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we perform various outlier detection methods as a pre-processing step before 

modeling the networks in order to investigate whether the outlier detection can 

improve the accuracy of the model. In the analysis, several synthetic and real 

benchmark biological datasets are used. 
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Prof. Dr. Ömür Uğur for valuable ideas and contributions that they made to this study.

I would also like to thank the other members of my examining committee, Prof. Dr.

Yaprak Arzu Özdemir and Assoc. Prof. Dr. Ceylan Yozgatlıgil for their detailed

reviews and constructive comments.

I would like to thank The Scientific and Technological Research Council of Turkey
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Rapid developments in biotechnology and medicine over the last few decades have

resulted in the production of large amounts of biological, biochemical, and genomic

data. Shifting through massive data has created certain computational challenges.

One of the issues encountered is the prediction of complex biological networks and

the estimation of the unknown system’s parameters. Biological systems can be repre-

sented in the form of networks such as gene regulatory networks, signal transduction

networks, protein-protein interactions and metabolic networks. Biological networks

are related to molecules such as DNA, RNA, proteins and metabolites, and the net-

works describe the interactions between these systems’ elements. Gene regulatory

and signal transduction networks include interactions among genes and present how

genes can be activated or repressed. On the other hand, protein-protein interaction

networks represent the interaction between proteins such as the building of protein

complexes and the activation of one protein by another protein. By this way, we can

understand the molecular mechanism of complex biological systems in a living or-

ganism. In a biological network, genes or proteins are denoted by nodes and their

interactions are indicated with edges. A simple representation of a network with 500

nodes can be seen in Figure 1.1 for illustration. There are various statistical methods

to construct the structure of biological networks. Some of these approaches are based

on the implementation of piecewise linear differential equations [106], ordinary dif-

ferential equations [15, 33], connections with other modeling approaches [16, 21], or

the application of stochastic methods [37, 96]. In the calculation of all these model-

ing approaches, various methods are used, such as particle swarm optimization [20],

simulating annealing, nonlinear programming [32, 64, 76], Metropolis Hasting [18],

Euler and Runge Kutta methods [24, 47, 91]. All of these approaches are obtained by
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Figure 1.1: Simple representation of a network with 500 nodes.

different types of optimization techniques.

Graphical methods are another type of modelings that are very similar to the descrip-

tion of the continuous-time ordinary differential equations (ODE). Generally, in a

biological system, the interactions between species, which refer to the structure of

the system, can be represented by graphs. One of the most widely used graphical

models is the Gaussian graphical model (GGM) [95]. GGM describes the interac-

tions in the system by using the conditional independency of the species under the

assumption that the states of the systems, i.e., the measurements, have the multivari-

ate normal distribution. In GGM, conditional independency can be presented by the

zero entries in a precision matrix θ, which is the inverse of the variance-covariance

matrix, i.e., Σ−1 = θ. However, particularly in high-dimensional biological systems,

the estimation of the precision matrix can be challenging due to the sparsity in θ [31],

and the inference of the model parameter becomes computationally demanding. The

Gaussian copula graphical model (GCGM) can be thought as the Bayesian alterna-
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tive of GGM by using the Gaussian copula in the separation of the high dimensional

multivariate normal distribution. Hereby, the method decomposes θ via the Cholesky

method and updates the states of the systems as well as the structure of the networks

via various Markov Chain Monte Carlo (MCMC) algorithms such as the reversible

jumps MCMC [66] or birth-and-death approach [65].

Linear regression problems in high-dimensional settings occur in several fields. In

high-dimensional data, the number of predictor variables can be much larger than the

number of observations. In such situations, the variable selection has a crucial role

in statistical modeling. In system biology, the biological systems from metabolic net-

works to protein-protein interaction networks are described via the sparse networks

in which there are a few important variables being highly correlated and crucial for

the activation of the system and many variables having less connections. But as the

number of observations is much more smaller than the number of variables, the de-

tection of the best model which explains these connections is challenging. There are

many variable selection methods that can be used under this condition such as all-

subsets, stepwise regression, least-angle regression, ridge regression and Lasso-type

methods in the most applicable one. The purpose of all these model (variable) se-

lection algorithms are to choose the accurate predictors which give the biologically

interpretable and stable findings. In this context, stability means that small changes in

the data do not cause large changes in the selected subset of predictors and associated

coefficients.

Among many alternatives, each model has its own advantages and drawbacks. For

example, all-subsets and stepwise regression cannot handle high-dimensional data,

such as gene expression dataset. Under these conditions, the penalized-based meth-

ods can be more appropriate. On the other hand, in the ridge regression even the

variance reduction is achieved to compare the least-squares approach, it does not pro-

duce a sparse model. The lasso model generates sparse models. However when the

number of predictors p is much more larger than the number of observations n, it

chooses at most n variable. Additionally, the adaptive Lasso model performs differ-

ent weights for penalized coefficients. But, since it has an oracle property, it obtains

better variable selection accuracy compared with Lasso. On the other side, the Gaus-

sian graphical model which is based on the Lasso regression and penalized likelihood

3



inference has normality assumption. When this assumption is not satisfied, the power

of the method decreases substantially. Moreover, the fused Lasso model takes into ac-

count the order of features as typically observed in protein mass spectroscopy and mi-

croarray types of data. However, the application of this method for high-dimensional

problems is computationally challenging with respect to the time and the space. The

elastic net method can deal with the grouping effect different from lasso, whereas, the

number of estimated parameters increases significantly. But among many alternatives

the biologically more relevant and common applications are seen under the GGM. In

GGM, even though the main drawback is the strict normality assumption, the inter-

pretation of the optimal model is valid. On the other side, the second challenge of

this model is its computational demand in inference of complex networks. In order

to overcome this problem, all the previously underlied models and their inference

strategies are adapted to GGM. However, for large systems under high sparsity, the

inference of GGM is still computationally demanding. Because of this problem and

strict normality assumption, a nonparametric model, so called Multivariate Adaptive

Regression Splines (MARS), has been proposed as an alternative approach to GGM

[4].

MARS is one of the well-known statistically nonparametric regression methods that

enables us to model the high dimensional data under nonlinearity [29]. Also, it is a

particular type of optimization techniques [7, 8, 9] in the sense that MARS aims to

transform a non-differentiable problem into a smooth problem [7] by putting binary

constraints for the approximation of the optimal value [9]. Hereby, it uses the gradient

based schemes to solve the smooth and nonsmooth optimization problems [8]. Due

to these advantages, it has been implemented in different fields from engineering

[3] to time-series analyses [59]. In the study of Ayyıldız et al. [4], MARS was

applied with only the main terms and the performance of both MARS and GGM

was compared in terms of the model accuracy and the computational cost. From the

analyses, it has been shown that MARS results with higher accuracy and gets huge

gain in computational time, specifically, under large systems.

In this study, first of all, we propose a nonparametric regression model, called the

Conic Multivariate Adaptive Regression Splines (CMARS) [86], as an alternate to

GGM. The CMARS method is a modified version of MARS. Basically, the MARS
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model is a special type of generalized additive model which represents the causes of

error propagation via a regularized nonlinear regression model. Hereby, in CMARS

by keeping these listed advantages of MARS, a penalized residual sum of squares

(PRSS) is implemented by eliminating the backward stepwise algorithm [29, 44],

and can be solved by conic quadratic optimization [86]. This model was originally

designed for highly correlated datasets without distributional limitations. Due to its

flexibility in modeling, it has wide applications from the fleet assignment problem

[72] and financial analyses [85] to data mining [101] and eco-finance network anal-

yses [92]. In addition, previous analyses have shown that CMARS produces more

accurate results than its close alternates MARS and the so-called partial linear mod-

els (PLM) [44, 86]. In this study, we convert the original description of CMARS to

a loop form, “LCMARS”, by including the main effects of the model by discarding

all interaction effects apart from second-order interactions iteratively. In fact, we use

the second-order interactions as the representatives of the feed-forward loop [5, 58]

in the biological networks’ motifs. With this method, we aim to better describe the

structure of biological systems and therefore gain a better understanding of complex

diseases such as cancer and hepatitis. In our analyses, we compare LCMARS with

GGM and LMARS in several real benchmark and simulated datasets under different

dimensions based on the accuracy measures: recall, F-measure, Jaccard index, and

accuracy values. Our results show promising benefits of LCMARS over GGM and

LMARS.

In the second part of this study, we investigate whether the detection of outliers can

improve the model accuracy under high dimensional and sparse biological data. For

this purpose, we use outlier detection methods as a pre-process in advance of model-

ing with LCMARS. Outlier detection is a crucial problem in many fields. Although

there are too many outlier detection methods in the literature, only a few methods suit-

able for dependent, sparse and high-dimensional data structure. In this study, we per-

form various univariate and multivariate outlier detection methods as a pre-processing

step before modeling the protein-protein interaction networks in order to investigate

whether the outlier detection can improve the accuracy of the model. Within the uni-

variate approaches, we implement the z-score [81] and Box-plot [90] methods which

are the most well-known outlier detection approaches. Besides them, we also ap-
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ply the multivariate outlier detection methods, called PCOut and Sign [27] which

are based on the robust principal component analysis and the blocked adaptive com-

putationally efficient outlier nominators (BACON) method which is a distance-based

approach [14]. These methods are applicable for the data type such that the number of

variables is bigger than the observations. In the analysis, we use several synthetic and

real benchmark biological datasets. From the results, it has seen that all the listed out-

lier detection methods cannot improve the accuracy of the models when we perform

them as a pre-processing step. Furthermore, within the outlier detection methods,

there is no any method which outperform the others in the construction of biological

networks. We propose that the raw data can be directly used for the mathematical

modeling of the protein-protein interaction networks.

Accordingly, in the organization of the study, the most well-known penalized regres-

sion methods are introduced in Chapter 2. Gaussian graphical model, nonparametric

regression methods and the proposed method, i.e., loop-based CMARS, are explained

in details. Then, outlier detection methods are presented in this chapter. In Chapter

3, we compare the proposed method with alternates. In this chapter, to compare

the methods we use different dimensional simulated, synthetic and real biological

datasets. Here, both the description of real data and their results are represented.

Additionally, we investigate the validity of outlier detection methods under both syn-

thetic and real biological datasets. Finally, in Chapter 4, we conclude the findings and

discuss possible future works.
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CHAPTER 2

PROPOSED METHOD AND BACKGROUND

In this chapter, we present the proposed method which is used to estimate the complex

biological systems and its alternates. This chapter consists of five sections. In Section

2.1, the most well-known penalized regression methods are introduced. Gaussian

graphical model and the estimations methods of this model are defined in Section

2.2. In Section 2.3, nonparametric regression methods and the proposed method, i.e.,

loop-based CMARS, are explained in details. Outlier detection methods are presented

in Section 2.4. Finally, the model selection criteria which are used throughout the

study are defined.

2.1 Regression Methods

In a biological system, the interactions between components can be represented by

using graphical models. The graphical models consist of a set of nodes which is

totally p, and a set of edges. The nodes represent the components, such as proteins and

genes, in the system and the edges display the interaction among these components.

The nodes can be formalized as a vector Y = (Y (1), ..., Y (p)).

The sparse graphical models can be obtained by implementing the sparse regression

model which searches the sparsity of each node one by one. When we divide the vec-

tor Y into two parts such as Y = (Y (−p), Y (p))) in which Y (−p) = (Y (1), ..., Y (p−1))

denotes the vector of all nodes except for the last one, a regression model for the last

node Y (p) is found via

Y (p) = Y (−p)β + ε, (2.1)

where ε denotes the independent and identically distributed random error.
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In biological networks, the Lasso model and its extension such as the bridge regres-

sion and the ridge regression are the most common approaches in order to describe the

steady-state, i.e., deterministic, behaviour of the system. These models can explain

the activation of the species in the system via the conditional probability in the sense

that the state of a species is presented linearly by the states of all remaining species,

except that species, with a random error. In the following parts, we describe each

Lasso-type penalized regression, GGM and its alternatives used for the deterministic

modeling of biological networks.

2.1.1 Bridge Regression

The bridge regression [28] is the most comprehensive Lasso type of the penalized

regression methods which is also generalized form of the Lasso and ridge regressions.

In this model, the vector of regression coefficients β is estimated by minimizing the

penalized sum of squares via the Lq-norm. The associated expression is represented

as below:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

βq
j . (2.2)

Here, λ is a non-negative penalty constant, also called the tuning parameter, and q is a

shrinkage parameter and β0, βj, xij and yi stand for the intercept term, the regression

coefficients, associated covariates and response, respectively. In bridge regression

denoted in Equation (2.2), the optimal penalty term and shrinkage parameters are

detected by the generalized cross validation (GCV) method. In this expression, when

the shrinkage parameter sets to 1, the bridge regression corresponds to the Lasso

regression. Furthermore, if q = 2, it turns to the ridge regression. If q lies in the open

interval 0 < q < 1, the bridge regression produces sparse models. However, if q > 1,

it results with a nonsparse model meaning that the model contains all predictors.

Since in high-dimensional data, the major aim in biological networks is to obtain a

sparse model, this method is not an efficient technique for modeling protein-protein

interaction networks. On the other hand, on comparison of the bridge regression with

Lasso and ridge regression that are presented in the following parts, its computational

cost does not differ significantly with respect to its alternates [94].
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2.1.2 Ridge Regression

In the ridge regression [49] by using the same model given in Equation (2.1), the

coefficients β are estimated by minimizing a penalized sum of squares via the L2-

norm as below:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j , (2.3)

in which xij denotes the jth covariates of the response variable y while i is the index of

the sample size (i = 1, ..., n) and βj (j = 1, ..., p) stands for the regression coefficient

of the jth covariate based on n samples. Moreover, β0 shows the intercept term and

λ denotes the tuning parameter. In Equation (2.3), the first summation term is the

residual sum of squares and the second summation term is called a shrinkage penalty.

This penalty is not applied to the intercept β0 since it is a measure of the mean value

of the response when xi’s are equal to zero. In ridge regression, the variables are

standardized in order to obtain an invariant penalty to the scale of the original data.

When shrinkage penalty sets to 0, i.e., λ = 0, the penalty term is disappeared and

the estimated regression coefficients βj corresponds to the least-squares estimator.

On the other hand, as λ increases, these coefficients approach zero without setting to

zero. Hence, this regression includes all predictors with smaller coefficients than the

least-squares estimates. But, it cannot exclude any variable from the model.

Finally in this model, for each value of λ, different set of estimated coefficient is

produced. So the selection of a good value for the tuning parameter is a crucial

issue. On the other side, the ridge regression has an advantage over the least-squares

approach in the sense that the latter has no bias but its variance is high. In contrast,

the former has lower variance of predictions when λ increases. But this also causes

slight increase in bias. Hence, the optimal solution is found via the reduction of the

mean square error (MSE). Moreover, when the number of variables p is larger than the

number of observations n, i.e., p > n, there is no unique solution in the least-squares

estimates, on contrary, the ridge regression can be applicable under this situation.
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2.1.3 Lasso

The least absolute shrinkage and selection operator [87], in short: Lasso, is a con-

strained version of the least-squares methods. The Lasso-based approach is mainly

used to estimate a sparse network, i.e., the network has small number of edges, result-

ing in many zero entries in the adjacency matrix. This matrix shows which nodes are

adjacent to which other nodes. It uses binary representation and the entry 1 indicates

that corresponding two nodes are adjacent. Actually, the sparsity is one of the general

features in biological networks.

In this approach, the precision matrix is estimated by using a regression-based method.

The networks that are inferred with this method is called the dependency network.

Although the regression-based approach has important advantages, such as computa-

tional efficiency and good approximations to the joint distribution of the variables, it

does not guarantee a symmetric variance-covariance matrix.

In standard regression models, a least-squares criterion is applied to estimate the co-

efficients β. On the other hand, the Lasso model chooses the regression coefficients

β by minimizing the residual sum of squares subject to a constraint on the sum of

absolute values of the coefficients. The Lasso model computes the L1-penalty for β

such that ∥β∥1 = Σi|βip| < λ. Through this difference, the sparsity of the precision

matrix can be obtained and the solution is computed by

minimizeβ [∥Y (p) − Y (−p)β∥22 + λp∥β∥1] (2.4)

with a tuning parameter λp that enables us to estimate of the parameters β. Here,

the second term is also named as the L1-penalty. In Equation (2.4), ∥ · ∥1 refers to

L1-norm which means the sum of the absolute values of the columns [95].

In Lasso, if the penalty parameter λ is sufficiently large, the L1-penalty forces some

of the estimated coefficients to be exactly equal to zero. By this way, some predictors

can be excluded from the model. Because of this property, Lasso treats as a variable

selection method, resulting in more simpler and more interpretable sparse models that

include only a subset of variables. On the other hand, typically this model also has a

small increase in bias, by gain in variance. Indeed this enables us to generate more

accurate predictions.
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Conversely, non-symmetric results are the main problems of this approach. It means

that although Y (j) from the rest can be obtained for zero βij , βji is not zero when we

predict Y (i) from the rest. One solution to unravel this challenge is to apply AND

or OR rules. If we use AND rule, we obtain the zero coefficients when both βij and

βji are zero. Furthermore, if we use OR rule for one of the parameters βij zero is

enough to obtain zero coefficients. So, it is seen that the OR rule generates more

sparse networks. However, we cannot calculate the actual strength of the edge since

these are two different values because of asymmetry.

In the Lasso-regression approach, another important issue is the selection of the

penalty parameters λi. To get a false positive less than α, the following penalty equa-

tion can be calculated.

λi = 2

√
sii
n
Φ−1

(
1− α

2p2

)
, (2.5)

where Φ denotes the cumulative distribution function of the standard normal.

The penalized likelihood idea arises because of the fact that ordinary least-squares

(OLS) estimates have problems in high-dimensional data. The prediction accuracy

and interpretation are two main problems of OLS. Since, in general, the OLS esti-

mates have a low bias but a large variance, by setting regression coefficients exactly

zero, the precision accuracy increases [87]. Moreover, if the number of regression

coefficients is greater than the observations, it is difficult to obtain an interpretable

model. L1 and L2-penalties are used to overcome these challenges. L1 absolute

value penalty and L2 quadratic (ridge) penalty shrink the coefficients towards zero.

However, there is a difference between these two penalized estimation method. The

regression coefficients are small but non-zero in the L2-penalized method. On the

other side, the L1-penalized regression sets the coefficients exactly to 0. This feature

causes to obtain an interpretable results in the L1-penalized regression method [36].

2.1.4 Adaptive Lasso

The adaptive Lasso method is an alternative version of the ordinary Lasso regression

which implements the L1-penalty to estimate β. But additionally, different weights
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are assigned for each regression coefficient βj to penalize [105] as defined below:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

wj|βj|, (2.6)

in which xij denotes the jth covariates of the response variable yi and βj (j = 1, ..., p)

stands for the regression coefficient of the jth covariate based on n samples as stated

beforehand. Finally, β0 shows the intercept term indicating the baseline effect with-

out any covariates. Furthermore, λ is the penalty and w represents the weight vector

which is dependent on data. The weights are generated by using the following equa-

tion.

wj =
1

|β̂j|γ
, for γ > 0, (2.7)

where β̂j is the ordinary least-squares estimate. By applying weights, the higher

penalty is given to small coefficients and the lower penalty is assigned to large coef-

ficients. In general, the adaptive Lasso reduces the estimation bias and also obtains

better variable selection accuracy compared with Lasso in Equation (2.1).

On the other side, this model also satisfies the oracle property. This feature means

that the interested model can correctly identify the nonzero coefficients by converg-

ing probability to one. Moreover, the estimators of these nonzero coefficients are

asymptotically normal with the same mean and covariance [50]. This is a main the-

oretical advantage of the adaptive Lasso model with respect to the ordinary Lasso

model.

In order to estimate the model parameters (i.e., β0, βj, γ and λ), this model suggests

the least-angle regression (LARS) algorithm which infers the parameters via the least-

squares approach with the same computational cost of the Lasso regression if there

is no collinearity problem. But if this problem occurs, ridge regression can be an

alternative method of adaptive Lasso to estimate coefficients and compute weights.

Under this condition, the optimal values of γ and λ are found by two-dimensional

cross validation method [105], where the optimal pair of γ and λ can be selected

from a grid of values.

On the other side, if the performance of the adaptive Lasso and Lasso are compared
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regarding their accuracies in variable selection and prediction, Huang et al. (2008)

[50] show that the adaptive Lasso produces smaller (more sparse) models with better

predictive performance based on the mean squared error. Fan et al. (2009) [25]

implement it in a network modeling to estimate the sparse precision matrix and from

their Monte Carlo simulation and real data analyses, it is observed that the adaptive

Lasso generates more simpler models than Lasso and outperforms Lasso in terms

of the entropy and quadratic loss functions. Moreover, Lasso is applicable for large

size problems and is computationally fast. Thus, it is often used to obtain graphical

models. However the Lasso penalty generates bias. On the other hand, the adaptive

Lasso can overcome this challenge.

2.1.5 Fused Lasso

The fused Lasso model [88] is an extended version of Lasso which takes into account

the order of the variables used in the regressions. Such cases can be observed in

protein mass spectroscopy and microarray types of data.

In this model, the L1-penalty is performed on both the coefficients and their succes-

sive differences. Hereby, it chooses coefficients by minimizing the residual sum of

squares subject to the two different constraints. One of them is on the sum of the ab-

solute values of the coefficients and the other constraint is on the sum of the absolute

successive differences of the coefficients as represented below:

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1|, (2.8)

where λ1 and λ2 are non-negative regularization, also called tuning or penalty pa-

rameters and βj denotes the regression coefficients for the jth covariate based on n

samples, i.e., xij , and response yi. In Equation (2.8), the first constraint causes the

sparsity in the coefficients and the second one regulates the sparsity in their differ-

ences, and encourages adjacent coefficients to have the same values meaning that it

creates a fusion between coefficients. In the fused Lasso regression, different from

Lasso, the sparsity is applied to the number of sequences of identical non-zero coef-

ficients, rather than the number of non-zero coefficients.
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On the other side, in inference of all model parameters, the expression in Equation

(2.8) is though as an optimization problem and it is converted as a quadratic function

subject to several linear constraints to solve it via the quadratic programming (QP).

Hence, the tuning parameters in Equation (2.8) are inferred by two constraints as a

quadratic programming problem. Actually, since this equation is strictly convex, a

global optimal solution exists. But due to the nondifferentiability of this function, the

detection of a solution is computationally demanding. Tibshirani et al. (2005) [88]

suggest two approaches to solve this challenge. The first approach is to perform the

two-phase active set algorithm SQOPT [34]. This algorithm is an iterative procedure

which contains two phases. In order to transform the nondifferentiable function into

a smooth function, SQOPT generates additional variables as well as constraints and

introduces lower and upper bounds for all variables and constraints. In the calcula-

tion, it is assumed that the m components of Ax have lower and upper bounds which

are called general constraints of the problem as shown in Equation (2.9). Thus, the

SQOPT algorithm produces a set of slack variables s in order to convert these con-

straints to equalities. So the initial problem can be defined with the following form:

minimizex, s q(x) subject to Ax− s = 0, l ≤
(
x

s

)
≤ u, (2.9)

where q(x) refers to the objective function. In order to solve the objective function in

Equation (2.9), the active set method is used to solve this QP problem. This iterative

method includes two phases, namely, feasibility and optimality phases. In the first

phase, a feasible point is found by minimizing the sum of infeasibilities. In the second

phase, the objection function is minimized by using a sequence of iterations within

the feasible region. In general, this algorithm is suitable for small and medium sizes

problems as it is computationally challenging with respect to time and space.

On the other hand, the second approach solves the fusion problem by firstly trans-

forming the covariates X to Z = XL−1 with Q = Lβ, and then applying the LAR

procedure and finally transforming it back. The fusion is archived by moving in the

direction which is defined by the LAR procedure.

In the end even though, it can unravel one of the limitations of the ordinary Lasso, its

inference is fully nonparametric. Hereby, it cannot take into account the probabilistic

feature of the observations and the description of the system as Gaussian graphical
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model performs.

2.1.6 Elastic Net

The elastic net model [104] is another alternative regularization and variable selection

method which is the combination of the Lasso and ridge regressions in the sense that

it enables us to capture the highly correlated feature of the variables which generate a

group. Because Lasso pays no attention to group variables if the pairwise correlation

between variables is high and chooses only one variable from this group.

The elastic net technique is developed from its initial method, namely, the naive elas-

tic net approach. After rescaled naive elastic net coefficients, the elastic net coeffi-

cients are estimated. In the naive elastic net, we infer the coefficients by minimizing

the following equation after a location and scale transformation to response and pre-

dictors, respectively,

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

+ λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

β2
j , (2.10)

where λ1 and λ2 are non-negative tuning parameters as used previously. Moreover,

βj, xij and yi stand for the regression coefficients, associated covariates and response,

in order as described beforehand. Here, when we set α to α = λ2/(λ1+λ2), Equation

(2.10) turns to the following optimization problem:

β̂ = argmin
β

|y −Xβ|2 subject to (1− α)

p∑
j=1

|βj|+ α

p∑
j=2

β2
j ≤ t. (2.11)

The constraint in Equation (2.11) is called the elastic net penalty which is a convex

combination of the Lasso and the ridge penalty. When α = 1, the naive elastic net

turns to the ridge regression, and when α = 0, it turns to Lasso.

The naive elastic net has the two-stage procedure. In the initial stage, the ridge regres-

sion coefficients are found for each fixed λ2. Then in the second stage, the Lasso-type

shrinkage is applied. This step can cause double shrinkage resulting in an extra bias

with respect to the pure Lasso or ridge regression. Hereby, the elastic net method

overcomes this challenge by using the rescaled coefficients of the naive elastic net. In

the naive elastic net, the regression coefficients β are estimated by using the following
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equation:

β̂∗ = argmin
β∗

|y∗ −X∗β∗|2 + λ1√
(1 + λ2)

p∑
j=1

|β∗
j |. (2.12)

On the other hand, the elastic net infers the model parameters by adjusting the esti-

mates of the naive method as defined below:

β̂(elastic net) =
√

(1 + λ2)β̂
∗. (2.13)

The relation between the elastic net and the naive method can be also shown by

β̂(elastic net) = (1 + λ2)β̂(naive elastic net). (2.14)

In order to solve the elastic net, Zou and Hastie (2005) [104] propose an algorithm,

called LARS-EN. This algorithm is based on the LARS algorithm [23]. To obtain the

whole elastic net solution path, LARS is applied for each fixed λ2, and the fits of the

elastic net are sequentially updated.

When the number of predictors p is much more larger than the number of observations

n, i.e., p ≫ n, the LARS algorithm can be computationally slow. On the other side,

we know that X∗ in Equation (2.12) has a sparse structure under p ≫ n. The LARS-

EN algorithm uses this feature to faster the speed of the calculations. At the kth step of

the LARS algorithm, the inverse of the matrix GAk
= X∗T

Ak
X∗

Ak
is computed when Ak

is the active variable set [23]. Hereby, the LARS-EN algorithm computes this inverse

by using the sparse Cholesky factorization. This dimension reduction concludes with

a computational gain. Furthermore, in each LARS-EN step, just the active variable set

and non-zero coefficients are saved. Moreover, when p ≫ n, the optimal results for

the elastic net fit can be obtained at an early stage without completing the total number

of iterations in the algorithm. Hence, LARS-EN becomes an efficient algorithm on

comparison with LARS under this model.

In the elastic net approach, we need to infer two tuning parameters as presented in

Equation (2.10). This increase in the number of parameter can be though as the major

drawback of this method. In the calculation, these parameters can be estimated by the

cross validation (CV) method as similarly performed in shrinkage approaches. After

choosing a grid of values for λ2, whole solution path can be obtained by the LARS-
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EN algorithm for each λ2. Then, to estimate λ1, the CV method can be applied. The

optimal λ2 is selected as the entry having the smallest CV error.

On the other side, as the LARS-EN algorithm estimates only the non-zero coeffi-

cients, it controls the Type II error. However, it does not deal with false positive rate

that controls the Type I error and this one-side control can be another disadvantage of

this model.

On the other hand, for the advantage of the elastic net method we can include the

grouping effect in our model different than the Lasso approach. In this situation

which is typically observed under ‘large p, small n’ problem, the grouped variables

are putted into the model together and the regression coefficients of these variables are

disposed to be equal. If the penalty function is strictly convex, these variables have

identical coefficients. If λ2 > 0, then the elastic net penalty satisfies this property.

Because of the grouping effect property, the elastic net technique can be also per-

formed as a classification method like the principle component analysis or clustering

methods. Especially, this method can be applied to get an automatic gene selection

with microarray data [104].

2.2 Gaussian Graphical Model

The Gaussian Graphical Model (GGM) [95] is a widely used undirected graphical

model whose states are described as the multivariate normal distribution. In GGM,

the structure of the graph is constructed by using the conditional independencies of

variables under the normality assumption. Therefore, GGM makes the assumption

that the state vector Y (Y = (Y (1), . . . , Y (p))T for a system with p nodes, i.e., genes

or other environmental items) has a multivariate Gaussian (or normal) distribution

[95] via

Y ∼ N(µ,Σ). (2.15)

Here, µ = (µ1, µ2, . . . , µp)
T denotes the mean, Σ shows the (p × p)-dimensional

variance-covariance matrix whose entries σij present the covariances of Y (i) and Y (j)

(i, j = 1, 2, . . . , p).
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In GGM, the conditional independencies of two nodes are indicated with the absence

of an edge between these nodes in an undirected graph. Under the normality assump-

tion, the zero covariance and thus zero precision, which is the inverse of variance-

covariance matrix, i.e., Θ = Σ−1, implies the linear independency between any pair

of species, i.e., nodes.

Additionally, the precision matrix is composed of partial covariances. This means

that the inverse of the partial variances constitutes the diagonal entries of the preci-

sion matrix, such as θii = 1/var(Y (i) | rest), and that minus the partial correlation

constitutes the scaled off-diagonal entries:

ρij =
−θij√
θiiθjj

, (2.16)

where ρij represents the partial correlation of Y (i) and Y (j) when all the other vari-

ables are given.

In GGM, a regression model is build for each node against all remaining nodes as

described below [87]:

Y (p) = βY (−p) + ε, (2.17)

in which Y (p) represents the state of the pth node, Y (−p) denotes the states of all

nodes except the pth node, β shows the regression coefficients, and ε is the indepen-

dent and normally distributed error term. The conditionally dependent structure is

identified by β in Equation (2.17) due to the fact that we can present Y (p) and Y (j)

(j = 1, 2, . . . , p − 1) as the two conditionally independent terms if the associated βj

equals zero under the normality.

Hence, the conditionally dependent structure between nodes in the system is identified

by the regression coefficient via in Equation (2.18). In this expression, Y (p) and Y (j)

(j = 1, . . . , p− 1) are conditionally independent when βj = 0 [98]:

β = −θ−p,p/θp,p. (2.18)

In Equation (2.18), the estimated strength of the interaction between two nodes in a

system is explained by the associated entries of the precision matrix.

The networks that are generated by using partial correlations are called the gene asso-

ciation network. Since the genomic data generally have a large number of variables,

18



p, and few samples, n, i.e., n ≪ p, the application of standard covariance and cor-

relation is not appropriate. Because in small n, large p data, the sample covariance

estimator S turns a singular matrix, i.e., non-invertible, because of the large number

of zero eigenvalues. Thus, the estimation of positive definited and well-conditioned

covariance matrix is a crucial problem.

2.2.1 Maximum Likelihood Approach

The major aim of the GGM approach, as most of the statistical questions of interest, is

to estimate the model parameters and, herewith, define a structure for the selected bi-

ological networks for us. A network can be inferred by maximizing the likelihood of

observed data. As we mentioned before, in GGM, the precision matrix Θ is estimated

by the inverse of the sample covariance matrix which maximizes the log-likelihood

function since Θ captures the information of both the direction and the strength of

interactions between genes in the system. Then, the partial correlations can be ob-

tained from this estimated matrix. Finally, to decide whether the partial correlations

are significantly different from zero, statistical tests can be applied. There are differ-

ent alternates for this purpose. When the true partial correlation is zero, the estimated

partial correlation is distributed as follows:

f(r, k) = (1− r2)(k−3)/2 Γ(k/2)√
πΓ((k − 1)/2)

, (2.19)

where k = n − p − 1 denotes the degrees of freedom, n is the sample size, and

p displays the number of variables. Moreover, Γ(·) refers to the Gamma function.

This distribution can be used to test the significance of partial correlations that can be

performed via different approaches such as the likelihood ratio or Wald statistics.

The z-transformation given below is another alternative approach to check the validity

of the partial correlation [98]:

z(r) =
1

2

√
n− p− 1 ln(

1 + r

1− r
). (2.20)

Similarly, the following likelihood ratio test can be applicable:

LR(r) = −n log(1− r2) (2.21)
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in which LR(r) has an asymptotic χ2
1 distribution under the null hypothesis of zero

partial correlation.

In general, although the maximum likelihood estimation (MLE) method is successful

when the full data are available and Θ is nonsingular, it cannot be applicable for

non-invertible Θ [95].

2.2.2 Graphical Lasso

In order to estimate a sparse and symmetric precision matrix Θ, the L1-penalty can be

applied on the entries of the precision matrix, rather than the regression coefficients

[31]. According to the Lagrangian dual form, the penalized likelihood optimization

is given by

maximizeΘ [log |Θ| − Trace(SΘ)− λ∥Θ∥1] (2.22)

in which λ denotes the non-negative Lagrange multiplier and S represents the sample

covariance matrix. Hereby, in the detection of the optimal model, the sparsity of the

precision matrix increases when λ increases. In addition, the optimal solution satisfies

the requirement of symmetry.

When the dimensionality is too high that means the number of species p is extremely

larger than the number of observations n per species, the graphical lasso becomes

computationally inefficient [103]. Witten et al. (2011) [99] suggest to write the es-

timated inverse covariance matrix as the block diagonal form in order to speed up

the computation. Because they can describe a standard graphical lasso in each block

separately. But necessary and sufficient condition is required so that the estimated

inverse covariance matrix can be block diagonal. According to Karush-Kuhn-Tucher

conditions [99], the condition which maximizes Equation (2.22), is satisfied by the

following equality:

Θ−1 − S − λΓ(Θ) = 0, (2.23)

in which Γ(x) denotes the subgradient of |x|. That means, if Θij > 0, Γ(Θij) equals

1. If Θij < 0, Γ(Θij) sets to -1, and if Θij = 0, then the value of Γ(Θij) lies from -1

to 1.
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If the inequality |Sii′ | ≤ λ is satisfied for all i ∈ Ck, i′ ∈ Ck′ , k ̸= k
′ , where

C1, C2, ..., Ck represent a partition of the p features, the solution of the graphical

Lasso problem becomes the block diagonal matrix with k blocks such that

Θ̃ =


Θ1 0 . . . 0

0 Θ2
...

... . . .

0 . . . Θk

 . (2.24)

According to the results of the simulation study [99], the algorithms which use the

blocking idea are computationally efficient. Especially, if the value of tuning param-

eter λ increases, the number of nodes that are fully unconnected from all other nodes

increases. So, the speed of the algorithm also raises.

2.2.3 Pathwise Coordinate Descent

Coordinate descent is a simple optimization method which optimizes the target func-

tion with respect to each parameter separately while keeping all the remaining param-

eters fixed [94]. Then iteratively all parameters are optimized until the convergence

is reached. In each iteration, the fixed parameters take the values from previous iter-

ation and the function is minimized over the just one coordinate. Through this basic

idea, a complex optimization problem turns to a 1-dimensional optimization. When

the target function f is convex and differentiable, a global minimum can be found by

minimizing each coordinate separately. However, if the function is convex but not

differentiable, the global minimum cannot reach by coordinate descent. On the other

hand, the coordinate descent algorithm also converges to a solution when the function

f has the following form:

f(x) = g(x) +

p∑
i=1

hi(xi). (2.25)

Here, g is a convex and differentiable function, and the following nonsmooth part is

separable where each hi is also convex. The coordinate descent method is widely

used for problems like Lasso regression, fused Lasso, graphical Lasso, regression
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with non-convex penalties and so on. These types of penalized likelihood equations

consist of differentiable loss function and separable penalty function.

The pathwise coordinate descent for the Lasso estimates the regression coefficients,

β̂, repeatedly on a grid of λ values [30]. On a grid of decreasing λ values, λ0 > λ1 >

... > λk, λ0 equals λmax (λ0 = λmax) and λk denotes λmin (λk = λmin). Here, λmax

represents the smallest value for which all coefficients are zero. Under the orthogonal

design, λmax can be computed by using the following equation:

λmax = maxj|(xT
j xj)

−1xT
j y|. (2.26)

Additionally, if the design matrix is full rank, λmin can be zero. Otherwise, λmin =

ϵλmax for small ϵ such as ϵ = 10−4. By using this strategy, the algorithm takes

the advantage of sparsity. Starting with large value for λ corresponds to very sparse

model. That means, λ0 leading to β̂ has the solution 0 or close to 0. Moreover, at

each current step, the previous value of λ is used as the initial value. This procedure

is called the warm start.

The steps of algorithm for pathwise coordinate descent for Lasso mainly contain two

parts, namely, outer loop and inner loop. The outer loop corresponds to pathwise

strategy, whereas, the inner loop is connected with the strategy of the active set.

1. Outer loop

1.1. Compute a sequence of decreasing tuning parameter λ, λ0 > λ1 > ... >

λk.

1.2. Use solution from the previous stage for initialization (warm start).

2. Inner loop

2.1. Perform a coordinate cycle and record active set of coefficients which are

nonzero.

2.2. Cycle over coefficients in active set until convergence.

For the following Lasso function

min
β

1

2N

N∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|, (2.27)
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one coordinate cycle can be listed as below:

(a) Compute the partial residuals, rij = yi −
∑

k ̸=j xijβk.

(b) Compute the least squares coefficients of these residuals on jth predictor, β∗
j =

1
N

∑N
i=1 xijrij .

(c) Update βj by using soft thresholding, β̂j = S(β∗
j , λ).

Here, the soft thresholding operator S(.) can be defined as follows:

S(β∗
j , λ) = sign(β∗

j )(|β∗
j | − λ)+ =


β∗
j − λ, if β∗

j > λ,

0, if |β∗
j | ≤ λ,

β∗
j + λ, if β∗

j < −λ.

(2.28)

Although there are many approaches for penalized regression in methodological lit-

erature, GGM is the most popular method to determine the conditional relationships

between variables [46, 11]. So, graphical Lasso is the baseline method for network in-

ference. Most recent studies are extensions of glasso method such as Unified Graph-

ical Lasso [61], Contrasting Graphical Lasso [61], Time-Varying Graphical Lasso

[43], Robust Graphical Lasso [11], Robust Sparse GGM [46] and Bayesian estima-

tion of GGM [97]. Since the glasso is used as a fundamental method in comparison

studies, we also compare our proposed method with glasso.

2.3 Nonparametric Regression Methods

2.3.1 Multivariate Adaptive Regression Splines

The Multivariate Adaptive Regression Splines (MARS) is a well-know nonparamet-

ric regression approach that is suitable for high-dimensional and correlated data under

nonlinearity [29]. It is a data-driven model and used for approximating nonlinearity

within the data. This method has a special adaptive procedure in the sense that it can

reduce the complexity in nonlinear functions by constructing the linear models. It is

in essence with a kind of multivariate regression methods that produces a hierarchi-

cal model by using a set of basis functions (BF) and stepwise selection [6]. Here,
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there is no assumption between dependent and independent variables. Moreover, the

model consists of a two-stage procedure, called the forward stage and the backward

stage. In the forward stage, the modeling starts with an intercept term which is the

mean of the response values. Then, the basis functions are iteratively added to the

model. These basis functions are automatically selected from observed data with a

stepwise procedure [6], and the end result is the largest model that includes many ba-

sis functions. However, this complex model could have an overfitting problem. Thus,

the backward stage is applied to reduce the complexity by removing basis functions

that cause the smallest increase in the residual squared error. This stage prevents the

overfitting problem.

Therefore, the MARS model can be described as:

f(y) = β0 +
M∑

m=1

βmhm(y), (2.29)

in which β0 denotes the intercept term and βm represents a regression coefficient

that is estimated by minimizing the residual sum of squares. M denotes the number

of basis functions in the current model and hm(y) shows the piecewise linear basis

functions (linear splines) which are described as follows:

(y − τ)+ =

 y − τ, if y > τ,

0, otherwise,
(τ − y)+ =

 τ − y, if y < τ,

0, otherwise.
(2.30)

Here, the (+) sign indicates the positive part of the expression. These piecewise linear

functions are connected at some values τ , called the knots. The functions
(
y − τ

)
+

and
(
τ − y

)
+

are able to smooth a curve by pieces of linear expressions as shown in

Figure 2.1. For each independent random variable yj , the reflected pairs are obtained

and this set of basis functions is represented as given below:

C = {(yj − τ)+, (τ − yj)+ | τ ∈ {y1j, y2j, . . . , ynj}, j = 1, 2, . . . , p}, (2.31)

where p is the number of independent variables.

At the end of the forward stage, a large model is obtained. Here, the backward stage

can be applied to estimate the best model with a number λ of terms. The optimal λ is

chosen by using the generalized cross-validation (GCV) value defined as

GCV(λ) =

∑N
i=1(yi − f̂λ(yi))

2

(1− (r + cK)/N)2
(2.32)
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Figure 2.1: Simple representation of the smoothing method for the curvature structure

via basis functions of MARS.

in which N denotes the number of observations, r indicates the number of linearly

independent basis functions and K denotes the number of knot points used in the

forward stage. Additionally, c is the cost for the optimization of the basis function

and it is generally set to 3. However, if the model is restricted to obtain an additive

model, it is taken as 2. Furthermore, the numerator of GCV equals the residual sum

of squares. Finally, f̂λ(y) implies the estimated model with λ number of terms [44].

Hence, the model which minimizes GCV is chosen as a final model in the backward

stage.

2.3.2 Conic Multivariate Adaptive Regression Splines

The Conic Multivariate Adaptive Regression Splines (CMARS) is a modified version

of MARS. Here, C not only stands for “Conic”, but also for, “Convex” and “Contin-

uous”. This method proposes to apply a penalized residual sum of squares (PRSS)

for MARS as a ridge regression, also known as the Tikhonov regularization (TR),

by eliminating the backward stepwise algorithm [101]. After obtaining linear com-

binations of the special basis functions of MARS in the forward step, PRSS is used

for the parameter estimation. Indeed, this is an optimization problem that results

from the trade-off between accuracy and complexity. In this context, the accuracy

means a (ideally small) sum of error squares, and the complexity refers to the first and
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second-order derivatives squared of the basis functions with their parametric multi-

pliers. Thereby, the trade-off is detected by the construction of penalty parameters,

and this regularization problem can be solved by the conic quadratic programming.

For the MARS model, PRSS has the following form [86]:

PRSS =
N∑
i=1

(yi − f(x̄i))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

∑
r<s

r,s∈V (m)

∫
Qm

θ2m[D
α
r,shm(t

m)]2dtm. (2.33)

Here, V (m) is the variable set associated with the mth basis function hm, tm denotes

the vector of variables which contribute to the mth basis function and thus shows the

integration variable of the complexity term, and finally, Qm represents a sufficiently

large parallelpipe where the integration takes place, i.e., where the input data are

located. Additionally, the derivative Dα
r,shm(t

m) is defined by

Dα
r,shm(t

m) =
∂αhm

∂α
1 t

m
r ∂

α
2 t

m
s

(tm) (2.34)

for α = (α1, α2)
T where α1, α2 ∈ {0, 1}. In this way, PRSS can control both the

complexity and the accuracy of the model in a balanced way, resulting in conic

quadratic programming (CQP) for the parameter estimation. Indeed, the reorgani-

zation of Equation (2.33) converts the PRSS calculation into a TR form:

PRSS ≈ ∥y − h(d̄)θ∥22 + λ∥Lθ∥22. (2.35)

In Equation (2.35), L is a diagonal (Mmax+1)×(Mmax+1)-matrix and θ refers to an

((Mmax+1)×1)-dimensional vector of parameters. Finally, ∥·∥22 denotes the L2-norm

of the given term. Here, to construct a TR problem with a single parameter, a uniform

penalization is performed by taking the same λ for each derivative term, rather than

λm [86]. Accordingly, Equation (2.33) has two objectives as a linear combination

of ∥y − h(d̄)θ∥22 and ∥Lθ∥22. Hence, the solution is the value which minimizes both

objective functions by a compromise that can be found via continuous optimization

techniques, namely, CPQ, also known as conic quadratic programming as stated be-

fore. As a result, with an appropriate choice of a bound M , the optimization problem

is stated as follows:

minimize ∥h(d̄)θ − yθ∥22 subject to ∥Lθ∥22 ≤ M. (2.36)

To select the penalty parameter λ in PRSS, an efficiency curve, called the L-curve, can

be used. The L-curve displays how the regularized solution changes as the parameter
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changes to plots the norm of the regularized solution versus the number of parameters,

i.e., the “steepness” and “curvatures” in the basis functions. Furthermore, because of

the large range of norms, the curve is plotted in the double logarithmic scale. The

corner of this curve is interpreted as a good balance between the minimization of the

sizes and the corresponding penalty parameters.

2.3.3 Proposed Method - LCMARS

To construct loop-based CMARS (LCMARS), we use the same logic as given in

Equation (2.17). Hereby, to define links of a specified gene (or environmental issue),

we regress each node in the graph against all the remaining nodes and estimate the

regression coefficients to detect the relation between corresponding nodes. Accord-

ingly, in this regression model, since each node represents a gene, the response and

the explanatory variables of the model are composed of the expression levels of the

genes. For instance, assume that there is a small system with four nodes, namely,

y1, y2, y3, and y4. For the first node, y1, we can write two separate regression equa-

tions for GGM and LCMARS, respectively, as follows:

y1 = 3y2 + 2y3, (2.37)

y1 = y2 + 3y3 + 2y3y4. (2.38)

For Equation (2.37), node 1, i.e., with expression level y1, as the response gene, has

connections with node 2, and node 3, i.e., y2 and y3, for GGM as the explanatory

genes. In contrast, Equation (2.38) estimated by LCMARS with the second-order

interaction indicates that node 1 as the response gene has interactions with node 2 and

node 3 as well as node 4 as the explanatory genes. Furthermore, there is an interaction

between node 3 and node 4 due to the significance of y3y4 which denotes the feed-

forward loop. Indeed, the description of the second-order interaction is not possible

in GGM since both models can merely capture the linear relationships between genes.

The networks constructed by Equation (2.37) and Equation (2.38) can be also seen in

Figure 3.2, for the visual inspection.

In this study, we construct the loop-based CMARS model similar to a regression

model as given in Equation (2.17), and call as loop-based CMARS, shortly LCMARS.
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(a) (b)

Figure 2.2: (a) The construction of network based on Equation (2.37) and (b) the

construction of network based on Equation (2.38)

Thereby, we regress each node in the graph against all the remaining nodes iteratively

and estimate the regression coefficients to detect the relation between corresponding

nodes. In this calculation, the steps of LCMARS method can be listed as below:

1. Construct p number of models which include both main and the second-order

interaction effects by using the forward stage of MARS.

2. Compute PRSS for each model without moving the backward stage of MARS.

3. Determine the best model which has the optimal penalty term.

4. For each selected LCMARS model, assign 1 to associated entry of the adja-

cency matrix if there is a relation between the response and explanatory vari-

ables.

5. Apply the AND rule to build symmetric adjacency matrix. Here, the AND rule

means that we assign 1 for each pair of nodes (i, j) in the precision matrix if

both (i, j) and (j, i) entries in Θ indicate the edges.

6. Make comparison between the estimated adjacency matrix and the true binary

precision matrix to compute accuracy measures, which we choose as recall,

F-measure, Jaccard index and accuracy value.
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2.4 Outlier Detection Methods

Outlier detection is a crucial problem in many fields. Although there are too many

outlier detection methods in the literature, only a few methods suitable for depen-

dent, sparse and high-dimensional data structure. In this study, we aim to investigate

whether using an outlier detection method as a pre-processing step before modeling

can improve the accuracy of fitted models and which method is the most appropriate

for the protein-protein interaction data.

An outlier is an observation that is significantly different from other observations

[45]. In the literature, it is also known as abnormalities, discordants, deviants and

anomalies [1]. Due to its importance in both the data analyses and modeling the ob-

servations, the outlier detection is a crucial problem in many research fields. There

are basically two main purposes of the outlier identification. In some cases, the iden-

tification of outliers can be the primary goal since it provides new discoveries about

the hidden aspects of the data [40]. In other cases, the identification of outliers can

be used as a pre-processing step before fitting a statistical model and many methods

have been proposed for this purpose. These methods can be divided into two parts,

so called, univariate and multivariate methods. Dixon’s Q test [22], Grubbs test [38],

Z-scores [81] and box plot [90] are the widely known univariate outlier detection

methods. The Dixon’s Q test and the Grubbs test are very simple methods which

enable to find at most 2 outliers. They are applicable under normally distributed data.

On the other hand, the box plot is the most well-known nonparametric and robust

graphical method which is appropriate to identify outliers. However, the outlier de-

tection with graphical tools is not suitable for more than three dimensions. Therefore,

it is necessary to apply a multivariate analysis which can consider the interactions

among several variables to the multivariate data. The multivariate outlier detection

methods can be basically divided into two parts: (i) Distance-based approaches and

(ii) projection based approaches. Mahalanobis distance (MD) and the robust distance

(RD) are the well-known distance measures [41]. Moreover, the blocked adaptive

computationally efficient outlier nominators (BACON) is an another distance based

on a robust multivariate method [14]. Unfortunately, they are not applicable for data

structure where the size of the variables are much more than the observations (p ≫ n)
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due to the singularity problem in the estimation of the covariance matrix. In most of

genomic datasets, there may be thousands of genes or proteins measured on few sam-

ples. Hence, p ≫ n situation is commonly observed in biological data. Here, the

projection pursuit methods are appeared to be aware. Since they are not restricted

with distributional assumptions and are applicable for several data structure, particu-

larly, where the size of the variables is much more than the observations (p ≫ n), they

are the most appropriate choice for high-dimensional data. A well-known projection

pursuit method is the principal component analysis (PCA). Additionally, there are

several outlier detection approaches based on PCA such as robust PCA and spherical

PCA methods [27, 62].

In the following subsection, we present the brief mathematical details of the well-

known outlier detection approaches under univariate and multivariate methods.

2.4.1 Univariate Methods

In univariate data, graphical methods, such as scatter plot and box plot, and statistical

tests, such as Dixon’s Q test [22], Grubbs test [38] and Z-scores [81] can be performed

to detect outlier observations. Accordingly, by using graphs, the observations which

show different patterns visually from the rest of data, can be considered as outliers.

In this branch, the box plot [90] is the most well-known graphical method which is

appropriate to identify outliers for univariate data. It is a nonparametric and robust

approach since it is based on quartiles. In this method, initially the box is constructed

with the 1st (Q1), 3rd (Q3) quartiles and a line which represents the median. Then,

the interquartile range (IQR) is calculated within the range of 1st and 3rd quartiles

indicatively the length of the box. In the decision of outliers Tukey (1977) [90] uses

measurements which are smaller than (Q1 − 1.5× IQR) or greater than (Q3 + 1.5×
IQR). Even though the graphical approaches, in general, are the most preferable

methods to investigate outliers due to their friendly usage and simplicity, they cannot

be applicable for more than two-dimensional datasets.

On the other hand, among statistical tests, the Dixon’s Q approach is a very simple test

which enables to find a single outlier. Hence, this test is suitable for data containing
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few number of observations and it is solely applicable under normally distributed

data. Furthermore, the test cannot be implemented more than once in a dataset since

it can identify only one outlier in a given set.

The Grubbs test is an another outlier detection method for the univariate data. Similar

to the Dixon’s Q test, it applies the normality assumption and finds the value that is

the furthest from the sample mean as an outlier. Therefore, the tested data are taken

as the minimum and the maximum values. If the test is applied as a one-sided test,

a single outlier can be identified by choosing either the minimum or the maximum

value of the dataset. On the other side, the two-sided Grubbs test is conducted both

the minimum and the maximum values are assigned as outliers.

The Z-scores, also called the standardized value, is the most common and general

method among alternatives and represents the distance between the observations and

their mean in units of the standard deviation by computing the following expression

for each observation xi:

zi =
xi − x̄

s
(2.39)

in which x̄ is the sample mean and s denotes the standard deviation of sample. In the

testing procedure, the Z-scores greater than 3 or less than -3 are considered to be an

outlier. However, the major drawback of this method is that it is based on the mean

and the standard deviation which are not robust measures against outliers.

On the other hand, there is also an extended version of Z-score called as the modified

Z-score method, proposed by Iglewicz and Hoaglin (1993) [52]. This approach uses

the median and the median absolute deviation (MAD) instead of the mean and the

standard deviation. The median and MAD are robust measures of the central tendency

and the dispersion, respectively. Moreover, if the absolute value of this score is greater

than 3.5, the corresponding observation is assigned as an outlier.

2.4.2 Multivariate Methods

As mentioned earlier, the outlier detection with graphical tools is not suitable for more

than three dimensions. Furthermore, under multivariate dimensional data, analyzing

each dimension separately is not an appropriate way since some observations may
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be outliers merely in the multivariate space. Therefore, it is necessary to apply a

multivariate analysis which can consider the interactions among several variables.

Moreover, the datasets with multiple outliers can suffer from masking and swamping

effects. In the masking effect, one outlier masks a second outlier in such a way that an

observation can be an outlier by itself, however cannot be observed in the presence of

the first outlier. Thus, other outlier comes out if and only if the first outlier is deleted.

On the other hand, in the swamping effect, one outlier swamps a second observation

under this condition, when the first outlier is deleted, the second observation becomes

a non-outlying observation [12]. Because of these effects, the identification of outliers

in the multivariate data becomes a challenging problem.

The multivariate outlier detection methods can be basically divided into two parts as

presented previously. These are (i) Distance-based approaches and (ii) projection-

based approaches. The main idea of the distance based methods is to detect outliers

by computing a measure of how far each point is from the center of the data. A

well-known distance measure in this branch is the Mahalanobis distance (MD). For

an observation x, MD is defined by the following way:

MD(x) =
√

(x− x̄)TS−1(x− x̄), (2.40)

where x̄ is the sample mean and S refers to the sample covariance matrix. In this

equation, (.)T and (.)−1 denote the transpose and the inverse of the given vector or

matrix, respectively. Once MDs are computed, the data point which has the biggest

MD is labeled as the outlier. Moreover, the MD values under the multivariate normal

data are approximately Chi-square distributed. On the other side, a drawback of this

measure is that it includes a sample mean and a covariance which are not robust,

resulting in affecting from outliers. Thereby, in order to obtain reliable results, MD

needs to be estimated with robust measures. One of the most widely used robust

estimators for the multivariate location and the scatter is the minimum covariance

determinant (MCD) [77]. If the MCD estimators are used in place of MD, then the

robust distance (RD) can be computed as [51]:

RD(x) =

√
(x− µ̂MCD)T Σ̂

−1
MCD(x− µ̂MCD), (2.41)
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in which µ̂MCD and Σ̂MCD denote the MCD estimates of location and covariance

parameters, respectively.

The Blocked Adaptive Computationally Efficient Outlier Nominators (BACON) is

an another distance based on a robust multivariate method. BACON is an iterative

approach which uses the methods of Hadi [41, 42]. But it is computationally more

efficient. Therefore, it can be applied for the datasets which include thousands of

observations. The Hadi’s method initially defines a clean basic subset of the data

and this subset is presumed to be outlier-free. Then, the subset iteratively grows by

adding one observation in each step with a forward search. This computation can be

computationally very demanding for large datasets. On the other hand, in the BACON

method, a potentially large number of points, called the block of points, are added to

the basic subset in each iteration, rather than adding one by one. As a result, BACON

ends up with very few steps without taking into account the sample size [14].

On the other hand, the main idea of the projection pursuit method is to obtain lower

dimensional projections which include useful information for discovering the struc-

ture of data. Because these methods convert the data via a suitable projection to easily

visualize the outliers. Moreover, they are not restricted with distributional assump-

tions and are applicable for several data structure, particularly, where the size of the

variables is much more than the observations (p ≫ n).

A well-known projection pursuit method is the principal component analysis (PCA).

This dimension reduction approach uses a few number of principal components (PC)

to represent the data. Here, the direction of orthogonal components is defined by

maximizing the variance and a meaningful information can be obtained with a small

number of components. In this case the remaining majority of components is accepted

as noise and is not counted within the total variance [27]. If the PCA method is ap-

plied to detect outliers, it is necessary to use the robust estimator of the covariance

matrix since the variance is highly sensitive to outliers [40]. Filzmoser et al. (2008)

[27] propose a robust PCA (PCOut) method for this purpose. This method consists

of two main parts. The first one is to detect the location outliers (e.g., mean-shift

outliers) and the other part is to identify the scatter outliers (e.g., variance inflation

outliers). In this computation, initially, the PCOut method robustly scales each vari-
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able by using the coordinate wise median and the median absolute deviation (MAD).

Then, a semi-robust PCA is obtained. These newly obtained small numbers of PCs

explain at least 99% of the total variance. By this way, this method can be easily

applied to the data which have larger number of variables than observations (p ≫ n),

as it solves the singularity problem of the covariance matrix. In PCOut, the absolute

value of a robust kurtosis measure is calculated for each component to detect the lo-

cation outliers. On the other hand, the scatter outliers are detected via the semi robust

PCs.

Another projection method which is also based on the robust principle components is

suggested by Locantore et al. (1999) [62]. In this method, first of all, all the observa-

tions are projected onto the boundary of a sphere (or an ellipsoid) with a unit radius.

Then, the spatial median and the spatial sign covariance matrix are estimated to ob-

tain robust estimators. Finally, the robust Mahalonobis distance can be computed for

each observation. Similar to the other methods, the observations with large distances

are the possible outliers. Locantore et al. (1999) [62] call this method as the spher-

ical PCA, whereas, Filzmoser et al. (2008) [27] refer the same method as the Sign

approach in their R package, called mvoutlier.

2.5 Model Selection Criteria

In this section, we explain the model selection criteria to compare the performance of

suggested model with alternative methods. When we estimate the biological network,

we compare this network structure with the true network in order to check the model

accuracy. As we mentioned earlier, the estimated undirected network structure can be

represented by a binary precision matrix. Hence, to compare the estimated and true

precision matrices, we use the accuracy measures which are developed for binary

classification. Accuracy measures used in this study are explained in details in the

following part.
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Table 2.1: Confusion matrix of the accuracy measures.

Actual Class

Positive Negative

Predicted Class
Positive

True Positive

(TP)

False Positive

(FP)

Negative
False Negative

(FN)

True Negative

(TN)

2.5.1 Description of Accuracy Measures

In the literature, there are many measures used to evaluate the accuracy of the binary

classification. In general, the measurements are the functions of the following four

main values which are true positive, true negative, false positive, and false negative.

The true positive (TP) implies the number of correctly classified objects that have

positive labels that means there is an edge, the true negative (TN) indicates the num-

ber of correctly classified objects that have negative labels which denotes no edge,

the false positive (FP) shows the number of misclassified objects that have negative

labels, and the false negative (FN) presents the number of misclassified objects that

have positive labels. This information can constitute a confusion matrix as shown in

Table 2.1, which represents the actual and the predicted classification.

In this study, we calculate recall, F-measure, Jaccard index and accuracy measures

whose mathematical expressions are presented in Equations (2.42)-(2.45).

Recall =
TP

TP+FN
, (2.42)

F-measure =
2TP

2TP + FP + FN
, (2.43)

Jaccard index =
TP

TP+FP+FN
, (2.44)

Accuracy =
TP+TN

TP+TN+FP+FN
. (2.45)

Here, recall describes the ratio of correctly classified genes with a positive label to

the total of the positive class in the actual case. In other words, it represents the ratio

of correctly estimated positive links that means connections between genes over the

total number of links in the true network. Recall is also named as the sensitivitiy or
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true positive rate (TPR). On the other hand, F-measure indicates the overlap between

actual and predicted classes. Jaccard index can be interpreted in the same way as

F-measure and it is linearly related to this measure in such a way that

Jaccard index =
(F-measure)

2− (F-measure)
. (2.46)

Additionally, the accuracy is the ratio of correctly classified genes in both labels to

the total of all classified genes. That means it is the ratio of correctly estimated links

(both positive and negative) over total links. In all these measures, 1 indicates perfect

accuracies, whereas 0, implies no success at all in terms of accuracy.

In our analyses, we choose these four accuracy measures since each of them controls

different perspectives of the estimated systems. For example, recall shows the fraction

of real edges, i.e., links, that are correctly inferred. So, it only deals with the number

of TP and does not pay attention to the number of TN. On the contrary, accuracy and

F-measure evaluate the performance of methods from both sides. Therefore, they can

be more informative in the assessment of the best model by considering both types of

error, i.e., FP and FN simultaneously. So, F-measure and accuracy are widely used

measures to evaluate the model performance [43, 61, 97]. Whereas, recall is generally

used with false discovery rate to obtain ROC curve [46, 71].
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CHAPTER 3

APPLICATION

In this chapter, we compare the proposed method with alternates which are described

in Chapter 2. In the application part, to compare the methods we use different dimen-

sional simulated, synthetic and real biological datasets. In Section 3.1, we check the

validity of proposed method with simulated data which are generated under different

scenarios. The results for different synthetic biological data are presented in Section

3.2. In Section 3.3, both the description of real datasets and their results are repre-

sented. Finally, we investigate the validity of outlier detection methods under both

synthetic and real biological data in Section 3.4.

3.1 Application of Simulation Study

In the application, we perform LCMARS, LMARS and GGM methods to construct

the networks. We implement LCMARS by using the main effects and the second-

order interactions of the model. The significant regression coefficients of this model

are directly taken from the estimation of the adjacency matrix which is used to indi-

cate the undirected link between nodes in a network. Here, the estimated adjacency

matrix can be nonsymmetric since the response variables in each regression model

have different significant explanatory variables. So we apply the AND rule which

means that we obtain an entry 1 when both (i, j) and (j, i) entries of the estimated

adjacency matrix are 1. By using the AND rule, we infer more sparse matrices simi-

lar to the real biological networks. In the end, we compare the symmetric adjacency

matrix with the true network and evaluate the different accuracy measures such as the

recall, F-measure, Jaccard index and accuracy which are explained in details in the

previous chapter.

37



Furthermore, for all schemes, datasets are simulated under various dimensions, p,

listed as 40, 100 and 200 number of genes in the system. Moreover, the number

of observations for each dataset equals 20 and all the results are based on the 1000

Monte Carlo runs. Finally in all scenarios, the topology of the networks is chosen as

the scale-free networks as this is the most common view of the biological networks

[2].

On the other hand, we perform the graphical Lasso, also called glasso, method [31]

to infer the model parameters in GGM. This method basically finds the entries of

the precision matrix via the penalized likelihood function whose penalty constant is

controlled by the L1-norm. In this study, the optimal penalty constant is selected by

the STARS criterion [60].

The simulated datasets are created under mainly two different scenarios such that the

generated matrices come from normal and non-normal distributions. The multivari-

ate normally distributed datasets are generated under the scale-free feature by using

the huge package in the R programming language. For non-normal datasets, we use

different distributions such as Student-t, log-normal with mean=0 and standard devi-

ation=1, Cauchy with location=0 and scale=1 parameters, and mixture of log-normal

and normal distributions with equal proportions and same parameters. For Student-t

distribution, we use two different degrees of freedom (df), namely, df=7 and df=15, so

that we can detect the results of the Student-t and the results of its more normally dis-

tributed versions, respectively. The outputs of LCMARS, LMARS and GGM meth-

ods under all scenarious are presented in Tables 3.1 - 3.5. In these tables, the best

models are shown in boldface and p denotes the total number of genes in the system.

From the analyses, we observe that for normal distribution, recall and accuracy values

of both methods are close to each other under all dimensions. On the other side, F-

measure and Jaccard index values of LCMARS are greater than GGM. Additionally,

as seen in Table 3.1, when the dimension of data increases, the differences between

methods get larger.

Additionally, as observed in Table 3.2, under the Student-t distribution for all dimen-

sions and both degrees of freedom (df=7 and df=15), F-measure, Jaccard index and

accuracy values of LCMARS are higher than LMARS and GGM. Similar to the pre-
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Table 3.1: Comparison of the recall, F-measure, Jaccard index and the accuracy for

normally distributed data.

Method p Recall F-measure Jaccard index Accuracy

40 0.3483 0.4608 0.2995 0.9400

LCMARS 100 0.3392 0.4492 0.2896 0.9752

200 0.3359 0.4455 0.2869 0.9876

40 0.3539 0.4335 0.2773 0.9309

GGM 100 0.3462 0.3773 0.2330 0.9655

200 0.3426 0.3264 0.1958 0.9782

40 0.3502 0.4505 0.2910 0.9369

LMARS 100 0.3388 0.4556 0.2949 0.9759

200 0.3571 0.1990 0.1105 0.9570

vious result, GGM gets worse when the dimension increases.

In Table 3.3, we observe that the accuracy, F-measure and the Jaccard index values of

LCMARS under log-normal datasets are a bit more than GGM when the dimension

of the network is small, i.e., p = 40. Whereas, the difference between LCMARS and

GGM significantly grows for larger dimensions. Besides these, recall values of GGM

are higher than LCMARS for high dimensional systems. Moreover, the accuracy, F-

measure and the Jaccard index values of LMARS are close to LCMARS under small

and moderate systems, i.e., p = 40 and 100, respectively. On the other side, the

difference between LCMARS and LMARS get larger under bigger systems when we

specifically compare F-measure and Jaccard index.

Finally, the results of the Cauchy distribution and mixture of log-normal with nor-

mal distributions, are similar to the previous results as they can be seen in Table 3.4

and Table 3.5, respectively. In other words, LCMARS produces higher scores than

LMARS and GGM in terms of the accuracy, F-measure and the Jaccard index. Fur-

thermore, although recall values of GGM are higher than LCMARS and LMARS, the

differences get smaller when the dimension increases.

Hence, from all findings we detect that apart from small systems, LCMARS performs
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Table 3.2: Comparison of the recall, F-measure, Jaccard index and the accuracy for

Student-t distributed data with degrees of freedom (df) 7 and 15.

df Method p Recall F-measure Jaccard index Accuracy

7

40 0.3379 0.4468 0.2882 0.9374

LCMARS 100 0.3346 0.4425 0.2844 0.9747

200 0.3339 0.4426 0.2846 0.9873

40 0.3895 0.3117 0.1853 0.8676

GGM 100 0.3780 0.2064 0.1155 0.9090

200 0.3744 0.1335 0.0718 0.9238

40 0.3422 0.4358 0.2790 0.9335

LMARS 100 0.3349 0.4403 0.2826 0.9745

200 0.3540 0.1996 0.1109 0.9574

15

40 0.3382 0.4468 0.2883 0.9374

LCMARS 100 0.3347 0.4425 0.2844 0.9747

200 0.3341 0.4428 0.2846 0.9873

40 0.3972 0.2971 0.1749 0.8564

GGM 100 0.3833 0.1909 0.1058 0.8998

200 0.3792 0.1249 0.0668 0.9179

40 0.3415 0.4353 0.2786 0.9335

LMARS 100 0.3351 0.4409 0.2830 0.9745

200 0.3544 0.1997 0.1109 0.9574

better than both LMARS and GGM under all scenarios and dimensions. Additionally,

when we compare the results of LCMARS and LMARS, it can be observed than al-

though the results are close to each other under small networks, LCMARS stands out

from LMARS for large networks. Therefore, we consider that the suggested approach

can be a promising alternative of GGM in the construction of complex biological net-

works.
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Table 3.3: Comparison of the recall, F-measure, Jaccard index and the accuracy for

log-normally distributed data.

Method p Recall F-measure Jaccard index Accuracy

40 0.3559 0.4615 0.3000 0.9388

LCMARS 100 0.3391 0.4534 0.2931 0.9756

200 0.3357 0.4565 0.2961 0.9880

40 0.3390 0.5063 0.3390 0.9512

GGM 100 0.4664 0.1198 0.0637 0.7950

200 0.4215 0.0851 0.0444 0.8643

40 0.3390 0.4600 0.2990 0.9410

LMARS 100 0.3397 0.4424 0.2840 0.9745

200 0.3586 0.1918 0.1061 0.9548

Table 3.4: Comparison of the recall, F-measure, Jaccard index and the accuracy for

Cauchy distributed data.

Method p Recall F-measure Jaccard index Accuracy

40 0.3487 0.4563 0.2958 0.9388

LCMARS 100 0.3385 0.4588 0.2976 0.9762

200 0.3351 0.4694 0.3070 0.9889

40 0.7413 0.1585 0.0861 0.4191

GGM 100 0.5532 0.0906 0.0475 0.6689

200 0.4468 0.0708 0.0367 0.8243

40 0.3552 0.4295 0.2737 0.9303

LMARS 100 0.3395 0.4422 0.2839 0.9745

200 0.3570 0.2038 0.1135 0.9583

3.2 Application of Synthetic Biological Data

To evaluate the performance of methods under biological data, we use different syn-

thetic and real benchmark datasets. In this application, the synthetic data are taken

from benchmark synthetic data tools such as SynTRen (Synthetic transcriptional reg-
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Table 3.5: Comparison of the recall, F-measure, Jaccard index and the accuracy for

mixture of log-normal and normal data.

Method p Recall F-measure Jaccard index Accuracy

40 0.3471 0.4621 0.3005 0.9405

LCMARS 100 0.3388 0.4586 0.2974 0.9762

200 0.3355 0.4593 0.2984 0.9881

40 0.4593 0.2505 0.1435 0.7963

GGM 100 0.4112 0.1631 0.0888 0.8739

200 0.3816 0.1264 0.0675 0.9211

40 0.3548 0.4322 0.2759 0.9312

LMARS 100 0.3403 0.4370 0.2796 0.9739

200 0.3564 0.2047 0.1140 0.9586

ulatory networks) [17] and GeneNetWeaver (GNW) [80]. The synthetic gene ex-

pression datasets from these tools approximate the experimental data and enable us

to validate different network construction methods as they present the true network

model too.

Accordingly, in this study, the gene expression datasets from DREAM 4 (2009) in-

silico size 10 and size 100 are used. DREAM is the International Dialogue for Re-

verse Engineering Assessments and Methods competition which publishes the chal-

lenges in the network inference. Hereby, the DREAM 4 in-silico size 10 challenge

consists of five networks involving 10 genes. Moreover, in-silico size 100 challenge

includes five networks involving 100 genes. For each network, multifactorial data

are available while containing steady-state levels of variations in the network based

on gene expression characteristics of two well-studied systems, namely, E.coli and

S.cerevisiae. These datasets are accessible from the R package DREAM4. Hence, in

our analyses, we use three datasets from in-silico size 10 and two datasets from in-

silico size 100. The results of in-silico size 10 and size 100 networks are presented in

Table 3.6 and Table 3.7, respectively. From the findings, it is observed that LCMARS

has better scores than LMARS and GGM in terms of recall, F-measure and Jaccard

index for two in-silico size 10 datasets. Moreover, the accuracy values of LMARS
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are higher than other methods for these two datasets. Additionally, for the third data,

LCMARS is better under all accuracy measures. On the other hand, in-silico size 100

datasets, accuracy results of LCMARS and LMARS methods are very close to each

other. However, the GGM method cannot be applicable since this method cannot

work when the system’s elements have high correlation.

Table 3.6: Comparison of the recall, F-measure, Jaccard index and the accuracy for

DREAM-4 in-silico size 10.

Data Method Recall F-measure Jaccard index Accuracy

LCMARS 0.647 0.647 0.478 0.760

1 LMARS 0.471 0.616 0.444 0.800

GGM 0.294 0.454 0.294 0.760

LCMARS 0.474 0.563 0.391 0.720

2 LMARS 0.368 0.538 0.368 0.760

GGM 0.263 0.416 0.263 0.720

LCMARS 0.438 0.583 0.412 0.800

3 LMARS 0.375 0.522 0.353 0.780

GGM 0.312 0.476 0.312 0.780

Table 3.7: Comparison of the recall, F-measure, Jaccard index and the accuracy for

DREAM-4 in-silico size 100.

Data Method Recall F-measure Jaccard index Accuracy

LCMARS 0.275 0.296 0.174 0.943

1 LMARS 0.248 0.298 0.175 0.949

LCMARS 0.234 0.267 0.154 0.934

2 LMARS 0.207 0.258 0.148 0.939

Toy Data

We compare the performance of three methods with a simulated toy example of gene

expression data generated by the GNW generator by using known biological inter-

action networks of E.coli. The toy data contain 64 samples and 64 genes and are
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available in the R package grndata [10]. We present the outcomes of this dataset in

Table 3.8. From the outcomes, we observe that recall, F-measure and Jaccard index

of LCMARS are better than others. On the other side, the accuracy values of GGM

are slightly higher than LCMARS and it is very close to the LMARS result.

Table 3.8: Comparison of the recall, F-measure, Jaccard index and the accuracy for

toy data and Jak-Stat pathway.

Data Method Recall F-measure Jaccard index Accuracy

LCMARS 0.360 0.347 0.210 0.842

Toy LMARS 0.234 0.342 0.207 0.895

GGM 0.134 0.236 0.134 0.899

LCMARS (BF=10) 0.458 0.343 0.207 0.801

Jak-Stat LCMARS (BF=3) 0.316 0.389 0.241 0.888

LMARS 0.278 0.418 0.265 0.916

GGM 0.626 0.266 0.153 0.608

JAK - STAT Pathway

The final synthetic data belong to the Janus kinase (JAK) signal transducer and activa-

tor of transcription (STAT) pathway. This is an important signal transaction pathway

that is activated by Type I interferons (IFNs) [100]. IFN regulates intracellular antimi-

crobial programmes and influences the development of innate and adaptive immune

responses [53]. In this way, IFNs can control the immune system of living organisms

and are used to treat the hepatitis B and C virus infections [82, 63].

Since the current real data cannot completely and realistically describe this pathway,

we use a simulated dataset taken from Purutçuoğlu et al. (2017) [74]. In these data,

the system is described with 38 proteins and each protein has 10 observations. Ac-

cordingly, we initially take the list of proteins, the initial numbers of their molecules

and their reaction rate constants in the reaction list of the system as presented in

Maiwald et al. (2010) [63]. Then, we use these initials in the long-run stochastic

simulation of the system via the Gillespie algorithm [35] until all states of the system

reach their steady-state activations.
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Once the dataset is generated, we apply LCMARS, LMARS and GGM to estimate

the network. Then, we compute the recall, F-measure, Jaccard index and the accu-

racy values to compare model performances. In all calculations of LCMARS, when

the true networks of the systems are known, we compute the average clustering co-

efficient of the system [5] and take this number as the number of maximum basis

functions allowed in the estimated regression model. This allows us to control the

sparsity of the inferred networks. In addition, for all analyses we also set this number

to 10 as the default number since the user may not always know the true structure of

the network in advance. In Table 3.8, we list the accuracy scores of LCMARS when

we know the true structure of the network and when we do not know this structure, re-

spectively. From the findings under all measurements apart from the recall criterion,

we see that LMARS produces more accurate outputs than LCMARS and GGM.

3.3 Application of Real Biological Data

3.3.1 Description of Real Datasets

To evaluate the performance of LCMARS with respect to LMARS and GGM, we use

four real biochemical datasets. The names of these data, their numbers of genes and

samples are listed in Table 3.9 and the biological details as well as the results of the

analyses are presented in the following part.

Table 3.9: List of real pathways (datasets) used in this study with their numbers of

genes (p) and samples (n).

Dataset Number of genes Number of samples

1 - Cell signal data 11 11672

2 - Human gene expression 100 60

(B-lymphocyte cells)

3 - NCI-60 cell lines (p53) 20 33

(Biocarta-PGC1A-pathway)

4 - Human ovarian tumour 11 285

((E-GEOD-9891)

45



Table 3.10: Comparison of recall, F-measure, Jaccard index, and accuracy measures

for datasets which are listed in Table 3.9. BF refers to the number of basis functions.

Pathway Method Recall F-measure Jaccard index Accuracy

LCMARS (BF=10) 0.822 0.725 0.569 0.769

1 LCMARS (BF=3) 0.556 0.715 0.556 0.835

LMARS 0.644 0.690 0.527 0.785

GGM 0.289 0.448 0.289 0.736

LCMARS (BF=10) 0.885 0.386 0.240 0.838

2 LCMARS (BF=4) 0.770 0.805 0.673 0.978

LMARS 0.705 0.612 0.441 0.983

GGM 0.968 0.178 0.098 0.831

LCMARS (BF=10) 0.511 0.475 0.312 0.735

3 LCMARS (BF=3) 0.225 0.387 0.240 0.810

LMARS 0.340 0.432 0.276 0.790

GGM 0.787 0.532 0.363 0.675

LCMARS 0.703 0.825 0.703 0.703

4 LMARS 0.306 0.469 0.306 0.306

GGM 0.091 0.167 0.091 0.091

1. Cell Signaling Pathway

As our first dataset we use cell signaling data from Sachs et al. (2005) [78]. This

dataset contains the flow cytometry results of 11 phosphorylated proteins and phos-

pholipids measured on 11672 red blood cells. These components belong to the cel-

lular protein-signaling network of human immune system cells. Therefore, the aim

of the construction of this network is to understand the native-state tissue signaling

biology, complex drug actions and the dysfunctional signals in diseased cells [78].

The graphical representation of the conventionally accepted signaling molecular in-

teraction is presented in Figure 3.1.

In our analyses, the LCMARS method detects 13 links within these 17 biologically
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Figure 3.1: True graphical representation of the cell signaling network from Sachs et

al. (2005) [78].

validated interactions, while the GGM approach catches only 1 of them. On the other

hand, the LMARS method detects 9 links. The true and estimated networks with 3

methods are shown in Figure 3.2. We represent the accuracy measures of all methods

in Table 3.10. From the tabulated terms, it is observed that LCMARS has higher

recall, F-measure, Jaccard index and accuracy values than both LMARS and GGM.

Table 3.11: List of proteins used in the description of the cell signaling data as in the

study of Sachs et al. (2005) [78].

Symbols Name of proteins Symbols Name of proteins

P1 Raf P7 Akt

P2 Mek P8 PKA

P3 PLC-γ P9 PKC

P4 PIP2 P10 p38

P5 PIP3 P11 Jnk

P6 Erk

2. Human Gene Expression Data

For the second dataset, we implement large-scale human gene expression data orig-

inally described in the works of Bhadra and Mallick (2013) [13], Chen and Chen,
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(a) (b)

(c) (d)

Figure 3.2: (a) True network of the cell signaling data, (b) estimated network via

LCMARS, (c) estimated network via LMARS, and (d) estimated network via GGM.

The true estimated links are shown in boldface and the complete list of proteins is

given in Table 3.
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(2008) [19] and Stranger et al. (2007) [83]. This dataset includes the gene expression

of B-lymphocyte cells from the Utah residents with Northern and Western European

ancestry sample. The genes of 60 unrelated individuals are probed for 100 different

transcripts. Here, the focus is on the 3125 Single Nucleotide Polymorphisms (SNPs)

that are found in the 5 UTR (untranslated region) of mRNA (messenger RNA) with a

minor allele frequency greater than 0.1. The UTR has an important role in the regula-

tion of gene expression. From the 55 biologically validated links, 45 have the names

of the transcription factor and target genes in the network of gene expression data

[13]. Therefore, for the inference of both models, we use these 45 links for the cal-

culation of the accuracy measures. Hence, from the findings in Table 3.10, similar to

the previous datasets, the performance of LCMARS is better than LMARS and GGM

based on recall, F-measure and Jaccard Index. Moreover, accuracy value of LMARS

is a bit higher than LCMARS. Whereas GGM has the highest score in terms of recall.

3. PGC-1A Pathway

As our third dataset, we apply a part of the NCI-60 cell lines (p53) data which include

“Biocarta-PGC1A-Pathway” described in the study of Rahmatallah et al. (2014) [75].

The p53 dataset consists of gene expression profiling of 33 p53 mutated (MUT) can-

cer cell lines and is taken from the R package “GANPAdata” [26]. Here, we deal

with 20 genes which constitute the PGC1A pathway. The peroxisome proliferator-

activated receptor gamma coactivator-1 alpha (PGC-1A) is a tissue-specific coacti-

vator that coordinates transcriptional programs important for energy metabolism and

energy homeostasis. Thereby, inappropriate increases in the PGC-1A activity are

linked to a number of pathological conditions including heart failure and diabetes.

On the other side, PGC-1A is a coactivator for many factors including, CBP, Scr-1,

PPARa, GR (glucocorticoid receptor), THR (thyroid hormone receptor), several or-

phan receptors and MEF2. Hereby, when we compare the performance of all three

models, we observe that GGM is more successful than LCMARS and LMARS based

on recall, F-measure and Jaccard index. Whereas, LCMARS is better in terms of ac-

curacy measures. We consider that this special result may be caused by the particular

structure of the pathway. The reason is that this system has very dense links. Thus,

the method which is more used to assign links in the adjacency matrix can be more

successful. Therefore, GGM is more advantageous in this system. Additionally, apart
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(a) (b)

(c) (d)

Figure 3.3: (a) True network of the PGC-1A Pathway, (b) estimated network via

LCMARS, (c) estimated network via LMARS, and (d) estimated network via GGM.

The true estimated links are shown in boldface.

from the accuracy measure, there is no any other measure which controls FN in the

estimated system. Hence, the measures which control the presence of link when the

system is dense can have higher score than other measures, which check the sparsity

when there is no link. As a result, GGM under these measures is better than other

methods except the “accuracy” measure. In Figure 3.3, we draw all the estimated

networks with the true model for the visual representation of the findings.

4. Human Ovarian Tumour

Finally, as a real biological data, we apply the transcription profiling of 285 human

ovarian tumour samples named as E-GEOD-9891. The data are cohorts of 285 pa-

tients with epithelial ovarian, primary peritoneal, or fallopian tube cancer, diagnosed

50



(a) (b)

(c) (d)

Figure 3.4: (a) True network of the E-GEOD9891 data, (b) estimated network via

LCMARS, (c) estimated network via LMARS, and (d) estimated network via GGM.

between 1992 and 2006. The samples are collected through Australian Ovarian Can-

cer Study with a sample size (n = 206), Royal Brisbane Hospital (n = 22), West-

mead Hospital (n = 54) and Netherlands Cancer Institute (n = 3) [89]. In this

dataset, there are 11 target genes which are chosen to identify the novel molecular

subtypes of the ovarian cancer by the gene expression profiling with a linkage to clin-

ical and pathological features [89]. According to the results in Table 3.10, it is seen

that LCMARS performs significantly better than other methods in terms of all mea-

sures. Thereby, as shown in Figure 3.4, LCMARS can detect 37 links out of 55 links

of the true network. Whereas, LMARS can only capture 13 links in the same 55 links.

On the other side, GGM cannot detect any link, i.e., edges between genes.
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Table 3.12: List of the datasets.

Dataset ID Dataset Number of samples Number of genes

1 Insilico-size 10-1 10 10

2 Insilico-size 10-3 10 10

3 Insilico-size 10-5 10 10

4 Insilico-size 100-1 100 100

5 Insilico-size 100-4 100 100

6 Gene expression (Toy) 64 64

7 NCI-60 cell lines (p53) 33 20

8 Human gene expression 60 100

9 Egeod-9891 285 11

10 Cell signal data 11672 11

3.4 Application of Outlier Detection Methods

In this part, we aim to investigate whether using an outlier detection method before

modeling can improve the accuracy of fitted models and which method is the most

appropriate for the protein-protein interaction data. For this purpose, we compare

the accuracy results of three different modeling approaches under several outlier de-

tection methods. To evaluate the performance of outlier detection methods under

biological data, we use different synthetic and real benchmark biological datasets.

The names of all datasets used in this study and their numbers of genes and samples

are listed in Table 3.12. Additionally, the biological details of all data are explained

in the previous parts.

In this application, we evaluate the performance of outlier detection methods under

several biological datasets. Our main aim is to investigate whether an outlier detection

approach is necessary as a pre-processing step before modeling. For this purpose,

as mentioned earlier, we perform different outlier detection methods designed for

univariate and multivariate cases. We apply Z-score and box plot methods within the

univariate approaches. Additionally, we use PCOut, Sign method and BACON as

multivariate methods. First of all, we detect the outliers in each dataset by using all

these methods and remove the outliers. Then, we check the accuracy of estimated
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systems with these outlier-free datasets under 3 network models, namely, LCMARS,

LMARS and GGM. As accuracy measures, we compute the accuracy and F-measure

by comparing the true and the estimated network structures. We compare the accuracy

results of models under the full data which include potential outliers with the results

of outlier-free datasets. All the accuracy results for each dataset and each method

are given in Table 3.13 and Table 3.14. As presented in Table 3.13, applying the Z-

score or box plot methods cannot increase the performance of models. Generally, the

F-measure and the accuracy values either remain the same or small decreases occur.

Additionally, the Z-score method does not identify an outlier in some data in Table

3.13. On the other hand, the results of the multivariate outlier detection methods,

namely, PCOut, Sign and BACON, are presented by Table 3.14. From the results,

we can see that for the first five data which are synthetic, the PCOut method is a

bit better than Sign and BACON, especially, for the higher dimensional Data 4 and

Data 5. Additionally, for the remaining real datasets, regression methods with the

raw datasets give better results. Rarely, the Sign method gets the upper hand, but the

increases in the F-measure and accuracy are very low. In other words, overall, there

is no any outlier detection method which outperforms the others. Finally, when we

compare the regression models, we can observe that the performance of LCMARS

is the best and GGM is the worst as declared in the previous analysis. From our

results, we conclude that the outlier detection as a pre-processing step cannot improve

the accuracy of the models. Furthermore, there is no unique best method for the

outlier detection for protein-protein interaction data. Additionally, there are only a

few methods applicable for sparse and high-dimensional systems.
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Table 3.13: Comparison of F-measure and accuracy values of Z-score and box plot

methods under LCMARS, GGM and LMARS for datasets listed in Table 3.12.

Data Methods
Full data Z-score Box-plot

F-

measure
Accuracy

F-

measure
Accuracy

F-

measure
Accuracy

1

LCMARS 0.647 0.760 * * 0.563 0.720

GGM 0.454 0.760 * * 0.454 0.760

LMARS 0.616 0.800 * * 0.560 0.780

2

LCMARS 0.563 0.720 * * 0.533 0.720

GGM 0.416 0.720 * * 0.416 0.720

LMARS 0.538 0.760 * * 0.384 0.680

3

LCMARS 0.583 0.800 * * - -

GGM 0.476 0.780 * * 0.476 0.780

LMARS 0.522 0.780 * * 0.476 0.780

4

LCMARS 0.296 0.943 0.268 0.942 - -

GGM - - 0.373 0.966 0.373 0.966

LMARS 0.298 0.949 0.295 0.951 0.362 0.963

5

LCMARS 0.267 0.934 0.280 0.939 0.277 0.946

GGM - - 0.326 0.959 0.326 0.959

LMARS 0.258 0.939 0.280 0.946 0.321 0.956

6

LCMARS 0.347 0.842 0.318 0.837 - -

GGM 0.236 0.899 0.780 0.991 0.236 0.899

LMARS 0.342 0.895 0.326 0.891 0.283 0.898

7

LCMARS 0.387 0.810 * * 0.387 0.810

GGM 0.532 0.675 * * 0.500 0.620

LMARS 0.432 0.790 * * 0.377 0.785

8

LCMARS 0.805 0.978 0.733 0.991 0.636 0.987

GGM 0.178 0.831 0.168 0.817 0.224 0.911

LMARS 0.612 0.983 0.594 0.983 0.638 0.988

9

LCMARS 0.825 0.703 0.837 0.719 0.790 0.653

GGM 0.167 0.091 0.167 0.091 0.167 0.091

LMARS 0.469 0.306 0.487 0.322 0.506 0.339

10

LCMARS 0.715 0.835 0.594 0.785 0.594 0.785

GGM 0.448 0.736 0.594 0.785 0.625 0.752

LMARS 0.690 0.785 0.649 0.686 0.559 0.570

1 (*) represents that outliers are not detected and (-) denotes that the models are not computable.
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Table 3.14: Comparison of F-measure (F.) and accuracy (Acc.) values of

PCOut, Sign and BACON methods under LCMARS, GGM and LMARS for

datasets listed in Table 3.12.

Data Methods
Full data PCout Sign BACON

F. Acc. F. Acc. F. Acc. F. Acc.

1

LCMARS 0.647 0.760 - - 0.647 0.760 0.563 0.720

GGM 0.454 0.760 0.454 0.760 0.454 0.760 0.454 0.760

LMARS 0.616 0.800 0.616 0.800 0.616 0.800 0.435 0.740

2

LCMARS 0.563 0.720 0.533 0.720 0.500 0.680 0.514 0.660

GGM 0.416 0.720 0.416 0.720 0.416 0.720 0.416 0.720

LMARS 0.538 0.760 0.384 0.680 0.462 0.720 0.462 0.720

3

LCMARS 0.583 0.800 0.560 0.780 0.560 0.780 0.435 0.740

GGM 0.476 0.780 0.476 0.780 0.470 0.780 0.476 0.780

LMARS 0.522 0.780 0.584 0.800 0.545 0.800 0.500 0.760

4

LCMARS 0.296 0.943 0.258 0.941 0.281 0.942 0.263 0.938

GGM - - 0.373 0.966 0.373 0.966 0.373 0.966

LMARS 0.298 0.949 0.373 0.966 0.288 0.950 0.328 0.948

5

LCMARS 0.267 0.934 0.281 0.938 0.253 0.934 0.259 0.934

GGM - - 0.326 0.959 0.326 0.959 0.326 0.959

LMARS 0.258 0.939 0.332 0.959 0.285 0.943 0.259 0.938

6

LCMARS 0.347 0.842 - - 0.295 0.832 0.205 0.807

GGM 0.236 0.899 0.236 0.899 0.236 0.899 0.236 0.899

LMARS 0.342 0.895 0.325 0.897 0.325 0.895 0.328 0.888

7

LCMARS 0.387 0.810 0.361 0.805 0.413 0.815 0.344 0.790

GGM 0.532 0.675 0.400 0.565 0.397 0.560 0.370 0.405

LMARS 0.432 0.790 0.367 0.775 0.438 0.795 0.351 0.815

8

LCMARS 0.805 0.978 0.709 0.991 0.704 0.991 - -

GGM 0.178 0.831 0.199 0.852 0.207 0.859 - -

LMARS 0.612 0.983 0.656 0.986 0.645 0.985 - -

9

LCMARS 0.825 0.703 0.778 0.636 0.825 0.703 - -

GGM 0.167 0.091 0.167 0.091 0.167 0.091 - -

LMARS 0.469 0.306 0.429 0.273 0.448 0.289 - -

10

LCMARS 0.715 0.835 0.594 0785 0.594 0.785 0.367 0.686

GGM 0.448 0.736 0.658 0.785 0.690 0.785 0.392 0.719

LMARS 0.690 0.785 0.554 0.587 0.559 0.570 0.560 0.521

1 (-) denotes the models that are not computable.

55



56



CHAPTER 4

CONCLUSION

In this thesis, we have proposed nonparametric regression model, called LCMARS,

as an alternative modeling to GGM on the description of the biological networks.

The prediction of complex biological networks and the estimation of the unknown

system’s parameters have some challenges because of the large amount of data. So

there are various statistical methods to construct the structure of biological networks.

GGM is one of the most widely used graphical models for this purpose. However,

GGM has two major limitations which are the restriction of the normality assumption

in the explanation of the states, and the low accuracy in the construction of the actual

biological pathways. Particularly in high-dimensional biological systems, the esti-

mation of the structure can be challenging due to the sparsity in the precision matrix

and the inference of the model parameter becomes computationally demanding. On

the other hand, MARS is one of the well-known nonparametric regression methods

that enables us to model the high-dimensional data under nonlinearity. Additionally,

the CMARS method is a modified version of MARS. Basically, the MARS model

is a special type of generalized additive models which represents the causes of the

error propagation via a regularized nonlinear regression model. Hereby, in CMARS

by keeping these listed advantages of MARS, a penalized residual sum of squares

is implemented by eliminating the backward stepwise algorithm and can be solved

by the conic quadratic optimization. This model was originally designed for highly

correlated datasets without distributional limitations.

Hereby in this thesis, initially, we have adapted the original CMARS as a loop-based

regression with the interaction effects and called it LCMARS due to its loop-based

description. Here, the main effects imply the direct relations between genes and

the second-order interactions are the representative of the feed-forward-loop motifs’
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structures in biochemical systems. We have used the second-order interactions in or-

der to better describe the structure of biological systems. In this thesis, to compare the

performance of LCMARS with LMARS and GGM, we have conducted a simulation

study under distinct distributions and dimensions. Additionally, several synthetic and

real benchmark datasets have used. The accuracy measures such as recall, F-measure,

Jaccard index, and accuracy values have used to evaluate the performance of methods.

As a result of our analyses, we have seen that, LCMARS has higher F-measure, Jac-

card index and accuracy values than both LMARS and GGM under both normal and

non-normal distributions. Especially, for non-normal and high dimensional systems,

the difference between methods become larger. Therefore, we have concluded that

LCMARS can be a strong alternative to GGM since LCMARS overcomes the lim-

itations of GGM such as the strict normality assumption and a low accuracy under

high-dimensional complex systems. Furthermore, as a result of our analyses based on

the several biological datasets, we have shown that our proposed model has a higher

accuracy than LMARS and GGM based on various accuracy measures. Hence, we

believe that LCMARS can be a promising alternate of GGM and LMARS in the de-

scription of biological networks.

On the other side, in the second part of the study, we have investigated whether an

outlier detection approach is necessary as a pre-processing step before modeling the

protein-protein interaction data. For this purpose, we have searched several outlier

detection methods designed for univariate and multivariate data. Among these meth-

ods, we have chosen the Z-score and box plot under the univariate methods and robust

PCA (PCOut), Sign method and BACON within multivariate methods. Once the out-

liers are detected via these listed approaches, we have implemented GGM, LMARS

and LCMARS methods. Then, we have checked the accuracy of the estimated models

by using accuracy measures such as, F-measure and accuracy values. For this pur-

pose, we have used several synthetic and real benchmark biological datasets which

have different dimensions and different structures. From the results, it has seen that

the outlier detection as a pre-processing step cannot improve the accuracy of the mod-

els. In some cases, PCOut or Sign methods can give a bit better results. However,

the increases in the accuracy values are very low. Hence, within the outlier detec-

tion methods, we have not found any method which can significantly outperform the
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others in the construction of biological networks.

As the future work of the study, we consider to adapt the proposal modeling approach

to its robust version, so-called RCMARS [68]. Shortly, the RCMARS model is sug-

gested to detect the model which has the lowest false positive rate [69] and resulting

in finding the minimum number of links in the system. We think that this new model

can be converted as a loop-based model similar to LCMARS in order to construct the

major core subnetworks. Additionally, robust conic generalized partial linear model

(RCGPLM) can be also used to estimate the biological networks. This method con-

sists of a combination of two regression models, namely, logistic regression and RC-

MARS [70]. RCGPLM can reduce the complexity of CMARS and increase the rate

of accuracy [70, 93]. Furthermore, we consider that the description of the spline func-

tions in MARS, CMARS and RCMARS models can be extended by covering not only

the linear relations, but also nonlinear relationships between genes. For this purpose,

we think to perform the p-splines approach [57] which has unspecified smoothing

functions in modeling. Moreover, a threshold value can be applied to define the links

in networks by LCMARS, rather than direct usage of significant regression coeffi-

cients. In this calculation, we consider to perform the kappa maximized threshold

and the maximized sum threshold [39, 55], so that we can obtain more sparse net-

works. Lastly, a hybrid approach that combines the robust outlier algorithm, called

Mean Shift Outlier Model (MSOM) [56], with CMARS can be implemented to con-

struct networks in the presence of outliers [102]. The MSOM-CMARS method aims

to minimize the impact of the outliers.
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5. Purutçuoğlu, V., and Ayyıldız, E. Comparison of two inference approaches in

Gaussian graphical models, 2017, Turkish Journal of Biochemistry, 42(2), 203-

211.
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