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Abstract: This study evaluates the performance of widely-used remotely sensed- and model-based
soil moisture products, including: The Advanced Scatterometer (ASCAT), the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E), the European Space Agency Climate
Change Initiative (ESA-CCI), the Antecedent Precipitation Index (API), and the Global Land Data
Assimilation System (GLDAS-NOAH). Evaluations are performed between 2008 and 2011 against
the calibrated station-based soil moisture observations collected by the General Directorate of
Meteorology of Turkey. The calibration of soil moisture observing sensors with respect to the soil
type, correction of the soil moisture for the soil temperature, and the quality control of the collected
measurements are performed prior to the evaluation of the products. Evaluation of remotely sensed-
and model-based soil moisture products is performed considering different characteristics of the time
series (i.e., seasonality and anomaly components) and the study region (i.e., soil type, vegetation
cover, soil wetness and climate regime). The systematic bias between soil moisture products and
in situ measurements is eliminated by using a linear rescaling method. Correlations between the
soil moisture products and the in situ observations vary between 0.57 and 0.87, while the root mean
square errors of the products versus the in situ observations vary between 0.028 and 0.043 m3 m−3.
Overall, according to the correlation and root mean square error values obtained in all evaluation
categories, NOAH and ESA-CCI soil moisture products perform better than all the other model- and
remotely sensed-based soil moisture products. These results are valid for the entire study time period
and all of the sub-categories under soil type, vegetation cover, soil wetness and climate regime.
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1. Introduction

Soil moisture plays a crucial role in the understanding of the water and energy cycle between
the land and the atmosphere. Accurate and reliable acquisition of soil moisture estimates ensures
its usability in many areas, such as weather forecast [1], drought analysis [2], flood forecast [3],
forest fires [4], etc. Moreover, soil moisture, due to its high temporal memory, has significant effects
on the Earth’s climate properly [5]. Therefore, understanding the spatial and temporal variability
of soil moisture at different scales through validation efforts [6] is critical in many theoretical and
operational studies.

Remote Sens. 2019, 11, 1875; doi:10.3390/rs11161875 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4411-3299
http://www.mdpi.com/2072-4292/11/16/1875?type=check_update&version=1
http://dx.doi.org/10.3390/rs11161875
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 1875 2 of 28

Soil moisture observations measured at point scale from ground-based stations only indicate
the state of a limited area. Increasing the number of stations to improve the spatial coverage is often
not feasible for many practical reasons (e.g., financial and maintenance issues). The use of a limited
number of station observations in the estimation of soil moisture over large regions often causes
representativeness errors. On the other hand, the use of station-based observations is necessary for
the validation of satellite- and model-based soil moisture products [5–13] that have the ability to offer
broad estimates over large regions.

There are various factors (e.g., soil type, soil temperature, electrical conductivity) which affect the
functionality of station-based soil moisture sensors. The data obtained through different sensors in the
same field conditions may have significant differences [14], while the accuracy of the obtained soil
moisture measurements can be improved by using of a proper calibration function [15–17]. Hence, it is
necessary to develop a sensor- and soil type-specific calibration equation to minimize the measurement
errors [15–17].

Many dedicated satellite missions have been designed to monitor the global soil moisture content
through microwave sensors (e.g., Soil Moisture Ocean Salinity (SMOS) [18] and Soil Moisture Active
Passive (SMAP) [19]). The disadvantage of remote sensing satellites is that they provide global coverage
over several days, which is less temporal resolution than in situ measurements. In general, remote
sensing-based retrieval algorithms aim to convert the incoming signal from the surface into soil moisture
information using ancillary datasets like vegetation water content and the relationships between
moisture status and the electromagnetic radiation response [20]. Alternatively, hydrological models
offer spatiotemporally continuous datasets (both for the past and future) with different resolutions,
while their ancillary datasets include vegetation and soil-related datasets. Owing to this advantage,
satellite- and hydrological model-based datasets are widely used in many applications.

Nevertheless, the accuracy of these products is dependent on the background assumptions of their
retrieval algorithms and physics, as well as the accuracy and the availability of input/ancillary datasets
and parameters. The performance of these estimates may also depend on the soil type, vegetation
cover, and climate regime, as the ancillary datasets used in their algorithms may use such information.
The accuracy of the low- and high-frequency components of these datasets may vary as well, while
particularly high frequency anomaly components are generally utilized in drought-related studies;
hence, their investigations should be performed for different timescales. However, there are not
many studies related to these components of soil moisture time series—hence, more validation efforts
are needed.

In the past few years, previous studies compared and/or validated remotely sensed- or model-based
soil moisture products globally (i.e., Albergel et al. [13] and Colliander et al. [10]) or regionally. Among
regional studies; Leroux et al. [12] and Jackson et al. [7,8] focused over four watersheds in the U.S. under
various climate conditions and soil characteristics, while Brocca et al. [6] considered both the anomaly
component and the complete time series across Europe. While Holgate et al. [21] evaluated 11 sources
(five remote sensed, six model-based) of soil moisture data across Australia; Zeng et al. [22] evaluated
remotely sensed and reanalysis soil moisture products in various biomes and climate conditions over
the Tibetan Plateau. Moreover, Parinussa et al. [5] conducted an inter-comparison of remotely sensed
soil moisture products over the Iberian Peninsula.

The major distinction of the current study, in comparison to the previous studies, is that it focuses
on the evaluation of different soil moisture products over different categories, such as soil type, soil
wetness, vegetation cover, and climate regime. Although there are studies which compared remote
sensing- and model-based soil moisture products over different vegetation covers, or decomposed their
time series to high and low frequency components (i.e., seasonality and anomaly), this study evaluates
different soil moisture products by considering all the mentioned categories above for the first time to
the knowledge of the authors. Additionally, each soil moisture product is evaluated more extensively
than most of the past studies by specifying vegetation cover values (i.e., thresholds) and soil types
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clearly through selected sub-categories. Moreover, such analysis has been conducted for the first time
over Turkey, which has a much more complex topography compared to the average global topography.

Hence, the aim of this study is to investigate the sensitivity of the accuracy of satellite- [ASCAT,
AMSR-E, and ESA-CCI] and model-based [API and NOAH] soil moisture products to soil type (silt,
clay, and loam ratios), climate regime, vegetation cover, and time series components (i.e., seasonality
and anomaly components) using station-based observations obtained over Turkey. The goal is to obtain
the sensitivity of accuracy estimates to such soil type, vegetation, soil wetness, climate classifications
and seasonality/anomaly decompositions so that future mission requirements might include such
accuracy levels.

2. Materials and Methods

2.1. Station Network

More than 1000 automated weather observation stations (AWOS) collecting hydrometeorological
data (i.e., air temperature, relative humidity, wind speed and direction, precipitation, solar radiation,
surface pressure, temperature, etc.) [23,24] are being operated in Turkey and among these some
also contain soil moisture measuring sensors. These stations are part of the 206 AWOS (also called
Western Mesonet) whose installations were started in 2002, and they became operational in 2007.
This Western Mesonet network has been continuously expanded by new station additions since
2007 (including ongoing expansions today), bringing the current number of installed stations to
more than 2000 locations. However, newly added stations do not include soil moisture sensors (but
have other hydrometeorological sensors), while only some of the Western Mesonet stations have soil
moisture sensors. The soil moisture observations utilized in this study are obtained from the Western
Mesonet Network only. Distribution of AWOS and stations with soil moisture sensors are shown over
Normalized Difference Vegetation Index (NDVI) in Figure 1.
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2.2. Station-Based Soil Moisture Measurements

The station-based soil moisture measurements are obtained using a Campbell Scientific CS616
water content reflectometer at a depth of 20 cm and 10-minute intervals. The sensor observations
are based on the principle that soil and water have different electromagnetic radiation and electrical



Remote Sens. 2019, 11, 1875 4 of 28

transmission properties. The sensor measures volumetric soil moisture using the dielectric constant
of the soil water matrix, which is measured by utilizing the capacitance of the soil through the
electromagnetic signals sent between the two parallel bars. Since the only substance that affects the
transmission time of the signal sent between the two parallel bars is the water in the soil medium, the
volumetric soil moisture can be measured with the help of the sensors measuring the time of the signal
transmission [25].

The CS616 and similar sensors are widely used to measure soil moisture [26,27]. The CS616 sensor
measures the period of the signal propagation time, which is later converted to the soil moisture
estimate. The soil moisture measurements made by the sensor are influenced by the type, the electrical
conductivity, and the temperature of the soil. Hence, the accuracy of the observations may be improved
via proper corrections/calibrations against these factors. Since the measurements are also sensitive to
the temperature of the sensor, it is necessary to correct the measurements to the temperature of the soil
medium utilizing the observations made at the same depth, in order to increase the accuracy of the
measurements. The transformation of the measured period signal to the soil moisture values requires
the use of calibration curves specific to the soil type. Accordingly, soil type dependent calibration curves
are required to obtain improved soil moisture values, while the default calibration equation provided
by the manufacturer reflects only a specific type of soil [25]. This implies that the use of calibration
curves specific to soil type may improve the accuracy of the retrieved soil moisture observations.

In this study, the response of the sensor according to the content of different soil types is
examined, and different calibration equations are developed based on soil type or electric transmission
capacity [25].

2.2.1. Soil Type Calibration and Temperature Correction

The CS616 sensor measures the propagation time of the transmitted signal between two parallel
bars. This observed periodic signal is then converted to soil moisture values using the standard
Equation (1) provided in the sensor’s manual [25].

VWC = −0.0663 − 0.0063 τ + 0.0007 τ2, (1)

where VWC is the volumetric water content, and τ is the period of the measured propagation time
signal given in microseconds.

Here, the goal of the calibration is to obtain a separate calibration curve for each soil texture type,
where soil type-specific calibration curves are expected to have fewer inversion errors (i.e., from sensor
measured signals into soil moisture) than using above given default Equation (1).

Soil Texture Classification of Samples

Soil specimens collected from each station are sampled for determination of soil types using
Analysis of Part Size Distribution (Sieve Analysis) and Analysis of Part Size Distribution by
Sedimentation (Hydrometer). For the Sieve Analysis, the standard American Society for Testing and
Materials (ASTM) D6913 [28] is used. For this analysis, the particle size distribution is carried out by
finding the proportion of particles larger than 75 µm in the soil sample. For the Hydrometer analysis,
the standard ASTM D422 [29] is used. For this analysis, the distribution of particle sizes smaller than
75 µm is determined by a sedimentation process, using a hydrometer to secure the necessary data.

Later, the soil types of the samples are determined using the obtained soil texture ratios and the soil
texture triangle given by the United State Department of Agriculture (USDA) for soil classification [30].
The ratio of the content on each side of the triangle is marked, and the information about which type of
sample this information corresponds to is obtained (Figure 2).
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Soil Type Calibration

Separate soil samples collected from different stations, all with the same soil texture, are combined
into a bucket. The amount of soil from each station mixed in the bucket is the same to avoid bias
from any particular station. After that, for each soil texture type, a separate bucket of soil samples
is obtained. Accordingly, different soil sample groups are prepared to calculate separate calibration
curves for each soil group. Soil texture types that did not have sufficient collected samples are not
utilized for the calibration curve calculation; instead, default calibration curve equations provided by
the manufacturer (Campbell Scientific CS616 manual [25]) are used. Later the following procedure and
the equipment used for calibration of different soil sample groups.

Procedure:

1. Soil samples collected from different stations with the same soil texture are mixed, while the
volume of the combined samples are kept the same.

2. Soil samples are mixed to create a homogenous soil sample.
3. Soil samples are crushed with the help of the trowel before each measurement to avoid

agglomeration and to acquire homogenous moisture distribution in the soil.
4. The soil is placed into the calibration bucket at bulk density near to field conditions.
5. Sensor values are read for three times.
6. Volumetric soil samples are collected.
7. The weights of the volumetric soil samples (net weight) are measured.
8. The calibration sample is re-wetted.
9. All steps are repeated until the calibration sample reaches the saturation point.
10. Volumetric soil samples taken at each repetition are oven-dried.
11. The weights of dried volumetric soil moisture samples are measured.

Equipment:

• Data logger and CS616 sensor to read the measured propagation time signal period.
• Cylindrical sample vessel to determine the soil moisture of the sample.
• Calibration bucket (PVC, with 10 cm diameter and 35 cm length) to measure sample soil moisture

using the sensor.
• Sensitive scale to measure the weights of the samples.
• Oven to dry the samples.

Here oven-dried samples represent the laboratory-based true soil moisture values, while
sensor-based readings form the basis of sensor-based estimates. After the samples are placed
into the calibration bucket, a part of the CS616 sensor—up to half of its plastic—is placed in the soil.
The values are obtained via the data logger when the sensor measurements became constant. The soil
medium, where the moisture is measured, is sampled with the cylindrical container; this sample is
initially weighed for its wet mass and later oven-dried for 24 h to obtain the dry mass. For each
group, eight measurements are made to represent eight different wetness levels. The measured period
information via the CS616 sensor is then related to the actual soil moisture measurements (via oven
drying) for each group separately. Later, polynomial equations, similar to Equation (1), are fitted, and
the parameters that represented this best fit with minimized prediction errors are obtained. Once
these soil texture dependent parameter sets are obtained for all of the six groups separately, past τ
observations collected by the CS616 sensors since 2008 are converted to soil moisture values.

Correction for the Temperature

The CS616 sensor is very sensitive to the temperature of the soil medium. Calibration equations
generally are obtained at a specific temperature, while the actual observations made in the field
often are different. Hence, the observed period values should be initially corrected for the actual soil
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temperature, prior to the implementation of the calibration equations. For this reason, soil temperature
observations measured at 20 cm depth (the same depth that τ observations are made) are used in
temperature correction based on the CS616 sensor’s manual descriptions as follows:

τc = τuc + (20− Tsoil) ∗
(
0.526− 0.052 ∗ τuc + 0.00136 ∗ τuc

2
)
, (2)

where τc is the corrected period values, τuc are the raw uncorrected period values, and Tsoil is the
temperature of the soil medium.

2.2.2. Quality Control

Quality control is performed to ensure the reliability of the acquired soil moisture data sets. Similar
to the soil temperature and the signal-period (i.e., soil moisture) observations, precipitation is also
measured at the same stations every 10 minutes. The relationship between the precipitation and the
signal-period observations is used to perform a visual assessment of the quality control of the period
time series. Overall, the soil moisture responds to major precipitation events; any precipitation event
should be followed by an increase in the signal-period, and, similarly, the absence of precipitation
should yield a continuous decrease in the signal-period. If the signal-period observations do not show
reasonable responses to the observed precipitation, then such observations are flagged as “bad quality”
while the other observations are selected as good quality.

These quality control assessments are performed for all stations separately between 2008 and 2016
using daily values, while the sensitivity analyses (i.e., validation of remote sensing- and model-based
soil moisture datasets given under Section 2.3) are performed between 2008 and 2011. Firstly, the raw
10-minute period observations are converted to 10-minute soil moisture estimates using the default
calibration Equation (1). Then, the obtained 10-minute soil moisture values are converted to daily
values using the arithmetic average method. Similarly, daily-accumulated precipitation values are
also calculated from 10-minute observations. Later, these daily precipitation time series are used to
pre-assess the sensitivity of soil moisture time series; here, the goal is to visually examine the responses
of the soil moisture sensor to the measured precipitation. An increase in the soil moisture values is
expected for the periods with very high precipitation events, while a steady decrease is expected for
long no-precipitation periods. In addition to the quality control of the soil moisture-precipitation
relationship, the data sets are also controlled for the frozen soil conditions. The soil moisture values that
are associated with the soil temperature values below 1 ◦C are flagged and not used in this study, as
such cold conditions are assumed to contain partially or fully frozen soil medium. If the soil moisture
time series obtained over any station did not consistently respond to measured precipitation data, or
showed a constant value for a long period of time (i.e., no drying), or showed unexpected fluctuations
(such as sudden drying), then these stations are flagged and removed from the analysis. Instead, only
the soil moisture time series that showed reasonable responses to precipitation time series is used.

2.3. Validation of Remotely-sensed and Model-based Soil Moisture Products

Remote sensing-based ASCAT, AMSR-E, ESA-CCI and model-based API and NOAH soil moisture
products are evaluated with station-based observations. Since AMSR-E satellite terminated its mission
in October 2011 and ASCAT products are available from May 2007, the years between 2008 and 2011
are selected as the study period. Characteristics of each soil moisture source can be seen in Table 1.
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Table 1. Information on used soil moisture data sources.

Name Type Spatial Res. Temporal Res. Unit

Station In situ Measurement Point 10 Minutes VWC a (%)
ASCAT Active Microwave 25 km Daily DoS b (%)

AMSR-E Passive Microwave 25 km Daily m3 m−3

ESA-CCI Active + Passive Microwave 25 km Daily VWC (%)
NOAH Hydrological Model 25 km 3 h kg/m2

API-Station Hydrological Model Point 10 Minutes mm
API-TRMM Hydrological Model 25 km Daily mm

a Volumetric Water Content, b Degree of Saturation.

2.3.1. Remotely-sensed Soil Moisture Products

Remote sensing systems may be classified into two types depending on the incoming signal
sources: (a) Radiometers are passive systems that measure the self-emission of Earth’s surface, (b)
radars are active systems that measure the energy scattered back from the surface. In this study, one
active (ASCAT), one passive (AMSR-E) and one combined (ESA-CCI) remotely sensed soil moisture
products are used.

ASCAT

ASCAT is a real-aperture radar instrument onboard the Meteorological Operational Satellite-A
(MetOp-A) satellite which measures the radar backscatter with reliable radiometric accuracy and
stability [31,32]. The satellite was launched in October 2006 and became fully operational in May
2007. The measurement of the wind speed and direction over the oceans are the main objectives of
the ASCAT, though acquired observations are also used for studying soil moisture, polar ice and
vegetation. The types of electro-magnetic waves that are measured by ASCAT are VV polarization in
C-band with 5.255 GHz. ASCAT observes the Earth’s surface with a varying spatial resolution of 25 km
to 50 km while it reaches to 12.5 km in the higher resolution product. C-band microwaves transmitted
by ASCAT have a role in measuring the soil moisture in the top 0.5 to 2 cm of the soil layer.

ASCAT product classifies the moisture in the soil between dry (0%) and wet (100%). In this
study, the Technische Universität Wien (TUWIEN) soil moisture product (average of ascending and
descending overpasses) that has 0.25◦ spatial resolution is used. The dataset used in this study is
provided by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
data center website “https://navigator.eumetsat.int”.

AMSR-E

The instrument, which was launched in May 2002, is a dual-polarized, conical scanning, passive
microwave radiometer. AMSR-E uses C-band (6.9 GHz) and X-band (10.65 and 18.7 GHz) radiance
observations to derive near-surface soil moisture [33]. Each band has different sensing depth and
spatial footprint; C-band has 1–2 cm sensing depth and 74 × 43 km2 spatial footprints while X-band
has a smaller footprint and less than 5 mm penetration depths [34]. While AMSR-E is one of the
first sensors that prevalently used for the estimating soil moisture retrievals, data retrieval stopped
in December 2011 when the instrument ceased operations. The products retrieved using AMSR-E
observations have temporal coverage between June 2002 and October 2011.

Several algorithms have been developed to estimate soil moisture from AMSR-E retrievals [35–37].
Although AMSR-E has several retrieval products, Land Parameter Retrievals Model (LPRM) which
is the approach of Vrije Universiteit Amsterdam (VUA)–NASA, shows stronger consistency with in
situ measurements in Europe [34]. The results of LPRM model soil moisture data are available in the
units of volumetric water content (m3 m−3) on a regular 0.25◦ global grid. LPRM datasets (descending
overpass) used in this study are provided by NASA Goddard Space Flight Center’s Global Change

https://navigator.eumetsat.int
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Master Directory. In this study, AMSR-E abbreviation is used not only for the instrument, but also for
the soil moisture product obtained by using LPRM.

ESA-CCI

ESA-CCI soil moisture product is a multi-decadal data record based on a combination of satellite
observatory soil moisture datasets (both active and passive products) [38–40]. The merging approach
in the ESA CCI includes three steps. Initially, the passive microwave products are fused together;
secondary, the active products are fused; and lastly, the two fused products are combined together to
produce the final product.

The first version of ESA CCI (v0.1) is published in 2012. Since then, the CCI team regularly
upgrade their product through expanding its time series length and spatial coverage by including new
sensors, and upgrading their algorithms. In this study, the combined version of ESA CCI (v4.2) with a
spatial resolution of 0.25◦ is obtained from ESA CCI website: “http://www.esa-soilmoisture-cci.org”.
Additional information about the ESA CCI soil moisture product and technical details of it can be
found in the study of Dorigo et al. [38].

2.3.2. Model-Based Soil Moisture Products

Similar to remote sensing-based observations, hydrological models also provide large scale soil
moisture data, where the spatial resolution of the soil moisture product depends on the input forcing
and ancillary datasets. In this study, soil moisture estimates retrieved from simulations of API and
NOAH hydrological models are used.

NOAH

NOAH land surface model [41] is developed by cooperative work of National Centers for
Environmental Prediction (NCEP) - Oregon State University (OSU) Dept. of Atmospheric Sciences
- Air Force - Hydrologic Research Lab. Like many other complex land surface models, NOAH uses
atmospheric forcing data (precipitation, temperature, humidity, wind, and four-way radiation) and soil
and vegetation related parameters to fully solve the energy and the water balance elements (e.g., soil
moisture and soil temperature) at the land surface for specified number of soil columns and a single
canopy layer. NOAH is a 1D model in the vertical direction that the solutions of energy and water
balance equations are performed independently over each grid point. The model consists of one snow
layer, one canopy layer, and four soil layers. Typically, four soil layers are chosen, and their depths
from the ground level are typically chosen as 10 cm, 40 cm, 100 cm, and 200 cm.

The NOAH soil moisture products that are used in this study are simulated by NASA Earth
Sciences Division and published by Goddard Earth Sciences (GES) Data and Information Services
Center (DISC) (http://disc.sci.gsfc.nasa.gov). The temporal resolution of the retrieved datasets are 3-h
and the spatial resolution of 0.25◦ [42], where the soil moisture estimates are representative for the
0–10 cm soil layer.

API

API is one of the simplest examples of hydrological models to estimate soil moisture. It calculates
soil moisture using the precipitation of the region, where the retrieved soil moisture product has
the same temporal and spatial resolution as the input forcing precipitation product. Several studies
have been made in order to link precipitation to soil moisture by using API because of the lack of
field data [43,44]. Because of the simplicity of its retrieval, it is much easier to have full control over
synthetic experiments that investigate scientific questions theoretically and easier to infer for the
moisture conditions with comparable accuracy over remote locations with limited forcing/ancillary
datasets [41–45]. API model-based soil moisture is calculated using the following equation:

APIt+1 = γ APIt + Pt+1, (3)

http://www.esa-soilmoisture-cci.org
http://disc.sci.gsfc.nasa.gov
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where APIt+1 represents soil moisture values, γ is a seasonally varying parameter that determines what
part of precipitation is stored in the soil, and Pt+1 is the precipitation amount observed between time t
and t + 1. The γ value typically ranges between 0.85–0.98. The study of Crow et al. [45] determined
that in the sensitivity tests of API, taking γ parameter as varied rather than as a constant reveals little
qualitative variation in results; hence, γ parameter is taken as constant 0.85 in this study. The errors
originating from the initial value usually disappear within a short period of time [43,44]. In this
study, API values are obtained from 2000 to the end of the study period, and the errors originating
from the initial value are eliminated. As for the input precipitation data, two different products are
used: Station-based precipitation observations and the Tropical Rainfall Measuring Mission 3B42
v7 (TRMM) [46]. The TRMM dataset is obtained from NASA precipitation measurement missions’
website “https://pmm.nasa.gov/data-access/downloads/trmm”.

2.3.3. Rescaling of Soil Moisture Datasets

Soil moisture products acquired using different platforms (i.e., station-based observations, remote
sensing retrievals, hydrological model simulations) often have different vertical support (soil moisture
status between 1 and 20 cm). Furthermore, these products often have different spatial and temporal
representativeness characteristics in addition to their differences between the dynamics of the soil
moisture values (i.e., some soil moisture values change between 0 and 0.50 while others between 0
and 1.0). All of these differences necessitate soil moisture products to be rescaled to the space of a
reference dataset so that the comparisons (e.g., error statistics) can be meaningfully performed or
merging algorithms could be implemented optimally.

Several linear and nonlinear rescaling methods have been proposed to rescale hydrological
variables, particularly soil moisture [47]. Among them the cumulative density function matching-based
method [48–50] is commonly used, while variance matching-based [51–53], linear regression-based [54,
55], Triple Collocation Analysis (TCA) based [56], and Copula-based [57] methods are also implemented
to reduce the systematic differences between time series.

In this study, given linear regression results in the least squared errors when two datasets are
regressed to each other (i.e., similar to rescaling), linear regression-based rescaling method is preferred
to reduce the systematic differences that may exist between soil moisture time series [56] obtained from
station observations, satellite retrievals, and hydrological model estimates.

Overall, linear rescaling methods are implemented by considering the most general linear relation
between a reference dataset X and the dataset to be rescaled Y in the form

Y∗ = µX + (Y− µY)cY, (4)

where Y* is the rescaled version of Y, µX and µY are time-averages of X and Y, and cY is a scalar rescaling
factor. Here cY in this study is found using regression-based linear methods as

cY = ρXY σX/σY, (5)

where cY is a linear rescaling factor; σX and σY are standard deviations of X and Y datasets, respectively;
and ρXY is the correlation coefficient between X and Y. Here in these equations X and Y datasets refer to
station-based observations and evaluated soil moisture products (e.g., remote sensing- or model-based),
respectively.

2.3.4. Validation Statistics

In this study, evaluations of soil moisture products are performed using the Pearson correlation
coefficient (R), and root mean square error (RMSE) following Entekhabi et al. [58]. Here these

https://pmm.nasa.gov/data-access/downloads/trmm


Remote Sens. 2019, 11, 1875 10 of 28

statistics are calculated after products are linearly rescaled to station-based observation space using
Equations (4) and (5):

ρ(X,Y) =

 1
N− 1

N∑
i=1

((Y− µY) (X− µX))

/(σXσY), (6)

RMSE =

√√√
1
N

N∑
i=1

(Y∗i −Xi)
2, (7)

where N is size of the sample, µ is mean value, σX and σY are the standard deviations of X and Y,
respectively, and ρ(X,Y) is Pearson correlation between X, Y, and Y* values are the rescaled products
(remotely-sensed or model-based). Here, RMSE can also be equally called error standard deviation or
unbiased root mean square error given product X is selected as the truth and Y is the evaluated product,
while the differences between the means of X and Y are removed via Equation (4) given above.

2.3.5. Evaluation Categories

Validation of remote sensing- and hydrological model-based soil moisture products with station
observations are performed over each station separately. The analyses are further expanded by
investigation of the error statistics for (1) seasonality/anomaly components, (2) different soil types, (3)
climate regions and (4) vegetation cover.

The soil moisture time series are decomposed into their seasonality (i.e., low frequency) and
anomaly (i.e., high frequency) components for further investigations. Most of the drought studies
discarded the seasonality and made drought analysis based on soil moisture anomaly data [2,59].
In addition, triple collocation-derived error data is calculated over anomaly values [60,61]. For this
reason, it is important to evaluate seasonality and the anomaly components of the different soil moisture
product separately. In this study, the seasonality components are calculated by taking the 29-day
moving window average for each day-of-year (i.e., total 365) using the datasets obtained from all
years (i.e., average of 29*5=145 soil moisture values obtained from 14 days before and after for the
day-of-interest using all 4 years between 2008 and 2011) [21]:

Xd = SM2008:2011, d−14:d+14, (8)

where Xd is seasonality value for day-of-year d, SM is the soil moisture value for any day of any year.
Once the daily seasonality components are calculated, the daily anomaly components are calculated by
subtracting seasonality values from daily soil moisture value.

With a separate calibration curve is obtained for each soil category (e.g., sand, silt, clay), the effect
of soil type on the accuracy of the satellite- and model-based products are calculated by investigation
of the statistics over different soil type categories.

The variability of the climate across Turkey is large, hence, different climate zones [62] obtained
from Köppen-Geiger Climate classification [63] are often used to investigate the impact of the climate
as a part of sensitivity studies.

Vegetation cover is another issue to be taken into consideration while evaluating the performance
of different soil moisture products. Since vegetation cover affects the remote sensing-based and
model-based soil moisture products, the average NDVI values (MODIS/Terra Vegetation Indices
Monthly L3 Global 0.05-degree) in the study period are used to obtain vegetation cover of each
station. The NDVI dataset used in this study was obtained from the MODIS web site “https:
//modis.gsfc.nasa.gov/data/dataprod/mod13.php”.

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
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3. Results

3.1. Temperature Correction, Calibration, and Quality Control

Soil texture classification (i.e., ratios) results for five stations with different soil types are shown in
Table 2. Following the ASTM standard, the particles which passed sieve No.200 (75-µm) are considered
as silt and clay; particles which could not pass sieve No.4 (4.75 mm) are considered as gravel. The rest
of the particles which remained between the two sieves are considered as sand. The silt ratio is obtained
by subtracting the clay ratio (obtained by hydrometer test) from particles passed No.200 sieve.

Table 2. Hydrometer test and sieve analysis results.

Station
No

Specific
Gravity

Sieve Analysis
Sand (%) Silt (%) Clay (%)

+No.4 (%) −No.200 (%) Clay Size (%)

17024 2.610 3.8 70.7 26.0 26.51 46.47 27.03
17026 2.615 5.0 29.4 9.0 69.05 21.47 9.47
17072 2.654 3.7 48.2 7.0 49.95 42.78 7.27
17114 2.640 0.0 71.4 40.5 28.60 30.90 40.50
17116 2.675 4.1 56.6 8.5 40.98 50.16 8.86

As an example, for the soil sample taken from station #17024 Kastamonu İnebolu, the sand, silt,
and clay ratios are 26.51%, 46.47%, and 27.03%, respectively (after the gravel ratio is subtracted). When
these ratios are marked in the USDA soil texture triangle, the soil class is then found to be “clay loam”.
The same procedure is repeated for all stations, and the soil classifications are obtained for all samples
(Figure 2). Sieve analysis and soil texture analysis results show that loam and sandy loam soil classes
are the most common soil types among the analyzed samples (Table 3).

Table 3. Distribution of soil types for stations.

Soil Type Number of Stations Soil Type Number of Stations

Clay Loam (G1) 1 11 Silt Loam (G5) 7
Loam (G2) 23 Silty Clay Loam (G6) 3

Loamy Sand (G3) 1 Clay 1
Sandy Loam (G4) 21 Missing Samples 1
1 The soil texture types that the laboratory calibrations made are given within the parenthesis (e.g., G1, G2, etc.).

For each group, eight measurements representing different soil wetness are made. The difference
between the dry and the wet soil sample mass, in addition to the sample cylinder volume (~2750 cm3)
information, enabled the actual volumetric soil moisture of the soil groups to be calculated. As an
example, the actual and the estimated (via CS616 sensor) soil moisture values for Group 4 are given in
Table 4.

Table 4. Laboratory measurements, sensor readings and errors of Calibration Group 4.

#
Soil Moisture (%) Error

Laboratory 1 Default 2 Calibration 3 Default Calibration

1 7.69 6.99 10.47 0.0070 −0.0278
2 10.63 9.45 10.93 0.0118 −0.0031
3 14.32 11.17 11.52 0.0314 0.0280
4 17.25 14.14 12.87 0.0311 0.0438
5 22.03 27.70 23.32 −0.0567 −0.0128
6 34.71 38.48 34.90 −0.0376 −0.0019
7 43.59 46.80 45.09 −0.0321 −0.0150
8 55.61 51.63 51.38 0.0398 0.0423

1 Soil Moisture value obtained in the laboratory, 2 CS616 sensor-based soil moisture obtained using the
manufacturer-provided default equation, 3 CS616 sensor-based soil moisture obtained using equation calibrated for
each Group 4 (Sandy Loam).
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Here the actual soil moisture values range between 7.69% and 55.61%, while the error standard
deviations for the estimates obtained using the manufacturer-provided default and calibrated equations
are 3.66% and 2.75% respectively for Group 4. As expected, the errors of the estimates using calibrated
equations are consistently lower than estimates using default equations on both the dry and the wet
edges, showing soil-type calibration consistently improves the soil moisture estimates.

In addition to the actual soil moisture measurements, CS616 sensor-based period measurements
are also made for the same soil groups, under the same conditions that the actual soil moisture
measurements are made. The CS616 sensor period measurements for each of the six soil groups are
related to actual soil moisture observations using polynomial equations (Figure 3) that yield the lowest
root mean squared errors (RMSE). These soil texture type-specific polynomial equations are later used
to convert signal period observations into volumetric soil moisture values.
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The ensemble of calibration curves found for different soil groups greatly vary from the default
calibration curve provided by the manufacturer, except for silt loam (Figure 3); this group had a similar
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curve to the default curve. These curves are later applied to convert the temperature corrected period
information to sensor-based soil moisture readings. The difference between the actual soil moisture
and the sensor readings is considered the sensor measurement error.

The error statistics of the soil moisture values retrieved using the default and the calibrated
equations, found in this study, are given in Table 5. On average, the calibration removed the bias and
the RMSE effectively for most of the soil types. The standard deviation of the soil moisture reading
errors are, on average, 3.0%, and varied between 2.0% and 3.4%. These results show that the CS616
manual accuracy estimate of 2.5% is lower than the 3.02% standard deviation results found in this study.

Table 5. Comparison of the default and calibrated sensors measurements with laboratory measurements
of soil moisture (%) for the different soils.

Soil Type Mean Error (%) RMSE (%) SD (%)

Default 1 Calibrated 2 Default 1 Calibrated 2 Default 1 Calibrated 2

Clay Loam (G1) −10.76 −2.73 14.89 4.11 11.51 3.44
Loam (G2) −5.20 1.38 8.19 2.35 6.76 2.04

Loamy Sand (G3) −4.62 2.04 6.69 3.59 5.18 3.16
Sandy Loam (G4) −0.07 0.67 3.42 2.66 3.66 2.75

Silt Loam (G5) −2.21 −2.90 3.97 4.22 3.62 3.37
Silty Clay Loam (G6) −6.50 −1.21 10.49 3.52 8.80 3.36

Overall −4.89 −0.46 7.94 3.41 6.59 3.02
1 Sensor results with default equation, 2 Sensor results with calibration equations of related soil type.

As an example, for the calibrated sensor-based soil moisture estimates, the time series for station
number 17746 is shown in Figure 3. The soil moisture readings respond to the precipitation with
increased soil moisture values and show a steady and gradual decrease during the dry period without
precipitation. The increase in the soil moisture values after a precipitation event is much higher after a
long dry period than after a relatively wet period, showing expected soil moisture sensor sensitivity
(Figure 4).
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Soil moisture time series obtained using soil texture specific curves are later quality controlled for
their consistency in time and against precipitation dataset variability. Here the goal of this quality
control is to eliminate the time series without consistent/continuous soil moisture signal via visual
inspection of the soil moisture time series. After these rigorous quality control steps, time series
obtained over 68 stations are selected and used in this study (Table A1 and Figure 1), while other
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station-based sensor readings (i.e., time series) are flagged and removed from the analysis. The most
common reason for the elimination of time series is found to be the lack of sensor reading sensitivity
to precipitation; an increase during wet periods or continuous decrease during dry periods is not
observed. The number of eliminated time series having very high soil moisture values (>60%) or
unrealistically changing soil moisture variability (e.g., for several years the soil moisture standard
deviation is 0.10 while the following years it is 0.005) was less than 10.

3.2. Validation

Satellite- and model-based soil moisture estimates are validated using the CS616-based soil
moisture observations as the truth. These validation analyses include the calculation of correlation
coefficient and RMSE over each station separately. Because the satellite and the model datasets have
different soil moisture space, they are first rescaled to the space of CS616 sensor-based soil moisture
using linear regression before the error statistics are calculated. The satellite and the model soil moisture
data over each station are extracted using selecting the data of the pixel that contains the station
coordinates. The datasets for the stations that have mutually available soil moisture products (total
40 stations) are used in a separate analysis to make an objective evaluation of the product accuracies.
Here, mutual availability refers to the stations that have partial/full temporal coverage for all products
over each location, while the statistics are not calculated using temporally mutually available days (the
number of temporally mutually available days is very low), but rather the statistics are calculated using
all available data over each station separately. Other individual statistics are also given to evaluate
the performance of different soil moisture products over Turkey. Overall, the validation analyses are
investigated for all stations together and for stations split into different classes with respect to annual
mean soil moisture, climate, and soil type.

3.2.1. Validation—All Stations

The correlation and RMSE results of different soil moisture products are calculated over all
available stations and mutually available stations, while average error statistics for both cases are given
in Table 6. Error statistics are calculated for the complete time series, the seasonality component (and
the anomaly component separately using Equation (7). Confidence intervals of error statistics for the
complete time series at a 5% significance level (CI95) are calculated using the bootstrap method with
thousand samples (n = 1000).

Table 6. Statistics of soil moisture products over individually and mutually available stations.

Individually Available Stations

Pearson Correlation Coefficient
(R)

Root Mean Square Error (RMSE)
(m3 m−3)

Name #Stations CI95
a Com. b Season. c Anom. d CI95

a Com. b Season. c Anom. d

ASCAT 54 0.52–0.61 0.57 0.85 0.36 0.040–0.044 0.042 0.028 0.029
AMSR-E 44 0.58–0.68 0.63 0.90 0.28 0.036–0.040 0.038 0.024 0.029
API-TRMM 66 0.53–0.60 0.56 0.81 0.46 0.041–0.044 0.043 0.032 0.028
API-Station 67 0.60–0.66 0.63 0.79 0.61 0.039–0.042 0.040 0.032 0.025
NOAH 59 0.80–0.84 0.82 0.95 0.50 0.027–0.029 0.028 0.012 0.025
ESA-CCI 54 0.65–0.72 0.69 0.90 0.40 0.033–0.036 0.036 0.021 0.028

Mutually Available Stations

ASCAT 40 0.55–0.64 0.60 0.87 0.38 0.039–0.042 0.040 0.027 0.028
AMSR-E 40 0.58–0.68 0.63 0.91 0.27 0.036–0.040 0.038 0.024 0.029
API-TRMM 40 0.52–0.59 0.56 0.80 0.47 0.040–0.042 0.041 0.031 0.027
API-Station 40 0.59–0.65 0.62 0.78 0.63 0.038–0.040 0.039 0.031 0.024
NOAH 40 0.80–0.83 0.82 0.94 0.48 0.027–0.029 0.028 0.013 0.025
ESA-CCI 40 0.68–0.75 0.71 0.92 0.42 0.033–0.036 0.034 0.019 0.028

a Confidence Interval for original time series, b Complete time series, c Seasonality time series, d Anomaly time series.
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On average, the seasonality component has a much higher linear correlation with the ground-based
datasets when compared to the linear correlation of the complete and the anomaly datasets. Here,
the averaged seasonality component correlations are as high as 0.95 (for NOAH) while the averaged
anomaly component correlations are as low as 0.28 (for AMSR-E). Original time series of NOAH soil
moisture product gives the highest correlation (R = 0.82) with station observations; yet, on average,
the anomaly component of API-Station has a much higher correlation (R = 0.63) than the correlation
of the anomaly components of NOAH (R = 0.50) and API-TRMM (R = 0.46). This result shows the
significance of accurate precipitation forcing datasets, and soil moisture anomaly components of NOAH
simulations still have room for improvement using more accurate precipitation forcing. In general, the
remote sensing-based products have fewer anomaly correlations than the model anomaly components.
Among remotely-sensed products, ESA-CCI soil moisture product has the highest correlation in all
three components (Com. R = 0.71, Season. R = 0.92, Anom. R = 0.42), implying the most consistent
product among the ones evaluated in this study. The results of RMSE show on average the products
have around or lower than 0.040 m3 m−3 error; implying the validation goal of remotely sensed soil
moisture products (i.e., accuracy requirement of 0.040 m3 m−3 RMSE for more recent soil moisture
missions SMOS, SMAP and products of The Global Observing System for Climate (GCOS) [10,18,64])
is satisfied over the stations used in this study (even the requirement is not valid for AMSR-E and
ASCAT). When the anomaly and the seasonality components are investigated separately, the errors
become less than 0.03 and around 0.03, respectively; while the NOAH seasonality component errors
become as low as 0.012. Such low seasonality errors are the primary reason why NOAH complete time
series has very high correlations against the sensor-based observations. Overall, average error statistics
obtained using all station datasets are not considerably different from error statistics obtained using
only mutually available station datasets. This similarity is perhaps because the number of mutually
available stations (40) is high enough compared against the total number of available stations (between
44 and 67). Accordingly, from this point, only the analyses conducted using mutually available station
datasets will be discussed.

The temporal data availability of each soil moisture product over 40 stations (i.e., the datasets are
mutually available) is shown in Figure 5 (numbers over the boxes show mean values). As expected,
model-based soil moisture products can be obtained during the entire study period (i.e., 1460 days
between 2008 and 2011). On average, both the mean and the variability of ESA-CCI’s temporal data
availability is higher than those of other two remotely-sensed products. The advantage of ESA-CCI
in this temporal availability stems from the fact that it is a combined product of multiple datasets; if
one of the parent datasets is missing, then the other parent dataset(s) provides the data. AMSR-E soil
moisture data has the lowest temporal coverage over mutually available stations with a mean value of
748 days.
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Figure 6 shows the scatter plot of each soil moisture product over mutually available stations (the
soil moisture values are spatially-averaged over 40 stations to obtain a single time series).



Remote Sens. 2019, 11, 1875 16 of 28

Remote Sens. 2019, 11, x FOR PEER REVIEW  15 of 28 

 

station datasets. This similarity is perhaps because the number of mutually available stations (40) is 
high enough compared against the total number of available stations (between 44 and 67). 
Accordingly, from this point, only the analyses conducted using mutually available station datasets 
will be discussed. 

The temporal data availability of each soil moisture product over 40 stations (i.e., the datasets 
are mutually available) is shown in Figure 5 (numbers over the boxes show mean values). As 
expected, model-based soil moisture products can be obtained during the entire study period (i.e., 
1460 days between 2008 and 2011). On average, both the mean and the variability of ESA-CCI’s 
temporal data availability is higher than those of other two remotely-sensed products. The advantage 
of ESA-CCI in this temporal availability stems from the fact that it is a combined product of multiple 
datasets; if one of the parent datasets is missing, then the other parent dataset(s) provides the data. 
AMSR-E soil moisture data has the lowest temporal coverage over mutually available stations with 
a mean value of 748 days.  

 

Figure 5. Temporal data availability of each soil moisture product in the study period (2008-2011) 

Figure 6 shows the scatter plot of each soil moisture product over mutually available stations 
(the soil moisture values are spatially-averaged over 40 stations to obtain a single time series).  

 
Figure 6. Scatter plot of each soil moisture product Figure 6. Scatter plot of each soil moisture product.

The favorable error statistics of NOAH and ESA-CCI (Table 5) are confirmed over these scatter
plots that NOAH and ESA-CCI time series have much better consistency (i.e., deviations from 1:1 line
is the least) with the station-based observations than other products. While other products particularly
suffer around the dry edge of the scatter (i.e., persistent overestimation), NOAH and ESA-CCI have
much better performance for low values. While this result is partially stemming from the selected
rescaling methodology (i.e., linear regression), it is also impacted by the high accuracy nature of
these datasets. Saturation of API soil moisture product around 0.16 is a direct result of the fact that
the original unscaled product saturates around 0 which is originated from the simple Equation (3)
that is used to convert precipitation values to soil moisture values while the rescaling methodology
brings these 0 values to 0.16. Overall, ASCAT and AMSR-E also show a good relationship with
station-based observations.

3.2.2. Validation—Categories

The information about stations related to selected analysis categories (soil type, climate and
annual mean soil moisture) is given in Figure 7.

The soil type of the station is shown by the specific color, annual mean soil moisture range of the
station is given by the specific shape, and map colors show the climate classes (i.e., the figure contains
three legends for the soil type, the climate, the average soil moisture). Annual mean soil moisture
thresholds are selected to ensure four wetness sub-class have, approximately, the same number of
stations in each sub-class. Similar to annual mean soil moisture, mean NDVI thresholds are also
selected to ensure, approximately, the same number of stations in each sub-class. Even though more
complex terrains exist over eastern Turkey, the stations are located over relatively less-complex regions
in the western parts of Turkey. In general, the sub-classes are not dominated by any particular sub-class
(e.g., Csb climate sub-class have different soil types (colors) and average soil moisture values (shapes)).
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Figure 7. Distribution of stations with classifications over Climate Class Map.

The categorical correlations and RMSE of each product for the annual mean soil moisture are
shown in Figures 8 and 9, the climate regime is shown in Figures 10 and 11, the soil type is shown
in Figures 12 and 13, and the mean NDVI (vegetation cover) is shown in Figures 14 and 15. Each
category is further divided into four different sub-classes to the sensitivity of the soil moisture product
accuracies to the variability in the sub-classes. While the total number of stations used for each category
is the same (40 stations except soil type category), each sub-class category has a different number of
stations (given at the top of each sub-class).

The variability of the correlation and RMSE statistics classified with respect to the annual mean
soil moisture sub-classes are shown in Figures 8 and 9, respectively.
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Here the interval thresholds (i.e., 0.15, 0.175, and 0.20) are determined for the purpose of having a
similar number of stations in each sub-class. Overall, NOAH and ESA-CCI correlation variations are
decreased when the wetness level is increased (consistency increases). On average, the spread of the
correlations of AMSR-E and ASCAT soil moisture products are relatively higher than all other products
at all sub-classes. In general, it is not possible to determine an increase or decrease in correlations with
increasing/decreasing wetness; implying the product correlations are not sensitive to the mean soil
moisture values over the 40 stations investigated.

On the other hand, RMSE values clearly increase with increasing soil moisture values (Figure 9);
this implies the increasing errors are due to the increased variability of the products where the ratio
of the error variance and total variance (i.e., inherently related to the correlation coefficient) remains
similar. The variation of RMSE values is relatively lower in sub-class 3 compared to other sub-classes
(Figure 9c). Except for the AMSR-E, ASCAT, and API estimates at the wet sub-classes (Figure 9c–d)
only, all soil moisture products in all sub-classes have less than 0.04 m3 m−3 RMSE. ESA-CCI product
relative performance compared to other products (except for NOAH) becomes better with increasing
soil moisture (Figure 9). Overall, the NOAH product has the least error in all sub-classes.

The variability of the correlation and RMSE statistics classified with respect to the climate
sub-classes are shown in Figures 10 and 11, respectively.
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Here, the climate sub-classes are obtained by using Köppen-Geiger Climate Classification and the
heavy majority of the stations are classified under the Hot-Dry Summer Csa (Figure 9a) and Cool-Dry
Summer Csb (Figure 9b) classes. Correlations calculated over hot-dry summer (Csa) stations are
relatively higher than other sub-classes for all soil moisture products, while in temperate oceanic
sub-class (Cfb), correlation of all products is slightly lower than other sub-classes. On the other hand,
Cfb sub-class has the lowest uncertainty of the box plot quartiles. Parallel to the correlation results
(Figure 10), RMSE values also indicate similar relative accuracy estimates for each climate regime
sub-class (i.e., higher correlations follow lower RMSE, and vice versa). All products have higher errors
over cool dry-summer conditions while compared with all other sub-classes.

The variability of the correlation and RMSE statistics classified with respect to the soil type
sub-classes are shown in Figures 12 and 13, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW  19 of 28 

 

 

Figure 12. Correlations of soil moisture products under soil type sub-classes 

 

Figure 13. RMSE of soil moisture products under soil type sub-classes 

In clay loam sub-class (Figure 12a), correlations of NOAH and ESA-CCI products are 
significantly higher than other products with respect to the other sub-classes, while the difference is 
reduced in sandy loam sub-class. On average, the correlations of ASCAT, AMSR-E, and API products 
show a slightly increasing correlation pattern from clay loam to loam and then to sandy loam. Similar 
to other analysis categories, in this category, NOAH product shows the highest consistency (lowest 
errors) with station observations in all soil sub-classes. However, in sandy loam sub-class (Figure 13c) 
RMSE values show the highest variation even though on average, the lowest mean RMSE values are 
obtained for all products compared with other soil types. The highest RMSE values are found in silt 
loam soil type for all products, while the number of stations used for this soil type is the lowest (i.e., 
sampling errors are highest). 

The variability of the correlation and RMSE statistics classified with respect to the mean NDVI 
sub-classes are shown in Figures 14 and 15, respectively.  

Figure 12. Correlations of soil moisture products under soil type sub-classes.



Remote Sens. 2019, 11, 1875 20 of 28

Remote Sens. 2019, 11, x FOR PEER REVIEW  19 of 28 

 

 

Figure 12. Correlations of soil moisture products under soil type sub-classes 

 

Figure 13. RMSE of soil moisture products under soil type sub-classes 

In clay loam sub-class (Figure 12a), correlations of NOAH and ESA-CCI products are 
significantly higher than other products with respect to the other sub-classes, while the difference is 
reduced in sandy loam sub-class. On average, the correlations of ASCAT, AMSR-E, and API products 
show a slightly increasing correlation pattern from clay loam to loam and then to sandy loam. Similar 
to other analysis categories, in this category, NOAH product shows the highest consistency (lowest 
errors) with station observations in all soil sub-classes. However, in sandy loam sub-class (Figure 13c) 
RMSE values show the highest variation even though on average, the lowest mean RMSE values are 
obtained for all products compared with other soil types. The highest RMSE values are found in silt 
loam soil type for all products, while the number of stations used for this soil type is the lowest (i.e., 
sampling errors are highest). 

The variability of the correlation and RMSE statistics classified with respect to the mean NDVI 
sub-classes are shown in Figures 14 and 15, respectively.  
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In clay loam sub-class (Figure 12a), correlations of NOAH and ESA-CCI products are significantly
higher than other products with respect to the other sub-classes, while the difference is reduced in
sandy loam sub-class. On average, the correlations of ASCAT, AMSR-E, and API products show a
slightly increasing correlation pattern from clay loam to loam and then to sandy loam. Similar to other
analysis categories, in this category, NOAH product shows the highest consistency (lowest errors) with
station observations in all soil sub-classes. However, in sandy loam sub-class (Figure 13c) RMSE values
show the highest variation even though on average, the lowest mean RMSE values are obtained for all
products compared with other soil types. The highest RMSE values are found in silt loam soil type for
all products, while the number of stations used for this soil type is the lowest (i.e., sampling errors are
highest).

The variability of the correlation and RMSE statistics classified with respect to the mean NDVI
sub-classes are shown in Figures 14 and 15, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW  20 of 28 
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Here the interval thresholds (i.e., 0.35, 0.45, and 0.525) are determined for the purpose of having a
similar number of stations in each sub-class. Overall, in the first three sub-classes (Figure 14a–c) an
increase in correlation values of all products is observed, on the other hand, in the densest vegetation
cover sub-class (Figure 14d) all products show lower correlation values and the highest variation in
correlation. Effects of vegetation cover on NOAH and ESA-CCI soil moisture products are fewer than
other products, while the correlation values of these two products is nearly the same in all sub-classes.
Correlation variation of AMSR-E soil moisture product is found to be higher compared to all the other
products in their respective sub-classes. In Figure 15, RMSE values in the densest sub-class are higher
for all soil moisture products. Similar to correlation results, RMSE results also showed that NOAH and
ESA-CCI soil moisture products are affected by vegetation cover less than other products.

Due to the selection thresholds of sub-classes, even though the mean NDVI values get denser, a
decrease in correlation and an increase in RMSE are not observed. However, the lowest correlation
values and the highest RMSE values relative to the other sub-classes for all products, are found in the
densest sub-class (Figures 14 and 15d).

4. Discussion

In this study, apart from the validation of 6 different soil moisture products using station-based
observations, the accuracy of sensors used in stations and possible factors that may affect the
performance of products are also considered. The analyses are elaborated by classifying the stations
for their soil type, climate regime and annual mean soil moisture value to investigate the sensitivity of
the soil moisture values against these classifications.

Manufacturer manual stated accuracy estimate of CS616 sensors is ±2.5% VWC; however, in this
study, the errors are found as 3.0%. The study of Varble et al. [15] determined the similar accuracy
results for CS616 sensors. Overall, the accuracy estimates for the calibrated sensors vary for different
soil types (the RMSE for Loam is 2.35%, and for Clay Loam it is close to remote sensing-based satellite
mission requirements of 4.11%). This study could be repeated using the same sensors over different
locations to reach a more general statement about the CS616 sensor accuracy and its relation with
different soil type.

In general, the SMOS, SMAP satellite missions and terrestrial essential climate variables product
requirements [10,18,64] (0.04 m3 m−3) (even the requirement is not valid for AMSR-E and ASCAT)
are for the entire time series, while the most relevant information about the soil moisture for most
applications is for their anomaly components. This is particularly true for the drought-related soil
moisture applications. Given the anomaly and the seasonality components of soil moisture products
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have different accuracies, perhaps the mission requirements should be updated considering these
different components. Similarly, the RMSE values are sensitive to the average wetness of the soil; hence,
mission requirements should perhaps indicate wetness level along with the requirement statistics.
Overall, if the validation results obtained using drier-region-observations are, on average, expected to
yield smaller RMSE results than using wetter-region-observations. Here, selection of a dimensionless
accuracy statistic (e.g., correlation coefficient) may partially eliminate the impact of soil wetness
deviations over the accuracy (i.e., the correlation accuracy estimates are much less sensitive to RMSE
accuracy estimates in Figures 8 and 9).

The accuracy statistics obtained using all datasets and only the time series that are mutually
available for all products do not differ; this shows the accuracy of the missing time series for different
products are not relatively more or less accurate than the mutually available stations. Perhaps, the
analysis of mutually available station selection might not be necessary next to the statistics obtained
using all available datasets, particularly the number of stations is relatively high.

NOAH and ESA-CCI product accuracies are the highest among the model and the remote sensing
products used in this study. Nevertheless, these high accuracies imply the merging of these two
datasets (perhaps in a data assimilation framework) might yield a more accurate product. Overall,
API values do not have as much sensitivity to soil moisture at low values, perhaps as a result of its
simplistic modeling approach (Equation (3)) which only relies on the precipitation as input forcing and
do not use other hydrometeorological variables (i.e., drying rate is not a function of other variables
like temperature). On the other hand, API values (particularly when high accuracy station-based
precipitation forcing dataset is used) have high anomaly component accuracy relative to other products,
implying a high potential in applications requiring anomaly information (e.g., drought).

API-station yields the best anomaly accuracy (also better than API-TRMM). This result particularly
shows the significance of station-based precipitation products and the added errors via precipitation
inputs in the hydrological models. This implies, if more accurate (i.e., station-based) precipitation
products could be used as input in the NOAH hydrological model rather than global datasets like
TRMM, then it is viable that much better soil moisture anomaly estimates could be obtained in addition
to the already highly accurate NOAH seasonality estimates.

AMSR-E soil moisture product was observed to be more sensitive to vegetation cover relative
to other remote sensed based products ASCAT and ESA-CCI, since its correlation values slightly
decreased over stations with dense vegetation. ASCAT’s better performance compared to AMSR-E soil
moisture products in the evaluation category of dense vegetation cover (mean NDVI > 0.525) might
be explained by the added utility of the active (scatterometer) sensors compared against the passive
(radiometer) sensors that ASCAT soil moisture product was also found as less effected by vegetation
than AMSR-E product in previous studies [6,65].

In this study, the errors over silt loam soil type are much higher than other sub-classes, while
on average lower errors are found over sandy loam soil type. While this difference may indicate the
sensitivity of products to the soil type, it also plausible that this difference might stem from higher
sampling errors as the number of stations in this group is only three. Hence, the analysis of remotely
sensed soil moisture products according to soil type should be repeated among different soil moisture
networks. If the specific soil type-related errors occur in other networks, perhaps the soil type may
be added to the retrieval algorithm. Furthermore, if the validation results in different soil types are
different, perhaps comparisons may need to be made separately according to soil types, and validation
studies from different stations should take this into account.

In addition, since both the NOAH model [65] and the AMSR-E LPRM algorithm [66] use soil
texture as an input parameter, comparing Food and Agriculture Organization (FAO) soil texture
and laboratory results is beneficial before evaluating how soil types affect both of the soil moisture
products. For this reason, FAO soil texture is obtained at each station, and the statistics and comparison
to laboratory results are given in Table 7. On average, the variability of station-based soil texture
estimations (i.e., sand, silt, and clay fractions) are considerably less for FAO than the variability of
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ground measurements, even though their mean values are similar. The difference between the FAO and
ground estimates could be due to the spatial representativeness errors of ground measurements or due
to the FAO estimates coarse spatial resolution may poorly reflect the ground conditions. In either case,
these differences contribute as additional error source to NOAH and AMSR-E soil moisture products.

Table 7. Comparison of the Food and Agriculture Organization (FAO) with laboratory measurements
of soil texture (%).

Soil
Texture

Lab. FAO Difference
(%)

Lab. FAO Error SD
(%)

RMSE (%)
Mean (%) Standard Dev. (%)

Sand 43.57 40.19 3.38 14.96 3.54 14.68 14.94
Silt 40.57 35.23 5.34 9.43 3.90 10.15 11.40

Clay 15.86 24.51 −8.65 11.10 3.40 11.26 14.13

FAO fractions of sand, clay and silt data obtained from (https://ldas.gsfc.nasa.gov/gldas/soils).

The anomaly component (i.e., primarily used in many drought-related studies) correlations of
models are much lower than the seasonality component accuracy for different products, while the use
of station-based precipitation as forcing improves the simple API model accuracy by 0.15 (Table 6).
Even though the NOAH model is not run using identical conditions with varying precipitation forcing,
the use of much higher accuracy precipitation forcing might considerably improve the NOAH soil
moisture results.

Overall, when the NOAH and the ESA-CCI wetness increases, then the variability of the obtained
correlations against the station-based observations decreases. This implies the signal-to-noise ratio of
these products and the sensitivity to soil moisture increase as the soil moisture increases.

5. Conclusions

In this study, sensitivity of the accuracy of ASCAT, AMSR-E, ESA-CCI, API, and NOAH
soil moisture products to soil type (silt, clay, and loam ratios), climate regime, and time series
components (i.e., seasonality and anomaly components) using ground station-based observations
obtained over Turkey between January 2008 and December 2011. Raw station-based observations are
later post-processed (quality control, soil temperature-based correction, and soil texture type-based
calibration of soil moisture time series obtained from 68 stations). For the soil type-based calibration,
the texture information is obtained via analysis using the soil samples, while visual quality control
is separately performed for each time series using observed precipitation values. Different numbers
of stations are used to investigate the performance of each product separately, while mutually
available station datasets are used to make an objective accuracy inter-comparison in an additional
separate analysis.

Overall, the error estimates given in the manual of the CS616 sensors are found to be less than
the error estimates found in this study. The soil moisture time series that passed the rigorous quality
control steps performed in this study had signals consistent with precipitation events and showed the
expected sensitivity.

NOAH soil moisture time series yield the best agreement (over mutually available stations; R = 0.82
and RMSE = 0.028 m3 m−3) with station-based measurements and among remotely-sensed products,
ESA-CCI product gives the best performance (R = 0.71 and RMSE = 0.034 m3 m−3). Seasonality is
determined as the dominant component of soil moisture time series for all products with higher
correlations values respect to anomaly component. In addition, in terms of anomaly components, the
API-Station product showed the best overall performance among all sites.

Here in this study, the soil moisture products are evaluated based on ancillary information about
the stations, like soil type, vegetation cover, climate region and the wetness. Overall, the climate-based
classification did not show much variability in the accuracy statistics; model- and remote sensing-based
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products accuracies seemed to be less sensitive to the climate classifications selected in this study.
On the other hand, vegetation cover and the soil wetness of the study area have a much higher impact
over the variability of the product accuracies. The climate and the wetness-based selections are not as
much coupled in this study, and that is why the climate and wetness-based results differ.

This study is expected to increase the use of these datasets as this soil moisture network contains
many stations located over complex topography, while the number of such station-based soil moisture
estimates is very limited. Moreover, the compared and validated remotely-sensed and model-based
soil moisture products in this study could be used according to evaluated categories in future works
related to soil moisture. However, more studies are needed to generalize the statements obtained in
this study, as only 68 station-based datasets are used in this study.
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Appendix A

Table A1. Characteristics of soil moisture stations used in this study.

# NO NAME LAT. LON. ELEV.
(m) SOIL TYPE CLIMATE

Class.
Mean
NDVI

Mean
SM (%)

1 17024 INEB 41.9789 33.7636 64 Clay Loam Cfb 0.66 0.21
2 17026 SINP 42.0299 35.1545 32 Sandy Loam Cfa 0.41 0.18
3 17050 EDIR 41.6767 26.5508 51 Sandy Loam Cfa 0.49 0.12
4 17052 KIRL 41.7382 27.2178 232 No Sample Cfa 0.58 0.19
5 17061 SARY 41.1464 29.0502 59 Clay Loam Csa 0.52 0.15
6 17067 GOLC 40.7268 29.8066 18 Sandy Loam Csa 0.61 0.17
7 17072 DUZC 40.8437 31.1488 146 Loam Cfb 0.64 0.20
8 17110 GOKC 40.191 25.9075 79 Sandy Loam Csa 0.44 0.22
9 17112 CNKL 40.141 26.3993 6 Sandy Loam Csa 0.47 0.25
10 17116 LTBE 40.2308 29.0133 100 Silt Loam Csb 0.57 0.19
11 17119 YALV 40.6589 29.2796 4 Sandy Loam Csa 0.44 0.13
12 17120 BILC 40.1414 29.9772 539 Clay Loam Csb 0.51 0.20
13 17145 EDRM 39.5895 27.0192 21 Sandy Loam Csa 0.61 0.13
14 17155 KUTH 39.4171 29.9891 969 Silt Loam Csb 0.36 0.17
15 17160 KIRS 39.1639 34.1561 1007 Loam Csb 0.26 0.15
16 17186 MANS 38.6153 27.4049 71 Sandy Loam Csa 0.47 0.13
17 17188 UŞAK 38.6712 29.404 919 Loam Csb 0.42 0.20
18 17190 AFBL 38.738 30.5604 1034 Sandy Loam Csb 0.31 0.16
19 17191 CIHB 38.6503 32.9226 969 Sandy Loam Csb 0.19 0.18
20 17220 GUZL 38.3949 27.0819 29 Sandy Loam Csa 0.44 0.16
21 17221 CESM 38.3036 26.3724 5 Loam Csa 0.46 0.20
22 17227 LTBD 37.8167 27.8873 32 Silty Clay Loam Csa 0.51 0.28
23 17232 KUSA 37.8597 27.2652 25 Loam Csa 0.51 0.18
24 17233 DIDM 37.3699 27.2645 44 Loam Csa 0.46 0.18
25 17234 AYDN 37.8402 27.8379 56 Silt Loam Csa 0.51 0.14
26 17237 DENZ 37.762 29.0921 425 Sandy Loam Csa 0.38 0.14
27 17283 LTHB 37.939 40.2966 701 Clay Loam Csa 0.38 0.22
28 17296 FETH 36.6266 29.1238 3 Silty Clay Loam Csa 0.53 0.35

https://navigator.eumetsat.int
https://www.esa-soilmoisture-cci.org
https://www.esa-soilmoisture-cci.org
http://disc.sci.gsfc.nasa.gov
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Table A1. Cont.

# NO NAME LAT. LON. ELEV.
(m) SOIL TYPE CLIMATE

Class.
Mean
NDVI

Mean
SM (%)

29 17297 DATC 36.7083 27.6919 28 Sandy Loam Csa 0.50 0.13
30 17302 ANTA 36.8851 30.6828 47 Loam Csa 0.34 0.14
31 17380 KASD 36.2002 29.6502 153 Clay Loam Csa 0.48 0.15
32 17602 AMSR 41.7526 32.3827 73 Loam Cfa 0.73 0.16
33 17611 KERE 41.2691 31.4328 19 Loam Cfa 0.64 0.33
34 17639 GEBZ 40.823 29.4342 130 Loam Csa 0.60 0.17
35 17640 CRKZ 41.2607 27.9196 160 Sandy Loam Csa 0.47 0.19
36 17648 ILGZ 40.9156 33.6258 885 Loam Cfb 0.53 0.18
37 17655 GHTG 40.5875 35.6517 475 Sandy Loam Csb 0.40 0.22
38 17664 KZLC 40.4729 32.6441 1033 Sandy Loam Csb 0.40 0.15
39 17674 GONE 40.1135 27.6426 37 Clay Loam Csa 0.57 0.33
40 17680 BEYP 40.1608 31.9172 682 Clay Loam Cfb 0.46 0.17
41 17695 KLES 39.915 29.2313 1063 Loam Csb 0.50 0.18
42 17700 DURB 39.5778 28.6322 637 Clay Csb 0.54 0.21
43 17702 BOZY 39.9039 30.0525 754 Sandy Loam Csb 0.44 0.16
44 17706 SSTG 38.3406 38.0586 864 Silt Loam Csa 0.24 0.15
45 17707 EMET 39.3391 29.2713 700 Clay Loam Csb 0.44 0.17
46 17715 EBRT 39.92 33.2125 1102 Clay Loam Csb 0.27 0.15
47 17728 POLT 39.5834 32.1624 886 Silty Clay Loam Csa 0.26 -
48 17729 BALA 39.5546 33.1089 1300 Loam Csb 0.25 0.17
49 17732 CICD 39.6067 34.4235 900 Loam Csb 0.27 0.16
50 17733 HTRM 39.613 32.672 1161 Loam Csb 0.27 0.16
51 17746 DMRC 39.0349 28.6482 855 Sandy Loam Csb 0.49 0.23
52 17756 KAMN 39.3652 33.7064 1075 Loam Csb 0.29 0.16
53 17789 MENM 38.6237 27.0433 10 Silt Loam Csa 0.44 0.25
54 17796 BOLV 38.7268 31.0477 1018 Loam Csb 0.30 0.19
55 17797 ALAS 38.373 28.5266 189 Loam Csa 0.39 0.17
56 17820 SFHR 38.199 26.835 22 Silt Loam Csa 0.44 0.11
57 17822 ODEM 38.2157 27.9642 111 Sandy Loam Csa 0.46 0.12
58 17826 SENK 38.1047 30.5577 959 Sandy Loam Csb 0.28 0.18
59 17854 SELC 37.9445 27.3673 17 Silt Loam Csa 0.50 0.11
60 17860 NAZL 37.9135 28.3437 84 Loam Csa 0.47 0.13
61 17863 SRKA 38.063 31.3558 1158 Loam Csb 0.31 0.14
62 17882 EGRD 37.8377 30.872 920 Loamy Sand Csb 0.34 0.16
63 17886 YTGN 37.3395 28.1369 365 Loam Csa 0.49 0.14
64 17890 ACPY 37.4337 29.3498 941 Clay Loam Csa 0.39 0.19
65 17891 GOLH 37.1427 29.526 990 Loam Csb 0.35 0.21
66 17924 KOYC 36.97 28.6869 24 Sandy Loam Csa 0.45 0.16
67 17952 ELML 36.7372 29.9121 1095 Clay Loam Csb 0.25 0.17
68 17953 KEMR 36.5942 30.5672 10 Loam Csa 0.31 0.22

Stations highlighted in bold indicate 40 mutually available stations.
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24. İstasyon Bilgileri Veritabanı—Meteoroloji Genel Müdürlüğü. Available online: https://www.mgm.gov.tr/
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