EFFECT OF HUMAN PRIOR KNOWLEDGE ON GAME SUCCESS AND
COMPARISON WITH REINFORCEMENT LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERT HASANOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COGNITIVE SCIENCE

DECEMBER 2019






EFFECT OF HUMAN PRIOR KNOWLEDGE ON GAME SUCCESS AND
COMPARISON WITH REINFORCEMENT LEARNING

Submitted by MERT HASANOGLU in partial fulfillment of the requirements
for the degree of Master of Science in Cognitive Science Department, Mid-
dle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozsahin
Dean, Graduate School of Informatics Institute

Prof. Dr. Cem Bozsahin
Head of Department, Cognitive Science

Assist. Prof. Dr. Murat Perit Cakir
Supervisor, Cognitive Science Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Cengiz Acartiirk
Cognitive Science Dept., METU

Assist. Prof. Dr. Murat Perit Cakir
Cognitive Science Dept., METU

Assist. Prof. Dr. Murat Ulubay
Business Dept., YBU

Date: 12 December 2019






I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. 1
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: MERT HASANOGLU

Signature

1ii



ABSTRACT

EFFECT OF HUMAN PRIOR KNOWLEDGE ON GAME SUCCESS AND
COMPARISON WITH REINFORCEMENT LEARNING

Hasanoglu, Mert
M.S., Department of Cognitive Science

Supervisor : Assist. Prof. Dr. Murat Perit Cakir

December 2019, [44] pages

This study aims to find out the effect of prior knowledge on the success of
humans in a non-rewarding game environment, and then to compare human
performance with a reinforcement learning method in an effort to observe to
what extent this method can be brought closer to human behavior and perfor-
mance with the data obtained. For this purpose, different versions of a simple
2D game were used, and data were collected from 32 participants. At the end
of the experiment, it is concluded that prior knowledge, such as the meaning
of objects and colors, have an impact on human performance. It was ob-
served that the reinforcement learning agent failed to finish the same game.
Various attempts have been made to improve performance and to achieve
human-like behavior. In one of these, mini-games were prepared to intro-
duce prior knowledge of the objects and the interaction with them. In an-
other trial, a model is created with the game data collected from participants,
and the agent is trained using this model as an exploration strategy. Only
when the human data is used as an exploration strategy, the agent succeeded
in finishing the game. Although the performance of the reinforcement algo-
rithm is increased, human-like behavior is not observed. The conclusion is
that it is more meaningful to consider prior knowledge within the context of
exploration strategy, and having prior knowledge is not enough in achieving
human-like behavior.

Keywords: reinforcement learning, human priors, artificial neural networks,
machine learning, deep learning

iv



Oz

INSAN ON BILGISININ OYUN BASARISINA ETKISI VE PEKISTIRMELI
OGRENME ILE KIYASLANMASI

Hasanoglu, Mert
Yiiksek Lisans, Biligsel Bilimler Bolimii

Tez Yoneticisi : Dr. Ogr. Uyesi Murat Perit Cakir

Aralik 2019 , [44]sayfa

Bu ¢alisma, insanlarin 6nceki deneyimlerinden elde ettigi bilgilerin, ddiil ol-
mayan bir oyun ortamindaki insan basaris: tizerindeki etkilerini bulmayi ve
daha sonra insan performansin bir pekistirmeli 6grenme yontemiyle karsi-
lastirmay1 ve bu yontemi insan davraniglarina ve performanslarina, elde edi-
len verilerin kullanilmasi ile, daha da yakinlastirmay1 amaglamaktadir. Bu
amagla, basit bir 2B oyunun farkh versiyonlar: kullanilmis ve 32 katilimcidan
veri toplanmistir. Deney sonunda, nesnelerin ve renklerin anlami gibi énceki
bilgilerin insan performans: tizerinde etkisi oldugu sonucuna varilmustir. Pe-
kistirmeli 6grenme yontemleri ile egitilen ajanin ise ayni oyunu bitiremedigi
goriilmiistiir. Performansi arttirmak ve insan benzeri davranislar: elde etmek
i¢in gesitli denemeler yapilmistir. Bunlardan birinde, nesneler hakkinda 6nce-
den bilgi edinilmesi ve onlarla etkilesimin saglanmasi igin mini oyunlar hazir-
lanmistir. Bir bagska denemede, katilimcilardan toplanan oyun verileriyle bir
model olusturulmus ve bu model pekistirmeli dgrenme algoritmas: igin bir
kesif stratejisi olarak kullanilmistir. Sadece insan verilerinin bir kesif stratejisi
olarak kullanildig: durumda, pekistirmeli 6grenme ajan1 oyunu bitirmeyi ba-
sarmustir. Pekistirmeli 6grenme algoritmasinin performans: arttirilmis olma-
sina ragmen, insan benzeri davranis gézlenmemistir. Sonug olarak insanlarin
sahip oldugu 6nceki bilgilerin oyun performanslarin etkiledigi goriilmiistiir.
Pekistirmeli 6grenme yontemleri kullanilarak egitilen ajanin ise bu tip bir bil-
giye sahip olmasmin uygulama noktasinda kolay olmadig1 goriilmiistiir. Son
olarak ajanin egitiminde insan verileri kullanildig1 durumda dahi insan ben-
zeri davranis gozlemlenmemistir.

Anahtar Kelimeler: pekistirmeli 6grenme, insan 6n bilgisi, yapay sinir aglari,
makine dgrenmesi, derin 6grenme



to My Family and Best Friend who left us too early ...

Vi



ACKNOWLEDGMENTS

Firstly, I would like to thank my academic advisor, Asst. Prof. Dr. Murat Perit
Cakar, for his patience and guidance throughout my years at the department.
Without his guidance I could have lost my way between my day job and
masters studies.

I would like to thank Ibrahim Kaya for his huge help with the reinforcement
learning parts. Without him it would be impossible to finish all the work
done.

Last but not least I would like to thank my family for always supporting me
and being there whenever I needed them.

vii



TABLE OF CONTENTS

ABSTRACT] iv

\%

ACKNOWLEDGMENTS|. . . ... .. ... .. . . . .. vii

TABLE OF CONTENTS| . . ... ... ... ... ... . ... . ...... viii

LIST OF TABLES X

LISTOFFIGURES|. . . . ... ... o o xi

LIST OF ABBREVIATIONS| . . ... ... . ... ... ........... Xii
CHAPTERS

1 INTRODUCTION 1

3

3

5

7

3 PRIOR KNOWLEDGE EXPERIMENTS 13

3.1 Methodology| . . . ... ... ... ... . o 13

A1 lection of Phenomen r N

B8.1.2 bExperiment Environment] . . . ... ... ... 14

3.1.3 Participants and Experiment Conduct . . . . . 19

2 Resultsl . ... ... ... . ... ... 0. 20

4 REINFORCEMENT LEARNING 29

4.1 DDON Game Performancel . . . . ... .......... 29

4.2 DDON Modifications| . . . . ... ... .......... 31

5 CONCLUSION AND DISCUSSION] . . . . ............ 37

viil



REFERENCES

iX



LIST OF TABLES

Table2.1 Example g ValueTable|. . ... ... ... ... ......... 9
Table[3.1 Descriptive Statistics for Finishing Time| . . . . . . . ... ... 21
Table(3.2 Mean Rank for Finishing Time| . . . .. ... ... ....... 22
Table(3.3 Tests of Within-Subjects Effects| . . . .. ... ... ... ... .. 23
Table[3.4 Descriptive Statistics for Number of Deaths| . . . . . ... ... 23
Table3.5 Mean Rank for Number of Deaths| . . ... ........... 24
Table[3.6 Average Values of Collected Parameters for Each Game| . . . . 24
Table 3.7 Average Gaming Interest{. . . . . .. ... ... ... ... ... 25
Table 3.8 Average Values for All Participants, Participants Playing the |

............................ 25



LIST OF FIGURES

Figure(l.1 Basic Reinforcement Learning Scheme (Sutton & Barto, 2018), . . 1
Figure(l.2 Deep Reinforcement Learning Google Search Trend (Google Trends, |
[ 20019). . . . o 2
Figure 2.1 An Example Grid World Environment| . . . . . . ... ... ... 9
Figure[3.1 Normalized Game Performance of DON Algorithms Playing Atari |
| Games (Mnih et al., 2015) . . . . . . . . . .. . . .. ... ... ... . 15
Figure[3.2 OriginalGame Screenshot| . . . . . ... ... ... .. ... ... 16
Figure(3.3 NosemanticsGame Screenshot{. . . . . .. ... ... ... .... 17
Figure(3.4 NosemanticsReversedGame Screenshot| . . . . . . . . ... . ... 17
Figure(3.5 LaddermaskedGame Screenshot| . . . . . ... ... . ... .... 18
Figure[3.6 MultiplegoalGame Screenshot| . . . . . ... ... ... ..... 18
Figure3.7 Gender, Education and Occupation Profile of Participants|. . . . . 19
Figure 3.8 Failure and Success Frequency for All Games| . . . . . ... ... 21
Figure[3.9 Boxplots for Finish Times| . . . . . ... ... ... ........ 21
Figure 3.10 Boxplots for Number of Unique States| . . . . . .. .. ... ... 22
Figure 3.11 Boxplots for Number of Deaths| . . . . . . ... ... ... .... 23
Figure3.12 Playing Order of Games|. . . . . . ... .. ... ... ...... 26
Figure 3.13 Paths Iaken by All Participants for All Games| . . . . . . . . ... 27
Figure@d.1 Network Architecture (Continues from Left to Right), . . . . . . . 30
Figure@d.2 Chosen Starting Positions|. . . . . .. . ... ... ........ 30
Figure4.3 Mini-Game Environments| . . . . .. ... ... .. ... .... 32
Figure@4.4 Required [umping Position for The Step Shape| . . . . . . . .. .. 33
Figureid.5 Game Screenshot Showing Removed Entities|. . . . . . ... ... 34
Figure@d.6 Filter Outputs for Different Layers| . . . . . . .. ... ... ... 35

xi



Al
ANN
ANOVA
CNN
DDQOQN
DL
DON
DRL
LG
MG
ML
NG
NRG
oG

RL

RG

LIST OF ABBREVIATIONS

Artificial Intelligence
Artificial Neural Network
Analysis of Variance
Convolutional Neural Network
Double Deep Q-Network
Deep Learning

Deep Q-Network

Deep Reinforcement Learning
LaddermaskedGame
MultiplegoalGame

Machine Learning
NosemanticsGame
NosemanticsReversedGame
OriginalGame

Reinforcement Learning

ReversedGame

xii



CHAPTER 1

INTRODUCTION

Reinforcement learning is a long-known method, although it became popu-
lar not too long ago. The popularly known version dates back to the 1980s.
Recently, reinforcement learning has met with deep learning, and deep rein-
forcement learning has emerged. Thanks to this development, problems that
could not be solved in the past can now be solved. Here, of course, simi-
lar to the advances seen in machine learning in recent years, new and more
powerful hardware is one of the main driving forces.

In its purest form, reinforcement learning involves an agent that learns how
to behave optimally, given the rewards and an environment that provides
state and reward information given the actions taken by the agent (Sutton

& Barto, 2018). shows this framework. Games are often used as
environments to test the performance of different algorithms.

Agent

state reward action
Sr Rr A,

S.. | Environment |€—————

\,

Figure 1.1: Basic Reinforcement Learning Scheme (Sutton & Barto, 2018)

Deep reinforcement learning is first used by Google’s DeepMind branch, which
demonstrated the algorithm using ATARI 2600 games as the environment
(Mnih et al., 2015). Their paper called “Human-level control through deep
reinforcement learning” is published in Nature. The popularity of deep rein-
forcement learning increased tremendously afterward. This increase can be
observed from taken from Google Trends, which shows interest
over time. Up to 2015, there is close to none interest for the keyword deep
reinforcement learning, which starts to increase at that point and continue in-
creasing steadily till now. At this point, it would be useful to specify a point

1



regarding naming. The only difference between reinforcement learning and
deep reinforcement learning is that deep reinforcement learning uses a deep
structured machine learning method. Due to its broader scope, the term rein-
forcement learning will be used in this study.

A Py, S e

Figure 1.2: Deep Reinforcement Learning Google Search Trend (Google Trends,
2019)

This increasing interest in reinforcement learning can be attributed to its sim-
ilarity to human learning, which also incorporates learning by trial and error.
Google’s DeepMind unit managed to come up with an algorithm that used
deep reinforcement techniques in harmony with other, more conventional
ones to finally conquer the popular Chinese game called Go. They demon-
strated the success of the algorithm by defeating the Go World champion Lee
Sedol (Silver et al., 2018; 2017). They also created an agent called AlphaGo
Zero that learned Go by only using deep reinforcement techniques, which
defeated AlphaGo by 100 to 0 (Hassabis & Silver, 2017). Apart from Go, gen-
erally, game environments are used to test different techniques. These envi-
ronments can be more simple ones like Atari games or much more complex
ones like DOTA or StarCraft II. For example, DeepMind recently introduced
its agent called AlphaStar, which can win against human players in StarCraft
IT (DeepMind, 2019).

These accomplishments and interests are maybe promising, but apart from
research studies and games, real-world applications are very hard to come
by. This fact can be related to the problems that are faced using reinforcement
learning which can be summarized as:

e Finding correct reward functions for complex behavior is very hard
(Palan, Landolfi, Shevchuk, & Sadigh, 2019)

e Due to reward function or other phenomena (for example local minima)
agent can gain reward but act not as intended (Everitt & Hutter, 2019)

e If reward is sparse or none, learning becomes harder (Pathak, Agrawal,
Efros, & Darrell, 2017)

e Compared to humans, learning takes too much time and computational
resource (Botvinick et al., 2019)

e Each new problem requires extensive training even if the concepts are
similar (Yin & Pan, 2017)

e Exploration and exploitation dilemma (Kaelbling, Littman, & Moore,
1996)



As mentioned before, reinforcement learning is fundamentally close to hu-
man learning, thus studying humans can shed light on some of these prob-
lems. Moreover, these studies can yield agents that act like humans, and these
agents can be used in cognitive studies. For this purpose, in this work, the ef-
fect of prior knowledge on game success is investigated in a setting where
there is no reward provided by the environment.

1.1 Purpose and Scope of the Study

There are three aims of this study. The first one is to show that prior knowl-
edge has an impact on game success. Prior knowledge is a very broad con-
cept, but for the sake of this study, the ones deemed most important were se-
lected. Then, in order to observe the effect of these prior knowledge elements,
six simple games were developed, and experimental data was collected. De-
tails are presented in the subsequent sections. The second aim of this study is
to show the similarities and contrasts of human gameplay and reinforcement
learning algorithms. This was done by implementing a popular reinforce-
ment learning algorithm, namely double Q-learning (DDQN), and compar-
ing it with human gameplay data. As part of the study, the performance of
the method mentioned above was also improved by using human gameplay
data. Finally, the agent was evaluated in terms of game performance and
similarity to human behavior.

Hypotheses associated with these aims are as follows:

1. Human prior knowledge plays an important role in game success and
this knowledge is used extensively while playing games

2. Known popular reinforcement algorithms fail at games that has no or
sparse reward signals. Even if a reward signal is designed it would not
be enough to surpass human performance.

3. With the introduction of prior knowledge, reinforcement algorithms can
behave more like humans and their performance can get better.

1.2 Thesis Outline

The following chapters of this thesis were organized as follows. In Chapter
2, a literature review regarding prior knowledge and reinforcement learning
is provided. Moreover, a brief information regarding reinforcement learning,
focusing on the DDQN algorithm used (Van Hasselt, Guez, & Silver, 2016), is
also provided. In the first half of Chapter 3, the methodological approach fol-
lowed in the experiments regarding prior knowledge is given. The remaining
half of the chapter is dedicated to the results of these experiments. In Chap-
ter 4, the performance of the vanilla DDQN algorithm is presented. Then the
chapter is finalized with the results obtained from our attempts to improve

3



agent performance. Finally, in Chapter 5, a general discussion and conclu-
sion are provided.



CHAPTER 2

LITERATURE REVIEW

In this section, literature information about the topics related to this thesis
study will be given. The topics related to this study can be organized un-
der two mutually informing threads, one focusing on insights from cognitive
science related to notions of reinforcement and learning, and the latter from
computer science regarding advances in implementing such algorithms. In
the first part, the basics of reinforcement learning in cognitive sciences and
the literature on the concept of prior knowledge will be discussed. In the
second part, the development of reinforcement learning algorithms from the
past to the present in the computer science literature will be provided.

Reinforcement learning is basically a trial and error phenomenon, as the learn-
ing process requires the agent to interact with the environment through trial
and error. Another central element is feedback from the environment, which
optimally involves a reward, although there are cases where no reward is pro-
vided by the environment like the game used in this study. If the concept of
trial and error is considered, the oldest and foundational research is regard-
ing animal behavior, not human. Thorndike (1911) is one of the first studies
on this subject. Edward Thorndike explains learning in animals by two laws,
"the Law of Effect" and "the Law of Exercise" (Thorndike, 1911). The law of
effect says that the animal will exhibit behavior with negative feedback less,
and with positive feedback more. Thorndike uses the word discomfort for
negative feedback and satisfaction for positive feedback. The law of effect
also laid the foundation for operant conditioning (Skinner, 1938). In oper-
ant conditioning, the term reinforcement consists of two types; negative rein-
forcement and positive reinforcement. Both of these types shape the behav-
ior. The difference is that negative reinforcement encourages the behavior by
removing negative feedback, whereas positive reinforcement does this with
positive feedback. There is also a concept of punishment which is a negative
teedback discouraging the behavior. Comparing with reinforcement learning,
concepts of positive reinforcement and punishment can be considered similar
to the reward function. Negative reinforcement is the main difference here,
as it is not used in reinforcement learning.

Although Skinner uses the term reinforcement, he is not the one using it first.
The notion of reinforcement was first used in classical conditioning studies
pioneered by Pavlov (Pavlov & Gantt, 1928). In classical conditioning, the re-



inforced behavior is not directly associated with the stimulus; it is somewhat
indirect. The best-known example of classical conditioning is the establish-
ment of a link between a bell and a dog’s saliva by ringing a bell each time
the dog is given food. Here, a link is established between the bell and animal
behavior by giving food, but this is an indirect effect. In this respect, classical
conditioning differs from operant conditioning. It can be said that reinforce-
ment algorithms, as applied in the context of this work, is more similar to
operant conditioning.

In this study, the prior knowledge refers to the object knowledge that the
person has before playing the game, knowledge about how to interact with
these objects and the game environments and physics. In the game envi-
ronment used in this study, fire pits symbolized by flames were used. An
example of object information is that the player knows that he should escape
from this object when he sees this image of the flame. It is known that even 3
month infants can recognize shapes that are three dimensional (Kraebel, West,
& Gerhardstein, 2007). Infants can even recognize objects in visually clut-
tered scenes which is clearly a more demanding task (Spelke, 1990). There are
many studies on how object recognition works, its development with age and
its underlying biological principles (Baillargeon et al., 2012; Diamond, 1991;
Kraebel et al., 2007; Piaget & Piaget, 2006; Reynolds, 2015; Wilcox, Stubbs,
Hirshkowitz, & Boas, 2012). Together with object recognition, how to interact
with these objects also becomes something to be learned. Although things
done by the infants may seem meaningless from an outsider’s perspective,
on the contrary it can be said that these actions are their way of exploring
and making sense of the physical world. To acquire knowledge of objects
and how to interact with them infants continually explore and even change
their behavior to be better explorers (Lobo, Kokkoni, de Campos, & Galloway,
2014). Finally, with experience humans gather information regarding game
environments. Even if the person did not play any game the exposure to a
gaming environment cannot be evaded. Moreover, our understanding of the
real physical world is reflected on to the game environment. For example, it
becomes harder to play a game when direction of the gravity is changed from
up to down to left to right (Dubey, Agrawal, Pathak, Griffiths, & Efros, 2018).

Although the concept of reinforcement learning has similarities with learning
in humans and animals, as mentioned earlier, it is clear that the two areas can
benefit from each other more. There is an increasing number of research done
recently to highlight how human cognition can help reinforcement learning
algorithms (Doshi-Velez & Ghahramani, 2011; Dubey et al., 2018; Lake, Ull-
man, Tenenbaum, & Gershman, 2017, Rosenfeld & Tsotsos, 2018; Tsividis,
Pouncy, Xu, Tenenbaum, & Gershman, 2017). There are also algorithms based
on human cognition. It is known that exploration is a problem for reinforce-
ment learning algorithms. A recent algorithm developed tried to solve this
problem by using the concept of human curiosity (Pathak, Agrawal, Efros, &
Darrell, 2017). Here an intrinsic reward based on curiosity is defined in ad-
dition to the external reward from the environment. This way authors tried
to have success in environments with sparse or no rewards. In another study
human game play data is used to create a reward function (Ibarz et al., 2018).



Nine different Atari games are played by human demonstrators and a net-
work providing reward information is constructed. Instead of rewards from
the environment, rewards from the built network is used with a Deep Q-
Network. Better performance compared to imitation learning is reportedly
achieved (Ho & Ermon, 2016). For complex behavior, finding the correct re-
ward function is a very hard task. If there are bugs in the reward function,
the agent can manipulate these back doors not learning the desired behavior.
This is also known as reward hacking (Hadfield-Menell, Milli, Abbeel, Rus-
sell, & Dragan, 2017). A solution for this is to actively use human feedback
(Mindermann, Shah, Gleave, & Hadfield-Menell, 2018).

2.1 Double Deep Q-Learning (DDQN)

Before describing the DDQN algorithm, it will be useful to go back to
and make some basic definitions.

e Agent: Entity that learns how to behave in the given environment.

e Environment: Can be regarded as the simulation environment. Outputs
state and reward information given the previous state of the agent and
the chosen action.

e Reward (R, r): Value gained by the agent by taking a specific action at
time = t, which can be negative, positive or zero. The agent tries to max-
imize the total gained reward. As rewards directly affect the training it
is very crucial to determine it. For complex behavior it is very hard to
come up with a correct reward function.

e State (5, s): Information regarding the environment known to the agent.
This information is then used to determine the action to be taken.

e Policy (7): Policy determines the agent’s actions given the state.

e State-Value Function (V, v): Expected return of an agent starting from a
state following a policy.

e Action-Value Function (Q, q): Expected return of an agent starting from
a state taking an action and following a policy.

e Discounted Reward (G): It is the reward obtained by the agent following
a policy that is discounted with a parameter that is between 1 and 0. It
depicts the importance of previous rewards in agent’s decisions. If it is
0 only the most recent reward is used.

In the light of these basic concepts, first of all, the questions of what rein-
forcement learning is and what it aims will be answered. Then briefly, the
Q-learning algorithm (Watkins & Dayan, 1992) that is used in the popular
reinforcement learning method deep Q-learning (DQN) (Mnih et al., 2015)
will be explained. DQN algorithm is the first example of deep reinforcement

7



learning and is also the method DDQN (Van Hasselt et al., 2016), algorithm
used in this study, based on. Finally, the DDQN algorithm will be summa-
rized.

As already mentioned, the fundamental goal in reinforcement learning is to
obtain an agent that will receive the maximum reward provided by the envi-
ronment. In the simplest case of the problem, the action taken by the agent
always gives the same result for each state, and a reward is provided for each
action. In reality, problems can be much more complicated. For example, the
reward may be given at intervals, not always, or only when the target state
is reached. In the most extreme case, no reward is provided by the environ-
ment. Another difficulty is that the result of action for a state may not always
be the same. For example, in a grid world game, when the player presses the
right button, the probability of going to the right could be 80 percent, and the
probability of going up could be 20 percent.

The difference between the discounted reward and reward is also critical.
When R is reward, G is total discounted reward and t is the time step, dis-
counted reward equation can be written as follows (Sutton & Barto, 2018);

Gi=Riy1 +YRip2 + 7V Rigs + ... = Z'Yth+1+k (2.1)
k=0

Here 7 is defined as the discount rate and can take values between 0 and 1.
In a grid world game environment is given. The value in each
box indicates the reward that the agent will receive when the agent reaches
that box. The goal state is shown in green, and the starting state is shown in
blue. In the case of instant reward being maximized (y = 0), the agent will not
be able to reach the goal state because it must first go through the states that
give a negative reward. In such a simple environment, the discount rate can
be easily assessed, but in more complex and realistic environments, it is not
that easy, and different values should be tested for best performance.

The task that the reinforcement learning agent tries to learn in the environ-
ment can be of two different types. As in the grid world game given in [Fig
tasks with a start and end states are defined as episodic tasks, and the
course of engagement between these two terminal states is called an episode.
Another type of task is a continuous task. In this case, there is no specific start
and end state. The agent continues to run unless the user terminates it. An
agent trained in a car simulation will be called an episodic task if it is trained
to travel between two specific points, but it will be a continuous task if it is
expected to travel freely in the city.




0O [-1]0 |O

0 [-1]0

Figure 2.1: An Example Grid World Environment

Reinforcement learning methods can be classified in many different ways.
If the method involves the modeling of the environment, such methods are
called model-based methods. If there is no such modeling, they are called
model-free methods. If a method depends on the policy used during learning,
such methods are classified as on-policy methods. If the policy followed by
the agent during training is not vital for the method, such methods are called
off-policy methods. Another classification is made regarding what is learned
during training. The methods that directly learn a policy are called policy-
based methods. If the value or action functions are learned, the method
is called value-based. Finally, if a method takes advantage of both policy-
based and value-based methods, it is classified as an actor-critic method. Q-
learning, which is also at the heart of the algorithm used in this study, is a
model-free, off-policy, and value-based method.

As the name Q-learning suggests, it is a method for obtaining the optimal val-
ues of the action-value function. When the values of the optimal action-value
function are obtained, the agent can move within the environment using these
values. [Table 2.1| provides example action-value function values for an envi-
ronment with eight states and four actions. Once the table is obtained, it is
straightforward to have the agent select an action hence have a policy. The
action with the highest q value is selected for any given state. For example,
if the agent is in state S3, action Al is selected, which yields the maximum
q value for that state. When in the S8 state, the selected action is A3. At
this point, there are two questions yet to be answered; how to obtain optimal
action-values like given in the example table and what happens to the table
when there are too many states and actions which usually is the case.

Table 2.1: Example q Value Table
S1 | S2 | S3 | S4 [ S5 | S6 | S7 | S8
A1|-05|-02| 04 [-05{00] 05| 02]-04
A2 -06]03]03]01[05]02]05]00
A3, 0501|077 |-01{02]-05|-04|02
A4,01]-01|-01]03|03]| 04 |-02]0.1




In order to answer the first question, the Markov decision process (MDP)
must be defined. MDP can be defined as an environment whose all states
qualify as Markov states. Markov state, which bears the name of Russian
mathematician A. A. Markov means that the future can only be explained by
the present, independent of the past. For example, in the grid world environ-
ment in [Figure 2.1} assume that the agent is in any state adjacent to the goal
state. The location of the agent in the next step is understandable only by
the state in which it is currently located and regardless of which states it has
previously taken. Mathematically, this situation can be expressed as follows
(Puterman, 1994; Silver, 2015; Sutton & Barto, 2018);

]P)[St+1|st} == ]P)[StJrl’S]_, SQ, Sg, ceeey St] (22)

If the problem at hand is a MDP then Bellman optimality equation can be
used to calculate the q values. This equation is defined by the American
mathematician Richard E. Bellman, who is also regarded as the founder of
dynamic programming (Bellman, 1954). Bellman equation makes it possible
to calculate action-value function or state-value function, which is given in
[Equation (2.3)l Q-learning (Watkins & Dayan, 1992) makes it possible to it-
eratively solve Bellman equation for an approximate optimal q value. The
equation for this iterative approximation is provided as |[Equation (2.4)| (Sut-
ton & Barto, 2018).

Q(s,a) =1+ 7 max Q(sl, al) (2.3)

Q(St, Ar) = Q(St, Ar) + a[Riay max Q(St+1,a) — Q(St, Ar)] (24)

In[Equation (2.4)| « is the learning rate which can get values from the range (0,
1]. The Q-learning algorithm cannot succeed with the so far defined version.
The reason for this is that when the agent moves according to the existing q
function, it will act in a loop visiting the same states. The solution, in this
case, is the employment of an exploration algorithm. As mentioned before,
Q-learning is an off-policy method; thus, this exploration algorithm would
not directly affect the learning process, but it must ensure the exploration of
the environment. The most popular method of exploration is the e-greedy
method (Sutton & Barto, 2018). In this method, an € value is determined, and
the agent is moved randomly in proportion to this value. For example, if € is
0.1, 90 percent of the time, the agent will act according to the q function being
approximated, the remaining 10 percent will be random. The problem known
as the exploration-exploitation dilemma is faced at this point. It would make
sense to act highly randomly at the beginning; in this way, the agent would
experience more new states. On the other hand, as q function predictions im-
prove, it will be more meaningful for the agent to perform much less random
action. As there is no metric that can be calculated to know how much the
environment is explored, determining e value is not straightforward. A fixed
e value is, most of the time, not preferred. Instead, a greater value is chosen

10



at the beginning of the training, and the value is reduced depending on a
specific function or heuristic decided before the training. As optimum values
for € cannot be determined analytically, during training, different values and
schedules may be tried.

After explaining how to reach the values given as an example in it
is possible to answer the question of how to deal with situations where the
number of states and actions are high. Since only tables or linear function ap-
proximators can be used for the approximation of the q function, Q-learning
and most other reinforcement learning algorithms have been used in limited
situations. The Deep Q-Network (DQN) algorithm changed this situation by
approximating the q function by using a deep neural network (Mnih et al.,
2015). By expressing the action-value function with a deep convolutional neu-
ral network (Hinton & Salakhutdinov, 2006; Krizhevsky, Sutskever, & Hinton,
2017), the q function becomes dependent not only on state and action but
also on the network parameters used for approximation and is expressed as
Q(s,a,0;). Here, 0 signifies the deep convolutional network weights, and i in-
dicates the iteration step.

DON has succeeded with two critical applications. The first is called experi-
ence replay (Lin, 1992). For this method, similar to human memory, the ex-
periences of the agent gathered while exploring the environment are stored.
This stored data is shuffled prior to training. This ensures that the input is
not corelated during training. Another application that made it possible to
approximate the q function with a neural network was periodical updates to
target values. Actually, there are two functions here one is the action-value

function Q and the other is target action-value function ). Updates between
these functions are made certain intervals instead of every iteration. This
method is aimed to decrease the correlation with the target. DQN is tested
using Atari 2600 games. Colored screen shots of the game screen are used
as states after being processed by a preprocess routine and the score values
provided by the game are used as rewards. From the 49 games tested, in 29
games DQN achieved more than 75 percent of the human scores. (Mnih et al.,
2015)

Double DON (DDQN) (Van Hasselt et al., 2016) algorithm has been obtained
by making use of DQN (Mnih et al., 2015) and Double Q-learning (Van Has-
selt, 2010) algorithms to achieve better performance. It has been preferred in
this study because it provides improvements compared to DQN and is still a
Q-learning based method retaining its properties.

The action-value function obtained when following a policy 7 can be denoted
by Q. If it is desired to obtain the optimal version of it,[Equation (2.5)can be
used, and continuing further the optimal policy can be obtained by selecting
the action that provides the maximum value for a given state as explained
before (Van Hasselt et al., 2016).

Q* (3; CL) - ma‘rWQW(‘S) (l) (25)

11



As demonstrated several times in the literature (Thrun & Schwartz, 1993; Van
Hasselt, 2010; Van Hasselt et al., 2016), Q-learning has the problem of esti-
mating overoptimistic values for the action-value function. The reason for
this is simply the use of the action values estimated during the training for
both the selection and evaluation processes of an action. DDQN provided an
improvement in overestimation by separating the selection of the action and
the evaluation of the action. In|Equation (2.6) and [Equation (2.7)| for target
values is provided for DQN and DDQN (Van Hasselt et al., 2016). Here it
is clearly seen that DDQN not only uses target network parameters 6~ , but
also the action value network parameters 6 is used. Evaluation of the action
is done by the target network whereas action selection is done by the action
value network.

Y::DDQN = Ry + ’VQ(SH-L argmax Q(St+1> a, 9t>7 Qt_) (2-6)

Y,7% = Repr + max Q(Sier, a; 6;) 2.7)

Starting from the most fundamental definitions a brief overview of reinforce-
ment learning is provided in this section focusing on the algorithms that are
relevant for the DDQN method.

12



CHAPTER 3

PRIOR KNOWLEDGE EXPERIMENTS

3.1 Methodology

In this section, information about the methodology of the experiment will be
provided. First, the phenomena that are aimed to be observed in the experi-
ment and the underlying motivation will be explained. Secondly information
about the games developed in order to observe chosen phenomena will be
provided. Finally, the section will end with information on the way the ex-
periment is conducted, and the profiles of the participants.

3.1.1 Selection of Phenomena to be Observed

A lot of phenomena can be mentioned when it comes to human prior knowl-
edge. Since it was impossible to address all of these in this study, there was
a need for selection and simplifying assumptions. The following points were
taken into consideration during the selection;

Effect on game performance

Applicability to reinforcement learning

Likely to be observable in most people

Easily applicable in the developed game environment

The selected phenomena were chosen to meet these criteria at the highest
rate, if not completely. The first phenomenon is a preliminary information
about the meaning of objects and colors. Trying to navigate to the princess
object or the green object seen on the game screen is an example of the effect
of this type of information. Another selected phenomenon was chosen as in-
formation about the relationship between the keys pressed and the direction.
An example of this type of information is the expectation that the character
moves to the right when the right arrow key is pressed. The last selected phe-
nomenon is the direction information within the game. The hypothesis here
is that the right and up sides are preferred primarily to advance in the game.

13



The application of selected cases in the game environment is explained in the
next section.

3.1.2 Experiment Environment

In order for the experiment to be carried out as desired, the experiment envi-
ronment must be easily modifiable, allow data recording during the experi-
ment, and provide a suitable environment for participants who are not expe-
rienced in playing games. In addition, the experimental environment should
be easy to work with algorithms for the studies to be done with reinforcement
learning algorithms.

Considering the fact that most of the studies on reinforcement learning were
developed in Python, it was decided to develop the experimental environ-
ment using Python. Another advantage of the Python programming lan-
guage is that there are many open source packages. These packages include
Pygame and Pygame Learning Environment (Tasfi, 2016) which were used to
develop the games employed in this study.

In[Figure 3.1|performance of Deep Q-Network algorithm across different Atari
games is provided (Mnih et al., 2015). Performance of the algorithm is nor-
malized using random play and human expert scores according to the for-
mula 100*(DQN score - random play score) / (human score - random play
score) (Mnih et al., 2015). DQN performed better than the human expert in
most of the games but not all. It even got a score of zero in Montezuma’s
Revenge, which is a sparse reward game where in order to score points cer-
tain actions should be done in order. For example, player needs to get a key
tirst, then find the door, and open it with this key to get a certain amount
of reward. The environment developed for the present work is based on a
simplified version of Montezuma’s Revenge. The developed environment
does not require the player to accomplish tasks before the goal state for the
sake of simplification, but to make it harder for the reinforcement learning
algorithms, the game does not assign any rewards. Moreoer, the game is not
coded from scratch. Code developed for a similar study (Dubey et al., 2018)
is used as a starting point. Several modifications are made to the code and
new game maps are designed.

The game was designed after determining the infrastructure. First of all, a
default version of the game which is used as a reference and which has not
been changed regarding the phenomena to be observed is planned. In addi-
tion to the fact that the game does not contain any score, attention was paid
for it to be playable by the participants in a five-minute period even if they are
not experienced in computer games. The screenshot of the reference version,
called the OriginalGame (OG), is shared in [Figure 3.2l As can be seen from the
tigure, the game includes the following elements;

e Princess: Goal of the game. The game ends when the player reaches the
princess.

14



pears.

Player
Ladder

Video Pinball ]
Boxing |
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber |
Gopher |
Demon Attack
Name This Game |
Krull |
Assault |
Road Runner |
Kangaroo 7
James Bond |
Tennis |
Pong |
Space Invaders 7
Beam Rider |
Tutankham |
Kung-Fu Master 7]
Freeway |
Time Pilot |
Enduro |
Fishing Derby 7
Up and Down |
Ice Hockey |
Q'bert |
H.E.R.O. |
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien ]
Venture |
Seaquest |
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye |

Fire pit: A trap that causes the game to end.

Enemy: Contact causes the game to end. When jumped over, it disap-

|

At human-level or above

Below human-level

m::I:ym-!!!lnlllllqllll!Illmm.u“

Best linear learner

Montezuma's Revenge

| 0%

) )
I I 1 I I ool 1
100 200 300 400 500 600 1,000 4,500%

o -

Figure 3.1: Normalized Game Performance of DQN Algorithms Playing Atari
Games (Mnih et al., 2015)

In order to observe how objects and colors affect perception and game perfor-
mance, the above-mentioned game elements are masked with colored boxes.

15



"
|
|

ERRERERER [ [

rrrrrr EEEEEEEE 8

[
||
|
"

rEERRERR EEEEEEEEEER EEEERERR
-----------
e EEEEEEEEE. EREEEEEEEES
FEERREEEEREERE FERERERE
EERER s JERRER .
FEEEEEREREEEEEER FE s EEEREEER
FEFEFFEFEEEE mHCems
B g
ERERREREERER , JERERERRRREERER

EEEEEE . EEEEEEEEE

EEER ., EREER EEEE , ERERER
EERERERR FERREEREERER

EEEEEEEEEEEEEEEHER g
FEFEREFREEEREERERER
ERERERERER
FEEEEEEEEEREENEEEEEE
EEEEEEEER LI L Istst I

FEEEREEEEE
EFEEREEEERE
ERREEEREERER

e EEREEREERR
EEEEREERE

........................... u
Two different strategies for masking were followed. In one version, negative
objects are masked with negative colors, which is referred as the Noseman-
ticsGame (NG). In another version negative objects are masked with positive
colors, which is called the NosemanticsReversedGame (NRG). The player is
assigned the same color in both versions. In order to choose colors for the
objects, existing findings on the relationship between color and emotion (Naz
& Epps, 2004) is used as a guideline, which led to the assignment of following
colors to game entities:

e Player: White

Princess: Green, Black (Reverse version)

Ladder: Blue, Gray (Reverse version)

Enemy: Black, Green (Reverse version)

Fire pit: Gray, Blue (Reverse version)

Another version of the game, called LaddermaskedGame (LG), was created
by masking the stairs in the game as a stone wall to see if using colored blocks
instead of stairs would affect the participants” performance. The screenshots
for these versions are shared in [Figure 3.3} [Figure 3.4/and |[Figure 3.5

Game versions are designed to be played normally with the following keys;

e W:Up
o A:Left
e S: Down

e D: Right

16



e Space: Jumping

» ]
] B
» ]
EEERREEERE ]
" EEREINEEREERERE ]
" ]
o ]
" ]
- ]

EEEEEEER EEEEE EEEEEEEE
EEEEEEREERS
EERFERERE FEEEEENEEER
FERREEERFRERER FEFERERE
mEEER EEER
EREEREREEREERERR L1 EREEERER
EERERFEREEERR B EER
EEEFFEEEEEE R E

EEREEE FERERERER

FEERINERERE FEFFRINERERERE
FEEERRERR ERREEREERER

FEREEEEEREEEEE FE
FEEREREEEERREERERER
FFFEFFFFFE
FEEFEEEREFERERRERERR
FEEEREEERE EEEERE  ER

EEEEEEEEER
EEEREERRER
FEREREEERERE

FEFREREER
EFEREEEEE

Figure 3.3: NosemanticsGame Screenshot

]
]
]
]
EmEr sEFEREER ]
]
]
]
]

FEFEEEEF FEEFREEEEREE
FEEEEREREER

FEEREEER

EEEEEEEEE EEEEREEREES
FFPFFEFFFEEERE FEREERER

EEEER  PEEER
FEEEERREERRREEER L EREEEEER
ERREREREERER LJ mRE

FEEERERERER FEEFREREEEERERE

FEEEEE FEEEEEEERE

LLLL EEEER EEER EEERER
EEEEEEEE FREEEEEREEE

EEEEEREEFEREEEEE EE
FEREREREREEREREREERR
FERERERRERE

FEREFEEEFEREEERERERE
PEPFEREPRE PEEFERE PR

EREFRREERR
EEEEEEEERE

FEEEEFERERER

EEEREEERE
FEFFFFRFF

ge 3.4: NosemanticsReversedGame Screenshot

When the positions of the keys are taken into consideration, expectations of
the people regarding the functions of the keys are in accordance with the de-
termined directions. In order to observe how the game performance will be
affected if these expectations are not met, the keys are changed as given be-
low. Other than the keys nothing is changed compared to the OriginalGame
given in[Figure 3.2 This version is called ReversedGame (RG).

e W: Down
e A:Right

17



e 5:Up
o D: Left

e Space: Jumping

v
[
[
FEEREREERER e v
FEEP ;PP FRPRRR e

|

¥

[

L]

LR LER L

i v
FEREEEER EEREREREEER FEREEERER
EEREEERERER
= EEEEEEEEE . JEEEEEEE R
FEEEEEREEERERER EEEEREER
FEEEEE » JEEEER .
EEEEEEEEEEEEEERE ERs/EEREERER
EEEEEEEEEEEE = EmE
REEEERERERE s JRRRRREREREEERE

FEEEEEE JEEEERREER

FEEER 4 JERERE EEERJJERERER
EEFFEEEE FEFEFEEERER

EEEEEEEEEEEEEE BE 3
EEEREEREREEREEERERE
FEFFFFFFFR
gl"??"""""’f??

FEFFFEREFRF EEEEE BB

FEFPEFRFFF

FEFFEFFEER
EEEEEEEEEEEE

3 FEEEREEER
FEEEREERR

Figure 3.5: LaddermaskedGame Screenshot

| ]
]
-
EEREREEER e 8
EEER L ENEEREEER R

]

-

"

-

AL LLELL]

sEEEREEE EREEEEEEEER EEEEREER
EEEEEREEREE
¢ EEEEEGREE . ERREEEREREE
ReEERRRERRRRRR (LTI
[UCT TP [
»
eEEERiERREEEREEE gRsommiinnEnn
rerErerenRne [zl=0 T
EEEREREEREE s JREERREEE

EEEEER s EEEEEREER

EREE, JEEEER EEEEJ JREEERE
EEREEEEE EEpEEEEERER

EEEEEEEEEEREEE N c
EEEEEREREREEEERREEE
sEEsEEEEEE
EEEEEEREREEEEREREREE

EEEERRERE ERERE HER

EERERERRER
REEREREEER
EEEEERERRERR

3 FEEEEERER
EEERRERRE

“Figure 3.6: MultiplegoalGame Screenshot
A game version, named MultiplegoalGame (MG), with three goals, one real
and two fake, was created in order to observe in which direction the partici-
pants would prefer to go first. The screenshot of the relevant version is shared
in As can be seen from the figure, one of the targets is placed on the

lower right, another is placed on the upper right, and finally, as in the other
versions, a target is placed on the upper left. The closest right-hand target of

18



these targets is positioned so that it cannot be reached. For the upper right
and upper left targets, they are intended to be accessible by traveling almost
the same distance. To reach the end of the game, as in all other versions of the
game, the upper left goal must be reached. Information about the participant
profile and the implementation of the experiment is given in the next section.

3.1.3 Participants and Experiment Conduct

The experiments were carried out on a laptop. The participant was briefly
informed about the experiment, but only the valid keys of the game were
provided regarding gameplay; no information was provided regarding the
purpose of the game or the functions of the keys. If the game could not be
completed within five minutes, the game was automatically terminated to
avoid prolonging the experiment.

Education Gender
PhD; 2;
6% Female
‘ 31% [ —
MS; 11;
i il Male
60% ’ 69% ’
Corporate Occu patlon
Communica City Architect,
tion, 3% Planner, 3% 3%
.
Banker, 6%
Engineer,

85%

Figure 3.7: Gender, Education and Occupation Profile of Participants

Each participant was asked to play all six games, but the order of the games
was changed to ensure that each game was played for the first time by an
equal number of participants. At the end of the experiment, a short question-
naire was used to collect further information. The questionnaire consists of
six questions. In order to obtain general information about the participants,
age, gender, education and occupational information were collected. In addi-

19



tion, they were asked to rate their interest in computer games out of ten, and
indicate the hardest of the six games they played. Graphs showing gender,
education and occupation information gathered from the survey are given in

Average age of the participants was 29.6, youngest being 23 and oldest being
41 years old. As can be observed from [Figure 3.7, majority of the participants
were male (69%). With 19 out of 32 people, most of the participants were
holding a BSc degree and the majority of the participants were engineers. The
average interest of the participants in computer games was 6.19. 22 of the 32
participants indicated that the first game they played was the most difficult.
This can be considered as an expected result considering that they can use
what they have learned in the first game in other games.

3.2 Results

As mentioned in the previous section the experiment is conducted with 32
participants where six different games are played by each participant with
different orders to ensure that each game is played for the first time by nearly
equal number of participants. Every key press of the participant was logged
making it easier to generate necessary data during post processing. Main
parameters generated from the gameplay data were the following;

e Finishing time: The time spent by the participant to finish the game.

e Number of deaths: The number of deaths of the participant due to the
enemy or fire pit until the game is over.

e Number of unique states: The number of unique positions the partici-
pant walked through until he/she finished the game.

e Success: If the participant reached the princess in less than five minutes,
game is deed successful. If time limit is passed the game is unsuccessful.

The distribution of successes and failures across game types is summarized
in Although the number of failures were slightly higher in the case
of No Semantics and the Ladder Masked game conditions, a chi-square test
conducted on the frequency distribution of success and failure cases did not
find a significant difference, X*(5) = 2.10,p > 0.05.

The boxplots, given in[Figure 3.9, summarize the observed game finish times.
The normality tests indicated significant positive skew in all conditions, so
a non-parametric Friedman’s ANOVA test was conducted to compare game
type in terms of their completion times. Although the Reversed, Multiple
Goals and No Semantics conditions had higher completion times, Friedman’s
ANOVA test result showed that these differences were not statistically signif-
icant, X*(5) = 5.73,p > 0.05. Detailed statistical information is provided in

Table 3.1/and mean rank is provided in

20



Table 3.1: Descriptive Statistics for Finishing Time

Percentiles
Game | N | Mean | Std. Deviation | Min. | Max. | 25th | Median | 75th
oG 32 | 137.09 96.80 4464 | 300 | 61.20 85.10 215.21
RG 32 | 150.44 89.45 55.19 | 300 | 67.38 | 126.65 | 233.47
MG 32 | 155.78 92.02 4715 | 300 |90.38 | 122.57 | 253.88
NG 32 | 159.31 92.33 53.35| 300 | 79.94 | 118.81 | 278.80
NRG |32 | 131.81 85.96 46.21 | 300 | 65.48 | 101.30 | 182.77
LG 32 | 141.32 99.07 48.13 | 300 | 61.80 92.55 265.66
30
Erailure
M Success
=
1)
c
=
=2
s
e
Original  Reversed  Multiple MNo Mo Ladder
Game Game Goal Semantics Semantics  Masked
Game Game Reversed Game
Game
Game

300

250

Finish Time (sec)
3 B

=
]
(=]

50

Figure 3.8: Failure and Success Frequency for All Games

il

Original Game

Reversed
Game

Multiple Goals Mo Semantics Mo Semantics Ladder
Reversed Masked Game

Game

Game

Game

Figure 3.9: Boxplots for Finish Times

21




Table 3.2: Mean Rank for Finishing Time

Game | Mean Rank
oG 3.11
RG 3.73
MG 3.75
NG 3.92
NRG 3.17
LG 3.31

The boxplots, given in [Figure 3.10, summarize the distribution of unique
states the player ran into during each game condition. A parametric repeated
measures ANOVA was conducted to test for difference across game condi-
tions since the distributions were approximately normal for each game. Al-
though the Multiple Goals and Reversed conditions had higher mean unique
states, the ANOVA test did not detect any significant differences across game
types, F(5,155) = 0.34, p > 0.05.

3,000
*
2,500 8
0 8 *
Q o}
s °
2000 o
g o
g °
S 1,500/
N
o
17
2 1000
E
3
=
500
0
Original Game  Reversed Multiple Goals Mo Semantics Mo Semantics Ladder
Game Game Game Reversed  Masked Game
Game

Figure 3.10: Boxplots for Number of Unique States

The boxplots, given in summarize the number of times players
died (and restarted) during the game. The normality tests indicated signifi-
cant positive skew in all conditions, so a non-parametric Friedman’s ANOVA
test was conducted to compare game type in terms of their completion times.
Friedman’s ANOVA test found no significant differences between the game
conditions, X*(5) = 6.94, p > 0.05. Detailed statistical information is provided

in and mean rank is provided in

In the average values of the examined parameters are given. The
average values are given both for all participants played the game and only
for those who played that game as the first. The main reason for this was
that during the experiments it was observed that the participants had less
difficulty in other versions of the game after playing the first game.

22



Table 3.3: Tests of Within-Subjects Effects

Type III Sum Mean . Partial Eta
Source of Squares df Square F | Sig. Squared
Sphericity 295723.19 5.00 | 59144.64 | 0.34 | 0.89 0.01
Assumed
Game GféefEh"“se' 29572319 | 4.40 | 67243.20 | 0.34 | 0.87 0.01
e1sser
Huynh- 295723.19 50 | 59144.64 | 0.34 | 0.81 0.01
Feldt
ILJOW“' 29572319 | 1.00 |295723.19 | 0.34 | 057 |  0.01
ound
Sphericity | »7310662.48 | 155.00 | 176449.44
Assumed
Error Greenhouse-
(Game) | - . 27349662.48 | 136.33 | 200610.31
e1sser
Huynh- 5701066248 | 155.00 | 176449.44
Feldt
t"we"' 27349662.48 | 31.00 | 882247.18
ound

Number of Deaths
o

on

Q0o

0

Original Game

Reversed Multiple Goals No Semantics MNo Semantics Ladder

Game Game Game Reversed Masked Game

G
Figure 3.11: Boxplots for Number of Deaths
Table 3.4: Descriptive Statistics for Number of Deaths

Percentiles
Game | N | Mean | Std. Deviation | Min. | Max. | 25th | Median | 75th
oG 32| 3.53 5.71 0.00 27 | 0.00 1.00 4.75
RG 32| 275 3.91 0.00 14 0.00 1.00 5.00
MG 32| 4.12 5.17 0.00 25 1.00 2.00 6.00
NG 32| 4.41 5.49 0.00 24 1.00 2.00 5.75
NRG |32 | 297 4.40 0.00 23 0.25 2.00 3.75
LG 32| 3.69 4.95 0.00 19 0.00 2.00 5.75

Considering the average completion time for the players playing the game
for the first time, it is seen that OG is completed in the least amount of time.
This is expected since it is the easiest game. Another expectation was NRG to

23



Table 3.5: Mean Rank for Number of Deaths

Game | Mean Rank
oG 3.38
RG 3.00
MG 3.98
NG 3.89
NRG 3.39
LG 3.36

be the game taking longest time to finish. The reason for this is that, in addi-
tion to masking the meaning of the objects, the participants are misdirected
in a sense because colors are used in contrast to the meaning of the objects.
NRG is also the game which has the lowest success rate when played first.
When the average number of unique states is evaluated for the first timers, it
can be observed that there is more exploration during NRG play. The main
reason for this is that some participants think that enemies are something that
should be gathered because the enemies are green and disappear when they
jump onto them. In the light of the data in[Table 3.6 it can be said that prior
knowledge has a definite effect on game performance. This may be in contrast
with the ANOVA analysis presented before. The problem here is that most of
the participants learned the general structure of the games in their first game.
As a result, games played after the first one ended in a similar fashion al-
though these were different versions. For a single game, the number of other
players is higher than the ones played the game first. For this reason, prior
knowledge effect cannot be observed as expected in ANOVA analyzes.

Table 3.6: Average Values of Collected Parameters for Each Game
Avg. Avg. #

. Avg. . Avg. # Success
Games A.vg. Avg.. Time Unique Unique of of Success Rate
Time (First) States Deaths | Rate .
States . Deaths . (First)
(First) (First)

oG 137.09 187.51 1068.22 | 1425.00 3.53 6.80 81% 60%
RG 150.44 226.26 1010.22 | 1362.80 2.75 7.00 84% 100%
MG | 155.78 253.74 1079.00 | 1281.83 4.13 11.17 84% 50%
NG 159.31 255.43 1102.13 | 1333.83 441 12.67 78% 67%
NRG | 131.81 261.22 1002.31 | 1670.60 297 9.60 91% 40%
LG 141.32 233.20 1009.63 | 1629.40 3.69 10.00 81% 60%

It can be assumed that some values given in are contrary to the as-
sessment of the effect of prior knowledge. For example, as expected, with re-
gard to data of OriginalGame first timers, the game is completed in a shorter
period of time, while NosemanticsReversedGame appears to be completed in
a shorter period of time when all participants are evaluated. There are two
main reasons for this and similar inconsistencies. The first is due to the aver-
aging operation. A small number of large values (outliers) that can be added
between many small values will increase the average value, but this will not
actually provide accurate information in evaluating all data. For this reason
consider boxplots given in|Figure 3.9} [Figure 3.10/and [Figure 3.11|for the com-
pletion time, the number of unique states and the number of deaths. From

24



the finishing time graph, it can be seen that the OriginalGame finishing time
varies over a much wider range than the NosemanticsreversedGame though
the median value is smaller for OG. The second reason is the participants’
interest in computer games. shows the averages of the participants’
interest in the computer games stated in the survey. When the data is ana-
lyzed, it is seen that the average of the OG and NG first timers is below all
the participants and the average of the first RG, NRG and LG players is high.
This type of imbalance also has an effect on the results.

Table 3.7: Average Gaming Interest

Avg. Gaming
Interest
All Participants 6.2
First OG 4.6
First RG 7.2
First MG 6.5
First NG 47
First NRG 7.0
First LG 74

As mentioned earlier, it was observed that the order of playing of the games
had a significant effect on the performance. In order to better observe this
point/Table 3.§ gives the average completion time of the games and average
number of deaths for all participants, participants played the game first and
last. Only OG, NG and NRG have participants playing them as the last game
thus in the table only information collected from these games are provided.

Table 3.8: Average Values for All Participants, Participants Playing the Game
First and Last

. . Avg. # of | Avg. # of

Games | 5, | Avg Time v Time v bot | D" i
(First) (Last)

oG | 137.09 187.51 96.72 3.53 6.80 1.31
NG | 159.31 255.43 98.28 441 12.67 1.50
NRG | 131.81 261.22 84.10 2.97 9.60 1.45

As can be seen from the there is a big difference between the results
if the game is played first or last. Changing the playing order from first to
last results in a shortening of the game completion time by 48% for OG, 62%
for NG and 68% for NRG. A similar improvement is observed for the average
number of deaths. Especially for NG there is a great improvement of 88%. All
these data show the importance of the order of the games[Figure 3.12|shows
the number of times each game was played. This also demonstrates the ability
of people to use what they have learned in a short time then quickly adapt to
changing keys. In addition, after learning and having to jump through the
tire pit or the enemy in the first place, people did not try to learn them again,
as expected.

25



20 OriginalGame 12 ReversedGame 12 MultiplegoalGame

1 2 3 4 5 6
Game Order

15

10

Number of Participants
(4]

N & @ @

N anticsGame 12 NosemanticsreversedGame 20 LaddermaskedGame

15

10

5

Number of Participants

0

Game Order

Figure 3.12: Playing Order of Games

Finally, for all games, how participants discover the game will be examined.
For this purpose, the routes that all participants have followed for all the
games are shown on the game screenshot in Paths followed
tended to diverge less for the case of ReversedGame. Moreover, there are
more failed attempts when climbing ladders due to the reversed keys. Except
for the ReversedGame, it is clear that for all games some participants tried to
go right at some point instead of going towards the goal. Although it was
designed to be unreachable, even one participant found a bug and reached
lower right princess in the MultiplegoalGame. Apart from these observa-
tions nothing concrete regarding human exploration strategy can be found
from these charts. Further investigation is needed.

In addition to the numerical data examined, the participants” comments and
observations made during the experiment are also crucial for the interpreta-
tion of the results. Initially, some of the participants who started with Nose-
manticsReversedGame thought that the enemies represented by the green
box had to be gathered and tried to collect the green boxes instead of going
to the princess, which was represented by a black box. Similar behavior was
not observed for the participants starting with the NosemanticsGame. Partic-
ipants playing the LaddermaskedGame first tried to go up later as compared
to other games. When asked why they tried to go up, although stairs were
wall-like structures, participants explained that there was no other way to go;
therefore, they tried to go up. The participants first playing the Multiplegoal-
Game have seen all the targets, but most of those who have not played the
game in the first place were not aware of the newly added targets, and they
went to the target that they were already familiar with from the previous
games. Most of the participants who saw all three goals in the game of Multi-
plegoalGame stated that they planned to go to the bottom right target because
it was the closest but did not go because they considered it unreachable. The
first players to play NosemanticsGame directly went to the princess, which is
represented by a green box. When asked for the reason, they stated that it was

26



the only green object besides being green. This shows that apart from having
a positive color, number of occurrences also have a relevance. Some partici-
pants did not notice the princess, or the object placed instead of a princess and
tried to move up and to the right, thinking that the game would progress. As
a result, it can be concluded that at least some participants have a prior that
going right and up will make progress within the game.

(e) NosemanticsGame (f) NosemanticsReversedGame

Figure 3.13: Paths Taken by All Participants for All Games

27



28



CHAPTER 4

REINFORCEMENT LEARNING

In this section, the performance of vanilla DDQN algorithm will be presented.
Afterwards, the improvement attempts using prior knowledge will be pro-
vided and the results of these experiments will be shared. Implementation
of DDQN is done in Python language and Keras (Chollet, 2015) with Tensor-
flow (GoogleResearch, 2015) is used for training. Different network parame-
ters, state representations and reward structures are used for the experiments.
These parameters along with the aims and results of the experiments are pro-
vided in the subsequent sections.

41 DDQN Game Performance

In order to observe the game performance of the vanilla DDQN algorithm,
different state and rewards were used. In the first attempt, the game screen
was used as the state representation. In order to minimize the number of
network parameters, the image was first converted to grayscale, and then a
201x201 pixel area was cut around the player. Similar to the original DDQN
application, four consecutive frames were buffered and used as input. Thus,
the network input was 4x201x201x1. The network structure used is given in
The optimization employed to train the network is Adam (Kingma
& Ba, 2015). The discount parameter was set to v = 0.90, and the learning rate
was 0.0001. The number of steps between target network updates was 2000.
The size of the experience replay was 20000 and it got sampled to update the
network every 4 steps with minibatches of size 20. e-greedy policy was used
with the e starting from 1.0 dropping down to 0.05. Reward is constructed
proportional to the change of state. As the only moving entity on the screen
is the player, change between frames is only due to its movement. An episode
ends if a terminal state is reached or after 300 seconds of gameplay. Reaching
princess and death by falling into a firepit or colliding with an enemy are the
terminal states. If the agent reaches a terminal state or time limit is reached
game is restarted. If the terminal state reached is princess a positive reward
otherwise a negative one is assigned. These rewards assigned are scaled such
that they are magnitude wise comparatively larger than the rewards assigned
due to agent movement.

29



The agent was unable to reach the princess at the end of the training. In
addition to not reaching the princess, it did not learn any meaningful policy.
It was observed that the agent was constantly jumping to collect reward as
jumping all the time was also causing a difference between frames. A second
trial is done changing the state representation. This time the whole screen was
used as the state. In order to keep the number of parameters under control,
image is scaled down by a factor of 5. Changing the state representation did
not change the end result as the agent did not learn any meaningful policy.

input: | (None, 4, 201, 201, 1)

| input: | (None, 4, 50, S0, 200 }
output: | (None, 4, 201,201, 1) max_pooling3d_3: § 30

input: | (None, 4, 6, 6, 400 |
output: | (Nooe, 4, 3, 3, 400)

‘ inpus_can: InputLayer

[ oupar: | (one, 4.25. 25, 200) | lnm pooling3d_6: MaxFooling3D

I I

npan: (Nome, 4, 25, 25,

outpat: | (None, 4, 25,25, 2 ‘ Masten_1: Flatten

L J
ingui: | {None, 4, 25, 25, 240)
conv3d_8: ComdD fme g D002 2 2 0 [T g (None, 14400}
ouput: | (None, 4, 25, 25. 2400 demse_|: Dense
L aput: | {None, 400)

12,12, 240) dropout_I: Dropout

mput: | (None, 4, 100, 100, 50)

conv3d_9: Conv input; | (None, 400)

outpat: | (None, 4, 100, 100, 130}

dense_2: Demse |

oulput: | (None, 300)

L |

imput: | (None, 4, 100, 100, 150)

conv3d_4: Conv3D

(Nome, 300)

puit: | (Nowe, 4, 12, 12, 190} dropout_2: Dropout

outpat: | (None, 4, 100, 100, 150} ‘um\ 3d_10: Conv3i

mput: | (None, 4. 100, 100, 150}

inpat: | (None, 300)

‘ ma_pooling3d_2: MaxPooling3D +

ouipur: | (None, 4, 50, 50, 150) | | max_pooling3d_5: M

oulput: | (None, $0)

‘ dense_3: Dense

1

input: | (None, 4, 50, 50, 150}
convid_5: ConviD T 3. 11: Conv3D inpar: | (Noae, 80)
. None, 4, 50, 50, 200 conv3d_1 1: Conv. one,
waput: | (None, } cutpu: | (Noue, 4, 6, 6, 400) dropout_3: Dropout -
outpat: | (None, 80)
L
input: | (None, 4, 50, 50, 200) -
convid_6: ComviD input: | (Mone, 4, 6, 6, 400}
ouiput: | (Nene, 4, 50, 50, 200) conv3d_12: Conv3D

curpus: | (None, 4, 6, 6, 400) |"“"" il Py gr—y

Figure 4.1: Network Architecture (Continues from Left to Right)

] ¥
" "
[ "
] »
FEEERERERR I3 ]
] ERER . .EREEEEER "
] "
" P
v ]
[ 1]

FREREREE EEERERERRER EREREEER
EEEEEEEREERE
3 e
- = AEEEEE B _JEEREEER
EEEEEEER. <EEER FEEEEEEE
ERER . EERER

EEEEREEEREEERERE (TP I LTT T
" (11

FEEEEERR (]
EEEEEEEEEEE . sHh__EEEEEEREES

EEEEEE s EEEEEREER

EEEE . oH EEER . ,EEREER
FEREREEE FEREFCREEER

REEEEEERERERER S Cen =
EEEEEEEREEEEEEREEE
EEEEEEEERE

R
]

rEEEEEEEE LI LI=(=l 1]
EEEEEEEEEE

EEEEEEEREEER

" EEEEEEEEE
EEEEEERER

“Figure 4.2: Chosen Starting Positions
Finally, in order to increase the states visited by the agent random starting

positions was tried. Although it was optimal to use every state in the game as
a potential starting position for the agent, this could not be done as this could

30



result in agent starting inside a wall or on a firepit. Due to this reason ten
locations were determined, and these are randomly chosen. These locations
are shown on green one being the default location used. All the
locations chosen are on the path to the desired terminal state, the princess.
This modification was tried with both of the state representations.

Making starting positions random did not make a difference either. This re-
sult is expected as DDQN is not built for cases where there is no reward from
the environment. Trying to come up with a simple reward, that can be re-
garded as an intrinsic reward, ended in failure. There are algorithms that
claim to perform well in environments without reward (Bellemare et al., 2016;
Ostrovski, Bellemare, Van Den Oord, & Munos, 2017; Pathak et al., 2017; Tang
et al., 2017), but these require extensive modification thus cannot be used to
measure vanilla DDQN performance. In the following section modifications
done to the algorithm in order to incorporate prior knowledge is documented
with respective results.

4.2 DDQN Modifications

Using the compositionality concept (Lake et al., 2017) the original game envi-
ronment is broken down to four more simple tasks each regarding a different
entity in the game. These are ladder, pitfall, enemy and princess. For all
these tasks, more simple environments are constructed which are given in
Using the same network parameters, aside from the input layer, as
in the previous section these four mini-games are used for training. The idea
here was to use “flatten layer” outputs of the networks, concatenate them
and use as the state representation for a network that would learn the orig-
inal game in the end. One can say that the learned policies in these four
mini-games are like prior knowledge for the network that is trained in the
original game. For each mini-game reward is constructed in accordance with
the task. For the enemy and pitfall tasks, dying as a result of colliding with
the enemy resulted in a negative reward, whereas passing them successfully
resulted in a positive reward. Episodes are ended when the agent died, or
timeout is reached. For the princess task reaching the princess resulted in a
positive reward that is discounted by a factor proportional to the time it took
for the agent to reach it. Again, an episode is ended when the princess is
reached, or the allotted time has expired. The Ladder case turned out to be
trickier. A positive reward is given when the agent used the ladder for going
up or down, and the episode was ended with a timeout.

Mini-games other than the ladder were learned by the agent successfully.
These three were used instead of the originally planned four as state genera-
tors. The same reward functions as used in the previous section were tried,
but the network failed to successfully play the game. Finally, the starting lo-
cation of the player is made random to increase the states explored, although
the starting position was fixed during the experiment given in Chapter 3.
Nevertheless, the network still failed to finish the game.

31



A

?HFBFBBFBEBFBFFBEPFBFFBE

@ z z z z
FPPFPPPFPFEPFFFFPPFPFFFF

(a) Enemy Mini-Game

A

EEEEEEEEEEL EEEEEEEEEEE

& B
EEEEEEEEEEEEEEEEEEEEEEE

(¢c) Ladder Mini-Game

A

FEFFFFFFFPPFFFPFPFFFFEFFFFF

FEFFPFPPFPPFPPFPFPPPPPPFPPEPFPF
(b) Princess Mini-Game

A

?HFBFBBFBEBFBFFBEPFBFFBE

[
PPPP o J)PPPF o sPPP JFFF JEFF

(d) Pitfall Mini-Game

Figure 4.3: Mini-Game Environments

A second set of trials were done using a different point of view. This time
a network was constructed using the data collected during the experiments.
Images were taken from the game using the keys pressed by the participants
gathered during the experiment, and a network was trained to receive these
images as inputs and output the keys pressed. Each key used in the game can
only take the values 0 and 1, and because of this the problem could be treated
as a classification problem. After it was observed that the trained network
successfully completed the game, ways to use this network with reinforce-
ment learning were evaluated since this kind of approach is not a reinforce-
ment learning method.

In order to assess ways to use this network with reinforcement learning, a
simplified version of the original problem is formed by cutting down the
number of actions down to one, jumping. In this version the outputs of the
other four actions are provided by the network trained with human data and
the reinforcement agent only expected to learn jumping over pitfalls and ene-

32



mies. In addition to these, the agent also needed to jump at a point on the map
where the player gets stuck due to a step shape shown on[Figure 4.4, As CNN
guaranteed the agent to be on the correct path to princess only an addition to
the original reward structure is made; continuous jumping is penalized for
agent to learn jumping at correct locations. For the state representation, a
scaled down version of the whole game screen is used. Network provided
previously is only changed to have only one output, whereas the other train-
ing parameters are kept the same. The agent successfully learned to jump and
as a result reached the goal state.

FPFFPFPFPFPPPPFPPPPPPF
FPFFPPFPFPFPPPPP

FPFPFFB

Fliaa d a4 44

Figure 4.4: Required [umping Position for The Step Shape

This simplified problem showed that with correct guidance the agent could
learn a correct policy while keeping the original reward structure more or less
the same. How to implement this strategy while keeping all the actions was
the challenge at this point. The answer was that the obtained network could
be used instead of the target network in the DDQN workflow. Normally up-
dates between the target network and the g-network are done periodically
in vanilla DDQN. In contrast to this approach, updates between the target
network and the g-network were not done until the performance of the g-
network exceeded the performance of the target network which was trained
with human data for this trial. Better performance is decided using the com-
pletion time of the game which was the time it took the agent to reach the
princess.

The algorithm changed in this way succeeded in finishing the game although
there were some problems. First of all, as mentioned before, people playing
the game directly tried to reach the princess, which means some states of
the game was not explored. Consequently, the target network trained using

33



human data failed to complete the game if anything different is encountered.
The difference could be a change in the starting position or a change in the
map. This was most dramatically observed when the agent was intended to
be tested in an easier setting. All the enemies and pitfalls were removed as
shown in[Figure 4.5 The network trained just ran by the ladder it should have
climbed. When all the entities removed were put back, the trained network
performed well and reached the princess as expected. This clearly is a sign
of limited generalization performance of the agent. Although the agent was
more robust to small changes, still there were limitations. The generalization
problem may be tackled with more data generation by human demonstrators,
but this would not be an efficient solution. The other problem was the lack
of human-like behaviors. The agent finished the game perfectly sticking to
the rules which was not the case for the human players. For example, human
players after some point started to jump from ladders as a shortcut to cover a
longer distance in shorter time. Parts of the data containing movements like
these were filtered out for the target-network in order to see whether or not
the reinforcement agent would show such behavior. Unfortunately, this was
not the case.

---------
[T -

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
EFFEEFEEFEE

e EEEERAEEE . EEEEE.AEREE
FEEEREEEEEEEER EREREERR

misEE . mEeEn
EREEEERREEERRERE EE,oEEERERRR
EEEEEEEEEEER ==L 1]
EEREER-EERE . EREERER-s EREEE

vvvvvvvvvv FEEEEEE

EEER IEEER EEEEJJERERER
EEREREER EEREERERERE

EEEEEEEEEEEEER D CEE e
-------------------
EEREEEEEEE
FEEEEE R
FEREEEEER

EEEEREEEER
rrrrrrrrrr
vvvvvvvvvvvv

z EEEEREEER
---------

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

Figure 4.5: Game Screenshot Showing Removed Entities

The network architecture used in all the trials was nearly the same. As the
state representations changed, the number of neurons in the input layers were
adjusted accordingly. Two reasons can be mentioned for using the same net-
work. One of the reasons was that the network architecture given in[Figure 4.1]
was optimized using a genetic algorithm code and successfully used in other
reinforcement learning problems, making it a better candidate than a network
constructed from scratch. The second reason was to make it easier to evaluate
the modifications done by the algorithm. Even if the same network architec-
ture was used, there is still an effect due to the architecture, but this effect is
minimized by keeping it the same across different trials.

In order to observe what’s happening to the input image passing through

34



different layers of the network, the output of the filters from three different

layers is given in Figure 4.6

Here it is clearly seen that moving deeper, the

outputs get more different than the game screen. Most of the information is
lost mainly due to the pooling layers. Each filter certainly captured some in-
formation here, but it is not easy to say what is actually done by the network.
This may be the biggest disadvantage of using a machine learning method as
inner workings of the network is not transparent. If this was, for example, a
rule-based architecture, selected rules could be evaluated, giving crucial data
regarding how the task was actually done by the algorithm.

(a) Layer 1

(b) Layer 2 (c) Layer 3

Figure 4.6: Filter Outputs for Different Layers

35



36



CHAPTER 5

CONCLUSION AND DISCUSSION

Recently the popularity of reinforcement learning increased dramatically. Var-
ious algorithms are being developed frequently, both improving performance
and making reinforcement learning applicable in different areas. Despite all
this research activity, some points do not fully reach a solution. In addition,
the similarity between human learning and reinforcement learning results at-
tract interest from diverse areas of expertise. Within the scope of this study,
in accordance with this diversity, the reasons underlying better performance
of humans, observed by experiment done, were sought. At the same time,
it was aimed to increase the reinforcement learning performance and to ob-
tain agents showing human-like behaviors. In the previous chapters, relevant
literature, work done, and results obtained are presented.

Although the definition of prior knowledge has a very broad meaning, it is
clear that in most cases, people do not learn everything from scratch and use
the knowledge they had previously to accomplish tasks. During the experi-
ment, although none of the participants were told that the princess figure was
the target, the participants who saw the princess identified her as a target and
tried to reach her. This is not the case only in games. When most people see
a baby in someone’s arms, they will conclude that there is a kinship or in-
timacy between the person carrying the baby and the baby. However, there
is no difference between the person carrying the baby and the humans all
over the world from the perspective of a reinforcement learning algorithm.
The relationship between the infant and the person carrying it, as observed
in humans, can only be established during training. In the experiment de-
scribed in Chapter 3, the prior knowledge effect was tried to be observed in
a game environment. ANOVA analysis of the results obtained in the experi-
ment showed that the differences observed between different versions of the
game were not statistically significant. One of the main reasons for this is the
low number of participants. In similar studies, services such as Amazon Me-
chanical Turk were used to increase the number of participants. The absence
of such an available service required individual access to the participants and
resulted in a low number of participants. In order to solve the shortage in
the number of users, participants were asked to play all the games instead
of playing a single version of the game. This also required a maximum of
five minutes for each game to ensure that participants were not bored with
the experiment. The statistics of the game completion times also caused a de-

37



terioration because no matter how difficult the game was to the person; the
finishing time was recorded as a maximum of 300 seconds. Although face-to-
face testing has led to a low number of participants, it can also be considered
advantageous because it allowed close monitoring of the experiment. The ob-
servations made during the experiment and the comments of the participants
showed that prior knowledge was a factor in game success. In some cases,
it was observed that even the information obtained by the participants in the
first game was used in a way that negatively affected the discovery of the
environment in the subsequent games. Most participants stated that when
they didn’t play MG for the first time, even though there were more than one
princess, they didn’t even notice the other targets and tried to reach the target
they saw in previous games. This situation can be explained not only with
prior knowledge but also with attention and can be considered as a research
subject in itself.

Within the scope of the study, a DDQN algorithm was implemented, and the
game performance of both the vanilla form and the versions obtained as a re-
sult of various modifications were examined. Due to the fact that no reward
information is provided by the environment, different reward functions that
can be considered as internal rewards have been created and tested. In some
cases, the state information had to be changed in addition to the reward. State
information was obtained by using the screenshot of the game similar to the
literature. As expected, the gaming environment without a reward has been a
difficult task for the DDQN algorithm, and the agent failed to finish the game.
It was observed that the reinforcement learning algorithms were sensitive to
reward information and they can elicit behaviors beyond the expectations of
the user due to the bugs in the reward function. When the reward is given in
proportion to the difference between the two states, the agent was expected
to explore the environment, but instead the agent always jumped exploiting
the reward function. Algorithms that create intrinsic rewards based on hu-
man curiosity, the reward functions, that encourage the agent to explore the
environment, are far more complicated compared to the application here. The
difference between the two states only occurs as a result of the agent move-
ment due to the fact that there is no object moving outside the agent in the
game screen used in this study, and therefore it is considered that the reward
derived from the difference between the two states was sufficient, but this
proved to be wrong. In humans and even in animals, it is certain that the pro-
cess is much more complicated but also practical. Although various animal
behavioral experiments have demonstrated the existence of a reward concept,
it remains unclear how exactly this system works for complex behavior. Stud-
ies on the behavior of humans, animals and biological systems related to these
behaviors will certainly be useful for reinforcement learning.

Finally, a way to introduce prior knowledge to the reinforcement agent is
sought, and the change in performance was observed together with any be-
havior similar to human players. In order to accomplish this task, the game
is divided into more simple subtasks based on the concept of compositional-
ity. Here two assumptions were made. First it was assumed that the agent
could create a knowledge regarding the objects in the game. For example, by

38



playing the princess mini-game, the agent was expected to learn that princess
was a positive object. The second assumption was that the agent could learn
how to use certain objects, like using the ladder to climb up or down. The
trials have not been successful, and in some cases, even mini-games have
not been learned. This shows the difficulty of addressing prior knowledge
in reinforcement learning algorithms. Moreover, it may also be said that the
assumptions mentioned were not correct, but this cannot be certainly known
due to the closed box nature of machine learning methods. If a rule-based
method was being used, learned rules could be investigated to see whether
or not expected prior knowledge was being learned by the agent. Unfortu-
nately, machine learning methods does not provide this inside information,
thus only the end result could be observed.

At this point, the data collected during the experiment was used. A convolu-
tional neural network has been created by using the keys that the participant
presses as input and screen image as output. This network has been utilized
in two ways. First, the intermediate outputs of this network were used as the
state representation for DDQN. Secondly, the trained network was used as a
policy during training. DDQN can be used in this way because it is an off-
policy method; hence, another policy can also be used to play the game dur-
ing training. Here, in order to facilitate the problem, it is aimed primarily to
learn the jumping movement. A positive reward for the jumping movement
has not been defined, and the reward was given in relation to the change in
game state. On the other hand, a negative reward for jumping continuously
is added as the agent showed such behavior at first. Even though the problem
was simplified, and the agent was only controlling one action, still the reward
function used needed modification in order to prevent the agent from finding
a bug and exploitit. As a result, it was seen that the DDQN algorithm learned
to jump correctly, and the game could be completed. The result of using a
policy derived from human data during training can, in fact, be considered
as having a better exploration strategy. This is consistent with the experiment
results. During the experiment, participants planned routes for the goals they
set on the game screen and explored the game accordingly. They did not ex-
plore areas outside of this planned route. Here it can be assumed that prior
knowledge was used in determining the goal and planning the route. For ex-
ample, it is known from the beginning that the ladder is an object that can be
used to go up and down. If the route to the goal involved a vertical move-
ment beyond what is doable by jumping, players made use of the ladder. In
reinforcement learning, on the other hand, this should be learned. A method
like epsilon-greedy remains much weaker than exploration strategies based
on prior knowledge. When epsilon-greedy is used, random movements are
used to explore, but the extent to which the environment has been explored
or whether important/relevant parts have been explored is not known when
there is no reward. Building exploration strategies based on relevant prior
knowledge may result in better performance. While it can be said that the
exploration strategy of humans is efficient, there are also negative aspects.
States explored by humans can be much lower as there is a clear goal and
path determined. For example, in the game used in this study, if all the en-
emies had to be killed before the princess was reached, participants would

39



not be able to finish the game on their first try. A similar situation may also
occur when the meanings of objects in the environment conflict with known
meanings.

Returning to the original problem definition the solution found out to be us-
age of the CNN trained with human data as the target network. Here assump-
tion was that the CNN being the target network could act as a tutor because
the target network evaluates the actions chosen by the Q-network. Usage of
CNN as the target network guaranteed to have a perfect tutor. The question
here is; could introduction of human data through the target network be re-
garded as prior knowledge? Answer to this question can be given from two
different viewpoints. If prior knowledge is purely defined to be the knowl-
edge acquired by the humans through their own experiences, then the target
network cannot be regarded as prior knowledge. On the other hand, humans
could also acquire knowledge just by observing. From this point of view, it
could be concluded that some kind of prior knowledge was introduced by
the method used.

This present study has shown that prior knowledge has definitely an effect
on game performance when there is no reward /score, but it is not easy to use
this phenomenon in reinforcement learning algorithms. However, it is con-
sidered that if a way to accomplish this is found, more efficient and flexible
reinforcement learning methods can be obtained. Obtaining agents that be-
have similarly to humans in complex environments is a much more difficult
problem. Different disciplines contributing to each other and carrying out re-
search in an interdisciplinary fashion can pave the way for progress in this
regard. This work is positioned accordingly, and the problem studied is ap-
proached in many respects. In the future, conducting experiments, based on
this study, with more participants and different game versions to collect data
on people’s exploration strategy may help to develop reinforcement agents
with high performance and human-like behaviors.

40



REFERENCES

Baillargeon, R., Stavans, M., Wu, D., Gertner, Y., Setoh, P, Kittredge, A. K., &
Bernard, A. (2012). Object Individuation and Physical Reasoning in In-

fancy: An Integrative Account. Language Learning and Development. doi:
10.1080/15475441.2012.630610

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos,
R. (2016). Unifying count-based exploration and intrinsic motivation. In
Advances in neural information processing systems.

Bellman, R. (1954). The Theory of Dynamic Programming. Bulletin of the American
Mathematical Society. doi: 10.1090/50002-9904-1954-09848-8

Botvinick, M., Ritter, S., Wang, ]J. X., Kurth-Nelson, Z., Blundell, C., & Hassabis, D.
(2019). Reinforcement Learning, Fast and Slow. doi: 10.1016/j.tics.2019.02.006

Chollet, E. (2015). Keras Documentation.

DeepMind. (2019). AlphaStar: Mastering the Real-Time Strategy Game StarCraft
II. DeepMind.

Diamond, A. (1991). Neuropsychological insights into the meaning of object concept
development.

Doshi-Velez, E, & Ghahramani, Z. (2011). A Comparison of Human and
Agent Reinforcement Learning in Partially Observable Domains. CogSci, 1-6.
Retrieved from http://csjarchive.cogsci.rpi.edu/proceedings/
2011 /papers/0625/paper0625.pdf

Dubey, R., Agrawal, P, Pathak, D., Griffiths, T. L., & Efros, A. A. (2018). Investigat-
ing Human Priors for Playing Video Games. 35th International Conference on
Machine Learning, ICML 2018, 3, 2160-2168.

Everitt, T., & Hutter, M. (2019). Reward Tampering Problems and Solutions in Rein-

forcement Learning: A Causal Influence Diagram Perspective. arXiv preprint
arXiv:1908.04734.

GoogleResearch. (2015). TensorFlow: Large-scale machine learning on heteroge-
neous systems. Google Research.

Hadfield-Menell, D., Milli, S., Abbeel, P, Russell, S., & Dragan, A. D. (2017). In-
verse reward design. Advances in Neural Information Processing Systems, 2017-

41


http://csjarchive.cogsci.rpi.edu/proceedings/2011/papers/0625/paper0625.pdf
http://csjarchive.cogsci.rpi.edu/proceedings/2011/papers/0625/paper0625.pdf

Decem(Nips), 6766—6775.
Hassabis, D., & Silver, D. (2017). AlphaGo Zero: Learning from scratch.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science. doi: 10.1126/science.1127647

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. In Advances
in neural information processing systems.

Ibarz, B., Irving, G., Leike, J., Legg, S., Pohlen, T., & Amodei, D. (2018). Reward
learning from human preferences and demonstrations in Atari. Advances in
Neural Information Processing Systems, 2018-Decem(2017), 8011-8023.

Kaelbling, L. P.,, Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research. doi: 10.1613 /jair.301

Kingma, D. P, & Ba, J. L. (2015). Adam: A method for stochastic optimization. In
3rd international conference on learning representations, iclr 2015 - conference track
proceedings.

Kraebel, K. S., West, R. N., & Gerhardstein, P. (2007). The influence of training
views on infants’ long-term memory for simple 3D shapes. Developmental
Psychobiology. doi: 10.1002/dev.20222

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Communications of the ACM. doi: 10
.1145/3065386

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building ma-
chines that learn and think like people. Behavioral and Brain Sciences, 40(2012),
1-58. doi: 10.1017/50140525X16001837

Lin, L.J. (1992). Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching. Machine Learning. doi: 10.1023/A:1022628806385

Lobo, M. A., Kokkoni, E., de Campos, A. C., & Galloway, J. C. (2014). Not just
playing around: Infants’ behaviors with objects reflect ability, constraints, and
object properties. Infant Behavior and Development. doi: 10.1016/j.infbeh.2014
.05.003

Mindermann, S., Shah, R., Gleave, A., & Hadfield-Menell, D. (2018). Active Inverse
Reward Design. CoRR, abs/1809.0. Retrieved from http://arxiv.org/
abs/1809.03060

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G,
... Hassabis, D. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540), 529-533. Retrieved from http://dx.doi.org/
10.1038/naturel4236 doi: 10.1038/nature14236

42


http://arxiv.org/abs/1809.03060
http://arxiv.org/abs/1809.03060
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1038/nature14236

Naz, K., & Epps, H. (2004). Relationship between color and emotion: a study of
college students. College Student J.

Ostrovski, G., Bellemare, M. G., Van Den Oord, A., & Munos, R. (2017). Count-
based exploration with neural density models. In 34th international conference
on machine learning, icml 2017.

Palan, M., Landolfi, N. C., Shevchuk, G., & Sadigh, D. (2019). Learning Reward
Functions by Integrating Human Demonstrations and Preferences. arXiv
preprint arXiv:1906.08928.

Pathak, D., Agrawal, P.,, Efros, A. A., & Darrell, T. (2017). Curiosity-driven explo-
ration by self-supervised prediction. 34th International Conference on Machine
Learning, ICML 2017, 6, 4261-4270.

Pavlov, I. P.,, & Gantt, W. H. (1928). Lectures on Conditioned Reflexes: Twenty-five
Years of Objective Study of the Higher Nervous Activity (behaviour) of Animals. In-
ternational Publishers. Retrieved from https://books.google.com.tr/
books?id=eaUAyAEACAAJ

Piaget, ., & Piaget, J. (2006). The development of object concept. In The construction
of reality in the child. doi: 10.1037/11168-001

Puterman, M. L. (Ed.). (1994). Markov Decision Processes. Hoboken, NJ, USA: John
Wiley & Sons, Inc. Retrieved from http://doi.wiley.com/10.1002/
9780470316887 doi: 10.1002/9780470316887

Reynolds, G. D. (2015). Infant visual attention and object recognition. Behavioural
Brain Research. doi: 10.1016/j.bbr.2015.01.015

Rosenfeld, A., & Tsotsos, J. K. (2018). Bridging Cognitive Programs and Machine
Learning. , 1-9. Retrieved from http://arxiv.org/abs/1802.06091

Silver, D. (2015). Lecture 2: Markov Decision Processes (Tech. Rep.). London: Uni-
versity College London. Retrieved from http://www0O.cs.ucl.ac.uk/

staff/d.silver/web/Teaching{_}files/MDP.pdf

Silver, D., & Hassabis, D. (2016). AlphaGo: Mastering the ancient game of Go with
Machine Learning. Google Research Blog.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A., ... Has-
sabis, D. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science. doi: 10.1126/science.aar6404

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, 1., Huang, A., Guez, A,, ...
Hassabis, D. (2017). Mastering the game of Go without human knowledge.
Nature. doi: 10.1038 /nature24270

Skinner, B. E. (1938). The behavior of organisms: an experimental analysis. Oxford,

43


https://books.google.com.tr/books?id=eaUAyAEACAAJ
https://books.google.com.tr/books?id=eaUAyAEACAAJ
http://doi.wiley.com/10.1002/9780470316887
http://doi.wiley.com/10.1002/9780470316887
http://arxiv.org/abs/1802.06091
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching{_}files/MDP.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching{_}files/MDP.pdf

England: Appleton-Century.

Spelke, E. S. (1990). Principles of Object Perception. Cognitive Science. doi: 10.1207/
s15516709cog1401_3

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning : an introduction. Cam-
bridge, Massachusetts London, England: The MIT Press.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., ... Abbeel, P.
(2017). Exploration: A study of count-based exploration for deep reinforce-
ment learning. In Advances in neural information processing systems.

Tasti, N. (2016). Pygame learning environment. https://github.com/ntasfi/
PyGame-Learning-Environment. GitHub.

Thorndike, E. L. (1911). Animal intelligence: Experimental studies.

Thrun, S., & Schwartz, A. (1993). Issues in Using Function Approximation for
Reinforcement Learning. Proceedings of the 4th Connectionist Models Summer
School Hillsdale, NJ. Lawrence Erlbaum.

Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B., & Gershman, S. ]J. (2017).
Human learning in atari. AAAI Spring Symposium - Technical Report, SS-17-01
-, 643-646.

Van Hasselt, H. (2010). Double Q-learning. In Advances in neural information process-
ing systems 23: 24th annual conference on neural information processing systems
2010, nips 2010.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with
double Q-Learning. 30th AAAI Conference on Artificial Intelligence, AAAI 2016,
2094-2100.

Watkins, C.J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning. doi: 10.1007 /
bf00992698

Wilcox, T., Stubbs, J., Hirshkowitz, A., & Boas, D. A. (2012). Functional ac-
tivation of the infant cortex during object processing. Neurolmage. doi:
10.1016/j.neuroimage.2012.05.039

Yin, H., & Pan, S.J. (2017). Knowledge transfer for deep reinforcement learning
with hierarchical experience replay. In 31st aaai conference on artificial intelli-
gence, aaai 2017.

44


https://github.com/ntasfi/PyGame-Learning-Environment
https://github.com/ntasfi/PyGame-Learning-Environment

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Purpose and Scope of the Study
	Thesis Outline

	LITERATURE REVIEW
	Double Deep Q-Learning (DDQN)

	PRIOR KNOWLEDGE EXPERIMENTS
	Methodology
	Selection of Phenomena to be Observed
	Experiment Environment
	Participants and Experiment Conduct

	Results

	REINFORCEMENT LEARNING
	DDQN Game Performance
	DDQN Modifications

	CONCLUSION AND DISCUSSION
	REFERENCES

