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Supervisor, Civil Engineering, METU

Assoc. Prof. Dr. H. Ercan Taşan
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ABSTRACT

FINITE ELEMENT IMPLEMENTATION OF A MODEL TO ESTIMATE
THE PERMANENT STRAIN OF CYCLICALLY-LOADED SOIL

Babaoğlu, Muhittin
M.S., Department of Civil Engineering

Supervisor: Prof. Dr. Sinan Turhan Erdoğan
Co-Supervisor: Assoc. Prof. Dr. H. Ercan Taşan

July 2020, 76 pages

In vast majority of geotechnical structures such as monopile or strip foundation,

which are subjected to repeated loading, long-term resilience of the structures is di-

rectly related with the behavior of granular materials subjected to cyclic loading. Re-

peatedly loaded structure distributes stress to soil that surrounds the structure. When

granular materials are exposed to cyclic loading, plastic strain occurs despite the ap-

plied stress is less than plastic yield, which results to residual settlement. This the-

sis provides a simplified numerical method implementation in finite element method

(FEM) that estimates deformation of granular materials exposed to high numbers of

cyclic loading for intricate 3D systems. Using explicit approach, which determines

permanent strain for a specific number of loading cycles by means of empirical formu-

las in one solution step, this method eliminates error accumulation due to every FEM

steps. Required experimental tests to obtain model parameters are elaborated. This

model is utilized for the simulation of constant-amplitude cyclic loaded monopile

embedded in soil. Comparison of numerical results with experimental data indicates

great agreement and considerable improvement over commonly used existed meth-

ods. This study offers suggestions for prospective researches in the view of proposed
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method, which focus on 3D modeling of cyclic loaded granular materials. Further-

more, varying-amplitude cyclic loaded monopile is also modeled as an extension of

the proposed model with strain-hardening approach.

Keywords: Permanent deformation, cyclic loading, granular materials, finite element

method
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ÖZ

TEKRARLI YÜKLENEN ZEMİNLERİN KALICI ŞEKİL
DEĞİŞTİRMELERİNİ HESAPLAMAK İÇİN SONLU ELEMAN

UYGULAMA MODELİ

Babaoğlu, Muhittin
Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Sinan Turhan Erdoğan
Ortak Tez Yöneticisi: Doç. Dr. H. Ercan Taşan

Temmuz 2020 , 76 sayfa

Tekrarlı yüklere maruz kalan tekil kazık ya da sürekli temel gibi geoteknik yapıla-

rın uzun dönem dayanımı, taneli malzemelerin tekrarlı yükler altında davranışıyla

doğrudan ilgilidir. Tekrarlı yüklere maruz kalan yapılar, üzerlerinde oluşan gerilimi

etrafındaki zemine dağıtırlar. Uygulanan gerilme kalıcı oturmalara neden olan plastik

akma seviyesinden az olsa dahi, taneli malzemeler tekrarlı yükler altında kalmaları

halinde plastik şekil değiştirme gösterirler. Bu tez, yüksek sayıda tekrarlı yüke maruz

kalmış kompleks üç boyutlu taneli malzemeli sistemlerin deformasyon tahmini için

sonlu elemanlar yönteminde basitleştirilmiş numerik yöntem uygulaması sunmakta-

dır. Tek çözüm adımında ampirik formüller kullanarak yüksek sayıdaki tekrarlar için

kalıcı şekil değiştirmeleri belirleyen açık yöntemlerin kullanılması, sonlu elemanlar

yönteminin her adımında oluşan hata birikmesini engeller. Bu modelde kullanılan pa-

rametreleri elde etmek için gereken deneysel testler hakkında bilgi verilmiştir. Öneri-

len bu yöntem zemin içine saplanmış, sabit şiddetli tekrarlı yüklerle yüklenmiş tekli

kazıkların simülasyonunda kullanılmıştır. Numerik ve deneysel sonuçların kıyasla-

ması iyi uyumlar göstermiş olup, mevcut yöntemlere kıyasla gelişme kat edilmiştir.
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Bu çalışma, tekrarlı yükler uygulanan taneli malzemelerin üç boyutlu modellemesi

için önerilen bu yöntem ışığında, gelecek çalışmalar için tavsiyelerde bulunmaktadır.

Buna ek olarak, değişken şiddetli tekrarlı yüklerle yüklenen tekli kazıklar, mevcut

yönteme bir ek olarak şekil değiştirme sertleşmesi yöntemiyle de modellenmiştir.

Anahtar Kelimeler: Kalıcı deformasyon, tekrarlı yükler, taneli malzemeler, sonlu ele-

man yöntemi
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CHAPTER 1

INTRODUCTION

Granular materials is a term that embodies soil, concrete, rock, and asphalt type of

materials that have voids and fractures substituted with fluids in their granular skele-

tons [1]. They exhibit complex behavior under stress since their multiphase nature

distributes it to all parts. Another essential feature of granular materials is that con-

fining pressure has a drastic impact on their behavior and strength. Dilatancy, volume

change under shear stress, is another characteristic property of them. Furthermore,

granular materials have a critical state in which soil flows as a frictional fluid when it

is distorted up to their ultimate condition, and it is independent of the initial state of

the material [2]. Lastly, granular materials demonstrate increasing permanent strain

when subjected to repeated stress cycles with equal or varying amplitudes.

p
q

p
q

p p

t

Stress q

Cycle

Strain ε
Resilient
Strain εe

Permanent
Strain εp

t

Figure 1.1: Stress cycles and permanent strain relation
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This study focuses on one of the aforementioned features of granular materials that

is strain response to cyclic loading, illustrated in Figure 1.1. If a soil is exposed

to cyclic loading, permanent strain occurs, irrespective of whether the applied stress

is greater or lower than the plastic yield strength. This behavior contradicts elastic

theory. There is a proportional relation between permanent strain and the number

of load cycles applied. Cumulative permanent strain, which brings about residual

settlement, increases with the number of loading cycles.

1.1 Problem Definition and Motivation

Permanent deformation in granular materials leads to a wide variety of challenges in

civil engineering structures such as highway pavements, railway structures, founda-

tions of offshore and onshore wind turbines, marine structures, hydrostatically loaded

silos, hydraulic structures, machine foundations, and various other cyclically loaded

structures. The adverse effect of undesirable permanent deformation is the diminished

structural performance. For example, pavement rutting, which is residual settlement

caused by cyclic loading by vehicles, is one of the prominent failure concerns of high-

ways. Furthermore, differential settlement may occur in a structure near a railway due

to repeated loading [3]. As another example, the head shift of monopiles may take

place due to cyclic loading by wind and waves. However, the prediction of deforma-

tion with experimental testing is costly and time-consuming due to the high number

of load cycles required.

Numerical prediction of permanent settlement due to cyclic loading is essential for

related structures in order to take certain design measures. However, it is challeng-

ing for several reasons. Firstly, the behavior of granular materials subjected to both

monotonic and cyclic loading is nonlinear and intricate. It depends not only on exter-

nal factors but also on numerous internal parameters. The literature provides plenty

of different material models to define the behavior of granular materials. Secondly,

there are multiple scale approaches (micro, meso, macro) for geomaterials because

of their multiphase nature. Each scale requires a distinct understanding and tools to

constitute a model. For example, in this thesis, soil behavior is investigated at the

macroscopic scale, as a continuum body. Hence the finite element method (FEM)
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is utilized. Thirdly, certain structures (e.g., off-shore wind turbines) are subjected

to a high number (over 105) of repeated loading cycles. These structures need a

tremendous amount of computational resources to be implicitly analyzed due to their

sophisticated design. Moreover, every finite element solution produces an error as

a by-product. For instance, implicit FEM analysis of a monopile loaded with 105

cycles magnifies the error 105 times which can lead to serious deviation. Fourthly,

structures subjected to cyclic loading have complex geometries which demand three-

dimensional (3D) analysis. Lastly, soil-structure interaction influences stress distribu-

tion in soil and the friction created by this interaction has an impact on the deforma-

tion. As a consequence of these, the behavior of granular materials exposed to cyclic

loading is complex, and the prediction of permanent deformation is an involved task.

1.2 Outline of Thesis

This thesis concentrates on the challenging subject of developing a practical 3D

method capable of modeling granular materials subjected to both monotonic and

cyclic loading. Chapter 2 provides background knowledge on computational mod-

eling of granular materials. Chapters 3 and 4 provide information on methods in-

vestigated, Chapter 5 presents a new model with an example, and finally, Chapter 6

concludes the thesis. More specifically:

• Chapter 2 introduces a background of computational methods detailed in the

following chapters. A brief timeline of geomechanics constitutive modeling is

introduced. A variety of equations are specified to solve an initial boundary

value problem of soil as a 3D continuum body. Conservation laws are also

mentioned. Next, a constitutive equation is discussed. The weak form is con-

structed based on the strong form. Approximations required to fulfill weak

formulation are stated. Details of the hexahedral element i.e. shape functions,

strain, and element matrices, are elaborated.

• Chapter 3 provides a detailed explanation of the Duncan & Chang model (D&C),

which is a nonlinear elastic constitutive relation for granular materials. To un-

derstand their behavior under cyclic loading, the behavior of granular materials
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under monotonic loading needs to be investigated. In view of this, Chapter 3

explores the monotonic loading and unloading behavior of soil by D&C. More-

over, nonlinearity of the stress-strain curve is explained. The experimental and

numerical processes of determining parameters of D&C are mentioned. Then,

the assessment of loading, unloading, reloading conditions and mathematical

background of tangent moduli in D&C are explained step by step. Modifica-

tions to D&C proposed since 1970 are shown.

• Chapter 4 presents an overall perspective on the behavior of granular materials

subjected to cyclic loading. It begins by defining permanent deformation under

cyclic loading and how soil reacts to cyclic loading. Then, loading types and

frequency are detailed. The time-hardening and strain-hardening methods are

explained in order to understand the behavior of soil under varying load ampli-

tude. Effects of permeability, relative density, moisture content, density, stress

history, grading, and aggregate size are mentioned. Behavior types of cyclically

loaded soil, namely plastic shakedown, plastic creep, and incremental collapse,

are mentioned. A summary of the literature on prediction methods of perma-

nent deformation is presented. Explicit methods based on number of cycles are

compared. The log-log approach is further specified.

• Chapter 5 introduces the Explicit Cyclic Duncan Chang (ECDC) model that

combines the Duncan & Chang model with the explicit permanent deforma-

tion approach. Firstly, the fundamental representation of ECDC is provided.

After that, it is thoroughly investigated in monotonic loading, cyclic loading

and reloading. The rheological device of ECDC is illustrated. Then, the de-

termination of the necessary cyclic parameters is detailed. The implementation

of ECDC into the finite element solver is elaborated. The ECDC algorithm

scheme is provided. The verification of the D&C algorithm is performed us-

ing two different relative density sands. Finally, to examine the performance

of ECDC, a 3D horizontally cyclic loaded monopile, anchored in sand is ana-

lyzed with the ECDC model. The first analysis is conducted with constant load

amplitude whereas the second is conducted with varying load amplitude.

• Chapter 6 highlights the concluding remarks and contributions and provides

future perspectives.
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CHAPTER 2

A SURVEY OF COMPUTATIONAL MODELING OF GRANULAR

MATERIALS

In this chapter, background information and basic concepts that will be needed for

modeling are given. Firstly, a timeline of the constitutive modeling of geomechanics

is introduced. Furthermore, the fundamental principles related to the computational

tools utilized in this study are detailed. Soil is modeled as a continuum body, and

therefore, it is solved as a boundary value problem using finite element principles.

Details of linear isotropic elasticity of a 3D element are elaborated. The strain and

the element matrices are illustrated.

2.1 Brief Timeline of Granular Materials Constitutive Modeling

The timeline of constitutive modeling starts in 1678, with Hooke’s law of linear elas-

ticity. In 1773, the Coulomb failure criterion, which is the earliest work on plasticity,

was stated. The failure criterion and plasticity were further developed by Tresca [4],

von Mises [5], and Drucker [6]. However, those yield criteria don’t work for granular

materials since their dependence on confining pressure isn’t considered. In 1952, a

hydrostatic pressure dependent yield criterion was offered by Drucker and Prager [7].

In the 1960s, the critical state condition was proposed by researchers at Cambridge

University [8, 9, 2]. Moreover, models based on the incremental nonlinearity of soil

under monotonic loading have been proposed in the literature. One example of such a

model is Duncan & Chang [10] and another constitutive model is hypoplasticity with

many more parameters involved [11].

Laboratory tests are essential to determine the intricate behavior of granular materials.
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In this regard, one of the first laboratory tests was conducted in 1943. Buchanan and

Kuri performed the first cyclic triaxial test in 1956 [1]. One of the substantial find-

ings of repeated loading test is that even if two separate soil samples exhibit similar

behavior under monotonic loading, their cyclic loading response can be distinct [12].

Furthermore, finding of these tests advances earthquake studies and the liquefaction

phenomenon of cohesionless granular materials [13, 14].

In the 1970s, with the momentum of the oil industry, construction of off-shore petroleum

structures proliferated. These structures, which are subjected to repeated loading of

winds, waves, and currents, drew attention to the performance of granular materials.

Moreover, studies on pavement and traffic loading also became widespread in this

era.

In the early 1980s, constitutive modeling of soil under cyclic loading did not exist de-

spite the advancement in modeling of soil subjected to monotonic loading [1]. Thus,

the relationship between the number of load cycles and permanent deformation in

granular materials was determined by analytical methods.

In past decades, behavior of granular materials induced by cyclic loading has been

examined by both analytical methods based on laboratory tests, and constitutive rela-

tions built upon plasticity and viscosity theories, and shakedown theory [15, 16, 17, 3,

18, 19, 20]. Other than the above-mentioned models, densification, kinematic harden-

ing, bounding surface, generalized plasticity model, and multi-laminate models have

been proposed to describe different soil behavior under various external conditions

[21].

2.2 Application of the Finite Element Method in Granular Materials

There are two common approaches to solving a boundary value problem of granular

materials, namely the finite element method and the discrete element method (DEM).

Even though it is more appropriate to treat granular materials as a discrete form,

DEM is not an efficient approach to handle large boundary value problems due to its

computational cost [22].
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In general, to solve an initial boundary value problem using the finite element method,

four types of equations are required:

• Laws of conservation (Balance equations)

• Constitutive equations (Material laws)

• Boundary conditions

• Initial conditions

The details of these equations are mentioned in the following sections.

2.3 Laws of Conservation

The behavior of a continuum body of granular materials subjected to monotonic and

cyclic loading follow laws of solid mechanics elasticity problems under small defor-

mation. Strong form of equation (partial differential equation) is instituted based on

conservation of linear momentum

∫
ρbdV +

∫
div(σ)dV =

d

dt

∫
ρvdV (2.1)

where σ is the Cauchy stress, b is the body force vector, ρ is the density function, and

v is the velocity vector. As the problem studied in this thesis is quasi-static, balance

equation of linear momentum can be written as

div(σ) + ρb ≡ (σji,j + ρbi)ii = 0 (2.2)

where i is the free index and j is the dummy index [23]. The Cauchy stress tensor,

σji,j , can be represented as summation takes place over repeated indices:

σji,j ≡
3∑
j=1

σji,j = σ1i,1 + σ2i,2 + σ3i,3 (2.3)
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2.3.1 Internal Energy in Solids

Assume that a major axial stress σ1, which is one of the three direct stress compo-

nents, is acting on both opposite surfaces of an infinitesimal solid element. As a

result, displacements of u1 and u1 + du1 are produced at x1 and x1 + dx1. Axial

strain becomes ε1 = ∂u1/∂x1 and the force acting on the surface can be written as

σ1dx2dx3 [24]. Total internal work of axial stress on the whole volume, V , of body

B, can be found by integration as follows

WI = −
∫
σ1dx2dx3du1 = −

∫
B

σ1
du1

dx1

dx1dx2dx3 = −
∫
B

σ1ε1dV (2.4)

in which WI is the work done by internal stress. Considering contributions from all

stress components and inserting the stress definition in Equation 2.3, internal energy

can be expressed as

W = σijεij (2.5)

where indices indicate double summation, so:

W = σ11ε11 + σ12ε12 + σ13ε13

+ σ21ε21 + σ22ε22 + σ23ε23

+ σ31ε31 + σ32ε32 + σ33ε33

(2.6)

Finally, those nine terms can be represented with six terms due to symmetry (from

conservation of angular momentum):

W = σ11ε11 + σ22ε22 + σ33ε33 + 2(σ12ε12 + σ23ε23 + σ31ε31) (2.7)

The reduction in the number of terms alleviates the memory resource requirements

and speeds up the calculation process. This reduced order of the matrix is called the

Voigt notation [25].
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2.4 Material Equation

The behavior of a granular material under monotonic loading is nonlinear. The Dun-

can & Chang model (D&C) is utilized as the material equation for monotonic loading

stage in this thesis. D&C uses a pressure dependent elastic modulus to achieve non-

linearity of granular materials. For every load increment, it determines a new tangent

modulus, updates the stiffness matrix and solves the sub-step linear elastically. It reit-

erates this process for each load sub-step. The constitutive model is tweaked based on

isotropic generalized Hooke’s formulation. Thus, material equation is detailed based

on isotropic linear elasticity.

Consider the isotropic linear elastic material model; then, free energy can be repre-

sented as [26, 27, 23]

ψ(ε) =
1

2
εijCijklεkl (2.8)

where C is 4th order stiffness matrix with the form of C = Cijklii⊗ ij ⊗ ik⊗ il, ψ(ε)

is the free energy function based on strain. The derivative of free energy formulation

provides:

σij =
∂ψ

∂εij
= Cijklεkl (2.9)

For efficiency increases on memory space, Equation 2.9 can be expressed in matrix

form

[σ] = [C] : [ε] (2.10)

where [σ] is the 2nd order stress tensor, [ε] is 2nd order strain tensor. Element-wise
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demonstration of Voigt notation matrix form can be presented as:



σ11

σ22

σ33

σ12

σ23

σ31


=



C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313


:



ε11

ε22

ε33

2ε12

2ε23

2ε31


(2.11)

Furthermore, Cijkl can be written in indicial form with Lamé constants (λ, µ), as

Cijkl = λδijδkl + µ(δikδjl + δilδjk) = λ1⊗ 1 + 2µ[] (2.12)

λ =
E · ν

(1 + ν)(1− 2ν)
(2.13)

µ =
E

2(1 + ν)
(2.14)

where 1 is [1, 1, 1, 0, 0, 0]T , [] is the 4th order identity tensor, δij is the Kronecker

delta, E is the elastic modulus, and ν is Poisson’s ratio. The matrix form of C with

Lamé constants then becomes:

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.15)
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Overall, the matrix form of σ = C : ε is shown below:



σ11

σ22

σ33

σ12

σ23

σ31


=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


:



ε11

ε22

ε33

2ε12

2ε23

2ε31


(2.16)

2.5 Weak Form

Before starting with details of weak form, it should be stated there are minor differ-

ences between two-dimensional and three-dimensional finite element analysis, mainly

in the terms and definitions of mathematical expressions and vector notation [28]. On

the other hand, the structure of weak and strong formulations are typical. At first, unit

vectors of~i, ~j, ~k are employed to define vector ~t (= qx~i + qy~j + qz~k) on surface ∂B

of the three-dimensional domain B which are illustrated in Figure 2.1. In continuum

mechanics, stress traction (~t) is a fundamental quantity defined by the unit surface

normal (~n). The relationship between these variable is established by Cauchy’s theo-

rem as ~t = ~σ~n.

y

z

x

i

t
n

k

j B

dB

Figure 2.1: Domain and surface in three-dimensions

There are two types of boundary conditions on surface ∂B which are Essential (Dirich-

let, displacement u = ū on ∂Bu) boundaries and Natural (Neumann, traction t = t̄

on ∂Bt) boundaries. Moreover, finite element discretization divides body B into sub-
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domains of Be while it splits up boundary (surface for 3D geometry) into subsurfaces

of ∂Be [29, 26].

After defining boundary conditions and other terms, weak form can be approximated

through Galerkin formulation by multiplying strong form (2.2) with variational func-

tion of δu(x, t) as follows:

δΠ̂eq =
∑
e

[∫
Be

δ(Su)Tσ dV −
∫
Be

δuTb dV

]
−
∑
et

[∫
∂Bte

δuT t dA

]
= 0

(2.17)

This virtual form requires approximations of u and δu.

2.6 Finite Element Discretization

To fulfill weak formulation, approximation of u and δu must be assumed. In element

domain, displacement u(x, t) can be derived as

u(x, t) ≈ N(x)de (2.18)

where N(x) is the shape function matrix, de is the nodal displacement vector. Fur-

thermore, the strain field ε(x, t) is described by

ε(x, t) = Su ≈ B(x)de (2.19)

where B(x) is the strain matrix. Virtual displacement δu(x, t) is approximated as

δu(x, t) ≈ N(x)δde (2.20)

and further, virtual strain δε can be computed by

δε = Bδde (2.21)
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in which δde is called the virtual nodal displacement vector or the nodal variation

vector. To establish shape function N(x) and strain matrix B(x), the element type

that will mesh the body has to be determined. For comprehensive 3D analysis, the 3D

hexahedral solid element type is selected.

2.6.1 Hexahedral Elements

There are two fundamental three-dimensional solid finite element types, which are

tetrahedral and hexahedral [28]. The Tetrahedral element corresponds to the triangu-

lar element in 2D, whereas hexahedral is the equivalent of the quadrilateral element

in 2D. All element types have higher and lower-order elements. In this study, we will

focus on the lower order, 8-node hexahedral element.

2.6.1.1 Strain Matrix

Hexahedral is the element with the shape of hexahedron, which has eight nodes and

six surfaces, illustrated in Figure 2.2 [30].

η

ζ

ξ

(-1,-1,-1) 1
(1,-1,1) 6

(1,-1,-1) 2

8 (-1,1,1)

7 (1,1,1)

3 (1,1,-1)

4 (-1,1,-1)

5 (-1,-1,1)

z

y
x

Figure 2.2: Hexahedral element with isoparametric mapping

It has the origin at the center of the hexahedron with an isoparametric natural coor-

dinate system (ξ, η, ζ). Shape functions with natural coordinate system curate the
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relation between global and local coordinate systems as [26, 31, 32]


x

y

z

 =
8∑
i=1



Ni 0 0

0 Ni 0

0 0 Ni



xi

yi

zi


 (2.22)

where the trilinear shape function N is expressed by

Ni =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi) (2.23)

in which ξi, ηi, ζi correspond to node i of the natural coordinates [30]. Shape functions

of the eight nodes can be then written as:

N1 =
1

8
(1− ξ)(1− η)(1− ζ)

N2 =
1

8
(1 + ξ)(1− η)(1− ζ)

N3 =
1

8
(1 + ξ)(1 + η)(1− ζ)

N4 =
1

8
(1− ξ)(1 + η)(1− ζ)

N5 =
1

8
(1− ξ)(1− η)(1 + ζ)

N6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

(2.24)
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Moreover, the nodal displacement vector can be stated as

de =



de1

de2

de3

de4

de5

de6

de7

de8


24x1

(2.25)

where the displacement component of each node is

dei =


u1

v2

w3

 for i = 1,2,3,4,5,6,7,8 (2.26)

The shape function matrix is constructed with eight sub-matrices of Ni:

N =


N1 0 0 ... N8 0 0

0 N1 0 ... 0 N8 0

0 0 N1 ... 0 0 N8


3x24

(2.27)

Furthermore, to compute [ε] = Bde, the strain interpolation matrix (B-matrix), B,

need to be extracted. Regarding this, the strain matrix can be defined as

B =
[
B1 B2 B3 B4 B5 B6 B7 B8

]
6x24

(2.28)
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in which

Bi =



∂Ni/∂x 0 0

0 ∂Ni/∂y 0

0 0 ∂Ni/∂z

0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x

∂Ni/∂y ∂Ni/∂x 0


for i = 1,2,3,4,5,6,7,8 (2.29)

To acquire ∂Ni/∂x, ∂Ni/∂y, ∂Ni/∂z in B matrix, chain rule for partial derivative

is utilized.


∂Ni/∂ξ

∂Ni/∂η

∂Ni/∂ζ

 =


∂x/∂ξ ∂y/∂ξ ∂z/∂ξ

∂x/∂η ∂y/∂η ∂z/∂η

∂x/∂ζ ∂y/∂ζ ∂z/∂ζ



∂Ni/∂x

∂Ni/∂y

∂Ni/∂z

 (2.30)

J =


∂x/∂ξ ∂y/∂ξ ∂z/∂ξ

∂x/∂η ∂y/∂η ∂z/∂η

∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

 (2.31)

where [J] is Jacobian and it can be written by substituting Equation 2.22 into Equation

2.31:

J =


∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ
∂N5

∂ξ
∂N6

∂ξ
∂N7

∂ξ
∂N8

∂ξ

∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η
∂N5

∂η
∂N6

∂η
∂N7

∂η
∂N8

∂η

∂N1

∂ζ
∂N2

∂ζ
∂N3

∂ζ
∂N4

∂ζ
∂N5

∂ζ
∂N6

∂ζ
∂N7

∂ζ
∂N8

∂ζ





x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5

x6 y6 z6

x7 y7 z7

x8 y8 z8


(2.32)

Lastly, multiplying Equation 2.30 with the inverse of [J] provides required parameters
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in the strain matrix.


∂Ni/∂x

∂Ni/∂y

∂Ni/∂z

 = J−1


∂Ni/∂ξ

∂Ni/∂η

∂Ni/∂ζ

 (2.33)

2.6.1.2 Element Matrix

For a single element, Equations 2.18, 2.19, 2.20, 2.21 can be inserted into Galerkin

Equation 2.17 as

δΠ̂e
eq = δuT

[∫
Be

BTσ dV

]
− δuT

[∫
Be

NTb dV +

∫
∂Bte

NT t dA

]
(2.34)

where

f eint =

∫
Be

BT [σ] dV (2.35)

f eext =

∫
Be

NT b dV +

∫
Be

NT t dA (2.36)

where
∫
Be N

T b dV provides body forces,
∫
Be N

T t dA gives surface (traction) forces.∑
f eint =

∑
f eext equality holds for the quasi-static problem. Furthermore, substitut-

ing Equation 2.10 and 2.19 into Equation 2.35 provides:

ke =

∫
Be

BT [C]B dV (2.37)

that ensures f eint = kede where ke is the element stiffness matrix.
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CHAPTER 3

BACKGROUND ON SOIL BEHAVIOR UNDER MONOTONIC LOADING

In this chapter, the Duncan & Chang model (D&C), which is a model that predicts

the soil behavior under monotonic loading, is introduced [10]. The D&C presents

the isotropic generalized Hooke’s Law relation based on pressure-dependent modulus

with stress increments [33]. Thus, the nonlinearity of the stress-strain curve originates

from stress-dependent modulus. D&C requires several parameters to manage the

association between stress and tangent modulus. In each strain increment, soil is

assumed to behave linearly with the established modulus, which is calculated by the

contribution of those parameters, shown in Figure 3.1.

1

2

3

Strain

St
re

ss

Figure 3.1: Nonlinearity of stress-strain relation
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3.1 Duncan & Chang Model

Duncan & Chang [10] proposed a nonlinear material model to exhibit the hyperbolic

constitutive relation of granular materials. It is a well-known nonlinear elastic model

that predicts smooth stress-strain relation in soils. D&C is built upon hyperbolic

constitutive equation provided by Kondner (1963)

σ1 − σ3 =
ε

a+ bε
(3.1)

where σ1 is the major principal stress, σ3 is the minor principal stress, ε is the axial

strain, and a, b are experimental parameters [34]. a is the reciprocal of Ei (initial

tangent modulus), b is the reciprocal of (σ1 − σ3)ult (asymptotic value of stress dif-

ference):

a =
1

Ei
b =

1

(σ1 − σ3)ult
(3.2)

In general, it is known that stress difference at failure, commonly called the compres-

sive strength, is less than the asymptotic value of stress difference and the ratio of

these values represents the failure ratio Rf

Rf =
(σ1 − σ3)f
(σ1 − σ3)ult

(3.3)

where (σ1− σ3)f stands for stress difference at failure (compressive strength of soil).

This ratio leads Rf to always be less than or equal to 1. Rf is independent of hy-

drostatic pressure σ3 (also known as confining pressure). Concatenating Equation 3.2

into Equation 3.1 gives:

σ1 − σ3 =
ε(

1
Ei

+
ε Rf

(σ1−σ3)f

) (3.4)

D&C uses a confining pressure-dependent initial tangent modulus Ei demonstrated
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in experimental works by Janbu [35]

Ei = KPa

(σ3

Pa

)n
(3.5)

where Pa is the atmospheric pressure with the same unit as σ3 and Ei, K is the

modulus number, and n is the exponent that represents the rate of variation of Ei.

D&C utilizes Mohr–Coulomb as the failure criterion (Equation 3.6) for its stress-

strain relation, and it assumes that σ3 is constant during failure.

(σ1 − σ3)f =
2c cosφ+ 2σ3 sinφ

1− sinφ
(3.6)

In equation 3.6, c is the cohesion of soil, φ is the friction angle. In order to form

tangent modulus, which illustrates the constitutive relation, Equation 3.4 is utilized

with incremental strain steps. Assumption of constant σ3 still holds while taking the

derivative of the stress function to get the tangent modulus

Et =
∂(σ1 − σ3)

∂ε
(3.7)

which becomes:

Et =
1
Ei(

1
Ei

+
Rf ε

(σ1−σ3)f

)2 (3.8)

Reorganizing Equation 3.4 to give ε

ε =
σ1 − σ3

Ei

(
1− Rf (σ1−σ3)

(σ1−σ3)f

) (3.9)

and substituting Equation 3.9 into Equation 3.8:

Et =

(
1− Rf (σ1 − σ3)

(σ1 − σ3)f

)2

Ei (3.10)
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Et can also be stated as

Et = (1−Rf S)2Ei (3.11)

where S is the stress level (mobilized strength fraction):

S =
(σ1 − σ3)

(σ1 − σ3)f
(3.12)

The overall formula can then be expanded as:

Et =

(
1− Rf (1− sinφ)(σ1 − σ3)

2c cosφ+ 2σ3 sinφ

)2

KPa

(σ3

Pa

)n
(3.13)

In brief, the stress update process of D&C is expressed in Box 1.

Box 1: Stress update procedure used in D&C

1. Obtain stress tensor, which is in Voigt notation, and transform it into 3x3

matrix form.

2. Calculate principal stresses.

3. Compose stiffness tensor with initial tangent modulus.

4. Compute the stress level.

5. Calculate tangent modulus with stress level.

(a) If it is unloading step, use unloading modulus.

6. Update stiffness tensor with tangent modulus.

7. Update stress tensor.
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3.2 Determination of Experimental Values and Parameters

In this section, parameters in Equation 3.13 are detailed. The experimental process to

obtain these parameters is also explained.

3.2.1 Initial Tangent Modulus

Initial tangent modulus Ei can be calculated as the initial tangent of the deviatoric

stress vs. axial strain plot from the drained triaxial test, as shown in Figure 3.2a. Ei

can also be extracted from where the plot line of the ratio of axial strain to stress

difference vs. axial strain cuts the y-axis. According to Figure 3.2b, "a" can simply

be determined from the graph and corresponds to a = 1
Ei

.

(σ
1-σ

3)

ε

Asymptote = (σ1-σ3)ult = 1/b

Ei=1/α

(a) Deviatoric stress vs. Axial strain

ε/
(σ

1-σ
3)

ε

b

1

α

(b) Axial strain/deviatoric stress vs. Axial strain

Figure 3.2: Determination of Ei in D&C

3.2.2 Modulus Constants

Modulus constants K and n are obtained by fitting a line to the log-log plot of Ei to

σ3. Dividing both sides of Equation 3.5 by Pa generates Ei

Pa
= K

(
σ3
Pa

)n
equation and

taking then logarithms linearizes the equation to give the parameters. Several triaxial
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tests with different confining pressures are required to get a better fit. To increase the

fitness of data, triaxial tests should be conducted under similar principle stresses [36].

3.2.3 Cohesion and Friction Angle

In soil mechanics, the Mohr–Coulomb yield criterion is one of the most prevalent

methods to estimate plastic yield strength. The Mohr—Coulomb failure envelope

relies on the linear relation between normal and shear stress as illustrated in Figure

3.3

τ = c+ σn · tan(φ) (3.14)

where τ is the shear stress and σn is the normal stress [37]. Cohesion c represents the

resistance of intermolecular bonds between the grains. Its value is taken as the y-axis

intercept of the tangent to the circle with. The Friction angle φ describes the granular

friction, which forms the shear strength of soil, also known shearing resistance [38].

It is the angle between the tangent to the circle and the x-axis. Hence, from Figure

3.3:

τ =
σ1 − σ3

2
· cos(φ) (3.15)

σn =
σ1 + σ3

2
+
σ1 − σ3

2
· sin(φ) (3.16)

Substituting Equation 3.15 and 3.16 into 3.14 yields

σ1 − σ3 + (σ1 + σ3) · sin(φ) = 2c · cos(φ) (3.17)

Using equation 3.17 as yield function and replacing (σ1 − σ3) with (σ1 − σ3)f , then

rewriting σ1 in terms of σ3 produces Equation 3.6 which retains the assumption that

confining pressure σ3 is constant during the failure [10]. Figure 3.4 describes the

Mohr–Coulomb yield criterion in principal stress space. It should be mentioned that
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τ = c + σn tan(Φ)

Φ

Φ c σn 

τ

σ1
σ3

Figure 3.3: Mohr–Coulomb failure envelope

D&C is insensitive to variation in intermediate principal stress (σ2) so that stress in

or on the yield surface is always symmetrical to σ2 and σ3 axes.

σ1
σ2

σ3

σ1 = σ2 = σ3

Figure 3.4: Mohr–Coulomb failure criterion in principal stress space

3.2.4 Failure Ratio

Deviatoric stress at failure (σ1 − σ3)f is computed with Mohr–Coulomb’s failure cri-

terion which requires c, φ and confining pressure σ3 (Equation 3.6). Next, asymptotic

value at deviatoric stress (σ1 − σ3)ult should be estimated from the ε
σ1−σ3 vs. ε plot
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(Figure 3.2b). The slope of this graph delivers reciprocal of (σ1 − σ3)ult. Finally,

failure ratio Rf is calculated by dividing (σ1 − σ3)f to (σ1 − σ3)ult.

3.2.5 Modulus Number for Unloading and Reloading

It has been shown that the unloading and reloading moduli are equal and independent

of the stress level and strain of the soil. As illustrated in Figure 3.5, the constitutive

relation of soil during unloading and reloading is considered linear and elastic [10].

The unloading and reloading modulus can be formulated as

Eur = KurPa

(σ3

Pa

)n
(3.18)

where Eur is the unloading and reloading modulus, Kur is the modulus number. n is

the same as in Equation 3.5. After determining n, Kur can be calculated with a single

unloading curve of the triaxial test [36]. In general Kur is greater than K in Equation

3.5 and Duncan (1980) suggests that Kur/K can be taken as 1.2 for dense soils, and

as approximately 3 for loose soils when the unloading data of the triaxial test is not

available. Note that, the overall stress-strain relation of soil subjected to loading

followed by unloading demonstrates inelastic behavior with plastic deformation εp

Figure 3.5.

Eur=KurPa(σ3 /Pa)
n

ε

(σ
1-σ

3)

εp

Figure 3.5: Determination of unloading & reloading modulus
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Overall, the experimental and numerical processes of determination of each param-

eter (K,n,Kur, Rf , c, φ) are mentioned. Then, initial modulus Ei can be calculated.

Et, Eur moduli are determined with respect to Equations 3.13 and 3.18. To sum up,

the flow chart of the calibration of the Duncan & Chang model is illustrated in Figure

3.6.

Calibration of D&C

Calculate Et, Eur 

Laboratory tests
(static triaxial tests 

with various σ3) 

Determine K, n, Kur, Rf  and c, ϕ

Calculate Ei

Figure 3.6: Flow chart of D&C

It is important to that D&C is not an energy conservative formulation due to unloading

and reloading stages are not accompanied by energy dissipation [39].

3.3 Modifications of Duncan & Chang

Although D&C’s hyperbolic elastic model dates to 1970, it is still widely used as a

soil material model since its parameters can be easily obtained. Even if testing is

not possible, one can get these parameters from literature. This prevalent method has
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evolved over time. Related alterations are presented in Table 3.1:

Table 3.1: Comparison of D&C versions

Date Poisson’s ratio (ν) & Bulk modulus (B) Friction angle (φ)

1970 [10] Constant Constant

1972 [40] ν = ν0 −∆ν log( σ3
Pa

) Constant

1980 [36] B = KbPa(
σ3
Pa

)m φ = φ0 −∆φ log( σ3
Pa

)

Duncan and Chang (1970) [10], original version, is the most widely-used method in

which Poisson’s ratio, bulk modulus, and friction angle are constant. All its param-

eters can be obtained from three triaxial tests with different confining pressure and

one unloading curve from one of those triaxial tests. Prediction of model achieves a

high degree of accuracy with test results [33]. When failure occurs, tangent modulus

assigned to soil is too low because of the high value of stress level. This situation

leads to excessive deformation even if the stress change is limited. It is not a robust

estimation for the behavior of soil after the peak point of deviatoric stress [33].

The update to the model in 1972 [40], which has linearly varying Poisson’s ratio

within limited range according to stress state, performed poorly compared with the

1970 model (constant Poisson’s ratio) in some studies due to the fact that changing

Poisson’s ratio drives problems in certain conditions [41]. The 1980 model [36] uses

confining pressure-dependent bulk modulus and friction angle. It requires one ad-

ditional triaxial test to detect friction angle and volumetric strain to calculate bulk

modulus. Nonetheless, it was observed that volumetric strain could not be acquired

by traditional triaxial test machine except in cases where the soil was saturated. An-

other limitation of this model is that it utilizes bulk modulus with secant value in place

of tangent value [42]. To improve the model, bulk modulus was linked to mean nor-

mal stress by Boscardin et al. (1990) that overcame some problems emerging from

the calculation of bulk modulus.

Overall, to model the monotonic loading and unloading stages, it was decided to

use the original D&C 1970 model in this thesis, for two main reasons. The first

reason is that the 1970 model requires fewer parameters to calibrate so it needs fewer

tests with a high degree of accuracy. Secondly, all models have some limitations as
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mentioned above yet the limitation of the 1970 model (not being able to satisfactorily

model the stress-strain relation of soil after the yield point) is not a burden for our

implementation goals since soil is not loaded up to its yield point before and during

cyclic loading. That scenario is beyond the scope of this thesis study.
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CHAPTER 4

BACKGROUND ON SOIL BEHAVIOR UNDER CYCLIC LOADING

In this chapter, the cyclic loading response of a soil, previously subjected to mono-

tonic loading, will be investigated. When soil is exposed to cyclic loading, even if

applied stress is less than its plastic yield, in contrast to elastic theory, permanent

strain occurs. Permanent strain leads to residual settlement. For instance, a monopile

or strip foundation subjected to cyclic loading distributes stresses to the soil that sur-

rounds the structure. Permanent settlement or shift (for a monopile) are perpetual

even after loading is removed. Figure 4.1 gives an exemplary drawing of a monopile

and strip foundation under cyclic load. Forces acting on those structures and the stress

response of the soil are also demonstrated.

F(t)

t

σF

ε

F(t)

Figure 4.1: Monopile and foundation subjected to cyclic loading
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4.1 Soil Response to Cyclic Loading

Prediction of plastic deformation for granular materials is challenging for highway

pavements, railway structures, foundations of offshore and onshore wind turbines,

cyclically hydrostatic loaded silos, hydraulic structures, machine foundations and

all the other cyclically loaded structures that interact with unbound granular mate-

rials (UGM). Rutting arising from permanent deformation reduces the performance

of structures which leads to economic drawbacks and diminished quality of experi-

ence. This phenomenon demands an understanding of elastic and plastic behavior of

subgrade soils in various surrounding environments. Besides external effects (loading

type, frequency, amplitude), internal factors (aggregate size, distribution, shape and

strength, moisture content, relative density, stress history, drainage condition and per-

meability) related with a soil are also crucial for comprehending soil behavior under

cyclic loading [43, 44, 15, 17].

4.1.1 Loading Types & Frequency

There are two different cyclic loading types in terms of loading direction, one-way

and two-way loading. If the loading sign changes during cycles, it is called two-

way loading. If the loading sign is constant, it is one-way loading. To express this

mathematically, Equation 4.1 can be stated

R = Fmin/Fmax (4.1)

where R is the cyclic loading ratio, Fmax is maximum force and Fmin minimum force

[43, 45]. It is also illustrated in Figure 4.2.

For one-way loading, the value of loading ratio is within the range of 0 ≤ R ≤ 1

and for the two-way loading, it is within the range of -1 ≤ R < 0. In some one-way

loading cases, Fmin may not be zero. For those experiments, there is a constant load

on the soil qmin (minimum deviatoric stress) such as that created by the weight of

triaxial test device loading lid.
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i. One-way loading ii. Two-way loading

Fmin t

F

Fmax

Fmin

Figure 4.2: Loading types

Cyclic loading is repeated application of force, stress, or pressure with a particular

pattern of size, direction and frequency in which inertia force is ignored whereas,

in dynamic load, which is faster (higher frequency) than cyclic loading, inertia has

effects on the mass [43].

For drained and undrained triaxial test, Shenton (1978) and Kokusho et al. (2004)

have reported that effects of dynamic loading are not observed in frequency range of

0.1 Hz ≤ f ≤ 30 Hz [46, 47]. On the contrary, several studies state that there is

observable limit for dynamic inertia effect and it is f > 5 Hz [3], and f > 1 Hz [48].

Furthermore, for saturated or partly-saturated soils, load frequency has another effect

due to accumulated pore pressure. Increased load frequency leads to intensified pore

water pressure without dissipation during subsequent cycles. For a high number of

load cycles, it is observed that permanent deformation increases [43].

4.1.2 Varying Load Amplitude

In most cases, the structure is exposed to varying load amplitude. Cumulative per-

manent deformation caused by such loading can be estimated using two distinct ap-

proaches, time-hardening and strain-hardening, as shown in Figure 4.3.
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i. Time-Hardening ii. Strain-Hardening

Figure 4.3: Comparison of methods to estimate effects of varying load amplitude

4.1.2.1 Time-Hardening Method

The time-hardening method assumes that N1 cycles of q1 deviatoric stress generate

εp,N1 plastic strain. After that, if N2 cycles of q2 deviatoric stress are applied, εp,N1

from the first sequence is converted to N∗
1 cycles with respect to parameters of q2

deviatoric stress. Lastly, total permanent strain is calculated by summing permanent

strain from N∗
1 and N2 cycles on the q2 deviatoric stress curve. Estimation using

this method is more successful than when the applied stress of specimen shows an

increasing trend [49].

4.1.2.2 Strain-Hardening Method

The strain-hardening method simply expresses that cumulative permanent strain of

N1 cycles of q1 deviatoric stress andN2 cycles of q2 deviatoric stress are calculated as

N1 +N2 on the ε vs. N curve for q2. Thus, calculated cumulative permanent strain is

independent of magnitude of q1 deviatoric stress. This procedure operates effectively

when the loading amplitude of cycles is decreasing [49].

Findings of Poulsen and Stubstad [50] indicate that the time-hardening method per-

forms better in both increasing and decreasing loading amplitude of cycles. However,

Tasan [43] observed no significant performance difference between the two methods.
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4.1.3 Other Conditions Affecting Permanent Strain

Some other conditions affecting permanent strain can be listed as:

• Permeability: In saturated or partly-saturated soil, permeability has great im-

pact on the drainage of water. Soil with a high permeability coefficient can

rapidly discharge excess pore water pressure accumulated by cyclic loading. As

pore pressure reduces the bearing capacity of soil, permanent strain increases.

• Relative Density: In relation to compaction, dense soil has less space to be

compressed. At the end of cyclic load application, permanent deformation in

dense soil (high relative density) is less than in loose soil. In connection with

pore pressure, loose soil has spare inter-granular space in which pore water

pressure accumulates [43]. Hence, from both compaction and pore pressure

viewpoints, high relative density leads to less permanent deformation.

• Moisture Content: Increased water content has a lubricating effect between

soil grains. It is observed that even in the absence of excess pore pressure,

relatively small amounts of moisture cause large permanent deformation [51].

Saturated soil samples have more considerable permanent strain in comparison

with partly saturated samples [52]. As a result of these, high water saturation

combined with low permeability is unfavorable in terms of permanent strain

[44].

• Density: It is strongly related to compaction degree of soil. The higher the

density, the higher the resistance to permanent strain [44].

• Stress History: For every load cycle, soil is compacted and the stiffness of the

soil grows. As a consequence of this, permanent strain diminishes for subse-

quent cycles.

• Grading: Compaction and grading have a close relation. With the same com-

paction degree, increase of relative density by grading brings better resistance

to permanent deformation [44]. Furthermore, research on permanent defor-

mation reveals that grading is more significant than degree of compaction in

densely compacted samples [53, 54].
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• Aggregate Size: As the amount of fine soil particle increases, permanent defor-

mation decreases [44]. Moreover, resistance to permanent deformation is better

in angular aggregates compared to round aggregates, due to particle interlock in

which shear resistance of angular particles is superior to that of round particles

[44].

4.2 Behavior Types of Cyclic Loaded Soil

Every load cycle attempts to shuffle the position and direction of soil grains which

leads to spatial rearrangement of soil particles. Different conditions of soil and its en-

vironment cause distinct soil behavior [43]. In the literature these different behaviors

have been categorized with three main terms illustrated in Figure 4.4 [17].
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Plastic shakedown

Plastic creep
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Figure 4.4: Behavior types of cyclic loaded soil

4.2.1 Plastic Shakedown

In plastic shakedown, soil responds as a plastic for a certain number of cycles. After

that, the soil behavior becomes elastic (resilient), permanent strain is observed as

zero, and cumulative permanent deformation becomes constant. This type of behavior

states that for a given system, permanent strain is within the tolerable range to ensure

design is resistant to a high number of load cycles. By virtue of absorbing frictional
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energy without being crushed or softened, position of aggregates settle for the last

cycles of loading. It is important to note that rate of plastic strain relies particularly

on stress level [55].

4.2.2 Incremental Collapse

Incremental collapse demonstrates a progressive increase of plastic strain rate at ev-

ery subsequent load cycle. Permanent deformation does not stop. Soil softening and

aggregate crushing occur in this behavior. Grain strength and energy absorption ca-

pacity are not sufficient for the applied stress level. If soil undergoes incremental

collapse behavior, structural failure will probably be observed [55].

4.2.3 Plastic Creep

Plastic creep is the intermediate response that is placed between plastic shakedown

and incremental collapse. Throughout the initial cycles, rate of permanent strain is

higher, whereas it gradually decreases in the following cycles. For the late cycles,

permanent strain rate, which depends on soil condition and stress level, becomes

constant. As a consequence of the constant permanent strain rate, cumulative plastic

deformation exhibits a linear increase. Aggregate energy absorption is lower in this

behavior than in plastic shakedown [17].

4.3 Prediction of Permanent Deformation

Throughout the years, scientific methods for deformation estimation of granular mate-

rials have evolved. One of the earliest approaches to estimating deformation is to limit

the vertical strain within acceptable levels for specific cyclic load repetitions [56]. It

is basically the elastic analysis which determines the corresponding layer thickness

for the permissible vertical strain without allowing excessive rutting. This relation is

established using the California bearing ratio (CBR) which is a widely used exper-

imental test for pavement design. The limiting strain method was improved further

to two-layered elastic design that embodies an asphalt layer with a granular sublayer
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[57]. However, these elastic methods have the limitation that they can’t compute

the permanent deformation of the layers [58]. In addition, granular materials don’t

demonstrate purely elastic behavior, and permanent deformation is always observed

along with resilient strain due to post-compaction of soil [55].

Different than the previously mentioned studies which are based on static tests, Haynes

[59] and Barksdale [52] proposed models built on laboratory cyclic triaxial test to

predict performance of granular materials at sublayers. Currently, permanent strain

prediction methods for granular materials can be listed as explicit, implicit and shake-

down methods [60]. Explicit approaches employ pre-determined correlation to esti-

mate residual strain with various parameters. In this study, explicit models are in-

vestigated in detail. Implicit approaches are based on incremental σ − ε constitutive

relation that they progressively compute cyclic reaction of granular material. Implicit

methods could utilize elasto-plastic or nonlinear elastic relation to soil [20, 18, 61].

Lastly, shakedown theory determines whether a system is stable or not under the ap-

plied stress. It asserts that if the stress level is below a specified threshold, cumulative

permanent strain will be balanced after a particular number of cycles [55, 17, 62, 19].

4.3.1 Explicit Method

One of the conventional approaches to forecast permanent deformation of granular

materials is classified as the explicit method, also known as the analytical or the em-

pirical method. In the explicit method, the calculation of the accumulated deforma-

tion of granular materials is regarded like the viscosity with the number of cycles (or

other variables) in place of the time [3]. Several correlations are provided to predict

plastic strain empirically. Some studies present the relation of permanent strain (εp)

with applied stress (q) to the specimen [63, 46]. Moreover, one study [16] associates

resilient (elastic) strain (εe) to permanent strain (εp), yet Sweere [15] could not prove

the relation.

Furthermore, another study linked permanent deformation to both the number of load-

ing cycles (N ) and applied stresses [64]. On the other hand, a majority of studies craft

this relation as cumulative plastic strain to the number of cycles [65, 66]. This is one

of the prevailing methods to estimate permanent deformation which is related to the
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number of load cycles.

4.3.1.1 Plastic Deformation vs. Number of Cycle

The relationship between number of load cycles and cumulative permanent deforma-

tion strain is established and it has become one of the most employed correlations

describing the cumulative plastic strain as a function of cycle number. Researchers

have implemented different mathematical functions to describe the relation. The first

function is a semi-logarithmic approach that defines:

εp,N = a1 + a2 log(N) (4.2)

Cumulative permanent strain is proportional with the logarithm of the number of

cycles [52, 46, 67, 66]. The second function is a log-log approach:

εp,N = a1N
a2 (4.3)

The logarithm of cumulative permanent strain is proportional with the logarithm of

the number of cycles [49, 58, 68, 15, 69, 70, 43]. Thirdly, Wolff & Visser (1974)

propose [71]:

εp,N = (a1N + a2)(1− e−a3N) (4.4)

Moreover, Paute et al. (1996) offer [72]:

εp,N = a1

(
1−

( N
100

)−a2)
(4.5)

Lastly, Cerni et al. (2012) present [60]:

εp,N = a1 + a2N − a3 e
−a4N (4.6)
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where a1, a2, a3 and a4 are regression parameters for all equations (4.2, 4.3, 4.4, 4.5,

4.6). Cerni et al. (2012) compared these explicit models using their determination

coefficients (R2) that measures fitness of regression to experimental data [60]. Equa-

tion 4.2, 4.3, 4.5 and 4.6 have fitted with test results over 95% R2. In this study,

the log-log approach (Equation 4.3) is implemented due to its simplicity and being a

widely preferred model.

4.3.1.2 Log-Log Approach

Further investigations on εp,N = a1N
a2 reveal that for the first cycle (N = 1), Equa-

tion 4.3 produces a1 = εp, N=1 which depicts a1 is equal to permanent strain at the

end of the first cycle. This parameter is highly correlated with soil properties and the

stress level. [49, 67, 68, 15, 66, 43].

On the other hand, a2 in Equation 4.3, is independent of stress state and the dry

density of soil [49, 58]. Parameter a2 increases only with moisture content [69]. It

is constant for a given water content. Different levels of deviatoric stress do not lead

to changes in the value of a2 [65]. If it is assumed that moisture content is equal for

all soil sections that are taking consideration, constant and permanent a2 value can be

utilized in the model.

Parameter a1 is called the "Intercept" or the "Intercept coefficient," whereas parameter

a2 is known as the "Slope" or "Slope coefficient." In Figure 4.5, an exemplary data

set of cumulative plastic strain to number of loading cycles plot is illustrated. The

red dashed line is fitted with the least-squares approach in regards to Equation 4.3.

Furthermore, Figure 4.6 is the log-log scale form of Figure 4.5, with the same data

set. The red dashed line also represents Equation 4.3. Moreover, in Figure 4.6, the

slope of the red line corresponds to parameter a2, the intercept distance at which the

red line intersects the y-axis is equal to parameter a1.
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Figure 4.5: Cumulative plastic strain vs. number of load cycles
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Figure 4.6: Log-log scaled cumulative plastic strain vs. number of load cycles
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CHAPTER 5

EXPLICIT CYCLIC DUNCAN CHANG MODEL

In this chapter, a new simplified model (Explicit Cyclic Duncan Chang) that merges

nonlinear elastic constitutive relation of soil (Duncan & Chang model in Chapter 3)

with explicit cyclic behavior (log-log scaled explicit permanent deformation approach

in Chapter 4) is presented. Then, the implementation process of the proposed material

model to a finite element solver is elaborated. The verification of the implementation

of the D&C model is done. Furthermore, a 3D monopile subjected to cyclic horizon-

tal loading is analyzed using the Explicit Cyclic Duncan Chang (ECDC) model and

thereafter the analysis is compared with experimental test results.

5.1 Representation of ECDC

ECDC is a cycle-dependent explicit method with similar representation of the Maxwell

model. It resembles a time-dependent creep behavior notion that in the literature has

already been associated with permanent deformation accumulation characteristics of

soil, such as the densification model [73, 21] and accumulation model [74].

To implement ECDC into ANSYS Usermat as subroutine, its constitutive relation

needs to be written in incremental stress form. Thus, the following equation presents

the fundamental representation of ECDC:

dσn+1 = C∆qn : (dεn+1 − dεnp ) (5.1)

where dσn+1 is the stress increment, C is the material tangent modulus, dεn+1 is

the strain increment and dεnp is the explicit plastic strain increment in the explicit
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stage. During the monotonic loading stage, dεnp is zero and C is deviatoric stress (∆q)

dependent (details in Chapter 3). In the explicit step, explicit plastic strain increment

(dεnp ) becomes non-zero and calculated explicitly with εp = a1N
a2 (details in Chapter

4). During explicit calculation (cyclic stage), dσ becomes zero; thus, strain increment

for this step equals the explicit plastic strain increment (dεnp = dεn+1).

5.1.1 Monotonic Loading - First Cycle

As illustrated in the deviatoric stress to strain plot in Figure 5.1, a soil sample in

triaxial text device is monotonically loaded in 15 stress increments. Subsequently,

one unloading step completes the first cycle. Soil response for loading is nonlinear,

whereas its response to unloading is linear as D&C. This loading and unloading con-

stitutes the first cycle and it is an implicit step that σ-ε constitutive relation is utilized.
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Figure 5.1: Stress-strain curve of monotonic and cyclic loading process

Furthermore, the rheological device of ECDC in the first cycle is provided in Figure

5.2. It has a nonlinear spring and a frictional slip device to yield permanent strain

in the monotonically loaded first cycle (slip device is utilized to represent permanent

strain for illustrative purpose, in this case it is not related to general plasticity theory).

For this stage, the switch is off; the dashpot is not connected to the system. Thus,

it does not contribute to the accumulation of the permanent strain. The rheological

device is monotonically loaded (up to q) and unloaded (to 0), which produces the
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permanent strain of the first cycle on the slip device corresponds to parameter a1 in

Equation 4.3.

Slip Spring Dashpot
Switch

qq

Figure 5.2: Monotonic loading stage

5.1.2 Explicit Step - Rest of the Cyclic Loading

After the first cycle is completed, the rest of the cycles are explicitly calculated in

order to limit error accumulation and simplify the required computational process. In

Figure 5.3, the switch is on; the dashpot is active. It is cycle-dependent as distinct

from a standard dashpot which is time-dependent. Constant stress is applied to the

rheological device; therefore, strain in spring and slip is identical as in the monotonic

loading/first cycle. The dashpot delivers permanent strain for N − 1 cycles with

respect to εp,N−1 = a1(N − 1)a2 function. a1 is determined from the first cycle, a2

is detected from cyclic triaxial tests (details in Section 5.2). Overall, the cumulative

permanent strain from the system can be estimated with parameters obtained. This

explicit step is also called "accumulation" in the literature [3].

Slip Spring Dashpot
Switch

qq

Figure 5.3: Cyclic loading stage
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5.1.3 Reloading

If the objective of the analysis is to detect total strain (permanent strain + elastic

strain), an additional reloading step is required. It uses D&C’s linear reloading mod-

ulus which is identical to unloading modulus (if qmax in reloading exceeds qmax in

the first cycle, stress-dependent nonlinear modulus of D&C should be utilized). The

reloading step, similar to unloading of the first cycle, is linear elastic analysis as men-

tioned in Chapter 3. Elastic strain (called resilient strain in geomechanics) is calcu-

lated and added to the previously found plastic strain to acquire total strain. Moreover,

the reloading stage provides a more stable system following to explicit step. In Fig-

ure 5.4, the first cycle, the explicit step of cyclic loading, and the reloading step are

illustrated distinctly.
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Figure 5.4: Details of all loading steps

Gravity loading (for initial state of soil), D&C loading, D&C unloading, explicit stage

and D&C reloading steps are specified by "load step number" (ldstep parameter) both

in the input file of ANSYS and Usermat.

It is worthwhile to mention that an advantage of ECDC over other explicit models

is that it does not require additional plastic yield surface control. In particular sit-

uations, certain soil elements might have stress states which lie in outside of yield

surface which is not possible in terms of plasticity theory. This situation necessi-

tates additional plastic strain calculation (different than explicit step) as some studies
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have accomplished [3]. On the other hand, D&C that is utilized in loading-unloading

and reloading stages innately includes plasticity control by virtue of its algorithm

discussed in Chapter 3.

Moreover, in contrast to some hypoplastic-explicit methods, the first cycle is sufficient

for ECDC. Since the deformation in the explicit step can be readily estimated directly

after the first cycle. In certain complex systems that are solved using the finite element

method, interfering with the explicit step might lead to undesirable outcomes [3].

Both monotonic loading at the first cycle and reloading stage at the last cycle are

sufficient to redistribute stress as priori and posteriori steps of explicit step in ECDC.

5.2 Determination of Explicit Parameters

In this section, as an example of the determination of explicit parameters, ECDC

related parameters of Berlin sand [43] are calculated. It is poorly graded, round-

shaped sand with ρd,min = 1.52 g/cm3, ρd,max = 1.88 g/cm3, ρs = 2.65 g/cm3,

Cu = 2.9, wopt = 9.5 % and ρopt = 1.79 g/cm3. In addition, Duncan & Chang

parameters are given in Table 5.1. Moreover, these parameters are utilized during the

monopile calculation later in this chapter.

Table 5.1: D&C parameter of Berlin sand

Relative Density φ Rf K Kur n c

77 % 40.4 0.90 1398.5 1853.5 0.875 0

Cyclic triaxial test is conducted with two different cyclic load ratios (X) which is the

ratio of cyclic deviatoric stress (q) to static deviatoric stress at failure ((σ1 − σ3)f )

which can be calculated with Mohr-Coulomb yield criterion with Equation 3.6. Both

X = 0.58 and X = 0.37 tests have equal σ3 = 100 kN/m2 confining pressure.

X = 0.58 corresponds to ∆q = 237 kPa, whilst X = 0.37 has ∆q = 153 kPa devi-

atoric stress amplitude. "Cumulative permanent deformation" vs. applied "load cycle

number" results of cyclic triaxial test with different cyclic load ratio are provided in

Figure 5.5. Moreover, a simple cyclic triaxial test scheme is also illustrated in Figure

5.6. In those figures, q is deviatoric stress (σ1 − σ3) and ∆q represents absolute load
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amplitude (qmax− qmin). Lastly, qmax is deviatoric stress at the crest of the load cycle

whereas qmin is at the trough of the load cycle.
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Figure 5.5: Cyclic triaxial test results with different ∆q

σ3

q

σ3

q

σ3 σ3

Figure 5.6: Cyclic triaxial test scheme

5.2.1 Determination of Intercept Coefficient

To determine the corresponding value of a1, it is necessary to run the complete first

cycle implicitly. As previously mentioned in Chapter 3, nonlinear inelastic constitu-
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tive relation of D&C is implemented. Since the D&C parameters already detected

in Table 5.1, the static triaxial unit model with 1x1x1 m dimensions is analyzed in

ANSYS by calling user modified Usermat which has D&C loading and unloading

algorithm. In Figure 5.7, details of the first cycle for ∆q = 237 kPa is demonstrated.

Loading is divided into 15 increments to exhibit nonlinearity of stress dependent mod-

ulus. After that, soil is unloaded with one step since it has linear tangent modulus.

The strain that remains when the analysis is concluded is permanent strain for the first

cycle εp,N=1, also known as parameter a1.
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Figure 5.7: First cycle of ∆q = 237 kPa

Cumulative permanent deformations in the major axis for ∆q = 237 kPa and ∆q =

153 kPa are presented in Figures 5.8 and 5.9, respectively.

5.2.2 Determination of Slope Coefficient

After determining a1, parameter a2 is calculated by nonlinear regression with the

least-squares method. In contrast to a1 which is stress-dependent parameter, a2 is

non-stress dependent which is constant and unique to soil for same moisture content

as explained in Section 4.3.1.2. a2 is obtained as 0.310 for analysis that is conducted

on Berlin sand with same water content in the following sections [43]. Figures 5.10

and 5.11 contain results of a2 from cyclic triaxial tests for ∆q = 237 kPa and ∆q =
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 -.002839 -.002208 -.001577 -.946E-03 0

Uz

Figure 5.8: Displacement at the end of the first cycle, ∆q = 237 kPa

Uz

 -.001206 -.938E-03 -.670E-03 -.402E-03 0

Figure 5.9: Displacement at the end of the first cycle, ∆q = 153 kPa

153 kPa.

Interpreted parameters of cyclic loading analysis are presented in Table 5.2

50



0 10000 20000 30000 40000 50000
N

0

2

4

6

8

C
um

ul
at

iv
e 

pl
as

tic
 st

ra
in

, 
p,

N
 (%

)

1N 2 : 1 = 0.283, 2 = 0.310
Cyclic triaxial test, R 2 = 0.890

Figure 5.10: Nonlinear regression of cyclic triaxial test data for ∆q = 237 kPa
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Figure 5.11: Nonlinear regression of cyclic triaxial test data for ∆q = 153 kPa

Table 5.2: Cyclic triaxial test results

a1N
a2

a1 a2

X = 0.37 0.120 0.317

X = 0.58 0.283 0.310
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5.3 ANSYS - Usermat Implementation

In this study, a unique material model is proposed. To test this constitutive relation,

the continuum body of soil domain is solved using the Finite Element Method. Es-

pecially for 3D geometry, writing code for meshing the body and solving boundary

value problem with the finite element solver from scratch are arduous tasks. ANSYS

is a powerful FEM solver with pre- and post-processing capabilities through the AN-

SYS parametric design language (APDL), which is the input language of ANSYS

with the ability of parametric geometry design, meshing, storing data and control-

ling analysis steps [75]. Moreover, it has an open structure that permits the user to

implement customized subroutines and to link those subroutines back to the ANSYS

[76]. Thereby, a new material model or unique element type written by the user in

C or Fortran can be implemented through ANSYS. This feature is called the user-

programmable features (UPFs), and "usermat.f" is the subroutine file that contains

material behavior. For this study, we have written our constitutive relation into User-

mat file.

During the solution stage, Usermat which establishes the σ-ε relation is called for

each material integration point of elements [76]. ANSYS provides stress, strain, state

variables, and strain increment to the Usermat for every time step. After that, Usermat

updates stress, state variables, and the material Jacobian matrix according to consti-

tutive relation that the user-specified. A simple scheme of how Usermat runs under

ANSYS is illustrated in Figure 5.12. Those variables are categorized as input, output,

and input-output arguments with regards to its order in updating scheme and the vari-

able parameters represent stress, strain, strain increment, state variable, and stiffness

matrix are given in parentheses [76].

• Input arguments:

Strain (Strain) represents true logarithmic strain (ε) at time step n.

Strain increment (dstrain) is current increment of dε.

• Input-output arguments:

Stress (stress) assesses Cauchy stress (σ) both at time n and n+ 1.
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State variable (statev) is provided by user through input file of APDL with

command TB, STATE at time step n. In Usermat, this parameter can be updated

and stored for further usage at time step n+ 1.

• Output arguments:

Material Jacobian matrix (dsdePl) is the stiffness matrix with incremental

stress and strain notation (dσij/dεij). ANSYS requires it to be updated for

nonlinear analysis.

Usermat

ANSYS

Stress (σn)
Strain (εn)

Strain increment (dε)
State variables

Stress (σn+1)
Stiffness matrix (Cn+1)

State variables

n

n+1

Figure 5.12: ANSYS-Usermat working scheme

Overall, the user-defined Usermat file based on Box 2 algorithm is created to imple-

ment the ECDC material model with respect to above-mentioned principles of UPFs.

σ−ε constitutive relation of ECDC is tested and debugged for a single element to pre-

pare for full-scale 3D analysis. Then, this Usermat file is linked to ANSYS. For finite

element discretization, the inherently available 3D, 8-node solid hexahedral element

of ANSYS (SOLID185) is employed.

Note that in this study, the index sorting order of stress and strain matrices are iden-

tical with ANSYS’s notation which is [11,22,33,12,23,13] whereas ABAQUS, is an-

other FEM solver software, uses [11,22,33,12,13,23] indices sorting. Moreover, as

ANSYS states in its help manual [76] that it uses the Voigt notation. However, when
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the exemplary Usermat.f code provided by ANSYS is investigated, it is evident that

ANSYS internally calculates 2ε12, 2ε23, 2ε31 as ε12, ε23, ε31, respectively. Therefore,

there is no further need to multiply ε12 by 2.

Box 2: ECDC algorithm

1. Calculate the stiffness matrix of each hexahedral element of meshed

body.

ke =
∫
Be B

T [C]B dV ([C] is provided in Usermat.f file)

2. Construct global stiffness matrix kglobal and compute matrix inversion

k−1
global.

3. Calculate nodal displacements de by

de = k−1
global ∆f (in which ∆f is load increment)

4. Compose strain field matrix.

ε = Bde

5. Check the loading type:

(a) If it is a cyclic loading stage:

i. Calculate permanent strain increment dεp.

dεp = a1N
a2

ii. Compute contribution of permanent strain increment as return

mapping algorithms.

dσp = −C : dεp

iii. Calculate stress matrix in Voigt notation on every Gauss inte-

gration point.

σn+1 = σn + C : (dεn+1 − dεnp )

where σn+1 − σn = dσn+1.

(b) If it is a monotonic loading (loading, unloading or reloading):

i. Calculate stress matrix in Voigt notation on every Gauss inte-

gration point.

σn+1 = σn + C : dε (This step takes place in Usermat.f)

where σn+1 − σn = dσ equality holds.
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5.3.1 Verification of Linear Elasticity Algorithm in D&C

The initial step of D&C (1970) is isotropic linear elastic as in Eq. 3.11 stress level is

zero in the first step. To verify our model, the ANSYS Built-in linear elastic model

is compared with Usermat.f, which contains our D&C algorithm written in Fortran

programming language. Figure 5.13 is the nodal solution of z-direction displacement

of one element under gravity loading solved by Usermat.f and ANSYS Built-in model

side by side. SOLID186, which is a 3-D 20-node structural solid element, is utilized

as element type. Dimensions of these cubes are 1x1x1 m with 1 m3 volume. For

default ANSYS linear isotropic elastic behavior the "MP, EX" and "MP, NUXY"

commands are triggered with a value of E = 44 ·107 Pa and ν = 0.3, respectively. To

induce Usermat.f, the "TB, USER" command is employed with required parameters

for linear elastic algorithm in Usermat.f. For both of these models, gravity load is

provided with the "ACEL" command as g = 9.81 m/s2 and density of material is

given with the "MP, DENS" command as γ = 2000 kg/m3. Lastly, nodes where

z = 0 are fixed with zero displacement for x, y, and z directions.

-.203E-04
-.180E-04

-.158E-04
-.135E-04

-.113E-04
-.902E-05

-.676E-05
-.451E-05

-.225E-05
0

ANSYS Built-inUsermat.fz

Figure 5.13: Linear elastic comparison of Usermat.f vs. ANSYS built-in model for

displacement in the z-direction
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Results are compared in x, y, z directions, and displacement of these axes have equal

values for both models. Note that direct a comparison of Usermat.f and the ANSYS

built-in linear elastic model does not always deliver reliable results since ANSYS

tends to solve Usermat.f with a nonlinear solver. For complex geometries, differences

in results may occur. Lastly, to demonstrate the correctness of the outcome:

mg = 2000 · 1 · 9.81 = 19620 N, 19620/2 = 9810 N

19620 N is the force due to self-weight of one element calculated by multiplying

γ = 2000 kg/m3, V = 1m3, and g = 9.81 m/s2. 10 of the 20 nodes are fixed in the

z-direction, so the others move with the nodal forces from gravitational acceleration.

Thus, 19620 N is divided by two to estimate total force on the top four nodes of the

element.

A = 1 m2, σ = 9810 Pa,
σ

E
=

9810

44 · 107
= 0.223 · 10−4

9810 N is the total force at the top 10 nodes and area A is 1 m2. So, strain in the

z-direction can be estimated as 0.223 ·10−4 which is close to the result in Figure 5.13.

5.3.2 Verification of the Nonlinear Algorithm in D&C

The nonlinearity of the D&C model is based on a stress-dependent elastic modulus

that is updated in every increment (step) of solution, as illustrated in Figure 3.1. The

changed elastic modulus alters the stiffness matrix (also known as the material Jaco-

bian matrix). For instance, at the beginning of the first step, stress level (S) is zero

(before the loading). Consequently, the elastic modulus (Et) is equal to initial tangent

modulus (Ei) (Equation 3.11). By increasing loading, σ1 becomes larger than σ3 that

leads to a rise in stress level which lowers the elastic modulus. This approach can also

be called multilinear hardening in regard to the continuously varying modulus [77].

However, in the literature, it is postulated that if a model has a systematic procedure to

update modulus with stress increment, it is preferred to call it hyperbolic rather than

multilinear [33]. Nonlinearity of curve is produced by a sequence of straight lines.
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Those pieces are generated with tangent modulus values that are assigned to every

element at the initiation of each new increment of loading [10]. Thus, in order to

achieve a smooth nonlinear stress-strain curve, applied loading to triaxial test sample

or complex system needs to be divided into a relatively large number of steps.

At this point, it should be noted that elastic modulus must have a positive value;

otherwise, the program would crash during finite element analysis which cannot take

zero or negative values. As a consequence, it is not possible to model the behavior

of the soil after the peak point of deviatoric stress with D&C since it would require

negative values of tangent modulus. For the purpose of verifying our algorithm, the

finite element solution is compared with the experimental triaxial test results in [10].

Parameters of the sand used are given in Table 5.3. As the relative density of the

soil changes, all parameters vary accordingly. Triaxial tests are carried out with two

different relative densities, which are 100 % and 38 %, called dense and loose sand,

respectively. These parameters in Table 5.3 differ with respect to the relative density

of soil.

Table 5.3: Loose and dense sand parameters (Duncan & Chang 1970)

Relative Density φ Rf K Kur n c

38 % (Loose sand) 30.4 0.90 295 1090 0.65 0

100 % (Dense sand) 36.5 0.91 2000 2120 0.54 0

Tests are conducted at 1, 3, and 5 kgf/cm2 constant confining pressure σ3 with in-

creasing σ1 up to Mohr–Coulomb yield strength which varies with related parameters

and confining pressures (Equation 3.6). Right above the yield strength, the behavior

of soil can be assumed as perfectly plastic.

Triaxial test is taken into consideration as a unit test that describes the constitutive

relation of the entire specimen within one element [78]. Therefore, we meshed one

finite element with dimension of 1x1x1 m to simulate the triaxial test. It is quarterly

modeled owing to symmetry and the element is constrained as illustrated in Figure

5.14.

As the first step, gravity loading is employed with initial tangent modulus. It is simple
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Figure 5.14: Modeling triaxial test

linear elastic analysis. During the following steps, σ1 is increased in 40 increments

and σ3 is held constant. Stress in the z and x-directions, displacement and strain

results of analysis are obtained for Node 7 which is a non-constrained node demon-

strated in Figure 5.14.

Outcomes of simulations and triaxial tests are compared in Figure 5.15 and Figure

5.16. Finite element analysis is represented as "Usermat.f", whereas laboratory tri-

axial tests by Duncan & Chang (1970) are labeled "D&C (1970)". The y-axis is the

deviatoric stress (kgf/cm2), x-axis is the axial strain. At total of six tests are exhib-

ited, three tests for loose sand and three tests for dense soil at constant σ3 of 1, 3, and

5 kgf/cm2.

The finite element solution agrees well with the triaxial test results both for the dense

and the loose sand. It is also noticed that comparison indicates a better fit for dense

soil, and the results are acceptable for loose soil. Not surprisingly, the literature shows

a considerable inclination toward this method. Figure 5.15 and Figure 5.16 represent

verification of the code for the monotonic loading stage. It should be noted that

Usermat.f is capable of calculating the unloading and reloading stages. Moreover,

shape of curves are well aligned with triaxial tests. However, comparison of those

cases are not illustrated since those analysis are simple linear behavior that can also

be calculated easily by hand.
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Figure 5.15: ANSYS Usermat.f simulation vs. D&C (1970) triaxial test (loose sand)

5.4 Analysis of A Cyclic Horizontally Loaded Monopile

In this section, the ECDC model is utilized to solve 3D problem of a horizontally

cyclically loaded monopile embedded in Berlin sand with a relative density of 0.77.

The monopile has diameter of d = 0.14 m, a total length of l = 3.02 m (2.41 m is

submerged in fully saturated sand), and a pile thickness of tp = 0.004 m.

The steel pile is modeled as linear elastic with E = 2.1 ·1011 N/m2 and ν = 0.3. The

soil is meshed with 3D 8-node hexahedral solid elements by assigning ECDC as the

material model. High-order 3D 20-node solid elements do not have a critical impact

on the results in our case. Since 8-node element type requires less computational

resources, it is preferred over the high-order element type. Similarly, utilizing an

element type with a linear shape function over a quadratic shape function to solve

plain strain boundary condition problem with the explicit hypoplastic method reveals

that linear shape function is adequate [3, 74, 79]. Furthermore, interaction between
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Figure 5.16: ANSYS Usermat.f simulation vs. D&C (1970) triaxial test (dense sand)

soil and pile is modeled with 3D, 8-node surface to surface contact elements. Friction

angle is taken as δs = 21°.

5.4.1 Verification of Constant Load Amplitude

A horizontal load of 4.0 kN is applied at the top of monopile for 15000 cycles, with

a period of 6.3 seconds. Additionally, a static 5.0 kN force is applied vertically to

stabilize the system. The design of the model and loading scheme are illustrated in

Figure 5.17, test details are shown in 5.18.

As an initial state, the weight of soil is applied by gravity load in which it is analyzed

with the linear elastic constitutive relation. In this regard, the coefficient of lateral

earth pressure at rest (k0 = 1− sinφ) is provided through Poisson’s ratio as indicated
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Figure 5.17: Dimension of monopile & loading scheme

in Equation 5.2 [43].

ν =
k0

k0 + 1
(5.2)

By taking advantage of symmetrical geometry, the half model is meshed, shown in

Figure 5.19. Since the cyclic lateral force is applied in the x-direction, the result of

the analysis is plotted for x-component of displacement in Figure 5.20.

Furthermore, the outcome of ECDC is compared with test by Tasan (2011), and meth-

ods of API (2000), and Long & Vanneste (1994) [43, 80, 81], in Figure 5.21. API

(2000) and Long & Vanneste (1994) state their model based on the p-y method. The

p-y method is the most prevalent approach to numerically analyze the piles under the

lateral loading, and it utilizes the Beam on Nonlinear Winkler Foundation (BNWF)

approach to model the soil-pile interaction [82, 83].

The graph in Figure 5.21 displays the plot of head displacement in x-direction nor-

malized with the pile diameter to the number of loading cycles. Comparison with test

indicates ECDC provides improved prediction over these methods for constant am-

plitude of cyclic loads. Moreover, it over-estimates the test result which is preferable

over the under-estimated predictions of API (2000) and Long & Vanneste (1994). Fur-

61



 0.40 m

 0.80 m

 1.20 m

 2.20 m

 3.65 m

-0.05 m
 0.06 m

 0.31 m
 0.56 m

 1.06 m

 1.31 m

  -0.79 m

1.65 m1.65 m
3.30 m 0.85 m0.85 m
5.00 m

Strain Gauges

LVDT

 ±0.0 m

0.1 m 0.14 m0.1 m

 0.81 m

  -0.61 m

 2.41 m

x

z
φ

Dr = 0.77

tP= 4×10-3 m

Figure 5.18: Test details of Tasan [43]

thermore, the p-y method of API (2000) and Long & Vanneste (1994) was originally

proposed to analyze the pile under monotonic lateral loading. API (2000) achieves

the effects of the cyclic loading by a coefficient which reduces the bearing capacity

of soil, yet it is independent of the number of load cycles. On the other hand, Long

& Vanneste (1994) adjusts the static p-y curve to embody the cyclic loading effect

by decreasing soil reaction modulus [81]. The reduction factor is calculated with the
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Figure 5.19: 3D meshed model of design

number of load cycles. Nevertheless, this approach works better up to 50 cycles of

load [81]. On the contrary, ECDC is a suitable method for both low and high number

of loading cycles.

It is important to note that there is no pore-water pressure development in test by

Tasan due to its design and loading properties [43]. Excess pore-water pressure may

deviates prediction ECDC.

5.4.2 Verification of Varying Load Amplitude

The ECDC model also has the ability to predict deformation caused by cyclic load

with varying amplitudes. It utilizes a strain-hardening method to estimates cumula-

tive permanent deformation which is mention in section 4.1.2.2. Recall that in the

previous section, a repeated loading Fmax = 4.0 kN was applied to a monopile with

15000 cycles. In this section, subsequent to 15000 cycles of Fmax1 = 4.0 kN , 15000

cycles of Fmax2 = 6.2 kN and 15000 cycles of Fmax3 = 5.0 kN are applied to the

monopile, respectively.
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Figure 5.20: x-direction displacement after 15000 cycles

In this regard, the finite element solution using ECDC is presented in Figure 5.22.

It provides an improved prediction of the monopile head shift in case of varying

load amplitude. For zone 1 (0-15000 cycles, Fmax = 4.0 kN ), ECDC slightly over-
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Figure 5.21: Monopile under constant amplitude load

estimates deformations at the end of that zones by 9% whereas for zone 2 (15000-

30000 cycles, Fmax2 = 6.2 kN ) and zone 3 (30000-45000 cycles, Fmax3 = 5.0 kN ) it

under-estimates deformations. After about 11000 cycles, the deformation estimation

of the ECDC intersects with the test result in zone 1. In zone 2, horizontal cyclic loads

are higher than the previous zone, and the prediction of ECDC is getting closer across

the zone. Zone 3 has a lower horizontal cyclic load than zone 2. The prediction in

zone 3 in which deformation estimation does not intersect, under-performs. Overall,

the output of ECDC is well aligned with test data throughout a total of 30000 cycles

of loading, yet it provides shifted prediction when loading amplitude is decreased.
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CHAPTER 6

CONCLUSIONS

6.1 Concluding Remarks

This thesis investigated soil behavior under both monotonic and cyclic loading. It

provides a simplified approach to calculate permanent deformation of soil from initial

state, which is gravitational loading, to final stage, which is the high number of cyclic

loading using finite element method. The following can be concluded:

• The outcomes of the monopile analysis indicate that ECDC offers an enhanced

prediction of displacement over other methods mentioned in the related section.

• In addition, it provides deformation prediction in the case of varying cyclic load

amplitude with strain-hardening method.

• The required parameters for analysis are readily obtainable from several static

triaxial and cyclic triaxial tests. ECDC presents a model that involves only

two different types of laboratory tests and it requires fewer parameters that are

easily derivable to apply for related designs. Moreover, ECDC does not require

additional plastic yield surface control like other explicit methods.

• The proposed model can be performed on structures with 3D complex design.

It is capable of being implemented not only on a monopile but also to unbound

granular materials (UGM) layer of highway pavement or any other case of gran-

ular materials subjected to repeated loading.

• Furthermore, another significant advantage of this model is that permanent de-

formation caused by cyclic loading is computed by explicit approach; thus,
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there is no error accumulation due to high number of load cycles. For instance,

computational resource and analysis time are equal whether the soil is subjected

to a hundred loading cycles or a million cycles.

6.2 Future Perspectives

Beyond the verification process of this study, ECDC can be verified by further exper-

imental tests. In this work, analysis results are compared with experimental tests on

poorly graded Berlin sand. Further experimentation on cohesive soil types or well-

graded sand can be modeled and verified with ECDC.

One of the main achievements of this model is that it can simulate 3D complex design.

Although it has the capacity to calculate the effects of loading with varying directions,

only the effects of horizontal load in the x-direction are calculated and then, the results

are verified with experimental tests. Cyclic horizontal loading in different directions

or cyclic loading with oblique angle can be tested and verified with the proposed

model. Moreover, time-hardening method can be implemented and compared with

strain-hardening method in the case of varying cyclic load amplitude. In addition to

the mentioned possibilities, analysis with different relative density layers and effects

of soil-structure interaction can be investigated in depth.
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