
REAL-TIME OBJECT-ORIENTED FRAMEWORK FOR FMI CO-SIMULATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MERVE ÇAM SİLİK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JANUARY 2020

Approval of the thesis:

REAL-TIME OBJECT-ORIENTED FRAMEWORK FOR FMI
CO-SIMULATION

submitted by MERVE ÇAM SİLİK in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Halit S. Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Mehmet Halit S. Oğuztüzün
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering Department, THK University

Prof. Dr. Mehmet Halit S. Oğuztüzün
Computer Engineering Department, METU

Assist. Prof. Dr. Ertan Onur
Computer Engineering Department, METU

Date:10.01.2020

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Merve Çam Silik

Signature :

iv

ABSTRACT

REAL-TIME OBJECT-ORIENTED FRAMEWORK FOR FMI
CO-SIMULATION

Çam Silik, Merve

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Mehmet Halit S. Oğuztüzün

January 2020, 52 pages

Development of models, their integration into FMI-compliant co-simulation and per-

forming the simulation in real-time environment are crucial tasks in embedded system

development.

To introduce an object-oriented co-simulation environment to real-time domain, pro-

mote model reuse and minimize effort for co-simulation environment generation a

Real-Time Object-Oriented Framework for FMI Co-Simulation was developed for

completion of this thesis. A case study which comprises of a control actuation sys-

tem and sine wave generator is assembled in order to provide a basic example and

clarity on how to use the framework. Case study example is compared to classic ap-

proach to co-simulation which requires tightly coupling systems and compiling code

at every change in data dependency.

The framework is further analyzed in terms of FMU integration process and frame-

work overhead. Execution time overhead is meant to guide user in overhead estima-

tion process.

v

Keywords: Functional Mock-up Interface, Real-time Co-simulation, Object-Oriented

Framework

vi

ÖZ

İŞLEVSEL MAKET ARAYÜZÜ İÇİN GERÇEK ZAMANLI NESNE
TABANLI ARAYÜZ ÇATISI

Çam Silik, Merve

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Halit S. Oğuztüzün

Ocak 2020 , 52 sayfa

Gömülü sistem geliştirme çalışmalarında modellerin geliştirilmesi, İşlevsel Makt Ara-

yüzü(İMA) uyumlu eş-benzetim ortamlarına entegrasyonu ve gerçek zamanlı ortamda

benzetimi kritik seviyede önem taşımaktadır.

Bu tez kapsamında nesne tabanlı uygulama geliştirme yapısının ve İMA uyumlu eş-

benzetim ortamlarının gerçek zamanlı sistemlerle entegre hale getirilmesiyle model-

lerin tekrar kullanımının artması ve gerçek zamanlı test ortamının geliştirme eforu-

nun azalması planlanmaktadır. Çalışma kapsamında geliştirilen çatıya Gerçek Za-

manlı Arayüz Çatısı (GAÇ) adı verilmiştir. Çatının kullnımına kontrol tahrik sistemi

ve sinüs dalgası simülatöründen oluşan örnek olay senaryosu verilmiştir. Klasik eş-

benzetim sisteminden farklı olarak çatı veri bağındaki değişimlerde derleme gerektir-

memektedir.

Çalışma kapsamında çatının geliştirme ortamına nesne tabanlı yapısı nedeniyle getir-

diği ek yükler hesaplanmış ve kullanıcıya bildirilmiştir.

vii

Anahtar Kelimeler: İşlevsel Maket Arayüzü, Gerçek Zamanlı Eş-Benzetim, Nesne

Tabanlı Çatı

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. Mehmet Halit S. Oğuztüzün for his

guidance, advice, criticism, encouragements and insight throughout this research.

I also wish to thank a lot to Prof. Dr. Ece Güran Schmidt for all the valuable knowl-

edge, technical support, academic assistance, innovative ideas.

I also wish to thank a lot to my managers Koray Taylan and Aylin Hatip İpek for all

the valuable ideas, efforts to ease the procedural processes and moral support.

I also wish to thank my husband Yusuf Silik for the invaluable support, understanding

and encouragements through the process.

I also wish to thank my beloved cat Ceviz for the caring companionship through my

sleepless nights.

I would like to thank to Turkish Ministry of National Defense, Under-secretariat for

Defense Industries which gave the team financial and moral support [Project Name:

MOKA].

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Scope of the Thesis . 3

1.3 Limitations of the Study . 3

1.4 Outline . 4

2 BACKGROUND . 7

2.1 Introduction . 7

2.2 FMI Standard . 7

2.3 FMI for Co-simulation . 8

2.4 Real-time Co-simulation . 10

xi

2.5 Classical Approach to FMI Co-Simulation 13

2.6 Subject-Observer Design Pattern . 14

3 RELATED WORK . 19

3.1 Introduction . 19

3.2 Orchestration Algorithms . 19

3.2.1 Jacobi Algorithm . 19

3.2.2 Gauss-Seidel Algorithm . 20

3.2.3 Difference Between Jacobi and Gauss-Seidel Orchestrators . . 21

4 REAL-TIME OBJECT-ORIENTED FRAMEWORK FOR FMI CO-SIMULATION 23

4.1 Introduction . 23

4.2 Framework Overview . 25

4.2.1 Architecture In Classical Approach 26

4.2.2 Framework Architecture . 27

4.2.2.1 Class Diagram In Detail 30

4.2.2.2 Serial Communication 31

4.3 Co-simulation Environment Generation Using XML Files 32

4.4 Run Time Sequence Diagrams . 34

5 CASE STUDY . 39

5.1 Case Study Overview . 39

5.1.1 Data Dependencies Between Models 42

5.1.2 Creation of Xml File . 42

5.2 Framework Overhead . 45

6 CONCLUSIONS AND FUTURE WORK 49

xii

6.1 Conclusion . 49

6.2 Future Work . 49

REFERENCES . 51

APPENDICES

xiii

LIST OF TABLES

TABLES

Table 5.1 Machine Configuration . 45

Table 5.2 Virtual Call Measurement . 46

Table 5.3 Virtual Call Measurement . 47

Table 5.4 Number of Virtual Calls . 48

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Data Connection Between Environment and FMU [3] 9

Figure 2.2 UML 2.0 State Machine for Co-Simulation FMU [3] 9

Figure 2.3 Co-simulation [3] . 10

Figure 2.4 Co-simulation . 11

Figure 2.5 V Diagram for Embedded Design [5] 12

Figure 2.6 Subject Observer Structure [14] 15

Figure 2.7 Sequence Diagram For Observer Pattern [14] 16

Figure 2.8 Simple Subject Observer Specification [15] 16

Figure 3.1 Pseudo Code for Jacobi Algorithm [16] 20

Figure 3.2 Pseudo Code for Gauss-Seidel Algorithm [16] 20

Figure 3.3 Gauss-Seidel & Jacobi Algorithms [16] 22

Figure 4.1 Circular Dependency In Classical Approach 27

Figure 4.2 Class Diagram of Framework 28

Figure 4.3 Observer Pattern on FMUs . 30

Figure 4.4 Observer Pattern Illustration . 31

Figure 4.5 Initialization of Environment 34

xv

Figure 4.6 Simulation Time Sequence Diagram 36

Figure 4.7 Termination Sequence Diagram 37

Figure 5.1 Component Overview . 40

Figure 5.2 Data Exchange Between Components 42

Figure 5.3 Data Dependency Between Models 43

Figure 6.1 Future Work Class Diagram . 50

xvi

LIST OF ABBREVIATIONS

SYMBOLS

GB Gigabyte

GHz Gigahertz

s Second

Hz Hertz

ns Nanosecond

xvii

ABBREVIATIONS

CAS Control Actuation System

CPU Central Processing Unit

DC Direct Current

DLL Dynamic Link Library

FMI Functional Mock-Up Interface

FMU Functional Mock-Up Unit

HIL Hardware In The Loop

IDE Integrated Development Environment

MBD Model Based Design

PWM Pulse-Width Modulation

RCP Rapid Control Prototype

xviii

CHAPTER 1

INTRODUCTION

Co-simulation allows participating domains to develop with the most suitable simu-

lation tools during modelling subsystems. In addition, co-simulation also encourages

re-usability of systems. Co-simulation of dynamic systems allows detecting prob-

lems before integration and guiding developers while making design choices. Tradi-

tional co-simulation environments does not require meeting real-time requirements.

To enhance further development to co-simulation real-time components could be in-

troduced to system. These components be either hardware or model which meets

real-time requirements. In order to provide a co-simulation environment, following

problems need to be solved: integration of different simulation tools, accurate data

exchange, coupling of systems with different dynamic behaviour, and guarantee of

the accuracy of the simulation. One needs to take into consideration round trip time

and noisy sensor signals. In order to provide stability and assure reliability in the

system round trip time should be kept small and noisy sensors should be taken into

consideration. [1]

The essence of the difference between real time and non-real time simulations is

that real-time systems meeting so called hard real-time requirements. For example,

guaranteed response time or deterministic run-time behavior. Non real-time systems

generally does not meet those requirements and their run time behavior can be faster

or slower. Faster systems are also called quasi real-time systems. When a real-time

simulation is being performed, one of the main problems is the dead times when

communication is taking place between models or processing and computation is

performed inside the model. Even though these delays can be ignored according to

the needs of the co-simulation scenario and environment, when simulating a case

from control field these dead times can cause oscillations and result in erroneous

1

results. As a result of this problem, delay analysis should be performed on real-time

frameworks.

1.1 Motivation

Co-simulation environments allows contributing fields to develop models using the

most suitable simulation tools. Models developed using different simulation tools

can be integrated into the same co-simulation environment. Co-simulation method

provides the opportunity to reuse models. Even though co-simulation has benefits,

there are problems which need to be solved by the developer. These problems can be

sorted as:

• integration of models which are developed using different simulation tools,

• accurate data exchange between models,

• coupling of systems with different dynamic properties

• accuracy of overall simulation [2]

Integration of models which are developed using different simulation tools such as

Matlab, Simulink, Dymola is one of the main struggles. To provide a solution to

this problem which addresses common interface aspect is Functional Mock-up Inter-

face(FMI) standard. This standard can be applied to all models developed using dif-

ferent simulation tools. Models which conform to FMI standard are called Functional

Mock-up Unit(FMU)s. FMI defines the interface functions. FMUs are expected to

implement the required functions as described. Even though FMI brings a solution

to interface description problem during co-simulation environment development, it

does not dictate an architecture or orchestration standard. Allowing user to decide

how to orchestrate FMUs provides flexibility to the design. Common practice for co-

simulation applications is using a master-slave architecture. A model which acts as

master coordinates the co-simulation scenario and performs data exchange between

models. Master does not need to know about which code piece is running in the FMU

which enables data and know-how protection when models are exchanged between

different companies. Because of the nature of the FMI standard, data can be extracted

from the model using getXXX(XXX = Real, Integer, Boolean, String) functions and

2

fed to relevant model using setXXX(XXX = Real, Integer, Boolean, String) functions.

This interface causes a bottleneck on the master algorithm when performing data ex-

change. In this thesis work, bottleneck on master component caused by data exchange

between models through FMI Master is broken with an observer pattern application

on variables exchanged between FMU Block components through FMI Master. Even

though this framework is developed to break the dependencies between model and the

FMI Master, to orchestrate models one always needs to call doStep method on models

causing to keep master-slave architecture in order to perform doStep command.

1.2 Scope of the Thesis

Aim of this thesis is to provide a co-simulation framework which helps to ease co-

simulation component integration and provides a foundation for real-time co-simulation

environment. Models which are developed in different simulation environments con-

forming to FMI standard and hardware components which may communicate through

serial interface such as RS485 can be integrated to a co-simulation environment us-

ing the proposed framework. The framework is a real-time hardware-in-the loop

co-simulation tool, developed in C++ language to introduce object orientation to FMI

concept. Developed framework is tested on QNX Neutrino operating system and

delay introduced by object orientation and framework is analysed. Data exchange

system provided by framework eases co-simulation environment development. To

realize a simulation user provides data exchange information between components,

simulation duration, termination condition, period and initial values of each model

through a format specified xml file. Data exchange will be handled by the frame-

work so that user does not need to hard-code the data exchange on the framework. If

any changes occur in the variables, user may provide the changes to the platform by

changing the xml file without being obliged to change the compiled code.

1.3 Limitations of the Study

The framework developed in this thesis work does not provide any opportunity re-

garding:

3

• a switch option for master algorithms from outside the framework: If simula-

tion designer wants to change algorithms, then code of the master should be

changed and framework should be recompiled.

• data interpolation: Data interpolation is a type of estimation method which con-

structs new data points within the range of discrete set of previously known data

points obtained by sampling or experimentation in numerical analysis. This

feature requires keeping the data sampled during the simulation so far and fu-

ture sampling of the FMI models to estimate the points in between. Since this

framework is intended for real-time use, sampling more than once can intro-

duce overhead to falsify co-simulation results. Even though this framework

does not examplify interpolation during a co-simulation scenario, it does not

prevent it. Developer should analyze the overhead introduced by interpolation

practice if needed.

• data extrapolation: Data extrapolation is a type of estimation method which

constructs new data points beyond the range of discrete set of previously known

data points. This feature requires to hold the previously sampled data during

simulation. Even though this framework does not examplify extrapolation dur-

ing a co-simulation scenario, it does not prevent it. Developer can perform

extrapolation on the variables by keeping data log and running an extrapolation

algorithm.

1.4 Outline

Outline of the thesis is given as below.

Chapter 2 gives background information about topics relevant to this thesis. Brief

information about FMI Standard is presented. FMI for co-simulation is examined in

detail and information is given about programming interface and logic flow. Basic

concepts of model based design and material on necessity of real-time integration to

co-simulation environment is presented. Classical approach to FMI Co-simulation is

given. In addition subject-observer design pattern is represented.

Chapter 3 is about related work to this thesis. Jacobi and Gauss-Seidel orchestration

4

algorithms are presented and why Jacobi algorithm is selected is discussed.

Chapter 4 is about designed framework in completion of this thesis. Framework ar-

chitecture is explained in detail. Sequence and execution timeline related diagrams

are provided.

Chapter 5 is about a case study which is developed using real-time framework for

FMI co-simulation. First, components of co-simulation environment are explained

and logic of simulation scenario is introduced. Framework overhead is discussed.

Chapter 6 provides a conclusion to this thesis. Also, gathers future work.

5

6

CHAPTER 2

BACKGROUND

This chapter presents background information gathered prior to this thesis.

2.1 Introduction

In this chapter background information collected prior to this thesis is presented. In

background chapter FMI standard, FMI for co-simulation, real-time co-simulation,

classical approach to FMI co-simulation and subject-observer design pattern concepts

are investigated.

In FMI standard chapter firstly history of the standard and functional mock-up unit(FMU)

concept is presented.

In FMI for co-simulation section, concept of co-simulation in FMI standard is ex-

plained in detail. Later, flow of FMI co-simulation is explained and programming

interface of FMI co-simulation is explained in detail.

In real-time model based co-simulation section, benefits of model based design in

co-simulation is explained.

2.2 FMI Standard

In this section, FMI standard will be introduced in detail. FMI is a tool independent

standard to support both model exchange and co-simulation of dynamic models using

a combination of xml files and C-code in either compiled as DLL/shared libraries or

source code. FMI was developed in a European project, MODELISAR, that was fo-

7

cused on improving the design of systems and of embedded software in vehicles. The

standard is now maintained and developed by the Modelica Association. Since its

release, the standard has received a significant amount of attention among both tool

vendors and users. The large number of tool vendors that have adopted the standard

shows that there is a real and pressing need to be able to export and import dynamic

system models between existing tools, and also to be able to develop custom simula-

tion environments. The first version, FMI 1.0, was published in 2010. Daimler AG

initiated the FMI development with the goal to improve the Exchange of simulation

models between suppliers and OEMs(Original Equipment Manufacturer). As of to-

day, development of the standard continues through the participation of 16 companies

and research institutes. FMI 1.0 is supported by over 100 tools and is used by automo-

tive and non-automotive organizations throughout Europe, Asia and North America.

Examples include the commercial products Dymola and SIMPACK, as well as the

open-source platform JModelica.org. FMI 2.0 was released on July 25th 2014. In

FMI 2.0, FMI 1.0 Model Exchange and Co-Simulation standards have been merged,

and many improvements have been incorporated. New features are usually optional.

[3]

An FMU is a model without integrators, a runnable model with integrators, or a tool

coupling interface. In short, FMU is a model, which complies FMI standard.

A schematic view of an FMU is shown in Figure 2.1. Blue arrows represent informa-

tion provided to FMU. Red arrows represent information provided by FMU.

2.3 FMI for Co-simulation

FMI for Co-simulation is a standard interface for the model that contains its solver

inside. In co-simulation, main intention is to provide an interface standard to cou-

pling models, which can be developed in different simulation tools in a co-simulation

environment. Data exchange in co-simulation is restricted to discrete communication

points. Between communication points FMUs are solved independently from each

other. Master algorithm controls Exchange of data between FMUs. FMI standard

does not specify a certain master algorithm. General structure of a co-simulation

8

Figure 2.1: Data Connection Between Environment and FMU [3]

FMU can be shown as Figure 2.2.

A co-simulation FMU contains its solver inside which allows FMU to be used as an

independent component. To use a given FMU in co-simulation one should perform

three steps: instantiate and initialize, run and terminate simulation. In the instantiation

and initialization step, an instance of FMU is created and initialized. In this step,

memory allocation needed by the FMU is performed and variables in the FMU are set

to initial values. During simulation, master can use defined setter, getter and execution

methods to run model. Setter methods allows master to communicate with models

Figure 2.2: UML 2.0 State Machine for Co-Simulation FMU [3]

9

Figure 2.3: Co-simulation [3]

and provide data exchange between them. To solve model’s differential equations,

doStep method is defined by the FMI standard. The produced output parameters

exchanged with other FMUs by using getter methods. In the running step firstly,

input parameters are set by calling setter methods (FMUSetX(X can be either Real,

Integer, Boolean or String))). Then doStep() method is called to solve the model’s

differential equations. By calling getter methods (FMUGetX(X can be either Real,

Integer, Boolean or String)), output parameters of the solved model can be accessed

by the caller. In the termination step, resources used by the FMU are freed.

2.4 Real-time Co-simulation

Model based design is a mathematical and graphical method of addressing problems

associated with the design of complex systems. MBD is a methodology based on V

diagram. Through models, engineers involved in design and development of a project

can exchange knowledge in an efficient and organized manner. [4] In addition, reuse

10

Figure 2.4: Co-simulation

of older designs is encouraged due to homogeneous design environment.

Automatic code generation features of commercial tools accelerates real-time simu-

lation in MBD. By using Automatic Code Generator, a real-time simulator in other

words a RCP(Rapid Control Prototype) can be implemented from a model with min-

imal effort. In contrast to offline simulation, using the prototype in HIL test bench

testing can accelerate integration and verification testing. Due to involvement of test

engineers in early stage of development process, design issues can be discovered ear-

lier. In addition, prototyping may

• decrease development time,

• reduce cost of development cycle,

• reduce testing costs due to HIL test setup instead of physical setup,

• provide more repeatable test results due to unchanged dynamics of real-time

simulators,

• provide alternative to expensive or risky tests.

During development of complex systems, integration of the components that com-

11

Figure 2.5: V Diagram for Embedded Design [5]

prise a system can be identified as major source of problems. [6,7] Finalizing a com-

munication interface among different components of a large system which are being

built in different teams inside the organization or even inter companies. Also, the

features which did not have been discussed during meetings or covered in documents

can cause assumptions on the product. Usually on integration process problems roots

down to assumptions on other components to be made in early stages of development.

[8,9] The lack of information can cause wrongly made assumptions which are harder

to detect. As an example, speed regulator control algorithm can be developed using

metric unit even though sensor is providing imperial units to control block. Despite

challenges, co-simulation remains effective in reducing development time and im-

proving quality as pointed out by the industrial partners contributed to the DESTECS

project. [10–12]

Co-simulation is an integration technique to couple multiple simulators. Simulators

often seen as black-box as in the FMI standard. As a result, advancement of states

and time is completely hidden outside of the model and also not specified by the stan-

dard. Hidden advancement allows for specialized solvers to be used for the particular

system which may lead to increase in performance and stable simulation.

12

2.5 Classical Approach to FMI Co-Simulation

In this section, classical approach to FMI co-simulation will be explained in detail.

As previously visited in 2.3, when performing co-simulation, two basic groups of

functions have to be realized:

• functions for the data exchange between subsystems

• functions for algorithmic issues to synchronize the simulation of all subsystems

and to proceed in communication steps tci → tci+1 from initial time tc0 := tstart

to end time tcN := tstop

In FMI for Co-Simulation, both functions mentioned above are implemented in the

co-simulation master. The data exchange between the slaves or subsystems is handled

via the master node. In this architecture, there is no direct communication between

the slaves. A special software tool can be used to implement master functionality.

Also simulation environment can be generated in a nested form where in every level

of hierarchy FMI for Co-simulation is applied. FMI for Co-simulation defines the

interface routines between master and slave components.

During simulation, classical master algorithm stops at each communication point tci

of all slaves, collects the outputs y(tci) from each component or FMU, evaluates the

subsystem inputs u(tci), distributes these subsystem inputs to the slaves and continues

the co-simulation with the next communication step tci → tci+1 = tci + hc the with

fixed communication step size hc. In each slave, an appropriate solver is used to

integrate one of the subsystems for a given communication step tci → tci+1. If there

is any unknown input data, the most simple co-simulation algorithms approximate

the subsystem inputs u(t), (t > tci) by frozen data u(tci) for tci ≤ t < tci+1.

FMI for Co-Simulation supports the classical brute force approach as well as more

sophisticated master algorithms. FMI for Co-Simulation is designed to support a

very general class of master algorithms but it does not define the master algorithm

itself. For slaves to be able to support more sophisticated master algorithms, inside

the FMU’s XML description there are capability flags which can be listed as:

• the ability to handle variable communication step sizes hcu

13

• the ability to repeat a rejected communication step tcj → tci + i with reduced

communication step size

• the ability to provide derivatives with respect to time of outputs to allow inter-

polation

• the ability to provide Jacobians

FMI for Co-Simulation is restricted to slaves with the following properties:

• All calculated values v(t) are time dependent functions within an a priori de-

fined time interval tstart ≤ t ≤ tstop

• In general, simulations are carried out with increasing time. The current time

t is running step by step from tstart, tstop. The algorithm of the slave may have

the property to be able to repeat the simulation of parts of [tstart, tstop] or the

whole time interval [tstart, tstop].

• The slave can be given a time value tci, tstart ≤ tci ≤ tstop

• The slave is able to interrupt the simulation when tci is reached

• During the interrupted simulation the individual solver of the slave can receive

values for inputs u(tci) and provide output values y(tci) .

• Whenever the simulation in a slave is interrupted, a new time value tci+l, tci ≤
tci+1 ≤ tstop can be given to simulate the time subinterval tci < t ≤ tci+1

• The subinterval length hci is the communication step size of the ith communi-

cation step, hci + tci = tci+1. Communication step size can be more than or

equal to 0. Usually step size does not take negative values. [13]

2.6 Subject-Observer Design Pattern

Subject observer is a design pattern which describes how to establish a structure with

one subject to be observed by many observers. Pattern also includes the concept of

notifying the observer when there’s a change on the subject. In Figure 2.6 structure

of subject observer pattern is presented. There are 4 participants:

• Subject: Provides an interface for observers to attach and detach. Has a data

structure which holds the observers.

• Observer: Abstractly defines an update interface for objects which should be

14

Figure 2.6: Subject Observer Structure [14]

notified by the subject.

• ConcreteSubject: Stores state of interest to ConcreteObserver objects. When a

change occurs in the state, notifies the observers.

• ConcreteObserver: Holds reference to ConcreteSubject object. Stores the state

which is consistent with the subject. Implements the observer update interface.

In Figure 2.7 sequence diagram for the observer pattern is displayed. In this scenario,

observer updates the value of the subject which results in update of all observers

attached to the subject which are aConcreteObserver and anotherConcreteObserver

instances. When observers get notified, they’re responsible for updating their state by

getting the final state of the subject.

In Figure 2.8, a specification of a subject observer pattern in which the observers

synchronize on an integer-valued property of the subject is given. Explanation of this

specification in an informal way is: it is possible to identify a subject which has a

notify method functions as updating the observer’s state. All observers subscribed to

the subject gets notified.

Advantages of the subject-observer pattern can be listed as below:

• abstract coupling between subject and observer: This feature enables subject

and observer to belong in different layers of abstraction in the system.

• observers can be removed at any time: During run-time, observers can unsub-

15

Figure 2.7: Sequence Diagram For Observer Pattern [14]

Figure 2.8: Simple Subject Observer Specification [15]

16

scribe without causing any changes on the subject.

• reuse: Subject and observer classes can be reused independently.

Disadvantages of the subject-observer design can be listed as:

• unnecessary complexity: If not correctly implemented observer pattern can

raise complexity and lead undesirable performance problems.

• unexpected updates: If an interface is used where observers can call changes

on the subject as examplified in 2.7 figure, cascading update can be triggered

and tracing down the cause of update can be harder.

• memory leak: This problem is also known as ’Lapsed listener problem’. Due

to reference of the observer being kept inside the subject, if unregisteration

of observers are not completed correctly, memory leak can occur especially

in garbage collected languages like Java. When observer’s lifespan is over, it

should be detached from the subject. If it is not detached, reference kept inside

the subject keeps the observer alive causing memory leaks.

17

18

CHAPTER 3

RELATED WORK

In this chapter, two orchestration algorithms will be introduced and pros and cons of

this algorithms will be discussed.

3.1 Introduction

The algorithm which processes the co-simulation scenario and coordinates the exe-

cution of the simulation units is called the orchestrator and also known as master or

coordinator. In this section Jacobi and Gauss-Seidel orchestration algorithms will be

introduced and explained in detail.

3.2 Orchestration Algorithms

3.2.1 Jacobi Algorithm

Jacobi algorithm is an orchestrator which assumes that every simulation unit is in-

put delayed. Input delayed algorithms don’t require subsystems to be sorted as in

run-time schedule. There’s no difference when it comes to running the models in

order either Run Model1 - Run Model2 or Run Model1 - Run Model2. This allows

developer to be free from the consequences of the input-output relationship between

models. However, due to the fact that models can be output reacive, getOutput meth-

ods should be invoked carefully.

Pseudo code of the Jacobi algorithm is given in Figure 3.1.

19

Figure 3.1: Pseudo Code for Jacobi Algorithm [16]

3.2.2 Gauss-Seidel Algorithm

Figure 3.2: Pseudo Code for Gauss-Seidel Algorithm [16]

Gauss Seidel orchestrator is an input/output reactive algorithm. Developer needs to

have the information on which outputs are used to compute which inputs, and at

which times. This is necessary to sort the execution time of the models. Orchestrator

has to make sure that all the models that are dependent on the output of other models

20

have the access to fresh data. At the ith co-simulation step, a unit m must be executed

after unit n if n ∈ S[m] and m is input/output reactive. In the Figure 3.2, pseudo code

is given. This algorithm is constructed under the assumption that the units can always

be sorted.

3.2.3 Difference Between Jacobi and Gauss-Seidel Orchestrators

Difference between Gauss Seidel and Jacobi algorithms are caused by the principle

of input/output reactiveness of the orchestrators. Jacobi algorithm is input/output

delayed whereas Gauss Seidel algorithm is not. Consequences to this difference can

be listed as below:

• When using Jacobi algorithm there’s no need to sort the simulation units when

calling the doStep function. However getOutput functions need to be sorted

because simulation units can be output reactive/delayed. When using Gauss

Seidel algorithm developer always need to sort the calling sequence of simula-

tion units in an order that every unit has the right input during the simulation.

• When using Jacobi algorithm developer does not need to keep track of the pre-

vious inputs to each unit.

• Interpolation techniques cannot be used with Jacobi algorithm which may result

less accurate simulation.

• Jacobi algorithm allows parallelism in contrast to Gauss Seidel algorithm.

21

Figure 3.3: Gauss-Seidel & Jacobi Algorithms [16]

22

CHAPTER 4

REAL-TIME OBJECT-ORIENTED FRAMEWORK FOR FMI

CO-SIMULATION

In this chapter, framework proposed to solve real-time co-simulation integration prob-

lem will be introduced and analyzed in terms of overhead caused by virtual function

calls and simulation initialization.

4.1 Introduction

To execute a co-simulation scenario, developer needs to have knowledge further than

the simulators and their data dependencies. These can be listed as:

• names and types of the variables used by the simulators

• time constraints of each simulator

• location of simulators

• coupling mechanism used to control the progress of the simulated time and

move and adapt data among simulators

Dealing with data exchange when creating a co-simulation environment is an error-

prone and time consuming task. To ease the coupling of co-simulation components a

framework called Real-time Framework for FMI Co-simulation is created. User does

not need to write and compile the code when there is a change in the co-simulation

components or simulator interface variables if the master algorithm stays unaltered in

co-simulation scenario. For this purpose framework can be compiled with different

master algorithms and used later without any changes.

Using the framework requires input from user. These input variables are needed in

23

order to successfully run a co-simulation. Developers usually have knowledge about

data interface of each component and relationship between components. Although

these information is needed, before the execution a co-simulation scenario, developer

needs to have knowledge further than the simulators and their data dependencies. The

information can be listed as:

• location of simulators

• names and types of the variables used by the simulators

• time constraints of each simulator

• coupling mechanism used to control the progress of the simulated time to move

and adapt data among simulators

Gathering information on location of simulators is easily attainable. To collect the

information about names and types of variables in the component, developers may

use the help of FMI interface and extract the information from XML file of the sim-

ulation component. Determining the time constraints of the simulation components

may not be always straightforward. Even though algorithm analysis’ guidance can

lead developers when predicting run-time behavior; to attain the time constraints of

the component, developer may need to perform some tests. For example, to measure

best and worst case step size of a component, developer needs to create a simulation

scenario where shortest and longest paths in the algorithm logic in a step is called. By

using this method developer can determine the step size of the component and make

sure that this component returns a result even in the worst case scenario between

the specified period. After collecting data regarding to co-simulation components

separately, developer needs to decide on the master algorithm to couple and control

the co-simulation scenario. Different component settings may require different algo-

rithms. As an example, components composing the co-simulation scenario may have

same or different periods.

Following sections in this chapter are to explain framework in detail. In 4.2 sec-

tion, the aim of the framework is revisited and framework architecture is explained in

detail.

24

4.2 Framework Overview

The aim of this thesis is to create a model integration and real-time co-simulation en-

vironment, which will automatically perform coupling between models during simu-

lation according to information given by user. To create co-simulation environment

without coding, user should specify following information in an xml file:

• models: This is the section where information about models are collected.

Name, step size and initial values if desired.

– step size of the model: default step-size of the model. This value cannot

be variable step size.

– initial values of model: values to be initialized in the model before co-

simulation

• data dependencies between models: information about two models to be cou-

pled should be presented here as their names specified in models part and names

of the variables in each model. The reason why two variable names are present

is variables to be coupled can have different names in corresponding models.

• termination condition: This can be either time constraint or value constraint.

Time constraint stands for total simulation time of co-simulation. When time

reaches to specified value, co-simulation terminates. Value constraints can be

defined on models as observers. When the variable reaches desired value, co-

simulation is terminated.

Schedule created according to xml file will be treated as if it meets the real-time

requirements and co-simulation, will be run in a real-time environment. User should

guarantee the performance requirement for each model and create simulation xml file

accordingly. Creating a schedule, which meets real-time requirements by the master

node, is not a part of this thesis. Data exchange between models will be performed

automatically after each doStep execution by using observer pattern on variables.

Each variable in an FMUBlock will be observable by other FMUBlocks if there is a

data dependency between them. Observers will be attached to variables in order to be

notified after a step. By this structure Master algorithm does not have handle the data

exchange FMUs will perform it themselves.

25

Framework has a switch option for logging. Logging provides information about time

and simulation details. By analyzing log data user can conclude the best and worst

case step size of the model. Also, stream of data can reveal in which time interval

which model has which data and best-worst step size of model. Using log data, user

can decide whether simulation is performed according to hard real-time requirements.

4.2.1 Architecture In Classical Approach

In this section, architecture of the classical approach will be tackled and gains of the

application of observer pattern and abstraction on the FMI Blocks will be investigated.

In Section 2.5, classical approach to FMI co-simulation is discussed. According to

this, class diagram of a classical FMI co-simulation can be pictured as Figure 4.1,

where FMU Blocks of different versions of FMI standard are connected with the FMI

Master with one to many and bidirectional relationship. This results in FMI Master

knowing all the FMI interfaces, keeping all the dependency relationships, all of the

variables. When a change occurs in the simulation, FMI Master code needs to be

altered and since all of the classes are dependant on it everything on the simulation

should be tested again to verify changes on the FMI Master did not affected them.

Also, if there’s an addition to the FMI Interface, Master code should be written again.

This results in a chunky FMI Master code which is hard to manage. To conclude there

are 3 main problems with this approach:

• bottleneck on the FMI Master caused by holding all the information on inputs

and outputs of the simulation components. Also, FMI Master performs the data

exchange among the simulators.

• changes needed on the FMI Master when a new interface is available.

• changes on the FMI Master affects all nodes due to bidirectional relationship

between slaves and the master.

To provide a solution to this structural problems, abstraction on FMU Blocks, ap-

plication of subject-observer pattern on input output variables are implemented. By

this way, independently of the simulation node’s interface, FMI Master will be able

to integrate this components. Also, FMI Master will not be responsible for the data

26

exchange after each step which results in reducing the bottleneck on the FMI Master.

After the subject-observer pattern application on the IFMUBlock object, circular de-

pendency between FMI Master, IFMUBlocks is eliminated. By this way, there’s no

need to keep the input/output variable’s values inside the Master class, every IF-

MUBlock will hold their input/output values and other IFMUBlocks interested in

the data will grab it from its source, not through FMI Master. In this scenario, when

there’s a change in variable sets on one of the FMU Blocks, since Master node is not

altered as in classical approach, user does not need to test the Master code again to

see if other components are affected by it. Only testing the new component will be

sufficient.

In the following section framework will be explained in detail.

Figure 4.1: Circular Dependency In Classical Approach

4.2.2 Framework Architecture

In this section, framework architecture used in this thesis will be introduced.

Data exchange between models is performed through FMI Master in classical ap-

proach when performing a co-simulation. Models always rely on FMI Master to per-

form data exchange in this approach which creates a bottleneck on FMI Master when

new data is produced by models after do step. To break dependency between models

27

Figure 4.2: Class Diagram of Framework

and FMI Master and automatize data exchange, a framework is developed called Real

Time Framework for FMI Co-Simulation. In this framework object oriented approach

is used. Every model or hardware component is represented as IFMUBlock which is

an abstraction for activity diagram of simulation sequence. This sequence consists of

instantiation, initialization, step action and termination processes. Each block has a

list of variables and observers. FMU Blocks related to each other are connected via

variables and observers. Each variable has a list of observers which are attached to it.

Observers are notified when a change occurs on the variable. Observer pattern also

brings a solution to the bottleneck problem on FMI Master. In the instantiation and

initialization step of the simulation:

• FMU Blocks which will take part in the simulation are created.

• FMU Variables are created and added to the list of the corresponding FMU

Block

• Observers are created and attached to the corresponding variables and added to

the observer list of the related FMU Block.

In the absence of FMI standard, components included in a co-simulation environment

has their own interface between each other. This interface helps them to communicate

and exchange data. There is no middle man which will exchange the data or orches-

trate. Components usually run and exchange data within a period. In the classical

28

approach FMI Master node is both responsible for data exchange and orchestration

of the components. Even though different orchestration algorithms may need to be

used and logging of the data exchange can be performed easier, it complicates the

FMI Master and requires tightly coupling of the components. To bring a solution to

data exchange delegation process, observer pattern is applied to the variables on each

block.

During the simulation, when variables are updated after each step of FMU block,

variable affected by the change will notify every observer which subscribed to the

changes. By using this pattern, Master algorithm does not need to keep track of data

exchange between models. Data exchange among models will occur automatically.

By this way, FMI Master will only be responsible for orchestration of FMUs which

will reduce the iteration time. In addition, this changes add value to the framework in

terms of object oriented programming principles such as separation of concerns and

encapsulation.

Separation of concerns property is provided to the framework by breaking the de-

pendency on FMI Master. Components composing a co-simulation scenario are less

tightly coupled. When a new FMI standard release is available or a new communica-

tion standard is introduced to the framework, developers will not be responsible for

alteration on the FMI Master. This property will ease the process of troubleshooting

and make testing easier. Framework prior to the change will be able to function as

if no addition is made on the standard or communication blocks. Also, this allows

developer to develop and perform unit tests on the latest classes without the need of

testing the whole framework. If the latest classes are developed appropriately to the

functional requirements and tested accordingly, whole framework does not need to be

tested again.

Different orchestration algorithms can be used to co-simulate FMUs. It is up to de-

veloper to decide between algorithms. In this paper Jacobi and Gauss-Seidel orches-

tration algorithms presented in 3.2 and Jacobi algorithm is chosen. The reason why

Jacobi algorithm is selected is due to the fact that user does not need to keep track

of the sorting on the input/output reactive models. This would require user of this

framework to sort the simulation units in a sense that the models which needs to run

29

Figure 4.3: Observer Pattern on FMUs

beforehand is listed in the upper part of the simulation.xml file. Sorting can be per-

formed in the xml file unless there’s a cyclic dependency between models. In my

opinion Gauss Seidel algorithm cannot be generalized as much as Jacobi algorithm,

because of this reasoning Jacobi algorithm is chosen as orchestration algorithm in this

framework. Scheduling will take place according to step size information provided

by the user. Master will not order doStep function multiple times in order to reach a

stable point for the outputs of the FMU. If a step returns a result other than fmi2Ok,

the simulation will be terminated. Even though yhese features are not enabled in this

study, framework can be extended to qualify these features.

4.2.2.1 Class Diagram In Detail

In this section, observer pattern applied on the variables of the FMU blocks will be ex-

plained in detail. To break the circular dependency on the classical approach between

FMI Master and the blocks observer pattern is introduced to framework. In the class

30

Figure 4.4: Observer Pattern Illustration

diagram 4.3 it can be observed that the BaseFMUVariable holds the value reference

which is the index of the variable in FMI standard and value type. According to value

type on the initialization process corresponding concrete type is created. Concrete

types can be either one of FMI defined types: RealFMUVariable, IntegerFMUVari-

able, BooleanFMUVariable and StringFMUVariable. Data is held in those classes

and they’re only linked to the corresponding type’s observer class. IntegerFMUVari-

able is only known by IntegerFMUVariableObserver. By this change, dependency

arrow between FMI Master and FMU Blocks are only one way, not bi-directional.

In addition, as illustrated in 4.4 in constrast to FMU variables not having a connec-

tion between them, they have links to the variables which are in their interest. Using

this methodology, FMI Master does not need to regulate the data exchange between

blocks during the whole simulation, on the initialization level all the variables and

observers hence the IFMUBlocks are linked to perform data exchange when a change

occurs on the variable and received by the dependent block right before step action.

To sum up, FMI Master does not need to keep track of each variable and their final

value, every block receives the latest data from the corresponding block itself.

4.2.2.2 Serial Communication

To handle the serial communication a class called SerialDeviceBlock is created. Se-

rialDeviceBlock class inherits from IFMUBlock. For each serial device with RS485

communication interface this class should be used as a parent. Classes inheriting Se-

rialFMUBlock should implement the message interface by adding each BaseFMU-

Variable object. On run time parsed xml file can link observers to this values. Also,

observers from SerialDeviceBlock to the other IFMUBlocks can be added on the run

time by specifying on the xml file. Only FMU variables should be hard coded to this

31

class.

4.3 Co-simulation Environment Generation Using XML Files

The aim of this thesis is to create a model integration and real-time co-simulation en-

vironment, which will automatically perform coupling between components during

simulation according to information given by user. To create co-simulation environ-

ment without coding, user should specify following information in an xml file:

• block: This is the section where information about models are collected. Name,

step size and initial values if desired.
– step size of the model: default step-size of the model. This value cannot

be variable step size.

– name: name of the FMU to find and extract variable from dynamic library.

– version: version of the FMU. This can be either 1 or 2.

– initial values of model: values to be initialized in the model before co-

simulation.
• data dependencies between models: information about two models to be cou-

pled should be presented here as their names specified in models part and names

of the variables in each model. The reason why two variable names are present

is variables to be coupled can have different names in corresponding models.

• Termination condition: This can be either time constraint or value constraint.

Time constraint stands for total simulation time of co-simulation. When time

reaches to specified value, co-simulation terminates. Value constraints can be

defined on models as observers. When the variable reaches desired value, co-

simulation is terminated.

Schedule created according to xml file will be treated as if it meets the real-time re-

quirements. Framework does not guarantee component’s response time it is user’s

responsibility to perform schedulability analysis. User should guarantee the perfor-

mance requirement for each model and create simulation xml file accordingly. Creat-

ing a schedule, which meets real-time requirements by the master node, is not a part

of this thesis. Data exchange between models will be performed automatically after

each doStep execution by using observer pattern on variables. Each variable in an

32

FMUBlock will be observable by other FMUBlocks if there is a data dependency be-

tween them. Observers will be attached to variables in order to be notified after a step.

By this structure Master algorithm does not have handle the data exchange FMUs will

perform it themselves. Framework has a switch option for logging. Logging provides

information about in which time interval which model has which data and best-worst

step size of model. Using log data, user can decide whether simulation is performed

according to hard real-time requirements. Overhead introduced to system by logging

is analysed.

1 <Simulation>

2 <Block>

3 <Name>Guidance</Name>

4 <Period>0</Period>

5 <Version>1</Version>

6 <InitialCondition>

7 <Parameter>

8 <Name>x</Name>

9 <Type>Real</Type>

10 <Value>10</Value>

11 <Index>1</Index>

12 </Parameter>

13 </InitialCondition>

14 </Block>

15 <Block>

16 <Name>Fuse</Name>

17 <Period >50</Period>

18 <Version>2</Version>

19 </Block>

20 <DataDependencies>

21 <DataDependency>

22 <Type>Real</Type>

23 <Model1>Guidance</Model1>

24 <Index1>2</Index1>

25 <Model2>Fuse</Model2>

26 <Index2>1</Index2>

27 </DataDependency>

28 </DataDependencies>

29 <TerminationCondition>

30 <Duration>10<Duration>

31 </TerminationCondition>

32 </Simulation>

33

4.4 Run Time Sequence Diagrams

To better understand the action in the background during run time, sequence dia-

grams on instantiation, initialization, step action, data exchange and termination are

provided in this section. For simplicity, there are two FMU Blocks. FMU Block 1

is FMI 1.0 compliant and has one variable called FMU Variable 1. FMU Block 2 is

FMI 2.0 compliant, dependent on FMU Block 1.

Figure 4.5: Initialization of Environment

34

In Figure 4.5, sequence diagram starts with simulation.xml input from user. FMI

Master object takes the information given in the xml, parses it. In this XML there’s

information about the dependencies between models, model’s name, period and ver-

sion, duration of the simulation. According to version, model name and period infor-

mation FMU Block objects are created. According to data dependency information

given in the xml file first FMU Variable objects are created. If there are any initial

values to the variable, the value is put inside the variable. After subject’s creation

observer objects are created and attached to the FMU Variable. On the instantiation

.so(shared object) library is invoked for each FMU. In this architecture FMU Blocks

are not implemented in the framework, they’re called in the run-time. Using the FMI

interface slaves are instantiated and initialized. On initialization step, if there are any

initial values to the variables, setXXX(XXX= Real, Double, Boolean, String) meth-

ods are invoked.

In Figure 4.6, relationship between class objects when step action and data exchange

during simulation is illustrated. FMI Master only orders doStep to slaves and FMI

related methods and data exchange are performed in a hidden manner according to

separation of concerns principle of the object oriented programming. Master does not

contribute to data exchange between models. Before a step is prosecuted, if there is

any observed variable in the FMU Block, values are pulled from the observed FMU

Variable object. After completion of each step FMU Block’s variables’ are updated

and observers are notified by them.

In Figure 4.7, termination process of the simulation is illustrated. First using the

FMI interface and dynamic library handler FMU object is freed. Later, observers

attached to the variables are detached. This step is cutial because if it is not performed

memory leaks occur. Every observer should be detached then destroyed. Lastly, FMU

variables and Variable Observers inside the FMU Block are destroyed.

35

Figure 4.6: Simulation Time Sequence Diagram

36

Figure 4.7: Termination Sequence Diagram

37

38

CHAPTER 5

CASE STUDY

This chapter provides a case study for the demonstration of real-time framework de-

veloped for this thesis. Framework is further analyzed in terms of functionality, de-

terminism. As a co-simulation scenario a sine wave generator FMU and Control

Actuation System is coupled. Co-simulation results are evaluated using a logging

mechanism inside the FMI Master and deterministic behavior is verified using an

oscillator. Case study is designed in order to allow user to understand the general

concept better and provide an example to deterministic usage of the framework. Al-

though framework does not guarantee meeting hard real-time requirements specified

in input xml files, developers can use this framework regarding deterministic perfor-

mance measures. Constructed case study is coded on QNX Momentics IDE and run

on QNX operating system. In the following sections case study is explained in detail.

Data dependency between hardware and software component is explained.

5.1 Case Study Overview

Real-time object oriented framework for FMI for co-simulation procures an integra-

tion environment for hardware and FMI compilant software components. In order to

demonstrate the abilities of the framework, a co-simulation scenario is constructed.

To represent hardware and software components, co-simulation environment incor-

porates a control actuation system(CAS) and a sine wave generator. This a scenario

can be discussed as if we are the developer team of the CAS system, waiting for con-

trol algorithm to be developed by another team which will be developed according to

FMI standard. Using the framework CAS system will be tested with a simple control

scenario as a proof of concept on CAS is working according to requirements. In this

39

Figure 5.1: Component Overview

approach framework will guide the CAS developers to address and solve the bugs

with a clear set of mind by eliminating the doubt about the control algorithm.

FMI Master orchestrates the simulation. CAS communicates through its interface

using RS485 protocol. Sine Wave Generator uses FMI Interface. Figure 5.1 portrays

a picture on communication interface. Details of the components are given below.

CAS is the hardware component in this scenario. In 5.1 sub components of the CAS

can be observed. CAS comprises of 4 blocks which have functions as following:

• Control Block: This component manages communication with the outer world

through RS485 network. Sampling of sensors such as temperature, current or

potentiometer, control of DC motor position by sending pulse-width modula-

tion(PWM) signals to driver block according to commands received via RS485

network and reporting the position changes to external system are the main

responsibilities of this block.

• Driver Block: This component drives the DC motor to requested position ac-

cording to PWM signals received from control block.

• Power Cycle Block: This component regulates the electrical power for the sen-

sor components and processor by using the external source.

• DC Motor: The component which turns direct current electrical energy to me-

chanical energy.

40

Sine wave generator is a FMU which generates a floating point sine value between 0

and π according to simulation time variable. This FMU acts as a control algorithm for

proof of concept purpose. Developers of the CAS control algorithm can replace the

FMU with an algorithm more complex than a sine wave generator and observe the

results. This property saves time when development of different components takes

place in parallel within an organisation or in different companies. In example, think

about a company which gave the development of the control algorithm job to a sub-

contractor and companies have agreed on using FMI interface to ease the integration

process. In worst case scenario, subcontractor may face a problem on development

of the algorithm which results in late delivery of the product. By using the frame-

work’s approach, instead of waiting until the algorithm is developed, CAS team can

test their system without additional waiting time and troubleshoot any problems that

may arise during integration process. By using FMI interface both companies save

time because:

• deciding on a communication interface will not be an issue. Formal correspon-

dence between companies in the process of deciding on an interface is time

consuming.

• changes on the total variables will not be a concern on changing the interface if

a variable is added or extracted. FMI interface is a fixed interface requires no

changes.

• troubleshooting during integration process will be lessened due to early testing.

By using Real-time Framework for FMI Co-Simulation users will cut down on inte-

gration time because:

• in occurrence of a change in the interface variables, user will only need to

change the simulation xml file.

• code of the FMU Master or any class does not need to be changed.

This case study is constructed to evaluate the following functionalities of Real-time

Framework for FMI Co-Simulation:

• Automatized data exchange between slaves.

• Deterministic run-time behavior of co-simulation

41

Figure 5.2: Data Exchange Between Components

• Communication between hardware and software components

In the following subsections data dependencies between components, creation of the

Xml file for simulation environment generation and how real-time requirements of

the scenario is handled are explained in detail.

5.1.1 Data Dependencies Between Models

In this section, data dependency between two models will be introduced. Figure 5.2

is a summary to the data exchange occurring between the components. CAS system

requires a tail position command from the sine wave generator in order to rotate the

wing in the desired position. Usually a control algorithm which commands the tail

position decides according to the potentiometer position feedback acquired from the

CAS. In our case even though sine wave generator does not calculate the tail position

variable using potentiometer position, to realize the situation feedback variable is fed

to the FMU as in real scenario. After the tests on CAS is over with one change in

the simulation xml which is the name of the control algorithm, control algorithm can

be replaced with the sine wave generator FMU and tests can continue. This is an

example of decreasing deployment time property of the framework.

5.1.2 Creation of Xml File

In this section, using the information provided in 5.1.1 and following the instructions

in 4.3 simulation.xml file will be generated as a sample. Data dependency graph is

simple. There is a feedback loop between two components which can be summarized

as CAS expects input angle from the sine wave generator FMU; sine wave generator

FMU expects potentiometer position from CAS. To start with, one should start by

42

Figure 5.3: Data Dependency Between Models

creating an xml file which has the names, periods of the models and initial values to

the variables such as following:

1 <Simulation>

2 <Model>

3 <Name>SineWaveGenerator</Name>

4 <Period>100</Period>

5 <InitialConditions>

6 <InitialCondition>

7 <!-- Index of tailPosition variable -->

8 <Index>1</Index>

9 <Type>Real</Type>

10 <Value>0</Value>

11 </InitialCondition>

12 </InitialConditions>

13 </Model>

14 <SerialModel>

15 <Name>CAS</Name>

16 <Period>50</Period>

17 </SerialModel>

18 </Simulation>

And then user should link the models to each other. Data dependencies between the

models should be added to the xml. According to Figure 5.2 tail and potantiome-

ter position values should be linked together. To achieve this user should add the

following xml lines:

1 <DataDependencies>

2 <DataDependency>

3 <Type>Real</Type>

4 <Model1>SineWaveGenerator</Model1>

5 <Index>1</Index>

6 <Model2>CAS</Model2>

7 <Index>1</Index>

43

8 </DataDependency>

9 <DataDependency>

10 <Type>Real</Type>

11 <Model1>CAS</Model1>

12 <Index>1</Index>

13 <Model2>SineWaveGenerator</Model2>

14 <Index>1</Index>

15 </DataDependency>

16 </DataDependencies>

Finally, user should set the termination condition. User can determine this condition

with different ways. For this scenario, duration is selected. Simulation is terminated

after 10 seconds.

1 <Duration>10</Duration>

In the end, to run a simulation using the framework, a simulation.xml file is created

as below:

1 <Simulation>

2 <Model>

3 <Name>SineWaveGenerator</Name>

4 <Period>100</Period>

5 <InitialConditions>

6 <InitialCondition>

7 <!-- Index of tailPosition variable -->

8 <Index>1</Index>

9 <Type>Real</Type>

10 <Value>0</Value>

11 </InitialCondition>

12 </InitialConditions>

13 </Model>

14 <SerialModel>

15 <Name>CAS</Name>

16 <Period>50</Period>

17 </SerialModel>

18 <DataDependencies>

19 <DataDependency>

20 <Type>Real</Type>

21 <Model1>SineWaveGenerator</Model1>

22 <Index>1</Index>

23 <Model2>CAS</Model2>

44

24 <Index>1</Index>

25 </DataDependency>

26 <DataDependency>

27 <Type>Real</Type>

28 <Model1>CAS</Model1>

29 <Index>1</Index>

30 <Model2>SineWaveGenerator</Model2>

31 <Index>1</Index>

32 </DataDependency>

33 </DataDependencies>

34 <Duration>10</Duration>

35 </Simulation>

Table 5.1: Machine Configuration

Attribute Value

CPU Xeon E3 1275v3 3.5GHz 4 Core Processor

RAM 8 GB

OS QNX 6.5.0 SP1

Momentics IDE Version 7.0.3.v201804261557

Compiler GNU Compiler Collection 4.4.2

5.2 Framework Overhead

Real-time Object Oriented Framework for FMI Co-simulation provides an object-

oriented approach to integration of FMU slaves. To provide an insight to users of this

framework to predict the overhead during simulation, this section is provided.

Developers considering to use the framework should run the performance tests to

achieve more accurate results because processor used to run the simulation, compiler

version, computer configuration, operating system differences can cause changes in

the run-time behavior. In case study, simulations are run on the computer 5.1.

45

Table 5.2: Virtual Call Measurement

Number With Virtual Call(ns) Without Virtual Call(ns)

1 215966952 212967411

2 216966799 212967411

3 216966799 212967411

4 216966799 212967411

5 216966799 212967411

6 216966799 212967411

7 216966799 213967258

8 215966952 213967258

9 216966799 212967411

10 216966799 212967411

Framework can cause overhead in terms of the following aspects:

• Development language of the FMI interface is C. Language is changed to C++

to enable object-oriented development. Overhead can be caused by the follow-

ing topics but these are not evaluated in scope of this thesis:
– Language change has an impact on overhead which are evaluated in [17].

– Object construction, object destruction, inheritance, dynamic method in-

vocation.

Exception of the topics mentioned above, framework is investigated in order to mea-

sure the overhead caused by virtual calls. In this framework all of the variables are

kept in the IFMUBlock using the template parent class BaseFMUVariable or FMU-

VariableObserver. This is inevitable overhead if developer wishes to use the simu-

lation.xml file to realize the simulation rather than hard coding the variables on the

framework. Also, simulation commands such as instantiate, initialize, doStep, ter-

minate are given via IFMUBlock and overhead caused by this invocations cannot be

eliminated.

46

Table 5.3: Virtual Call Measurement

Number Difference(ns) Difference/Virtual Call(ns)

1 2999541 0.02999541

2 3999388 0.03999388

3 3999388 0.03999388

4 3999388 0.03999388

5 3999388 0.03999388

6 3999388 0.03999388

7 3999388 0.03999388

8 1999694 0.01999694

9 3999388 0.03999388

10 3999388 0.03999388

An experiment is created to measure virtual function call overhead. This experiment

consists of two classes: one parent and one child. Method is called directly from

the instance of child class 108 times and measurements are taken. Also, the same

method is called from the parent class 108 times and measurements are taken. Results

are presented in the Table 5.2. This experiment is run on the machine which has the

configurations specified in the Table 5.1.

Measurement is repeated 10 times with the same configuration and result for each run

is given. The computation times was measured via the number of CPU cycles divided

by the CPU cycle time.

Difference between the performance measurement of with and without virtual calls

is given in Table 5.3. From this measurements it can be observed that at each virtual

call an overhead is approximately 0.036994339 ns per virtual call.

In Table 5.4, virtual calls per class are represented. During the simulation because

of the virtualization, IFMUBlock block delagates the instantiate, initialize, doStep

and terminate functions to children classes: FMUBlock_1.0, FMUBlock_2.0 and Se-

rialDeviceBlock. Each call of these functions from the FMI Master causes virtual

function call. For instantiate, initialize and terminate functions this happens once.

47

For doStep function, it depends on the simulation time and the step size of the corre-

sponding block. This number is represented as number N in the table. For example,

if simulation is 10 seconds and every step is 1 second number N is 10. Before each

doStep call on a model setInput functions are called. These functions are: for FMI 1.0,

fmiSetReal, fmiSetDouble, fmiSetString and fmiSetBoolean; FMI 2.0, fmi2SetReal,

fmi2SetDouble, fmi2SetString, fmi2SetBoolean. After each doStep function call,

getOutput functions are called. For each variable v in the output set of a model, Up-

date function will be called N times. If a model has M number of variables, M*N

times Update function will be called.

Table 5.4: Number of Virtual Calls

Class Virtual Function Number Of Calls

IFMUBlock other than doStep 1

IFMUBlock doStep N

FMUVariableObserver Update N

In summary, let’s assume a co-simulation scenario with e number of simulation com-

ponents and fixed step size. In initialization and instantiation initial values to the

variables are assigned which results in e ∗M times virtual calls. Each IFMUBlock

calls instantiate, initialize and terminate functions once which results in 3 ∗ e virtual

calls. During simulation at each step e ∗M times virtual Update function is called

which results in e ∗M ∗N virtual calls during simulation. Also each doStep call on

IFMUBlock costs e virtual calls. In this scenario overhead can be calculated as:

NumberofV irtualCalls = e ∗M ∗ (N + 1) + 3e

Overhead = NumberofV irtualCalls∗V irtualFunctionDuration/V irtualCall

48

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, conclusion of this thesis and future work which can be implemented

for hardware software component exchange purposes are presented.

6.1 Conclusion

The aim of this thesis is to present a model integration and real-time co-simulation

environment, which will automatically perform coupling between components during

simulation according to information provided to the framework. To realize this aim

Real-time Framework for FMI Co-simulation is developed. In Chapter 4 framework

class diagram and run time sequence diagrams are explained. By providing a case

study in Chapter 5 usage of the framework is exampled. This framework is useful for

integrating different FMI interfaces and hardware components which may or may not

be integrated to framework using the FMI interface.

6.2 Future Work

In this section future work which can be constructed is presented. In Figure 6.1 there

can be seen another class diagram using the observer pattern logic but with different

FMU Block mentality. In this approach IFMUBlock is set to the latest FMI standard

in order to incorporate only FMUs to the framework. In this approach FMI Master

and Serial Device Block are also IFMUBlock. This provides pros and cons which can

be listed as following:

• Advantages:

49

Figure 6.1: Future Work Class Diagram

– hardware and software components which perform the same task can be

interchanged due to FMI 2.0 interface being the same in both. Previously

hardware components did not need to comply with the FMI standard.

– FMI Masters can be used as a FMU component itself, not just an orches-

trator.
• Disadvantages:

– components with different versions of the FMI standard cannot be co-

simulated with each other. There will be a need to write wrapper classes

for different versions.

– For every hardware component a wrapper class should be generated in

order to comply with the FMI standard.

If the expectation from the framework is to exchange hardware and software compo-

nents without any changes, than this architecture can be constructed.

50

REFERENCES

[1] G. Stettinger, J. Zehetner, M. Benedikt, and N. Thek, “Extending co-simulation

to the real-time domain,” vol. 2, 04 2013.

[2] M. Benedikt, J. Zehetner, D. Watzenig, and J. Bernasch, “Moderne kop-

plungsmethoden - ist co-simulation beherrschbar?,” 11 2011. null ; Conference

date: 08-11-2011 Through 09-11-2011.

[3] M. Consortium, “Functional mock-up interface for model exchange and co-

simulation.”

[4] D. Auger, “Programmable hardware systems using model-based design,” pp. 1–

12, 10 2008.

[5] M. Verhaegen, D. , O. Gietelink, J. Ploeg, and B. De Schutter, “Development

of advanced driver assistance systems with vehicle hardware-in-the-loop simu-

lations,” Vehicle System Dynamics, vol. 44, pp. 569–590, 08 2006.

[6] E. Lee, “Cyber physical systems: Design challenges,” pp. 363–369, 06 2008.

[7] T. Tomiyama, V. D’Amelio, R. J. Urbanic, and W. Elmaraghy, “Complexity of

multi-disciplinary design,” CIRP Annals - Manufacturing Technology, vol. 56,

pp. 185–188, 12 2007.

[8] O. Albayrak, H. Kurtoglu, and M. Biçakçi, “Incomplete software requirements

and assumptions made by software engineers,” pp. 333–339, 12 2009.

[9] S. Uchitel and D. Yankelevich, “Enhancing architectural mismatch detection

with assumptions,” in Proceedings Seventh IEEE International Conference

and Workshop on the Engineering of Computer-Based Systems (ECBS 2000),

pp. 138–146, April 2000.

[10] J. F. Broenink and Y. Ni, “Model-driven robot-software design using integrated

models and co-simulation,” in 2012 International Conference on Embedded

Computer Systems (SAMOS), pp. 339–344, July 2012.

51

[11] U. Eliasson, R. Heldal, J. Lantz, and C. Berger, “Agile model-driven engineering

in mechatronic systems - an industrial case study,” pp. 433–449, 09 2014.

[12] S.-A. Schneider, J. Frimberger, and M. Folie, “Significant reduction of valida-

tion efforts for dynamic light functions with fmi for multi-domain integration

and test platform,” pp. 395–399, 03 2014.

[13] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Mod-

elica 3.3: A Cyber-Physical Approach. 11 2014.

[14] R. H. Erich Gamma, John Vlissides and R. Johnson, Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 10 1994.

[15] J. A. Neelakantan R. Krishnaswami and L. Birkedal, “Modular verification of

the subject-observer pattern via higher-order separation logic,” 9th Workshop on

Formal Techniques for Java-like Programs(FTfJP 2007), 2007.

[16] C. Gomes, C. Thule, P. G. Larsen, J. Denil, and H. Vangheluwe, “Co-simulation

of continuous systems: A tutorial,” ArXiv, vol. abs/1809.08463, 2018.

[17] K. W. H. Hemant G. Rotithor and M. W. Davis, “Measurement and analysis of

c and c++ performance,” Digital Technical Journal, vol. 10, no. 1, pp. 32–47,

1999.

52

