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ABSTRACT

DYNAMICS FOR CHAOS AND FRACTALS

Alejaily, Ejaily

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Marat Akhmet

Co-Supervisor: Assoc. Prof. Dr. Mehmet Onur Fen

August 2019, 98 pages

In this thesis, we study how to construct and analyze dynamics for chaos and frac-

tals. After the introductory chapter, we discuss in the second chapter the chaotic

behavior of hydrosphere parameters and their influence on global weather and cli-

mate. For this purpose, we investigate the nature and source of unpredictability in

the dynamics of sea surface temperature. The impact of sea surface temperature vari-

ability on the global climate is clear during some global climate patterns like the El

Niño-Southern Oscillation. The interactions between these types of global climate

patterns may transmit chaos. We discuss the unpredictability as a global phenomenon

through extension of chaos horizontally and vertically by using theoretical as well

as numerical analyses. In the third chapter, we introduce a technique concerning the

construction of dynamics for fractals. Deterministic fractals like Julia sets are cru-

cial for understanding the fractal phenomenon. These structures are deterministically

arising from simple dynamics of iteration of analytic functions. On the basis of the

dynamics, we develop a scheme to map fractals through iterations. This allows to

involve fractals as states of dynamical systems as well as to introduce dynamics in

fractals through differential and discrete equations. Creation of effective frameworks
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for applications of fractals and assisting to explore the relationship between fractals

and chaos by the involvement of dynamics in fractals are important aspects in this

direction.

Keywords: Chaos, Ocean–atmosphere interaction, El Niño-southern oscillation, Sea

surface temperature, Vallis model, Lorenz system, Advection equation, Global weather

unpredictability, Fractals, Julia set, Mandelbrot set, Fatou-Julia iteration, Sierpinski

fractals, Fractal mappings, Discrete and continuous fractal dynamics, Duffing equa-

tion, Van der Pol equation
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ÖZ

KAOS VE FRAKTALLAR İÇİN DİNAMİKLER

Alejaily, Ejaily

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Marat Akhmet

Ortak Tez Yöneticisi: Doç. Dr. Mehmet Onur Fen

Ağustos 2019 , 98 sayfa

Bu tezde kaos ve fraktallar için dinamiklerin nasıl oluşturulacağını ve analiz edile-

ceğini çalışmaktayız. Giriş bölümünden sonra, ikinci bölümde hidrosfer parametrele-

rinin kaotik davranışını ve küresel hava ve iklim üzerine etkisini tartışmaktayız. Bu

amaçla, deniz yüzeyi sıcaklığı dinamiğinde öngörülemezliğin doğasını ve kaynağını

araştırmaktayız. Deniz yüzeyi sıcaklığı değişkenliğinin küresel iklim üzerindeki et-

kisi El Niño-Güney Salınımı gibi bazı küresel iklim örüntüleri süresince belirgindir.

Bu türdeki küresel iklim örüntüleri arasındaki etkileşimler kaosu iletebilir. Öngörü-

lemezliği küresel bir olgu olarak kaosun yatay ve dikey genişlemesi aracılığıyla hem

teorik hem de sayısal analiz kullanarak tartışmaktayız. Üçüncü bölümde, fraktallar

için dinamiklerin oluşturulmasına ilişkin bir teknik tanıtmaktayız. Julia kümeleri gibi

rastgele olmayan fraktallar, fraktal olgusunun anlaşılması için çok önemlidir. Bu yapı-

lar analitik fonksiyonların iterasyonunun basit dinamiğinden deterministik bir şekilde

kaynaklanmaktadır. Dinamiklere dayanılarak iterasyonlar yoluyla fraktalların gönde-

rimi için bir şema geliştirmekteyiz. Bu, fraktalların dinamik sistemlerin halleri olarak

kapsanmasının yanı sıra diferansiyel ve ayrık denklemler aracılığıyla fraktallarda di-

namiğin tanıtılmasına izin vermektedir. Fraktallarda dinamiklerin içerilmesinin frak-

vii



talların uygulamaları için etkili bir çerçeve meydana getirmesi ve fraktallarla kaos

arasındaki ilişkinin araştırılması için faydalı olması bu yöndeki önemli taraflardır.

Anahtar Kelimeler: Kaos, Okyanus-atmosfer etkileşimi, El Niño-güney salınımı, De-

niz yüzeyi sıcaklığı, Vallis modeli, Lorenz sistemi, Adveksiyon denklemi, Küresel

hava öngörülemezliği, Fraktallar, Julia kümesi, Mandelbrot kümesi, Fatou-Julia ite-

rasyonu, Sierpinski fraktalları, Fraktal gönderimleri, Ayrık ve sürekli fraktal dina-

miği, Duffing denklemi, Van der Pol denklemi
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CHAPTER 1

INTRODUCTION

1.1 Chaos and Fractals

Chaos and fractals are interesting fields of scientific research in mathematics, physics,

engineering and many other branches of sciences. They provide us with powerful

mathematical tools to analyze and understand the irregularity and complexity of many

natural and artificial phenomena. Fractal geometry is older than chaos theory, how-

ever, the mathematical terms “chaos” and “fractal” are Irish twins. Tien-Yien Li and

James Yorke [1] use the word “chaos” in 1975 to describe an irregular behavior of

certain type of dynamical systems, whereas the word “fractal” was coined by Benoit

Mandelbrot [2] in the same year, refers to certain geometrical structures.

1.1.1 Chaos Phenomenon

Chaos, in general, can be defined as aperiodic long-term behavior in a determinis-

tic system that exhibits sensitive dependence on initial conditions [3, 4]. The first

recognition of chaos phenomenon was indicated in the work of Henri Poincarè in the

late 19th century, when he studied the problem of the stability of the solar system.

The property of unpredictability appears in planets’ motions through models used to

predict their future position. The roots of the problem date back to the last quarter

of the eighteenth century when Laplace tried to prove the stability of the planetary

system. Using Newton’s laws, Laplace developed a perturbation theory to describe

planet’s orbit around the Sun. He concluded that the solar system is stable and the

paths of planets can be reliably predicted far into the future as well as described far

into the past [5]. However, Laplace made some simplifying assumptions relating to
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the mutual gravitational attraction between the planets, and so his result cannot be

considered as the final word on the subject [6]. Poincaré studied the same problem,

and in 1890 he showed that a gravitational system admits the possibility of unpre-

dictable solution even for a system involving only three bodies [7, 8]. Indeed, during

the latter half of the 20th century and because of computer revolution, unpredictabil-

ity (chaotic behavior) in the motion of planets became a more realistic assumption.

Consequentially, prediction of the future position of the planets may introduce great

difficulties. In the late 1980s, Sussman, Wisdom and Laskar [9, 10, 11] showed nu-

merically that the solar system is chaotic (sensitive to initial conditions). An error

of 150 meters in the position of the Earth today may led to an error of 150 million

kilometers after 100 million years [12].

The property of sensitive dependence on initial conditions was firstly discovered in

the 1950s by Edward Lorenz during his investigation into some weather forecasting

models [13]. The discovery contributed significantly to give an interpretation why is it

very difficult to forecast the weather for more than 10 days in advance. Weather fore-

casting models are extremely sensitive to initial conditions. This sensitivity means

that slight deviation in the initial state may cause an unpredictably large change in the

final state. This phenomenon is popularly called “butterfly effect”.

The sensitivity property is considered as the main ingredient of chaos. There are

different types and definitions of chaos. Devaney [14] and Li-Yorke [1] chaos are

the most frequently used types, which are characterized by transitivity, sensitivity,

frequent separation and proximality. Another common type occurs through period-

doubling cascade which is a sort of route to chaos through local bifurcations [15, 16,

17]. In the papers [18, 19], Poincaré chaos was introduced through the unpredictable

point concepts. Further, it was developed to unpredictable functions and sequences.

1.1.2 Fractals Geometry

Fractal geometry is a mathematical tool used to describe many natural structures that

adopt various degrees of self-similarity, as well as to design some artificial struc-

tures. A set that displays self-similarity and repeats the same patterns at every scale

is usually called fractal. Mandelbrot defined a fractal as a set for which the Hausdorff
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dimension strictly exceeds the topological dimension [20]. Dealing with fractals goes

back to the 17th Century when Gottfried Leibniz introduced notions of recursive self-

similarity [21]. Since then, history has not recorded any thing about self-similarity

until the late 19th century when Karl Weierstrass introduced in 1872 a function that

being everywhere continuous but nowhere differentiable. The graph of the Weier-

strass function became an example of a self-similar fractal. The Cantor set, con-

structed by Georg Cantor in 1883, is considered as the most essential and influential

fractal, since it is a simple and perfect example for theory and applications of fractals.

The idea of self-similarity received more attention in the work of Helge von Koch. He

devised in 1904 a continuous but non-differentiable curve that never intersects itself.

The curve is considered as one of the simplest regular fractals. Waclaw Sierpinski was

one of the mathematicians who made significant contributions in the field of fractals.

He introduced the famous triangular fractal in 1916, known as the Sierpinski gasket.

The fractal is generated by a recursive process of removing symmetrical parts from

an initial triangle. In an analogous way to the gasket, Sierpinski developed a square

fractal known as the Sierpinski carpet. Julia sets gained significance in being gener-

ated using the dynamics of iterative function. They are discovered by Gaston Julia

and Pierre Fatou in 1917-19, where they studied independently the iteration of ratio-

nal functions in the complex plane [22]. During the same period, the mathematician

Felix Hausdorff formulated the notion of fractional dimension which became a very

important tool for studying and characterizing the geometrical complexity of fractals.

Paul Lévy studied the self-similar curves and surfaces, and in 1938 he described a new

fractal curve, the Lévy C curve. The field known today as the fractal geometry was

developed by Mandelbrot during the last third of the twentieth century. He was one

of the first to use computer to study and generate fractal shapes. In 1979, Mandelbrot

visualized Julia sets including the most popular fractal called Mandelbrot set.

1.1.3 Relationship between Chaos and Fractals

Several researches pointed out that a close relationship between chaos and fractal ge-

ometry can be observed. This can be seen, for instant, in the dynamics of Fatou-Julia

iteration used to construct Julia and Mandelbrot sets where two neighbor points in

the domain which are close to the boundary may have completely different behavior.
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That is, we can say about sensitivity in fractal structures. Chaos tells us about the

state of irregularity and divergence of trajectories which depend in the nature of the

dynamics, whereas the fractal concept can be used to study complex geometric struc-

tures. Therefore, the interlink between chaos and fractals is more clear when fractal

dimension is used to measure the extent to which a trajectory fills its phase space.

In other words, fractal dimension of the orbit in phase space implies the existence of

a strange attractor [23]. The fundamental work on the chaotic nature of fractals has

been done only for specific types categorized under the totally disconnected fractals

[14, 24, 25]. In that work, the topological conjugacy concept was utilized to prove

that these fractal sets are invariant for certain chaotic maps. Except for that, rela-

tively few studies have been carried out on chaotic dynamical systems for fractals,

and perhaps the most relevant one is what have been done on the Sierpinski carpet

in [26]. In that research, the author shows that the dynamical system associated with

a shift transformation defined on the Sierpinski carpet set is chaotic in the sense of

topological mixing.

1.2 Replication of Chaos

It was shown in [27, 28] that chaotic behavior can be replicated through continuous-

time systems. The idea is to consider chaos as an input for differential or hybrid

equations. That is to insert chaos on the right-hand side of the equations and investi-

gate the results of perturbation. Difference and differential equations are considered

as the main sources of chaos in theory. This is why it is reasonable to consider the

solutions of some systems of differential equations or discrete equations as inputs for

the replication mechanism. These systems are called generators and the replication

of chaos can be performed from a prior one to systems with large dimensions. The

systems that receive the input and transmit chaos are called replicators. The repli-

cation mechanism can be constructed by taking into account a system of differential

equations (the generator) which produces chaos, and using this system to influence

in a unidirectional way, another system (the replicator) in such a manner that the

replicator mimics the same ingredients of chaos provided to the generator.
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For instance the generator can be considered as a system of the form

x′ = f(t, x), (11)

where f : R × Rm → Rm is a continuous function in all its arguments, and the

replicator can be assumed to have the form

y′ = Ay + g(x(t), y),

where g : Rm × Rn → Rn is a continuous function in all its arguments, the constant

n× n real valued matrix A has real parts of eigenvalues all negative and the function

x(t) is a solution of system (11).

It is worthy of mention that the generator is not necessarily the element of the repli-

cation procedure since it can be replaced by another source of a chaotic input, and

in applications it may be considered, for example, as chaotic inputs obtained from

experimental activity.

The conception of replication of chaos is applied for different types of chaos such as

Devaney’s and Li-Yorke, where the extension of the formal properties and features of

a complex motion can be observed in the dynamics of output such that the ingredients

of these types of chaos are recognized. This is true for other appearances of chaos:

intermittency, structure of the chaotic attractor, its fractal dimension, form of the

bifurcation diagram, the spectra of Lyapunov exponents, etc. Replication of a known

type of chaos can be extended to systems with arbitrary large dimension such that

the replication between unidirectionally coupled systems results a system that admits

the same type of chaos. The “morphogenesis” mechanism can be constructed by the

formation of consecutive replications of chaos or replication of chaos from a core

system. It is also possible to construct a result-system using these two mechanisms in

a mixed style.

The technique of coupled systems is used in the study of synchronization of chaotic

systems [29, 30]. The idea of chaos synchronization was first introduced by Pecora

and Carroll [30]. Synchronization refers to the tendency to have the same dynami-

cal behavior in coupled systems [31]. That is two or more chaotic systems adjust a

given property of their motion to a common behavior [32]. The type of the chaos

that the master and slave systems admit in the synchronization of chaotic systems, is
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not taken into consideration during the analysis. However, in the process of replica-

tion of chaos, however, the type of chaos is kept invariant. That is why the classes

which can be considered with respect to this invariance is expectedly wider then those

investigated for synchronization of chaos [27, 28].

An interesting example of replication of chaos is the extension of unpredictability in

Lorenz systems which has been introduced in [33]. In that paper, Lorenz systems

are unidirectionally coupled such that the chaos expands from the drive system. The

extension of sensitivity and period-doubling cascade are theoretically proved, and the

appearance of cyclic chaos as well as intermittency in interconnected Lorenz systems

are numerically demonstrated. The results are valid if the driving Lorenz system is

chaotic and the response system is nonchaotic, but admits a global asymptotically

stable equilibrium or a globally attracting limit cycle.

In the second chapter of this research, we apply the concept of replication of chaos to

the sea surface temperature advection equations as well as low order ocean-atmosphere

models. We utilize the results in unpredictable solutions of differential equations in-

troduced in [19, 34] to prove that the solution of the advection equation admit chaos

if its coefficients or its forced term is perturbed by a chaotic term. We investigate

the extension of unpredictability of the sea surface temperature by applying the chaos

extension mechanisms developed in [27] to coupled Vallis model and advection equa-

tions as regional models of ocean dynamics. Furthermore, we study the the possibility

of the “vertical” extension of unpredictability between ocean and atmosphere by ap-

plying the Lorenz system for the atmosphere and the Vallis model for the ocean.

1.3 Dynamics through Fractal mappings

The famous Laplace’s Demon is not only of strict physical determinism, but also

related to the power of differential equations. When deterministically extended struc-

tures are taken into consideration, it is admissible that fractals are dense both in the

nature and in the dynamics. In particular, this is true because fractal structures are

closely related to chaos. This implies that dynamics have to be an instrument of the

extension. Oppositely, one can animate the arguments for the Demon if dynamics
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will be investigated with fractals. To make advances in the direction, first of all, one

should consider fractals as states of dynamics. In other words, instead of single points

and finite/infinite dimensional vectors, fractals should be points of trajectories as well

as trajectories themselves. If one realizes this approach, fractals will be proved to

be dense in the universe, since modeling the real world is based on differential equa-

tions and their developments. Our main goal is to initiate the involvement of fractals

as states of dynamical systems, and in the first step we answer the simple question

“How can fractals be mapped?”. In the present study Julia sets and Sierpinski fractals

are considered as initial points for the trajectories of the dynamics.

Fractals are in the forefront of researches in many areas of science as well as for inter-

disciplinary investigations [24, 35]. One cannot say that motion is a strange concept

for fractals. Dynamics are beside the fractals immediately as they are constructed by

iterations. It is mentioned in the book [36] that it is inadequate to talk about fractals

while ignoring the dynamical processes which created them. That is, iterations are in

the basis of any fractal, but we still cannot say that differential equations are widely

interrelated to fractals, for instance, as much as manifolds [37]. Our present study is

intended to open a gate for an inflow of methods of differential equations, discrete

equations and any other methods of dynamics research to the realm of fractals. This

will help not only to investigate fractals but also to make their diversity richer and

ready for intensive applications. Formally speaking, in our investigation we join dy-

namics of iterations, which can be called inner dynamics, with outer dynamics of

differential and discrete equations. The concept of fractals has already many appli-

cations, however, the range would be significantly enlarged if all the power of dif-

ferential equations will be utilized for the structures. This is why our suggestions

are crucial for fractals considered in biology, physics, city planning, economy, image

recognition, artificial neural networks, brain activity study, chemistry, and all engi-

neering disciplines [38, 39, 40, 41, 42, 43], i.e. in every place, where the geometrical

objects in physical and/or abstract sense may appear [44]. It deserves to say that dif-

ferential equations related to fractals were already discussed in [45, 46], where they

are considered as domains of partial differential equations, but not as building blocks

of trajectories. In this sense one can take advantage of the papers [45, 46] in the next

development of our proposals. The same is true for the studies concerned with deep
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analyses of fractals growth performed in [47, 48].

The most important fractals for our present study are Julia sets which were discovered

in 1917-1918 by Julia and Fatou, both of whom independently studied the iteration

of rational functions in the complex plane [22]. They established the fundamental

results on the dynamics of complex functions published in their papers [44, 49]. In

1979, Mandelbrot visualized Julia sets. Although they are constructed depending

on the dynamics of simple complex polynomials, the Mandelbrot set has a compli-

cated boundary, and the Julia sets associated with points close to the boundary usually

have amazing and beautiful structures. Julia and Mandelbrot fractals are very great

achievements for set theory, topology, functions theory, chaos, and real world prob-

lems. Therefore, studies in the area has to be at the frontiers of modern sciences and

applications. Additionally, the development of researches on the basis of fractals is of

significant importance to any possible direction starting from the basis of set theory.

In our research, we make a possible study of mapping fractals, which is simple from

one side since it relates to classical functions, but from another side it is a devel-

oped one since we apply the mapping function in a new manner, which nevertheless

still relates to the original ideas of Julia. Based on the constructed mapping itera-

tion, dynamics for fractals are introduced. We proceed upon the fact that motion of

fractals comprehend as deformation was not considered in literature at all. From the

mathematical point of view, the deformation is equivalent to mapping. Why map-

ping for fractals was not investigated in the literature before? The reason lies in the

complexity of fractals building. Theoretically, the procedure is complex and sophis-

ticated since it contains infinitely many steps. Consequently, to map fractals, one has

to combine a map’s algorithm with the complex algorithm of a fractal construction.

We have found the combination, and it is one of the main achievements of the present

study. That is, in fact, we introduce a new type of functions, with fractal domains,

and determine the properties for the functions to have fractal-images and approve

this. Moreover, using the algorithm of mapping, we find conditions for discrete equa-

tions to admit trajectories consisting of fractals as well as conditions for continuous

trajectories of autonomous differential equations (dynamical systems) to be of frac-

tals. Furthermore, a discussion about admitting fractal-points for non-autonomous

differential equations is provided. For the theoretical discussions, we apply results
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of the fractal geometry (dimension) and theorems and definitions from the theory of

dynamical systems, differential and discrete equations theory.
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CHAPTER 2

GLOBAL WEATHER AND CLIMATE IN THE LIGHT OF EL

NIÑO-SOUTHERN OSCILLATION

2.1 Introduction and Preliminaries

The famous Lorenz equations give birth to the weather related observations. One of

them is the unpredictability of weather in long period of time, which is a meteorolog-

ical concept, and another one is that small changes of the climate and even weather

at present may cause catastrophes for the human life in future. Issuing from this, we

have taken into account the following three features of the Lorenz system, to empha-

size the actuality of the present study. Firstly, it is a regional model. Secondly, for

some values of its parameters the equations are non-chaotic. Finally, the model is of

the atmosphere, but not of the hydrosphere. Therefore, one has to make additional

investigations to reveal that the unpredictability of weather is a global phenomenon,

and climatic catastrophes can be caused by physical processes at any point on the

surface of the globe. The present research is concerned with all of the three factors

issuing from the ocean surface dynamics of El Niño-Southern Oscillation type, and

results of the former research [27, 33].

In this chapter, we study the chaotic behavior of hydrosphere and its influence on

global weather and climate. We give mathematical arguments for the sea surface

temperature (SST) to be unpredictable over the global ocean. The impact of SST

variability on global climate is clear during global climate patterns, which involve

large-scale ocean-atmosphere fluctuations similar to the El Niño-Southern Oscilla-

tion (ENSO). Sensitivity (unpredictability) is the core ingredient of chaos. Several

researches suggested that the ENSO might be chaotic. It was Vallis [50, 51] who
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revealed unpredictability of ENSO by reducing his model to the Lorenz equations.

Interactions of ENSO and other global climate patterns may transmit chaos. We dis-

cuss the unpredictability as a global phenomenon through extension of chaos “hori-

zontally” and “vertically” in coupled Vallis ENSO models, Lorenz systems, and ad-

vection equations by using theoretical as well as numerical analyses. To perform

theoretical research, we apply the recent results on replication of chaos [27, 28] and

unpredictable solutions of differential equations [19, 34], while for numerical analy-

sis, we combine results on unpredictable solutions with numerical analysis of chaos

in the advection equation.

2.1.1 Unpredictability of Weather and Deterministic Chaos

Global climate change has gained the attention of scientists and policymakers. The

reason for that lies in its remarkable impact on human life on the Earth [52]. Climate

change affects and controls many social, economic and political human activities. It

was an essential motivation of human migration throughout history.

Weather is defined by the condition of the atmosphere at a specific place and time

measured in terms of temperature, humidity, air pressure, wind, and precipitation,

whereas climate can be viewed as the average of weather of a large area over a long

period of time [53]. Some definitions of climate expand to include the conditions of

not only the atmosphere, but also the rest components of the climate system: hydro-

sphere, cryosphere, lithosphere, biosphere, and, according to Vernadsky, noösphere

[54].

During the last few decades, big efforts have been made to develop weather and cli-

mate change forecasting models. Due to the chaotic nature of weather, the forecasting

range of weather prediction models is limited to only a few days. Climate models

are more complicated than ordinary weather forecasting models, since they need to

include additional factors of climate system that are not important in the weather

forecast [55]. Understanding the concepts of chaos is an important step toward bet-

ter comprehension of the natural variability of the climate system on different time

scales. This involves determining what the reasons and sources that stand behind of

presence of chaos in weather and climate models. Any progress made in this path will
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be helpful to adjust the conception of climate change and find solutions for climate

control.

Chaos can be defined as aperiodic long-term behavior in a deterministic system that

exhibits sensitive dependence on initial conditions [4]. Predictability consists of con-

structing a relationship between cause and effect by which we can predict and esti-

mate the future behavior of a physical property. Unpredictability means the failure

of such empirical or theoretical relationships to predict due to consisting of noise

term(s), mathematical nature of the relationships or intrinsic irregularity of the phys-

ical property itself. Mathematically unpredictability is considered as a result of the

sensitive dependence on initial conditions, which is an essential feature of Devaney

chaos [14]. Recently, it is theoretically proved that a special kind of Poisson stable

trajectory, called an unpredictable trajectory, gives rise to the existence of Poincaré

chaos [18, 19, 56].

Unpredictability in the dynamics of weather forecast models was firstly observed by

E. N. Lorenz. He developed a heat convection model consisting of twelve equations

describing the relationship between weather variables such as temperature and pres-

sure. Lorenz surprisingly found that his system was extremely sensitive to initial con-

ditions. Later, in his famous paper [13], he simplified another heat convection model

to a three-equation model that has the same sensitivity property [57]. This model is

defined by the following nonlinear system of ordinary differential equations:

dx

dt
= −σ x+ σy,

dy

dt
= r x− xz − y,

dz

dt
= xy − b z,

(21)

where the variable x represents the velocity of the convection motion, the variable y

is proportional to the temperature difference between the ascending and descending

currents, and the variable z is proportional to the deviation of the vertical temper-

ature profile from linearity, whereas the constants σ, r, and b are positive physical

parameters. Model (21) describes the thermal convection of a fluid heated from be-

low between two layers. With certain values of these parameters, Lorenz system

possesses intrinsic chaos and produces the so-called Lorenz butterfly attractor.
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The dynamical nature of weather and climate requires a deeper understanding of the

interaction and feedback mechanisms between the climate system components as well

as the individual one between different regions of a certain component. To study the

behavior of one component of the climate system at a specific region, a single model

defined on a particular spatial and temporal scales is acceptable and the accuracy

of the outputs mainly depends on the number of climate variables and parameters

included in the model. Due to the inevitable simplifications usually adopted for the

construction of such models, the outputs include potential errors even for limited time

scale. Super-modeling is a recently proposed technique has been applied to reduce

model error and improve prediction. The strategy is based on inter-connection of

different climate models that synchronize on a common solution, referred to as the

supermodel solution [58, 59, 60]. Here, the synchronization in connected models

plays an important role for compensating errors in order to achieve an optimal pre-

diction. In this research, different models represent the dynamics of neighbor regions

in the same component and different components of the climate system are coupled

to investigate the global role of chaos in weather and climate through the inter-ocean

and ocean-atmosphere interactions. The paper [33] was concerned with the extension

of chaos through Lorenz systems. It was demonstrated in [33] that Lorenz systems

can be unidirectionally coupled such that the drive system influences the response

system, which is non-chaotic in the absence of driving, in such a way that the latter

also possesses chaos. Additionally, it was showed that the synchronization does not

take place in the dynamics of this types of coupled system. A possible connection of

these results to the global weather dynamics was also provided in that study.

2.1.2 Ocean-Atmosphere Interaction and its Effects on Global Weather

Coupled ocean-atmosphere models are the most fundamental tool for understanding

the natural processes that affect climate. These models have been widely applied to

interpret and predict global climate phenomena such as ENSO [61]. In meteorology

and climate science, SST is considered as a very important factor in ocean-atmosphere

interaction, where it plays a basic role in determining the magnitude and direction

of the current velocity, as well as the ocean surface wind speed. It is difficult to

give a precise definition of SST due to the complexity of the heat transfer operations
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in the mixed layer of upper ocean. In general, however, it can be defined as the

bulk temperature of the oceanic mixed layer with a depth varies from 1m to 20m

depending on the measurement method used [62]. The importance of SST stems

from the fact that the world’s oceans cover over 70 % of the whole surface of the

globe. This large contact area gives way to an active ocean-atmosphere interaction

and sometimes becomes a fertile place for complex feedbacks between the ocean and

atmosphere that drive an irregular climate change.

The most important example of the interactions and feedbacks between the ocean

and the atmosphere is El Niño and Southern Oscillation (ENSO) which is defined

as a global coupled ocean-atmosphere phenomenon occurs irregularly in the Pacific

Ocean about every 2 to 7 years [63]. This phenomenon is accompanied by undesirable

changes in weather across the tropical Pacific and losses in agricultural and fishing

industries especially in South America. The El Niño mechanism can be briefly sum-

marized as follows: During normal conditions in the equatorial Pacific, trade winds

blow from east to west driving the warm surface current in the same direction. As

a consequence of this, warm water accumulates in the western Pacific around south-

east Asia and northern Australia. On the opposite side of the ocean around central

and south America, the warm water, pushed to the west, is replaced by upwelling

cold deep water. During El Niño conditions, the trade winds are much weaker than

normal. Because of this and due to SST difference, warm water flows back towards

the western Pacific. This situation involves large changes in air pressure and rainfall

patterns in the tropical Pacific. The cool phase of this phenomenon is called La Nina,

which is an intensification of the normal situation. The term “Southern Oscillation” is

usually used to refer to the difference of the sea-level pressure (SLP) between Tahiti

and Darwin, Australia. Bjerknes [64] conclude that El Niño and the Southern Oscil-

lation are merely two different results of the same phenomenon. These phases of the

phenomenon are scientifically called El Niño Southern Oscillation or shortly ENSO.

From the above mechanism we can note that the ENSO dynamics is a perfect example

of self-excited oscillating systems.

The ramifications of El Niño are not restricted to the Pacific basin alone, but have

widespread effects which severely disrupt global weather patterns. In the last few

decades scientists developed theories about the climatic engine which produced El
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Niño, and they are trying to explain how that engine interact with the great machine

of global climate. Although remarkable progress has been made in monitoring and

forecasting the onset of El Niño, it is still challenging to predict its intensity and

the impact of the event on global weather. Study of ENSO is considered as a key

to understanding climate change, it is a significant stride toward the meteorology’s

ultimate goal, “accurate prediction and control of world weather”.

Besides the ENSO, there are several other atmospheric patterns that occur in differ-

ent regions of the Earth. These phenomena are interacting in very complicated ways.

Many researchers paid attention to the mutual influence of these phenomena and in-

vestigated if there is any co-occurrence relationship or interaction between them.

The most similar atmosphere-ocean coupled phenomenon to ENSO is the Indian

Ocean Dipole (IOD), which occur in the tropical Indian Ocean, and it is sometimes

called the Indian Niño. IOD has normal (neutral), negative and positive phases. Dur-

ing neutral phase, Pacific warm water, driven by the Pacific trade winds, cross be-

tween south Asia and Australia and flow toward the Indian Ocean. Because of the

westerly wind, the warm water accumulates in the eastern basin of Indian Ocean. In

the negative IOD phase with the coincidence of strength of the westerly wind, warmer

water concentrate near Indonesia and Australia, and cause a heavy rainfall weather in

these regions and cooler SST and droughts in the opposite side of the Indian Ocean

basin around the eastern coast of Africa. The positive phase is the reversal mode of

the negative phase, i.e., what happened in the east side will happen in west side and

vice versa.

From the above we can see that there is a symmetry between the IOD and ENSO

mechanisms. Indeed, SST data shows that the Indian Ocean warming appears as a

near mirror image of ENSO in the Pacific [65]. In addition, the IOD is likely to have

a link with ENSO events, where a positive (negative) IOD often occurs during El Niño

(La Nina) [66, 67]. Luo et al. [68] investigated the ENSO-IOD interactions, and they

suggest that IOD may significantly enhance ENSO and its onset forecast, and vice

versa. Several other researchers like [69, 70] studied the relationship and interaction

between ENSO and IOD. It should be noted here that (as in all these studies) the SST

considered as the major variable, indicator and index for these events.
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Figure 2.1: The major global climate patterns

Other important atmosphere-ocean coupled phenomena like Pacific Decadal Oscil-

lation (PDO), Atlantic Multidecadal Oscillation (AMO), Southern Annular Mode

(SAM), Tropical Atlantic Variability (TAV), North Atlantic Oscillation (NAO), Arctic

Oscillation/Northern Annular Mode (AO/NAM), Madden-Julian Oscillation (MJO),

Pacific/North American pattern (PNA), Quasi-Biennial Oscillation (QBO), and West-

ern Pacific pattern (WP) have significant influences on weather and climate variability

throughout the world. Similar to the relationship between ENSO and IOD, various

studies show expected relationships between these phenomena and mutual effects on

their predictability. Figure 2.1 shows the places of occurrence of the major atmo-

spheric patterns and Table 2.1 gives brief descriptions of them [71, 72, 73]. These

pattern modes have different degrees of effect on SST. In Table 2.1 we see that the

patterns that remarkably influence the ocean temperature are indexed by SST, whereas

those that are most correlated with air pressure, the main indexes of them are based

on SLP.

2.1.3 El Niño Chaotic Dynamics

The SST behavior associated with ENSO indicates irregular fluctuations. The ENSO

indicator NINO3.4 index, for example, is one of the most commonly used indices,

where the SST anomaly averaged over the region bounded by 5◦N–5◦S, 170◦–120◦W

[74]. Figure 2.2 shows the oscillatory behavior of SST in the NINO3.4 region. Data

from the Hadley Centre Sea-Ice and SST dataset HadISST1 [75] is used to generate
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Term Descriptions
Main

Index
Timescale

ENSO
An irregularly periodical variation in sea surface tempera-

tures over the tropical eastern Pacific Ocean
SST

3–7

years

QBO
An oscillation of the equatorial zonal wind in the tropical

stratosphere
SLP

26–30

months

PDO
A low-frequency pattern similar to ENSO occurs primarily

in the Northeast Pacific near North America
SST

20–30

years

PNA

An atmospheric pressure pattern driven by the relationship

between the warm ocean water near Hawaii and the cool

one near the Aleutian Islands of Alaska

SLP 7–8 days

AO/NAM
Defined by westerly winds changes driven by temperature

contrasts between the tropics and northern polar areas
SLP

1–9

months

NAO

Large scale of pressure varies in opposite directions in the

North Atlantic near Iceland in the north and the Azores in

the south

SLP
9–10

days

TAV

Like ENSO, but it exhibits a north-south low frequency os-

cillation of the SST gradient across the equatorial Atlantic

Ocean

SST
10–15

years

AMO

A mode of natural variability occurring in the North At-

lantic Ocean and affects the SST on different modes on mul-

tidecadal timescales

SST
55–80

years

SAM
Defined by westerly winds changes driven by temperature

contrasts between the tropics and southern polar areas
SLP

30–70

days

IOD
An irregular oscillation of sea-surface temperatures in equa-

torial areas of the Indian Ocean
SST

2–5

years

WP

A low-frequency variability characterized by north-south

dipolar anomalies in pressure over the Far East and west-

ern North Pacific

SLP 7–8 days

MJO
An equatorial traveling pattern of anomalous rainfall Lo-

cated in the tropical Pacific and Indian oceans
SLP

40–50

days

Table 2.1: The major climate variability systems
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Figure 2.2: Sea surface temperature anomalies of NINO3.4 region. The data utilized

in the figure is from the Hadley Centre Sea-Ice and SST dataset HadISST1.

the figure. This behavior encourages many scientists to answer the question: Is ENSO

a self-sustained chaotic oscillation or a damped one, requiring external stochastic

forcing to be excited? [76]. There are different hypotheses for the source of chaos in

ENSO. According to Neelin and Latif [77], deterministic chaos within the nonlinear

dynamics of coupled system, uncoupled atmospheric weather noise and secular vari-

ation in the climatic state are the possible source of ENSO irregularity. Tiperman et

al. [78] concluded that the chaotic behavior of ENSO is caused by the irregular jump-

ing of the ocean-atmosphere system among different nonlinear resonances. Several

studies like [79, 80] support this assumption and attributed the irregularity and the un-

predictability of ENSO to influence of stochastic forcing generated by weather noise.

Other studies like [81, 82] infer that ENSO is intrinsically chaotic, which means that

the irregularity and the loss of predictability are independent of the chaotic nature of

weather.

Practically, investigating chaos in ENSO needs long time-series of data, which make

the task quite difficult experimentally. Vallis [50, 51], developed a conceptual model

of ENSO and suggested that the ENSO oscillation exhibits a chaotic behavior. Vallis

used finite difference formulation to reduce two dimensional versions of advection

and continuity equations to a set of ordinary differential equations. In addition, he

assumed that the zonal current is driven by the surface wind, which is in turn propor-

tional to the temperature difference across the ocean. The model is described by the
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set of equations

du

dt
= β (Te − Tw)− λ (u− u∗),

dTw
dt

=
u

2∆x
(T̄ − Te)− α (Tw − T ∗),

dTe
dt

=
u

2∆x
(Tw − T̄ )− α (Te − T ∗),

(22)

where u represents the zonal velocity, Tw and Te are the SST in the western and

eastern ocean respectively, T̄ is the deep ocean temperature, T ∗ is the steady state

temperature of ocean, u∗ represents the effect of the mean trade winds, ∆x is the

width of the ocean basin, and α, β and λ are constants.

By nondimensionalizing Equations (22) and forming the sum and difference of the

two temperature equations, one can see that these equations have the same structure

as the Lorenz system (21). Vallis utilized the fact that the Lorenz system, with specific

parameters, is intrinsically chaotic, and showed that a chaotic behavior of the sum and

difference of the west and east SST can be obtained.

ENSO, as mentioned above, occurs as a result of the interaction of the ocean and

atmosphere. Therefore, modeling of ENSO would be a good instrument to research

unpredictability not only in the atmosphere but also in the hydrosphere. Nevertheless,

ENSO provides the arguments that unpredictability is also proper for sea water pa-

rameters which possibly can be reduced to a single one, the SST, if one excludes flow

characteristics. Vallis saved in the model only hydrosphere variables ignoring the

variation of atmosphere parameters when he considers chaos problem. In our opin-

ion, however, the model is appreciated as a pioneer one, and furthermore, it implies

chaos presence in the Pacific ocean water. Hopefully, in the future, ENSO with both

atmosphere and hydrosphere characteristics being variable will be modeled, but this

time we focus on chaotic effects of ENSO by utilizing the Vallis model.

2.1.4 Sea Surface Temperature Advection Equation

The temporal and spatial evolution of the SST is governed by a first order quasi-linear

partial differential equation, the advection equation. If we denote the SST by T , the

temperature advection equation of mixed layer of fixed depth can be written in the
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form [83, 84]
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= f(t, x, y, z, T ), (23)

where u, v, w are the zonal, meridional and vertical components of current velocity,

respectively. These velocities theoretically must satisfy the continuity equation

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = −∂ρ

∂t
, (24)

where ρ is the seawater density.

The inhomogeneous (forcing) term f on the right-hand side of Equation (23) con-

sists of the shortwave flux, the evaporative heat flux, the combined long-wave back-

radiation and sensible heat flux and heat flux due to vertical mixing [85]. This term

can be described by [86, 87, 88]

f ≈ 1

hρCp

∂q

∂z
+D, (25)

where h is the mixed layer depth, Cp is the heat capacity of seawater, q is radiative and

diffusive heat flux, and D is the thermal damping (the numerical diffusion operator).

The spatial and temporal domain of Equation (23) depend on the region and the nature

of the phenomenon under study. For studying ENSO or IOD, for instance, there are

various regions for monitoring SST. NINO3.4 is one of the most commonly used

indices for ENSO. Dipole Mode Index (DMI) is usually used for IOD, and it depends

on the difference in average SST anomalies between the western 50◦E–70◦E, 10◦N–

10◦S and the eastern 90◦E–110◦E, 0◦–10◦S boxes [89]. The mixed layer depth h

varies with season and depends on the vertical heat flux through the upper layers of

the ocean. The average of mixed layer depth is about 30 m [90]. Different studies

of ocean-atmosphere coupled models considered different regions of various sizes.

Zebiak and Cane [81], for example, developed a model of ENSO. They considered

a rectangular model extending from 124◦E to 80◦W and 29◦N to 29◦S, with constant

mixed layer depth of 50 m and 90 years simulation.

From the above we find that the domain of Equation (23) depends on the purpose of

the study. To study ENSO, for instance, we would cover a big region of pacific ocean

basin, and if we choose the origin of coordinates to be at 160◦E on the Equator, we

can write the domain of (23) as follows

t ≥ 0, 0 ≤ x ≤ 9000 km, −3000 km ≤ y ≤ 3000 km, −100 m ≤ z ≤ 0.
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The inhomogeneous term in Equation (23), which includes mixing processes of heat

transfer, plays the main role for chaotic dynamics. In addition to this term, a chaotic

behavior in ocean current velocity terms may also produce an unpredictable behavior

in SST. These causes of unpredictability are proved analytically and numerically by

perturbing these terms by unpredictable functions. In this study we treat Equation (23)

mathematically without paying attention to the dimensions of the physical quantities.

The important thing to us is the possibility of presence of chaos in this advection

equation endogenously or be acquired from other equation or system. The advec-

tion equation, in addition to the Vallis model and the Lorenz system, will be used to

demonstrate the extension of unpredictability “horizontally” through the global ocean

and “vertically” between ocean and atmosphere.

2.1.5 Unpredictability and Poincaré Chaos

There are different types and definitions of chaos. Devaney [14] and Li-Yorke [1]

chaos are the most frequently used types, which are characterized by transitivity, sen-

sitivity, frequent separation and proximality. Another common type is the period-

doubling cascade, which is a sort of route to chaos through local bifurcation [15, 16,

17]. In the papers [18, 19], Poincaré chaos was developed by introducing the theory

of unpredictable point and unpredictable function, which are built on the concepts

of Poisson stable point and function. We define unpredictable point as follows. Let

(X, d) be a metric space and π : T × X → X be a flow on X, where T refer to ei-

ther the set of real numbers or the set of integers. We assume that the triple (π,X, d)

defines a dynamical system.

Definition 1. [18] A point p ∈ X and the trajectory through it are unpredictable if

there exist a positive number ε (the unpredictability constant) and sequences {tn},
{τn} both of which diverge to infinity such that lim

n→∞
π(tn, p) = p and d[π(tn +

τn, p), π(τn, p)] ≥ ε for each n ∈ N.

Definition 1 describes unpredictability as individual sensitivity for a motion, i.e., it

is formulated for a single trajectory. The Poincaré chaos is distinguished by Poisson

stable motions instead of periodic ones. Existence of infinitely many unpredictable

Poisson stable trajectories that lie in a compact set meet all requirements of chaos.
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Based on this, chaos can be appeared in the dynamics on the quasi-minimal set which

is the closure of a Poisson stable trajectory. Therefore, the Poincaré chaos is referred

to as the dynamics on the quasi-minimal set of trajectory initiated from unpredictable

point.

The definition of an unpredictable function is as follows.

Definition 2. [34] A uniformly continuous and bounded function ϕ : R → Rm is

unpredictable if there exist positive numbers ε, δ and sequences {tn}, {τn} both of

which diverge to infinity such that ‖ϕ(t + tn) − ϕ(t)‖ → 0 as n → ∞ uniformly on

compact subsets of R, and ‖ϕ(t + tn) − ϕ(t)‖ ≥ ε for each t ∈ [τn − δ, τn + δ] and

n ∈ N.

To determine unpredictable functions, we apply the uniform convergence topology

on compact subsets of the real axis. This topology allows us to construct Bebutov

dynamical system on the set of the bounded functions [56, 91]. Consequently, the

unpredictable functions imply presence of the Poincaré chaos.

2.1.6 The Role of Chaos in Global Weather and Climate

The topic of weather and climate is one of the most profoundly important issues con-

cerning the international community. It becomes very actual since the catastrophic

phenomena such as global warming, hurricanes, droughts, and floods. This is why

weather and climate are agenda of researches in physics, geography, meteorology,

oceanography, hydrodynamics, aerodynamics and other fields. The problem is global,

that is a comprehensive model would include the interactions of all major climate

system components, howsoever, for a specific aspect of the problem, a appropriate

model combination can be considered [92]. In the second half of the last century, it

was learned [13] that the weather dynamics is irregular and sensitive to initial condi-

tions. Thus the chaos was considered as a characteristic of weather which can not be

ignored. Moreover, chaos can be controlled [93, 94]. These all make us optimistic

that the researches of weather and climate considering chaos effect may be useful not

only for the deep comprehension of their processes but also for control of them. In the

research [27], we have shown how a local control of chaos can be expanded globally.
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It is not wrong to say that in meteorological studies, chaos is considered as a severe

limiting factor in the ability to predict weather events accurately [95]. Beside this one

can say that chaos is also a responsible factor for climate change if it is considered

as a weather consequence. This is true, firstly, because of the weather unpredictabil-

ity, since predictability can be considered as a useful feature of climate with respect

to living conditions, and secondly, as the small weather change may cause a global

climate change in time. Accordingly, it is possible to say that the control of weather,

even a limited artificial one, bring us to a change of climate.

The chaotic behavior has also been observed in several models of ENSO [77]. Pres-

ence of chaos in the dynamic of this climate event provides other evidence of the

unpredictable nature of the global weather. Besides the Lorenz chaos of atmosphere,

“Vallis chaos” takes place in the hydrosphere. Without exaggerating, we can say that

chaos seems to be inherent at the essence of any deterministic climate model. There-

fore, unpredictability can be globally widespread phenomenon through constructive

interactions between the components of the climate system.

To give a sketch how chaos is related globally to weather and climate, we will use, in

the present research, information on dynamics of ENSO which will mainly utilize the

Vallis model as will as the SST advection equation and the Lorenz equations. They

will be properly coupled to have the global effect. It is apparent that, in the next

research, the models will possibly be replaced by more developed ones, but our main

idea is to demonstrate a feasible approach to the problem by constructing a special net

of differential equations system. Obviously, one can consider the net as an instrument

which can be subdued to an improvement by arranging new perturbation connections.

Proceeding from aforementioned remarks and as a part of the scientific work, we

focus on one possible aspect of global weather and climate dynamics based on El

Niño phenomenon. To address this aim, we first review the Vallis model research for

El Niño in Subsection 2.1.3, then, in Section 2.2 we analyze the presence of chaos

in isolated models for the SST advection equation. In Section 2.3, the extension of

chaos in hydrosphere discussed through coupling of advection equation, the Vallis

model and also mixing advection equation with the Vallis model. In paper [33] chaos

as a global phenomenon in atmosphere was considered, but it is clear that, to say
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about the globe weather one should take into account hydrosphere as well as the

interaction processes between atmosphere and seas. For this reason Section 2.4 is

written where chaos extension from ocean to air and vice versa is discussed on the

base of the Lorenz and Vallis models. So, finalizing the introduction we can conclude

that the present chapter is considered as an attempt to give a sketch of the global

effects of chaos on weather and climate. This results are supposed to be useful for

geographers, oceanographers, climate researchers and those mathematician who are

looking for chaotic models and theoretical aspects of chaos researching.

2.2 Unpredictable Solution of the Advection Equation

In this section we study the presence of Poincaré chaos in the dynamics of Equation

(23). We expect that the behavior of the solutions of (23) depends on the function f

and the current velocity components u, v, w, which are used in the equation. From

Equation (25), we see that the forcing term f depends mainly on the heat fluxes

between the sea surface and atmosphere which is governed by SST, air temperature

and wind speed, as well as between layers of sea which is caused by sea temperature

gradient and vertical (entrainment) velocity. Therefore, this forcing term can be a

natural source of noise and irregularity. Ocean currents are mainly driven by wind

forces, as well as temperature and salinity differences [96]. Thence again we can

deduce that the irregular fluctuations of wind may be reflected in the behavior of SST.

To demonstrate the role of the function f in the dynamics of Equation (23), let us take

into account the equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= −0.7T + 0.3w1 T + 5 sin(xt), (26)

where the current velocity components are defined by u = sin(x
2
) + sin(t) + 3, v =

−0.02, and w = −1
2

cos(x
2
)z.

Figure 2.3 represents the solution of (26) corresponding to the initial data T (0, 0, 0, 0) =

0.5. It is seen in Figure 2.3 that the solution of Equation (26) has an irregular oscil-

lating behavior, whereas in the absence of the term 5 sin(xt) in the function f , the

solution approaches the steady state. Even though the behavior of this numerical so-

lution depends on the step size of the numerical scheme used, this situation leads us
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Figure 2.3: The solution of Equation (26) with the initial condition T (0, 0, 0, 0) = 0.5.

The figure shows that the forcing term f has a significant role in the dynamics of (23).

to consider that the forcing term f has a dominant role in the behavior of SST.

To investigate the existence of an unpredictable solution in the dynamics of Equation

(23) theoretically, let us apply the method of characteristics. If we parametrize the

characteristics by the variable t and suppose that the initial condition is given by

T (t0, x, y, z) = Φ(x, y, z), where t0 is the initial time, then we obtain the system

dx

dt
= u(t, x, y, z, T ),

dy

dt
= v(t, x, y, z, T ),

dz

dt
= w(t, x, y, z, T ),

dT

dt
= f(t, x, y, z, T ),

(27)

with the initial conditions

x(t0) = x0, y(t0) = y0, z(t0) = z0, T (t0, x0, y0, z0) = Φ(x0, y0, z0).

In system (27), we assume that u, v, w, and f are functions of x, y, z, t, and T , and

they have the forms

u = a1 x+ a2 y + a3 z + a4 T + U(x, y, z, T ),

v = b1 x+ b2 y + b3 z + b4 T + V (x, y, z, T ),

w = c1 x+ c2 y + c3 z + c4 T +W (x, y, z, T ),

f = d1 x+ d2 y + d3 z + d4 T + F (x, y, z, T ),

(28)

where ai, bi, ci, di, i = 1, 2, 3, 4, are real constants and the functions U, V,W, F are
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continuous in all their arguments. System (27) can be expressed in the form

X ′(t) = AX(t) +Q(t), (29)

in which

X(t) =


x

y

z

T

 , A =


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 , Q =


U

V

W

F

 . (210)

The following theorem is needed to verify the existence of Poincaré chaos in the

dynamics of Equation (23).

Theorem 1. [19] Consider the system of ordinary differential equations

X ′(t) = AX(t) +G(X(t)) +H(t), (211)

where the n × n constant matrix A has eigenvalues all with negative real parts, the

function G : Rn → Rn is Lipschitzian with a sufficiently small Lipschitz constant,

and H : R → Rn is a uniformly continuous and bounded function. If the function

H(t) is unpredictable, then system (211) possesses a unique uniformly exponentially

stable unpredictable solution, which is uniformly continuous and bounded on the real

axis.

In the remaining parts of the present section, we will discuss the unpredictability

when SST is chaotified by external irregularity. For that purpose let us consider the

logistic map

ηj+1 = 3.91 ηj (1− ηj), j ∈ Z. (212)

According to Theorem 4.1 in [19], the map (212) is Poincaré chaotic such that it

possesses an unpredictable trajectory.

Next, we define a function φ(t) by

φ(t) =

∫ t

−∞
e−2(t−s)γ∗(s) ds, (213)
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where

γ∗(t) =

1.5, ζ∗2j < t ≤ ζ∗2j+1, j ∈ Z,

0.3, ζ∗2j−1 < t ≤ ζ∗2j, j ∈ Z,
(214)

is a relay function. In (214), the sequence {ζ∗j } of switching moments is generated

through the equation ζ∗j = j + η∗j , j ∈ Z, where {η∗j} is an unpredictable trajectory

of the logistic map (212).

One can confirm that φ(t) is bounded such that sup
t∈R
|φ(t)| ≤ 3/4. It was shown in

paper [19] that the function φ(t) is the unique uniformly exponentially stable unpre-

dictable solution of the differential equation

ϑ′(t) = −2ϑ(t) + γ∗(t). (215)

It is not an easy task to visualize the unpredictable function φ(t). Therefore, in order

to illustrate the chaotic dynamics, we take into account the differential equation

ϑ′(t) = −2ϑ(t) + γ(t), (216)

where

γ(t) =

1.5, ζ2j < t ≤ ζ2j+1, j ∈ Z,

0.3, ζ2j−1 < t ≤ ζ2j, j ∈ Z,
(217)

and the sequence {ζj} satisfies the equation ζj = j + ηj, j ∈ Z, in which {ηj} is a

solution of (212) with η0 = 0.4. The coefficient 3.91 used in the logistic map (212)

and the initial data η0 = 0.4 were considered for shadowing analysis in the paper

[97].

We depict in Figure 2.4 the solution of Equation (216) with ϑ(0) = 0.3. It is seen

in Figure 2.4 that the behavior of the solution is irregular, and this support that the

function φ(t) is unpredictable.
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Figure 2.4: The solution of Equation (216) with ϑ(0) = 0.3. The figure support that

the function φ(t) is unpredictable.

2.2.1 Unpredictability Due to the Forcing Source Term

Let us perturb Equation (23) with the unpredictable function φ(t) defined by (213)

and set up the equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= f(t, x, y, z, T ) + ψ(φ(t)), (218)

where u, v, w, and f are in the form of (28) and ψ : [−3/4, 3/4]→ R is a continuous

function.

Using the method of characteristics, one can reduce Equation (218) to system (27)

that can be expressed in the form of (211) with

G(X(t)) =


U

V

W

F

 , H(t) =


0

0

0

ψ(φ(t))

 .
According to the result of Theorem 5.2 in [19], if there exist positive constants L1

and L2 such that

L1 |s1 − s2| ≤ |ψ(s1)− ψ(s2)| ≤ L2 |s1 − s2| (219)

for all s1, s2 ∈ [−3/4, 3/4], then the function H(t) is also unpredictable.

Now, in Equation (218), let us take u = −0.03x + 0.1 sin( x
80

) + 0.4, v = −0.01y −
0.05 sin(y), w = −0.02z+(0.05 cos(y)−0.00125 cos( x

80
))z, ψ(s) = 6s, and f(t, x, y, z, T ) =

−1.5T + 0.1w2T . Since the conditions of Theorem 1 are valid and inequality (219)

holds for these choices of ψ, f , u, v, and w, Equation (218) exhibits Poincaré chaos.
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Figure 2.5: The solution of Equation (220) with the initial condition T (0, 0, 0, 0) =

0.5. The figure reveals the presence of an unpredictable solution in the dynamics of

(218).

In order to simulate the chaotic behavior, we consider the equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= f(t, x, y, z, T ) + ψ(ϑ(t)), (220)

where ϑ(t) is the function depicted in Figure 2.4, and u, v, w, f, ψ are the same as

above. Figure 2.5 shows the solution T (t, x, y, z) of (220) corresponding to the initial

condition T (0, 0, 0, 0) = 0.5. It is seen in Figure 2.5 that the behavior of the solution

is chaotic, and this supports the result of Theorem 1 such that Equation (218) admits

an unpredictable solution.

Next, we will visualize the chaotic dynamics in the integral surface of SST. For that

purpose, we omit the term of the meridional advection v ∂T
∂y

in (218), which has less

effect on SST compared with the zonal and vertical advections [98], and set up the

equation
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= −1.5T + w T + 6ϑ(t), (221)

where u = 1.2+0.1 sin( x
80

)+0.05 sin(3t) and w = 0.1−0.00125 cos( x
80

)z. In (221),

ϑ(t) is again the function shown in Figure 2.4.

We apply a finite difference scheme to solve Equation (221) directly. In such a

scheme, we need to specify boundary conditions along with an initial condition. Us-

ing the initial condition T (0, x, z) = 5 and the boundary conditions T (t, 0, z) =

T (t, x, 0) = 0.5, we represent in Figure 2.6 the integral surface of (221) with respect

to t, x, and the fixed value z = 0 for 5 ≤ x ≤ 20 and 0 ≤ t ≤ 100. Figure 2.6

supports the result of Theorem 1 one more time such that Poincaré chaos is present

in the dynamics.
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Figure 2.6: The integral surface of (221). The chaotic behavior in the SST is observ-

able in the figure.

2.2.2 Unpredictability Due to the Current Velocity

This subsection is devoted to the investigation of SST when the current velocity be-

haves chaotically. Here, we will make use of the unpredictable function φ(t) defined

by (213) to apply perturbations to the zonal and vertical components of current ve-

locity in Equation (23).

We begin with considering the equation

∂T

∂t
+ [u+ ψ(φ(t))]

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= f(t, x, y, z, T ), (222)

where, in a similar way to (218), u, v, w, and f are in the form of (28), and ψ :

[−3/4, 3/4]→ R is a continuous function.

One can confirm that Theorem 1 can be used to verify the existence of Poincaré

chaos in the dynamics of (222) since it can be reduced by means of the method of

characteristics to a system of the form (211) with

H(t) =


ψ(φ(t))

0

0

0

 ,
which is an unpredictable function provided that ψ satisfies the condition (219).

In order to demonstrate the chaotic dynamics of (222), we take u = −0.003x +

0.2 sin(x
3
) + 0.4, v = −0.001 y, w = −0.002 z − 0.2

3
cos(x

3
) z, ψ(s) = 3s, f =
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Figure 2.7: The solution of (222) with T (0, 0, 0, 0) = 0.5. The chaotic behavior of

the solution is apparent in the figure.

−1.5T − 3 sin(3x) + 0.2, and consider the equation

∂T

∂t
+ [u+ ψ(ϑ(t))]

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= f(t, x, y, z, T ), (223)

where ϑ(t) is the function shown in Figure 2.4.

The time series of the solution of (223) with T (0, 0, 0, 0) = 0.5 is depicted in Figure

2.7. One can observe in the figure that the time series is chaotic, and this confirms

the result of Theorem 1 such that Equation (222) possesses an unpredictable solution.

More precisely, the perturbation of the zonal velocity component in Equation (23)

by the unpredictable function ψ(φ(t)) affects the dynamics in such a way that the

perturbed equation (222) is Poincaré chaotic.

Next, we will examine the case when the vertical velocity component in Equation (23)

is perturbed by the unpredictable function φ(t). For this aim we set up the equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ [w + ψ(φ(t))]

∂T

∂z
= f(t, x, y, z, T ), (224)

where the function ψ : [−3/4, 3/4] → R is continuous. If we take u = −0.001x +

0.2 sin(x
3
) + 0.4, v = −0.001 y, w = −0.03z − 0.2

3
cos(x

3
)z, ψ(s) = 3s, and f =

−1.7T + 0.5 z + 1.6, then Equation (224) admits an unpredictable solution in accor-

dance with Theorem 1.

We represent in Figure 2.8 the solution of the equation

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ [w + ψ(ϑ(t))]

∂T

∂z
= f(t, x, y, z, T ), (225)

corresponding to the initial data T (0, 0, 0, 0) = 0.5. Here, we use the same u, v, w,

ψ, and f as in (224), and ϑ(t) is again the function whose time series is depicted in
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Figure 2.8: Chaotic behavior of SST due to the perturbation of the vertical component

of current velocity. The figure shows the solution of (225) with T (0, 0, 0, 0) = 0.5.

Figure 2.4. The irregular fluctuations seen in the figure uphold the result of Theorem

1.

We end up this subsection by illustrating the influence of the chaotic current velocity

on the integral surface of SST. Figure 2.9 (a) shows the integral surface of (222) with

u = 1.5 + 0.5 sinx, v = 0, w = 1 − 0.5 cosx, ψ(s) = 2s, and f = −1.2T −
3 sin(3x) at z = 0. The initial condition T (0, x, y, z) = sin(xz) + 1 and the boundary

conditions T (t, 0, y, z) = T (t, x, y, 0) = 0.5 are utilized in the simulation. One can

see in Figure 2.9 (a) that the SST has chaotic behavior in keeping with the result of

Theorem 1. On the other hand, using the same initial and boundary conditions, we

represent in Figure 2.9 (b) the integral surface of (224) with u = 1, v = 0, w = 1,

ψ(s) = 2s, and f = −1.2T + 3 sin(3z) at z = 1.5. Figure 2.9 (b) also manifests

that the applied perturbation on the vertical component of current velocity make the

Equation (224) behave chaotically even if it is initially non-chaotic in the absence of

the perturbations.

2.3 Chaotic Dynamics of the Globe Ocean Parameters

Chaotic behavior may transmit from one model to another [27]. This transmission in-

terprets, for instance, why the unpredictability in one stock market or in the weather

of one area is affected by another. Chaos in SST may be gained from another endoge-

nous chaotic system like air temperature or wind speed. We can deal with the global

ocean as a finite union of subregions. Each of these subregions may be controlled by

different models depending on the position and circumstances. An assumption of the

existence of chaotic and non-chaotic subregions for SST behavior is very probable.
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(a) The integral surface of (222) at z = 0 (b) The integral surface of (224) at z = 1.5

Figure 2.9: Chaotic behavior of SST due to the current velocity with initial condition

T (0, x, y, z) = sin(xz) + 1, and boundary conditions T (t, 0, y, z) = T (t, x, y, 0) =

0.5. Both pictures in (a) and (b) reveal that chaotic behavior in the current velocity

leads to the presence of chaos in SST.

However, it seems quite unreasonable to imagine a predictable SST for one region

whereas its neighbor region is characterized by an unpredictable SST. The mutual

effect in SST between neighbor regions can be seen by coupling their controlling

models.

2.3.1 Extension of Chaos in Coupled Advection Equations

In this part of the research we deal with the extension of chaos in coupled advection

equations. For that purpose, we consider a Poincaré chaotic advection equation of the

form (218) as the drive, and we take into account the equation

∂T̃

∂t
+ ũ

∂T̃

∂x
+ ṽ

∂T̃

∂y
+ w̃

∂T̃

∂z
= f̃(t, x, y, z, T̃ ) + g(T ) (226)

as the response, in which g is a continuous function and T is a solution of the drive

equation (218). We assume that the response does not possess chaos in the absence

of the perturbation, i.e., we suppose that the advection equation

∂T̃

∂t
+ ũ

∂T̃

∂x
+ ṽ

∂T̃

∂y
+ w̃

∂T̃

∂z
= f̃(t, x, y, z, T̃ ) (227)

is non-chaotic.

34



Chaotic Region Non-chaotic Region

Figure 2.10: Chaos extension between neighbor regions
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Figure 2.11: The solution of the response equation (226) with initial condition

T̃ (0, 0, 0, 0) = 0.5. The figure manifests the extension of chaos in the coupled system

(218)-(226).

Figure 2.10 shows the extension of unpredictability between neighbor regions schemat-

ically. We assume that the dynamics of the chaotic region is governed by the drive

equation (218), which has an unpredictable solution, and the dynamics of the non-

chaotic region is governed by Equation (227). The coupling between these two equa-

tions leads to the transmission of unpredictability such that the response system (226)

possesses chaos.

To demonstrate the extension of chaos numerically, let us consider the response equa-

tion (226) with u = 1.2, v = 0, w = 0.3, f = −1.5T̃ + 0.2, and g(T ) = T . Using

the solution T of Equation (221) satisfying T (0, 0, 0, 0) = 0.5 as the perturbation in

Equation (226), we depict in Figure 2.11 the solution T̃ of (226) corresponding to

the initial data T̃ (0, 0, 0, 0) = 0.5. Figure 2.11 reveals the extension of chaos in the

coupled system (218)-(226).
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2.3.2 Coupling of the Advection Equation with Vallis Model

The Lorenz-like form of the Vallis model is given by [51]
du

dt
= B Td − C u,

dTd
dt

= uTs − Td,

dTs
dt

= −uTd − Ts + 1,

(228)

where u represents the zonal velocity, Td = (Te−Tw)/2, Ts = (Te+Tw)/2, Te and Tw

are the SST in the eastern and western ocean respectively, and B and C are constants.

System (228) is comparable to the Lorenz system and it was shown by Vallis [50, 51]

that (228) with the parameters B = 102 and C = 3 is chaotic. In paper [99] the

authors studied the system (228) with the same parameters and by using the computer-

assisted proofs that follow the standard Mischaikow-Mrozek-Zgliczynski approach

they located, in the dynamics of the system, topological horseshoes in iterates of

Poincaré return maps such that chaos was detected. They considered the chaos with

the standard Li-Yorke conditions and said that the dynamics is complicated at least

as the dynamics of the full shift on the space of two symbols. The existence of chaos

in the dynamics of the Vallis system was also investigated in other studies such as

[100, 101].

Next, we take into account the equations

∂T1
∂t

+ 1.2
∂T1
∂x

+ 0.3
∂T1
∂z

= −1.2T1 − 1 + 2 sinx, (229)

∂T2
∂t

+ 1.2
∂T2
∂x

+ 0.3
∂T2
∂z

= −2T2 + 4 sinx, (230)

∂T3
∂t

+ 0.6
∂T3
∂x

+ 0.5
∂T3
∂z

= −2T3 − 1 + 3 sinx, (231)

and
∂T4
∂t

+ 1.2
∂T4
∂x

+ 0.3
∂T4
∂z

= −1.5T4. (232)

One can verify that the equations (229), (230), (231), and (232) are all non-chaotic

such that they admit asymptotically stable regular solutions. By applying perturba-

tions to these equations, we set up the following ones:

∂T1
∂t

+ 1.2
∂T1
∂x

+ 0.3
∂T1
∂z

= −1.2T1 − 1 + 2 sinx+ 4.6Ts, (233)
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Figure 2.12: Chaos extension through coupled systems

∂T2
∂t

+ (1.2 + 0.8u)
∂T2
∂x

+ 0.3
∂T2
∂z

= −2T2 + 4 sinx, (234)

∂T3
∂t

+ (0.6 + u)
∂T3
∂x

+ 0.5
∂T3
∂z

= −2T3 − 1 + 3 sinx+ 4Ts, (235)

∂T4
∂t

+ 1.2
∂T4
∂x

+ 0.3
∂T4
∂z

= −1.5T4 + 2.7T2, (236)

where (u, Td, Ts) is the solution of the chaotic Vallis model (228) with B = 102,

C = 3 and the initial conditions u(0) = 2, Td(0) = 0.2, and Ts(0) = 0.4.

In Equation (233) the forcing term is perturbed by the SST average, Ts, whereas in

Equation (234) the zonal velocity of Vallis model, u, is used as perturbation. On the

other hand, in Equation (235) both the forcing term and the zonal velocity components

are perturbed with the solution of (228). Moreover, the solution T2 of (234) is used

as a perturbation in the forcing term of Equation (236). The appearance of the zonal

velocity u of the model (228) in the coefficients of Eqs. 234 and 235 looks reasonable

if one remembers that the parts of the ocean surface under consideration are adjoining

to each other, and consequently, the zonal velocity u perturbs its counterpart in the

neighbor region from 1.2 to 1.2 + 0.8u in Eq. 234 and from 0.6 to 0.6 + u in Eq.

235. Furthermore, the perturbations with Ts in Eqs. 233 and 235 can be attributed to

the heat transfer between the neighbor regions because of the structure of the original

equation (23). A schematic representation of these coupled systems is given in Figure

2.12.
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Figure 2.13: The extension of the chaotic behavior by Equations (234) and (235). (a)

The time series of the solution of Equation (234), (b) The time series of the solution

of Equation (235). The initial data T2(0, 0, 0, 0) = 0.5 and T3(0, 0, 0, 0) = 0.5 are

used.

Figure 2.13 (a) and (b) respectively show the solutions T2, T3 of Equations (234)

and (235), respectively. The initial data T2(0, 0, 0, 0) = 0.5 and T3(0, 0, 0, 0) = 0.5

are used in the simulation. Figure 2.13 reveals that the chaos of the model (228) is

extended by Equations (234) and (235).

On the other hand, we depict in Figure 2.14 (a) and (b) the 3 dimensional integral

surfaces corresponding to Equations (233) and (236), respectively. Here, we make

use of the conditions T1(0, x, z) = T1(t, 0, z) = T1(t, x, 0) = 0.5 and T4(0, x, z) =

T4(t, 0, z) = T4(t, x, 0) = 0.5. The figure confirms one more time that the chaos of

system (228) is extended.

2.3.3 Coupling of Vallis Models

Our purpose in this subsection is to demonstrate numerically our suggestion that

chaos can be extended between the regions of some global climate variabilities. We
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(a) (b)

Figure 2.14: Extension of chaos by Equations (233) and (236). (a) The integral sur-

face of Equation (233), (b) The integral surface of Equation (236).

IOD ENSO AMO

SAM

Figure 2.15: Diagram of possible chaos extensions through global climate patterns

regions

assume that there are intermediate subregions located between these main regions and

chaos can transmit from one region to another in a sequential way.

We also suggest that the IOD can be described by a Vallis model in the form of (228)

with parameters appropriate to the Indian Ocean. Evaluation of these parameters is

rather difficult. However, for simplicity we can choose these values such that system

(228) does not exhibit chaotic behavior. Similar arguments can also be supposed for

the AMO and SAM.

A diagram of possible chaos extensions between the regions of IOD, AMO, and SAM

are shown in Figure 2.15. In this diagram, the Vallis model representing ENSO is

assumed to be the main source of the chaotic behavior, while the Vallis models rep-

resenting the behaviors of the regions of IOD, AMO, and SAM are all assumed to be

initially non-chaotic when interactions do not occur between the regions.
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To demonstrate the extension of chaos, let us consider the perturbed Vallis system
dũ

dt
= B̃ T̃d − C̃ ũ+ 1.5u,

dT̃d
dt

= ũ T̃s − T̃d + 0.3Td,

dT̃s
dt

= −ũ T̃d − T̃s + 1 + 0.2Ts,

(237)

where (u, Td, Ts) is the solution of the chaotic Vallis system (228) with B = 102 and

C = 3 corresponding to the initial conditions u(0) = 2, Td(0) = 0.2 and Ts(0) = 0.4.

We use the parameters B̃ = 20 and C̃ = 7 in (237) and assume that the unperturbed

Vallis model
dũ

dt
= B̃ T̃d − C̃ ũ,

dT̃d
dt

= ũ T̃s − T̃d,

dT̃s
dt

= −ũ T̃d − T̃s + 1,

(238)

represents the SST and zonal velocity variabilities associated with the dynamics of

IOD. With these parameter values one can verify that the system (238) has an asymp-

totically stable equilibrium point at (1.363, 0.477, 0.350), and therefore, it is non-

chaotic. Figure 2.16 shows the trajectory of (238) corresponding to the initial con-

ditions ũ(0) = 2, T̃d(0) = 0.2, T̃s(0) = 0.4, and it confirms the presence of the

asymptotically stable equilibrium point. It is rigorously proven in paper [27] that the

Li-Yorke chaos can be transmitted from a chaotic generator to a non-chaotic repli-

cator with asymptotically stable equilibrium, and since the chaos exhibited by (228)

satisfies the Li-Yorke conditions, system (237) will inherit the same chaotic behavior

as (228). In Fig. 2.17, we represent the time series of ũ, T̃d, and T̃s coordinates of

the solution of system (237). One can see in Fig. 2.17 that system (237) possesses

chaotic behavior.

2.4 Ocean-Atmosphere Unpredictability Interaction

In this section, we discuss the possibility of the “vertical” extension of unpredictabil-

ity, i.e. the transmission of chaotic dynamics from ocean to atmosphere and vice

versa. To demonstrate this interaction we apply the Lorenz system for the atmo-

sphere and the Vallis model for the ocean. Vallis model is constructed for the domain
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Figure 2.16: The asymptotically stable equilibrium of system (238).
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Figure 2.17: The solution of system (237) which reveals chaos extension between a

pair of Vallis systems.
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Figure 2.18: Schematic representation of ocean-atmosphere interactions

length of 7500 km, however, depending on the method of construction, the model can

be applied for more localized region to be compatible with the Lorenz model. There

are two interacted regions shown in Figure 2.18, the atmosphere box L and the ocean

box V , whose dynamics are governed the Lorenz system (21) and the Vallis system

(228), respectively.

Heat and momentum exchanges are two important ways of interaction between ocean

and atmosphere. The heat exchange is mainly controlled by the air-sea tempera-

ture gradient, and, on the other hand, the momentum transfer is determined by the

sea-surface stress caused by wind and currents [102]. These characteristics are rep-

resented in both Lorenz system (21) and Vallis model (228). Two coordinates in the

Lorenz system represent temperature, whereas the third one is related to velocity, and

the same could be said for the Vallis system. Therefore, the interaction between ocean

and atmosphere can be modeled by coupling the Lorenz and Vallis models.

Let us consider the coupled Lorenz-Vallis systems

dx

dt
= σ(y − x) + f1(u, Td, Ts),

dy

dt
= x(r − z)− y + f2(u, Td, Ts),

dz

dt
= xy − b z + f3(u, Td, Ts),

(239)

and

du

dt
= B Td − C u+ g1(x, y, z),

dTd
dt

= uTs − Td + g2(x, y, z),

dTs
dt

= −uTd − Ts + 1 + g3(x, y, z),

(240)
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where fi, gi, i = 1, 2, 3, are continuous functions. The coupled model (239)–(240)

is in a sufficiently general form of interaction between the L and V regions shown in

Figure 2.18, where the functions fi, gi, i = 1, 2, 3 are given in most general form.

To demonstrate the transmission of chaos between the atmosphere and ocean, we

consider specific forms of the coupled model (239)–(240). This technique relies on

the theoretical investigations of replication of chaos introduced in [27].

In the case of upward transmission of chaos from the ocean to the atmosphere, we

consider (239) with specific choices of the perturbation functions f1, f2 and f3 to set

up the following system,

dx

dt
= σ(y − x) + 3 sinu,

dy

dt
= x(r − z)− y + 6Td,

dz

dt
= xy − b z + 0.5T 2

s ,

(241)

where (u, Td, Ts) is the solution of the chaotic Vallis system (228) withB = 102, C =

3 and the initial data u(0) = 2, Td(0) = 0.2, Ts(0) = 0.4. We use the parameter values

σ = 10, r = 0.35 and b = 8/3 in (241) such that the corresponding unperturbed

Lorenz system (21) does not possess chaos [103].

Figure 2.19 shows the time series of the x, y, and z components of the solution of

system (241). The initial data x(0) = 0, y(0) = 0.5, z(0) = 0.3 are used in the

figure. The irregular behavior in each component reveals that the chaotic behavior of

the atmosphere can be gained from the chaoticity of the hydrosphere characteristics.

For the downward chaos transmission from the atmosphere to the ocean, we consider

the perturbed Vallis system

du

dt
= B Td − C u+ 0.7x,

dTd
dt

= uTs − Td + 0.3 cos y + 0.4y,

dTs
dt

= −uTd − Ts + 1 + 0.5z,

(242)

where (x, y, z) is the solution of the Lorenz system (21) with the parameters σ = 10,

r = 28 and b = 8/3 and the initial data x(0) = 0, y(0) = 1, z(0) = 0. System (21)

possesses a chaotic attractor with these choices of the parameter values [13, 103].
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Figure 2.19: The chaotic solution of the perturbed Lorenz system (241).
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Figure 2.20: Chaotic behavior of system (242).

Let us take B = 20 and C = 7 in system (242). One can verify in this case that

the corresponding unperturbed system (228) is non-chaotic such that it possesses an

asymptotically stable equilibrium. Figure 2.20 depicts the solution of (242) with

u(0) = 2, Td(0) = 0.2, and Ts(0) = 0.4. It is seen in Figure 2.20 that the chaotic

behavior of the Lorenz system (21) is transmitted to (242). In other words, system

(242) admits chaos even if it is initially non-chaotic in the absence of the perturbation.

2.5 Conclusion

In this chapter we discuss the possible unpredictable behavior of climate variables

on a global scale. Some ENSO-like climate variabilities have a significant influ-
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ence on global weather and climate. ENSO variability is suggested to be chaotic by

many studies. The well-known Vallis ENSO chaotic model is one among several

ENSO models that exhibit irregular behavior. The presence of chaos in ENSO can

be indicated by the behavior of SST as well as ocean current velocity. We describe

the dynamics of SST by the advection equation. The forcing term, based on ocean-

atmosphere interaction, and the current velocity in this equation can be a source of

unpredictability in SST. We prove the presence of chaos in SST dynamics by utilizing

the concept of unpredictable function. The relationship and interaction between the

climate variabilities, like the ones between ENSO and IOD, have attracted attention in

recent literature. Constructing and understanding the dynamic models driving these

phenomena are the main steps to investigate the mutual influences between these

global events. The SST anomalies are closely linked to some climate variabilities

teleconnections in different parts of the global ocean. We suggest that the hydro-

sphere characteristics can behave chaotically through the possibility of transmission

of chaos between ocean neighbor subregions. We verified this transmission by differ-

ent “toy” couples of advection equations and Vallis models. The simulations of these

couples show that unpredictability can be transmitted from a local region controlled

by a chaotic model into its neighbor which is described by a non-chaotic model.

The mechanism of unpredictability extension can be interpreted in terms of physi-

cal operations. The simplicity of the models under consideration, namely the Vallis

model and the advection equation, allows to make the physics much clearer. The onset

of ENSO is accompanied with zonal SST gradient over the equatorial Pacific Ocean.

The same situation applies to IOD in Indian Ocean and other similar climate patterns.

This distribution of SST leads to heat transport by convection in the mixed layer and

ocean circulation through its effect on surface wind and ocean atmospheric circula-

tion. These physical processes, which include heat, mass and momentum transfer, can

be accompanied with “chaos transfer”. We believe that this thought still needs a con-

sistent theoretical framework to understand all features of such operation, principally

the intrinsicness of chaos for these physical quantities. Nevertheless, the presented

mechanism of unpredictability extension could be seen as a step towards this goal.

Further steps can be performed by including different models for more climate com-

ponents.
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We proposed to apply the same technique for the “vertical” unpredictability exchange

between atmosphere and hydrosphere. In this case, the Lorenz system and the Vallis

model are assigned for the atmosphere and ocean, respectively. Physically, this ex-

change may be done in the midst of interaction between ocean and atmosphere associ-

ated with, for example, heat exchange. By this procedure, the global unpredictability

of oceanic oscillation can be viewed as accompaniment to weather unpredictability.

Our approach provides a basic frame for mathematical interpretation to the irregu-

lar behavior of some global climate characteristics. It gives a way to link the local

unpredictability in a component of climate system to more global scope. Further

investigation can done by including different models for more climate components.

Another important and interesting problem is controlling weather. Even though the

weather is too complicated to modify, a vital step can be taken toward this goal by

modify the ENSO oscillation through control of chaos in its models and study the

“extension of the control” between ENSO-like models and weather models. Chaos

control in Lorenz system is still not effectively developed in the literature, where the

most proposed methods are mainly depend on forcing the system into a single stable

periodic behavior [25, 104], and this is not adequate for real life applications. It is

known that the chaos control can be achieved by using small perturbation to some

parameters or variables of the system. This idea may be practically applied by mak-

ing a small local artificial effect in atmosphere or hydrosphere. If we consider the

positive tenor of the Lorenz’s famous question, “Does the flap of a butterfly’s wing in

Brazil set off a tornado in Texas?”, we can say that the small artificial climate change

may prevent the occurrence or at least decrease the intensity of some extreme weather

events such as cyclones, hurricanes, droughts, and floods.

47



48



CHAPTER 3

FRACTALS: DYNAMICS IN THE GEOMETRY

3.1 Introduction

French mathematicians Pierre Fatou and Gaston Julia in 917-1918 invented a special

iteration in the complex plane [44, 49] such that new geometrical objects with un-

usual properties can be built. The iteration is called Fatou-Julia Iteration (FJI) [22] or

sometimes “Escape Time Algorithm" [24]. One of the famous fractals constructed by

the iteration is the Julia set. Besides the iteration of rational maps, there are various

ways to construct fractal shapes. The well known self-similar fractals like Sierpin-

ski gasket, Sierpinski carpet, and Koch curve are constructed by means of a simple

recursive process which consists in iteratively removing shrinking symmetrical parts

from an initial shape. These types of geometrical fractals can also be produced by an

Iterated Function System (IFS) [105, 106], which is defined as collections of affine

transformations.

There are two sides of the fractal research related to the present study. The first one

is FJI and the second one is the proposal by Mandelbrot to consider dimension as a

criterion for fractals. In our approach, both factors are crucial as we apply the FJI for

the construction of the sets and the dimension factor to confirm that the built sets are

fractals. In previous studies the iteration and the dimension factors were somehow

separated, since self-similarity provided by the iteration has been self-sufficient to

recognize fractals, but in our research the similarity is not true in general. We have

to emphasize that there is a third player on the scene, the modern state of comput-

ers’ power. Their roles are important for the realization of our idea exceptionally

for continuous dynamics. One can say that the instrument is at least of the same

49



(a) Achilles and the tortoise dynamics

(b) The state, S0, of the dynamics
(c) Pseudo-fractal trajectory

Figure 3.1: The dynamics of the Zeno’s Paradox

importance for application of our idea to fractals as for realization of Fatou-Julia it-

eration in Mandelbrot and Julia sets. Nevertheless, we expect that the present study

will significantly increase the usage of computers for fractal analysis. Moreover, be-

side differential equations, our suggestions will effect the software development for

fractals investigation and applications [107, 108].

Studying the problem, we have found that fractal-like appearances can be observed

in ancient natural philosophy. Let us consider the Achilles and tortoise in the Zeno’s

Paradox [109, 110], (see Fig. 3.1a).

In the paradox, Achilles is observed at the initial moment t0 = 0 with the distance

d0 from the tortoise. Suppose that Achilles runs at a constant speed, two times faster

than the tortoise, then he would reach the previous position of the tortoise at moments

t1, t2 = 3t1/2, t3 = 7t1/4, ... with distances d1 = d0/2, d2 = d0/4, d3 = d0/8, ...

from the tortoise, respectively. Now contemplate Fig. 3.1b, where the heights of

the red lines are proportional to the distance of Achilles from the tortoise at the fixed

moments, and denote the diagram by S0. The set S0 demonstrates the entire dynamics

for t ≥ t0. Fix i ≥ 0, and let Si be the similar diagram which consists of all the lines

for the moments which are not smaller than ti.
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Let us consider the collection of the states {Si}, i ≥ 0. One can assume that there

exists a map B such that the equations

Si+1 = B Si, i = 0, 1, 2, . . . ,

which symbolize a dynamics, are valid. It is easily seen that S0 is self-similar to each

of its parts Si, i > 0. Nevertheless, the Hausdorff dimension of the set S0 is equal

to one. For this reason, we call Si, i ≥ 0, pseudo-fractals, due to the similarity. The

trajectory {Si}, i ≥ 0, is also a pseudo-fractal. The sketch of the trajectory is seen in

Fig. 3.1c.

The research is an extension of the ancient paradigm, since we will investigate dy-

namics having all points of a trajectory as well as the trajectory itself fractals.

3.2 Fatou-Julia Iteration

Involvement of the dynamics of iterative maps in fractal construction was a critical

step made by Fatou and Julia [44, 49]. They described what we call today FJI. The

iteration is defined over a domain D ⊆ C by

zn+1 = F (zn), (31)

where F : D → D is a given function for the construction of the fractal set F .

The points z0 ∈ D are included in the set F depending on the boundedness of the

sequence {zn}, n = 0, 1, 2, ..., and we say that the set F is constructed by FJI.

In practice one cannot verify the boundedness for infinitely long iterations. This is

why in simulation we fix an integer k and a bounded subset M ⊂ C, and denote by

Fk the collection of all points z0 ∈ D such that the points zn where the index n is

between 1 and k, n = 1, 2, ..., k, belong to M . In what follows we call the set Fk the

kth approximation of the set F .

The most popular fractals, Julia and Mandelbrot sets, are generated using the iteration

of the quadratic map F (zn) = z2n + c, where c is a complex number. The so-called

filled-in Julia set, Kc, is constructed by including only the points z0 ∈ C such that

the sequence zn is bounded [111]. Moreover, in the simulation, those points z0 ∈ C
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where {zn} is divergent are colored in a different way, correspondingly to the rate of

divergence. The term Julia set Jc, usually denotes the boundary of the filled Julia set,

i.e., Jc = ∂Kc.

In the case of the Mandelbrot set, M, we include inM the points c ∈ C such that

{zn(c)}, z0(c) = 0, is bounded. Here again, the points c ∈ C corresponding to

divergent sequences zn are plotted in various colors depending on the rate of the

divergence.

3.3 How to Map Fractals

To describe our way for mapping of fractals, let us consider a fractal set F ⊆ A ⊂ C,

constructed by the following FJI,

zn+1 = F (zn), (32)

where F : A → A is not necessarily a rational map. We suggest that the original

fractal F can be transformed “recursively” into a new fractal set. For that purpose,

we modify the FJI, and consider iterations to be of the form

f−1(zn+1) = F
(
f−1(zn)

)
, (33)

or explicitly,

zn+1 = f
(
F
(
f−1(zn)

))
, (34)

where f is a one-to-one map on A. Next, we examine the convergence of the se-

quence {zn} for each z0 ∈ f(A). Denote by Ff the set which contains only the points

z0 corresponding to the bounded sequences. Moreover, other points can be plotted

in different colors depending on the rate of the divergence of {zn}. To distinct the

iterations (34) from the Fatou-Julia iterations let us call the first ones Fractals Map-

ping Iterations (FMI). It is clear that FJI is a particular FMI, when the function is the

identity map. The mapping of fractals is a difficult problem which depends on in-

finitely long iteration processes, and has to be accompanied with sufficient conditions

to ensure that the image is again fractal.

The next theorem is the main instrument for the detection of fractal mappings. Ac-

cordingly, we call it Fractal Mapping Theorem (FMT).
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Theorem 2. If f is a bi-Lipschitz function, i.e. there exist numbers l1, l2 > 0 such

that

l1|u− v| ≤ |f(u)− f(v)| ≤ l2|u− v| (35)

for all u, v ∈ A, then Ff = f(F).

Proof. Fix an arbitrary w ∈ Ff . There exists a bounded sequence {wk} such that

w0 = w and f−1(wk+1) = F (f−1(wk). Let us denote zk = f−1(wk). Our purpose is

to show that {zk} is a bounded sequence. Indeed

|zk − z0| = |f−1(wk)− f−1(w0)| ≤
1

l1
|wk − w0|.

Hence, the boundedness of {wk} implies the same property for {zk}, and therefore,

we have z0 = f−1(w) ∈ F .

Now, assume that w ∈ f(F). There is z ∈ F such that f(z) = w and a bounded

sequence {zk} such that z0 = z and zk+1 = F (zk). Consider, w0 = w and wk =

f(zk), k ≥ 0. It is clear that the sequence {wk} satisfies the iteration (33) and more-

over

|wk − w0| = |f(zk)− f(z0)| ≤ l2|zk − z0|.

Consequently, {wk} is bounded, and w ∈ Ff .

The following two simple propositions are required.

Lemma 1. [112] If f is a bi-Lipschitz function, then

dimH f(A) = dimH A,

where dimH denotes the Hausdorff dimension.

Lemma 2. If f : A → C is a homeomorphism, then it maps the boundary of A onto

the boundary of f(A).

It is clear that a bi-Lipschitz function is a homeomorphism.

Shishikura [113] proved that the Hausdorff dimension of the boundary of the Man-

delbrot set is 2. Moreover, he showed that the Hausdorff dimension of the Julia set

corresponding to c ∈ ∂M is also 2.
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Routine mapping Fractal mapping

(i) The preimage description

F =
{

(x, y) : g(x, y) = 0}
(a) The fractal-preimage description

F = {(x, y) : (xn, yn), where (x0, y0) =

(x, y) and (xn+1, yn+1) = g(xn, yn),

is bounded
}

(ii) The map definition

f : (u, v) = f(x, y)

(b) The map definition

f : (u, v) = f(x, y)

(iii) The image description

Ff =
{

(u, v) : g
(
f−1(u, v)

)
= 0
} (c) The fractal-image description

Ff =
{

(u, v) : f−1(un, vn), where (u0, v0)

= (u, v) and f−1(un+1, vn+1) =

g
(
f−1(un, vn)

)
, is bounded

}
Table 3.1: The differences between a routine mapping and the fractal mapping

It implies from the above discussions that if f is a bi-Lipschitz function and F is

either a Julia set or the boundary of the Mandelbrot set, then their images Ff are

fractals. In what follows, we will mainly use functions, which are bi-Lipschitzian

except possibly in neighborhoods of single points.

To emphasize the novelty concerning the map algorithm (change of coordinates), we

suggest the Table 3.1 below, which illustrates the differences between a routine map

and the newly constructed fractal mapping.

Let us give comments on the content of Table 3.1 and explain why the mapping of

fractals is different than those which can be accepted as routine maps. Consider the

two-dimensional case for a set F . In the routine map, the preimage F is simply given

by equation (i) in the table, while for the fractal-preimage description we need the

procedure (a) which theoretically consists of an infinite number of steps. The most

important difference is manifested in the image description. In the routine mapping,

the image can be defined by formula (iii). However, to describe the fractal-image, one

should involve the infinite process of the preimage construction (a). The novelty of

our approach is exactly in finding how the infinite process can be involved to define
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.2: Julia and Mandelbrot sets with their images

the fractal mapping algorithm (c).

Now, we apply FMI to a Julia set J , and the iteration will be in the form

f−1(zn+1) =
[
f−1(zn)

]2
+ c, (36)

with various functions f and values of c. The resulting fractals Jf = f(J ) are

depicted in Fig. 3.2 (b) and (d). They are mapped by f(z) = cos−1
(
1
z
− 1

)
,

c = −0.7589 + 0.0735i, and f(z) =
(

sin−1 z
) 1

5 , c = −0.175 − 0.655i from the

Julia sets in Fig. 3.2 (a) and (c), respectively.

For mapping of the Manderbrot set, we propose the FMI

zn+1 = z2n + f−1(c). (37)

Along the lines of the proof of Theorem 2, one can show that if the map f is bi-

Lipschitzian, then the iteration (37) defines the relation f(M) = Mf , whereMf is

a new fractal. Figure 3.2 (f) shows a fractal mapped by f(c) =
(
1
c
− 1
) 1

2 from the

Mandelbrot set in Fig. 3.2 (e).
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3.4 Dynamics for Julia sets

3.4.1 Discrete Dynamics

Discrete fractal dynamics means simply iterations of mappings introduced in the last

section. Let us consider a discrete dynamics with a bi-Lipschitz iteration function f

and a Julia set J0 = J as an initial fractal for the dynamics. The trajectory

J0,J1,J2,J3, . . . ,

is obtained by the FMI

zn+1 = fk
(

[f−k(zn)]2 + c
)
, (38)

such that Jk+1 = f(Jk), k = 0, 1, 2, 3, . . .. The last equation is a fractal propagation

algorithm.

The computational procedure of the numerical simulation for the discrete fractal tra-

jectory of Eq. (38) is summarized in Algorithm 1. Figure 3.3, which is obtained by

using Algorithm 1, shows the trajectory and its points at k = 1 and k = 5 for the

function f(z) = z2 +ac+ b with a = 0.6, b = 0.02−0.02i and c = −0.175−0.655i.

3.4.2 Continuous Dynamics

To demonstrate a continuous dynamics At with real parameter t and fractals, we use

the differential equation
dz

dt
= g(z), (39)

such that Atz = φ(t, z), where φ(t, z) denotes the solution of (39) with φ(0, z) = z.

Thus, we will construct dynamics of sets AtF , where a fractal F is the initial value.

To be in the course of the previous sections, we define a map f(z) = Atz and the

equation

A−t(zn+1) = [A−t(zn)]2 + c.

Thus the FMI (34) in this case will be in the form

zn+1 = At

(
[A−t(zn)]2 + c

)
. (310)
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(a) Discrete fractal trajectory
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(c) k = 5

Figure 3.3: The discrete trajectory
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Algorithm 1: Discrete dynamics simulation

1 Define the map f(t) and its inverse f−1(t)

2 Specify the initial Julia set J0 by setting the parameter c

3 Set the upper bound b

4 Set the number of maximum iterations jm

5 Create a mesh with Np = N ×M elements on the domain of J0

6 Set the number of the map iterations K

7 for k = 1 to K do

8 Initiate the image matrix Z = zeros(M,N)

9 for n = 1 to Np do

10 Pick a point (x, y) from the domain

11 Let z = x+ iy

12 Set j = 0

13 while (j < jm) and (x2 + y2 < b2) do

14 Let j = j + 1

15 Find the image z = fk
((
f−k(z)

)2
+ c
)

16 Compute x = Re(z) and y = Im(z)

17 end

18 Assign the image matrix elements, Z(n) = j

19 end

20 Display the image Z on the x, y, k coordinates

21 end
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In what follows, we assume that the map At is bi-Lipschitzian. This is true, for

instance, if the function g in (39) is Lipschitzian. Then the set AtF for each fixed t is

a fractal determined by the FMI, and we can say about continuous fractal dynamics.

Algorithm 2, which is provided in the Appendix, gives the general outline of the

computational steps of the numerical simulation for trajectories generated by the FMI

(310). The Algorithm is used to produce the trajectories shown in Figs. 3.4, 3.5, and

3.6.

As an example we consider the differential equation dz/dt = −z, 0 ≤ t ≤ 1, with

the flow Atz = ze−t. It represents a contraction mapping when it is applied to the

iteration (310), whereas the unstable dynamical system Atz = zet corresponding to

the differential equation dz/dt = z represents an expansion mapping.

Figure 3.4 (a) and (b) contain fractal trajectories of the dynamics with the initial Julia

set J , corresponding to c = −0.175− 0.655i. The initial fractal and the point of the

expansion at t = 1 are seen in parts (c) and (d) of the figure, respectively.

Now, we will focus on the autonomous system of differential equations

dx

dt
= −y + x(4− x2 − y2),

dy

dt
= x+ y(4− x2 − y2).

(311)

The solution of the last system in polar coordinates with initial conditions ρ(0) = ρ0

and ϕ(0) = ϕ0 is given by

ρ(t) = 2e4t
( 4

ρ20
+ e8t − 1

)− 1
2
,

ϕ(t) = t+ ϕ0.

Thus, the map can be constructed by

Atz = x(t) + iy(t), (312)

where

x(t) = ρ(t) cos(ϕ(t)),

y(t) = ρ(t) sin(ϕ(t)),

z = ρ0 cos(ϕ0) + iρ0 sin(ϕ0).
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Algorithm 2: Continuous dynamics simulation

1 Find the solution φ(t, z) of the used differential equation

2 Define the map as f(z) = Atz, where Atz = φ(t, z)

3 Define the inverse of the map as f−1(z) = A−tz

4 Specify the initial Julia set J0 by setting the parameter c

5 Set the upper bound b

6 Set the number of maximum iterations jm

7 Create a mesh with Np = N ×M elements on the domain of J0

8 Set the temporal domain t0 ≤ t ≤ T , with a step size ∆t

9 Compute the number of image iteration Nt = T/∆t+ 1

10 Set t = t0

11 for k = 1 to Nt do

12 Initiate the image matrix Z = zeros(M,N)

13 for n = 1 to Np do

14 Pick a point (x, y) from the domain

15 Let z = x+ iy

16 Set j = 0

17 while (j < jm) and (x2 + y2 < b2) do

18 Let j = j + 1

19 Find the image z = At

((
A−k(z)

)2
+ c
)

20 Compute x = Re(z) and y = Im(z)

21 end

22 Assign the image matrix elements, Z(n) = j

23 end

24 Display the image Z on the x, y, t coordinates

25 Let t = t+ ∆t

26 end
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(b) J et
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Figure 3.4: Fractals of the continuous dynamics
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In Fig. 3.5 (a), the fractal trajectory of system (311) is seen with the Julia set as

the initial fractal. Parts (b)-(g) of the same figure represent various points of the

trajectory.

Next, let us consider the non-autonomous differential equation

dz

dt
= az + (cos t+ i sin t), (313)

and the map

Atz = (z +
a+ i

1 + a2
)eat − a+ i

1 + a2
(cos t+ i sin t), (314)

which is determined by the solutions of Eq. 313.

The map is not of a dynamical system since there is no group property for non-

autonomous equations, in general. This is why, Eq. 310 cannot be used for frac-

tal mapping along the solutions of the differential equation (313). However, for the

moments of time 2πn, n = 1, 2, . . . , which are multiples of the period, the group

property is valid, and therefore iterations by Eq. 310 determine a fractal dynamics

at the discrete moments. In the future, finding conditions to construct fractals by

non-autonomous systems might be an interesting theoretical and application prob-

lem. We have applied the map with a = 0.01 and the Julia set corresponding to

c = −0.175 − 0.655i as the initial fractal. The results of the simulation are seen in

Fig. 3.6. Since the moment t = π
2

is not a multiple of the period, the section in part

(b) of the figure does not seem to be a fractal, but in part (c), the section is a Julia set.

3.5 Dynamics Motivated by Sierpinski Fractals

Fatou-Julia iteration is an effective instrument to construct fractals. Famous Julia and

Mandelbrot sets are strong confirmations of this. In this section, we use the paradigm

of FJI to construct and map Sierpinski fractals. The processes of the construction

of the Sierpinski gasket starting by an initial solid triangle, then dividing it into four

identical triangles and removing the central one. In the next iterations, the same

procedure is repeated to each of the remaining triangles from the preceding iteration.

In an analogous way to the gasket, the construction of the Sierpinski carpet starting

by an initial solid square, then dividing it into nine squares and removing the central
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Figure 3.5: The fractal trajectory for (311) and its points
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(a) AtJ
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Figure 3.6: The parametric set and its sections
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(a) Sierpinski gasket (b) Sierpinski carpet

Figure 3.7: Sierpinski Fractals

one. Similarly, each next iteration, is a repetition of the same procedure to each of the

remaining squares from the preceding iteration. Figure 3.7 shows the two Sierpinski

fractals for finite iterations, which are constructed by the methods introduced and

discussed in this section.

3.5.1 Construction of the Fractals

The Sierpinski fractals are typically generated using IFS [105, 106], which is defined

as a collection of affine transformations. Another way of construction can accom-

plished by adopting the idea of FJI and developing some schemes for constructing

Sierpinski fractals. The technique of the FJI is based on detecting the points of a

fractal set through the boundedness of their iterations under a specific map. Here, we

shall extend the technique to include any possible criterion for grouping points in a

given domain. It is worthy to mention that FJI can be constructed from IFS [24, 106].

3.5.1.1 Sierpinski carpets

At first glance, the Sierpinski carpet seems to be a two dimensional version of the

middle third Cantor set. To discuss this thought, let us consider the tent map T defined
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on the interval I = [0, 1] such that

T (x) =

 3x, if x ≤ 1
2
,

3(1− x), if x > 1
2
.

(315)

The Julia set corresponding to the map (315) is the middle third Cantor set [22]. For

planar fractals we consider the FJI defined by the two-dimensional tent map

(xn+1, yn+1) =

(
3

2
− 3
∣∣xn − 1

2

∣∣, 3

2
− 3
∣∣yn − 1

2

∣∣), (316)

with the initial square D = [0, 1] × [0, 1]. If we exclude each point (x0, y0) whose

iterated values (xn, yn) escape from D, i.e., at least one coordinate escapes, xn > 1

or yn > 1 for some n ∈ N, we shall get a Cantor dust. This set is simply the Cartesian

product of the Cantor set with itself, and it is a fractal possessing both self-similarity

and fractional dimension. Figure 3.8 (a) shows the 3rd approximation of the Cantor

dust generated by (316).

Let us now modify this procedure such that a point (x0, y0) is excluded from D if

both of its coordinates’ iterations (xn, yn) escape from the initial set, that is, if xn > 1

and yn > 1 for some n ∈ N. This procedure for iteration (316) will give a kind of

two dimensional Cantor set shown in Fig. 3.8 (b) with the 3rd approximation. More

similar object to the Sierpinski carpet can be obtained by considering simultaneous

escape of both coordinates, viz., (x0, y0) is excluded only if xn > 1 and yn > 1 at

the same iteration n. Figure 3.8 (c) shows the 5th approximations of the resulting set.

This set is clearly not a fractal from the dimension point of view. The self-similarity

is also not satisfied over the whole set. However, a special type of self-similarity can

be observed where the corners replicate the whole shape.

The construction of the Sierpinski carpet cannot possibly be performed through any

arrangement of two dimensional Cantor set and, therefore, a different strategy should

be considered. To this end, we shall use maps that construct sets which are similar

to Cantor sets in the generation way but different in structure. A suitable set for gen-

erating the Sierpinski carpet started with the initial set I = [0, 1]. The first iteration

involves subdividing I into three equal intervals and removing the middle open in-

terval (1
3
, 2
3
). In the second iteration the middle interval is restored and each of the

three intervals are again subdivided into three equal subintervals then we remove the
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(a) (b) (c)

Figure 3.8: Approximations of planar sets generated by (316) with different condi-

tions of grouping the points

Figure 3.9: Perforation set

middle open intervals (1
9
, 2
9
), (4

9
, 5
9
), and (7

9
, 8
9
). We continue in the same manner for

the succeeding iterations. Figure 3.9 illustrates the first three stages of construction

of the set. The purpose of such sets is to cut out successively smaller parts (holes) in

the Sierpinski fractals kind. This is why we call these types of sets “perforation sets".

To construct perforation sets, we use the modified tent map

F (x) =

 3 [x(mod 1)], if x ≤ 1
2

or x > 1,

3(1− x), if 1
2
< x ≤ 1.

The point x ∈ I is excluded from the kth approximation of the set if its kth iteration

F k(x) does not belong to I. For the Sierpinski carpet we use a two dimensional

version of the modified tent map defined on the domain D = [0, 1] × [0, 1]. We
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consider the iteration

xn+1 =

 3 [xn(mod 1)], if xn ≤ 1
2

or xn > 1,

3(1− xn), if 1
2
< xn ≤ 1,

yn+1 =

 3 [yn(mod 1)], if yn ≤ 1
2

or yn > 1,

3(1− yn), if 1
2
< yn ≤ 1.

(317)

To generate the Sierpinski carpet we exclude any point (x0, y0) ∈ D if its iteration

(xn, yn) under (317) escapes from D such that xn > 1, yn > 1 for some natural

number n. Figure 3.7 (b) shows the 6th approximation of the Sierpinski carpet gen-

erated by iteration (317). The iteration looks very similar to the FJI but with different

criterion for grouping the points. However, it can be classified under FJI type.

Another scheme can be developed by using a map to generate a sequence for each

point in a given domain and then applying a suitable criterion to group the points. For

that purpose, let us introduce the map

ψn(x) = B sin(Anx), (318)

where An = πan−1, B = csc π
b
, and a, b are parameters. The recursive formula is

defined as follows:

ψ0(x0) := x0,

xn = ψn(x0), n = 1, 2, ... .

To construct the perforation set, we start with the interval I = [0, 1], and include in

the kth approximation of the set each point x0 ∈ I that satisfies |xk| ≤ 1. Thus, for

Sierpinski carpet, we use a two dimensional version of the map (318) which can be

defined in the form

ψn(x, y) =
(
B sin(Anx), B sin(Any)

)
. (319)

The procedure here is to determine the image sequence (xn, yn) of each point (x0, y0) ∈
D, i.e.,

(xn, yn) = ψn(x0, y0). (320)
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(a) a = b = 4

(b) a = 6, b = 3

(c) a = 3, b = 4

(d) a = 3, b = 4

(e) a = 2, b = 3.5

(f) a = 2, b = 3.5

Figure 3.10: Sierpinski Carpets

If we choose D = [0, 1] × [0, 1], the point (x0, y0) is excluded from the set if the

condition

|xn| > 1, |yn| > 1 (321)

is satisfied for some n ∈ N.

For the values of the parameters a = 3 and b = 3, the scheme gives the classical

Sierpinski carpet (the simulation result for the 6th approximation is identical to Fig.

3.7 (b)). Figure 3.10 shows other carpets generated by (319) with different values of

the parameters a and b, and for limited stages. The colors that appear in the parts (d)

and (f) of the figure are related to the sequences generated by (320) such that the color

of each point in the carpets depends on the smallest number of stages n that satisfies

condition (321).

This scheme is quite different than the usual procedure of FJI since iterations are not

utilized and a different criterion is applied for grouping the points. However, we shall

see later that the idea of the FMI can be applied for this type which allows to map and

introduce dynamics for the constructed carpets.
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(a) a = 3, b = 3 (b) a = 4, b = 4

Figure 3.11: Sierpinski carpets by the FJI (322)

A more similar iteration to that of Fatou and Julia can be constructed by finding the

inverse x = ψ−1n (xn) in (318) and then substituting in xn+1 = ψn+1(x) to get the

autonomous iteration

xn+1 = B sin
(
a sin−1

xn
B

)
. (322)

The carpets shown in Fig. 3.11 are simulated by using a two dimensional form of it-

eration (322), and they are irregular types of fractals. These fractals have asymmetric

similarities and they are not categorized under random fractals [114].

3.5.1.2 Sierpinski gasket

For constructing the Sierpinski gasket we again use the perforation sets, and in this

case we introduce a special coordinate system shown in Fig. 3.12 (a). The system

consists of three non-rectangular plane axes denoted by x′, x′′, and y, and the thick

red lines in the figure represent the perforation set constructed in Fig. 3.12 (b).

We start with the initial set D which is a unit equilateral triangle defined by D =

{(x, y) ∈ R2 : −1√
3
y ≤ x ≤ 1√

3
y, 0 ≤ y ≤

√
3
2
}. For each point (x, y) ∈ D, we detect

the triple (x′, x′′, y), where x′ and x′′ are the projections of (x, y) on the x′ and x′′

axes, respectively. To examine whether the point (x, y) belongs to the gasket, we set

up the recursive formula

(x′n, x
′′
n, yn) =

(
α
(
Anx

′), β(Anx′′), γ(Any)), (323)

where α, β and γ are functions, An = 2√
3
πan, and a is a parameter. The point (x, y)
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(a) Coordinate system for Sierpinski gasket con-

struction
(b) Perforation set

Figure 3.12: Sierpinski gasket construction

is excluded from the resulting gasket if x′n > 0, x′′n > 0 and yn < 0 for some n ∈ N.

For α(x) = β(x) = γ(x) = sin x and a = 2, the resulting gasket is the classical

Sierpinski gasket. Figure 3.7 (a) shows the 8th approximation of the Sierpinski gasket

generated by iteration (323). Examples of other gaskets with different choices of the

functions α, β, γ and the parameter a are shown in Fig. 3.13.

3.5.2 Mappings

In this part of the research we give procedures for mapping the Sierpinski fractals

through the schemes introduced in the preceding section.

3.5.2.1 Mapping of carpets

To map the carpets generated by the scheme (319), we use the idea of FMI. Let

Φ : D → D′ be an invertible function defined by

Φ(x, y) = (φ1, φ2)(x, y), (324)

with the inverse

Φ−1(ξ, η) = (φ3, φ4)(ξ, η). (325)

Then the fractal mapping scheme can be defined as

Φ−1(ξn, ηn) = ψn
(
Φ−1(ξ0, η0)

)
. (326)
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(a) α(x) = β(x) = γ(x) = sin(x), a = 4 (b) α(x) = β(x) = γ(x) = cos(x), a = 2

(c) α(x) = tan(x), β(x) = γ(x) =

cos(x), a = 2

(d) α(x) = tan−1(x), β(x) = γ(x) =

cos(x), a = 7

Figure 3.13: Sierpinski Gaskets
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This scheme transforms a carpet F into a new carpet FΦ, and the following theorem

shows that the set FΦ is merely the image of F under the map Φ.

Theorem 3. FΦ = Φ(F).

Proof. First, we show that FΦ ⊆ Φ(F). Let (ξ, η) ∈ FΦ, which means that for

formula (326), if (ξ0, η0) = (ξ, η), then at least one of |un| and |vn| is less than or

equal to 1 for all n ∈ N, where (un, vn) = Φ−1(ξn, ηn). This implies that (u, v) =

(u0, v0) ∈ F . Thus (ξ, η) ∈ Φ(F).

For the reverse inclusion, suppose that (ξ, η) ∈ Φ(F), i.e., there exists (x, y) ∈ F
such that Φ(x, y) = (ξ, η) and (x0, y0) = (x, y) with formula (320) in which at least

one of |xn| and |yn| is less than or equal to 1 for all n ∈ N. This directly implies that

the sequence Φ−1(ξn, ηn) = (xn, yn) satisfies (326) and (ξ, η) ∈ FΦ.

The following question arises here: Is the mapped carpet a fractal? The answer is

“yes" if the map Φ satisfies a bi-Lipschitz condition. This result is stated in Lemma 1.

For our next examples, we shall use bi-Lipschitz functions to ensure that the mapped

carpets are fractals. In order to obtain the mapped Sierpinski carpet FΦ, we restrict

the domain of (326) only to the points (ξ, η) that belong to the mapped domain D′,
thus Eq. (326) becomes

(ξn, ηn) = Φ
(
ψn(x0, y0)

)
, (x0, y0) ∈ D.

More precisely, by using Eqs. (319) and (325) in (326), we have

Φ−1(ξn, ηn) =

(
sin(an−1πφ3(ξ0, η0))

sin(π
b
)

,
sin(an−1πφ4(ξ0, η0))

sin(π
b
)

)
.

Now letting sin(an−1πφ3(ξ0,η0))
sin(π

b
)

= Xn and sin(an−1πφ4(ξ0,η0))
sin(π

b
)

= Yn and using Eq. (324),

we get

(ξn, ηn) =
(
φ1(Xn, Yn), φ2(Xn, Yn)

)
. (327)

The semi-iteration (327) is applied for each point (ξ0, η0) ∈ D′, and the point is

excluded from the image set FΦ if |φ3(ξn, ηn)| > 1, |φ4(ξn, ηn)| > 1 for some

n ∈ N. Figures 3.14 and 3.15 show different examples for mappings of carpets by

Φ(x, y) = (x2 + y2, x− y) and Φ(x, y) = (sin x+ y, cosx) respectively. The colors

displayed in these figures are produced in a similar way to those in Fig. 3.10.
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(a) (b)

Figure 3.14: The images of carpets with (a): a = b = 3, (b): a = 3, b = 4

(a) (b)

Figure 3.15: The image of carpet with (a): a = 2, b = 3.5, (b): a = 2, b = 1.5
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(a) Image of Sierpinski gasket
(b) Image of gasket with α(x) = β(x) = γ(x) =

cosx, a = 2

Figure 3.16: Mappings of gaskets

3.5.2.2 Mapping of gaskets

Let us give examples of mappings of gaskets using formula (323). Figure 3.16 (a)

shows the mapped Sierpinski gasket by the map Φ(x, y) = (x2 − y, x+ y2), whereas

Fig. 3.16 (b) represents the mapped gasket depicted in Fig. 3.13 (b) by the map

Φ(x, y) = (x+ y2, x− 2y
2
3 ).

3.5.3 Dynamics

Based on the fractal mapping iteration, we introduce dynamics in fractals. As in Sub-

section 3.4.1, discrete dynamics can be constructed for Sierpinski fractals by iterating

the mappings introduced in the previous section. In other words, if we start, for ex-

ample, with the Sierpinski carpet as an initial set, S0, and iterate the map Φ in FMI,

we shall have the image sets

Sm = Φm(S0), m = 1, 2, 3, ... .

Thus the discrete dynamics will consist of these fractal sets, Sm, as points of a trajec-

tory.

For continuous dynamics, the idea is to use the motion of a dynamical system with

a fractal as an initial set. The motion of dynamical system is defined by Atx0 =

ϕ(t, x0), where ϕ is the solution of a two dimensional system of ordinary differential
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equations

x′ = g(t, x), (328)

with ϕ(0, x0) = x0.

In the case of the Sierpinski carpet, we iteratively apply a motion At to the scheme

(319) in the way

A−t(ξn, ηn) = ψn
(
A−t(ξ, η)

)
,

where At(x, y) = (Atx,Bty). Through this procedure, we construct dynamics of

sets AtF , where the Sierpinski carpet F is the initial value. Thus, the differential

equations are involved in fractals such that the latter become points of the solution

trajectory. If the map At is bi-Lipschitzian (this is true, for instance, if the function g

in (328) is Lipschitzian) then the set AtF for each fixed t is a fractal.

Let us now consider the Van Der Pol equation

u′′ + µ(u2 − 1)u′ + u = 0, (329)

where µ is a real constant known as the damping parameter. Using the variables x = u

and y = u′, one can show that Eq. (329) is equivalent to the autonomous system

x′ = y,

y′ = µ(1− x2)y − x.
(330)

Let us denote by
(
x(t, x0), y(t, y0)

)
the solution of (330) with x(0, x0) = x0, y(0, y0) =

y0. System (330) can be numerically solved to construct a dynamical system with

the motion At(x0, y0) = (Atx0, Bty0) where Atx0 = x(t, x0) and Bty0 = y(t, y0).

We apply this dynamics for an approximation of the Sierpinski Carpet as an initial

set. The trajectory of the Van Der Pol dynamics with µ = 0.5 and 0 ≤ t ≤ 8 is

shown in Fig. 3.17. Figure 3.18 exhibits the sections of the trajectory at the moments

t = 1, t = 3, t = 5, and t = 7.

In Fig. 3.19 we again show two sections of the trajectory of the Van Der Pol dynamics

for the approximation of the Sierpinski Carpet but with µ = 1.3. Comparing these

sections with their time counterpart in Fig. 3.18, we can observe the dissimilarity in

the deformation rate in the structure of the Sierpinski carpet. This is attributed to that
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Figure 3.17: Van Der Pol dynamics of Sierpinski carpet

(a) t = 1 (b) t = 3

(c) t = 5 (d) t = 7

Figure 3.18: Trajectory sections of the Van Der Pol dynamics in Sierpinski carpet

77



(a) t = 1 (b) t = 3

Figure 3.19: Trajectory sections of the Van Der Pol dynamics with µ = 1.3

the value of the damping parameter reflects the degree of nonlinearity of the Van Der

Pol equation.

For dynamics in Sierpinski gasket, let us consider the Duffing equation

u′′ + δu′ + βu+ αu3 = γ cosωt,

where δ, β, α, γ, and ω are real parameters. The equation is equivalent to the non-

autonomous system

x′ = y,

y′ = −δy − βx− αx3 + γ cosωt.

In a similar way to the mapping of gasket, we apply the dynamical system associated

with the Duffing equation to an approximation of the Sierpinski gasket. The fractal

trajectory for 0 ≤ t ≤ 3 is shown in Fig. 3.20, whereas Fig. 3.21 displays the sections

of the trajectory at the specific times t = 0.8, t = 1.4, t = 2.0, and t = 2.6. The

values δ = 0.08, β = 0, α = 1, γ = 0.2 and ω = 1 are used in the simulation.

3.6 Discussions

Despite the intensive research of fractals lasts more than 35 years [2], there are still no

results on mapping of the sets, and our research is the first one to consider the prob-

lem. To say about mathematical challenges connected to our suggestions, let us start

with topological equivalence of fractals and consequently, normal forms. Differential
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Figure 3.20: Trajectory of the Duffing dynamics in Sierpinski gasket

(a) t = 0.8 (b) t = 1.4

(c) t = 2.0 (d) t = 2.6

Figure 3.21: Sections of the trajectory
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and discrete equations will be analyzed with new methods of fractal dynamics joined

with dimension analysis. Next, the theory for dynamical systems which is defined

as iterated maps can be developed. Therefore, mapping of fractals will be benefi-

cial for new researches in hyperbolic dynamics, strange attractors, and ergodic theory

[115, 116]. The developed approach will enrich the methods for the discovery and

construction of fractals in the real world and industry such as nano-fiber engineering,

3D printing, biology, cosmology, biotechnologies, genetics, signal processing, civil

engineering, etc. [43, 117, 118, 119, 120, 121].

Let us outline how our results can be useful for applications combined with already

existing ones in the area. We start with the theory of scale relativity developed in

[122, 123]. In this theory, fractals are considered as a geometric framework of atomic

scale motions such that the quantum behavior can be viewed as particles moving on

fractal trajectories. One can suppose that by composing the scale relativity theory

with dynamics of fractals developed in our research, we will be able to understand

better the fractal nature of the world. The expression of a scale-dependent physical

quantity requires besides space-time variables, a scale variable. Thus, it is regarded

as a fractal function but differentiable when the scale variable is nonzero, therefore,

it can be a solution of differential equations involving its derivatives with respect to

space-time and scale variables. For a fixed value of the scale variable the solution is a

fractal. By varying the scale variable, one can set up an ordinary differential equation

to construct a dynamical system. Then, by applying a mapping iteration whose initial

set is a scale-dependent physical quantity with fixed a scale variable, one may show

that the resulting surface is also a fractal. From another side, fractal dynamics de-

termined by mapping iterations possibly can be a good instrument to study quantum

mechanical properties. An example of such properties is the quantum interference

of atoms and molecules. Fractal geometry has been used to study the interference

patterns of waves such as in electromyography, diffraction grating, and color texture

analysis [124, 125, 126]. In our case it would be interesting if one could perform sim-

ulations analogous to Young’s experiment such that the interference occurs between

two fractal trajectories. A possible connection between fractals mappings and quan-

tum mechanics through the scale relativity theory can provide important applications

for the former in various fields such as biology, cosmology, and fractal geodesics (see
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[123] and the relevant references listed therein).

Further applications can be done with another class of fractal functions which is de-

fined as a family of real functions whose graphs are attractors for IFS [24, 106, 127,

128]. This type is called fractal interpolation function where it is a continuous fractal

function interpolating a given set of points [129]. The IFS is defined by a finite col-

lection of affine mappings. The similarity between the IFS and Fatou-Julia iteration

(FJI) derives from the fact that both of them consist of infinite long iterations. More-

over, the graphs of some fractal functions constructed by IFS, likewise the Cantor set

[128], can also be generated by FJI [22]. Additionally, the graphs of such functions

can be mapped to graphs of new fractal functions by fractal mapping iterations and

introduce dynamics on these sets. Furthermore, we suppose that the idea of mapping

on the basis of FJI can be extended to IFS as they are iterative. Consequently, the

results of the present research can be applied to various applications associated with

fractal interpolation functions such as signal processing and modeling coastlines and

shapes [130, 131, 132, 133, 134].

Owing to the important roles of Sierpinski fractals in several applications like weighted

networks, trapping problems, antenna engineering, city planning, and urban growth

[135, 136, 137, 138, 139], we expect that the results will be helpful in further fields

of applications. One of the relevant applications involves optimization theory. Frac-

tal geometry is used to solve some classes of optimization problems such as supply

chain management and hierarchical design [140, 141]. In paper [140], for instance,

the properties of a particular hierarchical structure is established. The authors con-

structed the relationship between the Hausdorff dimension of the optimal structure

and loading for which the structure is optimized. The Hausdorff dimension is calcu-

lated through considering the self-similarity of the structure at different hierarchical

levels. The self-similar fractals, like the Sierpinski gasket, are considered as effec-

tive tools for studying the hierarchical structures [137, 142]. Thus, finding a way to

map this type of structures allows to create a new hierarchical structure with the same

Hausdorff dimension but different mechanical properties if one consider bi-Lipschitz

maps.

Finally, but not less important, another application field is partial differential equa-
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tions with fractal boundaries [143, 144, 145, 146]. These equations are significantly

useful for many fields such as electromagnetics, elasticity theory, and signal process-

ing. For instance, the paper [143] deals with a relevant Brownian motion problem.

The boundaries of the problem considered in the paper are of self-similar type such

as Koch’s snowflake curve. For partial differential equations, one can either apply a

fractal mapping iteration extended to continuous dynamics in our research or develop

the approach on the basis of IFS. Thus, in the future, one can not only develop nu-

merical solutions of such problems but also confirm that the integral surfaces of the

boundary value problems are fractals.
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