
CLOCK SYNCHRONIZATION ALGORITHMS ON A SOFTWARE DEFINED
CAN CONTROLLER: IMPLEMENTATION AND EVALUATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN YALÇIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JANUARY 2020

Approval of the thesis:

CLOCK SYNCHRONIZATION ALGORITHMS ON A SOFTWARE
DEFINED CAN CONTROLLER: IMPLEMENTATION AND EVALUATION

submitted by SERKAN YALÇIN in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Klaus Werner Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Prof. Dr. Ece Güran Schmidt
Co-supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde B. Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Werner Schmidt
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Serkan Yalçın

Signature :

iv

ABSTRACT

CLOCK SYNCHRONIZATION ALGORITHMS ON A SOFTWARE
DEFINED CAN CONTROLLER: IMPLEMENTATION AND EVALUATION

Yalçın, Serkan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Werner Schmidt

Co-Supervisor: Prof. Dr. Ece Güran Schmidt

January 2020, 71 pages

Many advanced driver-assistance systems (ADAS) and in-vehicle applications require

coordination for their safety-critical tasks. To achieve such a coordination, different

electronic control units (ECUs) in the system should synchronize their clocks in or-

der to share a global time. Although the controller area network (CAN) is the most

widely used communication bus for the information exchange among ECUs, it does

not support the required clock synchronization. Moreover, even several advanced

clock synchronization methods for CAN have been suggested in the literature, they

require modifications of the CAN driver, which is generally implemented in hardware

and not accessible to modifications. The first aim of this thesis is the implementation

of a software-defined CAN controller (SDCC) which enables modifications to the

standard CAN driver. This SDCC is compatible to standard CAN controllers. The

second aim of the thesis is the realization of new clock synchronization algorithms

for CAN based on the SDCC including modifications to the classical CAN driver.

The performance of the new algorithms is evaluated and compared to existing clock

synchronization algorithms for CAN.

v

Keywords: Controller Area Network, Clock Synchronization, Software-Defined Con-

troller

vi

ÖZ

YAZILIM TANIMLI CAN DENETLEYİCİ TABANLI SAAT
SENKRONİZASYONU ALGORİTMALARİ: UYGULAMA VE

DEĞERLENDİRME

Yalçın, Serkan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Werner Schmidt

Ortak Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Ocak 2020 , 71 sayfa

Pek çok gelişmiş sürücü destek sistemi ve araç içi uygulamalar, güvenlik açısından

kritik görevler için koordinasyona ihtiyaç duymaktadır. Bu koordinasyonun sağlan-

ması için farklı elektronik kontrol ünitelerinin (ECU) global bir saate sahip olmak

amacıyla saatlerini senkronize etmeleri gerekmektedir. Her ne kadar Kontrol Alanı

Ağı Veriyolu (CAN Bus), elektronik kontrol üniteleri arası bilgi alışverişinde en yay-

gın kullanılan iletişim yolu olsa da bahsi geçen saat senkronizasyonunu destekleme-

mektedir. Literatürde birçok gelişmiş saat senkronizasyon metodu önerilmiş olmasına

rağmen, bu metotlar sürücü değişikliklerini gerektirme olup, bu sürücüler çoğunlukla

donanım tabanlı olduğundan bu değişikliklere izin vermemektedir. Bu tezin ilk amacı,

konvansiyonel bir CAN sürücüsü üzerinde değişikliklere izin veren ve standart denet-

leyiciler ile uyumlu yazılım tanımlı bir CAN denetleyicisinin uygulanmasıdır. Tezin

ikinci amacı ise, bahsedilen yazılım tanımlı CAN denetleyicisi üzerinde çalışan yeni

saat senkronizasyon algoritmalarının geliştirilmesidir. Sonrasında ise, bu algoritma-

ların performansları değerlendirilecek ve mevcut CAN saat senkronizasyon algorit-

vii

maları ile karşılaştırılacaktır.

Anahtar Kelimeler: Kontrol Alanı Ağı Veriyolu, Saat Senkronizasyonu, Yazılım Ta-

nımlı Denetleyici

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis supervisor, Prof.Dr. Klaus

Werner Schmidt, and co-supervisor, Prof. Dr. Ece Güran Schmidt, for their contin-

uous guidance and support. It was really an honor to work with them during this

thesis.

I would like to acknowledge the support of my family and my fiance Selvi Deniz

Dörttaş. This work would not have been possible without their valuable support and

encouragement.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND INFORMATION . 5

2.1 Controller Area Network Protocol 5

2.2 Controller Area Network Node . 7

2.3 Controller Area Network Bit Timing 9

2.4 Clock Drift . 11

2.5 Clock Synchronization . 13

2.6 Related Work . 16

2.6.1 Current Clock Synchronization Algorithms for CAN 16

2.6.2 Software Defined CAN Controller 17

xi

3 SOFTWARE DEFINED CAN CONTROLLER 19

3.1 Software-Defined CAN Controller Layers 19

3.1.1 Medium Access Control Layer 21

3.1.2 Physical Coding Sub-layer 27

3.1.3 Physical Medium Attachment Layer 27

3.2 Hardware Dependency of Software-Defined CAN Controller 29

3.3 Porting Software-Defined CAN Controller 30

3.3.1 Experimental Setup . 30

3.3.2 Porting SDCC to Experimental Setup 31

3.3.3 Running SDCC on the Experimental Setup 33

4 SOFTWARE APPROACH TO CLOCK SYNCHRONIZATION ON CAN . 37

4.1 Gergeleit’s Method . 37

4.1.1 Description . 37

4.1.2 Implementation on SDCC . 39

4.2 ISCS . 42

4.2.1 Description . 42

4.2.2 Implementation on SDCC . 43

4.3 Results . 47

5 HARDWARE APPROACH TO CLOCK SYNCHRONIZATION ON CAN . 55

5.1 Hardware Perspective on CAN Clock Synchronization 55

5.2 Description of the PECS Algorithm 56

5.3 Implementation of the PECS Algorithm on SDCC 58

5.3.1 Results . 59

xii

6 CONCLUSION . 65

REFERENCES . 67

xiii

LIST OF TABLES

TABLES

Table 4.1 Clock Drift Measurement Without Clock Synchronization Algorithm 50

Table 4.2 Performance of ISCS and Gergeleit’s Method on SDCC Under Dif-

ferent Bus Loads (with 81 ppm Clock Drift) 52

Table 5.1 Performance of Gergeleit’s Method with PECS on SDCC Under

Different Bus Loads (with 81 ppm Clock Drift) 61

Table 5.2 Performance of ISCS with PECS on SDCC Under Different Bus

Loads (with 81 ppm Clock Drift) . 61

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 CAN Arbitration Loss Scenario 6

Figure 2.2 A Typical Controller Area Network Frame 7

Figure 2.3 A Typical CAN Node . 8

Figure 2.4 CAN Bit Timing . 9

Figure 2.5 Hard and Soft Synchronization in CAN Protocol 10

Figure 2.6 Phase Error Calculation Process During Bit Time 11

Figure 2.7 Bit Stuffing and Destuffing in CAN 11

Figure 2.8 Visualization of Clock Drift . 12

Figure 2.9 Temperature Effect on Oscillator Frequency [1] 13

Figure 2.10 Offset Scheduling with Clock Synchronization 15

Figure 2.11 Offset Scheduling without Clock Synchronization 15

Figure 2.12 Main Flow of Software Synchronization Algorithms in CAN . . 15

Figure 3.1 Software-Defined CAN Controller Architecture 20

Figure 3.2 Software-Defined CAN Controller Primitives 21

Figure 3.3 SDCC MAC Layer RX Finite State Automata 22

Figure 3.4 SDCC MAC Layer TX Finite State Automata 25

xv

Figure 3.5 Timings of PCS Layer Operations 28

Figure 3.6 Software-Defined CAN Controller Hardware Dependency 29

Figure 3.7 Experimental Setup Diagram 31

Figure 3.8 Observed SDCC Waveform . 35

Figure 4.1 Gergeleit’s Algorithm for Clock Synchronization on CAN 38

Figure 4.2 ISCS Algorithm Operation - Validity Flag Match 43

Figure 4.3 ISCS Algorithm Operation - Validity Flag Mismatch 44

Figure 4.4 Data Collection for Performance Measurement 49

Figure 4.5 Evaluation of the Clock Drift between the CAN nodes 51

Figure 4.6 Performance of ISCS and Gergeleit’s Method on SDCC Under

Different Bus Loads (with 81 ppm Clock Drift) 52

Figure 4.7 Clock Drift Comparison of ISCS and Gergeleit’s Method on

SDCC Under Different Bus Loads (with 81 ppm Clock Drift) 53

Figure 4.8 Clock Drift Histograms of ISCS and Gergeleit’s Method on

SDCC (with 81 ppm Clock Drift) . 54

Figure 5.1 Valid Clock Correction Edges for PECS 57

Figure 5.2 Performance of PECS on SDCC Under Different Bus Loads

(with 81 ppm Clock Drift) . 62

Figure 5.3 Clock Drift Comparison of Gergeleit’s Method with PECS on

SDCC Under Different Bus Loads (with 81 ppm Clock Drift) 63

Figure 5.4 Clock Drift Comparison of ISCS with PECS on SDCC Under

Different Bus Loads (with 81 ppm Clock Drift) 64

xvi

LIST OF ABBREVIATIONS

ADAS Advanced Driver Assistance Systems

CAN Controller Area Network

ISCS Improved Software-Based Clock Synchronization

SDCC Software-Defined CAN Controller

PECS Phase Error-Based Clock Synchronization

xvii

xviii

CHAPTER 1

INTRODUCTION

Controller Area Network (CAN) [2] is a bus standard that is widely used in auto-

motive applications. With more than 2 billion nodes sold [3], [4], CAN allows dif-

ferent electronic control units (ECUs) and components such as sensors and actuators

to exchange information. After its development, it became the de facto standard in

time-critical applications such as X-by-wire, advanced-driver-assistance systems and

autonomous driving systems, since it guarantees known and bounded worst-case re-

sponse time [5], [6]. Although the CAN bus is seemingly outdated with newer bus

standards such as Flex-Ray [7], its popularity is still high due to its simplicity, low

cost and reliability.

As stated before, CAN is very old compared to other bus standards. Nevertheless,

its performance and functionality are still being improved with new enhancements

and extensions such as [8–13]. However, since CAN controllers are implemented in

hardware, adding new capabilities to existing controllers is not an easy task. In order

to enable easier modifications and experiments on CAN, a “Software Defined CAN

Controller (SDCC)” is proposed in [14]. SDCC is able to communicate with CAN

devices through a physical bus and it is capable of real-time execution.

Many advanced driver-assistance systems and in-vehicle applications require coordi-

nation for their operations. This coordination is only possible if different electronic

control units (ECUs) share a common global time perspective [15–17]. However,

CAN does not support clock synchronization between the nodes. To add this capa-

bility to CAN, several clock synchronization methods are suggested. Widely known

software-based methods such as [18] exploit the synchronous message reception of

the CAN protocol. These methods suggest taking timestamps after the reception of

1

time-reference frames to ensure that timestamps are recorded concurrently. Differ-

ing from previous approaches, the Improved Software-Based Clock Synchroniza-

tion (ISCS) method given in [19], makes use of each frame on the bus to improve

the clock synchronization performance. Also suggested in [19], the hardware-based

Phase Error-Based Clock Synchronization (PECS) uses the phase error correction

mechanism of standard CAN hardware to provide more precise global clock for the

nodes on the network.

In this context, it has to be noted that all of the clock synchronization methods (both

software and hardware approaches) on CAN are implemented on CAN controllers

that are realized in hardware up to now. Since most of the advanced clock synchro-

nization methods require modifications on standard CAN controllers, their implemen-

tation relies on changes in the CAN controller hardware, which is time consuming

and requires very specific expertise. Accordingly, implementing those algorithms on

SDCC significantly increases the practicality of modifications on the CAN protocol.

Specifically, the easier experimentation on CAN controller layers with SDCC will

enable faster development of new clock synchronization algorithms.

The first aim of this thesis is to implement SDCC on different microcontrollers and

establish the communication between them via a physical bus. The second aim of the

thesis is the realization of clock synchronization algorithm using the SDCC. Hereby,

the first step is to validate the functionality of the SDCC by implementing and evalu-

ating the different software-based clock synchronization algorithms in [18] and [19].

The second step is the usage of the SDCC for modifications of the CAN protocol.

To this end, the hardware-based PECS algorithm in [19] is implemented by using

the bit-timing information of the SDCC. The correct functionality of all clock syn-

chronization algorithms is established and the improvements of the ISCS algorithm

(software-based) and PECS algorithm (hardware-based) are shown by practical ex-

periments. In summary, the main contributions of the thesis are as follows:

• Implementation of the SDCC and deployment on different platforms,

• Realization of the software-based clock synchronization algorithms for CAN

in [18] and [19],

2

• Realization of the hardware-based clock synchronization algorithm in [19],

• Experimental evaluation and comparison of the implemented clock synchro-

nization algorithms.

The remainder of the thesis is organized as follows. In Chapter 2, the CAN proto-

col, the concept of clock drift and clock synchronization are explained to provide the

necessary background. Following that, existing clock synchronization algorithms for

CAN are examined. After that, the SDCC is explained in detail in Chapter 3 and the

steps followed for porting it to the experimental setup are illustrated. Subsequently,

in Chapter 4 and 5 the clock synchronization algorithms in [18], [19] are described

and implemented on SDCC. Consequently, the performance of the implemented al-

gorithms is evaluated and compared. Conclusions are given in Chapter 6.

3

4

CHAPTER 2

BACKGROUND INFORMATION

This section gives the necessary background information for this thesis. Section 2.1

provides a detailed description of the CAN protocol and Section 2.2 outlines the rel-

evant components of a CAN node. In Section 2.3, the bit timing on the CAN bus

is explained. Then, Section 2.4 introduces the concept of clock drift. The idea of

clock synchronization is introduced in Section 2.5 and Section 2.6 gives an overview

of related work for this thesis.

2.1 Controller Area Network Protocol

Controller Area Network (CAN) is a well-known bus standard that establishes shared

medium communication between multiple controller units. It allows multi-master

priority-based bus access, with non-destructive contention-based arbitration [2]. Al-

though it can be used in any system for communication, it is widely used in safety-

critical systems, especially in the automotive industry. Despite the fact that CAN is a

very old communication protocol, its robustness and proven reliability still makes it

a viable solution for in-vehicle and industrial networks [20–22].

Unlike many other communication protocols, CAN is not based on a master/slave

structure. Instead, it defines a strict contention-based arbitration that governs the

transmission and reception on the bus. To achieve this, the CAN protocol uses the

identifier field that is embedded to all CAN frames. In addition to its use for recog-

nition of the frames on the bus, the identifier field plays a big role in the arbitration

of the frames. The CAN protocol states that, when multiple nodes start transmitting,

the frame with the smaller identifier will be granted access to the medium. In order

5

to achieve this, all nodes monitor the bus while they are transmitting a frame. Since

CAN defines the low voltage level as dominant and the high voltage level as reces-

sive, the transmission of a low and high bit at the same time results in a low voltage

level on the bus. Therefore, when multiple nodes are transmitting, the node with the

smaller identifier will eventually set the voltage level to dominant, while the other

nodes try to set it as recessive. Once nodes monitor this, the ones with the bigger

frame identifier will stop transmitting and wait until the bus becomes idle again. With

this arbitration method, prioritization of the frames is achieved without destroying the

frames that lost the arbitration. The arbitration process is visualized in Figure 2.1 for

better understanding.

Figure 2.1: CAN Arbitration Loss Scenario

As is illustrated in Figure 2.2, a typical CAN frame starts with the Start-Of-Frame

(SOF) field that is used for hard synchronization which will be discussed in following

sections. Following the SOF bit, there is an 11 bit or 29 bit identifier which is used for

recognizing the frames and performing the contention-based arbitration. The remote

transmission request bit (RTR) is used for requesting a frame with a specific identifier.

The identifier extension bit (IDE) is used for determining if 29 bit extended identifier

6

will be used instead of 11 bit. Following the reserved bit r, the data length code spec-

ifies the number of bytes in the payload that is placed in the data field of the frame.

After the payload, the cyclic redundancy check (CRC) field is used for checking data

integrity of the frame. Finally, the acknowledgement bit (ACK) is used for checking if

the transmitted frame is received with success. To perform this, the transmitter sends

a recessive bit during acknowledgement slot. When a receiving node decides that the

frame is received with success without any error, it transmits a dominant bit which

overrides the recessive bit sent by the transmitter. When the transmitter monitors the

dominant level during this slot, it infers that the frame is received successfully at least

by one node in the network. Here, it has to be noted that the transmitter cannot tell if

all nodes received the frame successfully, since even just one dominant level on the

bus will indicate acknowledgement of the frame. After the frame is completed, the

End-Of-Frame (EOF) is transmitted and the bus becomes idle again. Nodes should

wait for a predefined inter-frame space to start transmitting once again.

Figure 2.2: A Typical Controller Area Network Frame

2.2 Controller Area Network Node

Although CAN nodes can be considered as a single component from a high level per-

spective, it is possible to examine them in three different sub-layers. As it is visualized

in Figure 2.3, a typical CAN node consists of a microcontroller, a CAN controller and

a CAN transceiver. In this section, these layers will be described briefly.

As in many of the embedded computer systems, microcontrollers are the components

where the main software is embedded. With application software, the microcontroller

controls the underlying hardware to transmit and receive data from the CAN bus.

Most of the time, the software block that performs CAN related operations is a small

part of the application software, since the microcontroller controls many peripherals

such as sensors and actuators to generate data to be transmitted via CAN frames.

7

Figure 2.3: A Typical CAN Node

Microcontrollers interact with the CAN bus by using a CAN controller hardware.

CAN controllers may be embedded into the microcontroller or they can be connected

as a separate integrated circuit. Embedded controllers are memory mapped and can be

accessed by the microcontroller directly, whereas external controllers can be accessed

with serial communication protocols such as Inter-integrated Circuit (I2C) or Serial

Peripheral Interface (SPI). Whether a CAN controller is embedded or connected

externally, its responsibility is to provide an interface for transmitting and receiving

CAN frames. When application software wants to send a CAN frame, it writes the

payload to a CAN controller register. Then, the CAN controller serializes the data

and handles the transmission process. When the CAN controller receives a frame, it

assembles the frame by performing de-serialization on the received bits. Depending

on the application, it may trigger an interrupt or it provides a register that can be polled

to decide if a frame is received. To perform transmission and reception, the CAN

controller handles arbitration, bit-stuffing, edge detection, hard/soft synchronization

and other protocol specific operations specified in [2].

The last layer of a CAN node is the CAN transceiver. As in the case with CAN

controller, the CAN transceiver can be embedded into the microcontroller or it can be

8

connected externally. The CAN transceiver provides an interface between the CAN

controller and the physical CAN medium (cable). It establishes proper signalling on

the bus according to the data sent by the CAN controller. Also, when the node is

receiving, it converts the CAN voltage levels into bits which can be processed by the

controller.

2.3 Controller Area Network Bit Timing

According to [2], the CAN bit time is divided into four separate time segments, given

in Figure 2.4. The synchronization segment (SYNC) is used for synchronization of

local CAN clocks. This is the part, where edges are observed on the bus. The prop-

agation segment (PROP) is used for tolerating the propagation delay on the bus and

processing delay of the nodes. Phase segment 1 and 2 (PHASE1 and PHASE2) are

used for soft synchronization, which will be covered in this section. These segments

are lengthened or shortened depending on the calculated phase error by the nodes.

Moreover, the data on the bus is sampled at the end of PHASE1.

Each segment consists of time quanta (TQ), which are constant time periods calcu-

lated according to the CAN system clock. Depending on the application and physical

properties of the network, the number of time quanta in the segments can be modified.

However, the synchronization segment is always 1 time quantum long and it cannot

be changed.

Figure 2.4: CAN Bit Timing

9

To compensate phase differences between CAN system clocks, phase error correc-

tion is performed as part of the CAN protocol. This correction is performed in two

different ways. The first one is called hard synchronization which is performed after

the Start-Of-Frame (SOF) bit is transmitted on the bus. When SOF is observed on the

bus, each node resets its bit time. Hence, hard synchronization is performed at the

beginning of each CAN frame.

The second synchronization method is called soft synchronization. Unlike hard syn-

chronization, soft synchronization is performed while a frame is being received, given

in Figure 2.5. When a receiving node detects a high to low transition (edge) on the

bus, it calculates the phase error ep as the difference between the quantum, where it

observes the edge and time quantum of the synchronization segment (if the node’s

local clock would be perfectly synchronized with the sender CAN node, the edge

should be detected right in the SYNC segment with phase error ep = 0). Therefore,

if the edge is observed before the SYNC segment, the phase error is calculated to

be negative. If the edge is detected after the SYNC segment, then the phase error

becomes positive. After phase error calculation illustrated in 2.6, Phase segment 1

is lengthened by ep if ep is positive and Phase segment 2 is shortened by ep if ep is

negative.

Figure 2.5: Hard and Soft Synchronization in CAN Protocol

To sustain correct bit timings, CAN nodes shall perform frequent soft synchroniza-

tions. Since soft synchronization requires a transition between opposite polarities,

consecutive bits with the same polarity should be avoided. To prevent such situations,

the CAN protocol uses the bit stuffing mechanism visualized in Figure 2.7. When a

node is transmitting a CAN frame, it inserts (stuffs) a bit with opposite polarity after

five consecutive bits with the same polarity are sent. On the receiver side, the stuffed

10

Figure 2.6: Phase Error Calculation Process During Bit Time

bits are discarded (de-stuffed) and in this way, the original frame is recovered.

Figure 2.7: Bit Stuffing and Destuffing in CAN

2.4 Clock Drift

It is widely known that clocks are essential building blocks of electronic systems.

They are used for performing synchronous operations and calculations within the

electronic control units. The simplest hardware design of a clock consists of an oscil-

lator and a counter [23]. Since frequencies of these oscillators can easily be affected

by external and internal factors, even clocks built with same oscillators deviate from

each other over time. As it is visualized in Figure 2.8, this phenomenon is called

clock drift and it can be observed in all electronic systems with clocks.

11

Figure 2.8: Visualization of Clock Drift

Denoting the time value of a clock as C and real time as t, if dC/dt < 1, the clock

can be considered as slow whereas if dC/dt > 1, it is said to be fast compared

to the real time [24]. Therefore, oscillators with different values of dC/dt, that is,

different frequencies, deviate from each other over time. This difference between

oscillator frequencies is due to fabrication tolerance, aging, temperature, humidity

and vibration [25]. The most common of these reasons is the temperature, because

temperature change is inevitable during operation of an electronic system. Since

most of the time this change does not happen homogeneously, frequencies of the

oscillators within the system deviate from each other. The effect of temperature on

the frequencies of several oscillators is visualized in Figure 2.9.

As it is given in Figure 2.3, CAN nodes are operated by microcontrollers. Since these

controllers use hardware clocks, CAN nodes on a network experience clock drift.

Even if the same controllers are used and environmental conditions that affect clock

frequency are eliminated, clock drift between CAN nodes cannot be avoided. This

is because it is not possible to produce identical oscillators with current production

methods. For example, quartz oscillators used in automotive applications commonly

have tolerances of ±50 ppm (parts per million) for fabrication and ±5 ppm per year

for aging [25]. That means, quartz crystals belonging to identical microcontrollers

may deviate about 50µs per second and this deviation may increase by 5µs per year.

Moreover, additional ±150 ppm of clock drift may be observed depending on the

12

Figure 2.9: Temperature Effect on Oscillator Frequency [1]

temperature in the operating temperature range (-40/125°C) [25].

Although CAN provides a phase error correction mechanism within the bit timing as

described in Section 2.3, CAN does not support clock synchronization between the

nodes. Hence, as a result of imperfections in the system clock and lack of clock syn-

chronization in CAN protocol, nodes lose the common perception of time after long

periods of time, even if they are initially synchronized. It may seem that it does not

create a problem since classical CAN networks are event-triggered. However, con-

sidering the recent developments in the automotive technology including advanced

driving assistance systems (ADAS) and autonomous driving applications, synchro-

nized CAN nodes are needed to ensure the performance and safety of such systems.

2.5 Clock Synchronization

In a system where more than one node is present, to calculate the time of occurrence

of events and the duration between them, a common time reference is needed [26].

In order to establish such common time reference, a global timebase with bounded

precision should be present in the system. Although providing a global timebase

seems easy, because of the clock drift phenomenon explained in Section 2.4, addi-

13

tional methods shall be deployed.

The common solution for providing a global timebase is to use a hardware clock to

create a virtual clock that each node accesses locally and then synchronize all virtual

clocks in the system [27], [28]. By this way, without providing an actual clock that

operates globally, each node possesses a virtual clock that serves as a global clock.

Based on this general idea, clock synchronization methods can be divided into two

categories: external synchronization and internal synchronization. External clock

synchronization maintains the difference between processor and external time refer-

ence within a bounded interval, whereas internal clock synchronization performs the

same for the difference between node processor clocks [29]. The goal in both external

and internal synchronization algorithms is to design an agreement protocol that keeps

the clock as close as possible to real time or among all nodes by issuing periodical

time value exchange [30]. To have such an exchange in the system, each node shall

issue periodic events where they share their local virtual times. Consequently, the

nodes correct their clocks according to the synchronization protocol deployed in the

system.

As it is stated in Section 2.4, advanced driving applications require time-triggered

communication on CAN. In addition, there are protocol extensions of CAN that ben-

efit from synchronized clocks. For example, offset scheduling [8] introduces the idea

of adding offsets to frame transmissions to reduce response times. However, using

such offsets for scheduling requires synchronized clocks which CAN does not sup-

port. As it can be seen from Figure 2.10 and 2.11 clock synchronization is crucial

in such situations. Therefore, it can be stated that global timebase is mandatory in

certain CAN applications or extensions.

Clock synchronization methods in CAN can be examined in two approaches: soft-

ware and hardware. Software approaches implement clock synchronization algo-

rithms on software that controls CAN hardware, whereas hardware approaches mod-

ify the actual CAN controller to add synchronization capabilities. Although both

hardware and software based clock synchronizations on CAN are challenging in some

respects, synchronous reception and atomic broadcast properties of CAN are very

useful [31]. When transmission of a CAN frame is completed, all nodes including the

14

Figure 2.10: Offset Scheduling with Clock Synchronization

Figure 2.11: Offset Scheduling without Clock Synchronization

transmitter (since it performs bus monitoring) receive the frame simultaneously. Ad-

ditionally, CAN frames are considered to be either received successfully by all nodes

or they are not received by any of the nodes. Hence, most of the existing hardware

and software solutions exploit these two properties.

Figure 2.12: Main Flow of Software Synchronization Algorithms in CAN

Although the implementation and algorithm change in software based CAN clock

synchronization solutions, the main idea visualized in Figure 2.12 stays the same.

Triggered by the reception of a periodically recurring predefined frame, each node

captures its clock value. Subsequently, these values are exchanged with a CAN frame

among the nodes according to the synchronization algorithm. Following that, each

node corrects its clock accordingly. Regarding hardware solutions for clock synchro-

15

nization, it has to be noted that even though the same idea can be used, it is hard to

find a generalized approach since direct modification of the controller enables differ-

ent methods when hardware approach is taken.

2.6 Related Work

2.6.1 Current Clock Synchronization Algorithms for CAN

Although the simplest idea for clock synchronization on CAN is taking a timestamp

and broadcasting it right away, it cannot be considered as a viable solution. This is

because the exact time between frame generation and end of transmission cannot be

determined in CAN since a frame may be blocked by a higher priority frame. Also,

although the payload size can be kept fixed, stuffed bits change the length of the CAN

frame constantly. Therefore, to add time synchronization support to standard CAN

protocol by avoiding such situations, several software and hardware approaches are

suggested in the literature.

One of the best known software approach given in [18], uses the synchronous recep-

tion and atomic broadcast property of CAN protocol. It introduces a Time Master

that periodically sends time reference frames to Time Slaves that are present in the

network. Moreover, it ensures all nodes to record their local times at the same instant

by suggesting taking a timestamp after each reference frame. Implementation of this

method on a 32-bit microcontroller in [32], shows that average of 4.5 microsecond

precision can be achieved. Note that this precision is achieved by using very small

bandwidth by sending only 10 reference frames in one second. In order to make this

method fault-tolerant, [33] suggests assigning different masters in each round instead

of having one dedicated master. By this way, clock synchronization can still be pro-

vided in some extent even if one of the time masters fails. However, system will

not be able to perform clock synchronization during the period that faulty node is

expected to act as a time master. To solve this problem, [34] suggests a new mas-

ter selection technique that involves partition of nodes into three groups: substitutes,

master candidates and slaves. In this method, when one of the master candidate is

faulty another master is selected from the substitutes.

16

Differing from the method in [18], [19] suggests using all frame receptions for collect-

ing timestamps instead of taking timestamps after reference frames only. Additionally

it introduces a flag that is used to determine the validity of the reference frame for the

situations where the reference frame is blocked by another CAN frame. It is stated

that this method increases the performance by 40% compared to the method in [18]

without increasing the frequency of reference messages. Another software approach

given in [35] is built on the AUTOSAR platform. It suggests a two-step mechanism

where two different frames are used for calculating relative time in Time Slave nodes.

In addition to software approaches, some hardware approaches that are based on mod-

ifying the standard CAN controller are present in the literature. For example, in [31]

additional hardware modules called clock units are implemented and integrated into

a CAN node. These clock units consist of global clock, synchronization and CAN

modules where each one of them has different responsibilities to provide a clock

synchronization in the network. Similarly, [36] implements different clock units in

hardware which is able to achieve 10 microsecond accuracy with low overhead. Ad-

ditionally, TTCAN level 2 [9] introduces a frequency divider which is fed by clock

drift information obtained from the network according to time value exchange be-

tween time master and slaves. To provide fault tolerance, it suggests master selection

by using priority based arbitration of CAN protocol. Here, it has to be noted that the

drawback of most hardware approaches is that either they require complex hardware

extensions, or they are not compatible with standard CAN controllers. This is the

reason why software approaches are preferred more frequently.

2.6.2 Software Defined CAN Controller

Since CAN controllers are most commonly implemented in hardware, they are not

accessible to modifications. Therefore, even a small extension to the current CAN

protocol or an experimentation of a new feature requires tedious work on the hard-

ware design because of the complexity of CAN controllers. To be able to eliminate

hardware dependency and provide easier experimentation on CAN, a software defined

CAN controller (SDCC) [14] is implemented in C programming language [37].

The design in [14], consists of three different layers: medium access control layer

17

(MAC), physical coding sub-layer (PCS) and physical medium attachment (PMA).

The low-level layer of SDCC, PMA provides the required interface to general purpose

I/O pins (GPIO) and a timer module which will be used as the system clock of the

software defined controller. As a result of that, it is possible to port [14] to any system

with a microcontroller that contains a timer and controllable GPIOs.

A possible drawback of the SDCC is that most of the functions provided to the ap-

plication layer software are time-critical. Hence, algorithms that require long compu-

tations will block lower level functions that are responsible for bus synchronization.

Therefore, execution of complex algorithms on the application layer may end up with

a loss of bus synchronization which can lead to erroneous reception or transmission

of a frame. Although this situation can be solved by decreasing the CAN bit rate by

modifying SDCC software, it is undesired since bit rate achieved by SDCC is already

low compared to standard hardware CAN controllers.

18

CHAPTER 3

SOFTWARE DEFINED CAN CONTROLLER

This chapter describes the software-defined CAN controller (SDCC) adopted in this

thesis. Section 3.1 gives an overview of the layers used in the SDCC and Section

3.2 points out which parts of the SDCC depend on the hardware where the SDCC

is deployed. The method of porting the SDCC to the specific hardware used in this

thesis is explained in Section 3.3.

3.1 Software-Defined CAN Controller Layers

SDCC [14] is a Controller Area Network controller that is implemented in software

instead of hardware that most controllers are based upon. It is designed to establish

communication between nodes that are connected by the CAN bus without any hard-

ware controller support. SDCC uses a layered software approach, where each layer

is responsible for different operations that are well-defined in the CAN standard [2].

Those layers can be listed as:

• Medium Access Controller Layer (MAC)

• Physical Coding Sub-Layer (PCS)

• Physical Medium Attachment Layer (PMA)

The SDCC layers shown in Figure 3.1 provide a consistent interface, where upper and

lower layers are linked together to share information related to CAN frames that are

transmitted or received. Also, they share common information for their operations

with the help of data structures where each layer accesses states, variables and errors

19

etc. Additionally, unlike hardware controllers, it is possible to access this valuable

information from the application software.

Figure 3.1: Software-Defined CAN Controller Architecture

As can be seen from Figure 3.2, SDCC uses indications, confirmations and requests

called "primitives" to invoke or notify upper and lower layers. Indications are sent

from lower layers to upper layers in case of node clock ticks and data reception.

Confirmations and requests are sent to lower layers for transmission request and data

confirmation. Note that the application using SDCC can use requests for sending

frames, indications and confirmations for frame reception and notification. As a re-

sult, the user can send and receive CAN frames without going into much detail. This

is the advantage of the layered software design.

20

Figure 3.2: Software-Defined CAN Controller Primitives

3.1.1 Medium Access Control Layer

The Medium Access Control Layer performs frame level operations such as serial-

ization & deserialization, bit stuffing & destuffing, bus arbitration, CRC control and

error detection. Although it is the most complex of the three layers, because of its

closeness to the application layer, it is easier to understand from user perspective.

Since CAN reception and transmission have states that change the operation of the

controller layers, SDCC implements two finite state machines called RX_FSM and

TX_FSM for this purpose. These state machines, use the indications coming from the

PCS layer to advance between states. As can be seen from Figure 3.3 and 3.4, most

21

of these states directly correspond to CAN frame fields.

Figure 3.3: SDCC MAC Layer RX Finite State Automata

RX_FSM is invoked when PCS generates a data indication for the MAC layer after the

bus level is sampled at the sampling point. MAC processes the bus level according to

the current RX_FSM state, performs necessary state transition and waits until the next

PCS data indication. The procedures followed in each RX_FSM state are summarized

below:

• RX_BUS_INTEGRATION: In this state, bus integration is performed. To

achieve this, the state machine simply counts 11 consecutive recessive bits be-

fore declaring the bus as idle. If a dominant bit is observed in this state, the

22

recessive bit counter is reset. When bus integration is completed, the RX_FSM

state is updated as RX_IDLE. Note that this state is necessary to establish a

frame level synchronization.

• RX_IDLE: RX_FSM stays at this state until a dominant bit representing SOF is

received. When SOF is observed on the bus, the de-stuffing routine is initialized

to discard future stuffed bits. Following that, CRC calculation is started and

RX_FSM state is updated as RX_IDENTIFIER.

In this context, note that the MAC layer performs de-stuffing by counting con-

secutive bits with the same polarity. When this counter reaches five, the MAC

layer expects the arrival of a bit with opposite polarity. If it receives a bit with

the same polarity, RX_FSM state is set as RX_ERROR.

• RX_IDENTIFIER: In this state, incoming bits are shifted in for construct-

ing the identifier field. When 11 identifier bits are received, the state is set

as RX_RTR. The identifier value is also stored as an integer, to be used when

MAC data indication is generated.

• RX_RTR: SDCC does not support RTR frames. Hence in this state, received

bit is unchecked and stored directly, then state is updated as RX_IDE.

• RX_IDE & RX_FDF: Since SDCC supports only classical base format frame,

bits received during these states are checked to be dominant. If a recessive bit is

received, the state is updated as RX_ERROR. Otherwise, the state is advanced

to RX_DLC.

• RX_DLC: During this state, DLC bits are shifted in until all 4 DLC bits are

received by the MAC layer. According to the constructed DLC field, the size

of the data field is calculated and the counter for the data field is initialized

accordingly. Following that, the state is updated as RX_DATA.

• RX_DATA: This is the state where payload is received from the bus. The

counter that is set during RX_DLC state is used to receive the whole payload.

The received bits are shifted in and each time a byte is completed, it is copied

to a byte array to be passed to the user as a pointer once the frame is received

successfully.

23

• RX_CRC: During RX_CRC state, CRC calculation is not stopped. Instead,

the calculation is continued until all CRC bits are received. Once all CRC bits

are received, the calculated CRC is checked to be zero in order to be sure that

the CRC field is correct. By this way, CRC is not stored and checked on the

calculation process itself. If the CRC is found to be correct, the state is updated

as RX_CDEL. Otherwise, a transition to RX_ERROR is performed.

• RX_CDEL: The bit received during this state is checked to be recessive. If it is

not, a transition to RX_ERROR is triggered. Otherwise, the acknowledgement

phase is started by advancing to RX_ACK state.

• RX_ACK: The acknowledgement bit is checked to be dominant to be sure that

nodes in the network received the frame successfully. If the frame is received

successfully, the state is advanced to RX_ADEL, otherwise state is changed to

RX_ERROR.

• RX_ADEL: As in the case with CDEL, the bit received during this state is

checked to be recessive and the state is advanced accordingly.

• RX_EOF: Finally, RX_EOF state is the state where 7 recessive bits indicating

the end of frame are expected to be received. If a dominant bit is observed

during this period, a transition to RX_ERROR performed. If the EOF field is

completed without an error, it means that a CAN frame is received successfully.

In that case, a MAC data indication is sent to the upper layer to notify that a

frame is received. This indication contains the identifier, DLC and format fields

of the received frame as well as the payload.

• RX_ERROR: The error state is responsible for releasing the bus by calling

a PCS data request with a recessive bit and resetting RX_FSM and TX_FSM

states to RX_BUS_INTEGRATION and TX_ERROR respectively.

As in the case with RX_FSM, TX_FSM is also invoked by the PCS data indication.

After the MAC layer receives a bit from PCS and handles RX_FSM accordingly, it

starts to advance TX_FSM for performing frame transmission. The steps followed in

each TX_FSM state are given below:

24

Figure 3.4: SDCC MAC Layer TX Finite State Automata

• TX_IDLE: In this state, the MAC layer checks if a data transmission is pending

by reading a flag which is set during data request calls. If there is a pending

request and RX_FSM state is RX_IDLE, which means the node is not receiving

a frame, PCS data request is triggered to send a dominant bit that corresponds

to SOF. Following that, the state is set as TX_IDENTIFIER.

• TX_IDENTIFIER: In this state, the identifier of the frame is shifted and sent

one by one with PCS data requests. After the identifier field is finished, the

state is advanced to TX_RTR.

Here, we note that after a node starts transmitting the identifier, the MAC starts

25

stuffing bits when it is necessary. As in the de-stuffing case in RX_FSM, it uses

a counter to count consecutive bits with the same polarity. Once this counter

becomes five, it immediately generates a PCS data request to send a bit with

opposite sign. Until the stuffed bit is transmitted, TX_FSM state is preserved

and no operation related to the current frame is performed.

• TX_RTR, TX_IDE, TX_FDF: Since SDCC does not support remote frames

and it uses classical base format only, it sends a dominant bit during each of

these three states.

• TX_DLC: In this state, length of the data is sent. Because the payload is passed

as a pointer in the application layer, the length of the data is determined accord-

ing to this field.

• TX_DATA: In this state, the payload of the frame is transmitted. In each cycle,

the payload is shifted out and sent by a PCS data request.

• TX_CRC: The CRC field is shifted out and sent with data requests. Here, the

CRC is not calculated during transmission. Instead it is calculated as soon as a

transmission is requested from the application layer.

• TX_CDEL, TX_ACK, TX_ADEL: In all of these states, a recessive bit is sent.

• TX_EOF, TX_EOF_TAIL: Once the frame fields are completed, TX_FSM

sends 7 recessive bits for 1 bit EOF and 6 trailing bits by invoking the PCS

data request primitive. After this state is completed, the MAC data confirma-

tion primitive is invoked and TX_FSM is reset to TX_IDLE since the frame

transmission is finished.

• TX_ERROR: This state only becomes accessible once an error in RX_FSM

is observed. Since TX_FSM cannot detect transmission errors by itself, it

uses RX_FSM to monitor the bus during transmission. Once the state is set

as TX_ERROR, it is reset to TX_IDLE and retransmission is started.

By implementing the two different automata given in Figure 3.3 & 3.4 and using

the services of PCS & PMA layers, the MAC layer performs high level operations

related to frame transmission and reception. Additionally, it implements an interface

for lower layers to communicate with application layer software.

26

3.1.2 Physical Coding Sub-layer

The Physical Coding Sub-layer operates as a mid layer between MAC and PMA. It is

responsible for maintaining bus synchronization and bit alignment. It uses the indi-

cations coming from PMA and provides service to the MAC layer. PCS periodically

receives node clock indications with current bus levels from the PMA layer. Once

it receives them, it directly performs edge detection by comparing the previous node

clock bus level with the current one. If it detects a rising edge, it checks its local

time quantum (TQ) counter. Since the length of each bit segment is determined by

the user during the initialization phase of SDCC, PCS can easily determine the cur-

rent segment when an edge is detected. If it determines that the current TQ is not in

the SYNC segment, it calculates its relative position to the sampling point by simply

subtracting the current position from sampling point. In this way, the phase error is

calculated according to [2]. Following that, it accesses the variable that holds the

MAC state to determine if the SOF bit is being transmitted on the bus for deciding if

hard synchronization can be performed. According to the MAC state, it resets the TQ

counter to perform hard synchronization or it adds the phase error to the TQ counter

to lengthen PHASE1 or shorten PHASE2.

Following the phase correction, PCS generates a PCS data indication to invoke the

MAC layer if the TQ counter reaches the sampling point. This indication is used to

advance the reception and transmission state machines in the MAC layer. Finally, if

the TQ counter reaches the bit boundary, it forwards the output buffer of the latest

PCS data request to the PMA layer to trigger transmission. The timings of these

operations are visualized in Figure 3.5.

3.1.3 Physical Medium Attachment Layer

The Physical Medium Attachment layer is the layer that is responsible for controlling

the underlying hardware where SDCC runs. It uses the hardware dependent timer to

generate a PMA node clock indication after each node clock for signalling PCS layer.

To perform that, it directly reads the time value from the timer hardware and assigns it

to a local time variable. Following that, it accesses the GPIO to sample the current bus

27

Figure 3.5: Timings of PCS Layer Operations

level. Finally, it passes this bus level to the PCS layer by generating a PCS node clock

indication. PCS uses this information to track the sampling point and forward the bus

level to the MAC layer if necessary. Here, the user can also register an application

layer node clock indication to be called whenever a node clock is incremented. By

using this functionality, the application layer can customize this indication to request

a frame transmission or prepare the data for future transmissions. Additionally, it can

monitor the bus in real-time.

After both PCS and application indication routines are generated and they are pro-

cessed by the upper layers, PMA reads the current hardware time and compares it

with the local time variable. If they are the same, PMA concludes that the next node

clock is not missed and there is no cycle overflow. If the local time variable and cur-

rent hardware time are different, PMA detects that a node clock is missed. Here, it has

to be noted that there is no error correction mechanism for cycle overflow. PMA just

notifies the user by a red LED in case of node clock miss. Specifically, a node clock

miss indicates that the CAN bit rate was set too fast for the microcontroller hardware.

The last operation handled by the PMA is performing necessary GPIO operations

according to PMA data requests sent by the PCS layer. Once PMA receives this

data request, it sets the GPIO pin that corresponds to the transmit pin of CAN to the

desired bus level. PMA performs this immediately since it relies on PCS to establish

the necessary bit alignment. As it is stated before, PMA performs these low level

operations on the actual hardware, therefore its behaviour is hardware dependent.

28

Hence, to clarify the interface between the underlying hardware and PMA layer, the

hardware dependent part of the SDCC will be explained in following sections.

3.2 Hardware Dependency of Software-Defined CAN Controller

As it is given in Figure 3.1, SDCC consists of three layers with different tasks. How-

ever, it can be examined in two parts by considering hardware dependency. SDCC is

implemented in the form of separate hardware dependent and hardware independent

modules, so that the upper controller layers are abstracted from the hardware. As it

is visualized in Figure 3.6, MAC and PCS layers are hardware independent and they

use the services of the hardware dependent PMA layer.

Figure 3.6: Software-Defined CAN Controller Hardware Dependency

In order to use SDCC on a custom board, the hardware dependent modules have to

be ported to the target. To achieve this, the user should implement two different

interfaces: timer module and general-purpose input/output (GPIO) module. Note that

GPIO and timer interfaces are used by the PMA layer to provide services to PCS and

MAC layers.

29

3.3 Porting Software-Defined CAN Controller

The main aim of this thesis is to employ the SDCC for the convenient implementa-

tion and experimental evaluation of software-based and hardware-based clock syn-

chronization algorithms. That is, as the first important contribution of this thesis, we

develop a suitable experimental setup and port the SDCC to the hardware components

of this setup.

3.3.1 Experimental Setup

To deploy SDCC and to evaluate the clock synchronization algorithms which will be

discussed in the next chapter, the experimental setup shown in Figure 3.7 is prepared.

As CAN nodes, STM32F4 [38] and STM32F429I Discovery Evaluation Kits [39] are

used.

In order to establish the connection between the nodes, the STM32F4 Discovery

board is connected to a MPC2551 CAN transceiver [40], since this evaluation kit

does not contain a built-in CAN transceiver. Differently, STM32F429I has a built-in

CAN transceiver that is connected to the GPIO pins and this is why there is a single

external transceiver in the setup. Please note that the same setup can be used without

CAN transceivers by simply removing MPC2551, disabling built-in CAN transceiver

on STM32F429I and connecting GPIO pins of the boards directly. However, since a

real CAN network would require such transceivers, experimental setup is built with

CAN transceivers to comply with CAN bus voltage characteristics given in [2].

Other than these two CAN nodes, there is an Arduino Mega [41] board connected to

the CAN nodes via a single wire. Although it does not play an active role in CAN

communication, it will be required for synchronously collecting data from the clock

synchronization algorithms discussed in following chapters. Additionally, a logic

analyzer is connected to the CANH and CANL channels to probe the signals and

parse CAN frames if it is necessary.

30

Figure 3.7: Experimental Setup Diagram

3.3.2 Porting SDCC to Experimental Setup

As shown in Figure 3.1, SDCC contains two hardware dependent modules for a hard-

ware timer and GPIO pins. Therefore, in order to establish a communication between

two nodes with SDCC, these two modules should be ported to the target. Since exper-

imental setup consists of STM32F4 Discovery and STM32F429I Discovery boards,

the GPIO and timer functions need to be adapted accordingly. In this section porting

steps of these functions will be explained in detail.

The hardware dependent timer module of SDCC consists of two functions: setup_ts

and read_ts. Function setup_ts is responsible for initializing the hardware timer

that will be used for clocking the CAN controller. It takes a prescaler value from the

application layer, and initializes the timer registers accordingly. Since STM32F429I

and STM32F4 boards are very similar, this function is common for both boards, as

it can be seen from the Source Code 1. The function first enables the TIM5 clock

from Reset and Clock Control Register. Then, it sets the prescaler value and enables

31

Source Code 1 Hardware Dependent Timer Functions

1 #if defined(GCC_ARM_STM32429I) || defined(GCC_ARM_STM32F4)
2 static void setup_ts(uint16_t prescaler)
3 {
4 /* TMR5 */
5 /* Enable timer clock */
6 RCC_APB1ENR |= 0x8;
7

8 /* Set prescaler */
9 TIM5_PRESCALER |= prescaler;

10

11 /* Clear counter */
12 TIM5_CNT = 0;
13

14 /* Enable counter */
15 TIM5_CR1 |= 0x1;
16

17 /* Update generation to flush registers */
18 TIM5_EGR |= 0x1;
19

20 /* Init virtual clock (TMR2) */
21 init_virtual_clock();
22 }
23 #define read_ts() TIM5_CNT

the counter. The function called read_ts is implemented as a one line definition that

accesses TIM5 counter register directly. Note that this is the very function that PMA

uses to infer the node clock.

In addition to the initialization of node clock that drives the CAN controller, there is

another initialization function init_virtual_clock called in line 21 of Source Code 1.

This initialization will be required for the time synchronization methods that will be

implemented on the SDCC. Differing from the timer that generates node clock, the

prescaler of this timer is set as zero for providing better measurement accuracy for

the next chapters. Note that function details are omitted, since it is very similar to the

function setup_ts. The only difference is that instead of TIM5, TIM2 timer module

is used.

The second hardware dependent module GPIO consists of five functions given in

Source Code 2 and 3. The first function init_gpio initializes two GPIO pins that

will be used for transmitting (TX) and receiving (RX) CAN frames. It enables re-

lated GPIO port clock, then configures the RX pin as input and TX pin as output.

It also configures push-pull state and slew rate of both pins. Finally, after initial-

32

Source Code 2 Hardware Dependent GPIO Functions Part 1

1 #ifdef GCC_ARM_STM32429I
2 static void init_gpio(void)
3 {
4 /* Enable Clock for GPIOA */
5 RCC_AHB1ENR |= 0x1;
6

7 /* Set PA12 output and P11 input*/
8 GPIOA_MODER |= 0x01000000;
9

10 /* Select output push-pull for PA11/PA12 */
11 GPIOA_OTYPER &= ~(0x00001800);
12

13 /* Select output speed to low for PA11/PA12 */
14 GPIOA_OSPEEDR &= ~(0x03C00000);
15

16 /* Select no pull-up/pull-down for PA11/PA12 */
17 GPIOA_PUPDR &= ~(0x03C00000);
18

19 /* Select mode as 0 for PA11/PA12 */
20 GPIOA_AFRH |= (0x00000000);
21

22 /* Set tx as recessive*/
23 gpio_tx_rec();
24 }
25

26 #define gpio_tx_rec() (GPIOA_BSRR |= PA12_SETMASK)
27 #define gpio_tx_dom() (GPIOA_BSRR |= PA12_CLRMASK)
28 #define gpio_tx_pin() ((GPIOA_ODR & PA12_MASK) >> 12)
29 #define gpio_rx_pin() ((GPIOA_IDR & PA11_MASK) >> 11)
30

31 #endif /* GCC_ARM_STM32429I */

ization is completed, the transmit pin is set as recessive to set the bus as idle. The

functions gpio_tx_rec and gpio_tx_dom are used for setting the TX pin value, while

gpio_tx_pin and gpio_rx_pin are used for retrieving the current levels of the RX and

TX pins. These functions are implemented as definitions since they only read/write

one register in the related GPIO port. Note that on STM32F429I, PA11 and PA12

pins are used for accessing the bus whereas PB5 and PB6 are used on STM32F4.

3.3.3 Running SDCC on the Experimental Setup

After the experimental setup is built, SDCC is ported to STM32F4 and STM32429I

by following the steps given in Section 3.3.2. Then, in order to establish the commu-

nication between the two boards, several example projects with SDCC are created.

After they are compiled and uploaded to the boards, it is observed that cycle over-

33

Source Code 3 Hardware Dependent GPIO Functions Part 2

1 #ifdef GCC_ARM_STM32F4
2 static void init_gpio(void)
3 {
4 /* Enable Clock for GPIOA */
5 RCC_AHB1ENR |= 0x2;
6

7 /* Set PB6 output and PB5 input*/
8 GPIOB_MODER |= 0x00001000;
9

10 /* Select output push-pull for PB5/PB6 */
11 GPIOB_OTYPER &= ~(0x00000060);
12

13 /* Select output speed to low for PB5/PB6 */
14 GPIOB_OSPEEDR &= ~(0x00003C00);
15

16 /* Select no pull-up/pull-down for PB5/PB6 */
17 GPIOB_PUPDR &= ~(0x00003C00);
18

19 /* Select mode as 0 for PB5 and PB6 */
20 GPIOA_AFRH |= (0x00000000);
21

22 /* Set tx as recessive*/
23 gpio_tx_rec();
24 }
25

26 #define gpio_tx_rec() (GPIOB_BSRR |= PB6_SETMASK)
27 #define gpio_tx_dom() (GPIOB_BSRR |= PB6_CLRMASK)
28 #define gpio_tx_pin() ((GPIOB_ODR & PB6_MASK) >> 6)
29 #define gpio_rx_pin() ((GPIOB_IDR & PB5_MASK) >> 5)
30

31 #endif /* GCC_ARM_STM32F4 */

flows are present. The reason for this is that the SDCC software misses CAN node

clocks since the CAN clock is configured to be too fast. This is why the function

setup_ts has a prescaler input that can be used to slow CAN clock down.

To achieve the maximum bit rate without any cycle overflows, all printout/debug func-

tions of SDCC are disabled, since most of the controller functions are time-critical.

Following that, in order to eliminate cycle overflows, the prescaler value is calculated

using the relation given in Equation 3.1. By using this equation, it is observed that if

the CAN bit rate is selected above 35kHz, node clocks start to be missed and the com-

munication ends up with cycle overflows. Therefore, the maximum CAN bit rate that

can be achieved with the experimental setup is calculated as 35kHz. Finally, since

our system clock is 180MHz, the prescaler is selected as 643 to set the CAN bit rate

34

to maximum.

can_clock_prescaler = system_clock/(can_bit_rate · can_bit_quanta) (3.1)

Following the solution of the cycle overflow problem, it is observed that CAN frames

are transmitted/received successfully by the nodes. Observing the physical CAN

frames given in Figure 3.8 enabled the implementation of clock synchronization al-

gorithms that will be discussed in the following chapters. Since software solutions

for clock synchronization over CAN mostly work on the application layer and they

are relatively easier compared to hardware solutions, they will be discussed first and

will be followed by hardware approaches.

Figure 3.8: Observed SDCC Waveform

35

36

CHAPTER 4

SOFTWARE APPROACH TO CLOCK SYNCHRONIZATION ON CAN

As described in Section 2.6, there are software and hardware approaches for providing

clock synchronization on CAN. Software-based approaches are realized as applica-

tions that operate on top of the CAN controller, while hardware-based approaches

tend to modify or extend the existing CAN controller to add clock synchronization

support. Software-based approaches seem to be more popular compared to hardware-

based approaches, since hardware solutions require tedious work even for a small

extension or modification to existing CAN controller.

This chapter focuses on software-based clock synchronization using the SDCC. To

this end, Section 4.1 and 4.2 give details about the implementation of two specific

methods: Gergeleit’s method in [18] and the improved software-based clock syn-

chronization (ISCS) method in [19]. These methods are then evaluated using the

experimental setup and the results are presented in Section 4.3.

4.1 Gergeleit’s Method

4.1.1 Description

The initial approach to clock synchronization on CAN was sending the timestamp

taken by one node to the others on the network. However, latency of the transmission

path is not deterministic due the possibility of blocking, arbitration loss and difference

in transmission speed [18]. Additionally, software running on the receiving nodes is

also critical, since it may change the instant, where each node processes the received

timestamp. Hence, it can be stated that it is not possible to provide precise clock

37

synchronization by simply broadcasting time information.

In order to eliminate this non-deterministic latency, [18] proposes a method that ex-

ploits the synchronous reception property of CAN frames. This method uses the

concept of a Time Master (TM) that periodically sends reference frames and Time

Slaves (TS) that correct their clock accordingly. Although a reference frame is noth-

ing but a timestamp taken by TM, sending it right away is not viable as it is discussed

in previous paragraph. Hence, [18] suggests that after a reference frame is received,

each node on the network takes and stores a local timestamp. By this way, it is en-

sured that all nodes record their local time at the same time instant. Subsequently,

when the TM decides to send a reference frame, it sends the timestamp that is taken

after the previous reference frame. In order to make it clear, this process is visualized

in Figure 4.1.

Figure 4.1: Gergeleit’s Algorithm for Clock Synchronization on CAN

After the TM sends the reference frame ts(n− 1) and it is received by every node on

the network at time tn, the TS nodes take the timestamps tssa(n), tssb(n). At the same

instant, TM takes the timestamp tsm(n). That is, this is the time instant, where [18]

exploits the simultaneous reception property of CAN. In this way, it is ensured that

each node on the network takes a local timestamp at the same time. Subsequently,

when the reference frame period is reached, the TM sends the latest timestamp that

it stored, tsm(n). After this frame is received at tn+1, each node takes a timestamp

again. Consequently, differing from TM node, the TS nodes correct their local clocks

by comparing their latest timestamps tssa(n) and tssb(n) with tsm(n). For example,

38

TS A can correct its local clock by adding tsm(n)− tssa(n) to its current value.

4.1.2 Implementation on SDCC

As it is stated before, the method in [18] is a software-based clock synchronization

method. It is designed for the software layer that is operating the CAN controller for

sending and receiving CAN frames. Hence, it does not require any changes in the

standard CAN controller. Knowing that time reference frames are just CAN frames

with unique identifiers, this method can directly be integrated into the application

layer software. Therefore, it is directly implemented on the application layer of the

SDCC, without changing any controller layers.

From the SDCC point of view, Gergeleit’s method may be integrated into the applica-

tion layer by using data indications and application node clock indications provided

by the MAC and PMA layers respectively. As they are explained in Section 3.1.1 and

3.1.3, MAC data indications notify the application software when a frame is received,

while PMA application node clock indication is triggered on every nominal period

of CAN clock. Please note that the functions which are called after these indications

should be implemented by the user and registered to the SDCC during initialization

of the driver. SDCC stores them as function pointers and calls the appropriate routine

when it is necessary.

In addition to the data and node clock indications, a data confirmation function can

be written and registered to the SDCC during initialization in order to observe trans-

mission errors on the Time Master side. As stated in Section 3.1, data confirmation

is triggered when a frame transmission is completed. In this way, the transmission

status of reference messages can be monitored. The implementation of Gergeleit’s

method on SDCC is outlined in Source Code 4 to 7.

Function time_master_data_ind given in Source Code 4 is implemented for the

tasks the TM has to perform after a reference frame is received. According to

Gergeleit’s method, the TM shall take a timestamp right after a reference frame is

received. This operation is implemented in a MAC data indication since they are

triggered when a CAN frame is received successfully. However, it has to be deter-

39

Source Code 4 Time Master Data Indication For Gergeleit’s Method

1 void time_master_data_ind(
2 struct CAN_XR_LLC *llc, unsigned long ts, uint32_t identifier,
3 enum CAN_XR_Format format, int dlc, uint8_t *data)
4 {
5 /* Gergeleit Method */
6 if (gergeleit_enabled && (identifier == TIMESYNC_CAN_ID) &&
7 (dlc == sizeof(tx_gerg_ref_msg))
8 {
9 prev_ts = read_virtual_clock();

10 }
11

12 /* Processing can be done here for non-reference frames */
13 /* ... */
14 }

mined if the received frame is a reference frame, because data indications are invoked

after each frame. This filtering can be done by using the identifier and dlc fields

provided by the data indication. As can be seen in lines 6-7 of Source Code 4, the

identifier of the received frame is compared to the predefined reference frame iden-

tifier TIMESYNC_CAN_ID. Additionally, the length of the frame is compared to the

size of the reference message, which is 4 bytes since we are using a 32-bit timer. Af-

ter it is ensured that a reference frame is received successfully, a timestamp is taken

and stored in a global variable prev_ts, to be sent in the next reference frame. After

this block is executed, additional application layer processing on the received frame

can be done, if necessary.

Source Code 5 Time Slave Data Indication For Gergeleit’s Method

1 void time_slave_data_ind(
2 struct CAN_XR_LLC *llc, unsigned long ts, uint32_t identifier,
3 enum CAN_XR_Format format, int dlc, uint8_t *data)
4 {
5 /* Gergeleit Method */
6 if (gergeleit_enabled && (identifier == TIMESYNC_CAN_ID) &&
7 (dlc == sizeof(tx_gerg_ref_msg))
8 {
9 cur_ts = read_virtual_clock();

10 set_virtual_clock(read_virtual_clock() + (*(uint32_t*)data - prev_ts));
11 prev_ts = cur_ts;
12 }
13

14 /* Processing can be done here for non-reference frames */
15 /* ... */
16 }

40

The function called time_slave_data_ind illustrated in Source Code 5 defines the

behaviour of time slaves when a frame is received. As for the TM, this function

is called after the reception of each CAN frame. Therefore, in lines 6-7 of Source

Code 5, reference frame is filtered by checking size and identifier of the frame. After

it is ensured that a reference frame is received, a timestamp is taken immediately.

Following that, clock correction is performed in line 10, by simply adding the dif-

ference between the previous local timestamp and the received one. After correction

is completed, the most recent local timestamp is transferred to prev_ts for the next

synchronization. After this operation is completed, the slave can perform additional

processing depending on its application.

Source Code 6 Time Master Node Clock Indication For Gergeleit’s Method

1 void time_master_nodeclock_ind(struct CAN_XR_PCS *pcs, int bus_level)
2 {
3 if (gergeleit_enabled && ref_msg_ready &&
4 !pcs->mac.state_data_req_pending)
5 {
6 /* Send the reference frame */
7 CAN_XR_MAC_Data_Req(&mac, TIMESYNC_CAN_ID, CAN_XR_FORMAT_CBFF,
8 sizeof(tx_gerg_ref_msg), (uint8_t *)&prev_ts);
9 ref_msg_ready = false;

10 }
11

12 /* Processing can be done here for non-reference frames */
13 /* ... */
14 }

As given in Source Code 6, time_master_nodeclock_ind is used for triggering

transmission of any kind of CAN frame. In Gergeleit’s method, this is needed by

the TM to send the reference frame by issuing a data request provided by the MAC

layer of SDCC. Since a node clock indication is issued on every nominal period of the

CAN clock and reference frames are periodic messages, the TM has to wait for this

period. As can be seen in lines 3 and 4 of Source Code 6, it is checked with a boolean

flag that is set to true with the help of the hardware timer when a frame is ready to be

sent. Additionally, the current state of MAC is checked to see if there is a pending data

request. If the period of the reference frame is reached and there is no frame pending,

the TM sends the latest timestamp by issuing a 32-bit data transmission request.

In order to observe reference frame transmission errors during communication, the

41

Source Code 7 Time Master Data Confirmation For Gergeleit’s Method

1 void time_master_data_conf(
2 struct CAN_XR_LLC *llc, unsigned long ts, uint32_t identifier,
3 enum CAN_XR_MAC_Tx_Status transmission_status)
4 {
5 if (gergeleit_enabled && (identifier == TIMESYNC_CAN_ID)
6 && (transmission_status != CAN_XR_MAC_TX_STATUS_SUCCESS))
7 error_cnt++;
8 }

function called time_master_data_conf given in Source Code 7 is implemented.

For filtering errors related to reference frames, identifier and transmission status are

checked. In addition to that, a static integer called error_cnt is incremented with

every error to monitor while experimental results are being examined. Note that, if a

transmission is not successful, SDCC issues a re-transmission automatically.

4.2 ISCS

4.2.1 Description

In order to improve the performance of existing software-based clock synchronization

algorithms on CAN, the Improved Software-Based Clock Synchronization (ISCS) is

introduced in [19]. [19] states that after timestamps are taken, the slave node clocks

continue to drift and this degrades the performance of the clock synchronization. To

solve this, timestamps should be taken closer to the next reference frame. Although it

can be achieved by increasing the frequency of the reference frames, this will create

an additional load on the bus. Hence, in order to solve this problem without increasing

the frequency of the reference messages, ISCS suggests making use of the reception

of each frame on the bus instead of only reference frames to take timestamps.

Differing from [18], after each frame reception, nodes take a timestamp and store

the previous one. Additionally, the reference frame has another field that is called

"validity flag" which nodes store for verifying that a reference frame is valid. This

flag is crucial when the TM issues the transmission of a reference frame but the bus

is busy, because an another node is transmitting a frame. Although the reference

42

frame will be transmitted after the bus becomes idle, other nodes will already have

taken another timestamp. In this case, the reference frame should be interpreted as

invalid since a slave node correcting its local clock according to this frame will cause

an increase in the clock difference between nodes. Therefore, each node toggles its

local validity flag when a timestamp is taken after a frame is received. When the TM

issues the transmission of a reference frame but the bus is busy, nodes on the bus

will toggle their validity flag after the frame that currently being transmitted. Hence,

the reference frame validity flag will become different from local validity flag of the

nodes. However, this frame will not be discarded, instead when TS nodes observe

a validity flag mismatch, they correct their local clocks according to the difference

between received timestamp and the previous timestamp that they stored. If the flags

match, they use the current timestamp instead of the previous one. Flag match and

flag mismatch cases of ISCS algorithm are visualized in Figure 4.2 and 4.3.

Figure 4.2: ISCS Algorithm Operation - Validity Flag Match

4.2.2 Implementation on SDCC

Like Gergeleit’s method, ISCS is purely based on software. Hence, without any mod-

ification of the SDCC, it will be implemented in the application layer by using data

indications and application node clock indications provided by SDCC. Data indica-

tions will be used for receiving the reference frame, taking a timestamp and clock

correction while application node clock indications will be used for issuing the trans-

mission of a reference frame when its period is reached. For debugging and monitor-

43

Figure 4.3: ISCS Algorithm Operation - Validity Flag Mismatch

ing purposes, the data confirmation mechanism of SDCC will also be used.

Differing from Gergeleit’s algorithm, the ISCS reference frame has an additional 1

bit field for the validity flag. Appending this validity flag after the 32-bit timestamp is

not a practical solution, because payload size of a CAN frame should be multiple of

a byte. Hence, transmitting 33-bit value will require 5 bytes. This unwanted situation

can be solved by sacrificing the last bit of the 32-bit timestamp and placing the validity

flag in that last bit. With this modification, the reference frame will fit into 4 bytes of

payload without any additional overhead. The data structure used for this purpose is

given in Source Code 8.

Source Code 8 Data Structure for ISCS Reference Frame

1 /* Definition of ISCS reference Message */
2 typedef struct _tx_ref_msg
3 {
4 union {
5 struct {
6 uint32_t vFlag : 1;
7 uint32_t TS : 31;
8 };
9 uint32_t msg;

10 };
11 }__attribute__((packed))tx_ref_msg;

Illustrated in Source Code 9 to 12, ISCS algorithm is implemented on SDCC with 4

different routines that are responsible for different tasks such as processing/generat-

ing reference frames, managing timestamps and validity flags and performing clock

44

correction.

Source Code 9 Data Indication For ISCS Method

1 void all_nodes_data_ind(
2 struct CAN_XR_LLC *llc, unsigned long ts, uint32_t identifier,
3 enum CAN_XR_Format format, int dlc, uint8_t *data)
4 {
5 /* ISCS Method */
6 if (iscs_enabled)
7 {
8 clockTS(identifier, dlc, data);
9 }

10

11 /* Processing can be done here for non-reference frames */
12 /* ... */
13 }

The function all_nodes_data_ind given in Source Code 9 is used for handling frame

receptions. It checks if ISCS is enabled and calls the lower level function clockTS

given in Source Code 10. Note that this function is common for all nodes and it is

registered to the SDCC to be called whenever slave and master nodes receive a frame.

Source Code 10 ISCS clockTS Function

1 void clockTS(uint32_t msg_id, int dlc, uint8_t *data)
2 {
3 /* Check if this is a valid time reference*/
4 if(msg_id == TIMESYNC_CAN_ID && dlc == (sizeof(tx_ref_msg)))
5 {
6 syncClock((tx_ref_msg *)data); // call the synchronization serivce
7 }
8

9 vFlag = !vFlag; // Toggle vFlag
10 prevTS = curTS;
11

12 /* take new timestamp */
13 curTS = read_virtual_clock();
14 }

The function clockTS given in Source Code 10, is responsible for calling the clock

correction routine, storing local timestamps and managing the validity flag. First, it

determines if the received frame is a reference frame by checking the frame identifier.

Then, it checks if the data size matches the size of a reference frame to perform a

sanity check. If it ensures that a reference frame is received, it calls the function

syncClock given in Source Code 11 to perform a clock correction. After that, it

toggles the validity flag which will be used to check the validity of the next reference

45

frame. Finally, it stores the latest timestamp and takes another one. Since this function

is called after every frame reception, the timestamp transmitted by the TM will be

closer to the reference frame, and this is the main advantage of ISCS method.

Source Code 11 ISCS syncClock Function

1 void syncClock(tx_ref_msg* Rx_M)
2 {
3 int32_t clockDiff;
4

5 if ((Rx_M->vFlag) == vFlag)
6 {
7 clockDiff = Rx_M->msg - curTS;
8 }
9 else

10 {
11 clockDiff = Rx_M->msg - prevTS;
12 }
13 /* Reset local timestamp and validity flag */
14 prevTS = 0;
15 curTS = 0;
16 vFlag = 0;
17

18 /* Correct local clock */
19 set_virtual_clock(read_virtual_clock() + clockDiff);
20 }

The function syncClock is called from the function clockTS whenever a reference

frame is received. The main purpose of this function is to process the reference frame

and correct the local clock accordingly. As is given in Section 4.2.1, clock correction

starts with the check of the validity flag of the received frame. Since the validity bit is

placed in the last bit of the reference frame, the local validity flag and the last bit of the

received frame are compared. If the flags match, the clock difference is determined

by the difference between received timestamp and current local timestamp. If flag

mismatch is observed, then the difference between the received timestamp and the

previous local timestamp is used instead. After calculation of the clock difference

given in lines 5-12 of Source Code 11, timestamps and validity flag are reset. Finally,

clock correction is performed according to the calculated clock difference.

Used for generating and sending a reference frame, time_master_nodeclock_ind

given in Source Code 12 is executed by the TM after each nominal period of the CAN

clock. First, it checks if ISCS is enabled and determines if the reference message

period is reached by reading a boolean flag set by the hardware timer. If a reference

46

Source Code 12 Time Master Node Clock Indication & refTx Function For ISCS

Method

1 void time_master_nodeclock_ind(struct CAN_XR_PCS *pcs, int bus_level)
2 {
3 if (iscs_enabled && ref_msg_ready)
4 {
5 refTx(&mac);
6

7 ref_msg_ready = false;
8 }
9

10 /* Processing can be done here for non-reference frames */
11 /* ... */
12 }
13

14 void refTx(struct CAN_XR_MAC *mac)
15 {
16 /* Create the reference message */
17 tx_ref_msg Tx_Ref_M;
18

19 /* Discard last bit of the timestamp and place validity flag */
20 Tx_Ref_M.msg = curTS;
21 Tx_Ref_M.vFlag = vFlag;
22

23 /* Send the reference frame */
24 CAN_XR_MAC_Data_Req(mac,
25 TIMESYNC_CAN_ID, CAN_XR_FORMAT_CBFF,
26 sizeof(tx_ref_msg), (uint8_t *)&Tx_Ref_M);
27 }

frame is ready to be sent, it calls the lower level function refTx. Given in line 14

of Source Code 12, function refTx generates the reference frame by discarding the

last bit of the latest timestamp and placing the validity flag there. After the reference

message is formed, the function transmits the reference frame by issuing a 32-bit data

transmission request.

4.3 Results

To evaluate the performance of the software-based clock synchronization algorithms

implemented on SDCC, the experimental setup described in Section 3.3.1 is used. As

can be seen from Figure 3.7, one additional microcontroller is connected to the CAN

nodes for performance measurement. Since the performance of a clock synchroniza-

tion algorithm can only be measured by obtaining the actual difference between local

clocks of the nodes, it should be ensured that each node collects data at the same time

47

instants. Hence, in order to perform such data collection, this additional microcon-

troller is used for triggering external interrupts on the CAN nodes. This is achieved

by programming this microcontroller to provide periodic positive/negative edges to

the CAN nodes via a wire. Additionally, a simple interrupt subroutine callback given

in Source Code 13 is written to collect data when a rising edge is observed on the pins

H2 and C1 of the STM32F4 and STM32F429I Evaluation Kits, respectively.

Source Code 13 Data Collection Interrupt Subroutine Callback

1 void gpio_exti_callback((void)
2 if (global_sync_lock == 1)
3 {
4 /* Reset virtual clock */
5 set_virtual_clock(0);
6 /* Reset Gergeleit globals */
7 prev_ts = 0;
8 cur_ts = 0;
9 /* Reset ISCS globals */

10 curTS = 0;
11 prevTS = 0;
12 }
13

14 else
15 {
16 if (data_coll_index != DATA_COLL_ARRAY_SIZE)
17 data_coll_array[data_coll_index++] = read_virtual_clock();
18 else
19 while(1);
20 }

The variable global_sync_lock is reset by the nodes when the first reference frame is

received. Hence, until a reference frame is received, the virtual clock of each node is

reset and the global variables used by synchronization algorithms are set to 0. This

operation is performed to provide an initial synchronization between the nodes for

evaluating the performance of the synchronization algorithms properly. After the first

reference message is received (global_sync_lock is reset), each node starts recording

its virtual time to data_coll_array after each external interrupt. When this array

becomes full, CAN nodes are stopped for evaluation of the collected data. As is

summarized in Figure 4.4, by performing the described data collection method, it is

ensured that each node collects data at the same time instants, denoted as td1, td2 and

td3.

In order to evaluate the performance of the clock synchronization algorithms under

48

Figure 4.4: Data Collection for Performance Measurement

different bus loads, additional bus traffic should be generated. Therefore, the CAN

nodes in the experimental setup shall be able to transmit dummy frames addition to

time reference frames. To add this capability, the code block given in Source Code 14

is appended to the application node clock indication of each CAN node. By executing

this block, additional frames are generated with period of dummy_frame_period.

Hence, different bus loads can simply be achieved by changing this variable. Note

that this variable is calculated according to the relation given in Equation 4.1.

Source Code 14 Creating Additional Traffic on the Bus

1 if (elapsed_time > dummy_frame_period)
2 {
3 CAN_XR_MAC_Data_Req(&mac,
4 DUMMY_FRAME_ID, CAN_XR_FORMAT_CBFF, 4, data);
5 }

dummy_frame_period = (dummy_frame_transmission_time · 2)/load (4.1)

After the described interrupt subroutine and traffic generation block are integrated

into the CAN nodes on the experimental setup, three different test cases are prepared

for performance evaluation of the software-based clock synchronization algorithms

on SDCC. In the first case, all clock synchronization algorithms are disabled and

the clock drift between the CAN nodes is measured. In the second and third cases,

49

the reference frame period is selected as 200 milliseconds and the performance of

the algorithms in Section 4.1 (Gergeleit) and 4.2 (ISCS) are measured under three

different bus loads of 100%, 80% and 40%. In all three cases, the virtual clock of each

node is sampled with a period of 2.5 milliseconds for 65 seconds. Afterwards, in order

to calculate average clock drift between nodes, the differences of collected samples

are obtained first. Then, the sum of the absolute clock differences is divided by the

number of samples. Finally, this value is converted into microseconds by simply

dividing it by clock frequency, which is 180MHz in our case. For the maximum

clock drift, the maximum absolute clock difference is converted into microseconds.

After performing the first test case over 10 times, the results given in Table 4.1 are

obtained. As is visualized in Figure 4.5, when no clock synchronization method is

applied, the virtual clocks of CAN nodes linearly drifted apart 5269.36 microseconds

after 65 seconds. By using this value, clock drift between CAN nodes is calculated

as 81 ppm, which is realistic according to the discussion in Section 2.4 since we are

using different boards with different oscillators for the nodes.

Table 4.1: Clock Drift Measurement Without Clock Synchronization Algorithm

Parameters No Clock Synchronization

Average Clock Drift 2635.38 us

Maximum Clock Drift 5269.36 us

After performing the second and third test case over 15 times, the average and maxi-

mum clock drift values for different bus loads in Table 4.2 and Figure 4.6 are obtained.

It is observed that ISCS decreased the maximum clock drift by 54% compared to

Gergeleit’s method. For lower bus loads of 80% and 40%, the improvement in the

maximum clock drift is gradually reduced to 46%, since the performance of ISCS di-

rectly depends on the bus load. As it can be seen from Figure 4.7 on which the clock

drift performances of both algorithms are compared, Gergeleit’s method frequently

performed overcorrections. On the other hand, ISCS manages to keep the clock drift

in a smaller interval. As a result, the maximum clock drift is significantly decreased

when ISCS is applied. In addition, as it can be inferred from Figure 4.8, the variance

50

Figure 4.5: Evaluation of the Clock Drift between the CAN nodes

in the clock drift is also decreased drastically using the ISCS algorithm.

As in the case with the maximum clock drift, ISCS outperformed Gergeleit’s method

by 34% under full bus load when the average clock drift is considered. This im-

provement is decreased to 21% for lower bus loads, because of ISCS’s performance

dependency on the bus load. This dependency can be explained with ISCS’s times-

tamp mechanism. Differing from Gergeleit’s method, ISCS makes use of each frame

on the bus to provide timestamps closer to the reference frames. Therefore, a decrease

in the overall CAN frame frequency eventually increases the time duration between

timestamps and reference frames and this degrades the performance of ISCS.

51

Table 4.2: Performance of ISCS and Gergeleit’s Method on SDCC Under Different

Bus Loads (with 81 ppm Clock Drift)

Parameters Gergeleit’s Method [18] ISCS [19]

Average Clock Drift

100% Load 11.37 us 7.51 us

80% Load 11.60 us 7.78 us

40% Load 11.62 us 9.22 us

Maximum Clock Drift

100% Load 37.26 us 17.49 us

80% Load 35.65 us 19.51 us

40% Load 36.9 us 19.65 us

Figure 4.6: Performance of ISCS and Gergeleit’s Method on SDCC Under Different

Bus Loads (with 81 ppm Clock Drift)

52

Figure 4.7: Clock Drift Comparison of ISCS and Gergeleit’s Method on SDCC Under

Different Bus Loads (with 81 ppm Clock Drift)

53

Figure 4.8: Clock Drift Histograms of ISCS and Gergeleit’s Method on SDCC (with

81 ppm Clock Drift)

54

CHAPTER 5

HARDWARE APPROACH TO CLOCK SYNCHRONIZATION ON CAN

This chapter is concerned with the modification of the SDCC in order to implement

the hardware-based clock synchronization algorithm in [19]. Section 5.1 briefly dis-

cusses the difficulties when modifying CAN controllers and Section 5.2 describes the

hardware-based clock synchronization method in [19]. Implementation details for

modifying the SDCC are given in Section 5.3 and experimental results are presented

in Section 5.3.1.

5.1 Hardware Perspective on CAN Clock Synchronization

In addition to the software-based approaches given in Chapter 4, a hardware-based ap-

proach to clock synchronization on CAN will be investigated in this chapter. Differing

from software-based approaches, hardware-based approaches focus on modifying or

extending the CAN controller. Therefore, it requires thorough knowledge in hardware

description languages such as VHDL or Verilog [42, 43]. Moreover, considering that

the CAN controller itself is being modified, it is possible to end up violating the CAN

protocol. On the other hand, hardware-based approaches are able to fully access the

information in the underlying hardware. As a result, the algorithm for clock synchro-

nization will be able to use all resources provided by the controller. Therefore, this

may help to increase the overall performance of clock synchronization.

Unlike regular CAN controllers, the SDCC is a software-based controller that im-

plements all CAN controller layers in the C programming language [37]. Hence,

hardware approaches for clock synchronization on CAN can be implemented without

diving into the hardware design, because all information embedded in regular CAN

55

controllers can directly be accessed from the application layer of the SDCC. There-

fore, by using the SDCC, required modifications on the controller for clock synchro-

nization can be implemented in software. In the following sections, a hardware-based

solution called Phase Error-Based Clock Synchronization algorithm given in [19] will

be described and its implementation on SDCC will be explained in detail. After that,

its performance on the experimental setup will be evaluated.

5.2 Description of the PECS Algorithm

To provide hardware assistance to current software solutions for clock synchroniza-

tion on CAN, the Phase-Error Based Clock Synchronization (PECS) algorithm is in-

troduced in [19]. Differing from existing clock synchronization methods, PECS per-

forms continuous clock correction between reference frames. Since the local clock of

each node experiences the same clock drift as the CAN system clock, PECS suggests

that the built-in phase error correction mechanism of CAN controllers can be used for

clock correction.

Instead of directly using the phase error information provided by the CAN controller,

the PECS algorithm keeps track of hard synchronization and soft synchronization

events to avoid erroneous clock corrections. It performs clock correction when a

soft synchronization takes place after the arbitration period. This is the case because

different nodes may be transmitting at the same time until the winner of the contention

period is decided during the arbitration period. Therefore, if a clock correction is

performed using the phase error information during the arbitration period, it may

create additional clock differences between nodes. For this reason, PECS dictates all

nodes to synchronize with the transmitter, once the arbitration period is completed.

Also, since different nodes access the bus during the acknowledgement period for

sending an ACK or NACK, PECS does not perform clock synchronization during the

acknowledgement period of a CAN frame.

The valid and invalid edges for the clock correction performed by the PECS algorithm

are illustrated in Figure 5.1. At the time instants t1 and t4, node B and C observe that

arbitration and acknowledgment are taking place, hence they do not perform clock

56

correction. However, once they perform soft synchronization at the instants t2 and t3,

they correct their clock according to PECS, since it is certain that only one node is

transmitting. According to PECS, at the time instants t2 and t3, node B and C read

the calculated phase error from the CAN controller and update their clocks according

to (5.1), where TQ represents the nominal period of the CAN system clock and ep

represents the calculated phase error.

Figure 5.1: Valid Clock Correction Edges for PECS

virtual_clock = virtual_clock − (ep · TQ) (5.1)

In this equation, the value of TQ shall be calculated according to the relation between

the virtual clock and CAN system clock to perform clock correction. In order to

calculate it, (5.2) can be used.

TQvirtualclockticks = virtual_clock_frequency/(quanta_per_bit · CAN_bit_rate)

(5.2)

Unlike other algorithms, PECS is designed to increase the accuracy of the existing

clock synchronization algorithms by providing some hardware support. It does not

focus on synchronizing different nodes with reference frames. Instead, it continu-

ously performs clock correction according to phase error for reducing the clock drift

between reference frames. Hence, without a method that focuses on synchronizing

57

different nodes, PECS will not solve the clock drift problem. Instead, it should be

integrated to existing algorithms like Gergeleit and ISCS for better performance.

5.3 Implementation of the PECS Algorithm on SDCC

Differing from Gergeleit’s method and ISCS, PECS requires modifications on the

CAN controller hardware. This is because PECS algorithm needs access to the phase

error value calculated by the controller hardware and most of the time it is not acces-

sible. However by using SDCC, the user can directly access all information that the

CAN controller calculates or uses. Hence, accessing the phase error with software

becomes possible. Unlike other clock synchronization methods, PECS does not re-

quire transmission of a CAN frame, because it uses the services of other algorithms

such as Gergeleit’s method or ISCS. Therefore, different from the implementations in

Section 4.1 and Section 4.2, the application layer primitives such as data request and

data indication will not be used. Instead, a lower layer primitive that calculates the

phase error will be modified for implementing PECS.

The PCS layer primitive that is responsible for phase error calculation/correction is

called "quantumclock_m_ind". It is invoked by the PMA layer on the edges of

the nominal bit time. In addition to its phase error related operations, it detects the

edges on the bus and performs soft and hard synchronization accordingly. Since

PECS requires the phase error information and needs to detect the instants where

hard and soft synchronization take place, it can be implemented by modifying the

function quantumclock_m_ind. This modification is illustrated in Source Code 15,

by omitting the parts that are not changed.

As is given in Source Code 15, the function quantumclock_m_ind performs edge

detection at the beginning of its execution. Then it calculates the phase error and

performs a hard or soft synchronization if necessary. Since PECS should be per-

formed after a soft synchronization, the code block given in lines 10-18 of Source

Code 15 is added. In this code block, it is ensured that a soft synchronization is

performed and the phase error is checked to be nonzero to perform virtual clock

correction. Additionally, since PECS dictates that clock correction shall only be

58

performed between arbitration and acknowledgement fields of a CAN frame, this is

checked by using the data structures provided by the SDCC. The state of the RX_FSM

(pcs->mac->state.rx_fsm_state) explained in Section 3.1, is checked to

be between identifier and acknowledgment states for filtering the valid conditions for

virtual clock correction. Once it is ensured that conditions are met for PECS clock

correction, the virtual clock is updated according to the Equation 5.1.

Source Code 15 Required modification on SDCC for PECS Algorithm

1 static void quantumclock_m_ind(
2 struct CAN_XR_PCS *pcs, unsigned long ts, int bus_level)
3 {
4 /* Edge detection and Phase Error Calculation */
5 /* ... */
6

7 /* Checking Soft or Hard Sync is necessary */
8 /* ... */
9

10 /* Added for PECS Algorithm */
11 /* Check if edge is valid for PECS */
12 if (pecs_enabled && soft_sync && (phase_error != 0) &&
13 (pcs->mac->state.rx_fsm_state > CAN_XR_MAC_RX_FSM_RX_IDENTIFIER) &&
14 (pcs->mac->state.rx_fsm_state < CAN_XR_MAC_RX_FSM_RX_ACK))
15 {
16 set_virtual_clock(read_virtual_clock() -
17 (phase_error * TQ_VCLOCK_CYCLES));
18 }
19

20 /* Sampling and transmission request handling */
21 /* ... */
22 }

Please note that enabling PECS algorithm does not require modifications on the upper

layer clock synchronization methods, since PECS operates independently. Just pro-

viding virtual clock access to PECS is enough for PECS and upper layer algorithm to

work together.

5.3.1 Results

As described before, the PECS algorithm requires an additional reference message-

based method to perform clock synchronization between CAN nodes on the network.

As a result, evaluating its performance alone is not meaningful. Therefore, in this

section, the performance of PECS will be evaluated by pairing it with two software-

59

based clock synchronization algorithms, ISCS and Gergeleit’s Method. In order to

perform data collection and to calculate average and maximum clock drift values, the

exact methods described in Section 4.3 will be used.

For performance evaluation, PECS is paired with ISCS and Gergeleit’s method under

three different bus loads of 100%, 80% and 40%. As in Section 4.3, the reference

frame period is selected as 200 ms and the virtual clock of each node is sampled

at a period of 2.5 ms for 65 seconds. After repeating each case over 15 times, the

average and maximum clock drift values for different bus loads in Table 5.1 and

5.2 are obtained. Note that the results in Table 4.1 are also added to this table for

observing the performance difference after PECS is enabled in both of the methods.

As can also be seen from Figure 5.2, on which the clock drift performance of PECS

on ISCS and Gergeleit’s method are compared, the PECS algorithm decreases the

average and maximum clock drifts in both algorithms significantly. It improves the

performance of Gergeleit’s method by 40% under full bus load, when the average

clock drift is considered. Similarly, the average clock drift for ISCS is decreased by

60% under full load when PECS is enabled. This decrease in the average and maxi-

mum clock drift is a direct result of performing clock corrections between reference

frames according to the phase error, because the virtual clock of each node experi-

ences the same amount of drift with its local CAN clock. Also note that, when bus

load is decreased, it is observed that the improvement in the clock drifts also drops for

both algorithms. Under 40% bus load, PECS increased the performance of Gergeleit’s

method and ISCS by 23% and 28%, respectively. This decrease in the improvement

can be explained with the dependency of the number of clock corrections performed

by PECS on the number of frames (signal edges) on the bus. Since PECS performs

clock corrections after soft synchronizations, decreasing the bus load also decreases

the number of clock corrections performed, as it can clearly be seen from Figure 5.3

and 5.4. As a result, it can be stated that the performance improvement of PECS

increases with the bus load.

60

Table 5.1: Performance of Gergeleit’s Method with PECS on SDCC Under Different

Bus Loads (with 81 ppm Clock Drift)

Parameters
Gergeleit’s

Method [18]

Gergeleit’s

Method [18]

+ PECS [19]

Average Clock Drift

100% Load 11.37 us 7.09 us

80% Load 11.60 us 8.69 us

40% Load 11.62 us 8.92 us

Maximum Clock Drift

100% Load 37.26 us 21.92 us

80% Load 35.65 us 23.89 us

40% Load 36.9 us 26.81 us

Table 5.2: Performance of ISCS with PECS on SDCC Under Different Bus Loads

(with 81 ppm Clock Drift)

Parameters ISCS [19] ISCS + PECS [19]

Average Clock Drift

100% Load 7.51 us 2.72 us

80% Load 7.78 us 3.67 us

40% Load 9.22 us 6.67 us

Maximum Clock Drift

100% Load 17.49 us 15.94 us

80% Load 19.51 us 18.9 us

40% Load 19.65 us 19.01 us

61

Figure 5.2: Performance of PECS on SDCC Under Different Bus Loads (with 81 ppm

Clock Drift)

62

Figure 5.3: Clock Drift Comparison of Gergeleit’s Method with PECS on SDCC

Under Different Bus Loads (with 81 ppm Clock Drift)

63

Figure 5.4: Clock Drift Comparison of ISCS with PECS on SDCC Under Different

Bus Loads (with 81 ppm Clock Drift)

64

CHAPTER 6

CONCLUSION

The Controller Area Network (CAN) is the most widely used in-vehicle communica-

tion bus. Although CAN has been used without modifications since its official release

in 1986, the recent advances in automotive technology require additional features of

CAN such as clock synchronization. Since the CAN functionality is generally imple-

mented in custom hardware, the development of such modifications generally requires

a large effort.

Accordingly, this thesis is based on the realization of a Software-Defined CAN Con-

troller (SDCC), which implements the CAN functionality in software and hence al-

lows modifications to the original CAN protocol. The thesis first describes the layered

architecture of the SDCC including the working principles of the underlying state

machines. Then, an examination of the hardware dependency of the SDCC enables

the deployment on different platforms and the steps followed for porting the hardware

dependent modules to the experimental setup are given. In order to establish the func-

tionality of the SDCC, different software-based clock synchronization algorithms for

CAN are realized on the application layer of the SDCC. These algorithms include

Gergeleit’s method and the novel Improved Software-based Clock Synchronization

(ISCS) algorithm. Following the implementation of the software-based methods, the

possibility of modifying the CAN controller is exploited by implementing a hardware-

based clock synchronization approach which uses the bit-level timing of CAN. The

Phase Error-Based Clock Synchronization (PECS) is first explained in detail and then

implemented by modifying the Physical Coding Sub-layer of the SDCC. Finally, the

performance of all the clock synchronization algorithms is evaluated and compared

based on experiments.

65

The implementation of the SDCC on the experimental setup proved that communi-

cation between CAN nodes can be established without a typical CAN controller im-

plemented in hardware. Furthermore, it is shown that modifications or extensions on

CAN can be performed without requiring a hardware design of the CAN controller.

Additionally, the results of clock synchronization algorithms implemented on SDCC

indicated that promising clock precision values can be achieved without any hardware

controller support and clock synchronization algorithms that require modifications of

the CAN controller can be validated in software.

The future work includes porting the SDCC to different microcontrollers and increas-

ing the maximum CAN bit rate that can be achieved. Additionally, the bit timing

and bus synchronization primitives of SDCC can be converted into interrupt-driven

functions to enable the user to perform other tasks while the SDCC is waiting for an

interrupt to advance its state machine.

66

REFERENCES

[1] M. Lévesque and D. Tipper, “A survey of clock synchronization over

packet-switched networks,” IEEE Communications Surveys Tutorials, vol. 18,

pp. 2926–2947, Fourthquarter 2016.

[2] ISO, ISO11898, Road Vehicles—Interchange of Digital Information— Con-

troller Area Network (CAN) for High-Speed Communication, 1993.

[3] K. W. Schmidt, “Robust priority assignments for extending existing con-

troller area network applications,” IEEE Transactions on Industrial Informatics,

vol. 10, pp. 578–585, Feb 2014.

[4] A. Valenzano and G. Cena, “Controller area networks for embedded systems,”

in Networked Embedded Systems (R. Zurawski, ed.), pp. 15–1–15–38, Boca

Raton, FL, USA: CRC Press, 2009.

[5] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network (CAN)

schedulability analysis: Refuted, revisited and revised,” Real-Time Systems,

vol. 35, pp. 239–272, 02 2007.

[6] K. Tindell, A. Burns, and A. Wellings, “Calculating controller area net-

work (CAN) message response times,” Control Engineering Practice, vol. 3,

pp. 1163–1169, 1995.

[7] ISO, ISO17458, Road Vehicles — FlexRay Communications System, 2013.

[8] M. Grenier, L. Havet, and N. Navet, “Pushing the limits of CAN - scheduling

frames with offsets provides a major performance boost,” in Proc. of the 4th

European Congress Embedded Real Time Software, January 2008.

[9] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, M. Walther, and

R. Bosch, “Time triggered communication on CAN,” Proceedings of the 7th

Int. CAN Conference, Amsterdam, The Netherlands, 2000.

67

[10] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “CAN with extensible in-

frame reply: Protocol definition and prototype implementation,” IEEE Transac-

tions on Industrial Informatics, vol. 13, pp. 2436–2446, Oct 2017.

[11] G. Bloom, G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “Supporting secu-

rity protocols on CAN-based networks,” in 2017 IEEE International Conference

on Industrial Technology (ICIT), pp. 1334–1339, March 2017.

[12] T. Ziermann, S. Wildermann, and J. Teich, “CAN+: A new backward-

compatible controller area network (CAN) protocol with up to 16× higher data

rates.,” in 2009 Design, Automation Test in Europe Conference Exhibition,

pp. 1088–1093, April 2009.

[13] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca, “The FTT-CAN protocol

for flexibility in safety-critical systems,” IEEE Micro, vol. 22, pp. 46–55, July

2002.

[14] G. Cena, I. Bertolotti, T. Hu, and A. Valenzano, “On a software-defined CAN

controller for embedded systems,” Computer Standards & Interfaces, vol. 63,

pp. 43–51, March 2019.

[15] A. Diarra, T. Hogenmueller, A. Zimmermann, A. Grzemba, and U. A. Khan,

“Improved clock synchronization start-up time for ethernet avb-based in-vehicle

networks,” in 2015 IEEE 20th Conference on Emerging Technologies Factory

Automation (ETFA), pp. 1–8, Sep. 2015.

[16] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin, “Intra-

vehicle networks: A review,” IEEE Transactions on Intelligent Transportation

Systems, vol. 16, pp. 534–545, April 2015.

[17] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances and

trends in on-board embedded and networked automotive systems,” IEEE Trans-

actions on Industrial Informatics, vol. 15, pp. 1038–1051, Feb 2019.

[18] M. Gergeleit and H. Streich, “Implementing a distributed high resolution real-

time clock using the CAN-bus,” Proceedings of the 1st international CAN Con-

ference, 1994.

68

[19] M. Akpinar, K. W. Schmidt, and E. G. Schmidt, “Improved clock synchroniza-

tion algorithms for the controller area network (CAN),” in 2019 28th Interna-

tional Conference on Computer Communication and Networks (ICCCN), pp. 1–

8, July 2019.

[20] W. Stallings, Data and Computer Communications. New Jersey: Pearson Edu-

cation, Inc, 10 ed., 2014.

[21] L. E. Frenzel, Handbook of Serial Communications Interfaces: A Com-

prehensive Compendium of Serial Digital Input/Output (I/O) Standards. Ox-

ford: Elsevier Science & Technology, 1 ed., 2016.

[22] R. Z. Uwe Koppe, Christian Schlegel, “The future of CANopen FD.” [Online].

Available: http://www.microcontrol.net/download/presse/interview_canopen_

fd_koppe_cia_en.pdf, [Accessed 20 Jan. 2020].

[23] C. Cristian, Flaviu & Fetzer, “The timed asynchronous distributed system

model. parallel and distributed systems,” IEEE Transactions on. 10. 642 - 657,

1999.

[24] C. A. Latha and H. L. Shashidhara, “Clock synchronization in distributed sys-

tems,” in 2010 5th International Conference on Industrial and Information Sys-

tems, pp. 475–480, July 2010.

[25] A. Monot, N. Navet, and B. Bavoux, “Impact of clock drifts on CAN frame

response time distributions,” in ETFA2011, pp. 1–4, Sep. 2011.

[26] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed real-time

systems,” IEEE Transactions on Computers, vol. C-36, pp. 933–940, Aug 1987.

[27] P. Veríssimo, L. Rodrigues, and A. Casimiro, “Cesiumspray : A precise and ac-

curate global time service for large-scale systems,” Real-Time Systems, vol. 12,

pp. 243–294, 05 1997.

[28] P. Verissimo and L. Rodrigues, “A posteriori agreement for fault-tolerant clock

synchronization on broadcast networks,” in [1992] Digest of Papers. FTCS-

22: The Twenty-Second International Symposium on Fault-Tolerant Computing,

pp. 527–536, July 1992.

69

http://www.microcontrol.net/download/presse/interview_canopen_fd_koppe_cia_en.pdf
http://www.microcontrol.net/download/presse/interview_canopen_fd_koppe_cia_en.pdf

[29] F. Cristian, “Probabilistic clock synchronization,” Distributed Computing,

vol. 3, pp. 146–158, Sep 1989.

[30] K. P. Birman, “Clock synchronization and synchronous systems,” in Reliable

Distributed Systems: Technologies, Web Services, and Applications, pp. 493–

508, New York, NY: Springer New York, 2005.

[31] J. B. G. Rodriguez-Navas and J. Proenza, “Hardware design of a high-precision

and fault-tolerant clock subsystem for CAN networks,” in Proceedings of the

5th IFAC International Conference on Fieldbus Systems and their Applications,

Aveiro, Portugal, 2003.

[32] B. Donnelly and J. Cosgrove, “Achieving microsecond accuracy with 32 bit mi-

crocontrollers using the controller area network (CAN),” in Proc. Irish Signals

and Systems Confs, pp. 508–513, 2004.

[33] C. Eriksson, H. Thane, and M. Gustafsson, “A communication protocol for hard

and soft real-time systems,” in Proceedings of the Eighth Euromicro Workshop

on Real-Time Systems, pp. 187–192, June 1996.

[34] J. Allan and D. Lee, “Fault-tolerant clock synchronization with microsecond-

precision for CAN networked systems,” in Proceedings of the 9th International

CAN Conference, 2003.

[35] Autosar, “Specification of Time Synchronization over CAN.” [Online]. Avail-

able: https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/

AUTOSAR_SWS_TimeSyncOverCAN.pdf, [Accessed 25 Dec. 2020].

[36] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-tolerant, and

high-precision clock synchronization for the controller area network,” IEEE

Transactions on Industrial Informatics, vol. 4, pp. 92–101, May 2008.

[37] ISO, ISO/IEC 9899:2018: Information technology — Programming languages

— C, 2018.

[38] STMicroelectronics, Discovery kit with STM32F407VG MCU User Manual,

UM1472, 2017. Rev 6.

70

https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_TimeSyncOverCAN.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_TimeSyncOverCAN.pdf

[39] STMicroelectronics, STM32429I-EVAL evaluation board for the STM32F429

line User Manual, UM1667, 2015. Rev 1.

[40] Microchip Technology, MCP2551 High-Speed CAN Transceiver Datasheet,

DS21667D, 2003.

[41] Arduino, “ARDUINO MEGA 2560.” [Online]. Available:

https://store.arduino.cc/usa/mega-2560-r3, [Accessed 17 Jan. 2020].

[42] “IEEE Standard for VHDL Language Reference Manual,” IEEE Std 1076-2019,

pp. 1–673, Dec 2019.

[43] “IEEE Standard for Verilog Hardware Description Language,” IEEE Std 1364-

2005 (Revision of IEEE Std 1364-2001), pp. 1–590, April 2006.

71

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background Information
	Controller Area Network Protocol
	Controller Area Network Node
	Controller Area Network Bit Timing
	Clock Drift
	Clock Synchronization
	Related Work
	Current Clock Synchronization Algorithms for CAN
	Software Defined CAN Controller

	Software Defined CAN Controller
	Software-Defined CAN Controller Layers
	Medium Access Control Layer
	Physical Coding Sub-layer
	Physical Medium Attachment Layer

	Hardware Dependency of Software-Defined CAN Controller
	Porting Software-Defined CAN Controller
	Experimental Setup
	Porting SDCC to Experimental Setup
	Running SDCC on the Experimental Setup

	Software Approach to Clock Synchronization on CAN
	Gergeleit's Method
	Description
	Implementation on SDCC

	ISCS
	Description
	Implementation on SDCC

	Results

	Hardware Approach to Clock Synchronization on CAN
	Hardware Perspective on CAN Clock Synchronization
	Description of the PECS Algorithm
	Implementation of the PECS Algorithm on SDCC
	Results

	Conclusion
	REFERENCES

