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Abstract

We present the stabilization of the surface integral equations
for accurate solutions of scattering problems involving
low-contrast dielectric objects. Unlike volume formulations,
conventional surface formulations fail to provide accurate
results for the scattered fields when the contrast of the
object is small. Therefore, surface formulations are required
to be stabilized by extracting the nonradiating parts of the
equivalent currents. In addition to previous strategies for
the stabilization, we introduce a novel procedure called
field-based stabilization (FBS) based on using fictitious
incident fields and rearranging the right-hand-side of the
equations. The results show that the formulations using
FBS provide accurate results even for scattering problems
involving extremely low-contrast objects, while the extra cost
due to the stabilization procedure is negligible.

1 Introduction

Surface integral equations are commonly used to formulate
scattering problems involving homogenous dielectric targets
with arbitrary shapes and electrical properties [7]. Depending
on the choices of the strategies for combining the boundary
conditions, normalizing the fields, and choosing a testing
scheme, there are many formulations that are free of the
internal resonance problem and provide stable solutions [6]–
[7],[9]–[12]. On the other hand, surface formulations fail to
provide accurate results for the scattered fields (as opposed
to volume formulations) when the contrast of the object is
small, i.e., when the electromagnetic material properties of
the target and the host medium are close to each other [4].
This inaccuracy is due to the large nonradiating components
of the equivalent electric and magnetic currents, which
dominate the radiating currents as the contrast decreases.

In other words, even by using a fine discretization for the
object and the integral equations, the important part of the
surface currents cannot be modelled accurately when the
object is less visible and the scattered fields become low.
As a remedy, a stabilization method, which is based on
extracting the nonradiating parts of the currents from the total
currents, can be used [4]. Recently, we showed that such a
stabilization procedure can be applied to various formulations
by splitting the currents into radiating and nonradiating
parts, applying the integral operators on the nonradiating
parts, rearranging the right-hand side (RHS) of the matrix
equations, and solving only for the radiating currents [2].
However, this procedure, which we call operator-based
stabilization (OBS), is successful only when the contrast
of the object is not very low (usually larger than 0.01%).
In addition, the accuracy of the results can be sensitive to
the accuracy of the discretization of the operators, which is
undesirable especially when the matrix-vector multiplications
are performed approximately by accelerated methods, such
as the fast multipole method (FMM) and the multilevel fast
multipole algorithm (MLFMA) [9].

In OBS, the RHSs of the matrix equations involve subtraction
of the inner and outer operators from each other. This
leads to vanishing RHSs as the contrast goes down and
provides an accurate calculation of the radiating currents for
moderately low contrasts. In this paper, we present a novel
stabilization procedure, which is based on subtracting the
fields from each other; this procedure does not suffer from
a breakdown. In this strategy, which we call the field-based
stabilization (FBS), we again extract the nonradiating parts
of the currents and model only the radiating currents. On
the other hand, the RHSs of the equations are arranged
in a different manner based on using fictitious incident
fields defined by exchanging the electromagnetic material
properties of the inner and outer media. Then, the RHS
involves subtraction operation for the fields instead of the
operators. This way, the stabilization becomes more robust



and less sensitive to the accuracy of the matrix-vector
multiplications. In our experiments, we show that FBS is
accurate for the solution of scattering problems involving
arbitrarily low-contrast objects, even when the contrast is
extremely low (for example, 0.0000001%). In this paper, we
compare the conventional and the stabilized formulations on
scattering problems involving sphere geometries with various
sizes and contrasts to demonstrate the robustness of FBS.

2 Surface Formulations of Dielectric Problems

In the surface formulations of scattering problems involving
homogenous dielectric objects, equivalent electric and
magnetic currents are defined on the surface of the scatterer,
i.e.,

J(r) = n̂ × H(r) M(r) = −n̂ × E(r). (1)

Then, the boundary conditions are tested on the surface to
calculate the unknown surface currents and the scattered
fields. In the literature, there are various integral-equation
formulations derived by using different combinations of the
boundary conditions and testing schemes [6]–[7],[9]–[12]. Let
the exterior and the interior of the object with surface S
be characterized by electromagnetic parameters (ε1, μ1) and
(ε2, μ2), respectively. When the tangential components of the
fields are directly sampled (tested) on the surface, the T
formulations are derived as [11]

t̂ ·
[

ZT
11 ZT

12

ZT
21 ZT

22

]
·
[

J(r)
M(r)

]
= −t̂ ·

[
aη−1

1 Ei(r)
cη1H

i(r)

]
,

(2)

where

ZT
11 = aT1 + bT2 (3)

ZT
12 = −aη−1

1 K1 − bη−1
2 K2 + 0.5

(
bη−1

2 − aη−1
1

)
n̂ × I (4)

ZT
21 = cη1K1 + dη2K2 + 0.5

(
cη1 − dη2

)
n̂ × I (5)

ZT
22 = cT1 + dT2 (6)

and {a, b, c, d} represent the combination parameters. In (2)–
(6), Ei(r) and Hi(r) are the incident electric and magnetic
fields, ηl =

√
μl/εl is the impedance of the medium l = 1, 2,

t̂ is any tangential vector on the surface, and n̂ is the outward
normal vector. In addition, the operators are defined as

Tl{X(r)} = ikl

∫
S

dr′[X(r′) +
1
k2

l

∇∇′ · X(r′)
]
gl(r, r′)

(7)

Kl{X(r)} =
∫

PV,S

dr′X(r′) ×∇′gl(r, r′) (8)

I{X(r)} = X(r), (9)

where PV indicates the principal value of the integral, kl =
w
√

εlμl is the wavenumber associated with medium l, and
gl(r, r′) denotes the homogeneous-space Green’s function
defined as

gl(r, r′) =
exp (iklR)

4πR

(
R = |r − r′|

)
(10)

in phasor notation using the exp(−iwt) convention. Among
various T formulations, the tangential Poggio-Miller-Chang-
Harrington-Wu-Tsai (T-PMCHWT) [7] formulation and the
combined T formulation (CTF) [11] are well known and
commonly used in the literature. Both of these formulations
are free of the internal-resonance problem.

Unlike the T formulations, the N formulations are written
as [11]

n̂ ×
[

ZN
11 ZN

12

ZN
21 ZN

22

]
·
[

J(r)
M(r)

]
= −n̂ ×

[
aHi(r)
−cEi(r)

]

(11)

by using a cross product with the outward normal vector to
obtain the tangential field components on the surface of the
scatterer. The operators in (11) are defined as

ZN
11 = aK1 − bK2 + 0.5(a + b)n̂ × I (12)

ZN
12 = aη−1

1 T1 − bη−1
2 T2 (13)

ZN
21 = −cη1T1 + dη2T2 (14)

ZN
22 = cK1 − dK2 + 0.5(c + d)n̂ × I. (15)

Among various N formulations, the combined N formulation
(CNF) [11] and the N Müller formulation (NMF) [10]
are free of the internal-resonance problem and extensively
used to formulate the scattering problems of dielectric objects.

3 Low-Contrast Breakdown

For the solution of scattering problems involving dielectric
objects with moderate contrasts, both T and N formulations
can be used successfully. Due to well-tested identity terms,
N formulations are usually better-conditioned than the T
formulations, which contain weakly-tested identity terms [11].
Therefore, iterative solutions of the N formulations are easier,
which is essential especially when the problem size is
large. On the other hand, N formulations can be inaccurate
compared to the T formulations for the same discretization;
this is also due to the well-tested identity terms [1],[11].
Consequently, the choice of the formulation for the solution
of a problem depends on the accuracy and the efficiency
requirements.

Although they are accurate to formulate scattering problems
with moderate contrasts, conventional surface integral
equations become inaccurate to calculate the scattered fields
when the contrast of the dielectric object decreases, i.e., when
the electromagnetic material properties of the target and the
host medium are close to each other. This breakdown is due
to the large nonradiating parts of the induced currents on the
scatterer [4]. For any arbitrary solution, equivalent electric
and magnetic currents on the surface can be decomposed as

J(r) = n̂ × H(r) = n̂ × Hi(r) + n̂ × Hr(r) (16)

M(r) = −n̂ × E(r) = −n̂ × Ei(r) − n̂ × Er(r), (17)

where n̂ × Hi(r) and n̂ × Ei(r) do not radiate. When the
contrast of the object decreases, i.e., when ε2 → ε1 and
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Fig. 1: Normalized forward-scattered RCS (RCS/λ2
1) of a

sphere of radius 0.5λ1 as a function of contrast (εr − 1).
Computational values are obtained with λ1/10 triangulation.

μ2 → μ1, these nonradiating currents dominate the total
currents. Therefore, it becomes difficult to correctly model the
small radiating currents, i.e., n̂ × Hr(r) and n̂ × Er(r). In
other words, when the total currents are solved by employing
the conventional surface formulations, it is difficult to perform
the calculations sensitive enough to model the small radiating
currents properly. Although the total surface currents are
calculated accurately, scattered fields cannot be obtained from
them with the desired level of accuracy.

As an example, Fig. 1 presents the results of scattering
problems involving a sphere of radius 0.5λ1, where λ1 is the
wavelength outside the sphere. The sphere is inside the free
space and we consider various relative dielectric constants (εr)
for the sphere from 1.000001 to 100. In Fig. 1, normalized
forward-scattered radar cross section values (RCS/λ2

1 in dB)
are plotted as a function of the contrast defined as εr − 1. To
apply different formulations, the sphere is discretized by using
planar triangles with a mesh size of λ1/10, on which Rao-
Wilton-Glisson (RWG) [8] functions are defined, leading to
1860 unknowns. We check the accuracy of the formulations
by comparing the computational RCS values with the
analytical results obtained by Mie-series solutions. Among
various formulations, we consider CTF, CNF, a modified
(improved) NMF (MNMF) [10], and the electric-magnetic
current combined-field integral equation (JMCFIE) [12]
obtained by combining CTF and CNF. Fig. 1 shows that all
formulations provide accurate results for moderate contrasts,
while they become inaccurate for low and high contrasts. The
accuracy problem in the high-contrast solutions is due to the
insufficient modelling of the geometries by planar triangles
and it can be avoided easily by improving the discretization
of the geometry using either a finer triangulation or curved
elements. On the other hand, the “breakdown” in the low-
contrast solutions is due to the large non-radiating parts of
the equivalent currents on the surface. Since the error for the

low-contrast solutions cannot be eliminated easily with better
discretizations, we need to stabilize the integral equations.

4 Stabilization of Surface Integral Equations

For accurate solutions of low-contrast problems, dielectric
formulations should be modified by extracting the incident
fields from the total currents and modelling only the radiating
currents as the unknowns [4]. In this paper, we consider the
stabilization of a modified CTF and compare the results of the
conventional and the stabilized implementations. Originally,
CTF is derived in [11] by choosing {a, b, c, d} = {1, 1, 1, 1}
in (2)–(6). However, we take {a, b, c, d} = {η1, η2, η2, η1},
which results in a similar formulation compared to the
original CTF for low-contrast problems (η2 ≈ η1). By
modifying the combination parameters as above, we eliminate
the weakly-tested identity terms from the equation and obtain
a simpler formulation to apply the stabilizations. Furthermore,
the stabilization procedures that are considered in this paper
can easily be applied to other T and N formulations.

4.1 Operator-Based Stabilization

Choosing {a, b, c, d} = {η1, η2, η2, η1} in (2)–(6),

ZT
11 = η1T1 + η2T2 (18)

ZT
12 = −K1 −K2 (19)

ZT
21 = η1η2K1 + η1η2K2 (20)

ZT
22 = η2T1 + η1T2. (21)

Extracting the nonradiating parts of the currents and using the
identity [5]

t̂ ·
[

η1T1 −K1

K1 η−1
1 T1

]
·
[

−2n̂ × Hi(r)
2n̂ × Ei(r)

]
= t̂ ·

[
Ei(r)
Hi(r)

]
,

(22)

we obtain

t̂ ·
[

ZT
11 ZT

12

ZT
21 ZT

22

]
·
[

n̂ × Hr(r)
−n̂ × Er(r)

]

= t̂·
[

YT
11 YT

12

YT
21 YT

22

]
·
[

n̂ × Hi(r)
−n̂ × Ei(r)

]
,

(23)

where
YT

11 = η1T1 − η2T2 (24)

YT
12 = −K1 + K2 (25)

YT
21 = η1η2K1 − η1η2K2 (26)

YT
22 = η2T1 − η1T2. (27)

We call (23) the operator-based-stabilized CTF (OBS-CTF),
since the RHS involves the subtraction of the inner and
outer operators from each other. The stabilization procedure
does not modify the matrix part and it only requires extra
computations involving the application of the operators on
the incident fields. These computations are performed before
the iterative solution of the matrix equation (obtained by



the discretization) and the additional cost is negligible. Only
one extra matrix-vector multiplication is required after the
incident fields are expanded in a series of basis functions [3].

4.2 Field-Based Stabilization

OBS-CTF can easily be obtained from the existing
implementations of CTF and it provides accurate results
for the solution of low-contrast dielectric problems. On the
other hand, OBS-CTF also break down and fail to provide
accurate results for very low contrasts. Therefore, we need
a more robust formulation that is valid for arbitrarily low
contrasts. We achieve this by introducing fictitious incident
fields and forming RHSs based on difference of the fields
instead of the operators.

To derive the field-based-stabilized CTF (FBS-CTF), we
define fictitious incident fields as{

Ei
2(r),Hi

2(r)
}

= lim
ε1→ε2
μ1→μ2

{
Ei(r),Hi(r)

}
(28)

by using the electromagnetic material properties of the inner
medium for the outside. Then, similar to the identity in (22),
we have

t̂ ·
[

η2T2 −K2

K2 η−1
2 T2

]
·
[

−2n̂ × Hi
2(r)

2n̂ × Ei
2(r)

]
= t̂ ·

[
Ei

2(r)
Hi

2(r)

]
.

(29)

Finally, using (29) in (23) and rearranging the equation, we
obtain FBS-CTF as

t̂ ·
[

ZT
11 ZT

12

ZT
21 ZT

22

]
·
[

n̂ × Hr(r)
−n̂ × Er(r)

]

= − 0.5t̂ ·
[

Ei(r) − Ei
2(r)

η1η2

(
Hi(r) − Hi

2(r)
)

]

−t̂ ·
[

η2T2 −K2

−η1η2K2 η2T2

]
·
[

n̂ × Hi(r) − n̂ × Hi
2(r)

−n̂ × Ei(r) + n̂ × Ei
2(r)

]
.

(30)

The matrix part of the stabilized equation is again the same
as the original equation. Only the RHS requires modifications
involving operators applied on the incident fields. In the
FBS-CTF, the real and fictitious fields are subtracted from
each other, which can be performed analytically before the
discretization. Then, the results of the subtraction operations
are expanded in a series of basis functions to apply the inner
operators on them. Similar to OBS-CTF, the additional cost
compared to the original formulation is negligible. Unlike
OBS-CTF, however, FBS-CTF is very robust and provides
accurate results even for extremely low-contrast problems, as
demonstrated in the next section.

5 Results

To compare the accuracy of the conventional and the stabilized
formulations, Fig. 2 presents the results of scattering problems
involving a sphere of radius 0.5λ1 discretized with 1860
RWG functions. The sphere is inside the free space and it is
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Fig. 2: Root-mean-square (RMS) error in the solution of a
scattering problem involving a sphere of radius 0.5λ1 in free
space.

illuminated by a plane wave propagating in the z direction
with the electric field polarized in the x direction. We
consider various relative dielectric constants for the sphere
from 1 + 10−9 to 1 + 10−1. Matrix equations obtained by
using the conventional and the stabilized formulations are
solved iteratively, where the matrix-vector multiplications
are performed by using FMM. Both near-field and far-field
interactions are computed with 10−2 relative error. Fig. 2
demonstrates the relative root-mean-square (RMS) error in
the computed values of the far-zone electric field on the
φ = 0 plane with respect to different contrasts (εr − 1). We
compute the far-zone electric field on the φ = 0 plane at 360
points from θ = 0◦ to θ = 180◦ by using the conventional
CTF, OBS-CTF, and FBS-CTF. As a reference, far-zone fields
are also computed analytically by the Mie-series method.
Then, the RMS error is defined as

eRMS =
||fC − fA||2

||fA||2
, (31)

where fC and fA are the computational and analytical values
(complex arrays of 360 elements containing co-polar electric
fields), respectively, and ||.||2 represents the 2-norm of the
arrays.

Fig. 2 shows that the conventional CTF encounters stability
problems as the contrast decreases and it fails to provide
accurate results for low-contrast levels. By using OBS-CTF,
however, the accuracy is stabilized in the [10−4, 10−1] range
of contrast. On the other hand, OBS-CTF also break down
and its accuracy deteriorates dramatically for lower contrasts.
As opposed to OBS-CTF, FBS-CTF is stable for all contrasts
considered in Fig. 2 and we obtain accurate results even
for εr = 1 + 10−9. To further investigate the accuracy of
the formulations, Fig. 3 depicts the bistatic RCS for three
different contrasts, i.e., 10−1, 10−5, and 10−9. Fig. 3(a) shows
that both conventional and stabilized formulations provide
accurate results that are close to the Mie-series solution
when the contrast is 10−1. When the contrast is decreased
to 10−5, however, conventional CTF becomes significantly



inaccurate as shown in Fig. 3(b). Finally, Fig. 3(c) shows that
only FBS-CTF provides accurate results when the contrast is
extremely low (10−9).

Fig. 4 presents the results of a larger scattering problem
involving a sphere of radius 6λ1 discretized with 264,006
unknowns. Similar to the previous example, the sphere is
located in free space, it is illuminated by a plane wave
propagating in the z direction with the electric field polarized
in the x direction, and we consider various relative dielectric
constants for the sphere. The scattering problems are solved
by MLFMA implementations of conventional and stabilized
formulations. In Fig. 4, bistatic RCS is plotted for three
different contrasts. The results are very similar to the previous
example. We observe that the values obtained by all three
formulations are close to the analytical curve when the
contrast is relatively high (10−1). As the contrast decreases,
however, the conventional CTF becomes unstable and fails to
provide accurate results. Finally, only FBS-CTF is accurate
when the contrast is decreased to 10−9.

6 Conclusion

In this paper, we report the stabilization of the surface integral
equations for accurate solutions of scattering problems
involving low-contrast dielectric objects. Conventional
surface formulations break down when the contrast of the
object is small. Consequently, scattered fields cannot be
calculated accurately without a stabilization, which involves
the extraction of the nonradiating currents and solving the
matrix equations for relatively small radiating currents.
In addition to previous strategies, we introduce a novel
stabilization procedure based on using fictitious incident
fields and rearranging the RHSs of the equations accordingly.
We apply the stabilizations to a combined T formulation,
although they also applicable to other T and N formulations.
The stabilizations are easy to implement by modifying the
existing codes for the conventional formulations and their
extra computational cost is negligible. Our results show that
a field-based stabilized equation, namely FBS-CTF, provides
accurate results even for extremely low-contrast objects, such
as a sphere with a relative electric constant of 1 + 10−9 in
free space.
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Fig. 3: Normalized bistatic RCS (RCS/λ2
1) of a sphere of radius

0.5λ1 in free space, when the contrast is (a) 10−1, (b) 10−5,
and (c) 10−9. In the plots, 0◦ and 180◦ correspond to forward-
scattering and back-scattering directions, respectively.
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Fig. 4: Normalized bistatic RCS (RCS/λ2
1) of a sphere of radius

6λ1 in free space, when the contrast is (a) 10−1, (b) 10−5, and
(c) 10−9. In the plots, 0◦ and 180◦ correspond to forward-
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