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ABSTRACT

EFFICIENT ALGORITHMS FOR CONVOLUTIONAL INVERSE
PROBLEMS IN MULTIDIMENSIONAL IMAGING

Doğan, Dı̇dem

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Figen S. Öktem

February 2020, 136 pages

Computational imaging is the process of indirectly forming images from measure-

ments using image reconstruction algorithms that solve inverse problems. In many

inverse problems in multidimensional imaging such as spectral and depth imaging,

the measurements are in the form of superimposed convolutions related to the un-

known image. In this thesis, we first provide a general formulation for these prob-

lems named as convolutional inverse problems, and then develop fast and efficient

image reconstruction algorithms that exploit sparse models in analysis and synthe-

sis forms. These priors involve sparsifying transforms or data-adaptive dictionaries

that are patch-based and convolutional. The numerical performance of the developed

algorithms is evaluated for a three-dimensional image reconstruction problem in spec-

tral imaging. The results demonstrate the superiority of the convolutional dictionary

prior over others. The developed algorithms are also extended to the compressive

setting with compressed convolutional measurements.
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ÖZ

ÇOK BOYUTLU GÖRÜNTÜLEMEDEKİ EVRİŞİMSEL TERS
PROBLEMLER İÇİN ETKİN ALGORİTMALAR

Doğan, Dı̇dem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Figen S. Öktem

Şubat 2020 , 136 sayfa

Hesaplamalı görüntülemede, ters problem çözülerek dolaylı ölçümlerden görüntü ge-

riçatım yoluyla elde edilir. Spektral ve derinlik görüntüleme gibi çok boyutlu görün-

tülemedeki birçok ters problemde, ölçümler bilinmeyen görüntünün evrişimlerinin

üst üste binmesinden oluşur. Bu tezde, ilk olarak bu tür problemler evrişimsel ters

problemler adı altında genel bir çatıda ele alınmakta, ve ardından analiz ve sentez

formundaki seyreklik modelleri kullanılarak hızlı ve etkin görüntü geriçatım algorit-

maları geliştirilmektedir. Bu modeller seyrekleştirici dönüşümler ve veriye uyarlanır

yama tabanlı evrişimsel sözlükler içermektedir. Geliştirilen algoritmalar, sıkıştırılmış

ölçümlerin olduğu durumlar için de kullanılabilmektedir. Algoritmaların sayısal ba-

şarımı spektral görüntülemede karşılaşılan üç boyutlu bir görüntü geriçatım problemi

için analiz edilmektedir. Sonuçlar evrişimsel sözlük modelinin görüntü başarımı açı-

sından diğer önsellerden üstün olduğunu göstermektedir.

Anahtar Kelimeler: evrişimsel ters problem, görüntü geriçatımı, seyreklik, seyrekleş-
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tirici dönüşüm, yama-tabanlı sözlük, evrişimsel sözlük, sıkıştırmalı algılama
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CHAPTER 1

INTRODUCTION

Multidimensional imaging, that is, capturing image data in more than two dimen-

sions, has been a prominent field with ubiquitous applications in the physical and

life sciences [1, 2]. The multidimensional image data, including the spatial, spectral,

and temporal distributions of light (or an electromagnetic field), provide unprece-

dented information about the chemical, physical and biological properties of targeted

scenes [3–6].

While the objective of conventional photography is to measure only the two-dimensional

spatial distribution of light, the objective of multidimensional imaging is to form im-

ages of a radiating scene as a function of more than two variables. That is, the goal

is to obtain a data cube of high dimensions, for example, in three spatial coordinates

(x, y, z), wavelength (λ) and time (t). However, obtaining this high-dimensional im-

age data with inherently two-dimensional detectors poses intrinsic limitations on the

spatio-spectral-temporal extent of these techniques.

Conventional techniques circumvent this limitation by sequential scanning of a se-

ries of two-dimensional measurements to form the high-dimensional image data. For

example, in spectral imaging, the three-dimensional data cube (x, y, λ) is typically

obtained by either using a spectrometer with a long slit and scanning the scene spa-

tially, or by using an imager with a series of spectral filters and scanning the scene

spectrally. As a result, these scanning-based conventional methods generally suffer

from low signal-to-noise ratio (SNR), high acquisition time, and temporal artifacts

for dynamic scenes. Moreover, the attainable resolutions (such as temporal, spatial,

and spectral) are inherently limited by the physical components involved.
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To overcome these drawbacks, computational imaging approaches have been devel-

oped to pass on some of the burden to a reconstruction algorithm [6–14]. In these

approaches, image data is reconstructed by combining information from multiplexed

measurements with the additional prior (statistical or structural) knowledge about the

unknown image.

In many image reconstruction problems in multidimensional imaging (such as spec-

tral and depth imaging), the measurements are in the form of superimposed convolu-

tions. That is, the relationship between the measured (sensor) data and the unknown

image can often be adequately characterized by a single convolution operation or sum

of multiple convolutions (hence, the image-formation model can be approximated by

a linear and shift-invariant model). In this paper, we focus on the solution of these

types of inverse problems, which are called here convolutional inverse problems. Ex-

amples of such inverse problems include the image deconvolution problem and its

variants, and the three-dimensional image reconstruction problems encountered in

various spectral and depth imaging modalities [6–14].

Due to the ill-posed nature of convolutional inverse problems, sparsity priors are fre-

quently exploited in their solutions for effective regularization. Image reconstruction

methods enforce the sparsity of the image via analysis or synthesis model. In the

analysis approach, discrete derivative operators or sparsifying transforms can be uti-

lized such as discrete cosine transform (DCT), wavelets, or their Kronecker-product

forms [6, 13]. In the synthesis approach, fixed dictionaries are exploited, which are

analytical or learned from a dataset [7]. More recently, however, learning sparse

models adaptively from the data appears to be more effective. Online learning-based

techniques have been viewed both in learning sparsifying transforms [15] and dictio-

naries [18]. Transform learning approaches are utilized in various works since online

dictionary learning-based sparse reconstruction generally have higher computational

complexity for large scale problems such as spectral imaging [12] and MR imag-

ing [17]. Dictionary learning-based techniques have been exploited in solving various

inverse problems in multi-dimensional imaging including MR imaging [19, 20], 3D

ultrasound imaging [24], spectral unmixing [21], denoising and inpainting [22], and

superresolution [23].
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In transform or dictionary learning approaches, generally, image is partitioned into

overlapping patches. This is because the representation of the overall image requires

huge matrix-vector multiplications, which causes substantial computational cost. In-

stead of representing the entire image in the transform domain or in terms of dic-

tionary elements, each patch is independently represented. Consequently, resulting

sparse codes do not represent the entire image but a local patch. To mitigate the par-

titioning problem, convolutional sparse model, a variant of dictionary-based sparse

representations, has been developed [28–30].

Convolutional sparse models provide better sparse representations than the traditional

ones as they do not require to divide the image into overlapping patches and instead

enforce a global sparse model for the entire image [30]. Several works have exploited

convolutional two-dimensional sparse priors in a variety of inverse problems includ-

ing super-resolution [32], image fusion [33,34], image enhancement [35], multichan-

nel imaging [36,37], multimodal imaging [38], and tomographic reconstruction [39].

In the inverse problems with a two-dimensional image of interest, two-dimensional

convolutional sparse priors are enforced [32–35]. Furthermore, two-dimensional pri-

ors are also utilized in the problems with a three-dimensional image of interest, but

these works enforce the correlation of the data across third-dimension via additional

priors [36–39]. On the other hand, three-dimensional convolutional sparse represen-

tations attract limited attention among the signal processing community [40, 41].

In this thesis, we first introduce a unified framework for the solution of convolu-

tional inverse problems by considering a general image-formation model. We then

develop fast image reconstruction algorithms that can exploit sparse models in anal-

ysis or synthesis forms. In the analysis case, discrete derivative operators or sparsi-

fying transforms can be utilized such as discrete cosine transform (DCT), wavelets,

or their Kronecker-product forms [6, 13, 16]. In the synthesis case, convolutional or

patch-based dictionaries can be utilized, which can also be adapted to correlations

in different dimensions [7, 19–24, 36–41]. If the image of interest is correlated in

all directions, then high-dimensional transforms or dictionaries can be used in these

models. Based on the available prior knowledge about the image of interest, there may

be correlations either all through the image data or only in certain dimensions. The

inverse problem is formulated for both cases, and the resulting optimization problems
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are solved via the alternating direction method of multipliers (ADMM). The obtained

reconstruction algorithms have efficient and closed-form update steps. To illustrate

their performance, these algorithms are applied to three-dimensional reconstruction

problems in computational spectral imaging, and their performance is numerically

demonstrated for various cases with or without correlation along the third dimension.

In the former case, when there are correlations along the third dimension, there are

some works in the literature that exploit multidimensional (3D) priors. Since the im-

age data possesses correlation across all dimensions, at least three-dimensional priors

should be exploited for the reconstructed data cube. For example, many works impose

3D transforms for sparsification in depth and compressive spectral imaging [6, 13].

Another work enforces sparsity with 3D patch-based dictionaries in medical imag-

ing [20]. There are also works that utilize 3D convolutional dictionaries by consider-

ing temporal or spectral correlations [40, 41]. However, these works do not include a

comprehensive analysis and comparison of different multidimensional priors for the

imaging problems. In our work, we aim to fulfill this need for image reconstruction

problems. Furthermore, our method is different from other conventional counterparts,

which enforce three-dimensional correlation via additional priors. To exemplify, a

work imposes two-dimensional convolutional dictionaries but enforces correlation of

the spectrum via a cross-talk matrix of different channels [36]. Another one enforces

the temporal smoothness of MR images with an additional TV regularizer [39].

In the latter case, when there are no correlations along the third dimension, there are

some works in the literature that exploit 2D priors. Here, only spatial correlations

are taken into account as spatial slices are generally correlated in imaging applica-

tions [11,12]. Therefore, two-dimensional sparse priors are exploited for each spatial

slice of the data. Similar to us, some works use patch-based transforms for the re-

construction of uncorrelated spectral scenes [11, 12]. Another one presents multiple

methods for multi-channel images and ignores correlations along the third dimen-

sion [37].

In Chapter 2, we introduce the convolutional forward problem by considering vari-

ous imaging problems. These include image deconvolution, multi-frame image de-

convolution, and examples from spectral and depth imaging. The convolutional in-
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verse problem is also formulated with various priors involving sparsifying transform,

patch-based dictionary, convolutional dictionary, and convolutional dictionary with

Tikhonov regularization.

In Chapter 3, we develop image reconstruction methods for the presented priors.

In the first algorithm, fixed transforms are exploited for convolutional inverse prob-

lems as fixed-transforms provide fast-solutions. Second, we develop an image recon-

struction algorithm exploiting patch-based sparse representations. An extension with

online dictionary learning is also included to improve image reconstruction quality.

Third, we develop an image reconstruction method with the convolutional dictionary.

This algorithm also involves online dictionary learning. Lastly, we present an exten-

sion of the convolutional sparse prior with Tikhonov regularization. These methods

are presented for three-dimensional image reconstruction problems for various cases

with or without correlation along the third-dimension. Moreover, all methods are

based on the alternating direction method of multipliers (ADMM). By solving several

steps of the problem in the frequency domain, fast and high-quality reconstructions

are enabled.

In Chapter 4, the numerical performance of the developed algorithms is evaluated

for a computational spectral imaging problem. Firstly, a discrete spectrum case is

considered. In this case, the reconstructed images are not correlated along the third

dimension, and hence two-dimensional priors are exploited. Furthermore, we also

present a comprehensive analysis of dictionaries with respect to various dictionary

size and dictionary training set. We also compare the performance of different priors.

Secondly, the numerical performance of the developed algorithms is evaluated for the

continuous spectrum case. Here, the reconstructed images are correlated along the

third dimension, and hence three-dimensional priors are enforced. We also optimize

the dictionary size to attain the best performance among different dictionaries.

In Chapter 5, convolutional inverse problems with the compressive setting are in-

troduced. Here, the entire three-dimensional data cube is reconstructed from highly

compressed coded measurements. First, the compressive forward problem is pre-

sented for a general imaging problem. The inverse problem is formulated for this

imaging modality using the analysis and synthesis priors as before. Then, the algo-
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rithms for the compressive image reconstruction problem is presented. Lastly, we

numerically demonstrate the performance of these algorithms for different number of

measurements and different designs of the imaging system.

In Chapter 6, we conclude the thesis and discuss future work.
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CHAPTER 2

CONVOLUTIONAL INVERSE PROBLEMS

2.1 Introduction

In this chapter, we model convolutional inverse problems with a three-dimensional

image of interest. Examples of these problems include image deconvolution, multi-

frame image deconvolution, and three-dimensional image reconstruction problems

encountered in various computational and depth imaging modalities [6–14]. These

problems are presented from simplest to more complex. Then, we develop a gen-

eral formulation of convolutional inverse problems and introduce three and two-

dimensional sparse priors. We utilize both analysis and synthesis priors for the reg-

ularization, considering their merits and drawbacks. These priors involve a sparsi-

fying transform, patch-based dictionary, and convolutional dictionary. We formulate

the inverse problem with these priors for various scenarios, including online/offline

learning. Furthermore, we also extended the convolutional dictionary with Tikhonov

regularization.

2.2 Convolutional Forward Problem

In various imaging problems, the measurements can be modeled in the following

general convolutional form:

yk[n1, n2] =
S∑
s=1

xs[n1, n2] ∗ hk,s[n1, n2] + wk[n1, n2], 1 ≤ k ≤ K (2.1)

where n1,n2 = −N/2, ..., N/2 − 1. Here yk’s denote different measurements, xs’s

represent different unknown images to be reconstructed (which denotes sth slice of
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the data cube across third dimension), hk,s denotes the blur acting on the sth image,

xs, for the kth measurement, yk. This is a general form encountered in many differ-

ent image reconstruction problems such as classical image deconvolution (K = 1,

S = 1), multi-frame image deconvolution (K > 1, S = 1), and different three-

dimensional image reconstruction problems in spectral [12] and depth imaging [6]

(K ≥ 1, S > 1). In spectral imaging, xs corresponds to sth spectral band extracted

from the spectral data cube, and hence each measurement represents superimposed

convolutions of blurs with spectral bands. In depth imaging, each slice represents

spatial image of sth depth from the data cube. Here measurements are the sum of

convolutions of spatial images and blurs. Convolution can be represented as multipli-

cation of circular convolution matrix and a vectorized image. With this, the following

matrix-vector form is obtained from the above image-formation model as

y = Hx + w (2.2)

H =


H1,1 · · · H1,S

... . . . ...

HK,1 · · · HK,S

, y =


y1

:

yK

, x =


x1

:

xS

 and w =


w1

:

wK

.

Here yk ∈ RN2 is lexicographically ordered noisy kth measurement vector, y is

the overall noisy measurement vector by vertically concatenating all the K measure-

ments. Similarly, xs ∈ RN2 denotes sth unknown image and the vector x is obtained

by combining unknown images. Here, the matrix Hk,s ∈ RN2×N2 is a circular con-

volution matrix which corresponds to the convolution operation with hk,s[n1, n2]. wk

represents additive white Gaussian noise vector wk ∼ N(0, σ2
k).

Image vector x ∈ RN2S will be considered for two cases. In the former case, there

are correlations all through the image data. Here, x represents vectorized data cube

x[n1, n2, s]. Hence three-dimensional analysis and synthesis priors are exploited for

the image reconstruction. In the latter scenario, there are correlations only in certain

dimensions for many imaging applications [11, 12, 14]. Therefore, x is behaved as

a concatenation of separate spatial images xs[n1, n2] for s = 1, 2, ..., S, and hence

two-dimensional analysis and synthesis priors are enforced.
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2.3 Sample Imaging Problems

In this section, we present various problems including the form expressed in Eq. (2.1),

from simplest to more complex.

2.3.1 Image Deconvolution (Deblurring)

This is a classical image deconvolution problem: A blurred image Hx is measured in

the presence of an additive zero-mean white and homogenous Gaussian noise w. The

measured image y is denoted as

y = Hx + w. (2.3)

Note that, here, H matrix in the inverse problem corresponds to a single convolution

matrix. Hence, it indeed represents a convolution of the blur function h[n1, n2] with

x[n1, n2] for two-dimensional image data. This problem is viewed as the simplest ver-

sion of convolutional inverse problems and can be extendible to higher dimensions.

2.3.2 Multi-frame image deconvolution

Here, we address the problem of restoring an image from its noisy convolutions with

two or more blur functions.

yk = Hkx + wk. (2.4)

It is a type of convolutional image reconstruction problems [10]. Each Hkx multi-

plication in the inverse problem represent convolutions of the blur function hk[n1, n2]

with x[n1, n2]. Note that this problem is also extendible to higher dimensions.

2.3.3 Computational Multi-Spectral Imaging

The problem formulation expressed in Eq. (2.1) is also encountered in various spec-

tral image reconstruction problems. In this thesis, we focus on imaging with diffrac-

tive lenses, including "Photon Sieve Spectral Imaging" [11, 12].
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2.3.3.1 Spectral Imaging with Diffractive Lenses

A sample convolutional inverse problem is spectral imaging with diffractive lenses,

including photon sieve spectral imaging (PSSI). This technique uses an optical con-

figuration that consists of a single diffractive imaging element, e.g., photon sieve

[11, 12]. (Photon-sieve provides an alternative to lenses and mirrors and is obtained

by replacing the open zones of Fresnel zone plates with circular holes.) The sys-

tem structure is displayed in Fig. 2.1. We consider polychromatic radiation from the

object, which is composed of S wavelength components, each with a different wave-

length λs(s = 1, 2, ..., S) and mutually incoherent from others. Since the focal length

of the photon depends on the wavelength, each wavelength is focused at a differ-

ent distance from the diffractive lens. Each measurement is taken at these distances,

which are displayed in Fig. 2.1 as kth measurement plane. In each measurement

plane, measurements consist of the superposition of blurred images. For example,

a measurement is taken from a plane where one spectral component is in focus, the

focused image of this spectral component overlaps with the defocused images of all

other components. A total of K such measurements are obtained by using a moving

detector. The image formation model that relates the intensities of individual spectral

components to the measurements is the same with Eq. (2.1).

Figure 2.1: Diffractive Imaging System
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2.3.4 Computational Depth Imaging

Convolutional inverse problems are also encountered in many computational depth

imaging problems. For example, the DiffuserCam system is introduced in [6], which

entails the sum of the convolution structure.

2.3.4.1 DiffuserCam

DiffuserCam is part of the class of the mask-based passive lensless imagers in which

a phase or amplitude mask is placed a small distance in front of a sensor. The mask

consists of a transparent phase object with smoothly varying thickness. The point

spread functions, vary with the positions of the source, thereby encoding 3D informa-

tion. Here, each 3D position in the volume generates a unique point spread function

(PSF). By assuming that all points in the scene are incoherent with each other, the

measurement can be modeled as convolutions of PSFs from different 3D positions as

yk[n1, n2] = C
S∑
s=1

x[−n1,−n2; s] ∗ hk[n1, n2; s] + wk[n1, n2]. (2.5)

where hk[n1, n2; s] is a blur function in each different depth. x[n1, n2; s] represent

the point at pixel (n1, n2) and depth s and x[−n1,−n2; s] can be obtained by flip-

ping the image slices. Here, C denotes cropping operation. If the crop operation

is not considered, PSF wraps around the opposite side of the sensor, due to circular

boundary conditions. This is explained in [6] in detail. C is a diagonal matrix and

can be handled with variable splitting. Therefore, it does not disturb the "convolu-

tional inverse problem" structure. Consequently, image reconstruction methods that

are developed to solve convolutional inverse problems are applicable for this problem

as well. The DiffuserCam system is displayed in Fig. 2.2. Each measurement yk

is taken at different planes and 3D reconstructions are obtained with computational

image reconstruction.
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Figure 2.2: DiffuserCam Depth Imaging System

2.4 Convolutional Inverse Problem

In the inverse problem, the goal is to recover the unknown images, x, from their noisy,

superimposed, and blurred measurements, y. This problem can be viewed as a type

of multi-frame deconvolution problem involving multiple images. This deconvolution

problem is inherently ill-posed, due to dependency between columns of H. Therefore,

it is necessary to replace the original ill-posed problem with another inverse problem

providing better conditioning to the original problem.

Various approaches have been proposed to solve ill-posed linear inverse problems. A

most common approach is regularization with the minimization of an appropriately

formulated cost function. This approach derives from the use of prior knowledge

concerning the unknown solution in the least-squares setting. The prior information

can be incorporated in a deterministic way [43–45], or in a statistical setting [46],

which is related to the Bayes paradigm of [47].

By incorporating the prior information available for the images, we formulate the

problem as follows:

min
x

β

2
||y −Hx||22 +R(x) (2.6)

This is a regularized least squares problem, which can also be related to maximum

posterior estimation (MAP). Here the first term controls data fidelity, whereas the

second termR(x) controls how well the reconstruction matches our prior knowledge

of the solution, with the scalar parameter β trading off between these two terms.

Sparse models play an important role in computational imaging due to a significant
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degree of structure and redundancy present in the high-dimensional data [2]. The

sparsity of natural multidimensional image data in another domain is enforced via

R(x) to solve the inverse problem. Since natural multidimensional image data can

be represented sparsely in some transform domain or in terms of dictionary elements,

sparsity-based regularization is expressed in terms of `0-norm. Since this leads to an

NP-hard problem, by convex relaxation of the `0 quasi-norm with the `1-norm, the

problem can be converted to a convex optimization problem, which can be solved

using standard convex optimization techniques [48, 54]. In the scope of the present

work, both analysis and synthesis priors are exploited forR(x).

2.4.1 Analysis Prior

In this case, we use the fact that natural multidimensional image data is sparsifiable

by analytical transforms such as wavelets, discrete cosine transform (DCT) and finite

differences. In other words, the vectorized image is analyzed as Tx and analysis prior

is represented as

R(x) = Φ(Tx) (2.7)

where T represents a fixed sparsifying transform matrix. There are popular and pow-

erful choices of the regularizer Φ(.). One popular choice is Φ(Tx) = ||Tx||1, whose

solution is obtained by nonlinear optimization techniques. Another powerful choice

is isotropic TV, Φ(Tx) = TV(x) with T = I which requires iterative method for the

solution [52]. Here, TV is defined as follows:

TV (x) =
∑
i,j

∇(x)[i, j]. (2.8)

where

∇(x)[i, j] =
√

(Dh(x))2 + (Dv(x))2 (2.9)

and

Dh(x) = x[i+ 1, j]− x[i, j], (2.10)

Dh(x) = x[i, j + 1]− x[i, j], (2.11)

Since analytical sparsifying transforms provide cost-efficient solutions, they are pop-

ular in signal and image reconstruction problems. Namely, instead of performing
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matrix-vector multiplications, analytical transforms such as discrete cosine trans-

form (DCT), wavelets, or their Kronecker-product forms sparsify the images with

fast transform operators in the implementation. Recently, learning sparse models

adaptively from the data appeared to be more effective, especially the learning of

sparsifying transforms [15, 17]. However, several works have shown that learning

sparsifying transforms is a computationally-intensive process which does not bring

significant performance improvement in image reconstruction problems [12]. Fur-

thermore, it requires partitioning the image into overlapping patches, which results in

that sparsifying transforms do not represent the entire image but a local patch [12].

Another drawback is that the learning of transforms eliminates fast implementation

advantages of analytical transforms. Hence, small performance enhancement gained

via transform-learning is dispelled by the excessive computational complexity. By

considering the drawbacks of transform-learning, we prefer using approaches with

fixed and analytical transforms for the solution of convolutional inverse problems.

2.4.2 Synthesis Prior with Patch-Based Dictionary

In image reconstruction problems, usage of synthesis prior is a popular approach [18–

20]. Here, the unknown vector x can be sparsely represented as a linear combination

of small number of columns from a synthesis dictionary as Dz = x, where D denotes

the dictionary matrix and z stands for the sparse code. Note that D is not necessarily

the inverse of T, as it can be an overcomplete dictionary. Therefore, synthesis prior

has the following generalized expression as

R(x) = λ||z||1 s.t. Dz = x (2.12)

This representation requires inserting Dz into the data-fidelity term as ||y−HDz||22,

which causes huge computational cost. In this work, however, we allow sparse ap-

proximation as Dz ≈ x and represent the synthesis prior as

R(x) = min
z
||Dz− x||22 + λ||z||1 (2.13)

in [30, 55, 56]. In image representation problems, however, due to the increasing

size of the image vectors, finding a representation for the entire image is compu-

tationally inefficient. Hence, image is partitioned into overlapping patches that are
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multiplication of common local dictionary and local sparse codes. Since images are

of high-size, we use the patch-based version of the prior in Eq. (2.13). As mentioned

before, we focus on three-dimensional data for various cases with or without correla-

tion along the third-dimension. First, the synthesis prior with patch-based dictionary

is expressed as

R(x) = min
zj

1

2

SN2∑
j=1

||DLzj −Pjx||22 + λ
SN2∑
j=1

||zj||1. (2.14)

for three-dimensional data which is correlated along all dimensions. Here, Pj ∈
Rn2p×N2S is patch-extractor matrix, which extracts the patch vector of size n2p from

image vector x ∈ RN2S . Here, N2S patches are extracted. DL ∈ Cn2p×n2p is a

local dictionary which is used for all patches. zj ∈ Cn2p, sparse representation vector

which belongs to jth patch vector of the data cube. Similarly, the synthesis prior with

patch-based dictionary is expressed as

R(x) = min
zs,j

1

2

N2∑
j=1

S∑
s=1

||DLzs,j −Pjxs||22 + λ
N2∑
j=1

S∑
s=1

||zs,j||1 (2.15)

for three-dimensional data which is correlated only in spatial dimensions. Here Pj ∈
Rn2×N2 is patch-extractor matrix, which extracts n×n sized patch from image vector

xs ∈ RN2 . Here, SN2 patches are extracted in total. DL ∈ Cn×n is a local dictionary

which is used for all patches. zs,j ∈ Cn, sparse representation vector which belongs

to jth patch vector of sth image.

In the scope of the present work, we also extend Eq. (2.14) and (2.15) for online

dictionary learning. Here, the underlying dictionary is assumed unknown, unlike in

Eq. (2.14). This allows the sparse model to be adapted to the specific objects being

imaged. Our goal is simultaneously to enforce sparsity of reconstructed multidimen-

sional images in an adaptive dictionary framework and obtain reconstructions that

are consistent with the measurements. For this, Eq. (2.14) and (2.15) are modified

including online dictionary learning and exploited in the place of regularization term

R(x) as

R(x) = min
zj ,DL

1

2

SN2∑
j=1

||DLzj −Pjx||22 + λ

SN2∑
j=1

||zj||1 s.t. ||DL||2 = 1. (2.16)
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for three-dimensional data which is correlated along all dimensions and

R(x) = min
zs,j ,DL

1

2

N2∑
j=1

S∑
s=1

||DLzs,j −Pjxs||22 + λ
N2∑
j=1

S∑
s=1

||zs,j||1 s.t. ||DL||2 = 1

(2.17)

for three-dimensional data which is correlated only in spatial dimensions. Here, the

constraint on the norms of dictionary DL is required to avoid the scaling ambiguity

between dictionary and sparse codes.

The patch-based sparse model has some drawbacks. It is disadvantageous in terms

of image reconstruction time, which complicates its usage in multidimensional image

reconstruction problems. Another drawback of learning patch-based dictionaries is

the requirement of partitioning the images into overlapping patches. Here, the con-

sistency of pixels in the overlapped patches is ignored. Hence, the representation for

each patch is obtained independently. As a result, learned features contain translated

versions of each other, and latent interactions of the underlying signal is not grasped

well [32]. Hence, resulting sparse codes do not represent the entire image but a local

patch.

2.4.3 Synthesis Prior with Convolutional Dictionary

Convolutional models provide better sparse representations than the traditional ones

as they do not require to divide the image into overlapping patches and instead enforce

a global sparse model for the entire image [30]. The convolutional model intrinsically

utilizes the consistency between pixels; therefore, it provides a global representation

for the entire image without partitioning. Convolutional sparse representations model

an image as a superimposed circular convolution of dictionary filters and sparse codes

as
M∑
m=1

dm ∗ zm ≈ x (2.18)

where dm dictionary filter and zm and sparse codes respectively for m = 1, 2, ...,M

[28, 30].

Convolutional sparse representations in Eq. (2.18) can be utilized as fixed dictionary-
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based regularizers in the place ofR(x) as

R(x) = min
zm

1

2
||

M∑
m=1

dm ∗ zm − x||22 + λ

M∑
m=1

||zm||1 (2.19)

for x represents vectorized three-dimensional image when the correlation of images

across third-dimension plays a significant role. Here, zm ∈ RN2S and dm ∈ RL2R.

Note that N denotes image size in first and second dimension while S represents

the image size in the third dimension. Similarly, L denotes dictionary size in first

and second dimension while R represents the dictionary size in the third dimension.

Here, the choice of the dictionary size is significantly smaller than the image size as

L << N and R << S. On the other hand, when spatial slices xs are uncorrelated for

s = 1, 2, ..., S, each xs is behaved separately and sparse regularizerR(x) is expressed

as

R(x) = min
zs,m

1

2

S∑
s=1

||
M∑
m=1

dm ∗ zs,m − xs||22 + λ
S∑
s=1

M∑
m=1

||zs,m||1 (2.20)

where zs,m ∈ RN2 and dm ∈ RL2 . Note that a common dictionary set dm is exploited

for S images.

Note that the convolutional approach is a special case of the traditional model since

the sum of convolutions is viewed as concatenated matrix-vector multiplication. The

pursuit problem in Eq. (2.13) is viewed as a convolutional sparse representation prob-

lem when D has the structure of the concatenation of circular convolution matrices,

and hence, is equivalent to Eq. (2.19) or (2.20) as proposed in [59]. Together, this

structure enables efficient computation without dividing the image into overlapping

patches.

In the scope of the present work, we also extend Eq. (2.19) for online dictionary

learning. Here, the underlying dictionary is assumed unknown unlike in Eq. (2.19).

For this, Eq. (2.19) is modified including online dictionary learning and exploited in

the place of regularization termR(x) as

R(x) = min
zm,dm

1

2
||

M∑
m=1

dm ∗ zm − x||22 + λ
M∑
m=1

||zm||1

s.t. ||dm||2 = 1 m = 1, 2..M

(2.21)

Here, the constraint on the norms of dictionary dm is required to avoid the scaling am-

biguity between dictionary and sparse codes. To efficiently solve the inverse problem
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in the frequency domain, an implicit zero-padding of dm’s to the size of the sparse

codes zm’s is required. Explicit zero-padding operation is mathematically expressed

as multiplication by Q. By including zero-padding operation in the constraint set of

theR(x) given in Eq. (2.21) is obtained as

R(x) = min
zm,dm

1

2
||

M∑
m=1

dm ∗ zm − x||22 + λ

M∑
m=1

||zm||1 s.t. dm ∈ Sd ∀m

(2.22)

where

Sd = {u ∈ RN2

: (I−QQT)u = 0, ||u||2 = 1}. (2.23)

Same discussion is also valid for Eq. (2.20), but it is skipped for the sake of the

brevity.

2.4.3.1 Convolutional Dictionary with Tikhonov Regularization

Several works have stated that convolutional dictionaries perform better for high-

frequency images since it perfectly reconstructs the edges while creating some ar-

tifacts for smooth image components [30, 37, 65]. Since convolutional representa-

tions do not provide a good representation of the low-frequency components of an

image, various approaches have been proposed to utilize convolutional dictionaries

with high-pass filtered images. In many works, the inverse problem is reformulated

by adding separate priors for the high-frequency and low-frequency components of

the image [39, 41, 65]. For example, convolutional sparse prior is enforced for the

high-frequency component, and a smoothing regularizer is exploited for the low-

frequency component [41]. However, this approach is computationally intensive,

as it requires further parameter optimizations. In some works, the problem formu-

lation is inherently modified to enforce convolutional sparse representations for the

high-frequency component without separating the image into high and low-frequency

components [64].

Here, we enforce gradient minimization of sparse codes in this extended formulation.

In order to eliminate artifacts from the images, smoothing the sparse codes {zm}Mm=1

can be considered as an effective approach. Smoother sparse coefficients introduce

fewer artifacts on the reconstructed images. The intuition arises from the assump-
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tion that high-frequency components xHPF are better represented with convolutional

sparse representations as

g ∗ x = xHPF =
M∑
m=1

dm ∗ zm (2.24)

where g represents a FIR invertible high-pass filter. By convolving right and left hand

sides with g−1 we obtain original image x as follows:

x = g−1 ∗ g ∗ x = g−1 ∗ xHPF = g−1 ∗ (
M∑
m=1

dm ∗ zm) =
M∑
m=1

dm ∗ (g−1 ∗ zm).

(2.25)

Here, as both left and right sides are convolved by g−1, this operation corresponds

to convolving {zm}Mm=1 with a low-pass filter. To acquire low-pass filtered {zm}Mm=1,

smoothing with Tikhonov gradient regularization is considered as an effective ap-

proach. This method is proposed in [64] and expressed for three-dimensional dictio-

naries as

R(x) = min
zm

1

2
||

M∑
m=1

dm ∗ zm − x||22 + λ
M∑
m=1

||zm||1+

µ

2

M∑
m=1

(||r1 ∗ zm||22 + ||r2 ∗ zm||22 + ||r3 ∗ zm||22)

(2.26)

where r1, r2 and r3 are filters that compute gradient in first, second and third dimen-

sions. Similar representations are also derived for 2D convolutional priors. We can

also obtain the formulations with dictionary learning by adding Gradient minimiza-

tion terms to Eq. (2.22).
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CHAPTER 3

IMAGE RECONSTRUCTION METHODS WITH DIFFERENT PRIORS

3.1 Introduction

In this chapter, we develop fast and efficient image reconstruction algorithms that

exploit sparse models in analysis and synthesis forms. These priors involve sparsify-

ing transforms or data-adaptive dictionaries that are patch-based and convolutional.

These methods are presented for three-dimensional image reconstruction problems

for two different cases with or without correlation along the third dimension. In the

first case, three-dimensional transforms and dictionaries are exploited for the recon-

structed data cube. In the latter case, however, each image is separately sparsified by

two-dimensional transforms and dictionaries. These cases are called 3D and 2D cases

in the rest of the thesis.

The presented methods are solved via the alternating direction method of multipliers

(ADMM). ADMM is an optimization algorithm that is used in many signal and im-

age reconstruction problems [32–37,40,41]. ADMM solves distributed unconstrained

optimization problems by splitting them into sub-problems, which are solved alter-

natingly. By solving several steps of the problems in the frequency domain, fast and

high-quality reconstructions are enabled for each algorithm.

Some parts of this chapter have been presented in [14] and accepted for publication [50] and in preparation
for [51].
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3.2 Image Reconstruction Method with Sparsifying Transforms

To develop the image reconstruction method, we first recall analysis prior in Eq. (2.7)

as

R(x) = Φ(Tx) (3.1)

and insert this into the following equation

min
x

β

2
||y −Hx||22 +R(x). (3.2)

Now, we obtain the objective function as follows

min
x

β

2
||y −Hx||22 + λΦ(Tx). (3.3)

The resulting optimization problem for analysis approach is solved for the unknown

image x by using Alternating Direction Method of multipliers (ADMM) [60]. The

objective function is formulated using augmented Lagrangian in ADMM framework

as

min
x, t

β

2
||y −Hx||22 + λΦ(Tx) s.t. Tx = t. (3.4)

This problem is minimized with respect to variables x and t. ADMM steps for this

alternating minimization process have the following form:

xl+1 = arg min
x

β

2
||y −Hx||22 +

ρ

2
||Tx− tl + ul||22 (3.5)

tl+1 = arg min
t

λΦ(t) +
β

2
||Txl+1 − t + ul||22. (3.6)

ul+1 = ul + Txl+1 − tl+1. (3.7)

Here, u is defined as dual variable of t. Eq. (3.7) represent the update of the dual

variable. We now explain how to efficiently solve the problems in Eq. (3.5) and (3.6)

which we refer as image update and auxiliary variable update.

3.2.1 Image Update

For image update, we need to solve the problem in Eq. (3.5). Since this problem is a

least-squares problem, it has a closed-form solution as

x = (ρTHT + βHHH)−1(βHHy + ρTH(t− u)). (3.8)
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where THT = I since T is assumed a unitary matrix. To reduce the computational

complexity of obtaining the solution, resulting subproblem is solved in the frequency

domain by exploiting the property that circulant convolution matrices are diagonal-

ized by DFT matrix. Since Hk,s is a circular convolution matrix, it reduces to a diago-

nal block in the frequency domain. Here, Hk,s = FH
2DΛk,sF2D where F2D ∈ RN2×N2

is a 2D DFT matrix. By inserting H = F̃H
2DΛF̃2D, image update step can be ex-

pressed as

x = F̃H
2D(ρI + βΛHΛ)−1(βΛHF̃2Dy + ρF̃2DTH(t− u)). (3.9)

For computation of Eq. (3.9), forming any of the matrices is not required since re-

sulting matrices are block diagonal. Here we use the fact that the multiplication of a

diagonal matrix and a vector corresponds to element-wise multiplication. Similarly,

the multiplication of two diagonal matrices can be computed via element-wise multi-

plication. This provides huge savings for the memory as well as the computation time.

We first compute Ω = ΛHF̃2Dy term. To obtain the diagonal of Λ, 2D Fourier trans-

form of hk,s[n1, n2] is computed for k = 1, 2, .., K and s = 1, 2, .., S. Next, F̃2Dy

also requires taking the FFT of yk[n1, n2] for k = 1, ..., K. Specifically, the operations

required to form sth block of Ω, Ωs =
∑K

k=1 ΛH
k,sF2Dyk, corresponds to summation

of element-wise multiplications. Since both Λ and y are not updated throughout

iterations, Ω is computed only one time. The second term, F̃2DTH(t− u), is up-

dated in each ADMM iteration as follows: applying TH corresponds to taking the

inverse 3D transform of (t[n1, n2, s] − u[n1, n2, s]). Note that if 2D priors are used,

TH corresponds to taking the inverse 2D transforms of (ts[n1, n2] − us[n1, n2]) for

s = 1, 2, ..., S. Then, F̃2D represents taking the 2D Fourier transform of the each

spatial slice of the resulting 3D data-cube. Third, Ψ = ρI+βΛHΛ, a matrix of S×S
blocks, is computed. Here, each block is represented as

Ψi,j = (δi,jI + β
K∑
k=1

ΛH
i,kΛk,j) (3.10)

where δi,j is Kronecker delta function i, j = 1, 2, ..., S. As Λi,j’s are diagonal matri-

ces, Ψi,j is also a diagonal matrix for k = 1, 2, .., K and s = 1, 2, .., S. Therefore,

each Ψi,j is computed by the summation of element-wise multiplications in the fre-

quency domain.
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Efficient inversion of the Ψ follows from its block diagonal structure and is computed

via recursive block matrix inversion approach [61]. For S = 2 case, this inverse can

be computed as Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

−1

=

 A Ψ−11,1Ψ1,2B

BΨ2,1Ψ
−1
1,1 −B

 (3.11)

where A = Ψ−1
1,1 − Ψ−1

1,1Ψ1,2BΨ2,1Ψ
−1
1,1 and B = −(Ψ2,2 − Ψ2,1Ψ

−1
1,1Ψ1,2)−1. For

R > 2, the overall matrix Ψ is partitioned into 2×2 blocks and each block is inverted

recursively with Eq. (3.11). Since each Ψi,j is a diagonal matrix, the inversion is

also element-wise. Remaining multiplications are also performed as element-wise

using previous discussions. Although Ψ−1 is only computed once before the ADMM

iterations and does not affect the computational complexity during the iterations, its

pre-computation time is significantly reduced.

3.2.2 Auxiliary Variable Update

For auxiliary variable update we need to solve the problem in Eq. (3.6). By defining,

Φ(Tx) = ||Tx||1, Eq. (3.5) is solved via soft-thresholding as

t = soft(Tx + u, λ/ρ) (3.12)

Similar to previous discussion, a 3D transform of x[n1, n2, s] is obtained which corre-

sponds to Tx. Note that if 2D priors are used, T corresponds to taking 2D transforms

of (xs[n1, n2]) for s = 1, 2, ..., S. Then, component-wise soft-thresholding is per-

formed as

t = sign(Tx + u)�max(0, |Tx + u| − λ/ρ). (3.13)

As it is an element-wise opeation, it is performed without forming the vectors. If

ΦTV (Tx) is chosen as an isotropic TV operator, T = I is assigned, and

t = ΨTV (x + u) (3.14)

is solved via Chambolle’s algorithm for 3D case [52]. However, for 2D case, we need

to separate the spatial slices into S components, namely xs and us for s = 1, 2, ..., S

and update for each ts as follows:

ts = ΦTV (xs + us) for s = 1, 2, .., S (3.15)
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Algorithm 1 Image Reconstruction Algorithm with Sparsifying Transform
Require: y: Measured image, H: Blur filter, T: Sparsifying Transform

Ensure: x: Reconstructed Image

1: Choose: λ > 0, ρ > 0, β > 0 , t0, u0

2: (ρTHT + βHHH)−1 is computed.

3: βHHy is computed

4: repeat

5: xl+1 = (ρTHT + βHHH)−1(βHHy + ρTH(t− u))

6: tl+1 = ΨΦ(Txl+1 − ul)

7: ul+1 = ul + Txl+1 − tl+1

8: until Some convergence criterion is satisfied

3.2.3 ADMM Parameter Update

For the selection of suitable penalty parameter ρ, an adaptive strategy introduced

in [60]

ρl+1 =


τ incrρl if ||rl||2 > µ||sl||2

ρl/τ decr if ||sl||2 > µ||rl||2

ρl otherwise

(3.16)

is employed. Here, τ = 2 and µ = 10. sl+1 = ρ(tl − tl+1) and rl+1 = (Txl+1 − tl+1)

are primal and dual residuals respectively [60]. For stopping criteria, if ||xl+1 −
xl||2/||xl||2 < 10−4 the algorithm is stopped. An additional stopping criteria is de-

rived from the following discussion:

εpri =
√
nεabs + εrelmax(||Txl||2, ||tl||2, 0),

εdual =
√
nεabs + εrel||ul||2||2

(3.17)

where size of Tx is represented via n. Here, εabs = 0 and εrel = 10−3. By using the

variables in Eq. (3.17), if εpri > r and εdual > s the algorithm is stopped.
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3.3 Image Reconstruction Method with Patch-Based Dictionaries

In this section, we develop an image reconstruction method inserting patch-based 3D

and 2D dictionaries with online learning [50]. By removing dictionary update steps,

the algorithm without online dictionary learning can be easily obtained. We also

emphasize the differences between the update steps with two and three-dimensional

priors. Now we recall the regularizer with a patch-based dictionary in Eq. (2.16)

given by

min
zj ,DL

1

2

SN2∑
j=1

||DLzj −Pjx||22 + λ
SN2∑
j=1

||zj||1 s.t. ||DL||2 = 1. (3.18)

and insert this into following equation

min
x

β

2
||y −Hx||22 +R(x). (3.19)

Now, we obtain the objective function with patch-based dictionaries as

min
zj ,x,DL

β

2
||y −Hx||22 +

SN2∑
j=1

(||DLzj −Pjx||22 + ||zj||1) s.t. DL ∈ SD. (3.20)

where

SD = {U ∈ RN2

: ||U||2 = 1}. (3.21)

The resulting optimization problem is solved for the unknown images x’s, the sparse

coefficient vectors zj’s, and dictionary matrix DL’s by using Alternating Direction

Method of multipliers (ADMM) [60]. To solve the resulting constrained optimization

problem Eq. (3.20), it is converted into an unconstrained problem by adding the

constraint to the objective function as an indicator function:

min
zj ,x,DL

β

2
||y −Hx||22 +

SN2∑
j=1

(
1

2
||DLzj −Pjx||22 + λ||zj||1) + ιSD(DL) (3.22)

Here, auxiliary variable tj for variable zj and auxiliary variable G for variable D are

inserted into Eq. (3.22) using variable-splitting:

min
zj ,x,DL

β

2
||y −Hx||22 +

SN2∑
j=1

(
1

2
||DLzj −Pjx||22 + λ||tj||1) + ιSD

(G)

s.t. DL = G and zj = tj for j = 1, ..., SN2

(3.23)
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This problem is solved using augmented Lagrangian and the alternating minimization

approach in the ADMM framework. ADMM updates for the lth iteration are given

by

xl+1 = arg min
x

β

2
||y −Hx||22 +

1

2

N2S∑
j=1

||DLzlj −Pjx||22 (3.24)

zl+1
j = arg min

zj

N2S∑
j=1

(
1

2
||DLzj −Pjx||22 +

ρ

2
||zj − tlj + ulj||22) (3.25)

tl+1
j = arg min

tj

N2S∑
j=1

(λ||tj||1 +
ρ

2
||zlj − tj + ulj||22) (3.26)

Dl+1
L = arg min

DL

1

2

N2S∑
j=1

||DLzlj −Pjx
l||22 +

σ

2
||DL −Gl + El||22 (3.27)

Gl+1 = arg min
G

ιSD
(G) +

σ

2
||DL −Gl + El||22 (3.28)

where uj and E are ADMM dual variables and ρ and σ are parameters related to step

size of the algorithm. We now explain these update steps separately which we refer

as image update, sparse-code update, auxiliary variable t-update, dictionary update,

auxiliary variable g-update and dual variable update for both representation scenarios.

Note that since the two-dimensional patch-based dictionary is a special case of three-

dimensional one and the derivations are very similar, the details of the modifications

are omitted, and only small differences are emphasized for the sake of brevity.

3.3.1 Image Update

By expressing the convolution operations with convolution matrices, concatenating

the resulting matrices and vectors and ignoring the iteration indices in Eq. (3.24), the

x-update optimization problem can be rewritten in the following simplified form:

x = arg min
x

β

2
||Hx− y||22 +

1

2
||Dz−Px||22 (3.29)
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where z =


z1

:

zN2S

 for 3D case and z =


z1

:

zS

, zs =


zs,1

:

zs,N2

 for 2D case.

Furthermore, P =


P1

:

PN2S

 for 3D case and P = IS
⊗


P1

:

PN2

 for 2D case.

Also, D = ISN2

⊗
DL for both 3D and 2D cases. Here, IN2S ∈ RN2S is an identity

matrix and
⊗

Kronecker multiplication. Size of all the matrices and the vectors are

shown in Table 3.1 and Table 3.2 for 3D and 2D cases respectively. This table also

includes variables from the next sections.

Table 3.1: Size of the vectors and the matrices for 3D Case

Element Size Element Size

x RN2S DL Rpn2×pn2

zj RSN2
D RN2Spn2×N2Spn2

z RN4S2
Hi,j RN2×N2

Pj RSN2×SN2
H RKN2×SN2

P RS2N4×SN2
Z Rn2p×SN2

X Rn2p×SN2

Table 3.2: Size of vectors and matrices for 2D Case

Element Size Element Size

xs RN2
P RSN4×SN2

x RN2S DL Rn2×n2

zs,j RN2
D RN2Sn2×N2Sn2

zs RN4
Hi,j RN2×N2

z RN4S H RKN2×SN2

Pj RN2×N2
Z Rn2×SN2

X Rn2×SN2

Since image update in Eq. (3.29) is a least-squares problem, it has a closed-form

solution as

x = (PHP + βHHH)−1(βHHy + PHDz). (3.30)
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For 3D case, after mathematical operations, we obtain PHP=
∑N2S

j=1 PT
j Pj = n2pI

and I is N2S × N2S identity matrix. For 2D case, however, we obtain PHP=

IS
⊗∑N2

j=1 PT
j Pj = n2I. Furthermore, PHDz = c =

∑N2S
j=1 PT

j DLzj for 3D case

and PHDz = c = [cT1 |...|cTS ] where cs =
∑N2

j=1 PT
j DLzs,j for 2D case.

To reduce the computational complexity of obtaining the solution, resulting subprob-

lem is solved in the frequency domain by exploiting the property that circulant con-

volution matrices are diagonalized by DFT matrix. Since Hk,s is a circular convo-

lution matrix, it reduce to diagonal blocks in the frequency domain. This relation-

ship can be expressed as Hk,s = FH
2DΛk,sF2D where F2D ∈ RN2×N2 . By inserting

H = F̃H
2DΛF̃2D, image update step can be expressed as

x = F̃H
2D(n2pI + βΛHΛ)−1(βΛHF̃2Dy + F̃2Dc) (3.31)

for 3D case. On the other hand, only difference is made by replacing the coefficient

n2p by n2 for the 2D case.

For the computation of Eq. (3.31), forming any of the matrices is not required, since

resulting matrices are block diagonal. Here, we use the fact that the multiplication of

a diagonal matrix and a vector corresponds to an element-wise multiplication. Simi-

larly, the multiplication of two diagonal matrices can be computed via element-wise

multiplication. This step provides huge savings for the memory as well as the com-

putation time. The computations of the inverse term (I + βΛHΛ)−1 and βΛHF̃2Dy

are same with image update of the method presented in Section 3.2. However, the

term F̃2Dc, is updated in each ADMM iteration for 3D and 2D representations in a

different way:

3D Case: First, local dictionary matrix DL and each sparse vector zj is multi-

plied. Next, to apply PH
j operation, each DLzj vector is reshaped as a 3D patch,

inserted into their correspending patch indices and summed for N2S patches. Result-

ing c = PHDz is a 3D data cube having same size with the image x[n1, n2, s]. Then,

F̃2DPHDz is acquired by taking 2D Fourier transfom of each slice of c.

2D Case: First, for the computation of cs, local dictionary matrix DL and each

sparse vector zs,j is multiplied. Next, to apply PH
j operation, each DLzs,j vector
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is reshaped as a 2D patch, and inserted into their correspending patch indices and

summed for N2 patches as cs =
∑N2

j=1 PT
j DLzs,j . Resulting cs is a 2D data having

same size with the image x[n1, n2]. After performing same operations for all cs,

F̃2DPHDz is acquired by taking 2D Fourier transfom of each cs .

3.3.2 Sparse Code Update

Similar to image update, resulting matrices and vectors are concatenated, and iteration

indices are ignored in Eq. (3.25), which is a problem required to be solved in order

to obtain sparse code z update.

3D Case: For 3D case, to solve the sparse code subproblem presented in Eq. (3.25),

each zj is separately obtained as:

arg min
zj

1

2
||DLzj −Pjx||22 +

ρ

2
||zj − tj + us,j||22 (3.32)

Since this formulation is a least-squares problem, it has a closed-form solution as

zj = (ρI + DH
LDL)−1(DH

LPjx + ρ(tj − uj)) (3.33)

Here, Pjx correspond to extracted jth patch vector from the image x. Unlike previous

discussions, D is an actual matrix and the problem in Eq. (3.33) is solved by forming

the matrices and vectors.

2D Case: For 2D case, to solve the sparse code subproblem presented in Eq. (3.25),

each zs,j is separately obtained as:

arg min
zs,j

1

2
||DLzs,j −Pjxs||22 +

ρ

2
||zs,j − ts,j + us,j||22 (3.34)

Since this formulation is a least-squares problem, it has a closed-form solution as

zs,j = (ρI + DH
LDL)−1(DHPjxs + ρ(ts,j − us,j)) (3.35)
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3.3.3 Auxiliary Variable Update I

By concatenating us,j and ts,j vectors lexicographically as u and t, overall solution

for Eq. (3.26) is obtained as

arg min
t

λ||t||1 +
ρ

2
||z− t + u||22. (3.36)

This problem is solved via soft-thresholding as

t = soft(z + u, λ/ρ) (3.37)

Here, since all operations are element-wise, all are applied on the the images without

forming matrices and vectors.

3.3.4 Dictionary Update

By expressing the convolution operations with convolution matrices, concatenating

the resulting matrices and vectors and ignoring the iteration indices in Eq. (3.27), the

dictionary update problem can be rewritten in the following simplified form:

arg min
DL

1

2
||DLZ−X||22 +

σ

2
||DL −G + E||22 (3.38)

Here horizontal concatenations occurs as X = [x1....xN2S] and Z = [z1....zN2S] for

3D case and X = [x1,1....xS,N2 ] and Z = [z1,1....zS,N2 ] for 2D case. To obtain a typical

least-squares form, hermitian operation is applied as

arg min
DL

1

2
||ZHDH

L −XH||22 +
σ

2
||DH

L −GH + EH ||22. (3.39)

The least-squares solution is now obtained as

DL = (XZH + σ(G− E))(ZZH + σI)−1 (3.40)

Here, all matrices and vectors are formed unlike in previous discussions.

3.3.5 Auxiliary Variable Update II

Auxiliary variable g-update problem in Eq. (3.28) is represented as

arg min
G

ιSD(G) +
σ

2
||DL −G + E||22. (3.41)

31



The solution of the problem is obtained via geometry as

G =
DL + E

||DL + E||2
. (3.42)

3.3.6 Dual Variable Update

ADMM dual variable updates are also expressed as

ul+1 = ul + tl+1 − zl+1 (3.43)

El+1 = El + Gl+1 −Dl+1
L . (3.44)

as presented in [60].

3.3.7 ADMM Parameter Update

For the selection of suitable penalty parameter ρ and σ, an adaptive strategy intro-

duced in [60]

ρl+1 =


τ incrρl if ||rlz||2 > µ||slz||2

ρk/τ decr if ||rlz||2 > µ||rlz||2

ρk otherwise

(3.45)

and

σk+1 =


τ incrσl if ||rlD||2 > µ||slD||2

σl/τ decr if ||slD||2 > µ||rlD||2

σl otherwise

(3.46)

are employed. Here, τ = 2 and µ = 10. sl+1
z = ρ(tl − tl+1) and rl+1

z = zl+1 −
tl+1 are primal and dual residuals of z respectively [60]. Similarly, sl+1

D = σ(Gl −
Gl+1) and rl+1

D = (Dl+1 − Gl+1) are primal and dual residuals of G In the place

of stopping criteria, if ||xl+1 − xl||2/||xl||2 < 10−4 the algorithm is stopped. An

additional stopping criteria is derived from following discussion:

εpriz =
√
nzε

abs + εrelmax(||zl||2, ||tl||2, 0),

εdualz =
√
nzε

abs + εrel||ul||2||2
(3.47)
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Algorithm 2 Image Reconstruction Algorithm with Patch-Based Dictionary
Require: y: Measured image, H: Blur filter, P: Patch-Extractor

Ensure: x: Reconstructed Image

1: Choose: λ > 0, ρ > 0, β = 0, t0, u0

2: (ρPHP + βHHH)−1 is computed.

3: βHHy is computed

4: repeat

5: xl+1 = (ρPHP + βHHH)−1(βHHy + ρPHDlzl)

6: zl+1
j = (ρI + DlH

L Dl
L)−1(DlH

L Pxl+1 + ρ(tlj − ulj))

7: for j = 1, ..., SN2

8: tl+1 = soft(zl+1 + ul, λ/ρ)

9: ul+1 = ul + zl+1 − tl+1

10: if Update then

11: Dl+1
L = (Xl+1Z(l+1)H + σ(Gl − El))(Zl+1Z(l+1)H + σI)−1

12: Gl+1 =
(Dl

L+El)

||Dl
L+El||2

.

13: El+1 = El + Gl+1 −Dl+1
L .

14: else

15: Dl+1 = Dl

16: end if

17: until Some convergence criterion is satisfied

εpriD =
√
nDε

abs + εrelmax(||Dl||2, ||Gl||2, 0),

εdualD =
√
nDε

abs + εrel||El||2||2
(3.48)

where size of z is represented via nz, and size of vectorized D is denoted by nD.

Here, εabs = 0 and εrel = 10−3. Using Eq. (3.47) and (3.48), the stopping criteria

is obtained. If any of εpriz > rz, εdualz > sz, ε
pri
D > rD or εdualD > sD the algorithm is

stopped.

3.4 Image Reconstruction Method With Convolutional Dictionaries

In this section, we develop an image reconstruction method inserting a convolutional

dictionary with online learning, which is expressed in Eq. (2.21) [14, 50]. By remov-
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ing dictionary update steps, the algorithm without online dictionary learning can be

easily obtained. Note that we emphasize the differences between the update steps of

the algorithms with two and three-dimensional models. Now we recall the regularizer

with the patch-based dictionary in Eq. (2.21) given by

R(x) = min
zm,dm

1

2
||

M∑
m=1

dm ∗ zm − x||22 + λ

M∑
m=1

||zm||1

s.t. ||dm||2 = 1 m = 1, 2..M

(3.49)

Now, we insert this prior with convolutional dictionary into the following formulation

min
x

β

2
||y −Hx||22 +R(x) (3.50)

Finally, the objective function is obtained as

min
zm,x,dm

β

2
||y −Hx||22 +

1

2
||

M∑
m=1

dm ∗ zm − x||22

+ λ
M∑
m=1

||zm||1 s.t. dm ∈ Sd ∀m

(3.51)

where

Sd = {u ∈ RN2

: (I−QQT)u = 0, ||u||2 = 1}. (3.52)

The resulting optimization problem is solved for the unknown images x’s, the sparse

coefficient vectors zm’s and dictionary filters dm’s by using Alternating Direction

Method of multipliers (ADMM) [60]. To solve the resulting constrained optimization

problem Eq. (3.51), it is converted into an unconstrained problem by adding the

constraint to the objective as an indicator function as

min
zm,x,dm

β

2
||y −Hx||22 +

1

2
||

M∑
m=1

dm ∗ zm − x||22

+ λ
M∑
m=1

||zm||1 +
M∑
m=1

ιSd
(dm).

(3.53)

Here, auxiliary variable tm for variable zm and auxiliary variable gm for variable dm
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are inserted into Eq. (3.53) using variable-splitting as

min
zm, x,dm

β

2
||y −Hx||22 +

1

2
||

M∑
m=1

dm ∗ zm − x||22

+ λ

M∑
m=1

||tm||1 +
M∑
m=1

ιSd
(gm)

s.t. zm = tm, dm = gm

(3.54)

This problem is solved using augmented Lagrangian and the alternating minimization

approach in the ADMM framework. ADMM updates for the lth iteration are given

by

xl+1 = arg min
x

β

2
||y −Hx||22 +

1

2
||

M∑
m=1

dlm ∗ zlm − x||22 (3.55)

zl+1
m = arg min

zm

1

2
||

M∑
m=1

dlm ∗ zm − xl||22 +
ρ

2

M∑
m=1

||zm − tlm + ulm||22 (3.56)

tl+1
m = arg min

tm

λ
M∑
m=1

||tm||1 +
ρ

2

M∑
m=1

||zl+1
m − tlm + ulm||22 (3.57)

dl+1
m = arg min

dm

1

2
||

M∑
m=1

dm ∗ zlm − xls||22 +
σ

2

M∑
m=1

||dm − glm + elm||22 (3.58)

gl+1
m = arg min

gm

M∑
m=1

ιSd
(gm) +

σ

2

M∑
m=1

||dlm − gm + elm||22 (3.59)

where um and em are ADMM dual variables and ρ and σ are parameters related to step

size of the algorithm. Note that since two-dimensional convolutional representation

is a special case of three-dimensional dimensional one, its update steps are obtained

very similarly for Eq. (3.55), (3.56), (3.57), (3.58) and (3.59). We now explain

these update steps separately which we refer as image update, sparse-code update,

auxiliary variable t-update, dictionary update, auxiliary variable g-update and dual

variable update in detail for both 3D and 2D cases.

3.4.1 Image Update

We will present the steps of image reconstruction for three-dimensional and two-

dimensional dictionaries separately. Section names are called as 3D case and 2D
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Table 3.3: Size of vectors and matrices for 3D Case

Element Size

x RN2S

zm, tm,um RSN2

z, t,u RMSN2

Dm RSN2×SN2

D RSN2×MSN2

dm,gm, em RSN2

d,g, e RMSN2

Hk,s RN2×N2

H RKN2×SN2

Table 3.4: Size of vectors and matrices for 2D Case

Element Size

xs RN2

x RN2S

zs,m RN2

zs, ts,us RMN2

z, t,u RMSN2

Dm RN2×N2

D RN2×MN2

D̃ RSN2×MSN2

dm,gm, em RN2

d,g, e RMN2

Hk,s RN2×N2

H RKN2×SN2

case, respectively.

3.4.1.1 3D Case

By expressing the convolution operations with convolution matrices, concatenating

the resulting matrices and vectors and ignoring the iteration indices in Eq. (3.55), the

image update problem can be rewritten in the following simplified form:

x = arg min
x

1

2
||Dz− x||22 +

β

2
||Hx− y||22. (3.60)
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Here, z =


z1

:

zM

 and D = [D1 ... DM ] where Dm is circular convolution matrix of

dictionary filter dm.

Since image update in Eq. (3.60) is a least-squares problem, it has a closed-form

solution:

x = (I + βHHH)−1(βHHy + Dz) (3.61)

To reduce the computational complexity of obtaining the solution, resulting subprob-

lem is solved in the DFT domain by exploiting the property that circulant convolution

matrices are diagonalized by DFT matrix. Since Hk,s and Dm are circular convolu-

tion matrices, these matrices reduce to diagonal blocks in the frequency domain. This

relationship can be expressed as Hk,s = FH
2DΛk,sF2D and Dm = FH

3DΘmF3D where

F2D ∈ RN2×N2 and F3D ∈ RN2S×N2S DFT matrices. By inserting H = F̃H
2DΛF̃2D

and D = FH
3DΘF̃3D image update step can be expressed as

x = F̃H
2D(I + βΛHΛ)−1(βΛHF̃2Dy + F̃2DFH

3DΘF̃3Dz). (3.62)

where F̃2D and F̃3D’s are the block 2D and 3D DFT matrices respectively. Further

simplification of F̃2DFH
3D is performed via expression of F3D = FD

⊗
F2D where

FD stands for one-dimensional DFT matrix. By using the properties of Kronecker

product we obtain

F̃SWH = (IS
⊗

F)(GH ⊗
FH) = GH ⊗

IN2 . (3.63)

which is equivalent to one-dimensional inverse DFT across third-dimension. Here

subscripts denote the size of I.

Here, the diagonal of the diagonal matrix F3DΘm can be computed by taking the 3D

Fourier Transform of dm[n1, n2, s]. Similarly, F3Dz requires taking the 3D Fourier

Transform of zm[n1, n2, s]. Next, ΘF̃3Dz =
∑M

m=1 ΘmF̃3Dzm is performed as sum-

mation of element-wise multiplications. Final form of F̃2DFH
3DΘF̃3Dz is acquired by

taking 1D inverse Fourier transform of ΘF̃3Dz along the third-dimension. Computa-

tions of the inverse term (I + βΛHΛ)−1 and βΛHF̃2Dy are same with image update

of patch-based dictionary in Chapter 2. Note that, here instead of obtaining x in time
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domain, we leave this in the 2D frequency domain as F̃2Dx to use in the sparse code

z update.

3.4.1.2 2D Case

For image update with 2D dictionary, similar expressions with (3.61) are obtained

by replacing D with D̃ and with a small difference in concatenation of z. Here, Eq.

(3.61) is modified for 2D case as

x = (I + βHHH)−1(βHHy + D̃z) (3.64)

where z =


z1

:

zS

 and zs =


z1,1

:

z1,M

. Note that, D = [D1 ... DM ] and D̃ =

IS
⊗

D. As Here, Dm = FH
2DΘmF2D we obtain the following diagonalization as

D̃ = F̃H
2DΘ̃F̃2D. Hence, two-dimensional image update is expressed as

x = F̃H
2D(I + βΛHΛ)−1(βΛHF̃2Dy + Θ̃F̃2Dz). (3.65)

Here, the diagonal of the diagonal matrix F2DΘm can be computed by taking the

2D Fourier Transform of dm[n1, n2]. Similarly, F2Dz requires taking the 2D Fourier

Transform of zs,m[n1, n2]. Next, ΘF̃2Dz =
∑S

s=1

∑M
m=1 ΘmF̃2Dzs,m is performed

as summation of element-wise multiplications. Computations of the inverse term

(I+βΛHΛ)−1 and βΛHF̃2Dy are same with image update of patch-based dictionary

in Chapter 2. Note that, here instead of obtaining x in time domain, we leave this in

the 2D frequency domain as F̃2Dx to use in the sparse code z update.

3.4.2 Sparse Code Update

3.4.2.1 3D Case

Similar to image update, resulting matrices and vectors are concatenated and iteration

indices are ignored in Eq. (3.56), sparse code update is represented in following form:

z = arg min
z

1

2
||Dz− x||22 +

ρ

2
||z− t + u||22 (3.66)
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where um and tm vectors are vertically concatenated in lexigocraphic order as u and

t.

For sparse code z update, we need to solve the problem in Eq. (3.66). To solve this

problem, we need to solve the following linear system

(ρI + DHD)z = (DHx + ρ(t− u)). (3.67)

Considering similar steps with image update, sparse code update is also efficiently

computed in the frequency domain:

(ρI + ΘHΘ)F̃3Dz = (ΘHF3Dx + ρF̃3D(t− u)) (3.68)

First, F̃3D(t−u) and Θ is computed by taking 3D FFT of (tm[n1, n2, s]−um[n1, n2, s])

and Dm for m = 1, ...,M . By taking the 1D FFT of F̃2Dx along the third dimension,

we acquire F3Dx. Then, ΘHF3Dx is computed via sum of element-wise multiplica-

tions.

(ρI + ΘHΘ) consists of sum of a block diagonal rank-one matrix and a diagonal

matrix. Instead of solving sparse code update problem in Eq. (3.68) via recursive

block-matrix inversion, rank-one property makes available a cost efficient solution.

We exploit a fast Sherman-Morrison method by rearranging the terms of the linear

system in Eq. (3.68), as proposed in [30]. Assume that index [n1, n2, s] is denoted by

n for simplicity. After rearranging the terms of Θm[n]’s, we obtain the vectors Θ̄n[m]

of lengthM . Then, we denote the right-hand side of Eq. (3.68) by c and its rearranged

version as c̄n. By using Sherman-Morrison formula, we obtain the following solution

as

z̄n = ρ−1(c̄n −
Θ̄H
n c̄n

ρ+ Θ̄H
n Θ̄n

Θ̄n) (3.69)

where z̄n corresponds to the rearranged version of F̃3Dz. Using this, we form the

sparse code z.

3.4.2.2 2D Case

Here the sparse code z-update problem in Eq. (3.67) is modified by replacing D by

D̃ as follows:

(ρI + D̃HD̃)z = (D̃Hx + ρ(t− u)). (3.70)
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In this case, by inserting Dm = FH
2DΘmF2D and D̃ = F̃H

2DΘ̃F̃2D, the solution is

expressed as

(ρI + Θ̃HΘ̃)F̃2Dz = (Θ̃HF̃2Dx + ρF̃2D(t− u)) (3.71)

The linear system is separable to S linear systems for S spatial images as

(ρI + ΘHΘ)F̃2Dzs = (ΘHF2Dxs + ρF̃2D(ts − us)) (3.72)

and each one is efficiently solved via fast Sherman-Morrison approach. By 2D fourier

transforms instead of 3D transforms same steps are applied. Note that s now repre-

sent number of separate images instead of the third dimension index. Hence, steps

are changed accordingly. For example, F̃2D(t− u) and Θ is computed by taking 2D

Fourier transform of (ts,m[n1, n2]− us,m[n1, n2]) and Dm for m = 1, ...,M . Remain-

ing changes are applied similarly.

3.4.3 Auxiliary Variable Update I

By concatenating us and ts vectors lexicographically as u and t, overall solution for

the problem in Eq. (3.57) is obtained as

t = arg min
t

λ||t||1 +
ρ

2
||z− t + u||22. (3.73)

for both 2D representations and 3D representations. This problem is solved via soft-

thresholding as

t = soft(z + u, λ/ρ) (3.74)

Then, component-wise soft-thresholding is performed as

t = sign(x + u)�max(0, |x + u| − λ/ρ). (3.75)

As it is an element-wise opeation, it is completed without forming the vectors.

3.4.4 Dictionary Update

3.4.4.1 3D Case

For the solution of the problem in Eq. (3.58) which is required to obtain dictionary

update, we follow a similar path to the sparse code update by modifying of Eq. (3.58)
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as

d = arg min
d

1

2
||Zd− x||22 +

σ

2
||d− g + e||22 (3.76)

where Z = [Z1 ... ZM ] and dm vectors are vertically concatenated as d. The linear

system providing the solution of least-squares problem is

(σI + ZHZ)d = ZHx + ρ(g − e). (3.77)

By inserting Z = FH
3DΓF̃3D to (3.77), the solution in DFT domain can be represented

as

(σI + ΓHΓ)F̃3Dd = ΓHF3Dx + ρF̃3D(g − e).. (3.78)

The left-hand side consists of the sum of a block diagonal and rank-1 matrix and a

diagonal matrix and solved by the fast Sherman-Morrison approach that we used for

the solution of sparse code update in Eq. (3.67).

3.4.4.2 2D Case

When 2D dictionaries are exploited, concatenation of vectors slightly differs than 3D

case in Eq. (3.76). By considering the 2D convolutional dictionary, the dictionary

update is expressed as

d = argmin
d

1

2

S∑
s=1

||Zsd− xs||22 +
σ

2
||d− g + e||22 (3.79)

where Zs = [Zs,1 ... Zs,M ] and dm vectors are vertically concatenated as d. Here,

least-squares solution is

d = (σI +
S∑
s=1

ZH
s Zs)

−1(
S∑
s=1

ZH
s xs + ρ(g − e)). (3.80)

Here, block matrix inversion used in x-update can also be exploited for Eq. (3.80).

However, since sparse code z term change in every iteration, inverse term should be

computed as well. Computing this inverse in each iteration is computationally costly.

Instead, we use the linear system providing the least-squares solution is expressed as

(σI +
S∑
s=1

ZH
s Zs)d =

S∑
s=1

ZH
s xs + ρ(g − e). (3.81)
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By inserting Zs = FH
2DΓSF̃2D to (3.81), the solution in the frequency domain can be

represented as

(σI +
S∑
s=1

ΓH
s Γs)F̃2Dd =

S∑
s=1

ΓH
s F2Dxs + ρF̃2D(g − e). (3.82)

The term in the left hand-side of Eq. (3.82) is rank-S term, and hence this linear

system is not solvable via efficient Sherman-Morrison formula. Hence, several other

methods for the solution are presented such as Iterated Sherman-Morrison Approach,

Conjugate Gradient method, spatial tiling and consensus framework [31]. Iterated

Sherman-Morrison approch has been utilized for the solution of this term, this is iter-

ative version of Sherman-Morrison approach and presented in [30]. Iterated Sherman-

Morrison is also presented in kkkıAppendix A.

3.4.5 Auxiliary Variable Update II

For both 2D and 3D cases, the problem in Eq. (3.59) for the solution of auxiliary vari-

able g-update is separable to M subproblems. Each subproblem can be represented

as

arg min
gm

ιSd
(gm) +

σ

2
||dm − gm + em||22. (3.83)

The solution of the problem is obtained via geometry as

gm =
QQT (dm + em)

||QQT (dm + em)||2
. (3.84)

Here, summation and division operations are element-wise. Note that in the imple-

mentation QT operation crops resulting dm +em as L×L×R which is target dictio-

nary size for 3D case. Next, Q operation zero-pads this crop to the size of N×N×S
which is the original image size. Similarly, QT operation crops resulting dm + em as

L× L for 2D case. Next, Q operation zero-pads this crop to the size of N ×Ne.

3.4.6 Dual Variable Update

ADMM dual variable updates are expressed as

ul+1 = ul + tl+1 − zl+1 (3.85)
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Algorithm 3 Image Reconstruction Algorithm with Convolutional 3D Dictionary
Require: y: Measured image, H: Blur filter,

Ensure: x: Reconstructed Image

1: Choose: λ > 0, ρ > 0, β = 0, t0, u0

2: (ρI + βHHH)−1 is computed.

3: βHHy is computed

4: repeat

5: xl+1 = (ρI + βHHH)−1(βHHy + ρDzl)

6: zl+1 = (ρI + DlHDl)−1(DlHxl+1 + ρ(tl − ul))

7: tl+1 = soft(zl+1 + ul, λ/ρ)

8: ul+1 = ul + zl+1 − tl+1

9: if Update then

10: Dl+1 = (σI + Z(l+1)HZl+1)−1(Z(l+1)Hx + ρ(gl − el)).

11: gl+1
m = QQT (dl+1

m +elm)

||QQT (dl+1
m +elm)||2

for m = 1, ...,M

12: el+1 = el + gl+1 − dl+1.

13: else

14: Dl+1 = Dl

15: end if

16: until Some convergence criterion is satisfied

el+1 = el + gl+1 − dl+1. (3.86)

3.4.7 ADMM Parameter Update

Same update scheme used in patch-based scenario is applied for the algorithm with

convolutional prior. However, some modifications are performed as sl+1
d = σ(gl −

gl+1) and rl+1
d = (dl+1 − gl+1) and

εprid =
√
ndε

abs + εrelmax(||dl||2, ||gl||2, 0),

εduald =
√
ndε

abs + εrel||el||2||2
(3.87)

where the size of vectorized d is denoted by nd. Here, εabs = 0 and εrel = 10−3.

Variables introduced in Eq. (3.47) and (3.87) determine the stopping criteria, if any
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of εpriz > rz, εdualz > sz, ε
pri
d > rd or εduald > sd the algorithm is stopped.

3.5 Image Reconstruction with Convolutional Dictionaries and Tikhonov Reg-

ularization

In this section, we insert convolutional prior with Tikhonov regularization in Eq.

(2.26) intoR(x) and the following formulation of the problem is obtained as

min
zm,x,dm

β

2
||Hx− y||22 +

1

2
||

M∑
m=1

dm ∗ zm − x||22 +
M∑
m=1

ιSd
(gm)+

M∑
m=1

||tm||1 +
µ

2

M∑
m=1

(||r1 ∗ zm||22 + ||r2 ∗ zm||22 + ||r3 ∗ zm||22)

s.t. zm = tm, dm = gm

(3.88)

where r1, r2 and r3 are filters that compute the gradient in the first, the second and the

third dimensions. This modification only change sparse code update stage as follows:

z = arg min
z

1

2
||Dz− x||22 +

ρ

2
||z− t + u||22 +

µ

2
(||R1z||22 + ||R2z||22 + ||R3z||22)

(3.89)

where R1, R2 and R3 are circular convolution matrices of r1, r2 and r3 respectively.

The modified linear system which gives the solution is expressed as:

(ρI + µRH
1 R1 + µRH

2 R2 + µRH
3 R3 + DHD)z = (DHx + ρ(t− u)) (3.90)

This step is solved in the frequency-domain using Sherman-Morrison formula. Since

R1, R2 and R3’s are circular convolution matrices, they correspond to the diagonal

matrices in the frequency domain. Detailed solution is not presented as we already

a very similar solution in Eq. (3.67). [64] claims that this version of the algorithm

provides higher image reconstruction performance. Also note that new formulation

in 3.88 is expressed for 2D case as follows:

min
zs,m,xs,dm

β

2
||Hx− y||22 +

1

2

S∑
s=1

||
M∑
m=1

dm ∗ zs,m − xs||22 +
M∑
m=1

ιSd
(gm)+

λ
S∑
s=1

M∑
m=1

||ts,m||1 +
µ

2

S∑
s=1

M∑
m=1

(||r1 ∗ zs,m||22 + ||r2 ∗ zs,m||22)

s.t. zs,m = ts,m, dm = gm

(3.91)
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This modification only change sparse code update stage as

z = arg min
z

1

2
||D̃z− x||22 +

ρ

2
||z− t + u||22 +

µ

2
(||R̃1z||22 + ||R̃2z||22) (3.92)

where R̃1 and R̃2 are circular convolution matrices of r̃1 and r̃2 respectively. The

solution is modified as follows,

z = (ρI + µR̃H
1 R̃1 + µR̃H

2 R̃2 + D̃HD̃)−1(D̃Hx + ρ(t− u)) (3.93)

Detailed solutions of these updates are not presented since we already discussed very

similar solution in Eq. (3.70).

3.6 Computational Complexity

3.6.1 3D Case

In Table 3.5, the computational cost of the algorithms for each variable update is

presented in detail. For the sparsifying transform algorithm, computational com-

plexity is dominated by the image update with the computational cost of O(S2N2 +

N2Slog(N2S)). However, other updates of the problem are computationally cheaper.

Here, N × N × S is the size of the data cube. Since online learning is not included

for sparsifying transform, it has the lowest computational cost among three algo-

rithms. In the patch-based dictionary algorithm, the steps which cause the highest

costs are image update and sparse code update with the complexity of O(N4S2) and

O(N2Sn6q3). n × n × q is the size of the 3D patch extracted from the data-cube.

Lastly, for the convolutional dictionary, the steps which result in the highest compu-

tational complexity are z, t and d updates. Similarly, FFT computations of these up-

dates dominate the computational cost, which can be concluded asO(SMN2log(N2S)).

Note that M corresponds to the number of dictionary filters. The computational cost

of both patch-based and convolutional dictionary-based algorithms with/without on-

line dictionary learning can be inferred from this table.
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Table 3.5: Computational cost of algorithms for 3D case

Updates Sparsifying Transform Patch-Based Dictionary Convolutional Dictionary

Image Update O(S2N2 +N2Slog(N2S)) O(N4S2) O(S2N2)

Sparse Code Update - O(N2Sn6q3) O(SMN2log(N2S))

Auxiliary t Update O(N2Slog(N2S)) O(N2Sn2q) O(SMN2log(N2S))

Dual u Update O(SN2) O(N2Sn2q) O(SMN2)

Dictionary Update - O(n6q3 +N2Sn2q) O(SMN2log(N2S))

Auxiliary g/G Update - O(n2q) O(MN2Slog(N2S))

Dual e/E Update - O(n2q) O(SMN2)

Table 3.6: Computational cost of algorithms for 2D case

Updates Sparsifying Transform Patch-Based Dictionary Convolutional Dictionary

Image Update O(N2Slog(N2)) O(N4S) O(S2N2)

Sparse Code Update - O(N2Sn6) O(SMN2log(N2))

Auxiliary t Update O(N2Slog(N2)) O(N2Sn2) O(SMN2log(N2))

Dual u Update O(SN2) O(N2Sn2) O(SMN2)

Dictionary Update - O(n6) O(SMN2log(N2))+

O(S2MN2)

Auxiliary g/G Update - O(n2) O(MN2Slog(N2))

Dual e/E - O(n2) O(SMN2)

3.6.2 2D Case

In Table 3.6, computational cost of the algorithms for each variable update is pre-

sented in detail. For sparsifying transform algorithm, computational complexity is

dominated by image update with computational cost of O(N2Slog(N2)). Here,

N ×N ×S is the size of the data cube. Since online learning is not included for spar-

sifying transform, it has the lowest computational cost among three algorithms. In

the patch-based dictionary algorithm, the steps which causes the highest costs are im-

age update and sparse code update with the complexity of O(N4S) and O(N2Sn6).

n × n is the size of the 2D patch extracted from each slices of the data-cube. Lastly,

for convolutional dictionary, the step which results in the highest computational com-

plexity is the d update. Similarly, FFT computations of this update dominates the

computational cost which can be concluded asO(SMN2log(N2)). Note that M cor-

responds to number of dictionary filters. The computational cost of both patch-based
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and convolutional dictionary based-algoritms with/without online dictionary learning

can be inferred from this table.
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CHAPTER 4

PERFORMANCE COMPARISON

4.1 Introduction

Here the numerical performance of the developed algorithms is evaluated for a com-

putational spectral imaging problem [11, 12]. In the analysis case, discrete deriva-

tive operators or sparsifying transforms are utilized such as discrete cosine transform

(DCT), wavelets, or their Kronecker-product forms [6, 13, 16]. In the synthesis case,

convolutional or patch-based dictionaries are utilized, which can also be adapted to

correlations in different dimensions [7, 19–24, 30, 32–34, 40, 41]. Online dictionary

learning is also performed to improve image reconstruction quality.

Before the numerical results, we present reconstruction performance metrics that we

used to evaluate the image reconstruction qualities of the algorithms. Then, a discrete

spectrum photon sieve spectral imaging (PSSI) problem is solved. For this problem,

the reconstructed images are not correlated along the third dimension, and hence two-

dimensional priors are exploited. Furthermore, we also present a comprehensive anal-

ysis of dictionaries with respect to changing dictionary size and dictionary training

set. Secondly, the numerical performance of the developed algorithms is evaluated for

continuous spectrum problems. In this case, we first evaluate the performance of the

algorithms for a denoising problem to measure the image representation quality of the

priors. Then, we investigate the numerical performance of the algorithms for the PSSI

problem. Here, the reconstructed images are correlated along the third dimension, and

hence three-dimensional priors are enforced. We also optimize the dictionary size to

attain the best performance among different dictionaries. Note that, since extracting

three-dimensional patches and performing dictionary learning on these dictionaries
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is computationally intensive, we do not evaluate the performance of the patch-based

algorithm for the continuous spectrum problem.

4.1.1 Reconstruction Performance Metrics

The image reconstruction fidelity is measured by numerically comparing the recon-

structed images with the true intensity images. For the comparison, three quality met-

rics are used: Peak signal-to-noise ratio (PSNR), structural similarity index (SSIM),

and spectral angular mapper (SAM). Note that the results that will be presented here

are the average success of various reconstructed images.

Peak Signal-To-Noise Ratio: PSNR is computed by dividing the maximum possi-

ble intensity value for the reference image to the mean squared error (MSE) between

reference and reconstructed images. We define two different PSNRs for the 2D case

and 3D cases. First, for the 2D case, we reconstruct S images that are uncorrelated in

third-dimension. PSNR of each sth spatial image is determined as follows:

PSNR(x̂s[n1, n2], xs[n1, n2]) = 20 log10(
max(xs[n1, n2])√∑

n1,n2
(xs[n1,n2]−x̂s[n1,n2])2

N2

) (4.1)

For overall PSNR we take the average of individual PSNRs.

Av.PSNR =
PSNR(xs[n1, n2], x̂s[n1, n2])

S
(4.2)

Next, for 3D case, PSNR is obtained directly PSNR of each sth spatial image is

determined as follows:

PSNR(x̂[n1, n2, s], x[n1, n2, s]) = 20 log10(
max(x[n1, n2, s])√∑

n1,n2,s
(x[n1,n2,s]−x̂[n1,n2,s])2

N2S

) (4.3)

Structural Similarity Index: SSIM is an image quality metric that compares a

reconstructed image to a reference image in terms of the structural similarity of lumi-

nance, contrast, and structure [66]. SSIM is defined as

SSIM(x̂, x) = [l(x̂, x)]α[c(x̂, x)]β[s(x̂, x)]γ (4.4)

where

l(x̂, x) =
2µx̂µx + c1

µ2
x̂ + µ2

x + c1
(4.5)
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c(x̂, x) =
2σx̂σx + c2

σ2
x̂ + σ2

x + c2
(4.6)

s(x̂, x) =
2σx̂x + c3

σx̂σx + c3
(4.7)

Here, parameters µx̂, µx, σx̂, σx and σx̂x are local sample means, standard deviations

and correlation coefficient of x̂ and x. Furthermore, α, β and γ are the weight pa-

rameters which determine the relative importance of the three components, and c1, c2

and c3 are small constants used to stabilize these expressions when the denominator

is small.

Spectral Angular Mapper: SAM resolves spectral similarity between the recon-

structed image and the reference image by taking the average of the calculation of

a spectral angle between reconstructed and reference spectral vectors which have a

common origin. After computing an angle for each spectral vector, we take the av-

erage of these angles for all pixels. SAM is applied for the data cubes that have a

correlation across the third dimension. Therefore, we utilized this metric only for the

3D case.

θ =
1

N2

∑
n1,n2

cos−1(

∑S
s=1 x̂[n1, n2, s]x[n1, n2, s]√∑S

s=1 x̂
2[n1, n2, s]

√∑S
s=1 x

2[n1, n2, s]
) (4.8)

Note that decreasing SAM value indicates increasing image reconstruction quality for

the data-cube.

4.1.2 Numerical results for the 2D Case

In this section, we will numerically demonstrate the performance of the presented

algorithms for the photon spectral imaging problem (PSSI) in the discrete spectrum.

Therefore, 2D transforms and dictionaries are exploited as the scenes are uncorrelated

along the spectral dimension.
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4.1.2.1 Simulation Setting

The number of measurements and the number of unknown images are chosen as K =

S = 3. In the photon sieve design, the outer diameter of the photon sieve is chosen

as 25 mm and the diameter of the smallest hole as 5 µm. For the spectral imaging

system, wavelengths emitted from a polychromatic source is taken as λ1 = 33.3 nm,

λ2 = 33.4 nm, and λ3 = 33.5 nm. The photon sieve system takes measurements at

the focal planes of each of these wavelengths.

Test images are taken from solar images of AIA 335 telescope of NASA [68]. A sam-

ple set of 128×128 solar EUV images shown in Fig. 4.4a, 4.4e and 4.4i are used as the

true spectral images at these wavelengths, and the measurements are generated using

the forward model in Eq. (2.2) with signal-to-noise ratios (SNRs) of 15, 20, 25, 30,

35 and 40 dB. Each measurement is the superposition of differently blurred spectral

images. Here Fig. 4.2a, 4.2e and 4.2i display measured intensities with 20 dB SNR.

The contributions from each spectral band to these measurements are shown in Fig.

4.2b, 4.2c, 4.2d, 4.2f, 4.2g, 4.2h, 4.2j, 4.2k and 4.2l. These contributions are acquired

by convolving point spread functions in Fig. 4.3a,4.3b,4.3c,4.3d,4.3e,4.3f,4.3g,4.3h

and 4.3i with original images in Fig. 4.4a, 4.4e and 4.4i.

We use a sparsifying transform, patch-based dictionary, and convolutional dictionary

for regularization. Each requires different parameter selections.

Parameter selection with Sparsifying Transform: The parameters of the algorithm

are adjusted, as shown in Table 4.1. Here β = 1 and does not require a parameter

optimization. Moreover, ρ = 10λ is adjusted. Note that since β is set as constant,

λ decreases with decreasing noise level (increasing SNR). Namely, decreasing noise

requires less dependence on the prior term and more dependence on the data fidelity

term.

Table 4.1: Parameter Selection with Sparsifying Transform for various SNRs

Updates 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

λ 10−2 10−2 3× 10−3 10−3 3× 10−4 10−4

Parameter selection with Patch-Based Dictionary: Here, the constant weight 1 is
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used for dictionary representation term ||Dz−x||22. Hence, all other paramters require

optimization. The parameters are adjusted as (λ,β) = (0.05, 50) for 15 dB, where

β increases with increasing SNR (decreasing noise). Decreasing the noise requires

more dependence on data fidelity term and less dependence on the noise term. Also

other parameters set as ρ = 1 and σ = 1. The parameter adjustments of (λ,β) are

displayed in Table 4.2

Table 4.2: Parameter Selection with Patch-Based Dictionary for various SNRs

Updates 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

λ 0.05 0.05 0.05 0.05 0.05 0.05

β 50 100 250 500 2000 3000

Parameter selection with Convolutional Dictionary: Here, the parameters are ad-

justed as (λ,β) = (0.2, 1) for 15 dB, where β is increases with increasing SNR. Also

other parameters set as ρ = 50λ+ 0.5 and σ = 1. The parameter adjustments of (λ,β)

are displayed in Table 4.3

Table 4.3: Parameter Selection with Convolutional Dictionary for various SNRs

Updates 15 dB 20 dB 25 dB 30 dB 35 dB 40 dB

λ 0.2 0.2 0.15 0.15 0.15 0.15

β 1 2 4 8 12 50

Image reconstruction performances concerning different sizes for randomly initial-

ized dictionaries have been compared to determine the optimal size of the dictionar-

ies. The best dictionary size is determined as 36 × 36 for patch-based dictionaries

where patch size is 6 × 6. Image reconstruction with K = P = 3 takes 230 seconds

on a computer with 8 GB of RAM and i7 7500U 2.70 GHz CPU. A convolutional

dictionary requires determining the number of dictionary filters. The best convolu-

tional dictionary size is chosen as 12 × 12 and the number of dictionary filters is set

to M = 4. A single reconstruction takes approximately 20 seconds even with on-

line dictionary learning, which is substantially lower than the patch-based alternative.

Fixed sparsifying transforms do not require size optimization, and reconstruction time
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is around 20 seconds.

(a)

Figure 4.1: (a) 4 Dictionary filters trained with solar images from Telescope AIA335

To reconstruct images, fixed sparsifying transform, patch-based dictionary, and con-

volutional dictionaries with and without Tikhonov regularization are exploited.

• Dictionaries are randomly initialized when we perform online learning for both

patch-based and convolutional dictionaries.

• When online learning is not performed, an inverse DCT has been exploited for

the patch-based dictionary.

• We use a patch-based dictionary trained with 262144 patches extracted from 16

images shown in Fig. B.3a by using K-SVD algorithm. (K-SVD is a state-of-

the-art dictionary learning algorithm for patch-based dictionaries [18]).

• When online learning is not performed, the convolutional dictionary is trained

with the same solar images in Fig. B.3a and the resulting convolutional dictio-

nary is displayed in Fig. 4.1a. To train the convolutional dictionary, we use the

algorithm presented in Section 3.4 by removing the image update steps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.2: (a) Measured intensities for 20 dB SNR at the first focal plane (a), at the

second focal plane (e), and at the third focal plane (i), the underlying images of the

first source at the first, second, and third focal planes (b)-(d), the underlying images of

the second source at the first, second, and third focal planes (f)-(h), and the underlying

images of the third source at the first, second, and third focal planes (j)-(l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Sampled and zoomed point-spread functions of the system for the focused

and defocused cases (a)-(i), respectively.
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4.1.2.2 Simulation Results

In Table 4.4, we present the image reconstruction PSNR and SSIM values for different

SNRs, i.e. 15 dB to 40 dB with 5 dB steps for comparison for photon sieve spectral

imaging problem. These values are obtained as taking the average of 10 Monte-Carlo

results for 5 different solar image sets. As each set consists of three images, we also

take the average of the results for three reconstructed images. We compare the results

of isotropic TV and Wavelet transform for sparsifying transforms. Furthermore, we

compare the performance of the inverse DCT, and a dictionary learned via the K-SVD

algorithm for the patch-based dictionary. We refer to the algorithm with patch-based

dictionaries as PatchDic. We also include a randomly initialized dictionary which is

adaptively learned from the data. For a regular convolutional dictionary (ConvDic),

we evaluate the performance of the dictionaries with/without online learning. We

repeated the same experiments by adding Tikhonov regularization.

• Reconstruction PSNR is above 30 dB even when the input SNR is 20 dB and

increases significantly with increasing SNR value.

• Table 4.4 suggests that online-dictionary learning increases the image recon-

struction quality for both patch-based and convolutional dictionaries.

• Tikhonov regularization increases the performance of the convolutional dictio-

nary for both cases.

• The highest performance is attained using patch-based and convolutional dic-

tionaries with online learning; however, the image reconstruction time of patch-

based dictionary is around 10 times higher than the sparsifying transform and

the convolutional dictionary.

• When online dictionary learning is available, the convolutional dictionary with

Tikhonov regularization also has comparable performance with the patch-based

one.

• Although sparsifying transforms and convolutional dictionaries have similar

reconstruction times, the convolutional dictionary has slightly better perfor-

mance.
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The reconstructed images using isotropic TV reqularization are shown in Fig. 4.4b,4.4f

and 4.4j with sparsifying transform, 4.4c,4.4g and 4.4k with patch-based dictionary

(online learning) and 4.4d,4.4h and 4.4l with convolutional dictionary (online learn-

ing), for the three sources, together with the original scenes in Fig. 4.4a,4.4e and 4.4i

for comparison, when the input SNR is 20 dB. Visual inspection shows that the char-

acteristic features of each spectral image are recovered successfully from the noisy

photon sieve measurements. However, the reconstruction with convolutional dictio-

nary is visually more successful than other counterparts.

4.1.2.3 Dictionary Size Selection of Synthesis Priors

In this section, we present the dictionary size selection of synthesis priors. Overall

results are previously presented, but we did not detail how we selected dictionary

sizes. Since solar images from AIA 335 [68] has very similar characteristics, we

select three images in Fig. 4.4b,4.4f and 4.4j as a sample test set. Using these images,

we perform our experiments with dictionaries having different sizes.

Patch-Based Dictionary In order to determine the optimal size of the dictionaries,

image reconstruction performances concerning different sizes of dictionaries have

been compared. Table. 4.5 and 4.6 illustrate PSNR and SSIM values for different

sizes of randomly initialized dictionaries for 20 and 30 dB respectively. We also show

reconstruction time in the same table. Each result is an average of 10 Monte Carlo

realizations for three reconstructed images. When the dictionary size is changed, the

highest performance attained at a dictionary sizes of 36 × 36, 49 × 49 and 64 ×
64. Since the lowest reconstruction time is obtained with a dictionary of size 36 ×
36, the dictionary filter size is determined as 36 × 36 for all experiments. A single

reconstruction takes approximately 230 seconds on a computer with 8 GB of RAM

and i7 7500U 2.70 GHz CPU.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.4: (a),(e),(i) Original images (b),(f),(j) Reconstructed images under with

sparsifying transform (c),(g),(k) Reconstructed images via patch-based dictionary

with online dictionary learning (d), (h), (l) Reconstructed images with convolutional

dictionary with online dictionary learning under 20 dB SNR
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Table 4.5: Reconstruction PSNR, SSIM and time of patch-based dictionary with

changing the size of dictionary for 20 dB SNR

Size of D PSNR/SSIM Reconstruction Time

(4× 4) 26.74/0.48 90 seconds

(9× 9) 30.87/0.68 125 seconds

(16× 16) 31.82/0.78 148 seconds

(25× 25) 32.57/0.83 174 seconds

(36× 36) 32.76/0.86 195 seconds

(49× 49) 32.74/0.87 275 seconds

(64× 64) 32.78/0.88 340 seconds

(81× 81) 32.29/0.88 395 seconds

(100× 100) 32.66/0.88 525 seconds

Table 4.6: Reconstruction PSNR, SSIM and time of patch-based dictionary with

changing the size of dictionary for 30 dB SNR

Size of D PSNR/SSIM Reconstruction Time

(4× 4) 31.71/0.74 90 seconds

(9× 9) 34.98/0.84 125 seconds

(16× 16) 36.05/0.89 148 seconds

(25× 25) 36.13/0.92 174 seconds

(36× 36) 36.27/0.93 195 seconds

(49× 49) 36.18/0.93 275 seconds

(64× 64) 36.11/0.94 340 seconds

(81× 81) 35.92/0.94 395 seconds

(100× 100) 36.12/0.94 525 seconds
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Convolutional Dictionary In order to determine the optimal size and number of

dictionary filters, image reconstruction performances concerning different sizes and

the number of filters for randomly initialized dictionaries have been compared. Ta-

ble 4.7 and 4.8 illustrate PSNR and SSIM values for different number of filters and

dictionary sizes for 20 and 30 dB SNRs. The increasing number of filters causes a

proportional increment in image reconstruction time but does not cause a substantial

change in image reconstruction quality for simulations conducted under 20 and 30 dB

SNRs. With changing dictionary size, the highest performance attained at a dictio-

nary size of 12 × 12; however, reconstruction time does not vary significantly. For

this, the dictionary filter size is chosen as 12 × 12, and the number of dictionaries is

set to M = 4. A single reconstruction takes approximately 20 seconds on a computer

with 8 GB of RAM and i7 7500U 2.70 GHz CPU.

Table 4.7: Reconstruction PSNR and image reconstruction time of convolutional dic-

tionary with changing size of dictionary for 20 dB SNR

NOF 8× 8 12× 12 16× 16 20× 20 Rec. Time

2 32.45 32.97 32.63 31.43 15 seconds

4 32.27 33.13 32.88 32.84 21 seconds

8 32.08 33.04 32.78 32.52 41 seconds

16 31.91 33.17 32.77 32.43 105 seconds

32 31.56 33.19 32.59 32.51 197 seconds

64 32.37 32.88 32.10 32.32 380 seconds

Table 4.8: Reconstruction PSNR and image reconstruction time of the convolutional

dictionary with changing size of dictionary for 30 dB SNR

NOF 8× 8 12× 12 16× 16 20× 20 Rec. Time

2 36.23 36.83 36.68 36.11 15 seconds

4 36.18 36.97 36.92 36.38 21 seconds

8 36.21 36.72 36.67 36.28 41 seconds

16 35.39 36.86 36.81 36.42 105 seconds

32 35.67 36.94 36.64 36.37 197 seconds

64 36.06 36.36 36.52 36.19 380seconds
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(a) (b) (c)

Figure 4.5: (a),(b),(c) Original Images which are used in simulations for various dic-

tionaries and settings

4.1.2.4 Analysis of Various Dictionaries and Settings

The simulations presented in this section are conducted to determine the optimal dic-

tionary training dataset. Since solar images from AIA335 telescope [68] have similar

characteristics, we performed these experiments for a sample image set in Fig. 4.5a,

4.5b and 4.5c. These test images are taken from AIA 335 telescope of NASA.

Patch-Based Dictionary In this section, image reconstruction and image represen-

tation qualities with different dictionaries are evaluated for images in Fig. 4.5a, 4.5b

and 4.5c. The image reconstruction quality is measured via peak-signal-to-noise ratio

(PSNR) value between original and reconstructed images. On the other hand, image

representation quality measures the PSNR between represented image Dz and recon-

structed image x. The image "representation" quality is computed to observe if there

is a direct relation between image reconstruction quality and image representation

quality.

For dictionary training, the algorithm presented in Chapter 3 for patch-based image

reconstruction has been used. Here, we eliminate the data fidelity term and image

update step from the algorithm to modify the algorithm for dictionary learning. Ad-

ditionally, we also use the K-SVD algorithm for dictionary training for one setting.

Six different dictionaries have been utilized in this experiment set. The first one is a

random dictionary. The second, the third and the fourth ones are dictionary trained
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with MATLAB standard images in Fig. B.1a, dictionary trained with various solar

images as shown in Fig. B.2a, dictionary trained with AIA 335 telescope images as

displayed in Fig. B.3a respectively. These dictionaries are learned via the algorithm

presented in Chapter 3. The fifth dictionary is trained with AIA 335 telescope images

by using the K-SVD algorithm. Lastly, an inverse DCT transform, which has the

same size as other dictionaries have been exploited.

Size of each dictionary is determined as 36×36 and each patch is of size 6×6. Here,

four settings are evaluated based on image reconstruction performance. The first set-

ting excludes dictionary learning updates from the algorithm while the second setting

includes online dictionary learning. In the third setting, dictionaries are updated once

in five iterations. In the last setting, we do not solve the PSSI problem, but we sepa-

rately measure the image representation quality of three images and take the average.

Hence, this setting evaluates only the image representation performance of different

dictionaries.

• Without online dictionary learning, the inverse DCT dictionary results in the

highest PSNR. Since DCT is a popular and successful transformation for imag-

ing problems, this result is expected. Only the dictionary trained via the K-SVD

algorithm has a similar performance with the inverse DCT. Other dictionaries,

which are trained with the algorithm in Chapter 3, cannot compete with the per-

formance of the inverse DCT as the dictionaries might not be trained properly.

• Online dictionary learning increased the reconstruction performance for all dic-

tionaries. Image reconstruction and representation PSNRs are similar for each

dictionary. It shows that dictionary initialization is not important when dictio-

naries are updated online.

• Partially updating the dictionary does not have a significant impact on the re-

construction and representation of PSNR values.

• All dictionaries except inverse DCT and the one trained with K-SVD are de-

ficient in terms of "representation" performance. It demonstrates that other

dictionaries are not properly trained.

64



Table 4.9: Reconstruction PSNR of patch-based dictionary with different dictionaries

for 30 dB SNR

Patch-Based Reconstruction Reconstruction Reconstruction Representation

(30 dB) without Online with Online with Partial

Learning Learning Dictionary Learning

Random - Rec N/A 37.29 37.35 N/A

Random - Rep N/A 34.13 34.37 N/A

Standard - Rec 34.51 37.47 37.43 N/A

Standard - Rep 23.87 34.67 35.12 26.12

Sun - Rec 34.63 37.49 37.47 N/A

Sun - Rep 24.01 34.92 35.18 26.73

AIA335 - Rec 35.60 37.43 37.51 N/A

AIA335 - Rep 25.72 35.02 35.39 27.47

AIA335(KSVD) - Rec 37.12 37.48 37.46 N/A

AIA335(KSVD) - Rep 34.72 34.98 35.31 38.47

DCT - Rec 37.28 37.31 37.37 N/A

DCT - Rep 34.86 34.93 35.42 38.19

Convolutional Dictionary In this section, image reconstruction and image repre-

sentation qualities with different dictionaries is evaluated for images in Fig. 4.5a,

4.5b and 4.5c. Four different dictionaries has been utilized in this experiment set;

random dictionary set, dictionary filter set in Fig. B.1b trained with MATLAB stan-

dard images in Fig. B.1a , dictionary filter set in Fig. B.2b trained with solar images

from various wavelengths as shown in Fig. B.2a and dictionary filter set in Fig. B.3b

trained with AIA 335 telescope images as displayed in Fig. B.3a.
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Here, the dictionary size is chosen 12× 12, and dictionary filter number is set as 36.

(We can use different number of dictionary filters, it effects the implementation time

but does not have significant impact on the reconstruction quality as shown in Table

4.7.) For dictionary training, the algorithm presented in Chapter 3 for convolutional

image reconstruction has been used. Here, we eliminate the data fidelity term and im-

age update steps from the algorithm to modify the algorithm for the dictionary learn-

ing. Here, four settings are evaluated based on image reconstruction performance. In

the first setting, we exclude the dictionary learning steps from the algorithm while in

the second setting, we adaptively update the dictionary in the image reconstruction

algorithm. In the third setting, dictionaries are updated once in five iterations. The

last setting includes only image representation performance of different dictionaries.

• Without online dictionary learning, the highest image reconstruction PSNR is

obtained for the dictionary trained with the images of the AIA335 telescope. It

shows that the selection of the dictionary is significant if the dictionary is not

updated online. The image reconstruction quality increases with the similarity

between the test and the training images.

• When the dictionary is updated online, all dictionaries (trained with standard

images, different solar images, AIA335) have similar performances. Conse-

quently, dictionary initialization is not critical with online dictionary learning.

• Online dictionary learning increased the performance of image reconstruction,

as data adaptivity increases reconstruction performance.

• Partially updating the dictionary decreases both reconstruction and representa-

tion PSNRs. Therefore, this algorithm highly depends on the online update of

the dictionary.

• In the last case, all dictionaries have similar representation performances. It

shows that all dictionaries are learned properly with a proposed dictionary

learning algorithm.
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Table 4.10: Reconstruction PSNR of convolutional dictionary with different dictio-

naries for 30 dB SNR

Convolutional Reconstruction Reconstruction Reconstruction Representation

(30dB) without Online with Online with Partial

Learning Learning Dictionary Learning

Random - Rec N/A 37.32 36.46 N/A

Random - Rep N/A 33.69 31.60 N/A

Standard - Rec 36.28 37.28 36.97 N/A

Standard - Rep 35.50 33.84 32.81 38.88

Sun - Rec 36.41 37.24 37.24 N/A

Sun - Rep 35.78 34.26 33.12 40.63

AIA335 - Rec 37.12 37.36 37.25 N/A

AIA335 - Rep 36.18 34.27 33.52 41.00
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4.1.3 Numerical Results for the 3D Case

In this section, we will numerically demonstrate the performance of the presented

algorithms for denoising and photon sieve spectral imaging problems (PSSI) in a

continuous spectrum. Therefore, three-dimensional transforms and dictionaries are

exploited as the scenes are correlated along the spectral dimension.

4.1.3.1 Image Denoising

Image denoising can be considered as a very simple convolutional inverse problem

when the convolution filter h[n1, n2, s] = δ[n1, n2, s]. Before solving the more com-

plex inverse problems, we evaluate the image denoising performance of the presented

methods with analysis and synthesis priors. Image denoising gives an intuition about

the representation quality of the priors. We consider a dataset of size 256× 256× 16

(16 wavelengths from 510 − 660 nm with 10 nm spacing) in the visible band that

was obtained from an online hyperspectral image database referred as Objects [69],

Beads [70], Flowers [70], Pompoms [70] and Threads [70]. The measurements are

generated by adding Gaussian noise with signal-to-noise ratios (SNRs) of 10, 20, and

30 dBs.

We first exploit a three-dimensional fixed transform : Kronecker basis T = T1

⊗
T2

where T1 is the Kronecker product of 2D Symmlet-8 basis and T2 is the 1D cosine

basis. This is widely used in three-dimensional imaging as it performs better than

other transforms such as 3D TV, 3D DCT [13]. Second, we perform the algorithm

with online convolutional dictionary learning. Here, we use a convolutional dictio-

nary, which is initialized with pre-trained dictionaries. For pre-training, the dictionary

filters are randomly initialized. The dictionaries are coarsely trained with 25 spectral

data cubes of size 256×256×16, which are shown in Fig. B.5. The dictionary learn-

ing algorithm introduced in [31] is exploited for pre-training. Note that, by removing

data-fidelity term and image update steps from the image reconstruction algorithm

with convolutional prior in Chapter 3.4, we can obtain this convolutional dictionary

learning algorithm.

Parameter selection with 2D Symmlet
⊗

1D DCT transform is shown in Table 4.11
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where β = 1 and with convolutional dictionary is shown in Table 4.12. Image recon-

struction time is around 200 seconds for sparsifying transform and 300 seconds for

the convolutional dictionary. The dictionary size is 32× 32× 5 of 6 filters.

Table 4.11: Parameter Selection for various SNRs with Sparsifying Transform

Updates 10 dB 20 dB 30 dB

λ 0.1 0.1 0.01

ρ 10 50 25

Table 4.12: Parameter Selection for various SNRs with Convolutional Dictionary

Updates 10 dB 20 dB 30 dB

λ 0.001 0.001 0.001

β 0.04 0.2 0.5

ρ 10 10 10

σ 1000 1000 1000

Table 4.13 shows the average reconstruction PSNR, SAM and SSIM values under

10 dB, 20 dB and 30 dB SNRs. These values are obtained as taking an average of

10 Monte-Carlo results for Objects, Beads, Flowers, Pompoms, and Threads. First,

image reconstruction quality with the convolutional dictionary is mostly greater than

the algorithm with a fixed transform in terms of PSNR and SAM. Furthermore, SSIM

levels are close to each other for 2D Symmlet
⊗

1D DCT transform and convolu-

tional dictionary. When SNR decreases (for noisy cases), we observe a considerably

better image reconstruction performance for the convolutional dictionary. Second, a

convolutional dictionary with Tikhonov regularization has similar performance with

the regular convolutional dictionary in terms of PSNR, SAM, and SSIM values.

The reconstructed images using 2D Symmlet
⊗

1D DCT transform, convolutional

dictionary, and convolutional dictionary with Tikhonov regularization are shown in

Fig. 4.7a and 4.7b for the sixteen bands, together with the original scenes for com-

parison, when the input SNR is 10 dB. (Since denoising is a very simple inverse

problem, high noise levels are selected to show the reconstruction quality.) We also

display the difference between the original image and reconstructed images in the
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same order. Even though image reconstruction quality is very high for all priors, the

convolutional dictionary provides better image reconstruction quality than the sparsi-

fying transform. The visual inspection also suggests that the Tikhonov regularization

slightly increases the performance of the convolutional dictionary.

Furthermore, to demonstrate successful recovery along the spectral dimension, we

also display the spectrum of the point at P1 and P2 in Figure 4.6a and 4.6b for

Objects Data respectively. The reconstructed spectra at these points are plotted with

the spectra of the original image. It can be seen that the spectrum is reconstructed

better with the convolutional dictionary than the 2D Symmlet
⊗

1D DCT transform.

We also observe a slight increase in the performance of the convolutional dictionary

with Tikhonov regularization.

(a) (b)

Figure 4.6: (a) Spectrum for Point 1, (b) Spectrum for Point 2 with 10 dB SNR for

Objects
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Table 4.13: Denoising performance comparison in terms of PSNR, SAM and SSIM

for 2D Symmlet
⊗

1D DCT transform and convolutional dictionaries for Objects,

Beads, Flowers, Pompoms, and Threads Data

Dataset SNR (dB) 2D Wavelet Convolutional Convolutional

+ 1D DCT Dictionary Dictionary with Tikhonov

Objects

10 33.04/5.60◦/0.82 34.12/3.87◦/0.92 35.28/3.58◦/0.92

20 39.91/2.60◦/0.95 40.80/2.35◦/0.95 40.62/2.48◦/0.95

30 45.51/1.50◦/0.98 45.44/1.53◦/0.98 44.35/1.75◦/0.98

Beads

10 29.91/10.71◦/0.82 29.94/8.57◦/0.88 30.57/7.10◦/0.90

20 37.45/4.92◦/0.96 37.47/4.89◦/0.96 38.17/4.80◦/0.96

30 45.15/2.55◦/0.99 44.03/3.14◦/0.98 44.24/2.99◦/0.99

Flowers

10 34.46/13.03◦/0.86 35.53/12.23◦/0.89 35.71/12.01◦/0.89

20 41.38/8.72◦/0.97 41.40/8.74◦/0.97 41.44/8.66◦/0.97

30 48.56/4.65◦/0.99 48.52/4.52◦/0.99 48.61/4.49◦/0.99

Pompoms

10 34.37/6.55◦/0.85 35.25/6.06◦/0.89 35.17/5.91◦/0.90

20 41.03/2.97◦/0.96 41.18/3.10◦/0.96 41.21/2.85◦/0.96

30 47.84/1.82◦/0.99 47.96/1.78◦/0.99 48.01/1.65◦/0.99

Threads

10 36.47/6.20◦/0.92 37.32/6.24◦/0.93 37.41/6.15◦/0.93

20 42.91/2.79◦/0.97 43.44/2.75◦/0.97 44.01/2.68◦/0.97

30 50.23/1.82◦/0.99 50.12/1.92◦/0.99 50.41/1.77◦/0.99
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(a) (b)

Figure 4.7: (a) Left-to-right: Original images, Reconstructed spectral images with 2D

Symmlet
⊗

1D DCT (Kronecker) transform, convolutional dictionary, convolutional

dictionary with Tikhonov regularization under 10 dB SNR (b) The difference between

original image and reconstructed images
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4.1.3.2 Photon Sieve Spectral Imaging Problem with Continuous Spectrum

Here, reconstruction results are presented for a realistic scenario in visible bands. We

consider a dataset of size 256 × 256 × 16 (16 wavelengths from 510 − 660 nm with

10 nm spacing) in the visible band that was obtained from an online hyperspectral

image database referred as Objects [69], Beads [70], Flowers [70], Pompoms [70]

and Threads [70]. For the photon sieve, a sample design used with the outer diameter

of the photon sieve as 3.61 mm and the diameter of the smallest hole as 15 µm,

resulting in a focal length of 9 cm at 585 nm. We take measurements at the focal

planes corresponding to these wavelengths. The number of measurements K = 16

and different SNR levels are considered. The measurements are generated using the

forward model in Eq. (2.1) with signal-to-noise ratios (SNRs) of 20, 30 and 40 dBs.

We first exploit a three-dimensional fixed transform for the image reconstruction al-

gorithm: Kronecker basis T = T1

⊗
T2 where T1 is the Kronecker product of 2D

Symmlet-8 basis and T2 is the 1D cosine basis. Second, we use the image recon-

struction algorithm with online dictionary learning. This convolutional dictionary is

initialized with pre-trained dictionaries. For pre-training, the dictionary filters are

randomly initialized, as shown in 4.8a. The dictionaries are coarsely trained with 25

spectral data cubes of size 256 × 256 × 16, which are shown in Fig. B.5. The dic-

tionary learning algorithm introduced in [31] is exploited for pre-training. Note that

by removing data-fidelity term and image update steps from the image reconstruc-

tion algorithm in Chapter 3.4, we can obtain the convolutional dictionary learning

algorithm. The resulting pre-trained dictionary filter set is shown in 4.8b.

Parameter selection with sparsifying transform is shown in Table 4.14 where β = 1.

Here, ρ and σ are iteratively updated. Parameter selection for convolutional dictio-

nary is also presented in Table 4.15.It should be noted that the adjustment of five

parameters is a very time-consuming process, as each requires testing on separate in-

tervals. Furthermore, since each iteration takes a long time (at least 2000 seconds),

parameter optimization is cumbersome for the algorithm with the convolutional dic-

tionary. Hence, a parameter optimization algorithm can be exploited instead of an

exhaustive search. Furthermore, we need to determine the optimal dictionary sizes.

The best reconstruction quality is attained via the dictionary of size 32× 32× 5 and
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a number of filters of 6, respectively. Note that the patch-based dictionaries are not

exploited in 3D form due to their substantial computational complexity.

Table 4.14: Parameter Selection for various SNRs with Sparsifying Transform

Updates 20 dB 30 dB 40 dB

λ 0.5 0.1 0.01

ρ 250 50 25

Table 4.15: Parameter Selection for various SNRs with Convolutional Dictionary

Updates 20 dB 30 dB 40 dB

λ 0.001 0.001 0.001

β 0.01 0.1 0.2

ρ 10 10 10

σ 1000 1000 1000

Table 4.16: Parameter Selection for various SNRs with Convolutional Dictionary

(Tikhonov Regularization)

Updates 20 dB 30 dB 40 dB

λ 0.001 0.001 0.0005

β 0.01 0.2 0.5

ρ 10 10 10

σ 1000 1000 1000

µ 0.1 0.1 0.1

Here, image reconstruction with the sparsifying transform is faster than the convo-

lutional dictionary. The algorithm with the sparsifying transform takes around 980

seconds, and the algorithm with a convolutional dictionary takes around 2300 sec-

onds on the average for various SNR levels. As we discussed in Chapter 3, the algo-

rithm with the convolutional dictionary has higher computational complexity than the

sparsifying transform. On the other hand, the convolutional dictionary with Tikhonov

regularization has a very similar image reconstruction time with the regular convolu-

tional dictionary.
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Table 4.17: Image reconstruction performance comparison in terms of PSNR, SAM

and SSIM for 2D Symmlet
⊗

1D DCT transform and convolutional dictionaries for

Objects, Beads, Flowers, Pompoms, and Threads Data

Dataset SNR (dB) 2D Wavelet Convolutional Convolutional

+ 1D DCT Dictionary Dictionary with Tikhonov

Objects

20 24.82/11.78◦/0.82 26.71/10.16◦/0.77 26.82/9.64◦/0.84

30 26.18/10.57◦/0.88 28.42/8.64◦/0.85 28.54/8.49◦/0.89

40 27.76/9.30◦/0.89 29.63/7.71◦/0.89 30.15/7.44◦/0.91

Beads

20 23.16/13.81◦/0.79 24.21/13.86◦/0.82 24.94/11.96◦/0.84

30 25.66/12.04◦/0.88 27.23/11.74◦/0.90 28.10/9.96◦/0.90

40 28.11/11.08◦/0.93 29.83/10.45◦/0.93 29.46/9.03◦/0.94

Flowers

20 27.94/20.06◦/0.77 28.19/21.20◦/0.78 28.31/19.76◦/0.79

30 31.09/16.05◦/0.87 30.47/18.64◦/0.85 31.19/16.86◦/0.88

40 33.46/15.04◦/0.92 33.12/14.94◦/0.92 34.09/13.83◦/0.93

Pompoms

20 28.02/9.40◦/0.83 28.54/11.50◦/0.81 28.48/10.43◦/0.83

30 29.29/9.01◦/0.87 29.57/10.80◦/0.86 30.20/9.42◦/0.88

40 30.62/8.85◦/0.91 30.90/9.83◦/0.89 31.41/8.71◦/0.92

Threads

20 28.83/11.78◦/0.84 29.51/12.46◦/0.84 29.39/11.82◦/0.85

30 31.14/10.79◦/0.90 31.82/11.79◦/0.87 32.13/10.58◦/0.90

40 34.04/9.32◦/0.94 34.12/9.72◦/0.93 34.29/9.17◦/0.95
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(a) (b) (c)

Figure 4.8: (a) Randomly Initialized 6 dictionary filters of size 32 × 32 × 5 (Top-

bottom shows bands), (b) Pre-trained dictionary filters, (c) Final dictionary filters for

image reconstruction with Objects data in PSSI problem

76



Table 4.17 shows the average reconstruction PSNR, SAM and SSIM values under

20 dB, 30 dB and 40 dB SNRs. These values are obtained as taking an average of

10 Monte-Carlo results for Objects, Beads, Flowers, Pompoms and Threads. First,

image reconstruction quality with the convolutional dictionary is greater than the al-

gorithm with 2D Symmlet
⊗

1D DCT transform in terms of PSNR for all SNR levels.

However, SAM and SSIM levels are worse for convolutional dictionary. Here, SAM

is a critical performance metric to evaluate image reconstruction quality in the spec-

tral dimension. Therefore, the convolutional dictionary falls behind the 2D Symmlet⊗
1D DCT transform in spectral image reconstruction. Furthermore, SSIM mostly

degrades with the artifacts observed on the images, and hence, it can be inferred

that regular convolutional dictionary creates some artifacts on the images. Second,

convolutional dictionary with Tikhonov regularization has similar performance with

the regular convolutional dictionary in terms of PSNR value. Here, SAM and SSIM

values are significantly enhanced via Tikhonov regularization. Therefore, usage of

Tikhonov regularization is very advantegous for spectral image reconstruction. It

also enhances the image reconstruction quality in spatial dimension as it removes the

artifacts from the images.

The reconstructed images using 2D Symmlet
⊗

1D DCT transform, convolutional

dictionary, and convolutional dictionary with Tikhonov regularization are shown in

Fig. 4.9b for the sixteen sources, together with the original scenes for comparison,

when the input SNR is 20 dB. As visualized in the second column of Fig. 4.9b, 2D

Symmlet
⊗

1D DCT transform provides smoother structure than the convolutional

dictionary (in third column). On the other hand, the convolutional dictionary recon-

structs the spectrum better than the 2D Symmlet
⊗

1D DCT transform. Even though

edges are recovered successfully, artifactual structures are observed in the third col-

umn of Fig. 4.9b reconstructed with convolutional dictionary. On the other hand,

the artifacts on the images are eliminated by exploiting Tikhonov regularization for

the convolutional dictionary, which is shown in the last column of Fig. 4.9b. Since

Tikhonov regularization does not increase the computational complexity, it is an effi-

cient way to increase image reconstruction performance.

Moreover, the difference between the original image and the reconstructed images

are shown in Fig. 4.9c for convolutional dictionary with Tikhonov regularization,
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convolutional dictionary and 2D Symmlet
⊗

1D DCT transform. In the first column

of Fig. 4.9c, edges are more distinctive than the second and third columns, which

means that the 2D Symmlet
⊗

1D DCT transform is unable to recover the edges

successfully. Furthermore, we also observe that the intensity in the first column is

higher than the second and third columns; and hence 2D Symmlet
⊗

1D DCT trans-

form causes smooth intensity loss. We also observe some artifacts in the second

column, which displays the images reconstructed with the convolutional dictionary.

As we discussed earlier, these artifacts are removed via Tikhonov’s regularization.

However, the edges observed in the third column are more distinctive than the sec-

ond column. Consequently, while Tikhonov regularization removes the artifacts from

the reconstructed images, it also slightly deteriorates the performance of the con-

volutional dictionary for the edge reconstruction. This is an expected result as we

inherently enforce smoother reconstructions.

With increasing SNR level, e.g., 30 and 40 dBs, we observe fewer artifacts on the im-

ages reconstructed with the convolutional dictionary in Fig. B.6a and Fig. B.7a. Here,

the spectral reconstruction performance of the regularization with the convolutional

dictionary is clearly superior to the transform. These reconstructions are presented in

Appendix B.
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(a) (b) (c)

Figure 4.9: (a) Measured images (b) Left-to-right: Original images, Reconstructed

spectral images with 2D Symmlet
⊗

1D DCT transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 20 dB SNR (c) The dif-

ference between original image and reconstructed images
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Furthermore, to demonstrate successful recovery along the spectral dimension, we

also display the spectrum of the point at P1 and P2 in Figure 4.10a and 4.10b for

Objects Data respectively. The reconstructed spectra at these points are plotted with

the spectra of the original image. It can be seen that the spectrum is reconstructed

better with a convolutional dictionary than the 2D Symmlet
⊗

1D DCT transform.

We also observe a slight increase in the performance of the convolutional dictionary

with Tikhonov regularization.
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Figure 4.10: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 20 dB SNR

for Objects

As the Beads data in Fig. 4.11c involves a more complicated structure than the Ob-

jects data; both priors can not perfectly reconstruct the spectrum, as shown in Fig.

4.11a and 4.11b. However, we observe a smooth reconstructed spectrum with 2D

Symmlet
⊗

1D DCT. On the other hand, in Fig. 4.11b, convolutional dictionaries are

adaptive to changes in the spectral dimension between 510−540 nm, while 2D Symm-

let
⊗

1D DCT transform is poor. Furthermore, in Fig. 4.12a,4.12b, 4.13a,4.13b,

4.14a,4.14b, we again observe a smooth reconstructed spectrum with 2D Symm-

let
⊗

1D DCT transform reconstructions for Flowers, Pompoms and Threads data

which are shown in 4.12c, 4.13c and 4.14c. However, as the convolutional dictionary

methods (with and without Tikhonov regularization) are data-adaptive, they mostly

reconstruct the spectrum better, but some artifacts are observed in the spectrum.
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Figure 4.11: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 20 dB SNR,

and (c) Beads data
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Figure 4.12: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 20 dB SNR,

and (c) Flowers data
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Figure 4.13: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 20 dB SNR,

and (c) Pompoms data
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Figure 4.14: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 20 dB SNR,

and (c) Threads data
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Dictionary Size Selection for Convolutional Dictionary In this section, we will

present how we selected dictionary size for the convolutional dictionary. Here, we

also enforce the Tikhonov regularization for the gradient of the sparse codes. Pre-

viously, it is mentioned that dictionary size is selected as 32 × 32 × 5 and number

of filters is set to 6. The table in 4.18 demonstrates the image reconstruction qual-

ity in PSSI problem, for changing size and number of the dictionary filters under 20

dB SNR for the average of 5 Monte Carlo results. Increasing the number of filters

causes a huge increase in computation time, however, does not enhance the perfor-

mance significantly. Best image reconstruction quality in terms of PSNR is attained

at dictionary of size 32 × 32 × 5 at 9 filters. The dictionary of size 32 × 32 × 5

and with 6 filters provides better SAM and SSIM quality and its image reconstruc-

tion time is substantially lower than the dictionary with 9 filters. Therefore, the most

advantegous dictionary in terms of both image reconstruction quality and image re-

construction time is of the size 32× 32× 5 and filters 6.

Table 4.18: Reconstruction PSNR, SAM, SSIM, and implementation time with dif-

ferent size and number of dictionary filters for 20 dB SNR

NOF 16× 16× 5 32× 32× 5 64× 64× 5 Rec. Time

3 25.54/11.68◦/0.79 25.75/11.14◦/0.80 26.18/10.67◦/0.81 980 seconds

6 26.27/10.93◦/0.77 26.82/9.64◦/0.84 26.02/10.69◦/0.83 2150 seconds

9 26.25/10.78◦/0.77 26.95/9.81◦/0.82 26.72/9.92◦/0.81 3100 seconds

12 26.45/10.54◦/0.78 26.63/9.94◦/0.82 26.80/9.72◦/0.82 4500 seconds

Note that Table 4.18 only includes the comparison of dictionary size in the spatial

dimension. To better observe the effect of dictionary size in the spectral dimension,

we also compare different sizes of dictionaries. For constant spatial size 32×32 and 6

dictionary filters, we changed the dictionary size in the spectral dimension from 3 to 9

for odd numbers. Similarly, we observe that the highest image reconstruction quality

is also attained with the dictionary of size 32 × 32 × 5 and the number of filters of
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Table 4.19: Reconstruction PSNR, SAM, SSIM, and implementation time with dif-

ferent dictionary sizes for 20 dB SNR

32× 32× 3 32× 32× 5 32× 32× 7 32× 32× 9

25.81/10.99◦/0.82 26.82/9.64◦/0.84 26.26/10.67◦/0.81 26.30/10.17◦/0.84

6. As our reconstructed data cubes have 16 bands in the spectral dimension, 5 bands

for dictionary size is a reasonable choice. Dictionary size is significantly smaller than

the image size, but it is not too low for the representation of the images.
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CHAPTER 5

CONVOLUTIONAL INVERSE PROBLEMS WITH COMPRESSIVE

SETTING

5.1 Introduction

Conventional imaging techniques rely on a scanning process to build-up the multi-

dimensional (generally 3D) data cube from a series of 2D measurements. It renders

these methods inefficient in terms of spatial, temporal, and spectral resolutions and

data acquisition time [2]. In order to overcome these limitations, computational 3D

image reconstruction emerges as an effective approach. In this approach, 3D image

data is reconstructed from indirect two-dimensional measurements [6, 8–14].

Compressive 3D imaging provides an effective way to overcome these limitations

by passing on some burden to a computational system. Image reconstruction of an

entire data cube is enabled only with few multiplexed measurements. This is made

possible by compressive sensing (CS), which relies on two principles: sparsity of the

3D images in some transform domain or sparse representation of images in terms of

elements of a dictionary and incoherence of the measurements. It is widely known

that 3D images exhibit three-dimensional correlations, which allow three-dimensional

sparse representations [13, 67]. Coded compressive imaging systems can provide the

incoherence of the measurements.

In this chapter, we develop image reconstruction methods with different priors for

compressive image reconstruction and compare their performance. First, the forward

Some parts of this chapter have been submitted for publication [49].

85



problem is introduced, which includes a coded aperture with the imaging system.

As a sample imaging system, compressive spectral imaging with diffractive lenses

improved in [13] has been selected. Then, inverse problem is formulated referring the

previous discussions in Chapter 2 and 3. The resulting image reconstruction problem

is solved with different analysis and synthesis priors. Since we already explained

image reconstruction updates for the non-compressive scenario in detail, we only

emphasize the differences occurring in the image update step. Then, we evaluate the

numerical performance of the developed methods with a sparsifying transform and

convolutional dictionary for a compressive spectral imaging problem.

5.2 Forward Problem

In compressive imaging problems, the measurements can be modeled in the following

general convolutional form:

yk[n1, n2] =
S∑
s=1

(xs[n1, n2]cs[n1, n2]) ∗ hk,s[n1, n2] + wk[n1, n2], 1 ≤ k ≤ K

(5.1)

where n1,n2 = −N/2, ..., N/2 − 1. Here yk’s denote different measurements, xs’s

represents different unknown images to be reconstructed, hk,s denotes the blur acting

on the sth image, xs, for the kth measurement, yk. Moreover, we have cs[n1, n2]

which denotes sth coded aperture with entries 1 or 0 and modulates the corresponding

spectral components. If the components are modulated differently, the coded aperture

becomes "colored".

y = HCx + w (5.2)

H =


H1,1 · · · H1,S

... . . . ...

HK,1 · · · HK,S

, C =


diag(c1) · · · 0

... . . . ...

0 · · · diag(cs)

,y =


y1

:

yK

,

x =


x1

:

xS

. Here yk ∈ RN2 is lexicographically ordered noisy kth measurement

vector, y is the overall noisy measurement vector by vertically concatenating all the
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K measurements. Similarly, xs ∈ RN2 denotes sth unknown image and the vector

x is obtained by combining unknown images. Here, the matrix Hk,s ∈ RN2×N2 is

a circular convolution matrix which corresponds to the convolution operation with

hk,s[n1, n2]. The diagonal matrix C ∈ RKN2×SN2 represents the overall coding oper-

ation, and has values 0 or 1 along its diagonal. wk represents additive white Gaussian

noise vector wk ∼ N(0, σ2
k) and concatenated vertically as w = [wT

1 ...w
T
K ]T . In this

chapter, the number of measurements (K) is smaller than the number of unknown

images (S), which results in an under-determined system of equations.

5.2.1 Compressive Spectral Imaging System with Diffractive Lenses

A sample system which has a forward problem in Eq. (5.1) is compressive spectral

imaging system with diffractive lenses (CSID). Here, two different variants of the

system with the moving detector and fixed detector is presented.

5.2.1.1 Moving Detector

In this system, first, the image of the scene is coded with a coded aperture, and it

passes through a diffractive lens such as photon sieve [11–13]. Each spectral compo-

nent is focused on different planes, as the diffractive lens has a wavelength-dependent

focal length. Then, the measurements are taken at a few measurement planes using a

moving detector. Note that each measurement is a superposition of differently blurred

and coded spectral bands. This system is a modified and generalized version of the

photon sieve spectral imaging system presented in Chapter 2 with a coded aperture.

Here coded aperture enables image reconstruction from only "few" multiplexed mea-

surements instead of a full measurement set.

5.2.1.2 Fixed Detector

A very similar system is improved with a fixed detector instead of a moving detector

in [13]. In this system, first, the image of the scene is coded with a coded aperture,

and it passes through a diffractive lens such as photon sieve [11–13]. Instead of taking
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Figure 5.1: Compressive diffractive imaging system with moving detector

measurements at different planes, measurements are taken at a fixed plane with a fixed

detector. The focusing behavior of the diffractive lens is adapted forK measurements

by changing the photon-sieve diameter in each shot. Such few measurements can

be obtained in different ways, such as with programmable diffractive lens, or in a

snapshot using multiple diffractive lenses. This system is more time-efficient as it

does not require moving the detector. In this chapter, implementations are based on

this imaging modality.

Figure 5.2: Compressive diffactive imaging system with fixed detector
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5.3 Inverse Problem

In the inverse problem, the goal is to reconstruct the unknown images x from their

compressive and superimposed measurements, y, which involve their coded and blurred

versions. This problem is highly ill-posed. Previously proposed approaches solving

convolutional inverse problems are applicable for the compressive scenario. By in-

corporating the prior information available for the images, we formulate the problem

as follows:

min
x

β

2
||y −HCx||22 +R(x) (5.3)

This is a regularized least squares problem, which can also be related to maximum

posterior estimation (MAP). Here the first term controls data fidelity, whereas the

second termR(x) controls how well the reconstruction matches our prior knowledge

of the solution, with the scalar parameter β trading off between these two terms.

To solve the inverse problem, the sparsity of natural multidimensional image data

in another domain is enforced via R(x). In the scope of the present work, both

analysis and synthesis priors are exploited forR(x). Since compressive scenario use

the correlation information in the third-dimension, only transforms and dictionaries

has to be three-dimensional.

5.3.1 Analysis Prior

In this case, sparsifying analysis prior is expressed as

R(x) = Φ(Tx) (5.4)

where T represents a fixed sparsifying transform matrix. There are popular and pow-

erful choices of the regularizer Φ(.). One popular choice is Φ(Tx) = ||Tx||1, whose

solution is obtained by nonlinear optimization techniques.
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5.3.2 Synthesis Prior

For the sake of brevity, we express dictionary-based synthesis prior in a following

generalized expression as

R(x) = min
z,D
||Dz−Px||2 + λ||z||1. (5.5)

where D denotes the dictionary matrix and z stands for the sparse code. In the patch-

based dictionary model, synthesis prior in Eq. (5.5) is simplified version of patch-

based model whose representation is

min
zj ,DL

N2S∑
j=1

(||DLzj −Pjx||22 + λ||zj||1). (5.6)

The relation between Eq. (5.5) and (5.6) can be inferred using the following equalities

D = ISN2

⊗
DL, z =


z1

:

zN2S

, and P =


P1

:

PN2S

. Here, Pj ∈ Rn2p×N2S

extracts vectorized patch of size n × n × p from vectorized image x of size N ×
N ×S. Also, zj denotes sparse code of jth patch, and DL represents local dictionary

commonly used by allN2S patches. However, we presented that usage of a 3D patch-

based dictionary is computationally inefficient for 3D images.

On the other hand, when D is the concatenation of circular convolution matrices,

synthesis-prior in Eq. (5.5) corresponds to the simplified version of convolutional

prior which is expressed as

min
zm,dm

||
M∑
m=1

dm ∗ zm − x||22 + λ
M∑
m=1

||zm||1. (5.7)

By inserting, z =


z1

:

zM

 and D = [D1 ... DM ] where Dm is circular convolution

matrix of dictionary filter dm, generalized synthesis prior in Eq. (5.5) is obtained.

Here, dm ∈ RL2R is vectorizedmth dictionary filter of size L×L×R and zm ∈ RN2S

is the corresponding vectorized sparse code of size N × N × S. The choice of the

dictionary size is significantly smaller than the image size as L << N and R << S

to provide circular boundary conditions [30].
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5.4 Image Reconstruction Method

The resulting optimization problems for analysis and synthesis approaches are solved

for the unknown image x, the sparse coefficient vectors zm’s and dictionary filters

dm’s by using Alternating Direction Method of multipliers (ADMM) [60]. ADMM is

an optimization algorithm that is used in many signal and image reconstruction prob-

lems [32–37,40,41]. ADMM solves distributed unconstrained optimization problems

by splitting them into sub-problems, which are solved alternatingly. In this section,

the solutions are presented for three-dimensional transforms and dictionaries.

5.4.1 Analysis Prior

In this part, we solve the regularized least-square problem in Eq. (5.3) by inserting

analysis prior in Eq. (2.7) for regularization term R(x). Then, the objective function

is formulated using augmented Lagrangian in ADMM framework as

min
x, t

β

2
||y −HCx||22 + λΦ(Tx) s.t. Tx = t. (5.8)

This problem is minimized with respect to variables x and t. ADMM steps for this

alternating minimization process have the following form:

xl+1 = arg min
x

β

2
||y −HCx||22 +

ρ

2
||Tx− tl + ul||22 (5.9)

tl+1 = arg min
t

λΦ(t) + ||Txl+1 − t + ul||22. (5.10)

ul+1 = ul + Txl+1 − tl+1. (5.11)

Here, u is defined as dual variable of t and Eq. (5.11) represents the update of the dual

variable. Note that, Eq. (5.10) is same update with the update of the non-compressive

scenario in Chapter 3. We now explain how to efficiently solve the problem in Eq.

(5.9) which we refer as image x update.
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5.4.1.1 Image Update

For image update, we need to solve the problem in Eq. (3.5). Since this problem is a

least-squares problem, it has a closed-form solution as

(ρI + βCHHHHC)x = (βCHHHy + ρTH(t− u)). (5.12)

A direct matrix inversion approach for solving the linear system in Eq. 5.12 is not

feasible for large-scale data cubes. Furthermore, it should be noted that the block

recursive matrix inversion approach that we utilized in the non-compressive scenario

is not applicable as well. C matrix removes the benefits of the convolution matrices.

Consequently, we solve this problem iteratively using the conjugate-gradient method.

Similar to previous discussions, forming any of the matrices is not required, which

provides huge savings for the computation time.

We first compute βCHHHy term. 2D Fourier transform of hk,s[n1, n2] is computed

for k = 1, 2, .., K and s = 1, 2, .., S. Next, we take the FFT of yk[n1, n2] for

k = 1, ..., K. Spesifically, the operations required to form HHy corresponds to sum-

mation of element-wise multiplications and taking block inverse fourier transform.

CH performs elementwise multiplications with coded aperture function c∗s[n1, n2].

The second term, TH(t− u), is updated in each ADMM iteration as follows: apply-

ing TH corresponds to taking the inverse 3D transform of (t[n1, n2, s]− u[n1, n2, s]).

Third, (ρI + βCHHHHC)x computed. First, HHH is performed in the frequency

domain which corresponds to summation of elementwise multiplications. Second,

Cx performs elementwise multiplications with coded aperture function cs[n1, n2].

Then, fourier transform of Cx is obtained and HHHCx computed via summation of

elementwise multiplications in the frequency domain. After going back to time do-

main, we again perform elementwise multiplications for the multiplication with CH .

Finally, Eq. (5.12) is computed iteratively with conjugate-gradient method.

5.4.2 Synthesis Prior

In this part, we present the regularized least-square problem in Eq. (5.3) by inserting

synthesis prior in Eq. (5.5) for regularization termR(x). Then, the objective function
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is formulated using augmented Lagrangian in ADMM framework as

min
x, z, t

β

2
||y −HCx||22 +

1

2
||Dz−Px||2 + λ||t||1

s.t. z = t.

(5.13)

This problem is alternatingly solved with respect to variable x, z and t. ADMM

iterations for this problem are slightly different than the analysis approach in Eq.

(3.4). ADMM steps are expressed as

xl+1 = arg min
x

β

2
||y −HCx||22 +

1

2
||Dzl+1 −Px||2 (5.14)

zl+1 = arg min
t

1

2
||Dzl+1 −Px||2||22 +

ρ

2
||z− tl + ul||22 (5.15)

tl+1 = arg min
t

λ||t||1 + ||zl+1 − t + ul||22 (5.16)

ul+1 = ul + zl+1 − tl+1. (5.17)

Here, u is defined as dual variable of t and Eq. 5.17 represents its update. These

updates except the image update in Eq. (5.14) are exactly same with the updates

of non-compressive scenario presented in Chapter 3 for both patch-based and con-

volutional dictionaries. Note that, online dictionary learning can be performed by

following the dictionary learning steps presented in Chapter 3 (Eq. (3.27), (3.28) and

(3.44) for patch-based and Eq. (3.58), (3.59) and (3.86) for convolutional dictionary

learning). However, they are not repeated for the sake of brevity.

5.4.2.1 Image Update

For image update, we need to solve the problem in Eq. (5.14). As image update is a

least-squares problem, it has a closed-form solution:

(PHP + βCHHHHC)x = (βCHHHy + PHDz) (5.18)

For patch-based dictionary, referring to the patch-based dictionary in Eq. (5.6), PHP

=
∑N2S

j=1 PH
j Pj . Here, we consider a Pj ∈ Rn2p×N2S extracting vectorized patch of
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size n× n× p from vectorized image of size N ×N × S which makes PHP = n2pI

is of size N2S. For convolutional dictionary, P = I and PHP = I of size N2S. As a

result, PHP is multiplication of I matrix by a constant for both dictionaries.

The computation of the term on the left-hand side of Eq. (5.18) and CHHHy are same

in image update step of analysis case. The only difference occurs in the computation

of PHDz.

For patch-based dictionary, PHDz =
∑N2S

j=1 PH
j DLzj based on the patch-based dic-

tionary in Eq. (5.6) and is computed in the following order: First, local dictionary

matrix D and each sparse vector zj is multiplied. Next, to apply Pj
H operation, each

DLzj vector is reshaped as a 3D patch, inserted into their correspending patch indices

and summed for N2S patches. Resulting PHDz is a 3D data cube having same size

as the image x[n1, n2, s].

For convolutional dictionary, ρPHDz = Dz is computed differently. 3D Fourier

transform of dm[n1, n2, s] is computed for m = 1, 2, ..,M and s = 1, 2, .., S. Next,

we take the FFT of zm[n1, n2, s] for m = 1, ...,M . Specifically, the operations re-

quired to form Dz corresponds to summation of element-wise multiplications and

taking block inverse fourier transform.

5.4.3 Computational Complexity

The computational cost of these algorithms is very similar to the algorithms for

the non-compressive case. The only difference occurs in the image update step.

In the non-compressive case, we take advantage of recursive block inversion algo-

rithms [61]. However, due to the addition of the coded-aperture matrix, the conjugate-

gradient algorithm is used instead. Therefore, the computational cost of the conjugate-

gradient algorithm OCG is added to the image update step presented in Chapter 3,

which is shown in Table 3.5.
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5.5 Numerical Results

Here, reconstruction results are presented for a realistic scenario in visible bands. We

consider a dataset of size 256×256×16 (16 wavelengths from 510−660 nm with 10

nm spacing) in the visible band that was obtained from an online hyperspectral image

database referred as Objects [69]. The compressive diffractive imaging system with

a fixed detector is shown in Fig. 5.2 is used in the simulations.

A photon sieve is used as a diffractive lens with a fixed measurement plane. For the

photon sieve, we use two different designs. These designs are named Design I and

Design II for the rest of the paper. For Design I, the smallest hole diameter of δ = 8

µm. The pixel size of the detector is chosen as 4 µm to satisfy the spectral resolution.

Photon sieves are used with the detector to diffractive lens distance f0 = 2.56 cm,

and the design is changed to focus a different wavelength at this distance. For this

purpose, the outer diameter of the sieve is changed as Dk = λkf0/δ. For example, if

the λk = 580 nm, the diameter Dk = 1.856 mm. The expected spectral resolution is

4δ2/f0 = 10 nm, which matches with the sampling interval. This design is previously

exploited in [13]. In order to improve Design I, the second design is considered. For

this Design II, the smallest hole diameter of δ = 16 µm. The pixel size of the detector

is chosen as 8 µm to satisfy the spectral resolution. Photon sieves are used with the

detector to diffractive lens distance f0 = 2.56 cm, and the design is changed to focus a

different wavelength at this distance. For this purpose, the outer diameter of the sieve

is changed as Dk = λkf0/δ. For example, if the λk = 580 nm, the diameter Dk = 0.92

mm. The expected spectral resolution is greater than the minimum spectral resolution

as 4δ2/f0 = 40 nm.

The main difference between Design I and Design II, the point spread functions

hk,s[n1, n2] in Design II cause less blurry measurements than Design I. These PSFs

hk,s[n1, n2] in the range of 510 − 660 nm with 10 nm intervals, are shown in Figure

B.16a, B.16b, B.17a and B.17b for 3 and 4 measurements. As shown in Fig. B.16b

and B.17b, the point spread functions in Design II provide less blurry measurements

than Design I, which are shown in Fig. B.16a and B.17a. Namely, the point spread

functions of Design II provide more spectral information from the measured images

than Design I for both 3 and 4 measurements. For example, the PSF for the measure-
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ment focused on 560 nm, the adjacent PSFs of 550 and 570 nm creates more blurry

measurements in Design I than Design II, as shown in Fig. 5.3. However, the spa-

tial resolution of Design II is two times worse than Design I. As a result, there is a

trade-off between spatial and spectral resolutions of Design I and Design II.

(a)

Figure 5.3: The PSFs at 550, 560, 570 nm for the measurement focused at 560 nm.

Top line: For Design I, Bottom line: For Design II

The compressive measurements are simulated using the forward problem in Eq (5.2)

with additive white Gaussian noise. In each measurement, the system applies the

same masking operation to each spectral band using a traditional block-unblock mask.

The entries of the mask are drawn from a Bernoulli distribution, which is shown in

Fig. 5.4b. After the coded field passes through the same plane by changing the

outer diameter of the sieve. Superimposed true image along the spectral dimension,

a sample mask, and a blurry compressive measurement are displayed in Figure 5.4a,

5.4b, and 5.4c. In this measurement, 560 nm is focused by the sieve onto the detector

plane, while all other spectral components are defocused.

We consider different compressive scenarios with 3 and 4 measurements taken at
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(a) (b) (c)

Figure 5.4: (a) Superimposed true image, (b) Coding mask pattern, (c) A sample

compressive measurements

different planes with equidistant wavelengths from the spectral range 510-660 nm.

More specifically, the chosen wavelengths are {510, 560, 610, 660} nm for the K = 4

and {530, 580, 630} nm for K = 3. These cases with K = 4 and K = 3 correspond

the compression levels of 100×(1−K/S), of 81.25% and 75%. These are equivalent

to reconstructing spectral cube from 18.75% and 25% data.

To analyze medium to low noise cases, different SNR levels are considered. The mea-

surements are generated using the forward problem in Eq. (2.1) with signal-to-noise

ratios (SNRs) of 20, 30 and 40 dBs. Our goal is to observe the effect of these designs

and the number of measurements with different priors. Similar to non-compressive

scenario, we first exploit a 3D transform for the image reconstructions: a Kronecker

basis T = T1

⊗
T2 where T1 is the 2D Symmlet-8 basis and T2 is the 1D cosine

basis. Parameter selection is shown in Table 5.1 where β = 1. Second, the con-

volutional dictionary with Tikhonov regularization has been exploited instead of the

regular one, since we have already shown in Chapter 4 that Tikhonov regularization

improves the performance of the convolutional dictionary. Here, the convolutional

dictionary in the image reconstruction algorithm is initialized with pre-trained dic-

tionaries, which is shown in Fig. 4.8b. We use the same pre-trained dictionary of

size 32 × 32 × 5 with filter size M = 6 for both compressive and non-compressive

scenario. The parameter selection of the algorithm is shown in Table 5.2. Note that

the patch-based dictionaries are not exploited for the 3D case due to their substantial
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computational complexity. Here, the algorithm with the sparsifying transform takes

around 1100 seconds, and the algorithm with a convolutional dictionary takes around

2400 seconds on the average for various SNR levels.

Table 5.1: Parameter Selection for various SNRs with Sparsifying Transform

Updates 20 dB 30 dB 40 dB

λ 0.03 0.01 0.005

ρ 0.5 1 2

Table 5.2: Parameter Selection for various SNRs with Convolutional Dictionary

Updates 20 dB 30 dB 40 dB

λ 0.005 0.005 0.005

β [1, 2] [2, 5] [5, 10]

ρ 50 50 50

σ 1000 1000 1000

µ [10, 20] [10, 20] [10, 20]

Table 5.3 and 5.4 show the average reconstruction PSNR, SAM and SSIM values

under 20 dB, 30 dB and 40 dB SNRs for 3 and 4 measurements. Each table includes

the comparison of 2D Symmlet
⊗

1D DCT transform and convolutional dictionary

with Tikhonov regularization for Design I and Design II. These values are obtained

as taking an average of 10 Monte-Carlo results for Objects data.

As shown in tables, for Design I, 2D Symmlet
⊗

1D DCT have a better performance

than the convolutional dictionary in terms of PSNR, SAM, and SSIM metrics. Specif-

ically, for K = 3, there is a substantial difference between performances. Since the

convolutional dictionary is adaptively learned from the measurements, it is affected by

the decreasing number of the measurements. On the other hand, for Design II, there

is an enhancement in the performance of the convolutional dictionary. Nonetheless,

2D Symmlet
⊗

1D DCT has similar performance with the convolutional dictionary

forK = 3, 4 and different SNRs. Since Design II provides more knowledge about the

spectral dimension, the performance of the convolutional dictionary increased as well.

By optimizing the size of the dictionary and choosing better point spread functions,
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the performance of the convolutional dictionary can be further improved.

Table 5.3: Image reconstruction performance comparison in terms of PSNR, SAM

and SSIM for 2D Symmlet
⊗

1D DCT transform and convolutional dictionary

(Tikhonov) for Objects data with 4 measurements

Dataset SNR Design I Design II

(dB) Transform ConvDic Transform ConvDic

Objects

20 26.88/9.42◦/0.78 26.54/10.08◦/0.79 26.92/8.96◦/0.82 26.96/9.92◦/0.79

30 28.98/6.80◦/0.84 28.24/8.54◦/0.84 29.95/6.15◦/0.88 30.85/6.30◦/0.89

40 29.48/6.75◦/0.87 28.78/8.18◦/0.88 32.82/5.04◦/0.93 33.22/4.75◦/0.93

Table 5.4: Image reconstruction performance comparison in terms of PSNR, SAM

and SSIM for 2D Symmlet
⊗

1D DCT transform and convolutional dictionary

(Tikhonov) for Objects data with three measurements

Dataset SNR Design I Design II

(dB) Transform ConvDic Transform ConvDic

Objects

20 26.25/9.73◦/0.76 24.11/13.95◦/0.73 26.31/9.28◦/0.82 26.20/11.01◦/0.79

30 28.18/7.79◦/0.84 25.69/11.90◦/0.81 28.33/7.00◦/0.87 29.13/7.38◦/0.89

40 28.80/7.56◦/0.86 26.82/10.38◦/0.85 32.10/5.39◦/0.93 31.80/5.47◦/0.92

The reconstructed images using 2D Symmlet
⊗

1D DCT transform and convolu-

tional dictionary for Design I and Design II are shown in Fig. 5.5a for the sixteen

sources, together with the original scenes for comparison, when the input SNR is 30

dB and 4 measurements are available. As visualized in the second and the third col-

umn of Fig. 5.5a, 2D Symmlet
⊗

1D DCT transform provides smoother structure

than the convolutional dictionary. Furthermore, we also observe that Design II (in

Column II and Column IV) provides remarkably better visual quality than Design I

(in Column I and Column III) for both 2D Symmlet
⊗

1D DCT and convolutional

dictionary.
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Moreover, the difference between the original image and the reconstructed images are

shown in Fig. 5.5b. Convolutional dictionary with Design I (Column III) clearly fails

as it could not recover specific spectral bands (530−540, 580−590, 630−640 nm). As

shown in Fig. B.16a, the point spread functions do not provide sufficient contribution

from the measurements for these bands. Moreover, we also clearly observe that 2D

Symmlet
⊗

1D DCT transform (Column I and Column II) causes smooth loss from

the recovered image. On the other hand, we still observe small artifacts on the images

reconstructed with the convolutional dictionary (Column III and Column IV).
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(a) (b)

Figure 5.5: (a) Left-to-Right: Original images, Reconstructed spectral images with

2D Symmlet
⊗

1D DCT transform in Design I and Design II, with convolutional

dictionary (Tikhonov) in Design I and Design II under 30 dB SNR (b) The difference

between original image and reconstructed images
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Furthermore, to demonstrate successful recovery along the spectral dimension, we

also display the spectrum of the point at P1 and P2 in Figure 5.6a and 5.6b for

Objects Data respectively. The reconstructed spectra at these points are plotted with

the spectra of the original image. It can be seen that the convolutional dictionary

in Design I recovers the spectrum poorly, and other counterparts have better per-

formances than Design I. Consequently, using Design II substantially enhances the

spectral reconstruction performance of the convolutional dictionary; however, it does

not provide a huge performance gain for the sparsifying transform.
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Figure 5.6: (a) Spectrum for Point P1, (b) Spectrum for Point P2 with 30 dB SNR in

Objects

5.6 Conclusion

In this section, we have introduced convolutional inverse problems with a compres-

sive setting and develop image reconstruction algorithms using a sparsifying trans-

form and convolutional dictionary. We demonstrate the numerical performance of

the developed methods in a compressive spectral imaging application with diffrac-

tive lenses. Considering a different number of measurements and different designs,

we evaluate the image reconstruction performance of the sparsity priors. We ob-

serve that, when the system allows more contributions from the data, the convolu-
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tional dictionary generally outperforms the sparsifying transform. Since we exploit a

data-adaptive model for the convolutional dictionary, the result is expected. Further-

more, with a better pre-trained dictionary and size optimization of the dictionary for

a particular imaging system, image reconstruction performance of the convolutional

dictionary can be further improved.
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CHAPTER 6

CONCLUSION

In this thesis, we have studied convolutional inverse problems. We first provided

a general formulation for these problems, and then develop fast and efficient im-

age reconstruction algorithms that exploit sparse models in analysis and synthesis

forms. These priors involve sparsifying transforms or data-adaptive dictionaries that

are patch-based and convolutional. The developed methods are based on the alter-

nating direction method of multipliers (ADMM), which is a state-of-the-art problem-

solving technique for signal and image recovery problems. The numerical perfor-

mance of the developed algorithms is evaluated for a three-dimensional image recon-

struction problem in spectral imaging. The results demonstrate the superiority of the

convolutional dictionary prior to others. The developed algorithms are also extended

to the compressive setting with compressed convolutional measurements.

In Chapter 2, we introduced the convolutional forward problem by considering var-

ious imaging problems. These include image deconvolution, multi-frame image de-

convolution, and examples from spectral and depth imaging. The convolutional in-

verse problem was also formulated with various priors involving sparsifying trans-

form, patch-based dictionary, convolutional dictionary, and convolutional dictionary

with Tikhonov regularization. This prior enforces the Gradient minimization of the

sparse codes to eliminate the artifacts caused by the convolutional dictionary. Lastly,

the merits and drawbacks of these priors have been discussed based on the literature.

In this chapter, we also mentioned that the reconstructed data cube might be correlated

or uncorrelated in the third dimension. Therefore, the inverse problem is modeled

with both two and three-dimensional priors. If the data is correlated along the third di-

mension, three-dimensional priors have been exploited. Otherwise, two-dimensional
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priors are sufficient to represent the data cube.

In Chapter 3, we developed image reconstruction methods for the presented priors.

For the first algorithm, fixed transforms are exploited for convolutional inverse prob-

lems. Second, we developed an image reconstruction algorithm exploiting patch-

based sparse representations. An extension with online dictionary learning was also

included to improve image reconstruction quality. Third, we developed an image re-

construction method with the convolutional dictionary. This algorithm also involves

online dictionary learning. Lastly, we presented an extension of the convolutional

sparse prior with Tikhonov regularization. These methods are presented for three-

dimensional image reconstruction problems for various cases with or without corre-

lation along the third-dimension. Moreover, all methods are based on the alternating

direction method of multipliers (ADMM).

In this chapter, we have presented the efficient implementation of the proposed meth-

ods in detail, which does not require matrix-vector multiplications. We have exploited

the property that convolution matrices are diagonalizable by the frequency matrices,

and element-wise multiplications are performed for efficient computation. Lastly, we

analyzed the computational complexity of developed methods. As fixed transforms

provide fast implementations, this method has lower computational complexity than

the other counterparts. Furthermore, the convolutional dictionary provides more cost-

efficient solutions than the patch-based dictionary.

In Chapter 4, the numerical performance of the developed algorithms has been eval-

uated for a three-dimensional image reconstruction problem in spectral imaging for

discrete and continuous spectrum. For the discrete spectrum case, the data cube is un-

correlated along the third dimension. Hence two-dimensional priors are exploited. On

the other hand, the reconstructed data cube is correlated along all three dimensions

for the continuous spectrum case; therefore, three-dimensional priors are enforced.

For the discrete spectrum case, we analyzed the image reconstruction quality of the

improved methods in terms of PSNR and SSIM quality metrics. Here, both patch-

based and convolutional dictionary with online dictionary learning has an advantage

over the sparsifying transform in terms of image reconstruction quality. On the other

hand, both the sparsifying transform and convolutional dictionary provides substan-
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tially faster solutions than the patch-based dictionary. Namely, the convolutional dic-

tionary combines higher quality solutions with fast implementations. Furthermore,

the performance of the convolutional dictionary has been improved with the Tikhonov

regularization of the sparse codes. Consequently, the best prior has been selected as

a convolutional dictionary with online learning and Tikhonov regularization.

For continuous spectrum case, the numerical performance of the developed algo-

rithms is evaluated for a three-dimensional denoising and PSSI problem in spectral

imaging. Due to the enormous implementation cost of the patch-based method, we

only assessed the performance of the fixed transform and convolutional dictionary

with online dictionary learning. In addition to PSNR and SSIM, we also used an-

other quality metric SAM, which evaluates the reconstruction quality in the spectral

dimension. We observed that the convolutional dictionary results in higher image re-

construction performance than the sparsifying transform in terms of PSNR and SAM;

however, it causes some artifacts on the images as can be understood from the visual

inspection. On the other hand, by adding Tikhonov regularization of the sparse codes,

artifacts on the images have been eliminated for the convolutional dictionary. There-

fore, PSNR, SAM, and SSIM levels have been enhanced for almost all images and

all SNR levels. However, the algorithm with the convolutional dictionary has a 2×
slower convergence rate than the one with the sparsifying transform.

In Chapter 5, the developed algorithms are also extended to the compressive setting

with compressed convolutional measurements. The three-dimensional data cube is

reconstructed from highly compressed coded measurements using analysis and syn-

thesis priors. These algorithms are also based on ADMM, and the only difference

with the non-compressive case occurs in the computation of the image update. Fur-

thermore, we illustrated the performance of developed methods using a sparsifying

transform and convolutional dictionary for two different photon sieve designs for dif-

ferent number of measurements. We observe that the performance of the priors varies

with respect to the design of the imaging system. When the imaging system causes

less blurry measurements, the convolutional dictionary has promising results, and its

performance can be further improved. On the other hand, when the imaging system

results in highly blurry measurements, the sparsifying transform is more successful

than the convolutional dictionary.
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As future work, in all of the above discussion, instead of optimization-based learning

methods, deep learning methods can improve the image reconstruction performance

in multidimensional imaging problems. Another critical part is the optimization of the

design of the imaging system, which will enable better system matrices satisfying CS

requirements. By combining a well-improved system with convenient priors, image

reconstruction performance can be enhanced remarkably.
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Appendix A

MATHEMATICAL DERIVATIONS

A.1 Diagonal Block Linear Systems

Given sets of vectors am ∈ CN2S bm ∈ CN2S and cm ∈ CN2S and unknown vectors

zm ∈ CN2S Assuming Am = diag(am), Bm = diag(bm) and A = [A1...AM ] and

B =


B1 · · · 0

... . . . ...

0 · · · BM

, z =


z1

:

zM

, and c =


c1

:

cM

.

The size of Am is N2 × N2 and since A contains M blocks its size is N2 ×MN2.

In the following discussion, a∗ which is conjugate of a. AH denotes the Hermitian

transpose (conjugate transpose) of A. In order to solve the linear system (AHA+B)z

= c. The expanded version is


AH

1 A1 + B1 · · · AH
1 AM

... . . . ...

AH
MA1 · · · AH

MAM + BM




z1

:

zM

 =


c1

:

cM

 . (A.1)

Here, Am’s are diagonal, hence the multiplications in the blocks above are also di-

agonal. Which means AH
i Aj’s are also diagonal for i, j = 1, 2, ...,M . By closely

looking at the multiplications considering elements, each element of cm[n] where n

represents (n1, n2, s) pixels is computed as follows:

M∑
i=1

(am[n]∗ai[n]zi[n]) + bm[n]zm[n] = cm[n] (A.2)
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Then, we rearrange the places of the indices as follows:

ãn[m] = am[n]∗,

b̃n[m] = bm[n],

c̃n[m] = cm[n],

z̃n[m] = zm[n]

(A.3)

by inserting these equations to Eq. (A.2) we obtain

M∑
i=1

(ãn[m]ãn[i]∗z̃n[i]) + b̃n[m]z̃n[m] = c̃n[m]. (A.4)

Here, indices of the elements are changed. This results in the following system

(ãnã
H
n + diag(b̃n))z̃n = c̃n. (A.5)

where each ãn, b̃n, c̃n, x̃nis of size M . After these replacements of the indices Eq.

(A.1) is expressed as
ã1,1,1ã

H
1,1,1 + diag(b̃1,1,1) · · · 0

... . . . ...

0 · · · ãN,N,SãHN,N,S + diag(b̃N,N,S)




z̃1,1,1

:

z̃N,N,S

 =


c̃1,1,1

:

c̃1,1,1

 .
(A.6)

Here, linear systems Eq. (A.1) and (A.6) are inherently same. Only difference is

changing indices of the elements. Therefore, size of MN2S × MN2S system in

Eq. (A.1) is replaced by N2S systems each is of size M ×M . Each one consists

of a rank one plus a diagonal component which can be solved by Sherman-Morrison

formulation.

A.2 Sherman-Morrison Solution

A linear system of the form

(qqH + B)z = c (A.7)

can be solved using Sherman-Morrison formula. Taking inverse with Sherman-Morrison

formula is as follows:

(uvH + B)−1 = B−1 − B−1uvHB−1

1 + uHB−1v
(A.8)
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Hence, using Sherman-Morrison formula z can be obtained from Eq. (A.7) as fol-

lows:

z = (B−1 − B−1aaHB−1

1 + aHB−1a
)c (A.9)

Here, ahB−1c is scalar and a(ahB−1c) = ahB−1ca. Hence, Eq. (A.9) is modified as

z = B−1(c− aHB−1ca

1 + aHB−1a
) (A.10)

In our case B = ρ and Eq. (A.10) becomes

z = ρ−1(c− aHca

ρ+ aHa
) (A.11)

A.3 Multiple Diagonal Block Linear Systems

Now, assume that we define vectors ap,m ∈ C and Ap,m = diag(ap,m) and Ap =

[Ap,1...Ap,M ]. If the linear system being solved is in the form of (
∑P

p=1 AH
p Ap+B)z

= c which is also expressed as
∑P

p=1 AH
p,1Ap,1 + B1 · · ·

∑P
p=1 AH

p,1Ap,M

... . . . ...∑P
p=1 AH

p,MAp,1 · · ·
∑P

p=1 AH
p,MAp,M + BM




z1

:

zM

 =


c1

:

cM

 .
(A.12)

Now the replacement of the indices is as follows:

ãp,n[m] = ap,m[n]∗,

b̃p,n[m] = bp,m[n],

c̃p,n[m] = cp,m[n],

z̃p,n[m] = zp,m[n]

(A.13)

Now, using these equations we acquire the following linear system:
M∑
i=1

(
P∑
p=1

ãp,n[m]ãp,n[i]∗z̃p,n[i]) + b̃n[m]z̃p,n[m] = c̃n[m]. (A.14)

the following form is acquired with vector products

(
P∑
p=1

ãp,nã
∗
p,n + diag(b̃n))x̃p,n = c̃n. (A.15)

Now, the left hand-side term is rank-N and efficiently solved by iterated Sherman-

Morrison formula.
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Algorithm 4 Iterated Sherman-Morrison
Require: ap: Measured image, ρ: Parameter

1: α = ρ−1a1 and β = ρ−1b

2: for dop ∈ {1, 2, ..., P}
3: γp−1 = α

1+aH
p−1α

4: β = β − γp−1a
H
p−1β

5: if thenk ≤ K − 1 α = ρ−1ap

6: for dol ∈ {1, 2, ..., p}
7: α = α− γl−1a

H
l−1α

8: end for

9: end if

10: end for

A.4 Iterated Sherman-Morrison Solution

A linear system of the form

(
P∑
p=1

qpq
H
p + B)z = c (A.16)

By defining A1 = B, Ap+1 = Ap + apa
H
p . With the Sherman-Morrison formula

A−1
p+1 = A−1

p −
A−1
p apa

H
p A−1

p

1 + aHp A−1
p ap

(A.17)

By defining αl,p = A−1
l ap and βp = A−1

p c. Next, α1,p = B−1ap and β0 = B−1c

βp+1 = A−1
p+1c (A.18)

β−1
p+1 = A−1

p c−
A−1
p apa

H
p A−1

p c

1 + aHp A−1
p ap

(A.19)

βp+1 = βp −
αp,pa

H
p βp

1 + aHp A−1
p ap

(A.20)

and

αl+1,p = A−1
l+1ap (A.21)

αl+1,p = A−1
l ap −

A−1
l ala

H
l A−1

l ap

1 + aHl A−1
l al

(A.22)
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αl+1,p = αl,p −
αl,la

H
l αl,p

1 + aHl αl,l
(A.23)

An iterative algorithm computing the solution of the linear system given in Eq. (A.15)

is easily derived from the equations from Eq. (A.16) to (A.23).
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Appendix B

RESULTS

(a)

(b)

Figure B.1: (a) MATLAB Standard Images, (b) 36 Dictionary Filters Trained with

Matlab Standard Images
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(a)

(b)

Figure B.2: (a) Random solar images, (b) 36 dictionary filters trained with random

solar images
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(a)

(b)

Figure B.3: (a) Solar images from telescope AIA335, (b) 36 dictionary filters trained

with solar images from telescope AIA335
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Figure B.4: Training images are cropped from this image

Figure B.5: Cropped training images for a single band
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(a) (b)

Figure B.6: (a) Left-to-right: Original images (Objects), Reconstructed spectral im-

ages with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 30 dB SNR (b) The dif-

ference between original image and reconstructed images
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(a) (b)

Figure B.7: (a) Left-to-right: Original images (Objects), Reconstructed spectral im-

ages with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 40 dB SNR (b) The dif-

ference between original image and reconstructed images
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Figure B.8: Beads data colored

Figure B.9: Flowers data colored
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Figure B.10: Pompoms data colored

Figure B.11: Threads data colored
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(a) (b)

Figure B.12: (a) Left-to-right: Original images (Beads), Reconstructed spectral im-

ages with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 20 dB SNR (b) The dif-

ference between original image and reconstructed images
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(a) (b)

Figure B.13: (a) Left-to-right: Original images (Flowers), Reconstructed spectral im-

ages with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 20 dB SNR (b) The dif-

ference between original image and reconstructed images
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(a) (b)

Figure B.14: (a) Left-to-right: Original images (Pompoms), Reconstructed spectral

images with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictio-

nary, convolutional dictionary with Tikhonov regularization under 20 dB SNR (b)

The difference between original image and reconstructed images
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(a) (b)

Figure B.15: (a) Left-to-right: Original images (Threads), Reconstructed spectral im-

ages with 2D Symmlet + 1D DCT (Kronecker) transform, convolutional dictionary,

convolutional dictionary with Tikhonov regularization under 20 dB SNR (b) The dif-

ference between original image and reconstructed images
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(a) (b)

Figure B.16: (a) Concatenated PSFs for 4 measurements in Design I (b) Concatenated

PSFs for 4 measurements in Design II
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(a) (b)

Figure B.17: (a) Concatenated PSFs for 3 measurements in Design I (b) Concatenated

PSFs for 3 measurements in Design II
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