneği içermektedir. Konuşmanın nefes bölümlerinden
elde edilen yan bilgileri kullanarak, bu yöntemle 20 konuşmacı arasında % 87 konuş-
macı sınıflandırma ve % 98 duruş sınıflandırma doğruluğu elde edilmiştir. Önerilen
ağ ayrıca SVM, LSTM ve kNN-DTW tekniklerinin birleştirilmesi gibi diğer yöntem-
lerden daha iyi performans göstermiştir.

Anahtar Kelimeler: konuşmacı tanıma, duruş tanıma, hilbert huang dönüşümü, anlık

frekans
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Breathing is a central part of human speech and while it frequently happens during
speech production, it is often ignored as it does not contain any distinct perceptual
information. However, it can easily be used as an input into biometric verification
systems [1] as it is impossible to imitate because it depends on the speaker’s phys-
iology (e.g. lung volume, larynx, oral and nasal cavities) that varies strongly from
person to person. Therefore, it can be used as a control and verification mechanism
against speech-based biometric attacks and impersonations [2]. Due to the privacy
and data protection laws and regulations, the storage and use of spoken content may
not always be possible. On the other hand, breathing can be processed without us-
ing any speech content and converted into useful side-channel information by way
of acoustic signal processing. It is a very universal and valuable tool since the infor-
mation to be extracted from the breath is independent of the spoken content and the
language used. In the case of people with disabilities and during emergencies, any
information that can be obtained from breathing sounds could be of great importance.
In this work, we explore the use of the information gathered from breath signals.

1.2 Proposed Methods and Models

We propose methods of feature embedding using Hilbert-Huang Transform and net-
work architectures consisting of convolutional and recurrent neural network layers to
solve a classification problem using this time-series, multi-class data.

The proposed approach is based on the observation that breathing signals are not
stationary, meaning that Fourier-based methods —at least theoretically— are not ap-
propriate for analyzing breathing sounds. For that reason, we proposed a method
using features extracted from breathing sounds using the Hilbert-Huang transform.
Namely, we use time-varying instantaneous frequencies, instantaneous magnitudes,
and instantaneous phases as features that are fed to an RNN network which is known
to be an effective classifier for time series data. The classifier is trained using data
labeled for different postures and speakers. The results indicate that the proposed
approach is feasible in classifying both postures and speakers.
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1.3 Contributions and Novelties

The main contributions of this thesis are as follows:

• Development of a new and publicly available dataset consisting of human breaths,
BreathBase.

• Use of the instantaneous features extracted from breath instances for speaker
and posture classification.

• A speaker and posture classification model using instantaneous acoustical fea-
tures.

1.4 The Outline of the Thesis

This thesis is structured as follows. In the second chapter, current studies in the field
and theoretical information about the extracted features are presented. In the third
chapter, more practical information is given with representations and reasons for the
choices of used methods. The fourth chapter provides information on the collected
data, phases of collection and collecting environment. Experimental evaluation and
results are provided in the fifth chapter. A chapter consisting of final thoughts and
conclusive inferences ends this thesis.

2



CHAPTER 2

BACKGROUND

2.1 Current Literature on Acoustical Analysis of Human Breath

Analysis of human breath is a prevalent topic in areas such as health sciences and en-
gineering. Breathing sounds can be used to reveal a variety of different information
about a speaker because the process of breathing depends on specific physiological
condition of the speaker [3]. Diagnosis of respiratory diseases and biometric verifica-
tion are some sample applications using human breathing sounds. For the intentions
of this thesis, we will mainly focus on the studies in the field of engineering. In the
area, mostly the detection and exact demarcation of human breath and its phases have
been studied. Among these, some studies use mel-frequency [4, 5, 6, 7] or i-vector
[8] based approaches for feature extraction, while others use raw breath recordings
[2, 9, 10]. Automatic classification of breath types and phases is another area of
study [11, 12, 13]. As for speaker recognition, some studies work with breathing
alone, while others include all non-speech sounds in association with breath signals
[8, 2, 14, 15, 16, 17, 1]. Some of them have focused on the detection and removal
of breath signals and other non-speech sounds in order to exclude them for a better
speech recognition [18, 19]. Some specific studies only deal with nasal breathing or
inhalation, while the majority do not [12, 20]. The relationship between breathing
statistics and human emotions is also among the research areas [21, 22]. In the data
sets subject to the studies, various participants or recordings from theater actors to
vocal artists, songs to television and telephone records were used [5, 6, 7, 23]. In
order to collect these recordings, many different devices were used together with or
without microphones, including different near/far-field sensors, imaging devices and
respirators, especially used in the health field [24]. Most of the engineering studies
in the field of health were carried out for the detection of snoring and respiratory
diseases and anomalies [10, 13, 25, 26].

2.2 Stationarity of Breath

On a long-term basis, speech signals are not stationary. This being said, when the
windows of 20-30 milliseconds of sizes were analyzed over time, it is assumed to pro-
vide approximately stationary characteristics because of their slowly-varying nature.
In fact, due to this behavior, speech signals are often referred to as quasi-stationary or
short-time stationary signals [27, 28, 29]. However, non-stationary parts of the speech
such as various accents, emphasis and different pronunciations of monophthongs and
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diphthongs challenges this stationarity even inside of the given analysis window [30].
Besides, methods admitting this stationarity (i.e., mel-frequency cepstral coefficients)
cannot accurately detect localized events like intra-speech breathings [31].

Breath signals, on the other hand, are not stationary even when examined in short pe-
riods because of the changing levels and/or direction of the airflow, changing volume
of lungs and changing turbulence around the mouth while breathing[32, 33]. It also
shows variance depending on age, mass, current state and history of pathologic and
physiologic state [34, 35, 36]. In order to assess the stationarity of breathing sounds,
we ran the Augmented Dickey-Fuller (ADF) test on breath samples. ADF test is a
statistical hypothesis test. Its null hypothesis is that a unit root is present in a time
series data, meaning non-stationarity. So, more negative ADF statistic means more
stationary data. Test also yields p-value and critical ADF values for comparison. The
below table summarizes the number of stationary and non-stationary samples accord-
ing to different probable critical values. It also shows the percentage of non-stationary
samples to all samples in the dataset.

Table 2.1: Classification Results of ADF Test for BreathBase

Critical p-value = 0.01 Critical p-value = 0.05 Critical p-value = 0.10

St. Non-St. % St. Non-St. % St. Non-St. %

783 4287 84.56% 999 4071 80.3% 1177 3893 76.79%

Critical Adf-Stat = 0.01 Critical Adf-Stat = 0.05 Critical Adf-Stat = 0.10

St. Non-St. % St. Non-St. % St. Non-St. %

232 4838 95.43% 419 4651 91.74% 802 4268 84.19%

After reviewing the results in Table 2.1, ADF test revealed that stationarity does not
hold for most of the tested samples. Having established the non-stationarity of breath-
ing sounds, it is not meaningful to use features extracted using Fourier series-based
methods. For example, it is practically possible to analyze breath signals using MFC
Coefficients, but in theory, it does not provide detailed information that can be used
to analyze detailed psychophysical status. Therefore, we used the Hilbert-Huang
transform (HHT) method; which does not assume stationary or linear processes and
provides instantaneous frequency, phase and amplitude data, can be used in the anal-
ysis of such signals. In this thesis, we extracted these instantaneous features from
breath signals and classified them using several machine learning methods.

2.3 Hilbert-Huang Transformation

The Hilbert-Huang transformation (HHT) is useful for performing time-frequency
analysis on signals and data from nonlinear and non-stationary processes, which most
of the natural processes are. Other than sound processing [37, 38, 39, 40, 41, 42, 43],
HHT has various applications in engineering, biomedical, financial and geophysical
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fields [44]. It aims to overcome one of the most important constraints of Fourier-based
methods (such as short-time Fourier transform), the (short-time) stationarity. Instan-
taneous frequency (including instantaneous amplitude and phase) extracted from the
data allows an analysis and the characterization of the underlying process.

The method is based on decomposing signal into intrinsic mode functions (IMF),
which are recursively obtained from the signal itself, rather than the complex expo-
nential functions used in the Fourier transform. HHT consists of two stages; empirical
mode decomposition and Hilbert transform [45].

2.3.1 Empirical Mode Decomposition

One major problem for the instantaneous frequency to be practical was its use on
functions that consist of multiple other functions, so-called "modes". Empirical mode
decomposition resolved this problem by expressing a non-stationary, multicomponent
signal as a linear combination of multiple intrinsic mode functions (IMF) with differ-
ent amplitudes and from which instantaneous frequencies can be calculated.

Figure 2.1: Decomposition of a section of a breath sample

An x(t) signal with time support between [0, T ] which is non-stationary, consisting
of some unknown p number of IMFs, can be expressed as follows:

x(t) =

p∑
k=1

ck(t) + r(t) (2.3.1)

where ck(t) is the kth IMF and r(t) is the residual signal. These IMFs are obtained
recursively by a sifting process. This process is carried out algorithmically as follows
until a certain stop condition is met.
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• First, all local extremes in the signal are found.

• All local maximum and minimum values are combined to form upper and lower
envelopes, respectively, using cubic splines.

• Accordingly, the average of the envelopes (m1) is calculated and subtracted
from the original signal (x(t)): h1 = x(t)−m1

• After that, h1 is checked for criteria for being an IMF (defined in 2.3.1.1). If
not satisfying these, h1 treated as proto-imf and this process is repeated until it
does, using itself as data: h11 = h1 −m11

• After sifting is repeated for n iterations, h1n becomes the first imf (c1) and
subtracted from the original signal: r1 = x(t)− c1

• The remaining residue signal (r1) is handled as data and all steps are repeated
until there is no IMF remaining in the residue signal or a stopping condition.

After each cycle of decomposition, the information remaining in the residue signal
decreases, so each IMF carries less information than its predecessor. Therefore, the
number of already decomposed IMFs or the stationarity of the remaining residue
signal may be defined as a stopping criterion for the number of IMFs (nimf ) extracted
from the signal[46].

2.3.1.1 Intrinsic Mode Functions

Intrinsic mode functions are monocomponent functions which satisfy the following
conditions:

• number of zero crossings differ from the number of extrema with a maximum
value of one and

• mean value of the envelope is close to zero.
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Figure 2.2: Intrinsic Mode Function of a section of a breath sample

2.3.1.2 IMF Normalization

Instantaneous frequencies(or frequency), by definition, should not have negative val-

ues. However, for IMF signals whose amplitude-modulated envelope is changing

directions frequently (not slowly variant as opposed to explanations in section 2.3.2),

negative values are inevitable [47]. For more accurate calculations of instantaneous

frequencies, these IMF signals should be normalized first. This process is carried out

with, first constructing an envelope from extremes of the absolute value of the IMF is

obtained. Then, the IMF is normalized by dividing it with this envelope. This process

is repeated until the IMF’s envelope resembles a straight line with an identical value

at the desired precision prior to Hilbert Transform. These normalizations solve most

of the problems, but in rare conditions, they can still occur [48].
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(a) Original Signal (b) First Iteration

(c) Third Iteration (d) Last Iteration

Figure 2.3: Steps of an IMF Normalization Process

2.3.2 Hilbert Transform

For extracting instantaneous frequency, Hilbert Transform is applied to any real-
valued signal x(t) to get an analytical signal with the complex conjugate y(t). The
analytic pair z(t) then can be defined as:

z(t) = x(t) + iy(t) = a(t)eiθ(t) (2.3.2)

where a(t) being instantaneous amplitude as:

a(t) =
√
x(t)2 + y(t)2 (2.3.3)
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and θ(t) being phase function as:

θ(t) = arctan(
y(t)

x(t)
). (2.3.4)

From there, the instantaneous frequency can be defined as:

ω =
∂θ

∂t
. (2.3.5)

Please note that these equations hold for any slowly varying function according to the
classical wave theory [49].

For each IMF signal, firstly Hilbert transform is applied to construct imaginary parts
of real-valued signals and obtain an analytical signal. The original signal, as the actual
part of the analytical signal, can be expressed as follows:

x(t) = <
[ p∑
k=1

ake
iωk(t)t

]
(2.3.6)

Here, ak and ωk are constant, amplitude and frequency modulations are also separated
from each other. This frequency-time distribution of the signal amplitude is called the
Hilbert spectrum. From this formula, instantaneous energy (‖ak‖2) and instantaneous
frequency (∂ωk

∂t
) can be calculated. If we calculate the instantaneous frequency, first,

the phase of the analytical signal is calculated and unwrapped. Then, the derivative
of this phase is taken and the instantaneous frequency(in Hertz) is found with the
following formula:

finstant(t) =
1

2π

∂θ

∂t
× Fs (2.3.7)

where Fs is the sampling frequency of the discrete time signal.

Below is a graphical comparison of the instantaneous frequency and the short-time
Fourier transform (STFT) generated from an amplitude modulated sinusoidal chirp
signal of which the frequency increases from 20 Hz to 100 Hz. It may be observed
that instantaneous frequency extracted using HHT is able to identify changes in the
frequency exactly, while STFT cannot accurately identify them, but approximates.
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Figure 2.4: HHT vs STFT
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CHAPTER 3

DATA COLLECTION

3.1 Participants

Breath data used for the experiments were collected in the Spatial Audio Research
Group (SPARG) Laboratory in Modelling and Simulation Center in METU. A total
of 20 volunteers (will be referred to as participants hereafter) who are active licensed
football players participated in the data collection study. Participants were selected
among professional athletes since their good medical condition is endorsed by medi-
cal professionals. A copy of medical reports was presented by each volunteer prior to
recording.

Gender and age diversity was also taken into consideration for the validity and in-
tegrity of the research findings. An equal number of men and women (10 from each)
ranging from 20 to 30 years old attended the study.

3.2 Text

Each participant was requested to read one and a half pages long texts from "The
Sorrows of Young Werther" of Johann Wolfgang von Goethe and "The Metamorpho-
sis" of Franz Kafka. The sequence of original texts was randomized and translated to
Turkish with Google Translator to make them unintelligible with the purpose of not
giving any emotional cues or orientations to the participants. In order to avoid the
occurrence of pauses like silences, emphasis and filled pauses (like ’umm’ voices)
while reading, the entire text was decapitalized and all punctuations were removed.

3.3 Recording Postures

Each participant was handed a randomized, slightly different text to read in 5 different
postures (sitting, low sitting, standing, hands behind head, lying). Details of these
postures are given in the remainder of this section.
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3.3.1 Sitting Posture

This position gives a default sitting posture to the speaker with both hands holding the

text and facing forward as possible. Lower one of the frontal microphones is aligned

to be at the same level as the speaker’s head with a distance of 1.5 meters.

(a) Front view (b) Side view

Figure 3.1: Sitting Position

3.3.2 Low Sitting Posture

This position gives a lower sitting posture to the speaker with both hands holding

the text, legs and knees pressuring diaphragm, facing forward as possible. The lower

frontal microphone is aligned to be at a distance of 1.5 meters from the speaker’s

head, horizontally.
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(a) Front view (b) Sideview

Figure 3.2: Low Sitting Position

3.3.3 Standing Posture

This position gives default standing posture to the speaker with both hands holding

the text, facing forward as possible. The higher frontal microphone is aligned to be at

the same level as the speaker’s head with a distance of 1.5 meters.

(a) Front view (b) Sideview

Figure 3.3: Standing Position
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3.3.4 Hands Behind Head Posture

This position gives an alternative standing posture to the speaker with hands behind

the head, providing as much volume to the lungs as possible, also facing forward as

possible. Text is standing on a table in front of the speaker, 1.3 meters above the floor,

easily readable. Higher one of the frontal microphones is aligned to be at the same

level as the speaker’s head with a distance of 1.5 meters.

(a) Front view (b) Sideview

Figure 3.4: Hands Behind Head Position

3.3.5 Lying Posture

This flat position with chest up alignment gives an alternative posture to the other

positions with regards to the direction of the gravitational force. Speaker lies while

holding the text with both hands, facing upwards as possible. Another microphone is

aligned to be 1.5 meters above the face of the speaker.
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(a) Front view (b) Sideview

Figure 3.5: Lying Position

3.4 Studio

Recordings were collected at the METU SPARG Lab which is a specially designed
acoustic booth with very low reverberation (T60 = 80ms). The studio room has
no parallel walls, including the floor and the ceiling in order to eliminate standing
waves. As a result of this specific design and sound insulation materials used for the
construction of the studio, it has a maximum background noise level of 40 dB (SPL).

3.5 Recording Setup

3.5.1 Microphones

Near- and far-field microphones were used for the recordings. Far-field microphones
were placed considering having equal distanced microphones from the speaker’s head
for most of the recording postures and kept stable for each recording. Far-field mi-
crophones used for the recordings are three of Rode M5 cardioid condenser micro-
phones. One pair was used in front of the speaker with 1.3 and 1.7 meters above
ground, respectively, and at a 1.5 meters horizontal distance from the speaker’s head
during sitting and standing positions. The third one was placed 1.7 meters above the
ground, facing down, approximately 1.5 meters away from lying speaker’s face. The
horizontal distance of this microphone to the standing and sitting positions were also
set to 1.5 meters.

Near-field microphone was a DPA 4060 lavalier microphone. It was place placed next
to the speaker’s mouth.
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3.5.2 Audio Interface

MOTU 896mk3 Hybrid Audio Interface was used for translating 4 channel, analog
signal to 48kHz sampled digital signal with Audacity 2.1.2.0 software. Microphones
were assigned to channels as follows:

• Channel 1: Near-field (placed near the mouth)

• Channel 2: Front-Higher

• Channel 3: Front-Lower

• Channel 4: Behind

3.5.3 Recording Process

First, each participant was familiarized with the laboratory and the recording studio.
All the positions were demonstrated on-site and following instructions were given:

• The text you will read is purposefully devoid of meaning. Do not pay attention
to the content while reading. Read as natural and neutral as possible.

• Read your name and position before starting a text in a new position.

• Try to face forward in every posture.

After the participant was informed about the process and instructions, the first text
was handed and recording started once the door of the recording room was closed.
After the participant completes the reading, the recording is finished and the instructor
enters the recording room to set it up for the next position. Position list is given in
section 3.3. When all of the positions are complete, recordings are trimmed to have
only readings and they are ready for breath extraction.

3.5.4 Dataset

For splitting breath portions from voices, a set of basic methods were applied. First,
the recording was divided into sections with 1-millisecond length and energies of
these sections were calculated. It is known that the level of a normal human con-
versation is around 60-70 dB SPL. When the energy of a section is dropped under
40dB, that section was marked as the beginning of a breath. Any next section which
has more than 25dB energy was marked as the end of the breath. It is also known
that breath signals have edges on both ends, just before and after the breath event [7].
Thus, every marked breath candidate was trimmed from both ends using minimum
energy points of both halves. Since intra-speech breathing takes around 0.2 to 1.0
seconds [6], final duration thresholding was applied and final breath sections were
acquired.
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Figure 3.6: A sample breath candidate plot

Zero crossing rate parameter was also investigated for better demarcation, but signif-
icant improvement over level-based segmentation was not observed. Breath candi-
dates were compared with human markings and all breath events were found with a
false positive rate of 0.2479. When these false positives were eliminated, a total of
5070 breath instances were selected (out of 6742 candidate) for 20 participants and 5
postures for each participant.

3.5.5 Post-Processing

After recordings were completed, we noticed a background noise generated in lower
frequencies of the recordings of far-field microphones. This behavior is due to the
acoustic characteristics of the diaphragm of the condenser microphones [50]. To
remove the effects of this noise, we applied a simple high-pass (roll-off) filter with a
cutoff frequency of 70Hz and a filter size of 4097.
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Figure 3.7: Magnitude response of the high-pass filter used for removal of the low-

frequency noise from the recordings in the database

The effects of the filter on a breath instance can be seen on each channel in the fol-
lowing figure.

Figure 3.8: Effect of high-pass filtering
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Also, detailed energy and amplitude curves of the breath instances resulted in more

general trends after filtering, as can be observed below.

(a) Amplitude Before Filtering (b) Energy Before Filtering

(c) Amplitude After Filtering (d) Energy After Filtering

Figure 3.9: Effects of Filtering on Breath Instances

After noise is removed, we syncronized data from all channels using cross-correlation,

to remove the delays from sound propagation. This is necessary in order to prevent

the classifiers used to adapt to delays in data. An example of detected amounts of

delays can be seen in the following figure.
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Figure 3.10: Detected Edges of Breath with Syncronization. The dotted lines indicate

the range of delays

3.5.6 Length Analysis

When we analyzed our breath instances, we noticed that more than 90% of our data
is shorter than 600 milliseconds. Using this characteristic, we implemented a param-
eter to shrink our data size for classification with more samples (explained in 5.2.2).
Below is the graphic of length distribution of breath instances in the BreathBase.
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Figure 3.11: Length Analysis of BreathBase

3.5.7 Class Analysis

After analyzing the number of breath instances per each class, we noticed that all of
our speaker classes have more than 100 examples (except one). This information let
us to create a smaller version of the dataset with from instances from all speakers, to
mature our models (explained in 5.2.2). Below is the graphic of class distribution of
breath instances in the BreathBase. Please note that the minimum number of instances
is 89, the maximum number of instances is 710 and the average for all classes is 253.5
breath instances.
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Figure 3.12: Class Analysis of BreathBase
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CHAPTER 4

CLASSIFICATION OF INTRA-SPEECH BREATHING

In this chapter, we will be explaining our parameters for feature extraction and our
classification models for the best use of these features.

4.1 Feature Modes

For our experiments, following instantaneous acoustic features were extracted from
IMFs: 1. Instantaneous Frequency, 2. Unwrapped Phase and 3. Magnitude. These
features, extracted from both normalized and initial versions of IMFs, were used for
the experiments. Also, multiple selections from these features were concatenated to
have a feature vector with a greater length (lvec) to work with. Following options were
implemented for the feature extraction phase:

• [ Frequency ] : lvec = nimf

• [ Magnitude ] : lvec = nimf

• [ Phase ] : lvec = nimf

• [ Normalized Frequency ] : lvec = nimf

• [ Normalized Magnitude ] : lvec = nimf

• [ Normalized Phase ] : lvec = nimf

• [ Frequency + Magnitude ] : lvec = nimf · 2

• [ Magnitude + Phase ] : lvec = nimf · 2

• [ Frequency + Phase ] : lvec = nimf · 2

• [ Frequency + Normalized Frequency ] : lvec = nimf · 2

• [ Magnitude + Normalized Magnitude ] : lvec = nimf · 2

• [ Phase + Normalized Phase ] : lvec = nimf · 2

• [ Frequency + Magnitude + Phase ] : lvec = nimf · 3
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4.2 Channel Modes

Recording channels were also used all at once in the feature vector or each channel
separately, representing different recording conditions. There are multiple variations
of these channel modes using the given features extracted:

• Separate and Front Channels:
For the cases where each channel was treated as a separate recording con-
dition and their classification rates were investigated, separate channel mode
was used for any of the four channels. Another derivation from this mode
was using only the channel recorded by a microphone directly 1.5 meters in
front of the speaker. This option also selects one channel for each recording
but, for recordings at sitting positions channel 2, standing positions channel 3
and lying positions channel 4 is selected as feature source. For these options
feature matrix(Mfeat) and input space(Sinp) are constructed using number of
recordings(nrec), number of time samples in the recording(nts) and extracted
feature vector length (lvec) as below:

Mfeat = nts × lvec
Sinp = nrec ×Mfeat

(4.2.1)

• Split Channels:
For the cases where we needed to measure performance with more data, we
used each channel as a separate recording. Since we have 4 different chan-
nels (nchn), this approach increased the number of recordings by 3 times. This
way, slightly different recordings are considered as augmented versions of the
recordings with different conditions. For these options, feature matrix and input
space are constructed as below:

Mfeat = nts × lvec
Sinp = (nrec · nchn)×Mfeat

(4.2.2)

• Overlapped Channels:
These modes were used for augmenting feature vector by increasing its length.
We concatenated feature vectors from the next 3 samples after the sample’s
vector. This option was applied beside other channel modes as an alternative
for investigating the effects of vector length. Although the number of time
samples in a recording was shortened by 3, total feature matrix extended like
below:

Mfeat = (nts − 3)× (lvec · 4)
Sinp = nrec ×Mfeat

(4.2.3)

• All Channels:
These variations were used to classify using also the information in-between
channels along time-series. For each time step, feature vectors from all chan-
nels were concatenated into one vector and used accordingly.

Mfeat = nts × (lvec · nchn)
Sinp = nrec ×Mfeat

(4.2.4)
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Although it did not affect the size of input space in any way, three different im-
plementations of this channel mode, altering channels’ orders while concate-
nation were also developed. In the regularly ordered variation, each channel
was concatenated with the default order given in 3.5.2. For the randomized
in unison variation, some randomized order of channels were applied to all
recordings and features were concatenated with that same order along with all
recordings. In the last variation, the channel concatenation order is randomized
for each recording.

4.3 Classes

For our experiments, we classified recordings both by speaker identity and recording
posture. For speaker classification, number of classes (ncls) increased over time. Ini-
tial experiments (see chapter 5) started with 5 speakers, but at the complete dataset,
there are 20 different participants. For the posture setting, we classified each of the
postures differently by mapping them to 5 different classes and also grouped postures
into 3 classes as sitting, standing and lying. High and low sitting positions are merged
under one class, just as two standing positions.

4.4 Classification Methods

In this section, our classification algorithms are examined from different aspects with
implemented variations and the architectures are explained with parts constructing the
classifier itself. Please note that our classification process is divided into two phases
for changes in data post-processing (refer to 3.5.5), classification architectures (refer
to 4.4.6) and callback mechanisms (refer to 4.4.5). Methods were also implemented
to minimize the effects of different step sizes (refer to 5.2) for fitting maximum data
into limited memory.

4.4.1 Layers

4.4.1.1 Convolutional Layers

Convolutional networks are applicable to many types of data in array form and they
exploit local correlations in the array of the data. Since we have continuous, time-
series sound data, we anticipate that the feature vectors of neighboring time steps
convey strong relations in-between. Convolutional layers were used to identify these
correlations in a hierarchical manner and extract low to high levels of features.
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Figure 4.1: Two Layer 2D Convolution

4.4.1.2 Recurrent Layers

Convolutional networks model invariances across space, recurrent neural networks
(RNN) do something similar across time using units to act as memories. Long Short-
Term Memory (LSTM) [51] units are better alternatives for time-series classification
problem because of preventing gradients from vanishing. LSTM layers were used to
identify correlations on time domain, based on already dense high-level features ex-
tracted by the convolution layers, to support sequence classification. A simpler variant
of LSTM units, Gated Recurrent Units (GRU) [52] was also used for its simplicity
since we needed to fit larger data with computationally more efficient architectures
due to memory limitations [53]. GRUs combine LSTM’s forget and input gates into
a single update gate and also merge the cell state and hidden state.

Figure 4.2: LSTM vs GRU
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4.4.2 Optimization Methods

4.4.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent algorithm implements a way to minimize an objective
function J(θ) by updating model parameters (θ) according to learning rate (η), in
opposite direction of the gradient. Generic update function of the algorithm (can be
referred to as vanilla or batch gradient descent) is:

θ = θ − η · ∇θJ(θ) (4.4.1)

where ∇θJ(θ) is the gradient of the objective function with regards to the model pa-
rameters [54]. Among the variations of this algorithm, the difference is the amount
of data used per update, in other words, when to update. Stochastic Gradient De-
scent calculates the update of the parameters of the network for a number of random
inputs of each batch. Because of this approach, it works much faster than other vari-
ations (batch or mini-batch gradient descent) and allows online learning, but suffers
from heavy gradient fluctuations because of the frequent updates. Update function of
Stochastic Gradient Descent is:

θ = θ − η · ∇θJ(θ;x
(i); y(i)) (4.4.2)

where x(i) and y(i) is each example’s input-output pair.

4.4.2.2 SGD with Nesterov Accelerated Gradient

Stochastic Gradient Descent with Nesterov Momentum aims to mitigate the fluctua-
tions of the SGD algorithm. The main idea is accumulating the previous steps’ ve-
locity vector and correcting the current update of gradient [55]. Nesterov momentum
smooths the updating process and removes the fluctuations.

vt+1 = µ · v − η · ∇θJ(θ;x
(i); y(i))

θt+1 = θt + vt+1

(4.4.3)

where µ is momentum coefficient, vt+1 is the velocity vector of current update and
θt+1 is the current gradient update.

4.4.2.3 Root Mean Square Propagation

Root Mean Square propagation (RMSProp) algorithm [56] is another derivative of
gradient descent algorithm with adaptive learning rates. The algorithm computes the
gradient of the batch by dividing it by a running average of its previous magnitudes
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of recent gradients. So RMSProp uses derivates an exponentially decaying average
to discard history from the extreme past.

g = ∇θJ(θ;x
(i); y(i))

rt+1 = ρrt + (1− ρ)g � g

θt+1 = θt −
ε

δ +
√
r
� g

(4.4.4)

where g is the current gradient, rt+1 is the gradient accumulation variable of current
update, ρ is decay rate, ε is a small constant to stabilize the divison, θt+1 is the current
gradient update, and � is element-wise multiplication operator.

4.4.2.4 Adaptive Moment Estimation

Adaptive Moment Estimation (Adam) [57] algorithm can be thought as a combination
of RMSProp and Nesterov momentum with a few important distinctions. Adam uses
the first-order moment of gradient and bias-corrected momenta.

g = ∇θJ(θ;x
(i); y(i))

s = ρ1st + (1− ρ1) g
r = ρ2st + (1− ρ2) g � g

st+1 =
s

1− ρt1
rt+1 =

r

1− ρt2
θt+1 = θt − ε

st+1√
rt+1 + δ

(4.4.5)

where s is biased first moment estimate update, r is biased second moment estimate
update, st+1 is correction of first moment, rt+1 is correction of second moment θt+1

is the current gradient update.

Also, Nadam(an exact combination of RMSProp and Nesterov momentum, excluding
distinctions) and Adamax (where ρ is infinity so, Adam with infinity norm) variants
of Adam algorithm were used in the experiments.

4.4.3 Loss Functions

Categorical cross-entropy is intended for use with multi-class classification where
each class is assigned a unique value, from 1 to n. It is the preferred loss function
under the inference framework of maximum likelihood. Cross-entropy calculates a
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score that summarizes the average difference between the actual and predicted prob-
ability distributions for all classes in the problem. Aim of a network architecture is to
minimize this loss and a perfect cross-entropy value is zero.

H(p, q) =
∑
i

pi log
1

qi
. (4.4.6)

Kullback Leibler Divergence (KL Divergence) is a measure of how similar a prob-
ability distribution p is to a candidate distribution q. A KL divergence loss of zero
suggests the distributions are identical. In practice, the behavior of KL Divergence is
very similar to cross-entropy. It calculates how much information is lost if the pre-
dicted probability distribution is used to approximate the desired target probability
distribution.

DKL(p|q) =
∑
i

pi log
pi
qi

(4.4.7)

And from that, we can show the relationship in-between as below.

H(p, q) = H(p) +DKL(p|q). (4.4.8)

4.4.4 Activation Functions

Activation functions determine the output of a neuron in a neural network. These
functions determine whether a node is activated or not, based on the neuron’s input.
Their outputs range between 0 to 1 or -1 to 1. Following activation functions (in the
form of y = f(x)) were used during our experiments.

• Hyperbolic Tangent: y = tanh(x)

• Linear: y = x

• Rectified Linear Unit (ReLU): y = max(0, x)

• Sigmoid: y = 1
1+e−x

• Softmax: y = xi∑
x

4.4.5 Callback Functions

A set of callback functions are introduced to networks (in Phase 2) to be applied at
given stages of the training procedure. The following functionalities are implemented.

• Model Checkpoint: After every epoch of the training, validation loss is calcu-
lated and the model with the least validation loss is saved (with its weights) for
later use while ensembling models.

• Early Stopping: Training is stopped after 45 epochs of training without a vali-
dation loss drop more than 10−4.
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• Learning Rate Reduction: Learning rate is halved (up to 5 times) after 10
epochs of training without a validation loss drop more than 10−4. After ev-
ery learning rate reduction, a cooldown period of 10 epochs is also applied and
calculations started after that.

4.4.6 Architectures: Phase 1

4.4.6.1 Initial Network: CNN-LSTM

Following initial network architecture was developed for exploring performances of
different feature variations.

Figure 4.3: Network Archictecture1

In the input layer, extracted features from each time sample were fed to the network
as a time-series data. These data were convolved with 8 filters with a kernel size of
48 timesteps (corresponding to 1 millisecond for 48khz sampling rate). Stride was
given the same size as the kernel, so no overlapping occurs. Values read by 8 filters
with the size of 48, at each 48 timestep updated weights with the application of ReLU.
This function was chosen as a decision rule at the first layer to eliminate the unwanted

1Size of the convolved features differs depending on feature mode, channel mode and sampling rate
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effects of possible negative values that came from the nature of the HHT, as described
in section 2.3. Due to its simplicity (which affects computational cost) and ability to
return absolute zero (instead of approximations to zero), this function was chosen.

In the second layer, the number of filters was doubled and kernel sizes halved. Thus,
higher-level features were extracted in a more detailed fashion with more and smaller
filters. No overlapping approach and the same activation function were kept for this
layer.

Figure 4.4: An example of 2 LSTM layers connected to a Dense layer

These higher-level features were fed into the first LSTM layers with 4ncls units and
for each input, 4ncls sequences were passed to the second LSTM layer. Classification
weights are gathered at the final step from 2ncls units of LSTM layer and condensed
with a softmax activation for acquiring the highest probable class in a one-hot vector
form. The hyperbolic tangent activation function is the most commonly used activa-
tion function in LSTMs[58]. Since ReLU did not yield better results[59] and we did
get the best results with hyperbolic tangent in initial experimentation (see chapter 5),
we adopted this function in our network.

Figure 4.5: Softmax Activation Function
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Softmax activation function was used in the Dense layer for getting probabilities of
different classes and making a prediction based on that. Since softmax returns prob-
abilities according to the rate of the exponential magnitude of an input value over the
sum of all inputs, it is a well-suited option to choose.

4.4.6.2 Version 2: CNN-LSTM with Dropout

After examining the results of the first version of the classifier network, a second
version of the network is implemented. In this version, 2 additional convolution layers
were implemented to have better localization on data and 3 additional dropout layers
with 0.5 drop rate is inserted in-between convolution layers to reduce the effects of
the overfitting problem with increased localization. In this model, we also decreased
the strides in convolutional layers to grasp more from time-series and to provide more
information to LSTM layers.

Figure 4.6: Network Archictecture: Version 2
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4.4.7 Architectures: Phase 2

4.4.7.1 Version 3: CNN-GRU

After the second version of the network provided better results, we implemented a
similar architecture with GRU layers, instead of LSTM ones. Since we had all the data
collected and available for us in Phase 2, we needed a model with a lower computa-
tional cost. On the ensembling side, this model gathered information from high-level
features with 4 layers of convolution but had issues with larger step sizes because of
the same reason.

Figure 4.7: Network Archictecture: Version 3

4.4.7.2 Version 4: CNN-GRU, Balanced

Since the GRU counterpart of the model architecture yielded better results, we im-
plemented a more balanced version of the previous model. Since the previous model
suffers from larger step sizes, we dropped one convolution layer from architecture.
We also increased the number of filters in each layer of convolution and inserted
dropout layers in-between to reduce overfitting. On the ensembling side, this model
learned from mid-level features of the data with filters with greater sizes and less
number of convolutional layers.
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Figure 4.8: Network Archictecture: Version 4

4.4.7.3 Version 5: CNN-GRU, Less Dropout

We also implemented another version of the previous network with a lower drop rate
for the better overall performance of ensembled models for variant step sizes.
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Figure 4.9: Network Archictecture: Version 5

4.4.7.4 Version 6: CNN-GRU, Simple Architecture

Another model is implemented for grasping low-level information from data. Since
we have all instances available in Phase 2, enough training data can provide better
resolution of relations in-between low-level features (especially after using all data
instead of allSmall set, as explained in 5.2.2). Also, for ensembling, this model
learned from low-level features in data and grasped different connections from other
models to increase variety.
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Figure 4.10: Network Archictecture: Version 6

4.4.7.5 Ensemble

For ensembling models, we put pre-trained models together and connected them to
the same input layer. After the output of each model is generated, we took the re-
sulting array’s average to create ensembled probabilities for each class. By creating
models aimed to grasp relations differently, we planned to improve our classification
rate more than a single model can.
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Figure 4.11: Network Archictecture: Ensembled
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CHAPTER 5

EVALUATION

5.1 Evaluation of Dataset

Our dataset, BreathBase, was constructed from recordings of 20 participants, pos-
sessing more than 250 breath samples per-speaker (on average), recorded in a studio
with a maximum background noise of 40 dB SPL and with professional recording
equipment. It also provides tagging for 5 different postures and 4 different channels
as different recording conditions for data variety. At the time of writing this thesis,
there were no other datasets available neither for this purpose specifically nor as vari-
ationally rich. We consider our soon to be a publicly available dataset, BreathBase,
as a contribution of our work.

5.2 Evaluation of Classification Method

Development of our main classification method, CNN-RNN algorithm started on ear-
lier stages of data collection. The first successful run was completed on a 4 people
dataset with nearly 800 breath instances, using pure Tensorflow API on GPU. All
experiments conducted on a Windows 10 computer having 4-core 8-thread 2.8GHz
CPU, 4GB GDDR5 GPU and 16GB 2400MHz RAM. Detailed specifications of the
Nvidia GeForce GTX 1050 graphics card and its CUDA capabilities are listed below:

• CUDA Driver Version / Runtime Version: 9.1 / 9.0

• CUDA Capability Major/Minor version number: 6.1

• Total amount of global memory: 4096 MBytes (4294967296 bytes)

• 5 Multiprocessors, 128 CUDA Cores/MP: 640 CUDA Cores

• GPU Max Clock rate: 1493 MHz (1.49 GHz)

• Memory Clock rate: 3504 Mhz

• Memory Bus Width: 128-bit

• L2 Cache Size: 524288 bytes
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Initial network reimplemented on Keras library using Tensorflow backend as an opti-
mization. Even though it resulted in shorter epoch durations, after some expansion of
the data in the dataset, the available GPU amount in the system could not keep up and
step size parameter is used. This parameter used as stride or hop size to decide which
samples to proceed to set the next time step. Naturally, if the step size is 1; for a
data with length of 1000 samples, all 1000 samples are used for the experiments. On
the other hand, if the step size is 4; for the same data, there are 250 timesteps. This
means only the first one of each four consecutive samples is used and the next three is
skipped. This parameter was used throughout the experiments and some alternatives
were also implemented like reducing the sampling rate from 48kHz to 8kHz. But,
there is a nuance between using a step size of 6 on a 48kHz input and reducing the
input sampling rate to 8kHz. In the first option, if we have raw data with 600 samples,
we first extract features from these 600 samples, then we skip some of them and use
features of 100 samples. However, in the second option, we try to extract features
from 100 samples, which results in less number of IMFs (see 2.3) and shorter feature
vectors. This reduction of this data size means both good (less computational cost)
and bad (fewer features to correlate), so both options were examined.

Also, for all experiments, 80% of the data was split for training, remaining data were
used for validation. All accuracies stated below acquired on the validation sets of
the current dataset at the time. These splits were done in a stratified manner, so each
split had the same distribution. For the training phase, each mini-batch was also
normalized (had the same distribution) to keep the covariate shift at a minimum.

A table summarizing configurations of experiments done is listed below.

Table 5.1: Configurations for Experiments

Reference

Chapter

Number of

Participants

Sampling

Rate

Step

Size

Number of

Epochs

Classification

Networks

5.2.1.1 4 48 kHz 4 300 v1

5.2.1.2 13 48 kHz 4 400, 500 v1

5.2.1.3 15 48 kHz 4 300 v1

5.2.1.4 15 48 kHz 6 300 v1

5.2.1.5 15 48 kHz 6 300 v1

5.2.1.6 15 48 kHz 4 300 v1

5.2.1.7 15 8 kHz 1 300 v1

5.2.1.8 15 8 kHz 1 200 v2

5.2.2.1 20 48 kHz 1, 2, 4 variable2 v3, v4, v5, v6

5.2.2.2 20 48 kHz 4, 8 variable2 v3, v4, v5, v6

2Because of the early stopping callback function (explained in 4.4.5) introduced in Phase 2, a pseudo big epoch
number is given and model is trained until the stopping criteria is met.
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5.2.1 Phase 1

5.2.1.1 Optimizer and Loss

For the first set of experiments, 760 breath recordings from 4 people were used. The
following results were acquired for different optimizer and loss function variations
using All(regular) channel mode. Other details of the configuration are listed in
Table 5.1.

Table 5.2: Results for: Optimizer and Loss

Optimizer Loss Accuracy

Algorithm Learning Rate Function Magnitude Frequency

RMSProp 0.02 Cat. Cross Entropy 0.8449 0.3643

RMSProp 0.001 Cat. Cross Entropy 0.7132 0.4341

RMSProp 0.003 Cat. Cross Entropy 0.7364 0.4108

RMSProp 0.005 Cat. Cross Entropy 0.8372 0.4651

Adam 0.001 Cat. Cross Entropy 0.8837 0.4180

Adam 0.002 Cat. Cross Entropy 0.8527 0.4263

Adam 0.01 Cat. Cross Entropy 0.8450 0.4419

Adam 0.001 KL Divergence 0.7984 0.4573

SGD+Nest 0.01 Cat. Cross Entropy 0.3178 0.3178

SGD 0.01 Cat. Cross Entropy 0.3178 0.4109

Adamax 0.002 Cat. Cross Entropy 0.8372 0.3875

Nadam 0.002 Cat. Cross Entropy 0.8294 0.4186

After results in Table 5.2, Adam optimizer with the learning rate of 0.001 and cate-
gorical cross-entropy loss function was chosen for further experiments. Experiments
later on mostly intended to investigate effects of different feature and channel modes.

5.2.1.2 13 Participants

During the implementation of new feature modes, dataset expanded to 13 people with
2627 breath recordings and chosen network architecture is tested on this dataset using
All (regular) channel mode for speaker classification. Other details of the configura-
tion are listed in Table 5.1.
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Table 5.3: Results for: 13 Participants

Feature Mode Training Epoch Classification Accuracy

Frequency 400 0.5736

Frequency 500 0.6356

Raw data3 500 0.3782

As an addition to the results in Table 5.3; same feature set extracted from the same
dataset was fed to an SVM model with linear kernel and squared hinge loss, and
0.2533 accuracy was obtained.

5.2.1.3 Phase & Normalized

At the next step, feature space was enlarged and phase implementation was added
with normalized versions of these feature modes. Channel modes were also investi-
gated. After that, these variations are tried with a dataset of 15 people. Details of the
configuration are listed in Table 5.1.

3Raw wave files were fed to network, their values(magnitudes at each timestep) as their feature vectors.
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As seen in table 5.4, IMF magnitudes yielded the best results.

5.2.1.4 Larger Channel Modes

For channel modes that result in larger feature vectors, only feature modes with
shorter vector sizes were experimented. Even though, step size parameter had to
be increased slightly. Other details of the configuration are listed in Table 5.1.

Table 5.5: Results for: Larger Channel Modes

Channel Mode Split 0-Overlapped

Feature Mode Classify By Speaker Posture5 Speaker Posture5

Frequency 0.1732 0.2524 0.1689 0.2279

Magnitude 0.4268 0.3562 0.4852 0.3164

Phase 0.176 0.254 0.1689 0.2262

1-Overlapped 2-Overlapped

Frequency 0.1869 0.2393 0.1869 0.2492

Magnitude 0.4443 0.4082 0.441 0.4213

Phase 0.1852 0.2164 0.182 0.241

3-Overlapped All (regular)

Frequency 0.177 0.2328 0.1738 0.2148

Magnitude 0.4 0.3803 0.5689 0.7525

Phase 0.177 0.2557 0.1525 0.2321

5.2.1.5 All Channel Variations

After seemingly great results in Table 5.5 for All channel mode for posture clas-
sification, we implemented shuffling options for channels and compared results in-
between. Details of the configuration are listed in Table 5.1.
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Table 5.6: Results for: All Channel Variations

Channel Mode All (regular)

Feature Mode Classify By Speaker Posture5

Magnitude 0.5689 0.7525

All Shuffled Unison

Speaker Posture5

Magnitude 0.5262 0.6934

All Shuffled Random

Speaker Posture5

Magnitude 0.4902 0.318

Results in the table 5.6 showed that when we concatenate channels in the feature vec-
tor, the order of the channels affects the result, drastically. Especially when channels
are ordered differently for each input file, accuracy dropped radically. As a result of
this behavior, we considered that the network might be learning delay durations for
each microphone, instead of the breath characteristics. Since the speed of the sound
and microphone locations were identical and every participant speaks from nearly in
the same positions for the same postures, this might be a probable reason for this dif-
ference between different channel orders. We addressed this concern in Phase 2 (see
5.2.2).

5.2.1.6 3 Posture Classification

After these implications, we examined classifying capabilities with three main pos-
ture classes; sitting, standing and lying. The first two classes both had support from
two different positions, so distributions between classes were unbalanced. Details of
the configuration are listed in Table 5.1.

Table 5.7: Results for: 3 Posture Classification

Channel Mode 0 1 2 3 Front

Frequency 0.3852 0.3787 0.4164 0.4082 0.3885

Magnitude 0.4574 0.5443 0.5984 0.5328 0.6361

Phase 0.3525 0.4164 0.4098 0.4197 0.4115
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5.2.1.7 8 kHz Downsampled

After results in Table 5.7, we implemented another alternative to the memory problem
for training like stated in the beginning of the chapter, we downsampled our data to
8kHz. By losing from the number of extracted IMFs (see 5.2), we gained on memory
and worked without the step size parameter (or stepsize = 1 which has no effect).
Other details of the configuration are listed in Table 5.1.
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When we compared the results between different sampling rates (from tables 5.4, 5.5,
5.7, 5.4, 5.8 and 5.9), following table occured with most significant differences:

Table 5.10: Results for 8 kHz Downsampled: Top Different Accuracies

Channel Mode Front 0 - Overlapped Front 0

Feature Mode Magnitude Magnitude Magnitude Magnitude

Classify By Speaker Speaker Posture3 Speaker

Accuracy (48kHz) 0.4246 0.4852 0.6361 0.4836

Accuracy (8kHz) 0.3251 0.3924 0.5435 0.3924

Difference 0.0995 0.0928 0.0926 0.0912

5.2.1.8 Network Architecure v2

After we examined all results gathered with both sampling rates, we noticed a gap
between speaker classifying experiments using IMF magnitudes as features. Accord-
ingly, three of the four top different results were doing speaker classification and all
four of them were using IMF magnitudes as features. Since we know that correlation
exists in the data from 48kHz experiments, we aimed towards constructing a better
classifier network to experiment on the downsampled version of the dataset.

After second version of the network (see 4.6) was implemented, following results
were acquired using first channel and IMF magnitudes for speaker classification.
Other details of the configuration are listed in Table 5.1.

Table 5.11: Result Comparison for: Network Architecure v2

Network Version Number of Epochs Accuracy

v1 300 0.3924

v2 200 0.5468

Difference 100 0.1544

Results gathered from the second generation of the network showed 39% better results
from the initial one, even 13% better than the 48kHz sampled version (0.4836). It also
converged earlier than the initial network.
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5.2.2 Phase 2

After data collection was completed, we implemented a few modifications on data
and classifier algorithms, because of the concerns that we had in section 5.2.1.5 and
our memory limitations.

On the data side, we synced all breath recordings from all channels in the time do-
main, using cross-correlation (refer to 3.10) to cancel out the probability of the net-
work, learning delays for posture classification. While doing this alignment for each
channel, we also noticed that there was a significant amount of noise generated at
lower frequencies in recordings (explained in 3.5.5). We applied a high-pass filter to
remove the noise from all channels.

On the algorithm side, we implemented memory optimizations for handling data ar-
rays to use different views of the same array to limit memory allocations for vast
chunks of data. These optimizations enabled us to work with more data with differ-
ent channel modes and feature modes. Also, we gathered some statistics for our data
(refer to 3.11) and figured out that more than 90% of our data is shorter than 600
milliseconds. Since we are padding all data to the length of the longest sample in the
input space (1000 milliseconds), we noticed that we could benefit from this informa-
tion before feeding data to the network. So, we introduced the MaxLen parameter, to
crop longer sequences. We set the value of the parameter to 600 ms as mentioned,
and gained 40% in size for compensation of losing a small amount of data for longer
breath instances.

5.2.2.1 AllSmall Dataset

With optimizations in section 5.2.2, we were able to run our tests on a small dataset
including 100 samples (except one, refer to 3.11) from each of the 20 speaker without
any downsampling or frame skipping. We matured our models using this portion of
the dataset with All (regular) channel mode, IMF magnitudes as features and batch
size of 64; and shared our best results below. Other details of the configuration are
listed in Table 5.1.

Table 5.12: Top Results for: AllSmall Dataset

Network Version Classify By Step Size Accuracy

v4 Posture3 2 0.9749

v4 Posture5 2 0.8141

v4 Speaker 4 0.7186

50



5.2.2.2 Ensembled Models

After the results we achieved in section 5.2.2.1, we aimed to feed our models with
all samples for better classification. To utilize the whole set of breath instances, we
needed to apply a few more tuning. For running tests on all recordings in the dataset,
we needed to shrink our examples for sure. Since we were losing some number of
IMFs when we downsample 5.2, we proceeded with using the stepsize parameter,
minimized at 4, skipping 3 of every 4 frames. We also implemented our models
considering durability to step size changes, and tested against that. Since we needed
to gather most from limited data, we needed to implement more complex models.
However, this was another bottleneck due to memory limitations. For this problem,
we developed different models handling features from possibly different levels of the
data. After we trained each model, we ensembled them to cover different levels of
features. With this solution, we achieved to get results from the whole dataset with
step sizes of 4 and 8, IMF magnitudes as features and batch size of 64; and shared our
best results below. Other details of the configuration are listed in Table 5.1.

Table 5.13: Top Results for: Ensembled Models

Channel

Mode

Network

Version4

Classify

By

Step

Size

Respective

Accuracy

Ensembled

Accuracy

All (regular)

Ensembled (4, 5, 6) Posture3 8 0.9822, 0.9813, 0.9783 0.9793

Ensembled (4, 5, 6) Posture5 8 0.8245, 0.8136, 0.8708 0.8521

Ensembled (4, 5, 6) Speaker 8 0.8314, 0.7821, 0.8343 0.8698

All Shuffled

Random

Ensembled (4, 5, 6) Posture3 8 0.8511, 0.6529, 0.7367 0.8550

Ensembled (4, 5, 6) Posture5 8 0.4832, 0.5158, 0.5385 0.5533

Ensembled (4, 5, 6) Speaker 8 0.6844, 0.6529, 0.6874 0.7377

0

Ensembled (4, 5, 6) Posture3 8 0.5089, 0.4724, 0.4744 0.4911

Ensembled (4, 5, 6) Posture5 8 0.3629, 0.3057, 0.3304 0.3570

Ensembled (4, 5, 6) Speaker 8 0.6144, 0.5602, 0.6026 0.6321

Split

Ensembled (4, 5, 6) Posture3 8 0.6198, 0.5964, 0.5676 0.6250

Ensembled (4, 5, 6) Posture5 8 0.4371, 0.4273, 0.4117 0.4514

Ensembled (4, 5, 6) Speaker 8 0.6763, 0.68, 0.6509 0.7194

As seen in Table 5.13, All (regular) channel mode gave the best results. For posture
classification, individual models yielded better scores, but for speaker classification,
the ensembled model gave the best result among all experiments. Also, ensembled
models tended to score higher when the stepsize parameter was 8, instead of 4 for all
channel modes.

As for All Shuffled Random channel mode, posture classification results were im-
4Please note that other combinations of ensembling models with different network architectures were also

experimented, but top results were yielded by the same combination, consistently.
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proved significantly (see Table 5.6) and the gap with All (regular) channel mode was
narrowed. Speaker classification results were also higher than expected, 0.1124 lower
than the best. We believe that our synchronization for delays (refer to section 3.5.5)
cleared the concerns about classifier network, learning delays (see section 5.2.1.5).
Further thoughts about the topic are given in section 5.4.

Among single-channel modes, the first channel (with the index 0) was best of all 4
channels. When we run our experiments with Split channel mode to utilize infor-
mation from all channels as different inputs, we acquired 10% higher classification
rates, and this was the best out of all single-channel modes. Although, these results
were not matched to the experiments with All (regular) channel mode, especially for
posture classification.

5.3 Evaluation of Features

For our experiments, we decided to stop the sifting process at the 9th IMF for our
original recordings with 48khz sampling rate. For the downsampled versions with
8khz sampling rate, the 7th IMF was the stopping criterion. These are the maximum
numbers of IMFs that we can sift from each breath signal in the dataset. Among all
feature configurations, magnitudes extracted from IMFs are considered most promis-
ing. Also, posture classification using all channels concatenated, yielded remarkable
results. Some of the most accurate results are summarized below.

Table 5.14: Accuracy of results from features

Classify By Speaker Posture5 Posture3

Sampling Rate 48 kHz 48 kHz 48kHz

Step Size 8 8 8

Channel Mode All (regular) All (regular) All (regular)

Feature Mode Magnitude Magnitude Magnitude

Network Version Ensembled (4, 5, 6) v6 v4

Confusion Matrix Figure 5.1 Figure 5.2 Figure 5.3

Classification Report Table 5.15 Table 5.16 Table 5.17

Accuracy 0.8698 0.8708 0.9822

Confusion matrices and classification results of these classifiers can be seen below:
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Figure 5.1: Confusion matrix for best speaker classification
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Table 5.15: Classification results for best speaker classification

Label Precision Recall f1 Score Support

aa 0.90 0.82 0.86 33

ab 0.77 0.55 0.64 31

am 0.84 0.89 0.86 35

by 0.87 0.98 0.92 42

ce 0.66 0.82 0.73 28

ck 0.86 0.79 0.83 24

ds 0.90 0.62 0.73 29

eb 0.85 0.94 0.89 87

eg 0.86 0.90 0.88 49

ek 0.85 0.85 0.85 41

eo 0.91 0.86 0.88 35

ib 0.85 0.83 0.84 53

ig 0.96 0.96 0.96 142

kk 0.89 0.89 0.89 82

mb 0.89 1.00 0.94 50

my 0.72 0.72 0.72 18

sd 0.91 0.79 0.84 86

sg 0.88 0.85 0.86 52

sk 0.83 0.85 0.84 34

yd 0.84 0.90 0.87 63

micro avg 0.87 0.87 0.87 1014

macro avg 0.85 0.84 0.84 1014

weighted avg 0.87 0.87 0.87 1014

It can be seen from above results, there is no distinct confusion among specific
classes, reciprocally. Although, it can be inferred that higher number of inputs per
class yield better classification rate. This characteristic can be interpreted as the clas-
sifier needing more data -as number of inputs per class or number of features per
input- for better speaker classification.
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Figure 5.2: Confusion matrix for best 5-posture classification

Table 5.16: Classification results for best 5-posture classification

Label Precision Recall f1-score Support

Sitting 0.84 0.84 0.84 187

Low-Sitting 0.84 0.86 0.85 200

Standing 0.81 0.80 0.81 199

Hands-Behind 0.84 0.83 0.84 200

Lying 1.00 1.00 1.00 228

micro avg 0.87 0.87 0.87 1014

macro avg 0.87 0.87 0.87 1014

weighted avg 0.87 0.87 0.87 1014

Above results showed that two standing and sitting positions were confused among
each other. But, lying position was distintly classified apart from other positions.
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Figure 5.3: Confusion matrix for best 3-posture classification

Table 5.17: Classification results for best 3-posture classification

Label Precision Recall f1-score Support

Sitting 0.97 0.99 0.98 387

Standing 0.99 0.97 0.98 399

Lying 1.00 0.99 1.00 228

micro avg 0.98 0.98 0.98 1014

macro avg 0.98 0.98 0.98 1014

weighted avg 0.98 0.98 0.98 1014

Confusion between standing and sitting positions were resolved as these positions
were merged into common sitting and standing positions. Although merge operation
also caused some lying inputs to be classified as sitting, overall result was improved
significantly.

5.4 Discussion

All records from all 20 participants of the dataset could not be utilized with the orig-
inal sampling rate into the network because of memory problems. The increasing
number of breath samples caused allocation errors. A memory upgrade or a different
environment can be used to utilize all data into work, but for the moment, we have
not had that chance. Experimenting with the algorithm on the whole dataset with
48kHz sampling rate and without any time sample skipped (stepsize = 1), should
reveal all the potential of the dataset. Also, a third test set must be split for tests of
the hyperparameter tuning. Tests on the complete dataset must include this split too.
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Another point to consider is the batch size used for the experiments, which is not
examined in Phase 1. In the second phase, we examined it for every model and got
the best results with 64 instances per batch with a slight difference from 128. In phase
1, batch size even dropped to one sample to resolve memory issues, but the default
parameter was

defaultBatchSize =
totalNumberOfBreathInstances

numberOfClasses

for all experiments running without an error.

A run of the DTW-kNN algorithm [60, 61, 62] for speaker classification using 48Khz
sampling rate, 200 breath instances of 15 people resulted in a 35% accuracy. We ran
it with such a limited dataset because of the time it takes to predict, which increases
exponentially as data grows. Since it was a limited version of the dataset, we believe
that the algorithm needs some more tuning and improvement on computational cost
for a direct comparison.

As another alternative, feeding spectrogram of the raw data into the classifier(s) was
considered to be a baseline method to grade the features that we extracted but, it also
returned results around the chance of a random choice, so another classification algo-
rithm should be implemented for that kind of tests. Also, because Fourier transform
outputs data with different length than input data, same principles did not apply for
the exact comparison of a network.

We also noticed that for posture classification overfitting occurs less than speaker
classification, when working with the whole dataset. This behavior may depend on
higher number of samples per class. We ran our experiments with split channel mode
to increase the input size but, since we lost in the length of the feature vector, experi-
ments did not result in greater accuracies (though resulted better than single-channel
modes), although a specially designed model can improve the accuracy of the men-
tioned configuration.

For accuracy of classification of both speakers or postures, we inferred that; the num-
ber of features extracted from a time sample (length of the feature vector, lvec) out-
weighed the number of inputs fed to the network (nrec) and the number of time sam-
ples in an input. Although our various feature modes concatenated frequency, mag-
nitude and phase; these features yielded better results individually, meaning that they
do not correlate with each other. On the other hand, concatenating the same feature
from all channels resulted better than feeding channels individually. Also, the high-
est sampling rate (smallest step size parameter) did not always give the best results.
This can be interpreted as IMFs with higher frequency (first IMFs extracted) convey
a weaker relationship to the speaker. So that when we drop frequency, we do not lose
correlation as much. With a higher number of correlated features extracted from each
time sample, higher classification accuracy can be achieved.

Among all channels, the first channel, which was placed next to participants’ mouth,
yielded the best results. Other microphones, placed at 1.5 meters, yielded worse re-
sults, similar to each other. Although probable reason behind this can be different
microphone selections (see chapter 3.5.1), this can also be interpreted as breath sig-
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nals (along with IMFs and extracted features, inherently) are losing its specificity as
the sound propagates. Similar reasoning can be made for the normalization of IMFs.
When we applied normalization to IMFs, we lost specificity and classification results
degraded.

Another topic to discuss was interchannel relationships for recordings. Since we
recorded with 4 channels, using these channels together to enlarge our feature vector,
was not an issue for us. But we consider that, for the applicability of our methods, this
recording environment might not be feasible or even possible in every situation. In
fact, this was the reasoning when we implemented different channel modes to assess
the effects of using multiple channels at once for the classification. For posture classi-
fication with All (regular) channel mode, our inference was that our classifier network
was learning postures in accordance with microphone positions. To cancel out this
information, we mixed channels randomly for each input before feeding them into
our classifier with All Shuffled Random channel mode. We implemented this channel
mode, knowing that we also lost some of the integrity of data in the feature vector and
made it harder for the classifier network to resolve correlations in time-domain. To
keep information stable in time-domain, we used channels individually and fed each
channel separately as different inputs with Split channel mode. Although our post-
processing (see chapter 3.5.5) and optimizations in phase 2 of experiments removed
the effects of delays and narrowed down the gap in-between, both alternative channel
modes were not superior to the All (regular) channel mode. This meant that recording
from different locations with multiple microphones has an impact on posture classifi-
cation. But, alternative channel modes and model variations indicated that with more
data and better-utilized models, similar accuracies can be achieved. Interchannel re-
lationships only helped to achieve more with fewer data and less utilization.

Another thing to mention about these alternative channel modes was that All Shuffled
Random channel mode resulted in higher accuracies than Split channel mode. Since
the first one was favoring the length of the feature vector and the second one was
favoring the number of inputs, these results also supported our claims of number of
features outweighing number of inputs in the sixth paragraph of this section.

58



CHAPTER 6

CONCLUSION

As a conclusion of this thesis, we developed multiple variations of CNN-RNN net-
works to discover the potential of the higher dimensional acoustic features extracted
from the breath. We consider our experiments successful to show the potential of the
data and the features, with 87% speaker recognition accuracy in 20 classes and with
98% posture recognition accuracy in 3 classes (87% in 5 classes). We also explored
various features, channel modes, feature modes, hyperparameters and sampling rates.

With all the experiments we completed during this thesis, we indicated that IMF
magnitudes extracted from breath carry a strong relationship with the speaker. Also,
multiple simultaneous recordings helped to improve this specificity, especially for
posture classification. We believe our methods can provide useful side-information
as speaker identification mechanism, independent of the content and the language.
They also can increase the situation awareness for cases of emergency, as a decision
support system.

As future work, our experiments can be expanded to address people with medical
conditions. Our methods can be used as an indication mechanism of the diagnosis of
respiratory diseases. They can also yield information about the sleeping stages and
mechanics of the person, with additional breathing statistics. Our extracted features
and statistical breathing information can also be used for recognition of a human’s
emotional state and well-being.

Also, our feature space can be extended to extract more information related to the
field of study. We also created the BreathBase dataset for further studies in the field,
currently only dataset developed specifically for this purpose.
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