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The radiative ∆ → Nγ decay in light cone QCD
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Abstract

The g∆Nγ coupling for the ∆ → Nγ decay is calculated in framework of the light

cone QCD sum rules and is found to be g∆Nγ = (1.6± 0.2) GeV −1. Using this value

of g∆Nγ we estimate the branching ratio of the ∆+ → Nγ decay, which is in a very

good agreement with the experimental result.
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1 Introduction

The extraction of the fundamental parameters of hadrons from experimental results requires
some information about the physics at large distance. Unfortunately such an information
can not be achieved from the first principles of a fundamental theory. Indeed QCD, which
is believed to be the candidate of such an underlying theory of the strong interactions, has
very complicated infrared behavior which makes it impossible to calculate the properties of
of the hadrons starting from a fundamental QCD Lagrangian. Therefore for determination
of the parameters of hadrons a reliable nonperturbative approach is needed. Among all
nonperturbative approaches, QCD sum rules method which was originally proposed by
Shifman, Vainshtein and Zakharov [1] and adopted or extended in many works [2]–[6],
is particularly a powerful one in studying the properties of the low–lying hadrons. In
traditional QCD sum rules method [1] the nonperturbative approach is taken into account
through various condensates in the nontrivial QCD vacuum.

In this work we employ an alternative approach to the traditional sum rules, namely
light cone QCD sum rules method, to study ∆ → Nγ decay coupling constant. Light
cone sum rules is based on the operator product expansion on the light cone, which is an
expansion over the twists of the operators rather than dimensions in the traditional sum
rules. The main contribution comes from the lowest twist operator. The matrix elements
of the nonlocal operators sandwiched between a hadronic state and the vacuum defines the
hadronic wane function (more about application of light cone QCD sum rules can be found
in [7]–[16] and references therein).

In general ∆ → Nγ decay is described by the electric quadrapole E2 and magnetic dipole
M1 transition amplitudes. However, it is well known that the electric quadrapole amplitude
is very small compared to that of the magnetic dipole amplitude (see [17] and references
therein). Therefore in this work we consider only the magnetic dipole contribution.

The coupling constant g∆Nγ is involved in phenomenological models in investigation of
the many reactions of the strong and electromagnetic interactions and it is expected to
be measured more precisely in the pion photo production experiments at TJNAL (former
CEBAF).

The paper is organized as follows: In section 2 the light cone QCD sum rules for
the radiative ∆ → Nγ is presented. Section 3 is devoted to the numerical analysis and
discussion of the results.

2 The light cone QCD sum rules for ∆ → Nγ decay

constant

In studying the ∆ → Nγ decay constant we first introduce the interpolating currents for
the ∆ and N baryons [2]

ηµ
∆+ =

1√
3
ǫabc

[(

uTa Cγµub
)

dc + 2
(

uTa Cγµdb
)

uc
]

,

ηN = ǫabc
(

uTa Cγµub
)

γ5γ
µdc , (1)
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where u, d are up and down quark fields, respectively, and C is the charge conjugation
operator, a, b and c are the color indices. Note that this choice of nucleon interpolating
currents is not unique and other choices can be used (see for example [3]).

The overlap amplitudes of the interpolating currents with the baryons are defined as

〈0 |ηN |N〉 = λNuN ,

〈0 |ηµ∆|∆〉 =
1√
3
λ∆u

µ
∆ , (2)

where uµ∆ is the Rarita–Schwinger spinor.
The coupling constant g∆Nγ for the ∆ → Nγ decay is defined as follows

〈Nγ | ∆〉 = ieg∆Nγǫµναβ ūNγ
νqαεβuµ∆ , (3)

where εµ and qµ are the polarization vector and momentum of the photon, respectively, e
is the electric charge.

According to the QCD sum rules ideology, the quantitative estimates of the g∆Nγ cou-
pling constant can be obtained by equating the two different representations of a suitable
correlator, written in terms of hadrons and quark–gluon language. For this purpose we
start our analysis by considering the following correlator

Π(p, q) =
∫

d4x eipx 〈γ(q) |T {η∆(0)η̄N(x)}| 0〉 . (4)

Saturating (4) by ∆ and nucleons and using Eqs. (2) and (3), we get for the phenomeno-
logical part of the correlator

ieg∆Nγ
λNλ∆√

3(p2 −m2
N) [(p+ q)2 −m2

∆]

(

6p [εµ(pq)− (εp)qµ]
)

+ other structures. (5)

The main theoretical problem being the calculation of Eq. (4) in QCD. This problem
can be solved in the deep Euclidean region where p2 and (p + q)2 are negative and large.
After lengthy calculations, at quark level we have obtained the following expression for the
correlator function

Π(p, q) = − 1

4
√
3

∫

d4x eipx

×
{

− 4
〈

γ(q)
∣

∣

∣d̄γ5γϕd
[

γ5γϕγργ5Tr (SγρS ′γµ) + 2SγρS ′γµγ5γϕγργ5
]∣

∣

∣ 0
〉

(6)

+2
〈

γ(q)
∣

∣

∣d̄σαβ
[

σαβγργ5Tr (SγρS ′γµ) + 2SγρS ′γµσαβγργ5
]
∣

∣

∣ 0
〉

−4
〈

γ(q)
∣

∣

∣ūγ5γϕu
[

2Sγργ5Tr (γ5γϕγρS ′γµ)− 2Sγργ5γϕγµSγργ5 + 2γ5γϕγρS ′γµSγργ5
]∣

∣

∣ 0
〉

+2
〈

γ(q)
∣

∣

∣ūσαβu
[

2Sγργ5Tr (σαβγρS ′γµ) + 2SγρσαβγµSγργ5 + 2σαβγρS ′γµSγργ5
]
∣

∣

∣ 0
〉

}

,

where S ′ ≡ CSC = −CSC−1 and iS(x) is the full light quark propagator with both pertur-
bative and nonperturbative contributions

iS(x, 0) = 〈0 |T {q̄(x)q(0)}| 0〉
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= i
6x

2π2x4
− 〈q̄q〉

12
− x2

192
m2

0〈q̄q〉

− igs
1

16π2

∫ 1

0

du

{

6x
x2
σαβG

αβ(ux)− 4iu
xµ
x2
Gµν(ux)γν

}

+ · · · (7)

It follows from Eq. (6) that, in order to calculate the correlator function Π in QCD, the
matrix elements 〈γ(q) |q̄γαγ5q| 0〉 and 〈γ(q) |q̄σαβq| 0〉 are needed. These matrix elements
are defined in terms of the photon wave functions as follows [18]–[20]

〈γ(q) |q̄γαγ5q| 0〉 =
f

4
eqeǫαβρσε

βqρxσ
∫ 1

0

du eiuqxψ(u) ,

〈γ(q) |q̄σαβq| 0〉 = ieqe〈q̄q〉
∫ 1

0

du eiuqx

×
{

(εαqβ − εβqα)
[

χφ(u) + x2 [g1(u)− g2(u)]
]

+
[

qx (εαxβ − εβxα) + εx (xαqβ − xβqα)
]

g2(u)

}

. (8)

where the parameter χ is the magnetic susceptibility of the quark condensate and eq is the
quark charge. In further analysis the path ordered gauge factor

Pexp
(
∫ 1

0

duxµAµ(ux)
)

,

is omitted since in the fixed point gauge xµAµ = 0. The functions φ(u) and ψ(u) in
Eq. (8) are the leading twist photon functions, while g1(u) and g2(u) are the twist–4
functions. Using Eqs. (6), (7) and (8), and performing Fourier transform for the structure
[εµ(qp)− (εp)qµ], we get the following result

Π = − i

π2

〈q̄q〉
4
√
3

∫ 1

0

du

×
{

(eu − ed)

[

1

3
χφ(u)ln(−P 2)−

[

4g1(u) + 2g2(u)
] 1

P 2
+

2π2

3P 4
fψ(u) +

π2

3P 6
fm2

0ψ

]

+
1

3P 6
g2(u)〈g2G2〉 (−7eu + 3ed)−

1

12
ed〈g2G2〉χφ(u) 1

P 4
− 2

3
g1(u)ed〈g2G2〉 1

P 6

}

, (9)

where P = p + qu.
As has been noted already, the QCD sum rule is obtained as usual by equating the

hadronic representation of the correlator (4) with the result of the QCD calculation. In
order to take into account the contributions of the higher states we invoke the quark–hadron
duality prescription, i.e., above certain thresholds in s1 and s2, the double spectral density
ρ(s1, s2) for the higher states and continuum coincides with the spectral density calculated
in QCD.

After performing double Borel transformation with respect to the variables p2 and (p+
q)2 in Eqs. (4) and (9) to suppress the higher states, we finally get the following sum rules
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for the ∆Nγ coupling constant

g∆Nγλ∆λN = −1

4
em

2/M2 〈q̄q〉
π2

{

(eu − ed)

[

− 1

3
χφ(u0)M

4f1(s0/M
2)

+
[

4g1(u0) + 2g2(u0)
]

M2f0(s0/M
2) +

2π2

3
fψ(u0)

(

1− m2
0

4M2

)]

+

[

1

6M2
(−7eu + 3ed) g2(u0) +

1

3M2
g1(u0)−

ed
12
χφ(u0)

]

〈g2G2〉
}

, (10)

where the function

fn(x) = 1− e−x
n
∑

k=0

(x)k

k!
,

is the factor used to subtract the continuum, s0 is the continuum threshold and

u0 =
M2

2

M2
1 +M2

2

, M2 =
M2

1M
2
2

M2
1 +M2

2

,

where M2
1 and M2

2 are the Borel parameters. Since masses of the proton, and ∆+ are very
close to each other, we can choose M2

1 and M2
2 to be equal to each other, i.e., M2

1 =M2
2 =

2M2, from which it follows that u0 = 1/2.

3 Numerical results

It follows from eq. (10) that the main input parameters of the sum rules are photon wave
functions. It was shown in [7, 8] that the leading photon wave functions receives only
small corrections from the higher conformal spin, so they do not deviate much from the
asymptotic form. Following [18]–[20], we shall use for the photon wave function

φ(u) = 6uū ,

ψ(u) = 1 ,

g1(u) = −1

8
ū(3− u) ,

g2(u) = −1

4
ū2 ,

where ū = 1− u. The values of the other input parameters we have used: f = 0.028 GeV 2

and χ = −4.4 GeV 2 [20] at the scale µ = 1 GeV , 〈g2G2〉 = 0.474 GeV 2 and for the
continuum threshold s0 we have chosen two different values, i.e., s0 = 2.8 GeV 2 and s0 =
3 GeV 2. Having fixed the input parameters, one must find the range of values of M2 for
which the sum rule (10) is reliable. The lowest value of M2 is usually determined by the
condition that the terms proportional to the highest inverse power of the Borel parameter
stay reasonably small. The upper limit is determined by demanding that the continuum
and and higher state contribution does not get too large, say less than 30% of the leading
twist contributions. Both conditions are satisfied in the interval 1 GeV 2 ≤M2 ≤ 1.5 GeV 2.
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The dependence of the right side of Eq. (10) on M2 is shown in Fig. (1). It follows from
this figure in that the above–mentioned working region of M2 the sum rule is quite stable.
From this figure one can directly predict that

g∆Nγλ∆λN = (0.0020± 0.0004) GeV 5. (11)

Dividing this product of couplings by the residues of proton and ∆ currents λN and λ∆,
that were calculated in the analysis of mass sum rules for baryons [2] (see also [3] and [4])

g∆Nγ = (1.6± 0.2) GeV −1. (12)

This prediction of the coupling constant permits us to estimate the width of the ∆ → Nγ
decay. Using the matrix element for the ∆ → Nγ transition (see eq. (3)), we get for the
decay width

Γ =
α

4m3
∆

g2∆Nγ

(

m2
∆ −m2

N

)3

[

1 +
1

3m2
∆

(m∆ −mN)
2

]

, (13)

where α is the fine structure constant, m∆ and mN are the masses of ∆ and nucleons,
respectively. Using the predicted value of g∆Nγ in Eq. (12), the result we get for the decay
width is

Γ ≃ 0.65 (1± 0.25) MeV ,

and for the branching ratio of this channel we have (for the total decay width we have used
Γtot = 113 MeV [22])

B(∆ → Nγ) =
Γ

Γtot
= 0.0058 .

This prediction is in a very good agreement with the experimental results, i.e., 0.52% ≤
B ≤ 0.60% [22].

In summary, we have calculated ∆Nγ coupling using the light cone QCD sum rules.
Our prediction on the branching ratio is in a good agreement with the experimental results.
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Figure captions

Fig. 1 The dependence of g∆Nγλ∆λN on the Borel parameter M2. In this figure the solid
and dash–dotted lines correspond to the threshold values s0 = 2.8 GeV 2 and s0 = 3.0 GeV 2,
respectively.
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