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ABSTRACT

EFFECT OF VERTICAL GROUND MOTION ON THE PERFORMANCE
OF HIGH-RISE BUILDINGS

Keskin, Engin
Master of Science, Earthquake Studies
Supervisor : Prof. Dr. Murat Altug Erberik
Co-Supervisor: Prof. Dr. Aysegiil Askan Gilindogan

April 2020, 159 pages

Throughout the history, the creation of new environments to support the needs of
urban populations has been attained to a great extent through horizontal construction.
When settlements with limited territories started to face rapid population growth,
designers and government bodies started to give preference to vertical construction
as it allowed urban growth within bounds. Vertical construction, also referred to as
high-rise buildings, has quickly become an integral method for the development and
expansion of settlements into urban areas, and cities into megacities. As the trend for
construction moves from horizontal to vertical, there is a need for engineers to
introduce new concepts and notions for the engineering of high-rise buildings that
are safe and structurally sound. This study focuses on the effect of vertical
components of ground motion records on the performance of a typical high-rise
buildings. To see the effect of the vertical ground motion, 100 earthquake records
are selected according to the source-to-site distance, site class, and earthquake
magnitude. A generic high-rise reinforced concrete building designed according to

Turkish Building Seismic Code (TBSC18) has been evaluated in terms of inter-story



drift ratio, overturning moment, column axial force, and story shear force under the
selected earthquake records. According to the nonlinear time history analysis, it was
observed that the vertical ground motion has a very slighly effect in terms of inter-
story drift ratio, overturning moment and base shear. However, it is observed that the
vertical ground motion has a significant effect on the axial force on columns as
expected. Results show that axial force (both compressive and tension) on a column,
normalized with column axial capacity, is increased by 20% in the near-field zone.
The observed maximum increase in compressive force is around 105%, 57%, and
68% of the column axial capacity for site classes A,B, anc C, respectively. When the
results are examined in detail it is seen that the influence of vertical ground motion
increases significantly when the contribution of horizontal ground motion is small.
The above observations prove that the effect of vertical ground motion should be

included during seismic design of high-rise structures.

Keywords: Vertical Ground Motion, High-Rise Buildings. Non-Linear Time History

Analysis, Inter-story Drift Ratio, Story Shear Force, Column Axial Force
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DUSEY DEPREM YER HAREKETININ YUKSEK BINALARIN
PERFORMANSINA ETKISI

Keskin, Engin
Yiiksek Lisans, Deprem Caligsmalari
Tez Yoneticisi: Prof. Dr. Murat Altug Erberik
Ortak Tez Yoneticisi: Prof. Dr. Aysegiil Askan Giindogan

Nisan 2020, 159 sayfa

Kentsel niifusun ihtiyaclarini desteklemek i¢in yeni ortamlarin yaratilmasi, tarih
boyunca biiyiik 6l¢iide yatay mimari yoluyla elde edilmistir. Sinirli bdlgeleri olan
yerlesimler hizli niifus artis1 ile kars1 karsiya kalmaya basladiginda, tasarimcilar ve
hiikiimet organlar1 belirli sinirlar iginde kentsel biiylimeye izin verildigi i¢in dikey
mimariyi tercih etmeye baglamistir. Yiiksek binalar olarak da adlandirilan dikey
mimari, hizli bir sekilde yerlesimlerin kentlesmesi ve sehirlerin mega sehir haline
gelmesi icin tercih edilen bir yontem haline gelmistir. insa etme egilimi yataydan
dikeye dogru ilerledik¢e, miihendislerin giivenli ve yapisal olarak saglam yiiksek
katli binalarin miihendisligi i¢in yeni bir boyut getirmeleri gerekmektedir. Bu
calisma, diisey deprem hareketlerinin tipik bir yiiksek yapinin performansina etkisi

ilizerine odaklanmustir.

Diisey deprem hareketinin etkisini gérmek i¢in, kaynak-saha mesafesi, zemin sinifi
ve deprem biiyiikliigiine gore 100 deprem kaydi seg¢ilmistir. Tiirkiye Bina Deprem
Yonetmeligine (TBDY18) gore tasarlanan betonarme bina, bu deprem kayitlart
altinda etkin goreli kat 6telemesi, devrilme momenti, kolon eksenel kuvveti ve kat

kesme kuvveti agisindan degerlendirilmistir. Zaman tanim alaninda dogrusal

vii



olmayan analiz sonuglarina gore, diisey deprem hareketinin goreli kat telemesi,
devrilme momenti ve taban kesmesi acgisindan Onemli bir etkisi olmadigi
gozlenmistir. Ayrica, diisey deprem hareketinin kolonlar tizerindeki eksenel kuvvet
tizerinde de 6nemli bir etkisi vardir. Kolon eksenel kapasitesi ile normalize edilen
sonuglar, kolon tizerindeki eksenel kuvvet (hem basing hem ¢ekme) degisiminin
yakin alan bolgesinde %20 arttigin1 gostermektedir. Gozlenen maksimum basing
artis1, A, B, ve C zemin siniflarina gore sirasiyla kolon eksenel kapasitesinin yaklagik
%105, %57’si, ve %68’idir. Sonuclar ayrintili olarak incelendiginde, yatay yer
hareketinin katkis1 az oldugunda diisey deprem hareketinin etkisinin 6nemli dlciide
arttig1 goriilmiistiir. Yukarida bahsi gecen tiim gozlemler, yiiksek yapilarin deprem
tasarim1 yapilirken diisey deprem hareketinin de dikkate alinmasi gerektigi

yoOniindeki iddiay1 kanitlamaktadir.

Anahtar Kelimeler: Diisey Deprem Hareketi, Yiiksek Bina, Zaman Tanim Alaninda
Dogrusal Olmayan Analiz, Kat Otelemesi, Kat Kesme Kuvveti, Kolon Eksenel

Kuvveti
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CHAPTER 1

INTRODUCTION

Outlining the effects of ground motion due to earthquakes on buildings has
historically been a challenge for designers and engineers. This task has become even
more difficult when buildings started to get increasingly taller. Seismic design
regulations created for various types of buildings are needed to be expanded to
include specialized provisions for its effect on high-rise buildings. Some regulations
around the world have seen recent improvements when the vertical component of
ground motion along with the horizontal component has started to be considered for
the design of buildings. This, however, is used as a holistic method and applies to
the design of all types of buildings. The aim of this study is to examine the effect of
the vertical component of ground motion on high-rise buildings specifically to

understand if better descriptions of design specifications can be introduced.

1.1  Horizontal and Vertical Components of Ground Motion

Waves of energy released by an earthquake traveling through a medium are called
seismic waves. Ground shaking caused by seismic waves results in ground
acceleration when they reach the site of a built structure. Ground acceleration, also
referred to as ground motion, is composed of two components: horizontal and
vertical. Some recent studies suggest the ratio of vertical to horizontal components

of ground motion can provide useful data for the seismic design of built structures.



1.2 Literature Review

One of the first studies related to vertical ground motion is carried out with the aim
of to create both vertical and separate horizontal response spectra of certain
earthquakes to be able to make a comparison of these spectra, to determine the shape
of spectra depending on frequency, and finally to make a procedure suggestion
regarding horizontal and vertical responses. In that study, it is suggested that
approximately 2/3 of the horizontal spectrum should be considered for the vertical
spectrum (Newmark et al., 1973). In some other studies, this ratio is suggested lower
than 2/3. For example, it is concluded that the ratio is approximately 1/3 (Kawashima
et al., 1985). Moreover, it is stated that almost there is no correlation between this
ratio and the earthquake magnitude and epicentral distance. In some studies, this
ratio is suggested bigger than 2/3. For instance, it is stated that the ratio of peak
vertical ground acceleration to peak horizontal ground motion is fault type dependent
and it is independent of distance. Moreover, it is stated that the ratio exceeds 1 in
short periods whilst it is lower than 1 in intermediate and long periods (Ambraseys,

Simpson, & Bommer, 1996).

Through time, several codes have started to include the effect of vertical ground
motion. In Turkey, the effect of vertical ground motion is started to be considered
with the new seismic code, TBSC18 (Turkish Building Seismic Code, 2018). The
vertical elastic design spectrum along with the horizontal elastic design spectrum
defined in TBSC18 is presented in Figure 1.1. In the Code, it is stated that the effect
of the vertical ground motion can be taken as (2/3)SpsG under certain conditions. In
the statement, Sps denotes short period design spectral acceleration coefficient, and

G denotes dead load.



Horizontal Elastic Design Spectrum

= = = Vertical Elastic Design Spectrum
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Figure 1.1. Spectral Acceleration vs Period Graphs of Vertical and Horizontal Design Spectrum
(TBSC18)

1.3 Identifying the Major Factors Defining the Effect of Vertical
Component of Ground Motion on Built Structures

The vertical and horizontal components of ground motion can be analyzed in terms
of local site conditions, source-to-site  distance, and earthquake
magnitude (Bozorgnia & Campbell, 2004). The vertical-to-horizontal ratio of ground
motion (V/H) exhibits different behaviors at different soil types (Silva, 1997), differs
based on source-to-site distance and its effect is dependent on earthquake
magnitude (Collier & Elnashai, 2001). In some studies, local site conditions, source-
to-site distance, and earthquake magnitude are used to identify the effects of the
vertical component of ground motion on specialized structures (nuclear power
plants, dams, bridges, etc.). Site class, source-to-site distance, and earthquake
magnitude are utilized in this study to outline the effect of the vertical component of

ground motion on high-rise buildings.

1.4 Scope and Outline

In this chapter, horizontal and vertical components of ground motion have been

explained briefly. The aim is to bring attention to the fact that there are no



generalized specifications that help explain the effects of vertical ground motion on
high-rise buildings. A brief overview of major factors defining the effect of the
vertical component of ground motion on built structures is presented to shape the

discussion towards finding better descriptions of seismic design specifications.

In Chapter 2, a model reinforced concrete structure building designed with a
symmetric plan layout is presented as a case study. The composition of the building
is in accordance with the definition of a high-rise structure as outlined in the Turkish
Building Seismic Code 2018 (TBSC18).

Chapter 3 covers the selection and processing stage of actual earthquake records that
are used to realistically observe the effect of the vertical component of ground
motion on the model building. Earthquake magnitude (Mw), soil type and source-to-
site distance are considered in the selection of these records.

Non-linear time history analysis method is used to observe the behavior of the
structure under time series. Non-linear modeling of the case study building is

presented in Chapter 4.

Chapter 5 covers the results of non-linear time-history analyses and its interpretation
based on inter-story drift ratio, overturning moment, axial force on columns, and

story shear force.

In Chapter 6, a brief summary of this study is given. Moreover, the results of this
study are interpreted, and the conclusions of the study are presented. Finally, some

future studies are recommended.



CHAPTER 2

DESIGN OF THE MODEL HIGH-RISE BUILDING

2.1  General Information About the Building

A reinforced concrete building designed according to the New Turkish Building
Seismic Code (TBSC18) is used to represent a model high-rise building in the current
study. The building has 30 floors with a typical floor height of 4 m. The total height
of the building is 120 m.

Ten different tall office buildings around the world have been investigated to
represent the characteristics of floor plan layouts and structural systems of
contemporary high-rise reinforced concrete buildings (Figure 2.1). Based on the
information gathered by this investigation, a floor plan with perimeter columns and
a central core with I-shaped structural walls is selected for the model building. The
reason for selecting the I-shaped structural wall is to satisfy minimum wall
requirements according to design code as well as to provide free space as much as
possible. The plan is aimed to be symmetrical to reduce analysis time by eliminating
direction effect. Therefore, the columns are located symmetrically in the plan. The
structural walls, on the other hand, are symmetric in both principal directions
separately. It is not possible to choose a symmetrical structural wall layout in both
principal directions at the same time due to architectural reasons. In addition, the
horizontal structural members are designed with the same cross-sectional properties
for all floors while the vertical structural members are reduced in cross-sectional size
at every 10 floors for a more optimal design. The typical floor plan is presented in

Figure 2.2.
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Figure 2.1. Geometry of typical floor plans of ten tall office buildings around the world (Sev &
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Figure 2.2. Typical Floor Plan

Since the total height of the model building is 120 m., it is classified as “high-rise
building” according to the new Turkish Building Seismic Code (Table 3.3 in
TBSC18). Building height class (BYS in the Code) is specified as BYS = 1 for high-
rise buildings. Building height ranges according to building height class and

earthquake design class are presented in Table 2.1.



Table 2.1. Building Height Classes and Building Height Ranges Defined Per Earthquake Design
Classes (Table 3.3 of TBSC18)

o Building Height Classes and Building Height Ranges Defined

Building .
Height Class per Earthquake Design Classes [m
DTS=1, 14 2, 2a DTS=3,3a | DTS=4,4a

BYS=1 Hn > 70 Hn > 91 Hn > 105
BYS=2 56 <Hn <70 70<HN<91 [91<HNZ105
BYS=3 42 <HN <56 56 <HN<70 | 56 <Hn<091
BYS=4 28 < Hn <42 42 <Hn <56
BYS=5 175 <Hn <28 28 <Hn<42
BYS=6 105<HNZ17.5 175 <HN<28
BYS=7 7<HnZ10.5 10.5<HN<17.5
BYS=8 Hn<7 Hn < 10.5

Even if the building is classified as a high-rise building regardless of its design class,

it should be designed according to one of the earthquake design classes (DTS in the

Code) as given in Table 3.2 of TBSC18.

Table 2.2. Earthquake Design Classes (Table 3.2 of TBSC18)

Sho'rt' Perl'od Design Spectrum Acceleratlor_l Building Occupancy Class
Coefficient in DD-2 Earthquake Ground Motion
(Sps) BKS =1 BKS=2,3
Sps < 0.33 DTS =4a DTS=4
0.33 < Sps < 0.50 DTS =3a DTS=3
0.50 < Sps <0.75 DTS =2a DTS=2
0.75 < Spbs DTS =1a DTS=1

In order to determine the BYS of the building, building occupancy class (BKS in the

Code) and short period design spectral acceleration coefficient (Sps in the Code)

should be determined first. According to Table 3.1 of TBSC18, building occupancy



class can be chosen as BKS=3 for high-rise buildings. In this study, BKS is chosen

as 3.

Table 2.3. Building Occupancy Classes and Importance Factors (Table 3.1 of TBSC18)

Building
Occupancy
Class

Purpose of Occupancy

Importance
Factor (1)

BKS=1

Buildings required to be utilized after the
earthquake, intensively and long-term
occupied buildings, buildings preserving
valuable goods and buildings containing
hazardous materials
a) Buildings required to be utilized
immediately  after the earthquake
(Hospitals, dispensaries, health wards,
firefighting buildings and facilities, PTT
and other telecommunication facilities,
transportation stations and terminals,
power generation and distribution
facilities; governorate, county and
municipality administration buildings,
first aid and emergency planning stations)
b) Schools, other educational buildings and
facilities, dormitories and hostels, military
barracks, prisons, etc.
c) Museums
d) Buildings containing or storing toxic,
explosive and flammable materials, etc.

1.5

BKS =2

Intensively but short-term occupied buildings
Malls, sport facilities, cinema, theatre and
concert halls, etc.

1.2

BKS =3

Other Buildings

Buildings other than above defined buildings for
BKS=1 and BKS=2. (Residential and office
buildings, hotels, building-like  industrial

structures, etc.)




There were four seismic zones defined in the former version of the Turkish Seismic
Code (2007) or in short TSCO7. Peak ground acceleration (PGA) was dependent on
these seismic zones. However, in TBSC18, there are no such seismic zones. PGA and
spectral acceleration (Sa) are dependent on the location, where the building is going
to be designed and constructed. Eventually, the Sps, Si, and PGA values vary with
the distance between building location and the nearest fault. To use consistent
spectral values with TSCO7, Ss and Sz are chosen as 1.0 and 0.276, respectively for a
building location of 41.017808 ° N and 28.896445° E (Giingoren district of Istanbul)
(These values are taken from the website of AFAD (Disaster and Emergency
Management Presidency) that provides Seismic Hazard Maps for Turkey
(https://tdth.afad.gov.tr/TDTH/main.xhtml)). Horizontal elastic design spectrum in
TBSC18 is presented in Figure 2.3.

Spr 7|

0.48ps 7 |

v

Figure 2.3. Horizontal Elastic Design Spectrum (Figure 2.1 in TBSC18)

Spectral acceleration is defined in terms of Sps after obtaining the Ssvalues from the
map. The relationship between Ss and Sps is given in Equation 2.1. A similar

relationship exists between spectral acceleration values at short period, i.e S1 and Spy,
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as given in Equation 2.2. Site coefficients at short period (i.e Fs in the Code) and

Site coefficients at 1 second period (i.e F1 in the Code) are presented in Table 2.4 —

2.5, respectively.

SDS - SSFS """""""""""" (21)
SDl - SlFl """""""""""" (22)
Table 2.4. Site Coefficients at Short Period (Table 2.1 in TBSC18)

Site Site Coefficients at Short Period, Fs

Class | Ss<0.25 | Ss=0.50 | Ss=0.75 | Ss=1.00 | Ss=1.25 | Ss>1.50
ZA 0.8 0.8 0.8 0.8 0.8 0.8
ZB 0.9 0.9 0.9 0.9 0.9 0.9
ZC 1.3 1.3 1.2 1.2 1.2 1.2
ZD 1.6 1.4 1.2 1.1 1.0 1.0
ZE 2.4 1.7 1.3 1.1 0.9 0.8
ZF Site-specific soil behavior analysis will be performed.

Table 2.5. Site Coefficients at 1 Second Period (Table 2.2 in TBSC18)

Site Site Coefficients at 1 Second Period, F1

Class | S1<0.10 | S1=0.20 | S1=0.30 | S1=0.40 | S1=0.50 | S1>0.60
ZA 0.8 0.8 0.8 0.8 0.8 0.8
ZB 0.8 0.8 0.8 0.8 0.8 0.8
ZC 1.5 1.5 1.5 1.5 1.5 1.4
ZD 2.4 2.2 2.0 1.9 1.8 1.7
ZE 4.2 3.3 2.8 2.4 2.2 2.0

ZF Site-specific soil behavior analysis will be performed.

Design spectrum for the case study building is developed by considering soil type C
since it is the most critical case according to Table 2.4. After determining building

occupancy class (BKS) and short period design spectral acceleration coefficient

11



(Sps), earthquake design class is specified as DTS = 1. Horizontal elastic design

spectrum of the selected location is presented in Figure 2.4.

Horizontal Elastic Design Spectrum of the Location

0 1 2 3 4 5 6 7 8
T [sec]

Figure 2.4. Horizontal Elastic Design Spectrum of the Location

2.2 Design of the Case Study Building

According to Chapter 13 of TBSC18, design of high-rise buildings should be

conducted in 3 phases.

1. Design phase 1: Preliminary design with DD-2 earthquake ground motion —
Dimensioning

2. Design phase 2: Assessment for uninterrupted use or limited damage
performance target with DD-4 or DD-3 earthquake ground motion — Design
enhancement

3. Design phase 3: Assessment for failure prevention or controlled damage
performance target with DD-1 earthquake ground motion — Final design

12



22.1 Design Phase 1

According to Table 3.4.b in TBSC18, design of the building must be conducted
according to strength design principles (i.e DGT in the Code).

Table 2.6. New Buildings or Existing Tall Buildings (BYS = 1) (Table 3.4.b in TBSC18)

DTS=1,2, 3, 33,4, 4a DTS =1a, 2a
Normal Design High Design
Performance Approach Performance Approach
Level Level
DD-4 KH DGT - -
DD-3 - - SH SGDT
DD-2 KH DGT® KH DGT &4
DD-1 GO SGDT KH SGDT
© Shall be conducted as preliminary design.
@) | shall be taken 1.5.

At this stage, the preliminary design of the building is conducted under DD-2
earthquake ground motion which is called standard design earthquake ground
motion. The design is carried out as per design principles of strength design
according to Table 3.4.b of TBSC18.

2.2.1.1  Modeling of the Case Study Building

The case study building has been modeled as a 3D model in structural analysis
software, ETABS (COMPUTERS AND STRUCTURES, INC. version 17.2.1).
Modeling is carried out according to the specifications given in Section 4.5 of
TBSC18. Since the focus of this study is not the design of high-rise buildings, full

design process will not be presented. Some key points will be presented instead.
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e Damping ratio is selected as 5% for preliminary design.

e Effective section rigidity is considered in design according to Table 4.2 of
the TBSC18. Effective section rigidity is considered in load combinations
with earthquake effect only (see Table 2.7).

e +5 9% eccentricity is considered in design.

e Live load participation ratio is considered as 0.3 as per Table 4.3 of the
TBSC18 (see Table 2.8).

e Concrete class is chosen as C50.

e Steel material is chosen as S420.

Table 2.7. Effective Section Rigidity Coefficients of Load Bearing Concrete Members (Table 4.2 in

TBSC18)
Load Bearing Reinforced Concrete Effective Section Rigidity Coefficient
Member

Shear Wall - Slab (In Plane) Axial Shear
Shear Wall 0.50 0.50
Basement Wall 0.80 0.50
Slab 0.25 0.25

Shear Wall - Slab (Out of Plane) Bending Shear
Shear Wall 0.25 1.00
Basement Wall 0.50 1.00
Slab 0.25 1.00

Frame Member Bending Shear
Coupling Beam 0.15 1.00
Frame Beam 0.35 1.00

Frame Column 0.70 1.00

Shear Wall (Equivalent frame) 0.50 0.50

14



Table 2.8. Live Load Participation Ratio (Table 4.3 in TBSC18)

Purpose of Occupancy Class of Building n
Depot, warehouse, etc. 0.80
School, dormitory, sport facility, cinema, theatre, concert hall, car 0.60
park, restaurant, shop, etc. '
Residence, office, hotel, hospital, etc 0.30

2.2.1.2  Load Combinations to be Considered in Design

Load combinations to be used in the design of the case study model are given in
Table 2.9. These combinations are taken from TBSC18 and TS500 (Requirements for
Design and Construction of Reinforced Concrete Structures, 2000). The purpose of
each load combination is also given in the last column of the table. For the load
combinations with earthquake load, directional effect is considered.

Table 2.9. Load Combinations

Combination Case Com.pon.ents of Explanation
Name Combination
C100 1.0G + 1.0Q Service load combination.
C101 1.0G + 0.5Q Service load combination.
C200 1.4G + 1.6Q Factored vertical load combination.
C250 0.9G Factored vertical load combination.
C300 ~ C303 1.0G +1.3Q £ 1.3W Wind load combination.
C304 ~ C307 0.9G + 1.3W Wind load combination.
C400 ~ C401 1.0G+1.2Q+1.2T Temperature combination.
C600 ~C601 | (1.0+0.2Sps)G + 1.0Q + Combination for moment.
1.0SPEC
C602 ~ C603 | (0.9 - 0.2Sps)G + 1.0SPEC Combination for moment.
C650 ~ C651 | (1.0 +0.2Sps)G + 1.0Q + | Combination for shear on columns
D*SPEC and beams.
C652 ~ C653 | (0.9 - 0.2Sps)G + D*SPEC | Combination for shear on columns
and beams.
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Table 2.9 Load Combinations (Cont.)

Combination Case Components of :
. Explanation
Name Combination
(1.0 + 0.2Sps)G + 1.0Q + Combination for shear on solid
€850 ~ C851 1.2*D*SPEC structural walls.
C852 ~ C853 (0.9-0.2Sps)G + Combination for shear on solid
1.2*D*SPEC structural walls.
C875~C876 | (1.0+0.2Sps)G +1.0Q + | Combination for shear on coupled
1.4*D*SPEC structural walls.
C877 ~ C878 (0.9-0.2Sps)G + Combination for shear on coupled
1.4*D*SPEC structural walls.

In Table 2.9, some abbreviations have been used for different load parameters.
Accordingly, G denotes dead load, Q denotes live load, W denotes wind load, T
denotes temperature load, and SPEC denotes earthquake load. Also, D denotes
overstrength factor.

2.2.1.3  Earthquake Load Calculations

Structural system behavior factor (R) and overstrength factor (D) should be
determined per the requirements of Section 4.3 in TBSC18. The model building
consists of high ductile structural walls and high ductile frame members. Hence
Equation 4.2 in TBSC18, which is also provided in Equation 2.3 below, is checked
and verified. According to Section 4.5.4.3 in TBSC18, walls in Y direction are
determined as coupled walls. As a result of this, it should be considered that seismic
loads are jointly resisted by high ductile frames and high ductile solid structural walls
in X direction (A15 in Table 4.1 of the TBSC18 ) and seismic loads are jointly
resisted by high ductile frames and high ductile coupled structural walls in Y
direction (A14 in Table 4.1 of TBSC18). (Although there is no statement for BYS =
1 in the Code) R and D factors are chosen according to Table 2.10 (Table 4.1 in the

Code). M, and Mpev values used in Equation 2.3 are presented in Table 2.11.
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0.40M, < $Mppy < 0.75M,

In Equation 2.3, Mo and Mpey are defined as overturning moment at the base of

whole structure and overturning moment at the base of structural walls, respectively.

Table 2.10. Structural System Behavior Factors, Overstrength Factors and Allowable Building

Height Classes (Table 4.1 in TBSC18)

Syste_ms of Allowable
High Overstrength Building
Building Structural System Ductility Factor .
Height
Level D Class
R
Cast-in-site Reinforced Concrete Buildings
Al. Buildings with high ductility level
All. Buildings in which seismic loads
are fully resisted by high ductile frames 8 3 BYS =23
Al12. Buildings in which seismic loads
are fully resisted by high ductile coupled 7 2.5 BYS>2
structural walls
Al13. Buildings in which seismic loads
are fully resisted by high ductile solid 6 2.5 BYS>2
structural walls
Al4. Buildings in which seismic loads
are jointly resisted by high ductile frames 8 2.5 BYS>2
and high ductile coupled structural walls
A15. Buildings in which seismic loads
are jointly resisted by high ductile frames 7 2.5 BYS>2
and high ductile solid structural walls
Table 2.11. M, and Mpgy values
X direction Y direction
Mo (KN.m) 880,000 680,000
Mpev (KN.m) 550,000 470,000
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According to Equation 2.4 (Equation 13.1 in the Code) minimum earthquake force
should be determined as follows

Vt,min = O-O4aHmtSDSg ------------------- (24)

where Vimin, an, My and are defined as base shear force, empirical coefficient
depending on height of the structure, and total weight of the structure, respectively.

Base shear forces obtained from response spectrum load cases are compared with
minimum base shear force defined in Equation 2.4. It is observed that base shear
forces under response spectrum load cases do not meet the requirement of minimum
base shear.Thus, scale factors of response spectrums are modified per minimum base

shear force in order to satisfy Equation 2.4.

2214 Other Loads

According to TS498 (Design Loads for Buildings, 1997), wind pressure changes
through the height of the building. Wind pressure is considered in design according
to Table 2.12 (Table 5 in TS498).

Table 2.12. Wind Speed and Absorption Depending on Height

Height [m] Wind Speed [m/s] Absorption [kN/m?]
0-8 28 0.5
0-8 36 0.8
0-8 42 1.1
> 100 46 1.3

Since the focus of this study does not cover temperature load, detailed calculations

are not carried out for temperature load. Annual mean, maximum and minimum

18



temperature of the building location are examined. Depending on this examination
it is decided to include temperature change as + 30°.

2215 Section Control

Slab thickness is determined according to Equation 2.5 (Equation 11.1 in TS500)

lSTl ‘ZS
h = m (1—I)andh > 80mm
m

where h, Ish, m, and os are defined as slab thickness, free opening length of slab in
short direction, ratio of larger slab length to shorter slab length, and ratio of sum of
continuous edge lengths of slab to total edge length of slab, respectively. In this study

slab thickness is chosen as 200 mm.

Axial load on shear wall is checked according to Equation 2.6

Ae 2 Nop/(0.35f) == =nmmmmmmmmmmmennnnes 2.6)

where Ac, Nam, fo and are defined as gross cross-sectional area of structural wall,
maximum axial load of gravity load and combination of gravity load and earthquake
load, and characteristic compressive strength of structural wall material,

respectively.

For solid shear walls, shear force is checked according to Equation 2.7 (Equation
7.17 of the Code) whereas for coupled shear walls, shear force is checked according
to Equation 2.8 (Equation 7.17 of the Code).

Vo < 0.85Achy/fox - (2.7)

Ve = 0'65Ach fck """"""""""" (2.8)
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In these equations, Ve and Ach are defined as shear force on structural wall and gross

cross-sectional area of structural wall, respectively.

The detailing of the longitudinal reinforcement in the shear wall is carried out by
using the design principles in the code and varying with the height of the structure.
Figure 2.5 - Figure 2.7 show the reinforcement details of the shear wall for stories
between 1 —10, 11 — 20, and 21 — 30, respectively.

800 800
3 3| v:025/150 V:025/150 [Filg
3| [F—| H:020/100 H:020/100 || S
N = S N
- -
| v:025/250 V:®25/250 ||
| H:020/100 V:925/250 H:(020/100 |k—
- H:®20/100 A
S )rn o P a N\ o a N o a Nd o Nd o a “i\r o Nd o o s/n$ L
-l - |
g P q p dq g
A (| V:025/150 V:025/150 ([F—F|
3| H:020/100 H:20/100 |k
- dq p }C
1400 1400

Figure 2.5. Shear Wall Longitudinal Reinforcement for Stories Between 1 - 10
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Figure 2.6. Shear Wall Longitudinal Reinforcement for Stories Between 11 - 20
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Figure 2.7. Shear Wall Longitudinal Reinforcement for Stories Between 21 - 30
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Whilst axial force on column is checked according to Equation 2.9 under
combination of gravity load and earthquake load, axial force on column is checked
according to Equation 2.10 (Equation 7.7 of TS500) under gravity load only.

Ac = Ndm/(OA‘Ofck) """"""""" (29)

A 2 Ny /(0.90f,q)  ==-=-==mmmmmmmm- (2.10)

Dimensions and longitudinal reinforcement details of columns for stories between 1

—10, 11 — 20, and 21 — 30 are shown in Figure 2.8 - Figure 2.10, respectively.
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Figure 2.8. Column Longitudinal Reinforcement for Stories Between 1 - 10
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Figure 2.9. Column Longitudinal Reinforcement for Stories Between 11 - 20
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Figure 2.10. Column Longitudinal Reinforcement for Stories Between 21 - 30

Shear force on beam is checked by following statement given on TS500.

Vd S O.ZdeAC """""""" (211)

Dimensions and longitudinal reinforcement details of beams is given in Figure 2.11
which are the same throughout the building. Figure 2.12 shows the size and the

reinforcement of the coupling beams.
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Figure 2.11. Typical Beam Longitudinal Reinforcement
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Figure 2.12. Coupling Beam Longitudinal Reinforcement

Strong column — weak beam requirement is checked and verified by Equation 2.12
(Equation 7.3 of TBSC18)

(Mra + Mrii) = 1-2(Mri + Mrj) """""""" (2-12)

where Mra, M,;, Mri, My and are defined as moment at bottom of the column, moment
at top of the column, moment at left side of the beam, and moment at right side of

the beam, respectively.

2.2.2 Design Phase 2

Since the building is classified as DTS = 1 per Table 2.6 (Table 3.4.b in TBSC18), it
should be verified that the building meets the Immediate Occupancy (KK in the
Code) performance level under DD-4 earthquake ground motion. Evaluation should

be conducted with forced-based design requirements per Chapter 4 in TBSC18.
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2.2.21  Modeling of the Case Study Building

The case study building is modelled as described in Section 2.2.1.1. There are two
points that differ from Design Phase 1. The first difference is that damping ratio is
taken as 2.5% for Design Phase 2. The second difference is that effective section
rigidity values are taken from Table 13.1 in TBSC18 (see Table 2.13).

Table 2.13. Effective Section Rigidity Coefficients of Load Bearing Concrete Members (Table 13.1

in TBSC18)
Load Bearing Reinforced Concrete Effective Section Rigidity Coefficient
Member

Shear Wall - Slab (In Plane) Axial Shear
Shear Wall 0.75 1.00
Basement Wall 1.00 1.00
Slab 0.50 0.80

Shear Wall - Slab (Out of Plane) Bending Shear
Shear Wall 1.00 1.00
Basement Wall 1.00 1.00
Slab 0.50 1.00

Frame Member Bending Shear
Coupling Beam 0.30 1.00
Frame Beam 0.70 1.00
Frame Column 0.90 1.00
Shear Wall (Equivalent frame) 0.80 1.00

2.2.2.2  Load Combinations to be Considered in Design

The same load combinations as considered in Section 2.2.1.2 are employed in Design
Phase 2.
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2.2.2.3  Earthquake Load Calculations

In this phase, the following conditions are applied:

e The conditions R/ = 1 and D = 1 are applied during internal force
calculations.

e Minimum base shear statement is not applied for this design phase.

e Acceleration values specified in TBSC18 for horizontal elastic spectrum are
multiplied by 1.25 to get corresponding accelerations for 2.5 % damping ratio

since the spectrum has been created with 5 % damping ratio.

2224 Section Control

In this phase, structural members in the building are checked considering their
demand / capacity ratio that shall not be exceed 1.5 per statement in Section 13.5.5.2

in TBSC18. All members should satisfy this requirement.

2.2.3 Design Phase 3

In this design phase, the building whose preliminary design has been completed in
Phase 1 and shown to satisfy the performance target in Phase 2 is verified to have
adequate capacity to meet requirement of Collapse Prevention (GO in the Code)
performance target under the DD-1 earthquake ground motion, which is considered

as the largest earthquake with a probability of exceedance 2% in 50 years.

Requirements of Section 13.6 in TBSC18 are followed in this phase. According to
the statement in this section, at least 11 x 2 = 22 ground motion shall be used in
calculations. 11 ground motion records are chosen from PEER website

(https://ngawest2.berkeley.edu/spectras/250229/searches/new). Each of these

records are scaled according to the DD-1 design spectrum and applied to building in

both X and Y directions. Key properties of these ground motion records are presented
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in Table 2.14. Scaled response spectra of selected records are presented in loglog

scale in Figure 2.13.
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Figure 2.13. Scaled Spectra of Selected Records

27



Table 2.14. 11 Ground Motion Records Used in Phase 3

Fault
Earth ke Nam ) Magni ion Rip (km
arthquake Name Mechanism | V129 tude Statio jb (km)
. Cholame - Shandon
Parkfield (1966 ike Sli A1 17.64
( ) Strike Slip 6.19 Array #12 6
San Fernando Felita D
Reverse 6.61 Santa Felita Dam 24.69
(1971) (Outlet)
Imperial Valley Strike Sli 6.53 Cerro Prieto 15.19
ri i ) rro Pri .
(1979) P 0
] R Lake D -
Loma Prieta (1989) e\{erse 6.93 Coyote Lake Dam 19.97
Obligue Southwest Abutment
Duzce (1999) Strike Slip 7.14 Lamont 1061 11.46
Manjil (1990) Strike Slip 7.37 Abbar 12.55
Chi-Chi (1999) Reverse 6.2 CHY074 27.84
Cape Mendocino Reverse 7.01 Loleta Fire Station 23.46
(1992) ' '
Whitewater Trout
Landers (1992) Strike Slip 7.28 27.05
Farm
. Matsushi
Chuetsu-Oki (2007) Reverse 6.8 aIss m_3 18.16
Tokamachi
Iwate-Miyagi (2008) |  Reverse 6.9 Tamati Ono 28.9

Critical internal forces for concrete members are obtained, with respected to force-

based design requirements, considering internal forces as mean of maximum

absolute values obtained from each of 2 x 11 structural analyses.

According to Section 13.6.5 in TBSC18, high ductile concrete members shall meet

the requirements of Section 5.8.1 (strain limitations). Also, relative story drift ratios

obtained from the conducted nonlinear time history analyses shall satisfy following

conditions: Mean relative story drift ratio shall not exceed 0.03 and maximum

relative story drift ratio shall not exceed 0.045.

For Collapse Prevention performance level, strain in structural members shall satisfy
Equation 2.13 and Equation 2.14.
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For rectangular column, beam and shear wall; concrete and steel strains at Collapse

Prevention performance level together with the ultimate steel strain are given as

£ = 0.0035 + 0.04,/w,, <0018 ~"777TTTToCC (@13)
R U — (2.14)
gsu = 0 08 """"""""" (215)

Strain results for maximum tension and compression states are presented in Table
2.15. According to Equation 2.13, maximum compression strain should not exceed
0.018. Maximum compression strain obtained from the conducted nonlinear time
history analyses is 0.00244 (see Table 2.15). Similarly, according to Equation 2.14,
maximum tension strain should not exceed 0.032 which is calculated by using
ultimate steel strain given in Equation 2.15. Maximum tension strain obtained from
the analyses is 0.01853 (see Table 2.15). According to these results the structure
meets the strain requirements. In Table 2.15, H1 and H2 are Horizontal — 1 and
Horizontal — 2 components of the corresponding ground motion records,

respectively.
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Table 2.15. Strain Results of Phase 3

Direction Earthquake Name Tension Strain Corgfr;eis;]slon
Parkfield (1966) 0.00785 0.00156
San Fernando (1971) 0.00565 0.00128
Imperial Valley (1979) 0.00989 0.00149
>”' Loma Prieta (1989) 0.01109 0.00119
< Duzce (1999) 0.00466 0.00130
o Manjil (1990) 0.00517 0.00147
>|f Chi-Chi (1999) 0.01131 0.00176
T Cape Mendocino (1992) 0.00897 0.00151
Landers (1992) 0.01032 0.00156
Chuetsu-oki (2007) 0.01069 0.00162
Iwate-Miyagi (2008) 0.01196 0.00201
Parkfield (1966) 0.00550 0.00129
San Fernando (1971) 0.00368 0.00093
Imperial Valley (1979) 0.00899 0.00156
>”< Loma Prieta (1989) 0.00850 0.00157
T Duzce (1999) 0.00771 0.00135
od Manijil (1990) 0.00391 0.00124
>|._ Chi-Chi (1999) 0.01853 0.00244
T Cape Mendocino (1992) 0.00811 0.00148
Landers (1992) 0.01414 0.00169
Chuetsu-oki (2007) 0.00598 0.00136
Iwate-Miyagi (2008) 0.01524 0.00217
Maximum Strain 0.01853<0.032 0.00244 < 0.018

Drift ratio results are presented in X and Y directions in Table 2.16. According to
the Code (TBSC18), mean drift ratio value should not exceed 0.03. Also, maximum
drift ratio should not exceed 0.045. According to Table 2.16, maximum drift ratio is
0.01472 and mean drift ratio is 0.00921, meaning that the structure meets drift ratio

requirements.
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Table 2.16. Drift Ratio Results of Phase 3

Direction Earthquake Name X Dir. Drift Ratio | Y Dir. Drift Ratio
Parkfield (1966) 0.01158 0.00981
San Fernando (1971) 0.00858 0.00767
Imperial Valley (1979) 0.00549 0.00953
>”' Loma Prieta (1989) 0.00698 0.00842
< Duzce (1999) 0.01109 0.00889
o Manjil (1990) 0.00672 0.00871
x Chi-Chi (1999) 0.00937 0.00963
T Cape Mendocino (1992) 0.01472 0.00602
Landers (1992) 0.00507 0.00654
Chuetsu-oki (2007) 0.00798 0.00891
Iwate-Miyagi (2008) 0.01179 0.01096
Parkfield (1966) 0.01187 0.01123
San Fernando (1971) 0.00737 0.00657
Imperial Valley (1979) 0.01005 0.00654
>”< Loma Prieta (1989) 0.01093 0.00585
T Duzce (1999) 0.00959 0.00824
od Manijil (1990) 0.00825 0.00533
>|._ Chi-Chi (1999) 0.00912 0.00937
T Cape Mendocino (1992) 0.00673 0.01448
Landers (1992) 0.00857 0.00449
Chuetsu-oki (2007) 0.00923 0.00573
Iwate-Miyagi (2008) 0.01148 0.01267
Maximum Drift Ratio 0.01472 < 0.045 0.01448 < 0.045
Mean Drift Ratio 0.00921 < 0.03 0.00844 < 0.03
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CHAPTER 3

EARTHQUAKE GROUND MOTION DATA SELECTION AND PROCESSING

3.1 Data Selection

Philosophy behind the seismic design of structural systems mainly depends on
Newton’s second law. Structures must have adequate capacity to resist inertial forces
acting on the structures as a result of strong ground shaking during earthquakes.
These inertial forces are due to the earthquake ground motion accelerations. When
an earthquake occurs, a huge amount of energy is released. This suddenly released
energy dissipates by wave propagation. Generated seismic waves from a seismic
source travel through the bedrock and soil media up to the surface where they are
recorded by a seismogram at a station (Stein & Wysession, 2009). Figure 3.1 shows

the schematic geometry of wave propagation recording.

Source pulse Seismogram
Receiver
Source ‘
* — Medium —
Origin time Travel time Arrival time

Figure 3.1. Schematic Geometry of Wave Propagation (Stein & Wysession, 2009)

The main reason of recording different ground motion accelerations of the same
earthquake at two different stations is due to change in medium properties and

different source-to-site distances. It can be summarized that the magnitude of
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earthquake, soil beneath structure and source-to-site distances are the main effects
that change the amplitude and frequency content of the recorded accelerations. Since
the effect of earthquakes on buildings mainly depend on these factors, they are also
the main factors considered in data selection. In this study, the following limitations
are considered during data selection: Earthquake magnitude, My, is aimed to be
between 5.5 and 7.5. Epicentral distance is limited to be less than or equal to 50 km.
Furthermore, the distance values are divided into two classes to observe near-field
and intermediate-field effects: 0 — 15 km and 15 km — 50 km, respectively. In
Disaster and Emergency Management Presidency (AFAD) ground motion database,
records are provided without Rj». Therefore, Italian Accelerometric Archive (ITACA)
ground motion database which provides Rj» is aimed to be used during the selection
of the records. Initially, all site classes are aimed to be included. However, there is
not sufficient number of earthquake ground motion records with site class of D and
E, which fulfill the selection criteria since Italy is consist of generally rock and dense
soil. Hence, only site classes of A (Rock), B (Very dense sand) and C (Dense or
medium-dense sand) are considered. A total of 30 ground motion records for site
class of A, 41 ground motion records for site class of B and 29 ground motion records
for site class C have been selected from European Plate Observing System (EPOS

(https://www.orfeus-eu.org/data/strong/)) which contains ITACA ground motion

database. Seismological and intensity-based parameters of the selected data are
presented in Table 3.1 and Table 3.2, respectively. In Table 3.2, EW, NS, and UD
represent East-West, North-South, and Up-Down components of the records. To
have a better understanding, distribution of ground motions in terms of M, peak
ground acceleration, and Rj, are presented in Figure 3.2 - Figure 3.4. Also,
acceleration time histories, Fourier Amplitude Spectra and Response Spectra of the

selected data are presented in Appendix A.
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3.2  Data Processing

Raw ground motion data has to be filtered and baseline corrected to eliminate noise
in the records. In this study, filtered data from EPOS website is employed. In EPOS,
Second-order Butterworth filters are employed along with a linear baseline

correction.

In order to take into account the effective duration, Arias Intensity definition is used.
By considering an Arias Intensity plot, significant duration of ground motion records
can be described as the timespan between 5% and 95% of the total intensity on a
Husid plot (Wyllie, 2017). In this thesis, in order to get rid of ineffective data and
shorten analysis process, the content corresponding to the significant duration of
each ground motion data is extracted with the help of Husid plots. The dataset

described herein is used in time history analyses presented in Chapter 4.

58



CHAPTER 4

MODELING AND ANALYSIS

4.1  Modeling of the Case Study Building

The case study building has been modeled as a 3D model in PERFORM 3D
(COMPUTERS AND STRUCTURES, INC. version 7.0). The building is considered
as fixed at the base and the foundation is not explicitly modeled. Beam and columns
are modeled as frame element while walls are modeled as shell element. To shorten
analysis time, slabs are not included in the model. Instead, rigid diaphragm constraint
is applied at floor levels in order to simulate slab behavior. 3D view of case study
model is presented in Figure 4.1. Detailed information regarding material and
structural modeling is given in Sections 4.1.1 — 4.1.4 of this chapter. Some important
factors that may change analysis results significantly are explained in Sections 4.1.5
—4.1.6.

Figure 4.1. 3D view of Case Study Model
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41.1 Materials

Concrete is modeled as an idealized uniaxial inelastic material according to Figure
5A.1 of TBSC18. Stress — strain graph is given in Figure 4.2. Relationship between
compressive stress of concrete (f¢) and concrete strain (ec) is given in Equation 4.1
(Equation 5A.1 of the Code).

fo 4

>

fc . ; Confined

ﬁo

&conﬁned

— TBSC18

- - Idealized

v

€c0=0.002  0.0035 0.005 Ecc €cu Ec

Figure 4.2. Stress — Strain Relationship of Concrete (TBSC18)

foo JeXT (4.1)

r—1+x"

In this equation, compressive strength of confined concrete (fec) is defined as in
Equation 4.2. Parameters, x and r in Equation 4.1, are given in Equation 4.3 and

Equation 4.4 respectively,
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where Ac is defined as in Equation 4.5. fe, represents the compressive strength of
unconfined concrete. Definition of strain on concrete corresponding to fcc on Figure
4.2 (ecc) is given in Equation 4.6. Elasticity modulus of concrete (Ec) and Esec
coefficient given in Equation 4.4 are defined as in Equations 4.7 and 4.8
respectively,

Ac = 2.254 /1 + 7.94f—e Py 1.254 -------emmiimiio- (4.5)
co co

e = Eco(1+ 50— 1)) ~----mmmmmmmoooooes (4.6)
E. 25000,/f,, -------------------- (4.7)
Esec = fee oL, (4.8)

ECC

where effective confinement stress (fe) is defined as mean of effective confinement
stress in X and Y directions (fexand fey) as defined in Equations 4.9 (a) and 4.9 (b)

respectively. Concrete strain corresponding to fe (eco) IS defined in Equation 4.10.

fox = ke px fyw  ----mmmmmm e (4.9 9)
foy = Ke Py fyw  -----mmmmmmmm o (4.9 b)
£up 2 0.002 - -mmmmmme e (4.10)
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In Equations 4.9 (a) and 4.9 (b), fyw is yield strength of transverse reinforcement, px
and py are volumetric ratio of transverse reinforcement in corresponding direction

and ke is defined as

Y a? - S S A
6bohy) T 250 A~ 2 ) o

k, = (1— L L L L LR TR (4.11)

In Equation 4.11, a; represents the distance between longitudinal reinforcements, bo
and ho are the dimensions of confined area, s is the spacing of stirrups and As is the

longitudinal reinforcement area.

Reinforcement is modeled as an idealized (bilinear without strain hardening)
inelastic material according to Figure 5A.2 of TBSC18. Stress — strain graph is given
in Figure 4.3. Relationship between steel stress (fs) and steel strain (es) is given in
Equation 4.12 (Equation 5A.7 of TBSC18).

fs = Esé&s (s < &y) =------------ (4.12 a)

fs = ]‘;‘y (gsy <& SEp) -mmmmmm----- (4.12 b)

(gsu - gs)z
(gsu - gsh)z

f:?:f:?u_(ﬁsu_f;‘y)

The modulus of elasticity of steel (Es) is taken as 2x10° MPa. Parameters in Equation
4.12 are taken from Table 5A.1 of TBSC18.

Table 4.1. Table 5A.1 of TBSC18

Grade | fsy (MPa) Esy Esh Esu fou / fsy
S220 220 0.0011 0.011 0.12 1.2
S420 420 0.0021 0.008 0.08 1.15-1.35

B420C 420 0.0021 0.008 0.08 1.15-1.35

B500C 500 0.0025 0.008 0.08 1.15-1.35
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JSsu
fir |

— TBSC18

- - Idealized

oV

Esy Esh Esu

S

Figure 4.3. Stress — Strain Relationship of Steel (TBSC18)

41.2 Beam Elements

Expected behavior of beam members is flexure rather than axial load — moment
interaction since these members are not expected to have more than 0.1Acf«
according to TBSC18, where Ac is gross cross-sectional area and fcx is characteristic
compressive strength of concrete. Therefore, beams are modeled with rotational
moment hinge. This type of hinge has a rigid-plastic behavior, which is presented in
Figure 4.4. Hinge does not have any plastic rotation until it reaches yield moment
(Point Y). Between yield moment and ultimate moment (Point U) it exhibits inelastic
action. Point U is the ultimate capacity, at which the hinge can no longer take
additional moment with increasing rotation. After the capping point L, a descending
portion exists which simulates the reduction in capacity up to the residual point R.
From this point on, the residual moment capacity is constant as a percentage of the
ultimate capacity. In this study, hysteretic model for the moment-rotation

relationship is chosen as elastic perfectly plastic (E-P-P) (See Section 4.1.6).
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Moreover, it is assumed that there is no cyclic degradation in strength. The beams
are modeled in accordance with Figure 4.5 without considering the rigid end zone
and shear failure (According to capacity design requirements, the dominant failure

mode of beams is expected to be flexural failure rather than shear failure).

Plastic Moment, M
A

u L

Y
Initially
rigid R

'
Rotation, 6

Figure 4.4. Plastic Hinge Moment — Rotation Relationship (Hill & Mallais, 2004)

@ []
Plastic Plastic
Hinge Hinge

Figure 4.5. Schematic Beam Model

4.1.3 Column Elements

Main difference between column and beam is that column is expected to take
significant levels of axial force as well as bending moment. In order to include
strength loss caused by the exceedance of the strain limit and to consider P-M-M
(Axial force — moment interaction) effect, columns are modeled as inelastic fiber
sections without considering shear failure. Schematic column model is presented in
Figure 4.6.
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Figure 4.6. Schematic Column Model

4.1.4 Wall Elements

Like columns, structural walls are modeled as inelastic fiber sections since structural
walls are also expected to take both axial force and bending moment. Both moment
and shear capacity of structural walls are calculated. It is observed that shear capacity
of structural walls is higher than the shear limit in moment capacity. Thus, shear
behavior of structural walls is assumed to remain elastic under seismic loading. Each

shell member of walls is modeled in accordance with Figure 4.7.

@ @ ®@ @ @ @

B @

Figure 4.7. Schematic Wall Model
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4.1.5 P — A Effect

P — A effect, also known as geometric nonlinearity effect, is considered if the
secondary moment due to vertical forces cannot be neglected. Building deflects when
horizontal loads act on it. This causes eccentricity of gravity loads resulting from
laterally deflected vertical members on the building. This situation leads an increase
in secondary moments on the members (Gaiotti & Smith, 1989). Then increase in
secondary moment causes more lateral displacement. This lateral displacement also
causes more moment on columns. This creates a loop that may repeatedly increase
the moment on columns. Even small displacements on base columns may cause
increase in moment drastically since axial force on base columns are expected to be
high. For buildings that behave dominantly in the inelastic range P — A effect has a
great importance (Montgomery, 1981). Therefore, in this study geometric
nonlinearity is taken into account during the modeling phase. Schematic geometry
of P — A effect is presented in Figure 4.8.

A
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Figure 4.8. Schematic Representation of the P — A Effect (Hill & Mallais, 2004)
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4.1.6 Simulation of Hysteretic Behavior

Reinforced concrete structures are expected to deform into inelastic range and
dissipate energy through hysteretic behavior of materials under predefined ductility
levels according to seismic code regulations. Development of realistic analytical
models that can simulate this hysteretic behavior has an important effect on reliable
prediction of the structure’s dynamic behavior during earthquake excitations
(Filippou, Popov, & Bertero, 1983). There are many different hysteresis models
proposed in the literature. The simplest one is the hysteresis model with no stiffness
degradation. In this study, Non-Degrading Elastic Perfectly Plastic (E-P-P)
hysteresis model is used in order to keep analysis duration short. Schematic

representation of E-P-P Behavior is presented in Figure 4.9.
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Figure 4.9. Schematic Geometry of E-P-P Behavior (Hill & Mallais, 2004)

4.2  Dynamic Characteristics of the Case Study Building Model

In this study, Eigenvalue analysis is carried out to see the modal behavior of the
structure. During the modal analysis, minimum number of modes is determined

according to Equation 4.13.
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D ) 2 095m -neonnaeenee (4.133)
Y
D m 2 095m, -eonnenenenee (4.13b)
n=1

In Equation 4.13, mxa® and myn" represent the n'” mode effective modal base shear
force obtained from earthquake load in (X) and () directions, respectively and mis

the total mass of the building.

To have a better understanding about dynamic behavior of the building, the modal
participating mass ratios of important modes are presented in Table 4.2 in tabular
form and four mode shapes of the building are presented in Figure 4.10 — Figure
4.13.

Table 4.2 Modal Participating Mass Ratios of the Building

Mode | Period
Number | [sec] UX Uy uz RX RY RZ
1 2.825 0.633 0 0 0 0.366 0
2 2.514 0 0.668 0 0.334 0 0
3 1.846 0 0 0 0 0 0.757
4 0.690 0 0.169 0 0.239 0 0
5 0.613 0.190 0 0 0.292 0 0
6 0.589 0 0 0 0 0 0.104
7 0.329 0 0.052 0 0 0 0.043
8 0.319 0 0 0 0.093 0 0
9 0.256 0.07 0 0 0 0.098 0
10 0.243 0 0 0.505 0 0 0
Total Ratio 0.953 0.952 0.827 0.849 0.851 0.970
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Modal Mass Participation Ratios
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Figure 4.10. Mode 1 (T = 2.825 sec)
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Figure 4.11. Mode 2 (T = 2.514 sec)
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Figure 4.12. Mode 3 (T = 1.846 sec)
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Figure 4.13. Mode 10 (T = 0.243 sec)
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CHAPTER 5

TIME HISTORY ANALYSIS RESULTS

The building is analyzed based on the ground motion records given in Chapter 3. All
records consist of horizontal (East — West and North — South) and vertical (Up —
Down) components. 4 cases per each ground motion record is evaluated and
summarized in Table 5.1. A total of 4 x 100 = 400 time history analyses are

conducted.
Table 5.1. 4 Cases per Each Ground Motion Record
Building Building Building

X Direction Y Direction Z Direction
Case 1 East - West North - South -
Case 2 East - West North - South Up - Down
Case 3 North - South East - West -
Case 4 North - South East - West Up - Down

The effect of the vertical component of ground motion can be understood through
the evaluation of the amplification factor (Amp. in Equation 5.1) which is defined as
the ratio of maximum result obtained from the case with vertical component to the

result obtained from the case without vertical component (See Equation 5.1).

Result(V+H)ax
Result(H)ax

Amp. =
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It is observed that the axial forces on columns in some cases are close to zero.
Therefore, to represent the amplification factor in axial force on column more
realistically, Equation 5.2 is used instead of Equation 5.1. In Equation 5.2, Amp.

represents the ratio of the effect of vertical ground motion to column axial capacity.

Amp — Result(V+H)max — ResultH)max (5.2)

Column Axial Capacity

51 Results of Time History Analysis

In this section, all results are presented in tabular form in Table 5.2. The columns in
the table contain time series ID (in this study), Mw, Rjb of the earthquakes, and site
class of the records, and response parameters. Detailed results classified in terms of

site class and My, are presented in Appendix — B.

Table 5.2 Results in terms of Selected Response Parameters

[ [

- L (o)) o~ o =
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= R . 5 2 kS Ac.=| £ o S < Sc| &8
c 3 2 | © 03| 5| S| 9|28
= > o 4 s o=| &5 > O
o” 21 £ |8£3| g5 =3 =22 | 8"
a 7 e < = 5
Al 55 | 189 | A | 099 | 0.0016 | 1.21 | 0.15 | 0.15 | 1.00
A2 59 | 360 | A | 116 | 00021 | 1.05 | 0.17 | 0.15 | 1.01
A3 56 | 620 | A | 1.11 | 0.0006 | 1.00 | 0.04 | 0.05 | 1.00
A4 59 |12.28| A | 1.03 | 0.0005 | 1.03 | 0.08 | 0.08 | 1.00
A5 55 | 958 | A | 1.14 | 0.0004 | 1.00 | 0.08 | 007 | 1.00
A6 55 | 026 | A | 1.02 | 0.0005 | 1.00 | 0.03 | 0.03 | 1.00
A7 59 |11.20| A | 1.15 | 0.0009 | 1.00 | 0.05 | 003 | 1.00
A8 65 | 000 | A | 099 | 00095 | 1.23 | 046 | 0.76 | 1.02
A9 65 | 441 | A | 1.06 | 0.0068 | 1.20 | 033 | 045 | 1.07
A10 | 65 | 000 | A | 111 | 00139 | 1.50 | 047 | 1.05 | 1.00
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Table 5.2 Results in terms of Selected Response Parameters (Cont.)

[ [
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All | 65 | 877 | A | 107 | 00042 | 104 | 016 | 012 | 1.01
A12 | 59 [1040| A | 102 | 00017 | 101 | 013 | 013 | 1.02
A13 | 55 (1229 A | 097 | 0.0005 | 1.00 | 002 | 0.02 | 1.00
Al4 | 59 | 684 | A | 089 | 00016 | 1.00 | 009 | 009 | 1.01
Al5 | 56 |2458| A | 103 | 00012 | 1.00 | 005 | 0.05 | 1.00
A6 | 59 [2282| A | 103 | 0.0004 | 1.00 | 004 | 004 | 1.00
Al7 | 56 |4935| A | 1.09 | 0.0007 | 1.00 | 004 | 003 | 1.00
A18 | 59 [1805| A | 1.00 | 0.0006 | 1.00 | 002 | 0.02 | 1.00
A9 | 65 | 219 | A | 105 | 0.0084 | 124 | 041 | 050 | 1.04
A20 | 65 | 688 | A | 1.03 | 0.0061 | 1.08 | 0.19 | 0.20 | 1.05
A2l | 65 [1361| A | 103 | 00016 | 1.01 | 026 | 0.26 | 1.00
A22 | 65 | 800 | A | 096 | 00089 | 1.02 | 012 | 012 | 1.01
A23 | 65 | 978 | A | 108 | 00023 | 1.06 | 023 | 025 | 1.02
A24 | 65 [1255| A | 122 | 00011 | 101 | 012 | 011 | 1.03
A25 | 65 [31.26| A | 1.02 | 0.0018 | 1.00 | 003 | 0.05 | 1.00
A2 | 65 |1861| A | 098 | 00014 | 1.00 | 006 | 0.06 | 1.00
A27 | 65 [3429| A | 1.02 | 0.0014 | 1.00 | 005 | 0.05 | 1.00
A28 | 61 |16.95| A | 105 | 0.0007 | 1.00 | 0.02 | 0.03 | 1.00
A29 | 69 [17.98| A | 1.02 | 0.0048 | 1.01 | 004 | 003 | 1.00
A30 | 69 [1827| A | 1.04 | 00011 | 1.00 | 004 | 004 | 1.00
Bl | 55 [10.15| B | 116 | 0.0011 | 1.06 | 0.09 | 0.07 | 1.02
B2 | 56 | 882 | B | 092 | 00033 | 1.10 | 0.14 | 0.09 | 1.05
B3 | 59 | 421 | B | 095 | 00013 | 113 | 025 | 027 | 1.02
B4 | 59 [ 592 | B | 117 | 0.0022 | 1.08 | 0.16 | 0.10 | 1.06
B5 | 59 | 591 | B | 1.07 | 0.0011 | 1.05 | 012 | 0.15 | 1.02
B6 | 59 | 325 | B | 1.03 | 0.0086 | 1.08 | 022 | 030 | 1.10
B7 60 | 138 | B | 106 | 00064 | 1.12 | 025 | 034 | 099
BS 61 | 000 | B | 097 | 00052 | 1.04 | 0.10 | 0.08 | 0.98
B9 61 | 000 | B | 092 | 0.0046 | 1.05 | 020 | 0.18 | 1.00
B10 | 61 | 0.00 | B | 1.04 | 00059 | 1.07 | 037 | 036 | 101
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Table 5.2 Results in terms of Selected Response Parameters (Cont.)

c c
s€| | & |0 | £ |52/ 5E|3E|SE|28
o 2 £ |8383| g2 |s2 2 |§"
= %2 @) = o e <>E< O <>‘:< O | &
B1l 6.1 0.00 B 1.00 0.0056 1.10 0.22 0.29 1.02
B12 6.1 0.00 B 1.04 0.0045 1.05 0.15 0.16 1.00
B13 6.5 3.14 B 0.95 0.0101 1.11 0.32 0.28 1.07
B14 6.5 2.84 B 1.16 0.0086 1.11 0.33 0.57 0.99
B15 6.5 2.65 B 1.04 0.0021 1.07 0.11 0.10 1.01
B16 6.5 0.00 B 1.09 0.0069 1.07 0.33 0.44 1.00
B17 6.5 3.06 B 1.11 0.0020 1.05 0.13 0.14 1.03
B18 6.0 11.22 B 0.95 0.0033 1.07 0.34 0.39 1.00
B19 5.9 13.06 B 1.03 0.0012 1.04 0.16 0.15 1.00
B20 5.9 28.18 B 1.20 0.0015 1.02 0.06 0.06 1.01
B21 5.6 17.36 B 1.13 0.0009 1.12 0.25 0.23 1.01
B22 6.0 13.21 B 1.15 0.0008 1.10 0.07 0.09 1.00
B23 5.9 10.48 B 0.99 0.0008 1.00 0.04 0.03 1.00
B24 5.9 23.40 B 0.92 0.0017 1.00 0.04 0.05 1.00
B25 5.9 27.71 B 1.02 0.0012 1.01 0.07 0.10 0.99
B26 6.5 10.57 B 1.05 0.0047 1.05 0.12 0.13 1.03
B27 6.5 11.05 B 1.02 0.0044 1.06 0.52 0.46 0.96
B28 6.5 10.12 B 1.09 0.0045 1.21 0.43 0.43 1.04
B29 6.5 10.12 B 1.16 0.0039 1.13 0.40 0.44 1.03
B30 6.5 10.88 B 1.14 0.0051 1.21 0.18 0.24 1.03
B31 6.5 6.30 B 1.06 0.0116 1.09 0.32 0.20 1.02
B32 6.5 9.79 B 0.98 0.0033 1.12 0.21 0.20 1.00
B33 6.5 1.05 B 1.11 0.0066 1.09 0.14 0.24 1.08
B34 6.5 11.37 B 1.01 0.0047 1.07 0.26 0.21 1.01
B35 6.5 11.85 B 0.98 0.0046 1.03 0.08 0.05 1.02
B36 6.9 3.91 B 1.01 0.0097 1.06 0.11 0.13 1.03
B37 6.9 37.70 B 0.99 0.0019 1.03 0.10 0.11 1.01
B38 6.9 6.87 B 1.01 0.0052 1.03 0.11 0.14 1.02
B39 6.9 13.05 B 1.01 0.0070 1.06 0.13 0.13 1.00
B40 6.9 29.37 B 1.02 0.0016 1.02 0.05 0.05 1.00
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Table 5.2 Results in terms of Selected Response Parameters (Cont.)

[ [
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B4l | 69 |2922| B | 1.04 | 00031 | 1.02 | 008 | 0.09 | 1.00
Cl | 59 [ 253 | C | 110 | 0.0064 | 1.09 | 027 | 024 | 1.08
c2 | 59 [ 000 ] C | 116 | 0.0046 | 1.18 | 038 | 026 | 0.99
C3 60 | 530 | C | 100 | 0.0036 | 1.03 | 0.17 | 0.15 | 0.99
Ca | 60 | 000 | C | 1.04 | 0.0083 | 1.06 | 0.16 | 013 | 0.98
C5 | 60 | 537 | C | 1.01 | 0.0039 | 1.02 | 003 | 004 | 1.01
C6 60 | 067 | C | 107 | 00033 | 1.03 | 0.06 | 0.08 | 1.02
C7 60 | 486 | C | 097 | 0.0042 | 1.05 | 005 | 0.05 | 1.00
C8 60 | 592 | C | 099 | 0.0034 | 1.02 | 0.10 | 0.09 | 1.00
C9 60 | 000 | C | 101 | 00037 | 1.02 | 0.06 | 005 | 1.01
Cl10 | 60 | 000 | C | 098 | 0.0088 | 1.11 | 035 | 042 | 1.02
Ci1 | 65 | 000 | C | 1.09 | 0.0048 | 1.11 | 0.28 | 0.36 | 0.96
Ci2 | 59 [1355] C | 1.04 | 0.0010 | 1.06 | 0.22 | 0.22 | 1.04
C13 | 60 [1392] C | 1.00 | 0.0026 | 1.04 | 011 | 0.10 | 1.00
Ci4 | 60 |[1062] C | 099 | 00036 | 1.04 | 011 | 012 | 1.00
Ci5 | 60 |[11.37] C | 1.01 | 00013 | 1.00 | 0.04 | 0.04 | 1.00
Cl6 | 60 | 356 | C | 1.17 | 0.0032 | 1.05 | 013 | 013 | 1.00
Ci7 | 60 | 815 | C | 096 | 0.0022 | 1.02 | 005 | 007 | 1.01
Ci18 | 59 [2363] C | 097 | 0.0014 | 1.05 | 006 | 006 | 1.02
Cl9 | 59 [1549| C | 1.07 | 0.0012 | 1.07 | 0.06 | 0.05 | 1.00
C20 | 60 | 840 | C | 1.00 | 0.0030 | 1.05 | 0.04 | 003 | 1.01
c21 | 65 | 799 | ¢ | 113 | 0.0112 | 1.07 | 011 | 011 | 0.99
C22 | 65 | 639 | C | 1.00 | 0.0133 | 1.28 | 043 | 068 | 1.09
C23 | 65 | 916 | C | 1.05 | 00022 | 1.04 | 015 | 014 | 1.00
c24 | 65 |1813] C | 1.09 | 00013 | 1.14 | 008 | 013 | 1.00
C25 | 65 | 1254 | C | 1.07 | 0.0027 | 1.00 | 022 | 021 | 0.99
C26 | 65 |1585| C | 097 | 00021 | 1.01 | 0.20 | 0.09 | 1.00
C27 | 61 | 434 | C | 096 | 0.0067 | 1.03 | 012 | 014 | 1.03
C28 | 65 |2581| C | 098 | 0.0015 | 1.00 | 0.19 | 018 | 1.01
C29 | 65 |[2906| C | 1.03 | 00013 | 1.00 | 0.05 | 0.05 | 1.00
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Each response parameter is evaluated separately. Results presented in Table 5.2 and
Appendix — B are examined in detail and summarized in Table 5.3 — Table 5.7. In

these tables, numbers given in brackets represent related record number.
1. Inter-story Drift Ratio

Inter-story drift ratio results are summarized in Table 5.3 and can be interpreted

as follows:

e Maximum amplification factor in inter-story drift ratio is 1.222 for site
class A, 1.195 for site class B, and 1.71 for site class C.

e Average amplification factor in inter-story drift ratio is around 1 for all
site classes. This indicates that there is no significant increase in inter-

story drift ratio.

Table 5.3 Maximum and Average Amplification Factor in Inter-story Drift Ratio

Site Class [A]
Mw [5.5 - 6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rijp[<15] | Rijp[>15] | Rijp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(10) (4) (10) 4) (0) ) (20) (10)
Max. 1.157 1.086 1.222 1.050 - 1.038 1.222 1.086
Ave. 1.012 1.008 1.038 1.004 - 1.006 1.025 1.006
Site Class [B]
Mw [5.5 - 6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rip[>15] | Rp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(11 (4) (20) (0) @) @) (34) ()
Max. 1.172 1.195 1.159 - 1.013 1.041 1.172 1.195
Ave. 1.016 1.021 1.009 - 1.005 0.988 1.011 1.007
Site Class [C]
Mw [5.5 - 6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rip[>15] | Rp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
A7) O] (6) (4) () () (23) (6)
Max. 1171 1.067 1.134 1.093 - - 1171 1.093
Ave. 1.010 1.002 1.009 0.992 - - 1.010 0.995
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2. Overturning Moment

Results of the overturning moment are summarized in Table 5.4 and can be

interpreted as follows:

e Average amplification factor in overturning moment is 1.040 for site class A,
1.058 for site class B, and 1.044 for site class C. This indicates that there is
no significant increase in overturning moment. It should, however, be noted
that decrease in compressive force, which could even lead to the occurrence
of tension force when excessive, on vertical structural members may lead to

flexural failure.

Table 5.4 Maximum and Average Amplification Factor in Overturning Moment

Site Class [A]
Mw [5.5-6.0] Mw [6.1 — 6.5] Mw [>6.5] Mw [All]
Rib[<15] | Rip[>15] | Rip[<15] | Rijp[>15] | Rip[<15] | Rjp[>15] | Rjp[<15] Rjb[>15]
(10) 4) (10) 4) (0) ) (20) (10)
Max. 1.211 1.002 1.498 1.002 - 1.007 1.498 1.007
Ave. 1.019 1.001 1.099 1.001 - 1.002 1.059 1.001
Site Class [B]
Mw [5.5-6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rp[>15] | Rp[<15] | Rip[>15] | Rip[<15] | Rip[>15]
(11 (4) (20) (0) @) @) (34) ()
Max. 1.134 1.119 1.215 - 1.060 1.033 1.215 1.119
Ave. 1.060 1.024 1.072 - 1.039 1.016 1.065 1.020
Site Class [C]
Muw [5.5 - 6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rpp[>15] | Rp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
17 O] (6) (4) () () (23) (6)
Max. 1.179 1.068 1.282 1.137 - - 1.282 1.137
Ave. 1.034 1.042 1.079 1.031 - - 1.046 1.034
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3. Axial Load on Columns

Results of the axial force on columns are summarized in Table 5.5 and Table 5.6 and
can be interpreted as follows:

e According to results of this study Rj» [< 15] has more effect than Rj» [> 15]
on the columns in terms of compressive and tension force. Results comply
with the statement suggested by Ambraseys & Douglas (2003) stating that
ratio of vertical peak ground acceleration to horizontal peak ground
acceleration is distance dependent and decreases with distance.

e |t is observed that site class doesn’t have significant effect on axial force on
columns. The reason could be attributed to the fact that only sites A, B, and
C are studied herein. In case of softer soils, the behavior could have been
different.

e The maximum increase in compressive force on the columns is 105%, 57%,
and 68% for site classes A, B, and C, respectively. Results are in line with
the statement made by Mwafy & Elnashai (2006) indicating that the axial
compressive forces on columns increased by 45%.

e The maximum increase in tension force on columns is 47%, 52%, and 43%
for site classes A, B, and C, respectively.

e |t is observed that the amplification factor for tension and compression is
similar for Rjp [> 15] whilst the amplification factor for compression is

relatively higher than the amplification factor for tension for Rj, [< 15].
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Table 5.5 Maximum and Average Amplification Factor in Tension Force on Column

Site Class [A]
Mw [5.5 - 6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(10) (4) (10) (4) () ) (20) (10)
Max. 0.172 0.047 0.467 0.056 - 0.042 0.467 0.056
Ave. 0.084 0.035 0.276 0.042 - 0.041 0.180 0.039
Site Class [B]
Mw [5.5 - 6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(11) (4) (20) () @) @) (34) )
Max. 0.340 0.255 0.515 - 0.127 0.100 0.515 0.255
Ave. 0.168 0.108 0.246 - 0.115 0.076 0.209 0.095
Site Class [C]
Mw [5.5 - 6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(17) ) (6) (4) ) () (23) (6)
Max. 0.379 0.061 0.428 0.190 - - 0.428 0.190
Ave. 0.137 0.060 0.219 0.106 - - 0.158 0.091
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Table 5.6 Maximum and Average Amplification Factor in Compression Force on Column

Site Class [A]

Mw [5.5-6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rib[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(10) (4) (10) (4) () ) (20) (10)
Max. 0.151 0.047 1.053 0.057 - 0.038 1.053 0.057
Ave. 0.080 0.033 0.381 0.046 - 0.032 0.231 0.038
Site Class [B]
Mw [5.5-6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rib[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rip[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(11) (4) (20) () @) @) (34) ()
Max. 0.393 0.232 0.568 - 0.142 0.107 0.568 0.232
Ave. 0.181 0.110 0.260 - 0.134 0.084 0.223 0.099
Site Class [C]
Mw [5.5-6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(17) ) (6) (4) () () (23) (6)
Max. 0.416 0.058 0.676 0.176 - - 0.676 0.176
Ave. 0.130 0.055 0.272 0.110 - - 0.167 0.091
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4. Story Shear Force

Analysis results for the story shear force are summarized in Table 5.7 and can be

interpreted as follows:

e All site classes have similar effect on story shear forces. Almost no
amplification factor is observed for story shear force.

e Maximum amplification factor in base shear force is 1.067 for site class A,
1.097 for site class B, and 1.094 for site class C. This shows that base shear

force is not affected by vertical ground motion.

Table 5.7 Maximum and Average Amplification Factor in Story Shear Force

Site Class [A]
Mw [5.5-6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(10) (4) (10) (4) () 2 (20) (10)
Max. 1.015 1.001 1.067 1.001 - 0.999 1.067 1.001
Ave. 1.002 1.000 0.999 1.000 - 0.998 1.000 1.000
Site Class [B]
Mw [5.5-6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rp[>15] | Rp[<15] | Rip[>15] | Rip[<15] | Rip[>15]
(11 (4) (20) (0) @) @) (34) ()
Max. 1.097 1.013 1.083 - 1.029 1.007 1.097 1.013
Ave. 0.996 0.998 0.994 - 1.011 1.002 0.996 1.000
Site Class [C]
Mw [5.5-6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rip[<15] | Rpp[>15] | Rp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
17 O] (6) (4) () () (23) (6)
Max. 1.080 1.024 1.094 1.013 - - 1.094 1.024
Ave. 0.998 1.005 0.987 1.001 - - 0.995 1.003
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5.2  Comparison of Time History Analysis Results with TBSC18

A new analysis series have been run in order to improve the study by looking into
the analysis prescribed in TBSC18 and to get to a comparative baseline for the study.
During the analysis process, vertical earthquake load is considered as in Equation
5.3 which is prescribed in TBSC18 as an approximate method for the effect of
vertical earthquake load. In this equation Eq @ denotes vertical earthquake load.

ES = (2/3)SpsG === ==mmrmmmmeemnnnos (5.3)

Comparison has been made between the case with the vertical component and the
case prescribed in TBSC18 by introducing the amplification factor which is the ratio
of the result obtained from the case with a vertical component to result obtained from
the case prescribed according to TBSC18 (see Equation 5.4). The comparison of the
two shows no significant difference in the result obtained in terms of the overturning
moment, column axial force, and story shear force. The amplification factor for these
response parameters has remained within the range of 1+0.15. What is of significant
difference is the inter-story drift ratio values. Analysis results for the inter-story drift
ratio is summarized in Table 5.8. According to the table, the amplification factor is

quite bigger than 1 in all cases.

__ Result(V+H)mqx
Amp'_ Result(TBSC18)ax G4
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Table 5.8 Maximum and Average Amplification Factor in Inter-Story Drift Ratio

Site Class [A]
Mw [5.5 - 6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(10) (4) (10) (4) () ) (20) (10)
Max. 1.264 1.239 2.188 2.716 - 1.418 2.188 2.716
Ave. 1.043 1.049 1.369 1.974 - 1.354 1.206 1.480
Site Class [B]
Mw [5.5 - 6.0] Mw [6.1 - 6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(11) (4) (20) () @) @) (34) )
Max. 1.590 1.686 1.654 - 1.574 1.411 1.654 1.686
Ave. 1.060 1.249 1.176 - 1.312 1.148 1.151 1.205
Site Class [C]
Mw [5.5 - 6.0] Mw [6.1—6.5] Mw [>6.5] Mw [All]
Rip[<15] | Rjp[>15] | Rjp[<15] | Rijp[>15] | Rjp[<15] | Rjp[>15] | Rjp[<15] | Rjp[>15]
(17) ) (6) (4) ) () (23) (6)
Max. 1.738 1.754 2.160 2.311 - - 2.160 2.311
Ave. 1.114 1.410 1.280 1.505 - - 1.157 1.473
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CHAPTER 6

SUMMARY AND CONCLUSIONS

It should be noted that conclusions to be made in this chapter have been interpreted
in the light of the ground motion records specified in Chapter 3. Therefore, in the
case of different ground motion records, conclusions may change. Also, it should be
noted that this study is carried out without considering soil — structure interaction.

Thus, this should be taken into account when interpreting the conclusions.

6.1  Summary

The vertical and horizontal components of ground motion can be analyzed in terms
of local site conditions, source-to-site distance, and earthquake magnitude. These
factors are utilized in this study to outline the effect of the vertical component of

ground motion on high-rise buildings.

In this study, it is aimed to bring attention to the fact that there are no generalized
specifications that help explain the effects of vertical ground motion on high-rise
buildings. Therefore, an examination is carried out to see the effect of the vertical
component of ground motion on high-rise buildings specifically to understand if
better descriptions of design specifications can be introduced. A model reinforced
concrete structure building which has 30 floors with a typical floor height of 4 m.
designed with a symmetric plan layout in accordance with Turkish Building Seismic
Code 2018 (TBSC18). A total of 100 ground motion records are selected for non-
linear time history analysis. Earthquake magnitude (M), soil type and source-to-site
distance are considered in the selection of these records. In the selection of records,
earthquake magnitude, My, is aimed to be between 5.5 and 7.5. Epicentral distance
is limited to be less than or equal to 50 km by dividing into two classes to observe

near-field and intermediate-field effects: 0 — 15 km and 15 km — 50 km, respectively.
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Non-linear time history analysis is carried out to observe the behavior of the structure
under time series. The results of non-linear time-history analyses are interpreted in
terms of inter-story drift ratio, overturning moment, axial force on columns, and
story shear force. Based on the specific case study involving a certain model and a

selected dataset, the numerical results can be summarized as follows.

e Maximum amplification factor in inter-story drift ratio is 1.222 for site class
A, 1.195 for site class B, and 1.71 for site class C.

e Average amplification factor in inter-story drift ratio is around 1 for all site
classes.

e Average amplification factor in overturning moment is 1.040 for site class A,
1.058 for site class B, and 1.044 for site class C.

e Itis observed that site class does not have significant effect on axial force on
columns.

e Maximum increase in axial tension forces (compared to their axial
compressive capacity) on columns increased by 0.467, 0.515, and 0.428 of
their capacity for site classes (near-field) A, B, and C, respectively.

e Maximum increase in axial compressive forces (compared to their axial
compressive capacity) on columns increased by 1.053, 0.568, and 0.676 of
their capacity for site classes (near-field) A, B, and C, respectively.

e All site classes have similar effect on story shear forces. Almost no
amplification factor is observed for story shear force.

e Maximum amplification factor in base shear force is 1.067 for site class A,
1.097 for site class B, and 1.094 for site class C. This shows that base shear
force is not affected by vertical ground motion.

e No plastic hinges on columns are observed.
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6.2

Conclusions

From the numerical analyses presented in this thesis, the following conclusions can

be made.

The vertical ground motion has a relatively more significant effect on axial
force on columns than inter-story drift ratio, the story shear forces and
overturning moment. The columns are affected more since vertical ground
motion is in the same direction as the columns, and it changes the axial load
on columns in both compression and tension.

Near-field ground motion records affect the structure more clearly than the
intermediate-field ground motion records. In this study, generally, near-field
distance ground motion records have a relatively bigger vertical component
than the intermediate-field distance ground motion records around the first
period of the building (The first period of the building is around 2.85 sec).
Therefore, it is acceptable to have bigger amplification factors under near-
field ground motion records. For example, one of the near-file ground motion
records, A8, has an PGA of 0.10g (EW), 0.11g (NS), and 0.17g (UD) at the
period of around 2.85 seconds. This is an important finding which requires
analysis of special structures such as tall buildings, tower and bridges which
could be affected by variations in demand in terms of the axial forces.

The building shows similar behavior in all site classes studied herein which
involves sites A, B and C. Thus, in this study, no correlation between effects
of vertical motion and site class can be made. This conclusion might vary
when data from other site classes are considered in dynamics analyses. Since
the periods of softer sites are closer to the fundamental periods of flexible
structures, the behavior might vary.

Similarly, a direct correlation between M, and vertical behavior is not
observed. However, it is observed that vertical ground motions with high

PGA values affects the response parameters more significantly.
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According to TBSC18, for some specific structural systems (see Clause
4.4.3.1 of the Code), effect of vertical ground motion should be contributed
as 0.2Sps of the dead load. It can be stated that the results of this study are in
accordance with the new rules in TBSC18. According to results presented in
Table 5.8, it may seem that the inclusion of vertical ground motion effect to
the analysis as 0.2Sps of the dead load may not be conservative enough in
terms of inter-story drift ratio since in most cases, the inter-story drift ratio
has been amplified more than a 20% compared to the ones that have been
conducted according to the approximate method prescribed in TBSC18.
However, inter-story drift ratio results are within the limitations prescribed
in the Code.

According to the results of this study, the amplification factors obtained from
the case with vertical ground motion are similar to the amplification factors
obtained from the case prescribed according to TBSC18 in terms of the
overturning moment, and story shear force. It is also stated that the
amplification factors obtained from the case with vertical ground motion are
similar to the amplification factors obtained from the case without vertical
ground motion. In this case, it can be said that the inclusion of vertical ground
motion to the new seismic code may be unnecessary in terms of overturning
moment and story shear force.

According to the results of this study, the amplification factors obtained from
the case with vertical ground motion are similar to the amplification factors
obtained from the case prescribed according to TBSC18 in terms of the
column axial force. It is also stated that the amplification factors obtained
from the case with vertical ground motion are quite bigger than the
amplification factors obtained from the case without vertical ground motion.
In this case, it can be said that the inclusion of vertical ground motion to the

new seismic code is the right decision in terms of column axial force.
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6.3

Future Recommendations

Following recommendations can be made for future studies:

In the future studies, soil — structure interaction can be considered.
Although this study is conducted with 100 ground motion records, the
records do not have a uniform distribution in terms of My, site class, and
source-to-site distance. A more uniform and larger dataset would lead
improved conclusions regarding the effect of vertical ground motions on
seismic response.

The fault mechanism is not taken as a variable in this study. Such a parameter
can further classify the behavior of flexible structures under vertical ground
motions.

In the future studies, other response parameters can be employed to assess
the results in terms of other structural aspects.

This study is conducted for one building only. In the future studies, different
types of high-rise buildings and other types of structures which could be
affected variations in axial forces can be investigated.

In this study, the model building is symmetric in plan and does not have any
irregularities. Irregularity in plan and elevation which has potential to affect
the behavior can be accommodated in further studies involving vertical
ground motions.

D, E, and F site classes can be included in the future studies.
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APPENDICES

A. Time Series, Fourier Spectra, and Response Spectra

This part contains time histories of selected ground motion records, their Fourier
Spectra and Response Spectra with 5% damping. The first row of plots are time
series. Whilst X axis of plot represents time (sec), Y axis of plot represents
acceleration (m/s?). In time series plot, there are three records. From top to bottom
respectively plots are of East — West (EW), North — South (NS), and Up — Down
(UD) component of corresponding ground motion record. Peak ground acceleration
(PGA) of each component is presented on related plot. The second row of plots are
Fourier spectra. X and Y axes of plot represents frequency (Hz) and Fourier
amplitude respectively. Similar to time series plots, plots are of East — West (EW),
North — South (NS), and Up — Down (UD) component of corresponding ground
motion record from top to bottom respectively. The third row of plots are response
spectra. X and Y axes of plot represents period (sec) and response acceleration (m/s?)
respectively. Like time series plots and Fourier spectra, plots are given in same order.
In response spectra plots, there are design spectra of Turkish Building Seismic Code
(TBSC18). Horizontal design spectrum (TSC-H in plot legend) is given with
horizontal components of ground motion record which are EW and NS components
of the record. Vertical design spectrum (TSC-V in plot legend) is given with vertical

component of ground motion record which is UD component of the record.

95



A1 (Site Class: A, M,: 5.5, Ry: 1.89 km) A2 (Site Class: A, M,,: 5.9, Ryy: 3.60 km)
0.66 5
; I 0.18g 5
5 L ’
o ] 0.19
L —w 2 L — W
3 031 3 o
¢ NS g NS
Q 0 0,22g
< " —uw < . —UD
j.!Sg
0 10 2 30 40 0 10 2 30 10
Time [sec] Time [sec]
A1 (Fourier Spectra) A2 (Fourier Spectra)
I 50 I 50
0] ]
T T
2 z
g g
< —w g —W
@ —N g —Ns
3 —UD 3 —
w w
01 1 10 100 01 1 10 100
Frequency [Hz] Frequency [Hz]
Al (Response Spectra) A2 (Response Spectra)
; 1
5 Ry
£ —W £ —w
8' —NS 8 — NS
< —D < —D
] ]
@ —T5CH ¢ —TSCH
[o] 0
% —TSCH g —TSCH
= —T5CV - —T5CV
0 1 2 3 4 0 2 3 4
Period [sec] Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data

96



A3 (Site Class: A, M,,: 5.6, Ry;: 6.20 km) A4 (Site Class: A, M,,: 5.9, Ry;: 12.28 km)
H «w T { 0.11g I 1
0.10g
» " 0.10g
E — W E — W
g =—NS g NS
18 —UD —UD
i 0.06¢
i 0.05g I
0 5 10 15 0 0 5 10 15 2
Time [sec] Time [sec]
A3 (Fourier Spectra) A4 (Fourier Spectra)
_AMW 50 v "MJ.MM__ 50
0] ]
T T
2 z
g g
5 —w 5 —W
g —Ns by —NS
3 — 3 —
w w
01 1 10 100 01 1 10 100
Frequency [Hz] Frequency [Hz]
A3 (Response Spectra) A4 (Response Spectra)
& g
) )
&’,N\_ 3/\,L
% —Ew E —W
T —Ns 5 —Ns
AN —n | |3 =
é —T5CH g‘[\/\,\\ —TSCH
Q
H —TSCH g S ot
—Tev | & —T5CV

r

o

2
Period [sec]

i

o
—_

2
Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

97




AS (Site Class: A, M,,: 5.5, Ry;: 9.58 km) A6 (Site Class: A, M,,: 5.5, Ryy: 0.26 km)
I ) 0.0 i

0.09 -
(g % 0.07g
é 0.08g —w é % —w
8. o —NS 3 — NS
< —uw < od0g —UD

0.04g

0 10 20 30 40 50 0 10 20 30 40
Time [sec] Time [sec]
A5 (Fourier Spectra) A6 (Fourier Spectra)

%

Fourier Amplitude

[}

T

=}

=

g

- —w
P NMMM —ts
5

2 —UD
w

01 1 10 100

Frequency [Hz]
A5 (Response Spectra)
K I 5

T

%)

(1)
AN I
£ —w
3 —NS

(V)
< —UD

()

2 W T —TSCH
2

g —TSCH
()
« ,’L — TSV

[Tt —
1

o

2
Period [sec]

|

|

—UD
01 1 10 100
Frequency [Hz]
A6 (Response Spectra)
I ;
B
sM\__ T
E —W
5 —Ns
0
E —UD
g ha S —TSCH
8 —TSCH
]
- —T5CV

r

o

2
Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

98



A7 (Site Class: A, M,,: 5.9, Ry;: 11.20 km)

w0t !

A8 (Site Class: A, M,,: 6.5, Ryy: 0.00 km)

095

”§ 0.07g ”§ 0.86g
~ a— b —
g—%”‘“‘“— g o
6 =—NS 8 NS
< <
0.06g — 091g —UD
0 10 2 30 ) 0 10 2 30 10
Time [sec] Time [sec]
A7 (Fourier Spectra) A8 (Fourier Spectra)
I 200
«—NWM«M )
0] ]
T ke
2 z
g 2
< —W g —W
g —Ns & —Ns
3 — 3 —
w w
01 1 10 100 01 1 10 100
Frequency [Hz] Frequency [Hz]
A7 (Response Spectra) A8 (Response Spectra)
I M "
R B
0 | i e
e —W 3 —W
E E
S —Ns S — NS
Y] O
;t) —UD i —UD
§ M ——TSCH g —TSCH
2 —TSCH g —TSCH
[7) [}
« '! —Tcy | h — TS
PN
0 1 2 3 1 0 1 2 3 4 5
Period [sec] Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

99




A9 (Site Class: A, M,,: 6.5, Ry;: 4.41 km)

A10 (Site Class: A, M,,: 6.5, Ry,: 0.00 km)

_WW,, is

0.79%
f f 0.58g
(] ()
< —w 2 " —EW
£ £ y
< 0.89% —uw | |< 0.80g —UD
0 10 2 30 10 50 0 10 2 30 10
Time [sec] Time [sec]
A9 (Fourier Spectra) A10 (Fourier Spectra)
200
/\/\MM :
[} ]
T T
z z
g g
5 —mw 5 —w
@ —Ns @ —Ns
3 — 3 —
w w
01 1 10 100 01 1 10 100
Frequency [Hz] Frequency [Hz]
A9 (Response Spectra) A10 (Response Spectra)

'R M

§/_\

N —

: EW
5 —Ns
9]

< —UD
(0]

¢ —TSCH
8

2 —TSCH
()

& ﬁ —T5CV

o
—-

2 3
Period [sec]

"‘HM

¥}

[}

= EW

3

G —NS

¥}

< —D

[}

£ ——TSCH
]

8 —TSCH
[}

e« —T5CV

o
—_

2 3
Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

100



A11 (Site Class: A, M,,: 6.5, Ry,: 8.77 km) A12 (Site Class: A, M,: 5.9, Ry: 10.40 km)
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A13 (Site Class: A, M,,: 5.5, Ry,: 12.29 km) Al14 (Site Class: A, M,,: 5.9, Ry: 6.84 km)
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A15 (Site Class: A, M,,: 5.6, Ry: 24.58 km)
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A17 (Site Class: A, M,,: 5.6, Ry: 49.35 km) A18 (Site Class: A, M,: 5.9, Ryy: 18.05 km)
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A19 (Site Class: A, M,,: 6.5, Ry;: 2.19 km)

A20 (Site Class: A, M,,: 6.5, Ryy: 6.88 km)
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A21 (Site Class: A, M,,: 6.5, Ry,: 13.61 km) A22 (Site Class: A, M,,: 6.5, Ry: 8.00 km)
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A23 (Site Class: A, M,,: 6.5, Ry,: 9.78 km) A24 (Site Class: A, M,,: 6.5, Ry,: 12.55 km)
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A25 (Site Class: A, M,,: 6.5, Ry,: 31.26 km) A26 (Site Class: A, M,,: 6.5, Ry,: 18.61 km)
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A27 (Site Class: A, M,,: 6.5, Ry: 34.29 km)

A28 (Site Class: A, M,,: 6.1, Ry,: 16.95 km)
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A29 (Site Class: A, M,,: 6.9, Ry: 17.98 km) A30 (Site Class: A, M,,: 6.9, Ry: 18.27 km)
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B1(Site Class: B, M,,: 5.5, Ryy: 10.15 km)
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B3 (Site Class: B, M,,: 5.9, Ryy: 4.21 km)

B4 (Site Class: B, M,,: 5.9, Ryy: 5.92 km)
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B5 (Site Class: B, M,,: 5.9, Ryy: 5.91 km) B6 (Site Class: B, M,,: 5.9, Ryy: 3.25 km)
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B7 (Site Class: B, M,: 6.0, R,: 1.38 km)
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B9 (Site Class: B, M,,: 6.1, Ryy: 0.00 km) B10 (Site Class: B, M,,: 6.1, Ryy: 0.00 km)
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B11 (Site Class: B, M,,: 6.1, Ry;: 0.00 km) B12 (Site Class: B, M,,: 6.1, Ryy: 0.00 km)
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B13 (Site Class: B, M,,: 6.5, Ryy: 3.14 km) B14 (Site Class: B, M,,: 6.5, Ryy: 2.84 km)
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B15 (Site Class: B, M,,: 6.5, Ryy: 2.65 km)
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B17 (Site Class: B, M,,: 6.5, Ryy: 3.06 km)
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B19 (Site Class: B, M,,: 5.9, Ryy: 13.06 km) B20 (Site Class: B, M,,: 5.9, Ryy: 28.18 km)
0.21g I 2 0.12g t 1
§ o 3
é —w é — W
<8I' == NS g e=—NS
—UD 0258 —UD
0.08g
0.10g ” Vi
0 5 10 15 20 0 5 10 15 20 25 30
Time [sec] Time [sec]
B19 (Fourier Spectra) B20 (Fourier Spectra)
I 50 I 50
[} ]
T T
2 2
3 3
5 —w E —w
g —Ns by —NS
:8; — E —UD

Frequency [Hz]

B19 (Response Spectra)

s TSC-H

——TSCH
=—=15cY

o

Response Acc. [m/sec?]
H g /ﬁ
w
L]
S i3

o
—

2
Period [sec]

01 1 10 100
Frequency [Hz]
B20 (Response Spectra)
I 5
R
g JN\'\,\_,_\
£ —W
BM —
< —D
]
¢ ——T5CH
0
g ——TSCH

~

2
Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

120



B21 (Site Class: B, M,,: 5.6, Ryy: 17.36 km)

B22 (Site Class: B, M,,: 6.0, Ry: 13.21 km)
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B23 (Site Class: B, M,,: 5.9, Ryy: 10.48 km) B24 (Site Class: B, M,,: 5.9, Ryy: 23.40 km)
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B25 (Site Class: B, M,,: 5.9, Ryy: 27.71 km) B26 (Site Class: B, M,,: 6.5, Ryy: 10.57 km)
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B27 (Site Class: B, M,,: 6.5, Ryy: 11.05 km) B28 (Site Class: B, M,,: 6.5, Ryy: 10.12 km)
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B29 (Site Class: B, M,,: 6.5, Ryy: 10.12 km)
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B31 (Site Class: B, M,,: 6.5, Ryy: 6.30 km)

B32 (Site Class: B, M,,: 6.5, Ry: 9.79 km)
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B33 (Site Class: B, M,,: 6.5, Ryy: 1.05 km) B34 (Site Class: B, M,,: 6.5, Ryy: 11.37 km)
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B35 (Site Class: B, M,,: 6.5, Ryy: 11.85 km) B36 (Site Class: B, M,,: 6.9, Ry: 3.91 km)
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B37 (Site Class: B, M,,: 6.9, Ryy: 37.70 km)
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B39 (Site Class: B, M,;: 6.9, Ry,: 13.05 km) B4O (Site Class: B, M,,: 6.9, Ryy: 29.37 km)
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B41 (Site Class: B, M,,: 6.9, Ryy: 29.22 km)
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C2 (Site Class: C, M,,: 5.9, Ryy: 0.00 km) (3 (Site Class: C, M,,: 6.0, Ry: 5.30 km)
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C4 (Site Class: C, M,,: 6.0, Ry,: 0.00 km) C5 (Site Class: C, M,,: 6.0, Ry: 5.37 km)
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C6 (Site Class: C, M,,: 6.0, Ry,: 0.67 km) C7 (Site Class: C, M,,: 6.0, Ry,: 4.86 km)
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C8 (Site Class: C, M,,: 6.0, Ry: 5.92 km)
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C10 (Site Class: C, M,,: 6.0, R,: 0.00 km) C11 (Site Class: C, M,: 6.5, Ry;: 0.00 km)
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C12 (Site Class: C, M,: 5.9, Ry;: 13.55 km)

C13 (Site Class: C, M,: 6.0, Ry;: 13.92 km)
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C14 (Site Class: C, M,: 6.0, Ry;: 10.62 km)

C15 (Site Class: C, M,: 6.0, Ry;: 11.37 km)
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C16 (Site Class: C, M,,: 6.0, Ry 3.56 km)

C17 (Site Class: C, M,: 6.0, Ry;: 8.15 km)
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C18 (Site Class: C, M,: 5.9, Ry;: 23.63 km) C19 (Site Class: C, M,;: 5.9, Ry;: 15.49 km)
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C20 (Site Class: C, M,,: 6.0, Ry, 8.40 km) C21 (Site Class: C, M,: 6.5, Ry;: 7.99 km)
0.14g“w i
g g 1.02g
~ e— ™~ —
£ WE 0.76g aw
: —Ns : —Ns
g 0.19, g e
< . —uw < st —Uup
—W"M—“ 0.27g
0.11g N " ' @
0 5 10 15 20 25 30 0 10 20 30 40
Time [sec] Time [sec]
C20 (Fourier Spectra) C21 (Fourier Spectra)
I 100 200
0] ]
T T
2 z
g g
5 —w 5 —w
] —Ns & —Ns
E —UD § —UD
01 1 10 100 01 1 10 100
Frequency [Hz] Frequency [Hz]
20 (Response Spectra) (21 (Response Spectra)
I 5 v
N B
E‘ —_EW E‘ p— ]
g —Ns g —NS
< —Up < —up
() ]
¢ ——T5CH ¢ ——TSCH
[o] 0
§ —TSCH g ——TSCH
@ L —TSCV & —T5CV
3

o
—-
~

2
Period [sec]

0 1 2
Period [sec]

Figure Al. Acceleration Time Histories, Fourier Amplitude Spectra, and Response Spectra of the
Selected Data (Cont.)

141




C22 (Site Class: C, M,: 6.5, Ry,: 6.39 km)
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C24 (Site Class: C, M,: 6.5, Ry,: 18.13 km)
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C26 (Site Class: C, M,: 6.5, Ry;: 15.85 km) C27 (Site Class: C, M,: 6.1, Ry,: 4.34 km)
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B. Detailed Analysis Results

The results of the analyses based on inter-story drift ratio, overturning moment, axial
force on column, and story shear force are plotted and presented in this section. Each
plot is explained in terms of site class and Mw. X axis of each plot represents the Rjp
(in ascending order) and Y axis represents the amplification factor of response
parameter. The exact results can be seen in Table 5.2. In inter-story drift ratio,
overturning moment, and story shear force plots, Amp. represents the ratio of
maximum result obtained from the case with vertical component to the result
obtained from the case without vertical component whilst in column axial force plots,

it represents the ratio of the effect of vertical ground motion to column axial capacity.
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Figure B1. Inter-story Drift Ratio Results for Site Class A
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Figure B2. Inter-story Drift Ratio Results for Site Class B
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Figure B3. Inter-story Drift Ratio Results for Site Class C
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Figure B4. Overturning Moment Results for Site Class A
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Figure B5. Overturning Moment Results for Site Class B
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Figure B6. Overturning Moment Results for Site Class C
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Figure B7. Column Axial Force Results for Site Class A
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Figure B8. Column Axial Force Results for Site Class B
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Figure B9. Column Axial Force Results for Site Class C
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Figure B10. Story Shear Force Results for Site Class A
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Figure B11. Story Shear Force Results for Site Class B
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Figure B12. Story Shear Force Results for Site Class C
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