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Industrial Engineering, METU

Assist. Prof. Dr. Sakine Batun
Industrial Engineering, METU

Assist. Prof. Dr. Diclehan Tezcaner Öztürk
Industrial Engineering, Hacettepe University

Date: 21.07.2020



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Nazlı Dolu Hastürk

Signature :

iv



ABSTRACT

ENERGY EFFICIENT MULTI-PLACE ROBOT RENDEZVOUS PROBLEM
WITH CAMPAIGN TIME RESTRICTIONS

Dolu Hastürk, Nazlı
M.S., Department of Operational Research

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

July 2020, 73 pages

We study the energy efficient multi-place robot rendezvous problem. In this problem,

we aim to find a set of rendezvous places where a tanker robot meets with mobile

worker robots for a recharging task by preserving a meeting order. The problem is

examined under two different objective functions. The first objective function is to

minimize the total time spent, i.e., campaign time to recharge all the robots. The sec-

ond objective function is to minimize the total energy consumption of all the robots

by taking a predetermined campaign time as a restriction. The energy consumption

functions of both the mobile worker robots and the tanker robot used in this study are

nonlinear and distances between locations are calculated by the Euclidean distances.

This problem is NP-hard when we aim to find the optimal rendezvous places and

the optimal meeting order simultaneously. In our solution approach, we first fix the

meeting order and determine the optimal rendezvous places based on a given meeting

order. To do so, we provide a second order cone programming formulation. Then,

we utilize improvement heuristics to find a better meeting order to improve the objec-

tive function value. Mainly we work on 2-opt and 3-opt edge exchange improvement

heuristics as well as their combination to search for a better meeting order. Further-
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more, we implement speed-up techniques to decrease the solution times of the im-

provement heuristics. Finally, extensive computational experiments are conducted to

compare the suggested improvement heuristic algorithms and speed-up techniques.

Keywords: Energy Efficiency, Second Order Cone Programming, Mobile Robots,

Rendezvous Problem
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ÖZ

ENERJİ VERİMLİLİĞİ ESASLI ZAMAN KISITLI VE ÇOK KONUMLU
ROBOT BULUŞMA PROBLEMİ

Dolu Hastürk, Nazlı
Yüksek Lisans, Yöneylem Araştırması Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Kemal Tural

Temmuz 2020 , 73 sayfa

Bu çalışmada enerji verimliliğine dayalı çok konumlu robot buluşma problemi üze-

rinde durulmuştur. Tanker robotun gezici işçi robotları şarj etmek üzere buluştuğu ve

bu robotlarla buluşma sırasını koruduğu varsayılarak optimal buluşma konumlarından

oluşan kümenin bulunması amaçlandı. Problem için iki farklı amaç fonksiyonu tanım-

landı. Birincisi, harcanan toplam zamanı en azlamak ve ikincisi ise harcanan toplam

enerji tüketimini zaman kısıtı doğrultusunda en azlamak olarak tanımlandı. Bu prob-

lemde hem gezici işçi robotların hem de tanker robotun enerji tüketimini hesaplamak

için doğrusal olmayan fonksiyonlar kullanılmıştır. Ayrıca iki nokta arasındaki uzaklık

ölçütü olarak Öklid uzaklığı kullanılmıştır. Problem optimal buluşma konumlarının

ve optimal buluşma sırasının aynı anda bulunması olarak düşünüldüğünde NP-Zor

(NP-hard) bir problemdir. Biz bu problemi iki bölümde inceledik. Birinci bölümde

kararlaştırılan bir buluşma sırasına göre optimal buluşma konumlarının bulunması,

ikinci bölümde ise daha iyi bir buluşma sırasının bulunması üzerine çalışıldı. Birinci

bölüm için ikinci dereceden konik programlama formülasyonu önerildi. İkinci bölüm

için ise 2-opt ve 3-opt sezgisel kenar değişimi algoritmaları ve bu iki algoritmanın
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kombinasyonu kullanıldı. Ek olarak çözüm zamanlarını geliştirmek için hızlandırma

teknikleri uygulandı. Son olarak bu algoritmalar kapsamlı hesaplama çalışmaları doğ-

rultusunda kıyaslandı.

Anahtar Kelimeler: Enerji Verimliliği, İkinci Dereceden Konik Programlama, Gezici

Robotlar, Buluşma Problemi
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CHAPTER 1

INTRODUCTION

Robotics is a growing field in nowadays world. It is a combination of many engineer-

ing and science disciplines such as electrical and electronics, mechanical engineering,

and computer sciences. Robotics is mostly used in industrial manufacturing as robot

arms and robotic manipulators. According to International Federation of Robotics

(IFR), industrial robotics market is valued at $ 16.5 billion [1]. In an assembly line,

a robot arm is able to conduct repetitive work at high speed and high precision, and

in the electronics industry, a robotic manipulator is able to place a component with

extremely high precision so that a computer can be manufactured. However, the most

significant inability of these industrial robots is the fact that they cannot move [2]. To

overcome this inability, mobile robots are created. A mobile robot can travel inside

the manufacturing plant. Mobile robots can be utilized alongside humans. Further-

more, when a mobile robot is also autonomous, it can work in hostile or hazardous

environments where humans cannot travel through [3].

Developments in autonomous mobile robotics prove that there is a wide range of

application areas for autonomous mobile robots. To be more specific, mobile robots

can operate in the following missions:

• border security [4],

• military missions (battlefield surveillance, payload delivery) [5], [6],

• forest fires or disaster-hit areas (searching for survivors) [7], [8],

• oil spill monitoring [9],

• wild-life population monitoring [10].
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In these examples, most of the time, a group of autonomous mobile robots aim to

achieve a mission. In this thesis, we study the energy efficient multi-place robot ren-

dezvous problem (abbreviated as EEMPR), which can also be observed and applied to

these missions. Assume that there are multiple mobile worker robots operating in an

area for a specific purpose. Note that, the term "mobile worker robot" will refer to an

"autonomous mobile robot" along the thesis. In long-term missions, mobile worker

robots are required to be recharged while maintaining the mission. In our study, there

is another type of mobile robot called the tanker robot whose only task is to recharge

the mobile worker robots. Tanker robot meets with mobile worker robots to perform

a recharging task with a meeting order. Tanker robot can meet with mobile worker

robots at different places. These meeting places are called "rendezvous places." We

also allow that tanker robot can meet with more than one mobile worker robot at

the same place. However, the meeting order is always preserved. In other words,

tanker robot should recharge the mobile worker robots with the meeting order even

though more than one mobile worker robot meet at the same rendezvous place. We

assume that each robot has a certain energy level, a known initial and final location.

The tanker robot has sufficient energy and does not require to be recharged during

the mission. Furthermore, each mobile worker robot consumes energy based on a

non-linear energy consumption function. There is a maximum battery recharge level,

i.e., battery capacity, for each mobile worker robot. Also, robots cannot operate more

than a predetermined speed based on their design parameters, but we allow them to

adjust their own speeds.

The main aim of EEMPR is to find the optimal rendezvous places as well as optimal

meeting order simultaneously. The Euclidean Traveling Salesman Problem (TSP),

which is a special case of EEMPR, is known as NP-Hard. Therefore, EEMPR is

also NP-Hard. We analyze EEMPR in two parts. First, we fix the meeting order and

under a given meeting order, we provide a second order cone programming (SOCP)

formulation. Later, we use improvement heuristics to find a better meeting order as

means of the objective function value by solving the SOCP for each improved meet-

ing order. In this context, we utilize the widely used 2-opt and 3-opt improvement

heuristics. The problem is examined under two different objective functions. We first
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study the problem which minimizes the total time spent during the recharging, i.e.,

campaign time (abbreviated as EEMPR-T). Then, we analyze minimizing the total

energy consumption of robots by taking the campaign time as a restriction (abbrevi-

ated as EEMPR-E).

The outline of this thesis is as follows. In Chapter 2, related literature review is

provided. In Chapter 3, the notation is introduced and the problem description is

given for the EEMPR when the meeting order is fixed. In Chapter 4, details of the

solution methods proposed for EEMPR when the meeting order is fixed as well as im-

provement heuristics algorithms for developing a better meeting order are discussed.

In Chapter 5, the computational experiments are provided which compares the al-

gorithms in terms of solution quality and computational time. Finally, Chapter 6

concludes the study with some future research directions.
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CHAPTER 2

LITERATURE REVIEW

The rendezvous problem is first introduced by Alpern in [11]. Later, it is discussed

in detail by Alpern and Gal in [12]. The authors studied how two agents can meet

when they are randomly placed in an area while minimizing the time required to

rendezvous. They examine this problem on lines, circles, and polygons, etc. and

draw some conclusions. In [13], Roy and Dudek study this rendezvous problem by

combining it with the multi-agent robotics. The authors worked on a problem where

two mobile worker robots are exploring an unknown environment and should meet at

a predefined time at a single rendezvous place to share information. Later, Meghjani

and Dudek studied rendezvous problem when more than two mobile worker robots

are exploring an environment that is defined as a random graph [14].

The energy limitation is one of the most significant challenges a mobile robot en-

counters. Although the rendezvous problem is originated by aiming to minimize the

total time spent while achieving rendezvous, another objective, which is minimizing

the energy consumption of the robots is seen in many studies, see [15], [16].

In long-term missions, multiple mobile worker robots operating in an area are re-

quired to be recharged while maintaining the mission. The recharging can be made by

taking the mobile worker robot offline and connecting it to a power unit by a human.

However, this is not always possible when the mobile worker robots are utilized for

hazardous sites where human intervention is impossible. For these cases, Silverman

et al. presented a solution by creating a stationary recharging station to implement

autonomous recharging [17]. This stationary recharging station is modeled so that

the mobile worker robot can dock to the station to recharge. The authors provide

a stationary recharging station design along with a docking station and a docking
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mechanism for the mobile worker robot. Another approach developed to solve the

recharging problem that occurred in long-term missions is provided by Zebrowski et

al. [18]. In this article, the authors proposed creating an exceptional mobile robot

called the tanker robot whose only task is to recharge the mobile worker robots oper-

ating in an area. They provided the design details of the tanker robot in the article.

Overall, the rendezvous problem can be examined in two categories: single place and

multi-place rendezvous. In the single place rendezvous problem, the aim is to find a

single location where all the mobile worker robots meet. Recharging on a stationary

station, maintenance activities, or collection can be the reasons for meeting at a single

rendezvous place. In [16], Zebrowski et al., aim to minimize the energy consumption

of the mobile worker robots while traveling towards the rendezvous place by assum-

ing that the energy consumption of a mobile worker robot is linearly proportional

with the distances they traveled. The authors proposed a heuristic method where each

mobile worker robot iteratively computes where to head based on the initial locations

of the other mobile worker robots. In [19], Lanthier et al. worked on finding a ren-

dezvous place for recharging in a weighted graph, which minimizes the maximum of

the mobile worker robot travel costs. The cost can be interpreted as distance, time

or energy. They proposed a heuristic method for a given meeting order in which a

mobile worker robot uses the locations of its predecessor, successor, and itself to go

towards the single rendezvous place.

In the multi-place rendezvous problem, mobile worker robots meet with each other at

different locations to share information or with a tanker robot to be recharged. In [20],

Litus et al. studied a multi-place rendezvous problem where the mobile worker robots

meet with the tanker robot at different places based on a meeting order. The aim is

to minimize the total cost of travel of the robots where the individual travel costs

are measured by weighted Euclidean distances. They proposed a heuristic algorithm

which should be run by each mobile worker robot individually. The proposed method

is able to find approximate solutions that are close to the global solution.

In this study, we consider EEMPR by utilizing the tanker approach. EEMPR has been

first introduced by Litus et al. in [15]. The authors aim to find the set of rendezvous

places where the mobile worker robots meet with the tanker robot by minimizing the
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energy consumed while traveling towards the rendezvous places. They propose three

methods to find the rendezvous places under a given meeting order. First of all, they

assume a discrete location case where the tanker robot can only meet with the mobile

worker robots at a fixed set of locations with arbitrary travel costs. For this, they

propose a solution method based on recurrence. Second, they consider continuous lo-

cation case and offer two iterative methods, one is based on the Weiszfeld’s algorithm,

and the other is based on the Newton’s algorithm. These methods find approximate

solutions. Also, in the continuous case, they assume that the energy consumption

is calculated based on weighted Euclidean distances traveled. For each algorithm,

computational studies are made by using five mobile worker robots. They also prove

that finding the optimal meeting order is NP-hard and improvement heuristics can be

used to improve the meeting order but no further algorithmic details or computational

studies are given. Our study differentiates from the other studies in the literature in

the following ways. We propose a solution method that can find an optimal set of

rendezvous places for a given meeting order by utilizing a non-linear energy con-

sumption function. Also, robots cannot operate more than a predetermined speed

based on their design parameters, but we allow them to choose their own speeds. We

implement improvement heuristics to find a better meeting order, which improves the

objective function value. In addition, we conduct detailed computational experiments

on these algorithms. Furthermore, in our computational studies, it is realized that

while utilizing improvement heuristics, computational times increase rapidly when

the number of mobile worker robots increases. Hence, for cases where 30 or more

mobile worker robots are used, we provide speed-up algorithms to decrease the solu-

tion times. Moreover, for EEMPR, we utilize two objective functions: to minimize

the total time spent during the mission, i.e., campaign time, and to minimize the total

energy consumption of the robots under a campaign time constraint.
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CHAPTER 3

PROBLEM DESCRIPTION AND NOTATION

In this chapter, we provide the problem description and notation for both versions of

EEMPR when the meeting order is taken as given.

We are given n mobile worker robots working in an area, and the environment is

obstacle free. We consider that the tanker robot is meeting with each mobile worker

robot i ∈ I = {1, 2, . . . , n} based on a given meeting order to perform a recharging

task. The initial and the final locations of the mobile worker robots are known and

indicated by ai and bi, respectively, for i ∈ I = {1, 2, . . . , n}. Also, the initial

and final location of the tanker robot are also known and represented by, aT and bT ,

respectively.

A mobile worker robot starts its movement from its initial location, meets with the

tanker robot at a rendezvous place for recharging and then proceed to its final location.

Tanker robot starts the movement from a known initial location, meets with each

mobile worker robot at rendezvous places based on the meeting order. After meeting

with the mobile worker robot having the last place in the meeting order, it goes to its

final location. Each mobile worker robot has an initial energy level E0
i before starting

its movement for the rendezvous place. In addition, tanker robot has an initial energy

level T0. It is assumed that the tanker robot has sufficient energy and does not require

to be recharged during the mission. Each worker robot has a maximum energy storage

level, i.e., battery capacity, stated with Di. Also, robots cannot operate more than a

predetermined speed based on their design parameters which is represented by vmaxi

and vmaxT for mobile worker robots and the tanker robot, respectively. Furthermore,

robots, i.e., mobile worker robots and the tanker robot, can have different energy

consumption functions and the battery recharge functions. We measure the distance

9



between two locations by the Euclidean distance.

In Figure 3.1, an illustrative example is presented. In Figure 3.1a, mobile worker

robots and the tanker robot are located at their initial locations with a battery sign

showing their initial energy levels. In the battery sign, we have minimum and target

energy levels. We assume that the energy levels of the mobile worker robots cannot

drop under the minimum energy level. Furthermore, when they finalize their move-

ment at their final locations, the remaining energies should be at least at the target

level to continue their operations. Note that, these minimum and target level assump-

tions are not valid for the tanker robot. In the illustrative example, the meeting order

is 2− 1− 3− 4. In Figures 3.1a and 3.1f, the rendezvous places are marked based on

the mobile worker robot number to show with which mobile worker robot the tanker

robot is meeting. For instance, the rendezvous place 1′, 3′ means that mobile worker

robots 1 and 3 are meeting with the tanker robot at the same location. Moreover,

for simplicity, it is assumed that robots return back to their initial locations as their

final locations. In Figure 3.1b, tanker robot meets with mobile worker robot 2 at

rendezvous place 2′. Mobile worker robots 1 and 3 has also moved towards the ren-

dezvous place 1′, 3′, while mobile worker robot 4 is waiting at its initial location. Note

that, all the robots which are moving consumed some energy which can be observed

from the decrease in their remaining energy levels. In Figure 3.1c, mobile worker

robot 2 has been recharged which can be observed from the increase in its remaining

energy level, and moves towards its final location while the tanker robot meets with

mobile worker robots 1 and 3. However, the meeting order should be preserved. So,

In Figure 3.1c, mobile worker robot 1 is recharged while mobile worker robot 3 is

waiting for its turn. Moreover, mobile worker robot 4 has started its movement to-

wards its rendezvous place 4′. In Figure 3.1d, mobile worker robot 2 has reached to

its final location while mobile worker robot 1 is moving towards its final location and

mobile worker robot 3 has been recharged. Also, the mobile worker robot 4 is getting

closer to its rendezvous place 4′. In Figure 3.1e, mobile worker robot 1 has reached

to its final location while mobile worker robot 3 is moving towards its final location.

Moreover, tanker robot has met with mobile worker robot 4. In the end, in Figure

3.1f, robots can be observed in their final locations with their final energy levels.
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Figure 3.1: Illustrative example where the meeting order is 2− 1− 3− 4
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For this study, we utilize the energy consumption function provided by Tokekar et

al. in [21] to calculate the energy consumption of robots. In 3.1, E is the energy

consumption in Joules for a robot which travels d meters with speed v m/s and α, β

and, γ are function parameters.

E = αdv + βd+ γ
d

v
(3.1)
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Figure 3.2: Energy consumption in Joule per meter as a function of the mobile robot

speed

Figure 3.1 shows the energy consumption rate in Joules per meter with respect to

speed in m/s according to Equation 3.1 and obtained by using the parameters as

α = 3, β = 10 and, γ = 5. In Figure 3.2, it can be observed that below 1.291

m/s , energy consumption per unit distance for a robot increases with a decrease

in speed. Furthermore, above 1.291 m/s, an increase in speed increases the energy

consumption per unit distance for a robot. Hence, 1.291 m/s is the optimal speed

in which the energy consumption of a robot is the smallest. We represent function

parameters as αi, βi, γi for mobile worker robots and αT , βT , γT for the tanker robot.

Moreover, the battery recharge function of a mobile worker robot is considered as in

Equation 3.2 in which c indicates the total battery recharging time in seconds where

the battery is recharged up to the energy level Efinal. Eresidual represents the remain-

ing energy right before the recharging activity starts and σ is the function parameter.

We represent function parameter as σi for mobile worker robots.

c = (Efinal − Eresidual)σ (3.2)
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For (EEMPR-E), we have mentioned that there is a campaign time restriction. We

have taken this restriction from the decision maker and store it as tcamp. Also, we

assume that mobile worker robots require some remaining energy when they go to

their final locations. In order to indicate this, we define θi and say that θiDi amount

of energy should be left as a remaining energy level.

Note that, in the following mathematical formulations, some of the parameters of the

mobile worker robots are required to be rearranged. We rename the mobile worker

robots and assume that the meeting order is 1 − 2 − ... − n. For instance, in the

meeting order 2 − 1 − 3 − 4, the mobile worker robot having position 1 in the

meeting order is mobile worker robot 2. So, the initial location a1 should indicate

the initial location of mobile worker robot 2. Therefore, before giving parameters

ai, bi, E
0
i , Di, σi, θi, αi, βi, γi to the mathematical formulation, we rearrange them ac-

cording to the current meeting order.

Given these information, we formulated the mathematical model for our problem.

Parameters and decision variables are summarized as follows:

Parameters:

• αi, βi, γi: energy consumption function parameters of mobile worker robot

having position i in the meeting order

• αT , βT , γT : energy consumption function parameters of the tanker robot

• σi: battery recharge function parameter of mobile worker robot having position

i in the meeting order

• vmaxi : the maximum speed (m/s) with which the mobile worker robot having

position i in the meeting order can function

• vmaxT : the maximum speed (m/s) with which the tanker robot can function

• E0
i : initial energy level of the mobile worker robot having position i in the

meeting order

• Di: the maximum energy storage level, i.e., battery capacity, of mobile worker

robot having position i in the meeting order
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• T0: initial energy level of the tanker robot

• ai: initial location of the mobile worker robot having position i in the meeting

order

• bi: final location of the mobile worker robot having position i in the meeting

order

• aT : initial location of the tanker robot

• bT : final location of the tanker robot

• θi: coefficient to indicate remaining energy level requirement in the final loca-

tion for the mobile worker robot having position i in the meeting order

• tcamp: campaign time that the user wants the rendezvous task to last

Decision variables:

• xi: rendezvous place where the tanker robot meets with the mobile worker

robot having position i in the meeting order

• ti: time spent during the movement of mobile worker robot having position i in

the meeting order from its initial location to its rendezvous place

• tendi : time spent during the movement of mobile worker robot having position i

in the meeting order from rendezvous place to its final location

• ti: time spent during the movement of the tanker robot from rendezvous place

with worker robot having position i − 1 in the meeting order to rendezvous

place with mobile worker robot having meeting order i

• di: distance traveled during the movement of mobile worker robot having posi-

tion i in the meeting order from its initial location to its rendezvous place

• dendi : distance traveled during the movement of mobile worker robot having

position i in the meeting order from rendezvous place to its final location

• di: distance traveled during the movement of the tanker robot from rendezvous

place with mobile worker robot having position i − 1 in the meeting order to
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rendezvous location with mobile worker robot having position i in the meeting

order

• si: start time of the battery recharge mission of mobile worker robot having

position i in the meeting order

• ci: time spent during the battery recharge of mobile worker robot having posi-

tion i in the meeting order

• send: total duration of the rendezvous task, i.e., campaign time

• Em
i : remaining energy level of the mobile worker robot having position i in

the meeting order after its movement from its initial location to the rendezvous

place

• Ef
i : remaining energy level of the mobile worker robot having position i in the

meeting order after its movement from the rendezvous place to its final location

• Emax
i : the energy level of the mobile worker robot having position i in the

meeting order right after recharging

• Ti: remaining energy level of the tanker robot after its movement from ren-

dezvous place with mobile worker robot having position i − 1 in the meeting

order to rendezvous place with mobile worker robot having position i in the

meeting order

According to these, (EEMPR-E) can be mathematically formulated as follows:

minimize
∑
i∈I

(E0
i − Em

i + Emax
i − Ef

i ) + (T0 − Tn+1) (EEMPR-E)

subject to

si ≥ si−1 + ci−1 + ti ∀i ∈ I s0, c0 = 0 (3.3)

si ≥ ti ∀i ∈ I (3.4)

ci ≥ (Emax
i − Em

i )σi ∀i ∈ I (3.5)

di ≥ ‖ai − xi‖ ∀i ∈ I (3.6)

dendi ≥ ‖xi − bi‖ ∀i ∈ I (3.7)

di ≥ ‖xi − xi−1‖ ∀i ∈ I ∪ {n+ 1} (3.8)
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x0 = aT (3.9)

xn+1 = bT (3.10)

E0
i − Em

i ≥ αi
di

2

ti
+ βidi + γiti ∀i ∈ I (3.11)

Emax
i − Ef

i ≥ αi
(dendi )

2

tendi

+ βid
end
i + γit

end
i ∀i ∈ I (3.12)

Ti−1 − Ti ≥ αT
di

2

ti
+ βTdi + γT ti ∀i ∈ I ∪ {n+ 1} (3.13)

Ef
i ≥ θiDi ∀i ∈ I (3.14)

Emax
i ≤ Di ∀i ∈ I (3.15)

Emax
i ≥ Em

i ∀i ∈ I (3.16)

di ≤ tiv
max
i ∀i ∈ I (3.17)

dendi ≤ tendi vmaxi ∀i ∈ I (3.18)

di ≤ tiv
max
T ∀i ∈ I (3.19)

send ≥ si + ci + tendi ∀i ∈ I (3.20)

send ≥ sn + cn + tn+1 (3.21)

si, ci, ti, di, t
end
i , dendi , Em

i , E
f
i , E

max
i ≥ 0 ∀i ∈ I (3.22)

ti, Ti, di ≥ 0 ∀i ∈ I ∪ {n+ 1} (3.23)

send ≥ 0 (3.24)

send ≤ tcamp (3.25)

In the formulation, the objective function minimizes the total energy consumption

of all the mobile worker robots and the tanker robot. The
∑

i∈I(E
0
i − Em

i ) part of

the objective function represents the energy consumption of all the mobile worker

robots while moving from their initial locations to their rendezvous places. The∑
i∈I(E

max
i − Ef

i ) part is for calculating the energy consumptions of mobile worker

robots while going from their rendezvous places towards their final locations. Also,

(T0 − Tn+1) presents the energy consumption of the tanker robot after all its move-

ments since T0 is the initial energy of the tanker robot while Tn+1 is the remaining

energy level in its final location. All these components together represents the objec-

tive function.

Furthermore, constraint 3.3 is to make sure that the recharging task for mobile worker
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robot having position i in meeting order cannot start before the recharging task of its

predecessor is finished and the arrival of the tanker robot to the rendezvous place xi.

Constraint 3.4 ensures the recharging task of mobile worker robot having position i

in meeting order cannot start before it arrives to the rendezvous place xi.

Constraint 3.5 is defined based on the battery recharge function stated in Equation 3.2.

Constraints 3.6, 3.7 and 3.8 represent that the distances are measured by Euclidean

distances. Constraints 3.9 indicates that tanker robot departs from its initial location

and 3.10 shows that it ends its movement at predefined final location.

Constraints 3.11, 3.12 and 3.13 are constructed based on Equation 3.1. For these con-

straints, the equation is adjusted by using v = d/t equality as follows:

E = αd
d

t
+ βd+ γ

d
d
t

Constraint 3.11 represents the energy consumption of the mobile worker robot hav-

ing position i in meeting order when moving towards the rendezvous place while

constraint 3.12 indicates the energy consumption of the mobile worker robot having

position i in meeting order when going from its rendezvous place to its final loca-

tion. Constraint 3.13 indicates the energy consumption of the tanker robot during its

activities.

After recharged, a mobile worker robot is assumed to maintain working in the field

and constraint 3.14 makes sure that it preserves θi times of its maximum energy stor-

age level when it goes to its final location. Constraint 3.15 indicates that after recharg-

ing, a mobile worker robot cannot have an energy level more than its battery capacity.

Also, due to constraint 3.5, constraint 3.16 is required to correctly decide on Emax
i .

According to their design parameters, there is a maximum speed that robots can oper-

ate at. Constraints 3.17, 3.18 are to specify that mobile worker robot having position i

in meeting order cannot move with a speed more than vmaxi m/s while constraint 3.19

indicates this restriction for the tanker robot.

Constraints 3.20 and 3.21 indicate that the campaign time is either bounded with the

time when all the mobile worker robots are recharged and traveled to their final loca-

tions or to the time that the tanker robot is finished recharging the last mobile worker
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robot and traveled to its final location. Furthermore, constraint 3.25 reflects the cam-

paign time restriction where tcamp is the predefined time in which the rendezvous task

should be finalized within.

The minimization of the campaign time objective function, (EEMPR-T), can be for-

mulated as follows by adjusting the mathematical formulation of (EEMPR-E):

minimize send (EEMPR-T)

subject to

3.3− 3.24

Note that, the objective function of the mathematical formulation is changed. Now, it

minimizes the campaign time which is represented by the decision variable send. In

addition, constraint 3.25 is discarded out from the formulation, because while utiliz-

ing (EEMPR-T), we cannot have a campaign time restriction.

Moreover, when minimizing campaign time, if time is sufficient to finalize the ren-

dezvous mission, robots may move slower or faster than the optimal speed which

would cause an increase in the energy consumption value. In this case there may be

lots of alternative optimal solutions. Hence, we can modify the objective function as

follows:

minimize send + ε
∑
i∈I

(E0
i − Em

i + Emax
i − Ef

i ) + (T0 − Tn+1)

In this modification, we add the energy consumption multiplied with an ε value to the

objective function. This may decrease the number of alternative solutions.

In both (EEMPR-E) and (EEMPR-T), we measure the distance between two points

by the Euclidean distance. Also, the energy consumption function defined in Equa-

tion 3.1 is non-linear. Therefore, the problem we described appeared as non-linear.

In order to overcome the non-linearity, we aimed to formulate both versions of the

problem as second order cone programs.

In the next chapter, we first introduce second order cone programming (SOCP), then

we describe an SOCP formulation for (EEMPR-E) and (EEMPR-T). Later, we exam-

ine the 2-opt and 3-opt improvement heuristics to improve the given meeting order.

18



CHAPTER 4

SOLUTION METHODS

4.1 SOCP Formulation

An SOCP problem is a convex optimization problem which has a linear objective

function and some second order cone constraints as well as linear contraints [22].

Mathematically, an SOCP problem is a problem of the following form:

minimize hTx

subject to ‖Afx+ bf‖ ≤ cTf x+ ef , f = 1, 2, . . . ,m (4.1)

where x ∈ IRn is the vector of decision variables, and h ∈ IRn,Af ∈ IRnf×n, bf ∈
IRnf , cf ∈ IRn, ef ∈ IR are the problem parameters. The constraints in 4.1 are called as

the second order cone constraints. SOCP problem can be solved in polynomial time.

The reader is referred to [22] and [23] for more detailed information.

Note that, except the constraints 3.6, 3.7, 3.8 which compute the Euclidean distances

and constraints 3.11, 3.12 and 3.13 which represent energy consumptions, all other

constraints are linear for both (EEMPR-E) and (EEMPR-T). Although constraints

indicating the Euclidean distances are non-linear, they are in the form of 4.1 and hence

are SOCP constraints. Therefore, if we can convert energy consumption constraints

into SOCP constraints, we can end up with an SOCP formulation for both versions of

the problem.

So, we only examine constraints 3.11, 3.12 and 3.13 to show that these can be con-

verted into SOCP constraints. For the conversion we need to introduce new decision

variables. Let us consider constraint 3.11 as an example and split it into two con-

straints with the help of a new variable fi, ∀i ∈ I . Then we will have,

19



(a) fi ≤ E0
i − Em

i − βidi − γiti,

(b) αi di
2

ti
≤ fi, and

(c) fi ≥ 0.

Notice that now (a) and (c) are linear. We need to convert (b) to obtain an SOCP

formulation. (b) is equivalent to

αidi
2 ≤ fiti

and this can be written as ∥∥∥(√αidi
(ti−fi)

2

)∥∥∥ ≤ (ti + fi)

2

which is an SOCP constraint. Hence, we discard constraint 3.11 out and add the

following constraints to the mathematical formulation:

(3.11a) fi ≤ E0
i − Em

i − βidi − γiti ∀i ∈ I

(3.11b)
∥∥∥(√αidi

(ti−fi)

2

)∥∥∥ ≤ (ti+fi)
2

∀i ∈ I

(3.11c) fi ≥ 0 ∀i ∈ I .

Constraints 3.12 and 3.13 can be rewritten in the same manner with the new decision

variables gi and hi, respectively. Therefore, by discarding constraint 3.12 out and

adding the following constraints,

(3.12a) gi ≤ Emax
i − Ef

i − βidendi − γitendi ∀i ∈ I

(3.12b)
∥∥∥∥(√αid

end
i

(tend
i −gi)

2

)∥∥∥∥ ≤ (tend
i +gi)

2
∀i ∈ I

(3.12c) gi ≥ 0 ∀i ∈ I

and, by discarding constraint 3.13 out and adding the following constraints,

(3.13a) hi ≤ Ti−1 − Ti − βTdi − γT ti ∀i ∈ I

(3.13b)
∥∥∥(√αT di

(ti−hi)

2

)∥∥∥ ≤ (ti+hi)
2

∀i ∈ I
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(3.13c) hi ≥ 0 ∀i ∈ I

we end up with an SOCP formulation.

Now, we are able to solve EEMPR by an SOCP formulation for a given meeting order.

If we would like to solve the problem to the optimal, we can implement the following

optimizing procedure in Algorithm 1.

Algorithm 1 Optimizing procedure for EEMPR
1: Initialize a set P by determining all n! meeting orders.

2: Solve the SOCP formulation for each element of P , and store their objective

function values in set Pobj .

3: Find min(Pobj).

4: Return min(Pobj) as the optimal objective function value and its corresponding

meeting order as the optimal meeting order.

This optimizing procedure is still NP-hard. Hence, to be able to find a better meeting

order as means of the objective function value, we utilize improvement heuristics.

4.2 Improvement Heuristics

Improvement heuristics are utilized to search for an enhanced solution. Node inser-

tion, edge insertion, k-opt edge exchange heuristics are some of the traveling sales-

man problem (TSP) improvement heuristics. The reader is referred to [24] for more

information. In this study, we work on TSP 2-opt and 3-opt edge exchange heuris-

tics to improve a meeting order. The idea of using TSP heuristics for EEMPR can

be found in [15] but authors do not provide any algorithmic detail or perform any

computational experiment.

As mentioned before, the meeting order 1 − 2 − 3 − 4 − 5 indicates that the tanker

robot is first meeting with mobile worker robot 1, then 2 so on and so forth. These

meeting orders can represent tours as in TSP if we represent them as a complete tour.

To do so, at the beginning of each meeting order, we add 0 to identify the tanker robot.

Now, we can define a tour for the meeting order 1− 2− 3− 4− 5 as in Figure 4.1a.

Note that, although now we see n+1 many nodes in the representation, there are still
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n many mobile worker robots in the meeting order since we do not count the tanker

robot as a mobile worker robot. Realize that the term "meeting order" is used to show

the meeting sequence of the mobile worker robots while the term "tour" is used when

node 0 is added at the beginning of a meeting order.
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(a) Tour 0-1-2-3-4-5 for order 1-2-3-4-5.
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(b) Reverse tour 0-5-4-3-2-1 for order 1-2-3-4-5.

Figure 4.1: Example tour and reverse tour

In EEMPR, it can be realized that a reverse meeting order would most probably end

up with a different solution as in an asymmetric TSP, see [25]. Therefore, when we

consider improving the meeting orders, we also examine the reverse tour of a current

meeting order. For instance, for the meeting order example in Figure 4.1, SOCP

formulations will also be solved for the reverse tour in Figure 4.1b.

4.2.1 2-opt Edge Exchange Heuristic

In 2-opt edge exchange heuristic, we break two edges of a tour which are not adjacent.

Then we create two new edges to generate a new tour. This creation of the new tour

is called as a 2-opt move. Note that, when two edges are broken, there is precisely

one way to join them to create a legit tour. For instance, when we break edges 0 − 1

and 2 − 3 in the tour illustrated in Figure 4.1a, we can only connect these two edges

as stated in 4.2a to generate a new tour. If we try to connect node 0 to node 3 rather

than node 2, we end up with two sub tours as 0 − 3 − 4 − 5 and 1 − 2 which is not

desired. Also, connecting node 0 to node 1 and node 2 to node 3 would end up with

the initial tour we specified.

In a meeting order having n mobile worker robots, there are in total
(
n+1
2

)
− (n+ 1)
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many 2-opt moves which can end up with legit tours.
(
n+1
2

)
represents the number of

different ways that two edges can be broken. Then we subtract (n + 1) since no two

consecutive edges can be broken. For instance, when we choose 0 − 1 as one of the

edges for 2-opt move, we can only choose edges 2 − 3, 3 − 4 and 4 − 5, see Figure

4.2.
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(a) New tour: 0-2-1-3-4-5
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(b) New tour: 0-3-2-1-4-5
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(c) New tour: 0-4-3-2-1-5

Figure 4.2: The illustrations of the 2-opt moves

In order to implement 2-opt moves, we use the following 2-opt move function stated

in Algorithm 2. The 2-opt move function takes a meeting order and the objective

function value of the SOCP formulation as inputs. Then it checks all
(
n+1
2

)
− (n+1)

many 2-opt moves and their resulting meeting orders. Among these, the function re-

turns back the meeting order which generates the maximum improvement. If there is

no improvement, the function returns back the initial meeting order and the objective

function value which were given as the input. Note that, to solve the SOCP formu-

lation, the function also require parameters of the (EEMPR-E) or (EEMPR-T) as an

input such as initial locations, initial energy levels etc. These are not indicated in

Algorithm 2, but we assume that the required parameters are given to the function as

inputs.
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Algorithm 2 2-opt move function (2opt)
1: Inputs: a meeting order pcurrent and its objective function value objcurrent.

2: Initialize a set P by determining all possible meeting orders of pcurrent by using

2-opt moves. Also, include their reverse orders.

3: Solve the SOCP formulation for each element of P , and store their objective

function values in set Pobj .

4: if min(Pobj) < objcurrent then

5: Find the meeting order, say pneworder, in P whose objective function value

equals min(Pobj).

6: Update pcurrent := pneworder.

7: Update objcurrent := min(Pobj).

8: end if

9: Return pcurrent and objcurrent.

Then, we demonstrate the 2-opt algorithm in Algorithm 3. In this algorithm, the 2-opt

move function is executed with each improving meeting order until no improvement

in the objective function value is observed.

For clarification purposes, a flowchart is provided in Figure 4.3 which represents how

improvement heuristics work by taking 2-opt algorithm as an example.

Decide on the initial 

meeting order

Solve SOCP for this 

meeting order 

Find all different 

new meeting orders 

created by 2-opt 

moves

Solve SOCP for each 

of these new meeting 

orders

Any of these meeting orders 

has a better objective 

function value? 

Continue with the 

best improving 

meeting order

Return the best 

objective function 

value found so far

Terminate

YesYes

No

Figure 4.3: Flowchart for 2-opt algorithm
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Algorithm 3 2-opt algorithm
1: Start with a meeting order pinitial.

2: Solve the SOCP formulation with pinitial and calculate the objective function

value as objinitial.

3: Set pcurrent := pinitial

4: Set objcurrent := objinitial.

5: repeat

6: Call 2-opt move function stated in Algorithm 2 as [pcurrent, objcurrent] :=

2opt(pcurrent, objcurrent)

7: until No improvement is observed.

8: Return pcurrent and objcurrent as the best meeting order found and its objective

function value, respectively.

4.2.2 3-opt Edge Exchange Heuristic

In 3-opt edge exchange heuristic, we break three edges which are not adjacent to each

other. Then we connect them in a way that we generate a new tour. Note that, when

three non-adjacent edges are broken, there are seven different ways to join these edges

to generate a new tour. For example, let us assume we break edges 0 − 1, 2 − 3 and

4−5 in the tour illustrated in 4.1a. We can connect these edges in three different ways

as in Figure 4.4. One can realize that these are actually 2-opt moves. In addition to

these, we can also join them in another four different ways, represented in Figure 4.5

in which all three edges generated are new edges. We will call the latter four different

ways as pure 3-opt moves. Hence, when these three 2-opt moves and four pure 3-opt

moves combined are called 3-opt moves.

Although, we stated that if we want to implement a 3-opt move, no three consecutive

edges can be chosen, when two of the edges are adjacent and the third one is not

adjacent to these two, there is precisely one way to reconnect these edges to generate

a legit tour, see [26]. For instance, in Figure 4.6, we illustrated possible tours when

edge 0 − 1 is chosen along with an adjacent and a non-adjacent edge. We will call

this as 3-opt adjacent move. Hence, from now on the term pure 3-opt moves will also

include 3-opt adjacent moves.
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(a) New tour: 0-2-1-3-4-5
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(b) New tour: 0-3-2-1-4-5
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(c) New tour: 0-4-3-2-1-5

Figure 4.4: The illustrations of the 2-opt moves

In a meeting order having n mobile worker robots, there are in total [
(
n+1
3

)
− (n +

1)− (n+1)(n+1− 4)](4)+ (n+1)(n+1− 4) pure 3-opt moves which can end up

with legit tours.
(
n+1
3

)
represents the number of different ways that three edges can

be broken. Then, we subtract (n+1) since no three consecutive edges can be broken.

In addition, we subtract (n + 1)(n + 1 − 4) since no two edges can be consecutive

as well. As it was stated before, there are four different ways to connect these three

non-adjacent edges, so we multiply this number with four. Moreover, we should also

add 3-opt adjacent moves. In total, there are (n+1)(n+1− 4) ways to choose a two

adjacent and one non-adjacent edge.

Note that, as mentioned before, 3-opt moves composed of 2-opt and pure 3-opt moves.

In order to implement 3-opt moves, we use the following function stated in Algorithm

4. The function takes a meeting order and its objective function value as inputs. Then

it checks all
(
n+1
2

)
− (n + 1) + [

(
n+1
3

)
− (n + 1) − (n + 1)(n + 1 − 4)](4) + (n +

1)(n+1−4) many 3-opt moves and their resulting meeting orders. Among these, the

function returns back the meeting order which generates the maximum improvement.

If there is no improvement, the function returns back the initial meeting order and its
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(a) Tour: 0-4-3-1-2-5
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(b) Tour: 0-2-1-4-3-5
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(c) Tour: 0-3-4-2-1-5
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(d) Tour: 0-3-4-1-2-5

Figure 4.5: The illustrations of pure 3-opt moves

objective function value which were given as an input. Note that, to solve the SOCP

formulation, the functions also require parameters of the (EEMPR-E) or (EEMPR-T)

as an input such as initial locations, initial energy levels etc. These inputs are not

indicated in the Algorithm 4, but we assume that the required parameters are given to

the function as inputs.

Then, we display the 3-opt algorithm in Algorithm 5. In this algorithm, the 3-opt

move function is executed with each improving meeting order until no improvement

in the objective function value is observed.

4.2.3 Combination of 2-opt and 3-opt Edge Exchange Heuristics

The combined algorithm can be found in Algorithm 6. In this algorithm, we first

utilize the 2-opt move function to make all the improvements which can be made by

2-opt moves until there is no improvement. Then, the output is given as an input to the

3-opt move function to check all the 3-opt moves until there is no improvement. Note

that, when improvements made by 2-opt function is finalized at line 7, we should call
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(a) Tour: 0-2-3-1-4-5
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(b) Tour: 0-2-3-4-1-5
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(c) Tour: 0-3-4-5-1-2
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(d) Tour: 0-4-5-1-2-3

Figure 4.6: The illustrations of the 3-opt adjacent moves when n = 5 and edge 0− 1

is chosen along with one adjacent and one non-adjacent edge

a function which only checks pure 3-opt moves. At this step, if an improving move is

found, the algorithm continues executing line 8. If no improvement is observed, then

the algorithm stops by returning pcurrent and objcurrent as outputs by going to line 11.

4.2.4 Speed-up Algorithms

When the number of mobile worker robots operating in a field increases, the time

required to find an improved solution may increase undesirably. To overcome this

issue, we analyzed speed-up techniques created for TSP edge exchange heuristics.

In a TSP 2-opt move, if both of the newly created edges increases in length, the length

of the new tour cannot be decreased. Based on this observation, in [27], Bentley

suggest the fixed-radius search to speed-up 2-opt edge exchange heuristic. The search

is implemented by visiting the vertices of a tour. For a vertex va, consider both of its

adjacent vertices as vb in the given tour. If vb is not already the nearest neighbor of

va, then we search around va for vc where ‖va − vc‖ ≤ ‖va − vb‖. To do so, we
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Algorithm 4 3-opt move function (3opt)
1: Inputs: a meeting order pcurrent and its objective function value objcurrent.

2: Initialize a set P by determining all possible meeting orders of pcurrent by using

3-opt moves. Also, include their reverse orders.

3: Solve the SOCP formulation for each element of P , and store their objective

function values in set Pobj .

4: if min(Pobj) < objcurrent then

5: Find the meeting order, say pneworder, in P whose objective function value

equals min(Pobj).

6: Update pcurrent := pneworder.

7: Update objcurrent := min(Pobj).

8: end if

9: Return pcurrent and objcurrent.

define a radius r which is equal to ‖va − vb‖ and place a ball centered at va having

radius r. The vertices within the ball are candidates to be chosen as vc. Realize that,

vc has only one appropriate vertex to be deleted, say vd, to achieve a 2-opt move.

Hence, 2-opt move is generated by deleting edges (va, vb) and (vc, vd), and adding

edges (va, vc) and (vb, vd). Bentley suggests that the first such improving 2-opt move

is applied to the tour and the search continues from the new tour. However, in the

2-opt move function we defined in Algorithm 2, we solve the problem for all 2-opt

moves and find the best improving move. Hence, while implementing fixed radius

search, we continue with this approach. We solve the problem for every candidate

vertex to find the one which improves the objective function value the best and set it

as vc rather than choosing the first improving 2-opt move. Furthermore, Bentley also

provides the idea to extend the fixed-radius search to 3-opt edge exchange heuristic.

For this, two searches are required to be applied. The first search is the 2-opt search

defined above to find vertex vc. Later, a second search is generated by centering a

ball at vc with radius r′ which is equal to ‖va − vb‖ + ‖vc − vd‖ − ‖va − vc‖. The

vertices within the ball are candidates to be chosen as ve. Realize that, ve has only

one appropriate vertex to be deleted, say vf , to achieve a pure 3-opt move. For each

ve, we define the appropriate neighbor vertex vf . Hence, a pure 3-opt move is applied

to the current tour by deleting edges (va, vb), (vc, vd) and (ve, vf ), and adding edges
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Algorithm 5 3-opt algorithm
1: Start with a meeting order pinitial.

2: Solve the SOCP formulation with pinitial and calculate the objective function

value as objinitial.

3: Set pcurrent := pinitial

4: Set objcurrent := objinitial.

5: repeat

6: Call 3-opt move function stated in Algorithm 4 as [pcurrent, objcurrent] :=

3opt(pcurrent, objcurrent).

7: until No improvement is observed.

8: Return pcurrent and objcurrent as the best meeting order found and its objective

function value, respectively.

(va, vc), (vb, vf ) and (vd, ve).

The fixed radius search depends on the edge lengths between the vertices. However,

in EEMPR, there is no specific edge length description. Hence, we consider the

distances between the rendezvous places of the mobile worker robots. However, since

at the start of the tour there is no rendezvous place specified yet, we take the initial

location of the tanker robot into account. For instance, in the tour 0−1−2−3−4−5

the edge length between nodes 0 and 1 is computed as ‖aT − x1‖ and the edge length

between nodes 1 and 2 is computed as ‖x1 − x2‖ so on and so forth. For the edge

length between nodes 5 and 0, the distance is computed based on the final location of

the tanker and appeared as ‖x5 − bT‖. One can realize that all these distances should

be recalculated when the current tour is changed with an improving tour.

Moreover, in [28], Hoos and Thomas state that combining the fixed radius search

with candidate list and don’t look bits approaches can increase the search speed even

more. In candidate list approach, we do not examine all the candidate vertices while

choosing vc and ve but only examine the ones in the candidate list. For instance, let

us say that we set the candidate list length as 2 while choosing vc. Then, to create

the candidate list, we list the candidate vertices which fall into the ball (centered at

va having radius r) in descending order of their proximity to the va. We solve the

problem for only the first 2 vertices in the candidate list. If there are less candidate
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Algorithm 6 Combined 2-opt and 3-opt algorithm
1: Start with a meeting order pinitial.

2: Solve the SOCP formulation with pinitial and calculate the objective function

value as objinitial.

3: Set pcurrent := pinitial

4: Set objcurrent := objinitial.

5: repeat

6: Call 2-opt move function stated in Algorithm 2 as [pcurrent, objcurrent] :=

2opt(pcurrent, objcurrent).

7: until No improvement is observed.

8: repeat

9: Call 3-opt move function stated in Algorithm 4 as [pcurrent, objcurrent] :=

3opt(pcurrent, objcurrent).

10: until No improvement is observed.

11: Return pcurrent and objcurrent as the best meeting order found by the combination

of 2-opt and 3-opt algorithms and its objective function value, respectively.

vertices in the candidate list than the length of the list, then the search is terminated

when the list is fully examined.

In addition, according to Hood and Thomas [28], don’t look bits approach is based

on the following observation. If no improving 2-opt or 3-opt move is found for a

vertex va in a given search step of fixed radius search, there is a slight chance that

an improving move will be found in future search steps, unless one of the edges

incident to the va changes. To implement don’t look bits approach, the authors suggest

to assign a Don’t Look Bit (DLB) to each vertex in the tour. At the start of the

fixed radius search, all DLBs should be turned off, i.e., set to zero. Later, if no

improving move is found for a vertex in a given fixed radius search step, then the

DLB of this vertex is turned on, i.e., set to one, at the end of the search step. The

vertices whose DLBs are turned on are not examined in future search steps unless

one of their incident edges changes. If this change is observed, then the DLB of the

corresponding vertex is turned off again at the end of the search step.

As an example, combined 2-opt and 3-opt speed-up algorithm is shown in Algorithm

31



Algorithm 7 A combined 2-opt and 3-opt speed-up algorithm
1: Take the candidate list length as an input and set it as ncl.

2: Start with a meeting order pinitial.

3: Solve the SOCP formulation with pinitial and calculate the objective function

value as objinitial.

4: Set pcurrent := pinitial .

5: Set objcurrent := objinitial.

6: Initialize a DLB for each vertex.

7: Turn off all DLBs.

8: repeat

9: Call 2-opt move speed-up function which is created by modifying Algorithm

2 as [pcurrent, objcurrent, DLBs] := 2optspeedup(ncl, pcurrent, objcurrent, DLBs).

10: until No improvement is observed.

11: Turn off all DLBs.

12: repeat

13: Call 3-opt move speed-up function which is created by modifying Algorithm

4 as [pcurrent, objcurrent, DLBs] := 3optspeedup(ncl, pcurrent, objcurrent, DLBs).

14: until No improvement is observed.

15: Return pcurrent and objcurrent as the best meeting order found by the combined

2-opt and 3-opt speed-up algorithm and its objective function value, respectively.

7. To perform speed-up techniques, the 2-opt and 3-opt move functions are modi-

fied according to the above mentioned speed-up techniques. These functions are then

called in the corresponding lines 9 and 13 of Algorithm 7 by also providing the de-

cided candidate list length and DLBs as inputs. Realize that in this algorithm, a fixed

radius search step indicates looking at all the 2-opt moves or 3-opt moves. In other

words, one execution of line 9 or 13 is a fixed radius search step. Hence, an update

for DLBs is made at the end of each execution of lines 9 or 13.
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CHAPTER 5

COMPUTATIONAL STUDIES

In this chapter, computational studies are discussed. We created random problem

instances to test the SOCP formulations and improvement heuristics as there is no

available benchmark instances. We use GUROBI 9.0.2 with its default parameters

through C++ API (Visual Studio 2019, v142) to solve the SOCP formulation and

improvement heuristics. For the instance creation, MATLAB R2018a is utilized. The

computations were performed with Intel Core i7-4770S CPU @3.10 GHz and 16.00

GB RAM.

We generated random problem instances. Instance generation is defined in Section

5.1. Later, in Section 5.2 we discuss preliminary experiments. In detail, prelimi-

nary experiments are analyzed for the penalty approach, improvement heuristics and

speed-up algorithms in Section 5.2.1, Section 5.2.2, and Section 5.2.3, respectively.

In the end, in Section 5.3, the results of extensive computational studies are provided.

5.1 Instance Generation

During our experiments, we realized that some of the problem instances are not fea-

sible even though complete enumeration for the meeting order of the mobile worker

robots is conducted. Due to this, we would like to generate instances in which we

ensure feasibility. To do so, we thought backwards and assumed that we know each

rendezvous place by randomly generating each xi. Then, an initial location of the mo-

bile worker robot i is randomly generated within a distance to xi. The initial location

of the tanker robot is also randomly generated. Later, we measure the energy con-

sumption of the mobile worker robot i while moving towards the rendezvous place
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xi from its initial location. Also, the energy consumption of the tanker robot is cal-

culated as if it is visiting each xi based on the specified meeting order in the instance

generation. In the end, we increase these energy consumption values at a rate to

preserve the feasibility. Until now the idea behind the instance generation is briefly

given. Now, we will provide more detail about how we implemented these ideas.

We assume that rendezvous places are created in a way that they form a circle. The

circle is approximated with 100 points. It has a radius
√
n and center the origin. The

rendezvous places divide the circle into n equal parts, see Figure 5.1. The numbers

represent which mobile worker robot will meet with tanker robot in this rendezvous

place.
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Figure 5.1: Rendezvous place generation to create a feasible instance when n = 10

Later, to generate initial locations, ais, of the mobile worker robots, n smaller circles

are created. We create an ai, uniformly at random inside or on the circle having center

as the rendezvous place i′, see Figure 5.3a. These circles are approximated with 100

points. Note that, deciding on the radius of these smaller circles is significant for the

randomness of the initial locations. To illustrate, when the radius is chosen as
√
n/3

for n = 10, we end up with Figure 5.2. Hence, after preliminary experiments, the

radius of the smaller circles is taken as
√
n/1.5. In the end, when we remove the

circles, we end up with the initial locations of the mobile worker robots, see Figure

5.3b.

In addition, the initial location of the tanker robot, aT , is assigned as follows. Af-

ter determining the initial locations of the mobile worker robots, the minimum and
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Figure 5.2: Initial location creation for worker robots when n = 10 with circles

having radius
√
10/3

maximum x and y coordinate values of the initial locations, say xmin, ymin and xmax,

ymax are observed. Later, x and y coordinate values of the initial location of the

tanker robot are assumed to be randomly generated within the following ranges, re-

spectively: [xmin−
xmax − xmin

2
, xmax+

xmax − xmin
2

], [ymin−
ymax − ymin

2
, ymax+

ymax − ymin
2

]. In Figure 5.4, you can see that this range is specified by the continuous

lines while dashed lines are drawn to indicate the minimum and maximum x and y

coordinate values. The point having label T is indicating the initial location of the

tanker robot which is randomly created in the specified range. Note that, probability

of the initial location of the tanker robot is created within the area of dashed lines is

0.25 and within the area between the continuous lines and the dashed lines is 0.75.

For other parameter selections and the calculations, the following assumptions are

made. All mobile worker robots are homogeneous. In other words, the energy con-

sumption and the battery recharge function parameters are taken as the same as α = 3,

β = 10, γ = 5 and σ = 0.005 for each mobile worker robot. However, the tanker

robot consumes two times as much energy as a mobile worker robot. Hence, the pa-

rameters are taken as 2α, 2β and 2γ in the energy consumption function of the tanker

robot. Also, at rendezvous place i′, mobile worker robot i recharges its battery up to

its maximum energy storage level. This means thatEmax is assumed to be equal toD.

The maximum energy storage level D is taken as the same for mobile worker robots

created in instances having the same n value. It may differ when n changes. The final

locations of both the mobile worker robots and the tanker robot are assumed to be the
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(a) Creation of initial location of mobile worker

robots with smaller circles
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Figure 5.3: Initial location creation for worker robots when n = 10 with circles

having radius
√
10/1.5

same as their initial locations, i.e., ai = bi and hence di = dendi , ∀i ∈ I and aT = bT .

Both mobile worker robots and the tanker robot are assumed to be operating at the

optimal speed, i.e., vopt = 1.291, for the initial energy calculations. One unit is taken

as 1 km and mobile worker robots are working in a 10 km × 10 km area. Mobile

worker robot i and tanker robot meet at specified rendezvous place i′, see Figure 5.3a.

In the instance creation, it is considered that the tanker robot first meets with the

mobile worker robot whose initial location is the closest to the tanker robot. Then

tanker robot continues moving in the clockwise direction to meet with the other mo-

bile worker robots. For example, in Figure 5.3a, mobile worker robot 4 is the clos-

est to the tanker robot. Hence, tanker robot meets with the mobile worker robots

in the following meeting order 4 − 5 − 6 − 7 − 8 − 9 − 10 − 1 − 2 − 3. In or-

der to make sure that the instances are feasible, 2 times more energy is assumed

to be loaded to the mobile worker robots while calculated feasible energy for the

tanker robot is multiplied by 1.5. Therefore, we calculated the initial energy level

of the mobile worker robot i as follows; Einitial
i = 3(αdivopt + βdi + γ di

vopt
) where

di = 1000(‖ai − i′‖). We multiply the distance with 1000 since a unit is assumed

as 1 km. Furthermore, the initial energy of the tanker robot is calculated as follows,

T0 = 1.5(2αdsumvopt + 2βdsum + 2γ dsum
vopt

)) where dsum is the total distance trav-
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Figure 5.4: Initial location creation of the tanker robot when n = 10

eled by the tanker robot. If we consider the instance in Figure 5.3a, then dsum =

1000(‖aT − 4′‖+ ‖4′ − 5′‖+ ...+ ‖2′ − 3′‖+ ‖3′ − aT‖).

In order to determine the maximum energy storage level of mobile worker robots,

D, all instances are created for a specific n value and initial energy levels of the

mobile worker robots of each of these instances are calculated. Later, D is set to the

maximum initial energy level among all the mobile worker robots in all the instances

created for a specific n value.

In utilization of the (EEMPR-E), it can be realized that if constraint 3.25 is not bind-

ing, then both mobile worker robots and the tanker robot travel at the optimal speed.

Hence, generation of the campaign time parameter, tcamp, is significant. In order to

calculate a tcamp value, we first roughly estimated send of the instances generated. To

do so, we calculate ti as the time that mobile worker robot having position i in the

meeting order spends on traveling from its initial location, ai, to the rendezvous place

i′. Since the final location is the same as the initial location and ti = tendi equality

is also utilized. Moreover, for the tanker robot, we calculated total travel time as

follows:

send = max{max
{i∈I}
{si + ci + tendi }, sn + cn + tn+1} where (5.1)

si = max
{i∈I}
{si−1 + ci−1 + ti, ti} and s0, c0 = 0

Equation 5.1 can clearly be converted into Equation 5.2;

send = max{max
{i∈I}
{si + ci +

di
vopt
}, sn + cn +

dn+1

vopt
} where (5.2)
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si = max
{i∈I}
{si−1 + ci−1 +

di
vopt

,
di
vopt
} and s0, c0 = 0

Equation 5.2 also requires an approximate value for battery recharge time, ci, of the

mobile worker robot having position i in the meeting order. To be able to approximate

ci, Equation 5.3 is used based on the battery recharge function specified as 3.2,

ci = (Emax − Eresidual
i )σ where (5.3)

Eresidual
i = Einitial

i − (αdivopt + βdi + γ
di
vopt

)

Note that, Eresidual
i is calculated by subtracting the energy consumed while traveling

towards the rendezvous place i′ from the initial energy level Einitial
i . Then, we deter-

mine tcamp of an instance based on its approximated send value. If tcamp is taken as

send then again most of the time constraint 3.25 would be binding. After preliminary

experiments, it is decided that multiplying send value found by Equation 5.2 by 0.9 to

have parameter tcamp would be limiting enough.

Furthermore, the instances we create may still not be feasible for some meeting or-

ders. We can eliminate infeasibility by letting the model be able to increase the initial

energy level of the tanker robot. In this case, even if mobile worker robots are re-

stricted due to their low initial energy levels in some of the instances, tanker robot

can meet with each of them at their initial locations. Therefore, a new constraint

stated as 5.4 is constructed by defining two new decision variables, T new0 and e.

T new0 ≤ T0 + e (5.4)

Note that, after adding constraint 5.4 to both (EEMPR-E) and (EEMPR-T), con-

straints which use T0 should be updated with T new0 , e.g., constraint 3.13. We will then

penalize e with a big M in both of the objective functions. The modified objective

functions of (EEMPR-T) and (EEMPR-E) can be seen in 5.5 and in 5.6, respectively.

send +M(e) (5.5)∑
i∈I

(E0
i − Em

i + Emax
i − Ef

i ) + (T0 − Tn+1) +M(e+ ecamp) (5.6)

Furthermore, when we utilize (EEMPR-E), an infeasibility may be caused due to the

campaign time restriction. So, another decision variable, ecamp, is defined and added
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to the campaign time restriction constraint, see 5.7. In other words, constraint 3.25

should be changed with 5.7 in (EEMPR-E). Then, ecamp is also penalized with a big

M value in the objective function of (EEMPR-T), see 5.6.

send ≤ tcamp + ecamp (5.7)

5.2 Preliminary Experiments

In this section, preliminary experiments are analyzed. In Section 5.2.1, Section 5.2.2,

and Section 5.2.3, preliminary experiments are discussed for the penalty approach,

improvement heuristics, and speed-up algorithms, respectively.

5.2.1 Preliminary Experiments for the Penalty Approach

In the preliminary experiments, we have first examined the penalty approach dis-

cussed above. For this we utilize (EEMPR-E). Note that, in the instance we used to

analyze penalty approach, tcamp is taken large enough to make ecamp equal to 0. So,

we only see the effect of penalizing e.

We analyzed 2-opt, 3-opt and combined 2-opt and 3-opt algorithms which can be

seen in Figures 5.5a, 5.5b and 5.5c, respectively. In these Figures, x-axis shows

the iteration number. Each iteration number indicates one 2-opt or 3-opt move or

its reverse order while y-axis refers to extra energy requirement, i.e., e, for the best

meeting order found so far. In Chapter 4, it was discussed that the 2-opt and 3-opt

functions return back the meeting order which generates the maximum improvement.

Hence, each decrease observed in the extra energy requirement value caused by the

best meeting order found by one execution of 2-opt or 3-opt function.

The vertical lines are drawn to the iteration number where the algorithms find a fea-

sible solution for the first time. Iterations which are made before the vertical lines

are infeasible since e has a value greater than 0. In Figure 5.6, the remaining parts

of these improvements are shown. Note that, Figures 5.6a, 5.6b and 5.6c starts from

the iteration number in which we observe the first feasible solution. Therefore, now

y-axis shows the corresponding objective function values of the best meeting orders
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(c) Combined 2-opt and 3-opt algorithm

Figure 5.5: The illustrations of improvements in the extra energy requirements

found so far. One should realize that, as expected, improvement heuristics enhance

a given meeting order as means of objective function value. Therefore, the given

initial meeting order is improved and at the end we observe a better meeting order.

This is observed throughout all the algorithms considered in computational experi-

ments. Initial meeting orders given to algorithms and the final meeting orders found

by algorithms are different than each other in every case for an instance.

Furthermore, for (EEMPR-E), we wanted to observe the effect of tcamp on energy

consumption value and speed. To do so, we start a large enough tcamp value, i.e.,

ecamp = 0. Then we slowly decrease tcamp value to the point in which the instance

cannot become feasible. At the times in which ecamp = 0, we observe that the mobile

worker robots and the tanker robot operates with optimal speed which can be seen

in Figure 5.7. In this figure, the dots represent different solutions for different tcamp

values. When tcamp becomes tighter and tighter, the energy consumption value and
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Figure 5.6: The illustrations of the improvements in the objective function values
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Figure 5.7: Effect of tcamp on speed and energy consumption value for (EEMPR-

E) when n = 30 where vT = [4.87, 4.36, 3.68, 3.57, 3.18, 2.40, 1.74, 1.29, 1.29] and

vavgM = [4.18, 3.77, 3.22, 3.14, 2.81, 2.19, 1.66, 1.29, 1.29]
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Figure 5.8: Different optimal rendezvous places when n = 5

the average speed of mobile worker robots, i.e., vavgM , as well as the speed of the tanker

robot, i.e., vT , increases. The arrays in the description of Figure 5.7 represents the

vT and vavgM values for the solutions represented in the figure accordingly. In order to

illustrate the change of optimal rendezvous places, we use an instance when n = 5.

Different optimal rendezvous places can be observed when tcamp is restrictive and

not restrictive in Figures5.8a and 5.8b, respectively. Note that in Figure 5.8, mobile

worker robots and the tanker robot are illustrated in their initial locations.

5.2.2 Preliminary Experiments for Improvement Heuristics

First of all, we generated 10 different instances randomly for n = 8. We solved

these instances with the optimizing procedure given in Algorithm 1 in Chapter 4.

We mainly utilize complete enumeration on meeting orders for both versions of the

problem to find the optimal objective function values. The results can be seen in Table

5.1. Later, we utilize improvement heuristics algorithms with nine random meeting

order starts and one Nearest Neighbor (NN) meeting order start for each instance.

The Nearest Neighbor meeting order start is calculated based on the proximity of the

mobile worker robots to the tanker robot by taking their initial locations into account.

The mobile worker robot having the closest initial location to the initial location of
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Table 5.1: Complete enumeration solutions for (EEMPR-T) and (EEMPR-E) when

n = 8

Instance

No

EEMPR-T EEMPR-E

Best obj. value Total time Best obj. value Total time

1 3740 354.09 780376 401.25

2 3535 1123.73 785957 742.48

3 3900 477.43 790847 1321.79

4 3247 958.93 747652 732.95

5 3336 345.41 728334 989.42

6 2532 559.33 603834 992.54

7 2997 571.65 648184 1361.08

8 3342 694.53 702906 642.15

9 4144 876.08 769030 693.11

10 2975 722.34 648158 1199.26

the tanker is set as the first in the meeting order, then by discarding this mobile worker

robot out, the second closest mobile worker robot is found and put as the second in the

meeting order and so on. The results of the preliminary experiments for improvement

heuristics for n = 8 are displayed in Table 5.2 and 5.3 for (EEMPR-T) and (EEMPR-

E), respectively. For each instance, the best objective function value found among all

the random and NN meeting order starts of three improvement heuristic algorithms

is displayed in the column titled Best Obj. Overall. Also, we analyze in how many

different starts this best objective function value is observed by each of the algorithm

in columns titled # Best. Furthermore, the best and average objective function values

along with average solution times (in seconds) are shown for random meeting order

starts while the objective function value and solution times (in seconds) are displayed

for the NN meeting order start. When we make a comparison, optimal objective

function values found by the optimizing procedure and the best objective function

values found by improvement heuristics are appeared to be the same for each instance

for n = 8. Hence, we continue utilizing our improvement heuristics and maintain our

preliminary experiments.

In remaining part of the preliminary experiments for improvement heuristic algo-

rithms, we consider three values for n : 15, 20, and 30. For each n value, 3 instances
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are generated randomly. The experiments are conducted by running the improvement

heuristic algorithms with three random meeting order starts and one Nearest Neigh-

bor (NN) meeting order start for each instance. We set a three-hour time limit for

each different start of an instance. The results of the preliminary experiments for

improvement heuristics are displayed in Table 5.4 and Table 5.5 where the former

shows the (EEMPR-T) version of the problem while the latter displays the results of

(EEMPR-E) version of the problem. For each size of n and each instance, the best

objective function value found among all the random and NN meeting order starts

of three improvement heuristic algorithms is displayed in the column titled Best Obj.

Overall. Also, we analyze in how many different starts this best objective function

value is observed by each of the algorithm in columns titled # Best. Furthermore, the

best and average objective function values along with average solution times (in sec-

onds) are shown for random meeting order starts while the objective function value

and solution times (in seconds) are displayed for the NN meeting order start.

For n = 15 and 20, 3-opt algorithm shows good quality results as means of finding

the best objective function value for both versions of the problem, but the solution

times are the slowest when compared to the 2-opt and combined 2-opt and 3-opt

algorithms. Furthermore, for the second instance in both versions of the problem,

and for the first instance of (EEMPR-T) when n is 30, 3-opt algorithm is not able to

find feasible solutions within three-hour time limit with random meeting order start.

Furthermore, even if it can find a feasible solution, it is unable to provide the best ob-

jective function value for random meeting order start when n = 30. However, when

NN meeting order start is used, 3-opt algorithm is able to find the best objective func-

tion value in all of the instances except for the second instance of (EEMPR-T) whose

objective function value only deviates from the best objective function value by 0.01

percent. Although NN meeting order start for 3-opt algorithm has good quality re-

sults as means of finding the best objective function value, the solution times are on

average 4000.16 seconds for (EEMPR-T) and 4379.65 for (EEMPR-E) which are the

slowest among all three algorithms for NN meeting order start. Hence, we can con-

clude that 3-opt algorithm shows the poorest performance among all three algorithms

for both random and NN meeting order starts.

The fastest algorithm appeared as the 2-opt algorithm for each size of n with both
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random and NN meeting order starts, which can be predicted since the 2-opt algorithm

examines the minimum number of moves among all three algorithms, as discussed

in section 4.2.1. For (EEMPR-T), the 2-opt algorithm is able to provide the best

objective function value in total for 16 times in random meeting order start and 8

times in the NN meeting order starts. For (EEMPR-E), it finds the best objective

function value in total for 19 times in random meeting order start and 5 times in NN

meeting order starts. Although combined 2-opt and 3-opt algorithm runs slower than

the 2-opt algorithm, for (EEMPR-T) it is able to provide the best objective function

value 20 times in random meeting order starts and 8 times in NN starts in total, and for

(EEMPR-E) it can find the best objective function value 26 times in random meeting

order starts and 8 times in NN meeting order starts. Overall, when compared to the

2-opt algorithm, the solution quality of the combined 2-opt and 3-opt algorithm is

higher, but solution times on average are 2.5 times slower when the random meeting

order start is utilized for both of the versions of the problem while it is on average 6.5

times and 12 times slower for NN meeting order start for (EEMPR-T) and (EEMPR-

E), respectively. Therefore, to use the advantage of high quality solutions of combined

2-opt and 3-opt algorithm, we decide to apply TSP speed-up techniques to make the

algorithm faster by also preserving its solution quality.

5.2.3 Preliminary Experiments for Speed-up Algorithms

To be able to improve solution times, fixed radius search combined with candidate list

and don’t look bits approaches are applied to the combined 2-opt and 3-opt algorithm

as discussed in Section 4.2.4, Algorithm 7. This algorithm is now called speed-up

algorithm. To be able to do so, first of all, the candidate list length should be decided.

Note that, because both versions of the problem has given similar results in the pre-

liminary experiments conducted for the improvement heuristics as means of solution

times and number of best solutions observed, we carry out the following preliminary

experiments for only (EEMPR-T). The same instances generated for n : 15, 20, and

30 in Section 5.2.2 are continued to be used. Furthermore, we did not utilize instances

for n = 50 in preliminary experiments for improvement heuristics due to excessive

computational times, but now three instances are generated randomly for n = 50 to

be able to examine the quality of the solutions better for increased instance sizes.
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The experiments are conducted by running the speed-up algorithm with three random

meeting order starts and one NN meeting order start for each instance. The evalua-

tions are made based on three different candidate list lengths which are 1, 0.2n and

10.

We report the preliminary experimentation results for (EEMPR-T) in Table 5.6 along

with a comparison of percent differences of best objective function values found by

speed-up algorithm to the previous best objective function values which is provided

by the improvement heuristics algorithms in Table 5.4. Also, we calculate the ratio

of time by dividing the previous solution times provided in Table 5.4 to the solution

times of the speed-up algorithm. There are not any objective function values or so-

lution times for n = 50, so we solve these instances by using fixed radius search

algorithm without candidate list and don’t look bits approaches. The previous best

objective function values and solution times for instances of n = 50 are taken from

these fixed radius search algorithm solutions, see Table A.1 in the Appendix A. Fur-

thermore, in Table 5.6, for each instance, the best objective function value found

among all the random and NN meeting order starts of speed-up algorithm is displayed

in the column titled Best Obj. Overall. Also, we analyze in how many different starts

this best objective function value is observed by each of the algorithm and stored

in columns titled # Best. Moreover, the best and average objective function values

along with average solution times (in seconds) are shown for random meeting order

starts while the objective function value and solution times (in seconds) are displayed

for the NN meeting order start.

One can observe that, the average solution times are the fastest when candidate list

length is equal to 1, but the algorithm is unable to find feasible solutions when n is 30

and 50 for random meeting order starts. Even though feasible solutions can be found

with NN meeting order start for n = 50, the best objective function values found are

not favorable enough when the percent differences are examined. For the instances,

when n is 15 and 20 the candidate list lengths 0.2n and 10 provides very similar re-

sults as means of percent differences. Also, when n is 30, percent differences are the

same with each other for candidate list lengths 0.2n and 10 for each instance. Re-

alize that 0.2n is equal to 10 when n = 50, so the experiment does not have three

but two different candidate list length parameters for this instance size. We observe
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Table 5.6: Preliminary experimentation results of (EEMPR-T) for candidate list

length trials

n
CL

Length

Instance

No

Speed-up algorithm

Random NN

# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time
Best Obj. Value

Overall

Previous Best Obj.

Value Overall

% Difference of

Best Obj. Values

Overall

Previous

Times

Ratio of

Times

15 1 1 0 9445 14272 5.99 1 6181 0.89 6181 6094 1.41 118.80 134.24

2 0 7176 8616 3.39 1 5757 0.90 5757 5750 0.12 97.08 107.99

3 0 8264 29x108 4.03 1 5183 0.37 5183 5181 0.04 104.52 285.57

0.2n 1 0 6110 6360 14.91 1 6097 2.15 6097 6094 0.05 118.80 55.28

2 0 5837 6085 11.32 1 5786 1.86 5786 5750 0.62 97.08 52.08

3 0 7305 7709 15.13 1 5183 0.57 5183 5181 0.04 104.52 184.01

10 1 0 6160 8145 23.42 1 6097 3.70 6097 6094 0.05 118.80 32.11

2 1 5785 5801 19.16 0 5786 2.44 5785 5750 0.61 97.08 39.84

3 1 5182 7622 21.81 0 5183 0.62 5182 5181 0.02 104.52 168.58

20 1 1 0 8802 19x109 11.91 1 6903 1.44 6903 6754 2.16 411.13 285.90

2 0 24940 50x107 16.14 1 6812 1.30 6812 6812 0.00 346.26 265.74

3 0 9805 15117 12.57 1 6794 1.17 6794 6657 2.02 318.85 272.06

0.2n 1 0 7798 13906 59.36 1 6778 5.74 6778 6754 0.35 411.13 71.58

2 0 7179 8106 55.91 1 6812 3.08 6812 6812 0.00 346.26 112.46

3 0 6676 7311 43.04 1 6669 6.89 6669 6657 0.18 318.85 46.30

10 1 1 6776 7684 82.93 0 6778 7.98 6776 6754 0.32 411.13 51.52

2 0 6834 6947 94.60 1 6812 3.87 6812 6812 0.00 346.26 89.38

3 1 6665 6718 84.57 1 6665 14.08 6665 6657 0.12 318.85 22.65

30 1 1 0 10x1010 11x1010 50.00 1 11200 3.76 11200 11059 1.26 2854.92 759.69

2 0 62x109 11x1010 49.15 1 8654 2.63 8654 8629 0.29 2422.91 923.01

3 0 11x1010 12x1010 48.31 1 9962 2.98 9962 9959 0.03 4060.23 1364.32

0.2n 1 0 11353 13102 493.72 1 11135 25.44 11135 11059 0.68 2854.92 112.24

2 0 9126 9452 328.56 1 8630 12.63 8630 8629 0.01 2422.91 191.85

3 0 10568 15032 464.55 1 9962 9.56 9962 9959 0.03 4060.23 424.93

10 1 0 11211 12456 623.93 1 11135 34.01 11135 11059 0.68 2854.92 83.94

2 0 8918 10322 476.01 1 8630 13.33 8630 8629 0.01 2422.91 181.83

3 0 10733 12434 571.90 1 9962 14.00 9962 9959 0.03 4060.23 290.12

50 1 1 0 36x1010 40x1010 203.37 1 15715 12.80 15715 13623 13.31 8146.89 636.87

2 0 32x1010 34x1010 219.07 1 15440 12.19 15440 13230 14.31 6375.72 523.16

3 0 28x1010 34x1010 169.28 1 30695 23.80 30695 13490 56.05 8012.68 336.64

0.2n 1 0 13762 14117 3719.00 1 13709 207.24 13709 13623 0.63 8146.89 39.31

2 0 13264 13435 6559.33 1 13258 164.48 13258 13230 0.21 6375.72 38.76

3 1 13632 15248 4217.33 0 19981 446.94 13632 13490 1.04 8012.68 17.93

Note: CL refers to candidate list.

high quality solutions as means of percent differences for instances of n = 50 when

candidate list length is 0.2n. Furthermore, we observe faster solution times in each

instance size for 0.2n when compared to 10. Nevertheless, when candidate list length

is set as 0.2n, even though solution times for instance sizes n = 15, 20, 30 decreased

in a desirable way by also preserving the solution qualities when compared to the

improvement heuristics, for n = 50, solution times are still very slow for random

meeting order starts, i.e., on average 4831.89 seconds. This average time is required

to be multiplied by the number of random starts the practitioner would like to execute

which expands the solution time even more. Therefore, we search for a development

in the speed-up algorithm to decrease the solution times. Nevertheless, if a practi-

tioner has no time limitation, we can suggest speed-up algorithm with candidate list

length 0.2n since it provides good results within a moderate amount of time.
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To be able to improve the solution times, we want to make use of the fast solution

times observed when candidate list length is 1. So, we worked on improving the

objective function values by modifying the speed-up algorithm when candidate list

length is set as 1. First of all, we tried a dynamic don’t look bits approach which allow

to the algorithm to turn on DLBs not for only one step but for k many steps. It can be

expected that with an increase in k, we will observe an increase in the solution times.

So, we have set k as 2. In Table 5.7, the results of this modification is provided under

modified speed-up algorithm 1. There is an improvement in some of the instances

when a comparison between the best objective function values found by the modified

speed-up algorithm 1 and the speed-up algorithm with candidate list length 1, is made

by looking at their percent differences. Note that, the previous best objective function

values are taken as the same in both algorithms. So, we can directly compare percent

differences columns of the algorithms. For example, the third instance when n = 20,

the first instance when n = 30 and the second and third instances when n = 50

give better percent differences. All the other instances provide the same results with

speed-up algorithm with candidate list length 1. In modified speed-up algorithm 1,

the solution times are approximately 2 times slower for both random and NN meeting

order starts for larger instance sizes, i.e., n = 30, 50 while for n = 15, 20 most of the

solution times are almost the same when compared with the speed-up algorithm with

candidate list length is 1. Although these results are promising, we are not able to

improve all the objective function values as intended. For example, first and the third

instances of n = 50 still provide high percent difference values of 13.31 and 29.58,

respectively.

Secondly, we test the idea that when there is no improving move found by the speed-

up algorithm, the fixed radius search combined with candidate list approach is exe-

cuted for only one search step by removing the don’t look bits approach. If at this

step, an improving move is found then don’t look bits approach is activated and the

speed-up algorithm continues its execution. If no improving move is found, the algo-

rithm is finalized. The preliminary experimentation results of this modified speed-up

algorithm 2 are shown in Table 5.8. The solution times are approximately 2 times

slower for both random and NN meeting order starts for higher instance sizes, i.e.,

n = 30, 50 while for n = 15, 20 most of the solution times are almost the same
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Table 5.7: Preliminary experimentation results of (EEMPR-T) for modified speed-up

algorithm 1

n
Instance

No

Modified speed-up algorithm 1

Random NN

# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time
Best Obj. Value

Overall

Previous Best Obj.

Value Overall

% Difference of

Best Obj. Values

Overall

15 1 0 6294 8279 6.96 1 6181 0.78 6181 6094 1.41

2 0 6239 8116 3.77 1 5757 1.26 5757 5750 0.12

3 0 7169 7655 7.01 1 5183 0.31 5183 5181 0.04

20 1 0 12452 15201 23.12 1 6903 1.45 6903 6754 2.16

2 0 7940 8792 24.21 1 6812 1.69 6812 6812 0.00

3 0 7343 11566 16.71 1 6775 1.93 6775 6657 1.74

30 1 0 24013 27594 102.03 1 11150 7.44 11150 11059 0.82

2 0 12033 17894 112.19 1 8654 3.25 8654 8629 0.29

3 0 12218 17570 136.53 1 9962 3.18 9962 9959 0.03

50 1 0 29634 17x109 545.14 1 15715 21.49 15715 13623 13.31

2 0 15662 39x108 505.41 1 13977 32.68 13977 13230 5.34

3 1 19156 72x107 513.31 0 27529 51.93 19156 13490 29.58

when compared with the speed-up algorithm with candidate list length 1. However,

we only achieve a very small improvement in the third instance of n = 50 which is

not desirable. If we compare this instance to the same instance in modified speed-up

algorithm 1, the percent difference gets even worse.

Table 5.8: Preliminary experimentation results of (EEMPR-T) for modified speed-up

algorithm 2

n
Instance

No

Modified speed-up algorithm 2

Random NN

# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time
Best Obj. Value

Overall

Previous Best Obj.

Value Overall

% Difference of

Best Obj. Values

Overall

15 1 1 6121 6801 7.22 0 6181 1.80 6121 6094 0.44

2 0 6511 6857 3.92 1 5757 1.56 5757 5750 0.12

3 0 8264 8762 6.19 1 5183 0.67 5183 5181 0.04

20 1 0 12585 13337 14.95 1 6903 2.94 6903 6754 2.16

2 0 8204 10368 19.24 1 6812 2.58 6812 6812 0.00

3 0 7527 7658 13.99 1 6775 2.86 6775 6657 1.74

30 1 0 22548 27063 70.35 1 11150 9.50 11150 11059 0.82

2 0 9890 99 86.31 1 8654 5.47 8654 8629 0.29

3 0 10803 17339 89.47 1 9962 5.33 9962 9959 0.03

50 1 0 16488 72x108 490.13 1 15715 19.95 15715 13623 13.31

2 0 21826 63x108 541.22 1 13977 35.03 13977 13230 5.34

3 1 26416 38x108 423.96 0 27258 41.26 26416 13490 48.93

Thirdly, we continue to improve the modified speed-up algorithm 2 by extending

the candidate list length to 2 during the improvement search step and afterwards. In

other words, if there is no improving move found by the speed-up algorithm, the

fixed radius search combined with candidate list approach is executed for only one
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Table 5.9: Preliminary experimentation results of (EEMPR-T) for modified speed-up

algorithm 3

n
Instance

No

Modified speed-up algorithm 3

Random NN

# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time
Best Obj. Value

Overall

Previous Best Obj.

Value Overall

% Difference of

Best Obj. Values

Overall

15 1 0 7430 9409 6.88 1 6097 2.78 6097 6094 0.05

2 0 5828 7297 4.98 1 5786 2.33 5786 5750 0.62

3 1 5181 6796 7.54 0 5183 1.05 5181 5181 0.00

20 1 0 7005 8921 25.22 1 6778 4.02 6778 6754 0.35

2 0 7409 11157 27.01 1 6812 3.40 6812 6812 0.00

3 0 6944 7520 25.03 1 6669 4.33 6669 6657 0.18

30 1 0 11158 13661 118.18 1 11135 12.04 11135 11059 0.68

2 0 9099 10157 96.27 1 8654 7.63 8654 8629 0.29

3 0 13368 15083 98.41 1 9962 6.11 9962 9959 0.03

50 1 1 13836 22532 696.00 0 15412 58.32 13836 13623 1.54

2 1 13650 19869 815.17 0 13965 41.26 13650 13230 3.08

3 1 13885 18903 772.86 0 18054 93.65 13885 13490 2.84

step by removing the don’t look bits approach and extending the candidate list size

to 2. If at this step, an improving move is found then don’t look bits approach is

activated by preserving the extended candidate list length and the algorithm continues

execution. If no improving move is found, the algorithm is finalized. The results of

the preliminary experiment for the modified speed-up algorithm 3 can be seen in Table

5.9. Except for the second instance of n = 15 which has a small amount of increase,

all the other instances either gets better or stays the same as means of the percent

differences when compared with the speed-up algorithm with candidate list length 1.

Particularly, we observe an improvement in the percent differences of each instance

for n = 50. Furthermore, solution times are now compatible for even larger instance

sizes. For n = 30, one random meeting order start lasts on average 104.29 seconds

and one NN meeting order starts lasts on average 8.59 seconds while for n = 50 these

are 761.34 and 64.41, respectively. Therefore, we end up using the modified speed-up

algorithm 3 for cases which requires faster results with a compensation for some loss

on the best objective function value found.

Before moving forward, we wanted to solve the modified speed-up algorithm 3 for

n = 8 and compare the results with the results of optimizing procedure. In Tables

5.10 and 5.11, the outputs of the modified speed-up algorithm 3 when n = 8 for

(EEMPR-T) and (EEMPR-E) are given, respectively. The column called as Previous

Best Obj. Value stores the objective function values of the optimizing procedure and
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Table 5.10: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-T) when n = 8

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 3921 4456 1 1 3740 0 3740 3740 0.00

2 1 3535 5815 1 1 3535 0 3535 3535 0.00

3 1 3900 4061 1 0 3957 0 3900 3900 0.00

4 1 3247 3828 1 0 3268 0 3247 3247 0.00

5 1 3336 3852 1 0 3880 1 3336 3336 0.00

6 1 2532 2827 1 1 2532 1 2532 2532 0.00

7 1 2997 3058 1 0 3001 0 2997 2997 0.00

8 0 3415 3858 1 1 3342 0 3342 3342 0.00

9 1 4144 5114 1 1 4144 1 4144 4144 0.00

10 1 2975 3227 1 0 2986 0 2975 2975 0.00

Table 5.11: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-E) when n = 8

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 1 780376 860279 1 1 780376 1 780376 780376 0.00

2 1 785957 937505 1 1 785957 0 785957 785957 0.00

3 1 790847 941447 0 0 835811 0 790847 790847 0.00

4 0 837395 912550 1 1 747652 0 747652 747652 0.00

5 1 728334 818114 1 0 979036 0 728334 728334 0.00

6 0 603977 680154 1 1 603834 1 603834 603834 0.00

7 1 648184 680368 1 0 662683 0 648184 648184 0.00

8 1 702906 816244 1 1 702906 0 702906 702906 0.00

9 0 769316 922764 1 1 769030 1 769030 769030 0.00

10 1 648158 732551 1 1 648158 1 648158 648158 0.00

can also be found in Table 5.1. The column called as % Difference of Obj. Values is

calculated by comparing the Best Obj. Value Overall column and Previous Best Obj.

Value column. Therefore, it can be observed that the modified speed-up algorithm 3

is able to find the optimal solutions for n = 8.

5.3 Computational Experiments

For the computational experiments, all mobile worker robots considered as homo-

geneous. In other words, the energy consumption and the battery recharge function

parameters are taken as the same as α = 3, β = 10, γ = 5 and σ = 0.005 for each

mobile worker robot. The tanker robot is assumed to consume two times as much

energy as a mobile worker robot. Hence, parameters are taken as 2α, 2β and 2γ in
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the energy consumption function of the tanker robot. Furthermore, we assume that

mobile worker robots are recharged up to their maximum energy storage levels, D.

This means that Emax is taken as a parameter instead of a decision variable and as-

sumed to be equal to D. Also, the final locations of both the mobile worker robots

and the tanker robot are assumed to be the same as their initial locations. The mobile

worker robots must have 80% of their energy left when they return back to their initial

locations. Hence θ used in constraint 3.14 is chosen as 0.8. The maximum speed for

both mobile worker robots and the tanker robot is taken as vmax = 5 m/s. Last but

not least, the big M value is taken as 100, 000.

In these experiments, we consider 6 values for n : 5, 8, 15, 20, 30, and 50. For each

n value, 10 instances are generated. We have solved each instance for 10 times. In

9 of them randomly generated initial meeting orders are used while in 1 of them a

NN meeting order start is utilized. We have limited the computational times for three

hours for each different start of an instance. In the random initial meeting order starts,

we demonstrate the best objective function value of 9 random starts, their average

objective function value and average computational times (in seconds) per instance.

Also, among these 9 random starts, in how many of them the overall best objective

function value is observed is shown in the # Best column. Then, we present the

objective function value found by NN meeting order start and their computational

times (in seconds). Again, we keep the information whether the overall best objective

function value is observed by NN meeting order start or not in the column # Best.

Furthermore, we represent the percent difference between the best objective value

overall and the best objective function value found by all of the algorithms so far in %

Difference column. This column is not present in the tables when n = 50 since we do

not solve these instances by the previous algorithms due to excessive computational

times.

We solved instances where n = 5, 8, 15, 20, 30 by using 2-opt, 3-opt and combined 2-

opt and 3-opt algorithms for both (EEMPR-T) and (EEMPR-E). Improvement heuris-

tics algorithms are not solved for n = 50 due to excessive computational times. In

addition, for instances where n = 30, 50, we utilized speed-up algorithm with can-

didate list length 0.2n and modified speed-up algorithm 3 for both (EEMPR-E) and

(EEMPR-T). These algorithms are not solved for n = 20 since we already observe

54



Ta
bl

e
5.

12
:

C
om

pu
ta

tio
na

lt
im

es
(i

n
se

co
nd

s)
an

d
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

es
of

th
e

im
pr

ov
em

en
th

eu
ri

st
ic

al
go

ri
th

m
s

fo
r(

E
E

M
PR

-T
)w

he
n

n
=

20

2-
op

t
3-

op
t

2-
op

t+
3-

op
t

R
an

do
m

N
N

R
an

do
m

N
N

R
an

do
m

N
N

#
B

es
t

B
es

tO
bj

.
A

vg
.O

bj
.

A
vg

.T
im

e
#

B
es

t
O

bj
.

Ti
m

e
#

B
es

t
B

es
tO

bj
.

A
vg

.O
bj

.
A

vg
.T

im
e

#
B

es
t

O
bj

.
Ti

m
e

#
B

es
t

B
es

tO
bj

.
A

vg
.O

bj
.

A
vg

.T
im

e
#

B
es

t
O

bj
.

Ti
m

e
B

es
tO

bj
.O

ve
ra

ll
%

D
iff

er
en

ce

1
3

67
54

68
09

18
8.

66
1

67
54

23
.0

6
3

67
54

67
55

35
68

.3
2

1
67

54
41

9.
63

4
67

54
67

55
41

1.
13

1
67

54
16

9.
39

67
54

0.
00

2
1

68
12

68
30

18
3.

82
1

68
12

11
.1

9
2

68
12

68
13

36
19

.7
7

1
68

12
27

8.
05

1
68

12
68

13
34

6.
26

1
68

12
15

7.
88

68
12

0.
00

3
8

66
57

66
57

17
0.

17
1

66
57

46
.9

0
5

66
57

66
57

33
73

.2
8

1
66

57
74

8.
49

8
66

57
66

57
31

8.
85

1
66

57
19

8.
72

66
57

0.
00

4
4

78
51

78
52

19
1.

05
0

78
54

31
.9

4
4

78
51

78
52

38
56

.1
3

0
78

52
30

0.
17

4
78

51
78

52
35

5.
77

0
78

52
32

5.
10

78
51

0.
00

5
6

58
74

59
27

20
7.

61
1

58
74

31
.1

6
8

58
74

58
74

40
28

.8
4

1
58

74
44

2.
13

9
58

74
58

74
41

6.
02

1
58

74
18

3.
45

58
74

0.
00

6
6

59
43

59
69

21
3.

58
1

59
43

45
.1

4
9

59
43

59
43

45
47

.1
3

1
59

43
73

4.
39

9
59

43
59

43
41

6.
78

1
59

43
19

8.
31

59
43

0.
00

7
1

75
01

75
02

22
8.

27
1

75
01

12
.6

7
5

75
01

75
01

45
46

.3
3

1
75

01
30

3.
94

1
75

01
75

02
38

4.
41

1
75

01
16

3.
81

75
01

0.
00

8
7

63
94

63
94

20
3.

31
1

63
94

53
.5

7
5

63
94

63
94

38
21

.7
7

0
63

95
70

6.
37

7
63

94
63

94
36

0.
69

1
63

94
20

8.
40

63
94

0.
00

9
9

66
84

66
84

23
3.

24
1

66
84

32
.7

6
9

66
84

66
84

34
50

.5
5

1
66

84
66

9.
73

9
66

84
66

84
39

8.
32

1
66

84
19

0.
14

66
84

0.
00

10
9

55
94

55
94

16
1.

94
1

55
94

30
.4

3
9

55
94

55
94

24
78

.0
8

1
55

94
43

2.
08

9
55

94
55

94
32

4.
99

1
55

94
18

1.
02

55
94

0.
00

Ta
bl

e
5.

13
:

C
om

pu
ta

tio
na

lt
im

es
(i

n
se

co
nd

s)
an

d
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

es
of

th
e

im
pr

ov
em

en
th

eu
ri

st
ic

al
go

ri
th

m
s

fo
r(

E
E

M
PR

-E
)w

he
n

n
=

20

2-
op

t
3-

op
t

2-
op

t+
3-

op
t

R
an

do
m

N
N

R
an

do
m

N
N

R
an

do
m

N
N

#
B

es
t

B
es

tO
bj

.
A

vg
.O

bj
.

A
vg

.T
im

e
#

B
es

t
O

bj
.

Ti
m

e
#

B
es

t
B

es
tO

bj
.

A
vg

.O
bj

.
A

vg
.T

im
e

#
B

es
t

O
bj

.
Ti

m
e

#
B

es
t

B
es

tO
bj

.
A

vg
.O

bj
.

A
vg

.T
im

e
#

B
es

t
O

bj
.

Ti
m

e
B

es
tO

bj
.O

ve
ra

ll
%

D
iff

er
en

ce

1
9

14
34

71
4

14
34

71
4

22
3.

00
1

14
34

71
4

47
.6

3
9

14
34

71
4

14
34

71
4

40
42

.4
3

1
14

34
71

4
71

6.
93

9
14

34
71

4
14

34
71

4
50

7.
63

1
14

34
71

4
24

6.
31

14
34

71
4

0.
00

2
9

14
08

93
5

14
08

93
5

21
6.

52
1

14
08

93
5

17
.0

6
9

14
08

93
5

14
08

93
5

39
21

.2
6

1
14

08
93

5
34

6.
27

9
14

08
93

5
14

08
93

5
51

5.
23

1
14

08
93

5
21

3.
60

14
08

93
5

0.
00

3
6

15
07

59
3

15
08

73
2

21
6.

83
0

15
12

71
6

75
.4

7
8

15
07

59
3

15
07

59
3

38
40

.0
7

1
15

07
59

3
11

73
.7

9
7

15
07

59
3

15
07

59
3

61
6.

41
0

15
07

59
4

50
2.

70
15

07
59

3
0.

00

4
6

17
88

92
6

17
89

69
2

22
7.

19
1

17
88

92
6

10
1.

85
9

17
88

92
6

17
88

92
6

41
40

.6
7

1
17

88
92

6
77

3.
40

9
17

88
92

6
17

88
92

6
66

0.
87

1
17

88
92

6
30

7.
60

17
88

92
6

0.
00

5
8

13
94

39
4

14
16

88
8

22
6.

14
1

13
94

39
4

24
.9

4
9

13
94

39
4

13
94

39
4

43
12

.1
7

1
13

94
39

4
35

4.
18

9
13

94
39

4
13

94
39

4
59

1.
90

1
13

94
39

4
21

2.
73

13
94

39
4

0.
00

6
9

13
09

43
6

13
09

43
6

23
6.

45
1

13
09

43
6

44
.8

6
9

13
09

43
6

13
09

43
6

47
16

.8
4

1
13

09
43

6
54

5.
50

9
13

09
43

6
13

09
43

6
57

1.
01

1
13

09
43

6
24

0.
58

13
09

43
6

0.
00

7
9

15
65

57
8

15
65

57
8

25
3.

52
1

15
65

57
8

24
.3

8
9

15
65

57
8

15
65

57
8

48
84

.7
6

1
15

65
57

8
36

3.
46

9
15

65
57

8
15

65
57

8
59

7.
09

1
15

65
57

8
21

9.
45

15
65

57
8

0.
00

8
6

14
13

55
9

14
17

59
6

22
4.

43
0

14
21

12
2

64
.4

9
9

14
13

55
9

14
13

55
9

45
57

.9
6

1
14

13
55

9
99

4.
18

9
14

13
55

9
14

13
55

9
68

3.
18

1
14

13
55

9
49

4.
38

14
13

55
9

0.
00

9
9

14
21

64
0

14
21

64
0

25
5.

46
1

14
21

64
0

49
.4

3
9

14
21

64
0

14
21

64
0

53
59

.1
1

1
14

21
64

0
94

6.
82

9
14

21
64

0
14

21
64

0
54

6.
10

1
14

21
64

0
24

7.
19

14
21

64
0

0.
00

10
9

12
39

32
9

12
39

32
9

19
8.

13
1

12
39

32
9

38
.8

2
9

12
39

32
9

12
39

32
9

32
54

.6
8

1
12

39
32

9
71

0.
26

9
12

39
32

9
12

39
32

9
43

3.
85

1
12

39
32

9
27

6.
87

12
39

32
9

0.
00

55



fast solution times in improvement heuristic algorithms for these instances.

The results of the heuristics algorithms solved for both (EEMPR-T) and (EEMPR-E)

versions of the problem for n = 5 and 15 can be found in Tables A.2, A.3, A.4, and

A.5 in Appendix A. The results for n = 8 can be found in the previously given Tables

5.2 and 5.3.

The results of the heuristics algorithms for n = 20 can be seen in Tables 5.12 and 5.13

for (EEMPR-T) and (EEMPR-E) versions of the problem, respectively. For (EEMPR-

T) version of the problem, if there is no time restriction for the computational studies,

combined 2-opt and 3-opt algorithm should be executed since it is able to find the

best objective function value in more starts than the 2-opt algorithm. Although for

some of the instances 3-opt algorithm can arrive at the best objective function value

solutions in more random starts, the solution times are very slow when compared to

the combined 2-opt and 3-opt algorithm. For combined 2-opt and 3-opt algorithm, on

average 373.32 seconds and 197.62 seconds are required for random and NN meeting

order starts, respectively. When 9 random and 1 NN meeting order starts are executed,

computations last approximately 1 hour. For (EEMPR-E) version of the problem,

except for instance 3, combined 2-opt and 3-opt algorithm is able to find the best

objective function value in all random and NN meeting order starts with solution

times on average 572.33 and 296.14 seconds, respectively. When 9 random and 1

NN meeting order starts are executed, computations last approximately 1.5 hours.

3-opt algorithm is not desirable because of the excessive solution times. For both

versions of the problem, if faster solution times are required, 2-opt algorithm can be

executed with a small amount of decrease in the probability of being able to find the

best objective function value, especially for (EEMPR-T) version of the problem. If 9

random and 1 NN meeting order start is executed for 2-opt algorithm, approximately

30 and 35 minutes are required for (EEMPR-T) and (EEMPR-E), respectively. These

computational time requirements can be decreased by using parallel computers.

The results of the heuristics algorithms for n = 30 can be seen in Tables 5.14 and

5.15 for (EEMPR-T) and (EEMPR-E) versions of the problem, respectively. The

combined 2-opt and 3-opt algorithm provides the best results as means of the to-

tal number of best objective function values observed in starts. However, the solu-
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tion times are very high. If 9 random and 1 NN meeting order starts are executed,

then a practitioner needs approximately 7.5 hours and 10 hours for (EEMPR-T) and

(EEMPR-E) versions, respectively, which are not desirable.

The results of the speed-up algorithm with candidate list length 0.2n for n = 30

can be observed in Tables 5.16 and 5.17 for (EEMPR-T) and (EEMPR-E) versions

of the problem, respectively. On average, the random and NN meeting order starts

lasts for 421.11 and 23.13 seconds while for (EEMPR-E) 390.94 and 24.90 seconds,

respectively. Therefore, in total, 9 random an 1 NN meeting order start requires

approximately 1 hour for both of the versions of the problem. Furthermore, the results

of the speed-up algorithm with candidate list length 0.2n for n = 50 can be observed

in Tables 5.18 and 5.19 for (EEMPR-T) and (EEMPR-E) versions of the problem,

respectively. On average, the random and NN meeting order starts lasts for 4607.86

and 314.98 seconds while for (EEMPR-E) 5191.08 and 305.11 seconds, respectively.

Therefore, in total, 9 random an 1 NN meeting order start requires 11.5 and 13 hours

for (EEMPR-T) and (EEMPR-E), respectively. To conclude, if a practitioner has time

for computations, we suggest to utilize speed-up algorithm for cases where more than

30 mobile worker robots are used in a field.

Nevertheless, if a practitioner has time restriction due to the nature of the mission, we

suggest them to utilize modified speed-up algorithm 3 since it requires less amount of

time. To be more specific, the results of the modified speed-up algorithm 3 for n = 30

can be observed in Tables 5.20 and 5.21 for (EEMPR-T) and (EEMPR-E) versions

of the problem, respectively. On average, the random and NN meeting order starts

lasts for 101.35 and 10.52 seconds while for (EEMPR-E) 104.05 and 14.98 seconds,

respectively. Therefore, in total, 9 random an 1 NN meeting order start requires

approximately 15 minutes for both of the versions of the problem. Moreover, the

results of the modified speed-up algorithm 3 when n = 50 are displayed in Tables 5.22

and 5.23 for (EEMPR-T) and (EEMPR-E) versions of the problem, respectively. On

average, the random and NN meeting order starts lasts for 783.56 and 79.25 seconds

while for (EEMPR-E) 697.33 and 63.93 seconds, respectively. Therefore, in total, 9

random an 1 NN meeting order start requires approximately 2 hours for both of the

versions of the problem. These computational time requirements can be decreased

even more by using parallel computers.
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Table 5.16: Computational times (in seconds) and objective function values of the

speed-up algorithm with candidate list length 0.2n for (EEMPR-T) when n = 30

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 1 11084 11322 466.51 0 11135 25.16 11084 11059 0.23

2 1 8630 8831 418.72 1 8630 11.78 8630 8629 0.01

3 0 9973 10780 445.86 1 9962 8.96 9962 9959 0.03

4 1 8074 8235 397.74 0 8082 16.85 8074 8055 0.24

5 1 8931 9064 425.87 0 9763 20.51 8931 8920 0.12

6 1 8700 8965 438.58 0 9050 95.55 8700 8687 0.15

7 0 9576 9619 410.86 1 9574 13.70 9574 9566 0.08

8 0 8875 9232 439.11 1 8873 9.14 8873 8873 0.00

9 0 9561 9822 366.69 1 9556 8.76 9556 9550 0.06

10 1 7588 7726 401.16 0 7813 20.86 7588 7565 0.30

Table 5.17: Computational times (in seconds) and objective function values of the

speed-up algorithm with candidate list length 0.2n for (EEMPR-E) when n = 30

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 2698674 2952352 389.92 1 2485201 30.99 2485201 2400182 3.42

2 0 2169053 2543873 331.04 1 2059071 13.34 2059071 2022610 1.77

3 0 2156231 2646105 407.77 1 2074426 11.05 2074426 2039472 1.68

4 0 1864085 2203654 332.51 1 1786594 15.24 1786594 1772701 0.78

5 1 2093609 2549324 358.21 0 2285873 17.72 2093609 1927845 7.92

6 0 2356946 2548176 434.76 1 2196636 91.38 2196636 2075064 5.53

7 0 2360163 2675634 401.54 1 2330462 7.74 2330462 2255929 3.20

8 0 1968429 2236950 481.02 1 1740512 11.51 1740512 1738229 0.13

9 0 2392080 2581148 352.87 1 2172974 17.88 2172974 2130996 1.93

10 0 2054180 2284515 419.70 1 1939110 32.11 1939110 1838697 5.18

Furthermore, you can find the summaries of the algorithms in Tables 5.24 and 5.25,

for (EEMPR-T) and (EEMPR-E), respectively. The average percent differences for

objective function values are calculated based on the best objective function value for

each instance found by all of the algorithms solved so far. When n = 20 and 30,

the best objective function values are observed in improvement heuristics algorithms.

However, when n = 50, we used the best objective function values seen in speed-up

heuristics since we do not solve the heuristics algorithms for these instances. Also,

for NN, we do not have any average or worst values for the objective function values

since we only solve the algorithm with only one start which is an NN meeting order

start. The values for random starts are the averages of all the instances based on

different 9 random meeting order starts. An example calculation of these values can

be given as follows. We observe the best objective function values found by all of
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Table 5.18: Computational times (in seconds) and objective function values of the

speed-up algorithm with candidate list length 0.2n for (EEMPR-T) when n = 50

Instance

No

Random NN Best Obj.

Value Overall# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 13763 15224 4423.53 1 13709 203.16 13709

2 0 13275 13889 5171.04 1 13258 163.55 13258

3 1 13633 15281 4041.65 0 19981 431.57 13633

4 0 14822 15597 4719.05 1 14817 509.62 14817

5 0 15902 17305 4605.73 1 15843 459.21 15843

6 1 13468 13749 5195.85 0 13496 106.82 13468

7 1 13389 13890 4970.54 0 15561 310.55 13389

8 1 15699 19700 4787.47 0 22343 318.62 15699

9 1 15018 17485 4372.93 0 15169 446.06 15018

10 0 13363 14478 3790.77 1 13300 200.63 13300

Table 5.19: Computational times (in seconds) and objective function values of the

speed-up algorithm with candidate list length 0.2n for (EEMPR-E) when n = 50

Instance

No

Random NN Best Obj.

Value Overall# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 3518574 3810386 4826.33 1 3305553 123.11 3305553

2 0 3550945 3846592 4634.18 1 3456016 81.04 3456016

3 1 3423864 3810586 4974.63 0 3568597 337.46 3423864

4 1 3360792 3770216 5041.85 0 3554196 510.13 3360792

5 1 3640956 4000643 4582.40 0 3892224 383.03 3640956

6 0 3439439 3956339 5119.82 1 3278941 172.15 3278941

7 1 3180859 3375706 6074.98 0 3692085 511.32 3180859

8 1 4001039 4254164 5826.06 0 4546485 388.46 4001039

9 0 3944798 4373212 6251.40 1 3745553 255.01 3745553

10 1 3611398 4038793 4579.17 0 3925866 289.39 3611398

the algorithms for (EEMPR-T) when n = 30 in Table 5.14 in Best Obj. Overall

column. For each instance, we compare these values one by one with the average

objective function values found by the modified speed-up algorithm 3 seen in Table

5.20 in column Avg. Obj. Value. The comparison is made to see the % differences by

calculating how much improvement is required to achieve the best objective function

value. In the end, we take the average of all these % differences.

The values observed as 100.000 means that the instances are infeasible and require

100% improvement to become feasible. Moreover, in some of the instances, we ob-
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Table 5.20: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-T) when n = 30

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 11284 17866 103.72 1 11135 11.26 11135 11059 0.68

2 1 8648 11426 106.29 0 8654 7.09 8648 8629 0.22

3 0 10070 17820 107.30 1 9962 5.98 9962 9959 0.03

4 1 8069 10204 92.19 0 8141 9.37 8069 8055 0.17

5 1 8958 11375 98.18 0 15522 10.07 8958 8920 0.42

6 1 8725 12644 112.25 0 19513 25.07 8725 8687 0.44

7 1 9584 14419 98.79 0 9621 7.54 9584 9566 0.19

8 0 9188 12095 111.50 1 8873 4.89 8873 8873 0.00

9 1 9589 11202 94.78 0 10752 8.11 9589 9550 0.41

10 1 7612 11742 88.47 0 7813 15.78 7612 7565 0.62

Table 5.21: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-E) when n = 30

Instance

No

Random NN Best Obj.

Value Overall

Previous Best

Obj. Value

% Difference of

Obj. Values# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 2584709 3013017 98.28 1 2534891 18.47 2534891 2400182 5.31

2 0 2174729 2556566 111.22 1 2065868 8.58 2065868 2022610 2.09

3 0 2510292 2905690 122.51 1 2074426 6.23 2074426 2039472 1.68

4 0 2021662 2487332 86.77 1 1786594 9.22 1786594 1772701 0.78

5 1 2129074 2695540 103.82 0 2316571 8.68 2129074 1927845 9.45

6 1 2265556 17x107 122.89 0 2539601 48.87 2265556 2075064 8.41

7 0 2415421 2907891 93.99 1 2365036 7.32 2365036 2255929 4.61

8 0 1844294 2635520 110.76 1 1740512 6.42 1740512 1738229 0.13

9 1 2378329 2707315 94.32 0 2438792 11.74 2378329 2130996 10.40

10 0 1957516 2416234 95.98 1 1908355 24.28 1908355 1838697 3.65

serve both feasibility and infeasibility in best, average or worst objective function

values. To calculate the average percent differences, we also take these infeasible

solutions as 100% while calculating the average. For instance, in Table 5.24, when

n = 30, we observe 87.969 as average % difference of bests for 3-opt algorithm, if

we exclude the infeasible solutions observed in the instances, we would end up seeing

this value as 59.899.

The average percent differences of times are calculated based on the times of 2-opt

and 3-opt algorithms of random and NN meeting order starts. Since these are the base

values, we observe 0.000 values in Avg. % Difference of Times rows of 2-opt and

3-opt algorithms for each value of n. Note that since we do not solve the heuristics

algorithms for n = 50 instances, the average percent difference of times cannot be

represented. An example calculation for Avg. % Difference of Times row can be
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Table 5.22: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-T) when n = 50

Instance

No

Random NN Best Obj.

Value Overall# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 1 13836 22532 696.00 0 15412 58.32 13836

2 1 13650 19869 815.17 0 13965 41.26 13650

3 1 13885 18903 772.86 0 18054 93.65 13885

4 0 17434 25803 697.61 1 16759 89.53 16759

5 1 16631 19494 671.80 0 22903 51.23 16631

6 1 13515 20449 747.05 0 14426 40.11 13515

7 1 13648 19323 912.73 0 20906 127.70 13648

8 1 16226 22232 802.20 0 22634 82.42 16226

9 0 16524 90x107 961.85 1 15428 132.49 15428

10 1 13559 19136 758.31 0 14277 75.77 13559

Table 5.23: Computational times (in seconds) and objective function values of the

modified speed-up algorithm 3 for (EEMPR-E) when n = 50

Instance

No

Random NN Best Obj.

Value Overall# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 0 3725646 4725548 730.75 1 3555053 56.73 3555053

2 0 3770751 4525174 713.44 1 3442646 47.64 3442646

3 1 3869511 4222883 709.36 0 3890121 99.65 3869511

4 1 4071201 27x108 637.48 0 4377633 58.38 4071201

5 1 3866733 4433459 613.49 0 4124602 56.90 3866733

6 1 3727663 4257557 697.80 0 3799870 47.33 3727663

7 1 3336292 3879094 764.91 0 3448967 103.43 3336292

8 1 4161240 4601310 689.03 0 4978486 69.68 4161240

9 1 4192975 14x108 810.09 0 4517024 55.43 4192975

10 1 3870281 4505301 606.92 0 4208711 44.10 3870281

given as follows. The average solution time of all 9 random starts are calculated for

instances when n = 20. Then for each instance, these averages are compared with the

average times of 2-opt and 3-opt algorithm which were calculated in the same manner.

Then the average of all these percent differences for 10 instances are calculated and

observed as −88.389.
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Table 5.24: Summary table for (EEMPR-T)

EEMPR-T

n % Difference
2-opt 3-opt 2-opt and 3-opt Speed-up alg. CL = 0.2n Modified speed-up alg. 3

Random NN Random NN Random NN Random NN Random NN

20 Avg. % Difference of Best Objectives 0.000 0.003 0.000 0.002 0.000 0.001 - - - -

Avg. % Difference of Average Objective 0.242 - 0.005 - 0.005 - - - - -

Avg. % Difference of Worst Ojectives 1.284 - 0.010 - 0.008 - - - - -

Avg. % Difference of Times -88.389 -519.875 89.989 60.751 0.000 0.000 - - - -

30 Avg. % Difference of Best Objectives 0.001 0.005 87.969 0.001 0.001 0.001 0.143 1.702 0.649 11.500

Avg. % Difference of Average Objective 0.094 - 100.000 - 0.009 - 2.810 - 29.124 -

Avg. % Difference of Worst Ojectives 0.552 - 100.000 - 0.015 - 22.658 - 56.695 -

Avg. % Difference of Times -122.734 -707.479 73.543 72.934 0.000 0.000 -578.520 -5665.570 -2719.360 -12581.501

50 Avg. % Difference of Best Objectives - - - - - - 0.139 7.667 1.050 13.733

Avg. % Difference of Average Objective - - - - - - 8.693 - 36.562 -

Avg. % Difference of Worst Ojectives - - - - - - 28.790 - 53.549 -

Avg. % Difference of Times - - - - - - - - - -

Table 5.25: Summary table for (EEMPR-E)

EEMPR-E

n % Difference
2-opt 3-opt 2-opt and 3-opt Speed-up alg. CL = 0.2n Modified speed-up alg. 3

Random NN Random NN Random NN Random NN Random NN

20 Avg. % Difference of Best Objectives 0.000 0.087 0.000 0.000 0.000 0.000 - - - -

Avg. % Difference of Average Objective 0.199 - 0.000 - 0.000 - - - - -

Avg. % Difference of Worst Ojectives 1.415 - 0.000 - 0.000 - - - - -

Avg. % Difference of Times -151.270 -505.712 86.699 57.235 0.000 0.000 - - - -

30 Avg. % Difference of Best Objectives 0.000 0.301 60.056 0.000 0.000 0.000 8.552 3.929 9.189 6.596

Avg. % Difference of Average Objective 1.214 - 100.000 - 0.000 - 19.956 - 32.873 -

Avg. % Difference of Worst Ojectives 5.050 - 100.000 - 0.000 - 30.384 - 44.106 -

Avg. % Difference of Times -174.397 -704.063 64.335 70.852 0.000 0.000 -630.892 -5256.064 -2646.016 -8801.507

50 Avg. % Difference of Best Objectives - - - - - - 1.882 5.019 9.269 12.635

Avg. % Difference of Average Objective - - - - - - 10.753 - 36.426 -

Avg. % Difference of Worst Ojectives - - - - - - 20.843 - 45.968 -

Avg. % Difference of Times - - - - - - - - - -
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CHAPTER 6

CONCLUSION

In this thesis, we worked on energy efficient multi-place robot rendezvous problem,

i.e., EEMPR, by considering campaign time restrictions. We examine two different

objective functions. The first one aims to minimize the total energy consumption of

the robots, i.e., EEMPR-E while the second one is to minimize the campaign time,

i.e., EEMPR-T. We proposed a second order cone programming formulation to find

the optimal set of rendezvous places for a given meeting order. We also implement

improvement heuristics to find a better meeting order which improves the objective

function value. Furthermore, in our computational studies it is realized that while uti-

lizing improvement heuristics, computational times increase rapidly when the number

of mobile worker robots increases. Hence, for cases where 30 or more mobile worker

robots are used, we provide speed-up algorithms to decrease the solution times. We

suggest to the reader that if there is no time restriction for the computational studies,

combined 2-opt and 3-opt algorithm can be utilized for small size instances. How-

ever, if the computational time is limited, then 2-opt algorithm can be executed. For

the large size instances, if time is not restrictive, the speed-up algorithm which is an

extension of combined 2-opt and 3-opt algorithm with fixed radius search, candidate

list and don’t look bits approaches should be used by taking the candidate list length

as 0.2n. On the other hand, when there is a time restriction for the computational

studies, modified speed-up algorithm 3 should be used which is an extension of the

speed-up algorithm.

Overall, the contributions of this study can be listed as follows. We can say that this

is the first study that

• takes campaign time restriction into account for minimizing energy consump-
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tion objective function,

• can handle a non-linear energy consumption function,

• allows robots to adjust their speeds,

• proposes an SOCP formulation which can handle non-linearity,

• considers TSP speed-up techniques for favorable solution times to be imple-

mented for higher number of mobile worker robots,

• performs extensive computational experiments on the implementation of TSP

improvement heuristics on EEMPR.

In this study, we assume multi-place robot rendezvous problem. Single-place robot

rendezvous problem version by considering energy efficiency and campaign time re-

strictions can be considered in future studies. Also, the case where there are multiple

tanker robots can be studied. In this case, there will also be assignment of mobile

worker robots to the tanker robots. Last but not least, different variations of improve-

ment heuristics can be performed. For instance, rather than looking at all the moves

and find the best improvement in the heuristics algorithms, implementing the first

improving move to the meeting order can be applied.
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APPENDIX A

APPENDIX

Table A.1: Fixed radius search algorithm results for (EEMPR-T) when n = 50

Instance

No

Random NN Best Obj.

Value Overall# Best Best Obj. Value Avg. Obj. Value Avg. Time # Best Obj. Value Time

1 1 13623 13904 8146.89 0 13715 310.70 13623

2 1 13230 13358 6375.72 0 13262 387.26 13230

3 1 13490 13533 8012.68 0 14070 3287.32 13490
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