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Abstract. Self-duality of Gabidulin codes was investigated in [10] and the au-
thors provided an if and only if condition for a Gabidulin code to be equivalent

to a self-dual maximum rank distance (MRD) code. In this paper, we inves-

tigate the analog problem for generalized twisted Gabidulin codes (a larger
family of linear MRD codes including the family of Gabidulin codes). We ob-

serve that the condition presented in [10] still holds for generalized Gabidulin
codes (an intermediate family between Gabidulin codes and generalized twisted

Gabidulin codes). However, beyond the family of generalized Gabidulin codes

we observe that some additional conditions are required depending on the ad-
ditional parameters. Our tools are similar to those in [10] but we also use

linearized polynomials, which leads to further tools and direct proofs.

1. Introduction

1.1. Maximum rank distance codes. Let q be a prime power, Fq be the finite
field of q elements and Fm×nq be the set of m× n matrices over Fq. The function d
defined by

d(A,B) := rank(A−B)

on Fm×nq ×Fm×nq is a metric called the rank distance on Fm×nq . A subset C of Fm×nq ,
including at least two matrices, with the rank distance is called a rank metric code.
By “a code” we always mean “a rank metric code” unless otherwise stated. The
minimum distance d(C) of a code C is naturally defined by d(C) := min{d(A,B) :
A,B ∈ C and A 6= B}. We call a code K−linear if it is also a vector space over K,
where K is a subfield of Fq. In particular, Fq−linear codes are called linear and
K−linear codes are called additive if K is a prime field. A tight upper bound for
rank metric codes is given in the following.

Proposition 1. [3] Let C ⊆ Fm×nq be a rank metric code, then

|C| ≤ qmax{m,n}(min{m,n}−d(C)+1).
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708 Kamil Otal, Ferruh Özbudak and Wolfgang Willems

The bound given in Proposition 1 is called the Singleton-like bound. A rank
metric code is called maximum rank distance (MRD) code if it meets the Singleton-
like bound. MRD codes have several applications in random network coding, space-
time coding, distributed storage, MIMO communication and cryptology .

The classification of Fm×nq with respect to the rank metric was given in [16,
Theorem 3.4]. This idea is utilized to define an equivalence notion between two
rank metric codes as follows: Two codes C, C′ ⊆ Fm×nq are called equivalent if there

exist X ∈ GL(m,Fq), Y ∈ GL(n,Fq) and Z ∈ Fm×nq such that

C′ = XCσY + Z := {XCσY + Z : C ∈ C} when m 6= n,
C′ = XCσY + Z or C′ = X(Cσ)ᵀY + Z := {X(Cσ)ᵀY + Z : C ∈ C} when m = n

for some automorphism σ of Fq acting on the entries of C ∈ C, where the superscript
ᵀ denotes the transpose of matrices. If both C and C′ are additive, then Z must be
the zero matrix. Similarly, if C and C′ are both linear, then σ can be taken as the
identity without loss of generality. Therefore, the following corollary can be used
as a definition of equivalence for linear codes: Two linear codes C, C′ ⊆ Fm×nq are
equivalent if there exist X ∈ GL(m,Fq) and Y ∈ GL(n,Fq) such that

(1)
C′ = XCY when m 6= n,
C′ = XCY or C′ = X(Cᵀ)Y when m = n.

Additionally, in case m = n we call the equivalence proper if C′ = XCY for some
X,Y ∈ GL(n,Fq).

Let trace(X) denote the classical matrix trace of a square matrix X over Fq.
The transformation from Fm×nq × Fm×nq to Fq given by (A,B) 7→ trace(BAᵀ) is a
symmetric bilinear form, and corresponds to the classical inner product when we
write matrices in Fm×nq as vectors in Fmnq . Using this bilinear form, we define the

dual code C⊥ of a linear code C ⊆ Fm×nq as follows.

(2) C⊥ := {A ∈ Fm×nq : trace(BAᵀ) = 0 for all B ∈ C}.

Note that C⊥ is a linear code, dim(C) + dim(C⊥) = mn and d(C⊥) = min{m,n} −
d(C) + 2. Hence, if C is an MRD code, then so is C⊥. We want to remark that some
other duality notions can be defined using different symmetric bilinear forms. For
more information about duality we refer to [14].

1.2. Related work. We briefly summarize the history of constructions of MRD
codes with respect to the equivalence given in equation (1) as follows.

• 1978 and 1985: Gabidulin codes were discovered in [3] and independently
in [6].

• 2005: A generalization of Gabidulin codes, known as generalized Gabidulin
codes, was given in [7].

• 2016: Another generalization of Gabidulin codes, called twisted Gabidulin
codes, were discovered in [15]. A particular case of this family was indepen-
dently discovered also in [11].

• 2016: A more general family including both generalized Gabidulin codes and
twisted Gabidulin codes, known as generalized twisted Gabidulin codes,
was remarked in [15] and investigated in [9].

In the literature, there are also non-linear constructions of MRD codes (see for
instance [2, 5, 12, 13]). However, in this paper we only focus on linear codes since
we are interested in duality questions.
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Self-duality of Gabidulin codes was considered in [10] and a criterion for being
equivalent to a self-dual linear MRD code was given (see Theorem 2.3). The authors
also provided an if and only if condition for a Gabidulin code to be equivalent to a
self-dual MRD code.

1.3. Our contributions. In this paper, we investigate the property that a gener-
alized twisted Gabidulin code is equivalent to a self-dual code. We show in Theorem
3.6(1) that the conditions in [10] hold for generalized Gabidulin codes. Therefore,
Theorem 3.6(1) may be seen as a natural generalization of [10, Theorem 4].

If we look at other generalized twisted Gabidulin codes (i.e. the ones which are
not generalized Gabidulin), we observe that some additional conditions are required
depending on the additional parameters (see Theorem 3.6(2)).

We want to emphasize that we use the linearized polynomial representation of
codewords, whereas in [10] only the matrix representation came into play. Note
that this linearized polynomial approach allows us to deal with additional tools and
derive more direct proofs.

1.4. Organization of the paper. In Section 2 we present the linearized poly-
nomial representation of rank metric codes and then we introduce the family of
generalized twisted Gabidulin codes using this representation. In addition, we de-
velop some useful tools which are mostly in the linearized polynomial language.

In Section 3 we provide our main result, together with some important lemmas.
Lastly we prove our main result in Section 4 examining the cases separately.

2. Preliminaries

2.1. Linearized polynomials and rank metric codes. A polynomial f(x) ∈
Fqn [x] of the form

(3) f(x) =

l∑
i=0

αix
qi

is called a q-polynomial (or, a linearized polynomial) over Fqn . We call l in (3) the
q-degree of f if αl 6= 0. Some important facts about linearized polynomials are
given below.

• f(cα + β) = cf(α) + f(β) for all c ∈ Fq and α, β ∈ Fq, where Fq denotes the
algebraic closure of Fq.

• The multiplicity of each root of f in Fq is the same and equal to qr where r
is the smallest integer satisfying αr 6= 0.

• The set of roots of f in an extension field of Fqn constitutes a vector space
over Fq. In particular, the set of roots of f in Fqn is a subspace of Fqn over
Fq. This set is called the kernel of f and denoted by ker(f). The rank of f is
defined by n− dim(ker(f)) and denoted by rank(f).

For more information the reader is referred to [8].
Let f(x) ∈ Fqn [x] be a q-polynomial of q-degree at most n − 1. Let Γ =

(γ1, γ2, . . . , γn) be an ordered basis of Fqn over Fq. Then, for any α ∈ Fqn we
have

f(α) = f(c1γ1 + c2γ2 + · · ·+ cnγn)
= c1f(γ1) + c2f(γ2) + · · ·+ cnf(γn)

=
[
f(γ1) f(γ2) . . . f(γn)

] [
c1 c2 . . . cn

]ᵀ
Advances in Mathematics of Communications Volume 12, No. 4 (2018), 707–721
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(4) = [γ1 γ2 . . . γn]


f(γ1)γ1 f(γ2)γ1 . . . f(γn)γ1

f(γ1)γ2 f(γ2)γ2 . . . f(γn)γ2

...
...

. . .
...

f(γ1)γn f(γ2)γn . . . f(γn)γn



c1
c2
...
cn


for some ci ∈ Fq and 1 ≤ i ≤ n, where f(γi)γj ∈ Fq denotes the coefficient of γj if
f(γi) is written as a linear combination of γ1, . . . , γn over Fq for all 1 ≤ i, j ≤ n.
Let [f ]Γ denote the matrix given by [f(γj)γi ]i,j ∈ Fn×nq . Note that there is a one to
one correspondence between f and [f ]Γ with respect to the fixed ordered basis Γ.
We also have rank(f) = rank([f ]Γ). Moreover, the algebra Fn×nq with the matrix
addition and the matrix multiplication is isomorphic to the algebra

Ln := {α0x+ α1x
q + · · ·+ αn−1x

qn−1

: α0, . . . , αn−1 ∈ Fqn}

with the addition and the composition of polynomials modulo xq
n −x, respectively.

Note also that similar isomorphism ideas were known for a very long time [1, 4].
Various isomorphisms of Ln in detail are available in [17].

For f(x) =
∑n−1
i=0 αix

qi ∈ Ln we define the adjoint polynomial f̂ of f as

(5) f̂(x) :=

n−1∑
i=0

αq
i

n−ix
qi mod xq

n

− x.

Suppose that Γ is a normal basis of Fqn over Fq, namely Γ = (γ, γq, . . . , γq
n−1

) for
some normal element γ of Fqn over Fq. Then we define

(6) t(x) := Trqn/q(γ
2)x+ Trqn/q(γ

1+q)xq + · · ·+ Trqn/q(γ
1+qn−1

)xq
n−1

,

where Trqn/q denotes the trace function on Fqn over Fq given by α 7→ α+αq + · · ·+
αq

n−1

, which we also consider as a function on Fq. The polynomial t(x) together
with adjoint polynomials play a crucial role in our results, especially in order to
understand the transpose of [f ]Γ. We summarize this role in Proposition 2 below.

Lemma 2.1. Let t(x) be the polynomial as defined in (6). Then the following hold.

1. [xq]Γ = [δi−1,j ]1≤i,j≤n. Hence det([xq]Γ) = (−1)n+1 and [xq]ᵀΓ = [xq]−1
Γ .

2. [(xq
l

) ◦ t(x)]Γ = [t(x) ◦ (xq
l

)]Γ = [(xq
n−l

) ◦ t(x)]ᵀΓ for all 0 ≤ l ≤ n− 1.
3. [αx]ᵀΓ = [t ◦ (αx) ◦ t−1]Γ.

Proof. 1. The matrix representation [xq]Γ = [δi−1,j ]1≤i,j≤n is clear when we write
f(x) = xq in equation (4). The other two statements are straightforward from
this representation.

2. The first equality can be directly seen because each coefficient of t(x) is in Fq.
The second equality can be observed when we write the statements explicitly
using equation (4).

3. This statement with a proof is available in [10, Lemma 2].

Proposition 2. Let t(x) be the polynomial as defined in (6). Then the following
hold.

1. t(x) is a self adjoint polynomial, i.e. t̂(x) = t(x).
2. The associated matrix [t]Γ of t is an invertible and symmetric matrix.

3. For any f ∈ Ln, we have [f ]ᵀΓ = [t ◦ f̂ ◦ t−1]Γ.
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Proof. 1. The statement is clear when the definition of t(x) in (6) is used in (5).
2. Note that [t]Γ is the Gram matrix of the trace bilinear form (α, β) ∈ Fqn ×

Fqn 7→ Trqn/q(αβ) ∈ Fq with respect to the basis Γ, which is symmetric and
non-degenerate.

3. Any f ∈ Ln can be written as f(x) =
∑n−1
i=0 αix

qi for some α0, α1, . . . , αn−1 ∈
Fqn . Therefore,

[f(x)]ᵀΓ =

[
n−1∑
i=0

αix
qi

]ᵀ
Γ

=

[
n−1∑
i=0

(αix) ◦ (xq
i

)

]ᵀ
Γ

=

n−1∑
i=0

[
(αix) ◦ (xq

i

)
]ᵀ

Γ

=

n−1∑
i=0

[
xq

i
]ᵀ

Γ
[αix]

ᵀ
Γ

=

n−1∑
i=0

[
xq

−i
]

Γ
[αix]

ᵀ
Γ (by Lemma 2.1(1))

=

n−1∑
i=0

[
xq

−i
]

Γ
[t(x)]Γ [αix]Γ [t−1(x)]Γ (by Lemma 2.1(3))

=

n−1∑
i=0

[t(x)]Γ

[
xq

−i
]

Γ
[αix]Γ [t−1(x)]Γ (by Lemma 2.1(2))

=

n−1∑
i=0

[t(x)]Γ

[
αq

−i

i xq
−i
]

Γ
[t−1(x)]Γ

= [t(x)]Γ

(
n−1∑
i=0

[
αq

−i

i xq
−i
]

Γ

)
[t−1(x)]Γ

= [t(x) ◦ f̂(x) ◦ t−1(x)]Γ.

When we consider the algebra Ln as the ambient space instead of the algebra
Fn×nq we observe that the equivalence in (1) for linear codes appears as follows: If
C and C′ are two linear subspaces of Ln over Fq, then C and C′ are equivalent if and
only if there exist in Ln invertible polynomials g and h such that

(7)
C′ = g ◦ C ◦ h := {g(x) ◦ f(x) ◦ h(x) mod xq

n − x : f(x) ∈ C}, or

C′ = g ◦ Ĉ ◦ h := {g(x) ◦ f̂(x) ◦ h(x) mod xq
n − x : f(x) ∈ C},

where the ◦ operation denotes the composition, i.e., f1(x) ◦ f2(x) = f1(f2(x))
mod xq

n − x for fi ∈ Ln. Note that ◦ is associative on Ln. Furthermore, the
minimum distance d(C) is indeed the minimum non-zero rank of the elements in C
because C is closed under addition.

Advances in Mathematics of Communications Volume 12, No. 4 (2018), 707–721
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To present rank metric codes we usually prefer Ln as the ambient space instead
of Fn×nq , since we make use of properties of linearized polynomials in general. In
case we need the matrix expansion, we use the notation [f ]Γ for f ∈ Ln.

Recall that the norm function Normqn/q on Fqn over Fq is given by α 7→
α1+q+···+qn−1

, which we also consider as a function on Fq. Now using the norm
function we define generalized twisted Gabidulin codes.

Theorem 2.2. [15, 9] Let k, h, s be nonnegative integers and η ∈ Fqn satisfying
1 ≤ k ≤ n − 1, gcd(n, s) = 1 and Normqn/q(η) 6= (−1)nk, where gcd denotes the
greatest common divisor of integers. Then
(8)

Hn,k,s(η, h) := {α0x+ α1x
qs + · · ·+ αk−1x

qs(k−1)

+ ηαq
h

0 xq
sk

: α0, . . . , αk−1 ∈ Fqn}
is an MRD code of minimum distance n− k + 1.

Hn,k,s(η, h) is called a generalized twisted Gabidulin code. Note that h becomes
useless when η = 0. In this case the code is also called a generalized Gabidulin code
and denoted by Gn,k,s. Generalized Gabidulin codes were first considered in [7].
The codes Gn,k,1 which form a sub-family of the generalized Gabidulin codes were
discovered earlier in [3, 6]. Usually they are called Gabidulin codes.

2.2. Key tools for self-duality. Next we present some basic results, which we
will use in the following section while investigating self-duality of generalized twisted
Gabidulin codes. From now on, we fix the following assumptions and notations.

• γ is a normal element of Fqn over Fq,
• Γ = (γ, γq, . . . , γq

n−1

) is a normal basis of Fqn over Fq constructed by γ,
• q is odd ([10, Theorem 1] indicates that no self-dual MRD codes exist when q

is even),
• m = n and n is even (no self-dual codes exist when n is odd; recall also that

dim(C) + dim(C⊥) = n2),
• n ≥ 4 (note that for n = 2, [10, Proposition 1] determines completely all MRD

codes which are equivalent to a self-dual code.).

We use the following theorem to characterize the codes which are properly equiv-
alent to self-dual codes.

Theorem 2.3. [10, Theorem 2] Let C ⊆ Fn×nq be a linear rank metric code. Then C
is properly equivalent to a self-dual code if and only if there are symmetric matrices
A,B ∈ Fn×nq such that det(A),det(B) ∈ (F?q)2 and C⊥ = ACB.

The next lemma provides some essential information about linearized monomials

αxq
i ∈ Ln, where α ∈ Fqn and 0 ≤ i ≤ n − 1. It is a slightly extended version of

[10, Lemma 4].

Lemma 2.4. Let t(x) ∈ Ln be the linearized polynomial defined in equation (6).
Then the following statements hold.

1. det[t(x)]Γ /∈ (F?q)2 and det[αx]Γ = Normqn/q(α) for all α ∈ Fqn .

2. [t(x) ◦ (αx)]Γ and [(αx) ◦ t−1(x)]Γ are symmetric for all α ∈ Fqn .
3. The following statements are equivalent.

(a) [t(x) ◦ (xq
l

) ◦ (αx)]Γ is symmetric,

(b) [(αx) ◦ (xq
l

) ◦ t−1(x)]Γ is symmetric,
(c) either l = n/2 and α ∈ F?

qn/2 , or l = 0 and α ∈ F?qn .
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Proof. 1. The first statement is exactly [10, Lemma 4(v)], where also a proof is
available. The second statement is coming from the following correspondence.
Let
• F1 = Fqn , with the usual addition and multiplication of the field,
• F2 = {αx : α ∈ Fqn} ⊆ Fqn [x], with the addition and composition of

polynomials,
• F3 = {[αx]Γ : α ∈ Fqn} ⊆ Fn×nq , with the addition and multiplication of

matrices.
Then there is an isomorphism between any two of these three mathematical
structures, namely

F1 ↔ F2 ↔ F3

α ↔ αx ↔ [αx]Γ.

Now, let g(y) = yn + gn−1y
n−1 + . . . + g1y + g0 ∈ Fq[y] be the characteristic

polynomial of [αx]Γ for some α ∈ Fqn . Then the isomorphism between F1 and
F3 implies that g(y) is also the characteristic polynomial of α ∈ Fqn . Hence,

det[αx]Γ = (−1)ng0 = Normqn/q(α).

2. The statement can be verified directly applying Proposition 2(3) to obtain the
transpose of each statement.

3. The statement is exactly [10, Lemma 4(viii)] and a proof is available there.

Now we introduce another important result, which is a generalization of [10,
Lemma 3(iv)].

Lemma 2.5. For linearized monomials αxq
l

we can determine trace([αxq
l

]Γ) for
all 0 ≤ l ≤ n− 1 and α ∈ Fqn as follows.

1. trace([αx]Γ) = Trqn/q(α).

2. trace([αxq
l

]Γ) = 0 for all 1 ≤ l ≤ n− 1.

Lemma 2.5 can be seen evident considering cyclic algebras constructed by the
isomorphism given in equation (4). Note also that Lemma 2.5 was remarked in [15]
as a well-known fact. However, especially the proof of Lemma 2.5(1) is not available
neither in [10] nor in [15]. Hence we give an elementary proof of the lemma below.

Proof. Let A = [αx]Γ. Using normality of Γ we obtain

αγq
j−1

=

n∑
i=1

Aijγ
qi−1

⇒ αq
n−j

γq
n−1

=

n∑
i=1

Aijγ
qi−j−1

⇒
n∑
j=1

αq
n−j

γq
n−1

=

n∑
j=1

n∑
i=1

Aijγ
qi−j−1

.

The left hand side of the last statement is clearly Trqn/q(α)γq
n−1

. The right hand
side can be rewritten by taking j from i to i + n − 1 and hence we obtain the
following.
(9)

Trqn/q(α)γq
n−1

=

(
n∑
i=1

Ai,i

)
γq

n−1

+

(
n∑
i=1

Ai,i+1

)
γq

n−2

+ · · ·+

(
n∑
i=1

Ai,i−1

)
γ.

The statements of the lemma can be observed from equation (9) as follows.

Advances in Mathematics of Communications Volume 12, No. 4 (2018), 707–721
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1. In equation (9), the coefficient of each γq
i

for all 0 ≤ i ≤ n − 1 is clearly in
Fq. Also remember that Γ is a basis of Fqn over Fq. The uniqueness of the
coefficients in Fq with respect to a fixed basis implies

Trqn/q(α) =

n∑
i=1

Ai,i,

which completes the first part of the proof.

2. Note that αxq
l

= (αx) ◦ (xq
l

) and

[xq
l

]Γ = [xq]lΓ = [δi−1,j ]
l
1≤i,j≤n = [δi−l,j ]1≤,i,j≤n

which implies [αxq
l

]Γ = A[δi−l,j ]1≤,i,j≤n. Thus we have

trace([αxq
l

]Γ) =

n∑
i=1

Ai,i+l,

which is zero for 1 ≤ l ≤ n− 1 according to the equation (9).

2.3. Automorphism groups of rank metric codes. Now we introduce the
proper automorphism group and full automorphism group of a rank metric code.
Let C be a linear code in Ln, then the set of pairs (g(x), h(x)) in Ln×Ln satisfying

(10) C = g(x) ◦ C ◦ h(x)

forms a group under the multiplication defined by

(11) (g1(x), h1(x))(g2(x), h2(x)) = (g1(x) ◦ g2(x), h2(x) ◦ h1(x)).

This group is called the proper automorphism group of C and denoted by Aut(p)(C).
Similarly, the full automorphism group of C is defined as the group generated by

the union of Aut(p)(C) and the set of [g(x), h(x)] couples satisfying

(12) C = g(x) ◦ t−1(x) ◦ Ĉ ◦ t(x) ◦ h(x)

and denoted by Aut(C). We may determine this set up more explicitly as follows:
Define

(g, h) : f 7→ g ◦ f ◦ h,
[g, h] : f 7→ g ◦ t ◦ f̂ ◦ t−1 ◦ h.

on the set of automorphisms of C ⊆ Ln and extend the multiplication in equation

(11) from Aut(p)(C) to Aut(C) as

• [g1, h1][g2, h2] = (g1 ◦ t ◦ ĥ2 ◦ t−1, t ◦ ĝ2 ◦ t−1 ◦ h1),

• [g1, h1](g2, h2) = [g1 ◦ t ◦ ĥ2 ◦ t−1, t ◦ ĝ2 ◦ t−1 ◦ h1],
• (g1, h1)[g2, h2] = [g1 ◦ g2, h2 ◦ h1].

In that way we create the full automorphism group Aut(C) of a rank metric code
C ⊆ Ln. Therefore, taking only one fixed non-proper automorphism [g, h] (if any
exist), we observe that

Aut(C) = 〈Aut(p)(C) ∪ {[g, h]}〉.

Also note that the index of Aut(p)(C) in Aut(C) is either one or two, since the square
of a non-proper automorphism is proper. In particular, it is easy to show that the
identity element of the full automorphism group of Ln is (x, x).
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3. Self-duality of generalized twisted Gabidulin codes

From now on we fix k =
n

2
> 1 since we investigate self-duality and assumed

n ≥ 4 as mentioned at the beginning of Section 2.2.
The following lemma can be derived directly from Section 2 and Section 3 in [15]

and [9, Theorem 4.4].

Lemma 3.1. Two generalized twisted Gabidulin codes Hn,n2 ,s(η1, h1) and Hn,n2 ,s(η2,
h2) are properly equivalent, i.e.,

Hn,n2 ,s(η1, h1) = f ◦ Hn,n2 ,s(η2, h2) ◦ g

if and only if h1 = h2, f(x) = αxq
i

, g(x) = βxq
−i

and ηq
i

1 = η2α
qh1−1βq

i+h1−qs
n
2

+i

for some α, β ∈ F?qn and 0 ≤ i ≤ n− 1.

Corollary 1. The proper automorphism group of the generalized twisted Gabidulin
code Hn,n2 ,s(η, h) is

Aut(p)(Hn,n2 ,s(η, h))

=
{

(αxq
i

, βxq
−i

) : α, β ∈ F?qn , 0 ≤ i ≤ n− 1, ηq
i

= ηαq
h−1βq

i+h−qs
n
2

+i
}
.

Corollary 2. The proper automorphism group Aut(p)(Gn,k,s) of a generalized
Gabidulin code Gn,k,s is

Aut(p)(Gn,k,s) = {(αxq
i

, βxq
−i

) : α, β ∈ F?qn , 0 ≤ i ≤ n− 1}.

The following lemma is a slight generalization of [10, Corollary 1] from Gn,k,1 to
Gn,k,s.

Lemma 3.2. Aut(Gn,k,s) 6= Aut(p)(Gn,k,s) if k > 1.

Proof. On Ln, using

(g, h) : f 7→ g ◦ f ◦ h,
[g, h] : f 7→ g ◦ t ◦ f̂ ◦ t−1 ◦ h.

we observe that

Aut(Gn,s,k) = 〈Aut(p)(Gn,s,k) ∪
{

[t−1, t ◦ (xq
s(k−1)

)]
}
〉.

The index [Aut(Gn,s,k) : Aut(p)(Gn,s,k)] is obviously either 1 or 2. Suppose that

the index is 1, i.e., Aut(Gn,s,k) = Aut(p)(Gn,s,k). Then there exist α, β ∈ Fqn and
0 ≤ i ≤ n− 1 such that

(αxq
i

, βxq
−i

) = [t−1, t ◦ (xq
s(k−1)

)].

However, for x ∈ Gn,s,k we have

(αxq
i

, βxq
−i

)(x) = αβq
i

x,[
t−1, t ◦ (xq

s(k−1)

)
]

(x) = xq
s(k−1)

which are clearly not equal if k > 1. Hence the assumption is false, i.e., Aut(Gn,s,k) 6=
Aut(p)(Gn,s,k).

The following corollary summarizes some basic facts of Aut(Gn,k,s).
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Corollary 3. The orders of Aut(p)(Gn,k,s) and Aut(Gn,k,s) are n(qn − 1)2/(q −
1) and 2n(qn − 1)2/(q − 1) respectively. In particular, the orders of given ele-

ments (αxq
i

, βxq
−i

) and [αxq
i

, βxq
−i

] in Aut(Gn,k,s) are lcm(ord(α), ord(β), n) and
lcm(ord(α), ord(β), n, 2) respectively, where lcm denotes the least common multiple
of the integers and ord denotes the multiplicative order of elements in Fqn .

The following lemma is also available in [15, 9] and easy to prove directly by
computation.

Lemma 3.3. 1. The adjoint Ĝn,n2 ,s of a generalized Gabidulin code Gn,n2 ,s is
properly equivalent to itself.

2. The adjoint Ĥn,n2 ,s(η, h) of a generalized twisted Gabidulin code Hn,n2 ,s(η, h)

is properly equivalent to Hn,n2 ,s(η
−q−h

, sn2 − h) when η is nonzero.

Now we can explicitly determine the dual of a generalized twisted Gabidulin code
in terms of another generalized twisted Gabidulin code.

Lemma 3.4. The dual code of a generalized twisted Gabidulin code Hn,n2 ,s(η, h) is

H⊥n,n2 ,s(η, h) = t ◦ (xq
s n

2 ) ◦ Hn,n2 ,s(−η
qs

n
2

−h

,−h) ◦ t−1.

Proof. Let C′ := t ◦ (xq
s n

2 ) ◦ Hn,n2 ,s(−η
qs

n
2

−h

,−h) ◦ t−1. Clearly

dim C′ =
n2

2
= n2 − n2

2
= dimLn − dimHn,n2 ,s(η, h) = dimH⊥n,n2 ,s(η, h).

Hence it is enough to show that C′ ⊆ H⊥n,n2 ,s(η, h). For any f ∈ Hn,n2 ,s(η, h) and

g ∈ C′, we have

f ◦
(
t ◦ ĝ ◦ t−1

)
= θ0x+ θ1x

q + · · ·+ θn−1x
qn−1

for some θ0, θ1, . . . , θn−1 ∈ Fqn . Then,

trace[f ◦
(
t ◦ ĝ ◦ t−1

)
]Γ = trace[θ0x]Γ + trace[θ1x

q]Γ + · · ·+ trace[θn−1x
qn−1

]Γ

Here, the right hand side is exactly trace[θ0x]Γ by Lemma 2.5(2). When we apply
Lemma 2.5(1) and explicitly write θ0 we observe that

trace[θ0x]Γ = Trqn/q(θ0) = Trqn/q

(
ηαq

h

βq
sk

− ηq
n−h

αβq
n−h−sk

)
= 0

for some α and β in Fqn . In conclusion we have

trace ([f ]Γ[g]ᵀΓ) = trace[f ◦
(
t ◦ ĝ ◦ t−1

)
]Γ = 0,

i.e. C′ ⊆ H⊥n,n2 ,s(η, h). Thus the proof is completed.

Lastly we provide a technical lemma that we multiply use in the proof of the
main theorem.

Lemma 3.5. Let q ≡ 3 mod 4 and n ≡ 2 mod 4. If ζ ∈ F?qn satisfies

(13) ζq
n/2−1 = −1,

then Normqn/q(ζ) is a square in Fq.
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Proof. Let Normqn/2/q(ζ) = c, then cq
n/2−1 = (−1)

qn/2−1
q−1 = −1 6= 1, i.e., c /∈ Fqn/2

and hence c /∈ Fq. Additionally, equation (13) implies ζq
n/2

= −ζ and hence

Normqn/q(ζ) = ζ1+q+...+qn/2−1

(−ζ) · (−ζq) · · · (−ζq
n/2−1

) = (−1)n/2c2 = −c2,

i.e., c2 ∈ Fq (whereas c /∈ Fq). In other words, c2 is a non-square in Fq. On the
other hand, also −1 is a non-square in Fq (since q ≡ 3 mod 4 and n ≡ 2 mod 4).
Therefore, Normqn/q(ζ) = −c2 is a square in Fq.

Now we give the main theorem of this paper.

Theorem 3.6. Let η be a non-zero element in Fqn satisfying Normqn/q(η) 6= 1.
Then the following hold.

1. If η = 0, then a generalized twisted Gabidulin code Hn,n2 ,s(η, h) = Gn,n2 ,s is
equivalent to a self-dual MRD code if and only if n ≡ 2 mod 4 and q ≡ 3
mod 4.

2. If η 6= 0, then a generalized twisted Gabidulin code Hn,n2 ,s(η, h) is
• properly equivalent to a self-dual MRD code if and only if n ≡ 2 mod 4,
q ≡ 3 mod 4, h ∈ {0, n/2} and Normqn/q(η) is a non-square in F?q .
• non-properly equivalent to a self-dual MRD code if and only if n ≡ 2

mod 4, q ≡ 3 mod 4, h ∈ {0, n/2} and Normqn/q(η) is a square in Fq.

Note that the η = 0 case in Theorem 3.6 is a natural generalization of [10,
Theorem 4].

4. Proof of Theorem 3.6

In this section we prove Theorem 3.6 considering the cases separately.

4.1. Case η = 0. In this case the proof runs similar to that in [10].
(⇒) : Suppose that Gn,n2 ,s is equivalent to a self-dual MRD code C. Lemma 3.2

says that Gn,n2 ,s has non-proper automorphisms. Thus Gn,n2 ,s and C are properly
equivalent without loss of generality. Next, using Lemma 3.4 and Theorem 2.3 we
write

t(x) ◦ (xq
s n

2 ) ◦ Gn,n2 ,s ◦ t
−1(x) = a(x) ◦ Gn,n2 ,s ◦ b(x),

where [a]Γ, [b]Γ are symmetric and det[a]Γ,det[b]Γ ∈ (F?q)2. Now Corollary 2 implies
that

(14) αxq
i

= a−1(x) ◦ t(x) ◦ (xq
s n

2 ) and βxq
−i

= t−1(x) ◦ b−1(x)

for some α, β ∈ F?qn and 0 ≤ i ≤ n− 1. Then

(15) a(x) = t(x) ◦ (xq
s n

2
−i

) ◦ (α−1x) and b(x) = (β−q
i

x) ◦ (xq
i

) ◦ t−1(x).

Since a and b are symmetric, by Lemma 2.4(3) we deduce the following two possi-
bilities:

(16) i = 0 and α ∈ F?qn/2 , or i =
n

2
and β ∈ F?qn/2

(Recall that s is odd since gcd(s, n) = 1, and that β−q
n/2 ∈ F?

qn/2 implies β ∈ F?
qn/2).

Furthermore det[a]Γ,det[b]Γ ∈ (F?q)2. So we can interpret both possibilities in (16)
separately as follows.

• Subcase 1. Suppose that i = 0 and α ∈ F?
qn/2 . Then, on the first equation

of (15) we observe that
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– Normqn/q(α
−1) = [α−1x]Γ is a square in Fq, since α ∈ F?

qn/2 and by

Lemma 2.4(1),
– det[t]Γ is a non-square in Fq, by Lemma 2.4(1), and

– det[xq
s n

2 ] = (−1)
n
2 , by Lemma 2.1(1).

Therefore, to obtain that det[a]Γ is a square in Fq, we must have that (−1)
n
2

is a non-square in F?q .
• Subcase 2. Suppose that i = n

2 and β ∈ F?
qn/2 . Then, on the second equation

of (15) we observe similarly that

– Normqn/q(β
−qi) is a square in Fq,

– det[t−1]Γ is a non-square in Fq, and

– det[xq
n
2 ] = (−1)

n
2 .

Therefore, to obtain that det[b]Γ is a square in Fq, we must again have that
(−1)

n
2 is a non-square in F?q .

Consequently, we deduce that (−1)n/2 /∈ (F?q)2 for both cases and this occurs only
if n ≡ 2 mod 4 and q ≡ 3 mod 4.

(⇐) : Reverse steps of part (⇒) can be applied to finish the proof.

4.2. Case η 6= 0 and the equivalence is proper. In this case the proof runs
similar to the proof of the previous case but we use some additional properties,
especially from Lemma 3.1.

(⇒) : Suppose that Hn,n2 ,s(η, h) is properly equivalent to a self-dual MRD code
C. Then using Lemma 3.4 and Theorem 2.3 we obtain that

t ◦ (xq
s n

2 ) ◦ Hn,n2 ,s(−η
qs

n
2

−h

,−h) ◦ t−1 = a ◦ Hn,n2 ,s(η, h) ◦ b

for some invertible linearized polynomials a(x), b(x) ∈ Ln, where [a]Γ and [b]Γ are
symmetric matrices and det[a]Γ,det[b]Γ are squares in F?q . Lemma 3.1 implies the
equations

αxq
i

= a−1(x) ◦ t(x) ◦ (xq
s n

2 ) and βxq
−i

= t−1(x) ◦ b−1(x)

for some α, β ∈ F?qn and 0 ≤ i ≤ n − 1. Note that this set of equations is exactly
the set of equations in (14) which according to the arguments in Section 4.1 implies
that

(17) n ≡ 2 mod 4 and q ≡ 3 mod 4.

In addition, Lemma 3.1 also implies that h ∈ {0, n2 } and

(18) − 1 = α1−qhβq
s n

2
+i−qh+i

ηq
i−qs

n
2

−h

.

We analyze the possibilities in (16) on equation (18) for h = 0 and h = n/2 sepa-
rately as follows.

• Subcase 1. Suppose that h = 0.
– Subcase 1.1. In case i = n/2 and β ∈ F?

qn/2 , equation (18) implies that

−1 = β1−qn/2

= 1, a contradiction.
– Subcase 1.2. In case i = 0 and α ∈ F?

qn/2 , we observe from the equations

in (15) and Lemma 2.4(1) that Normqn/q(β) is a non-square in Fq since
det([b]Γ) is a square in Fq. On the other hand, equation (18) reduces to

−1 = βq
n/2−1η1−qn/2

. For ζ = β/η we get

ζq
n/2−1 = −1.
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Considering (17) and using Lemma 3.5 we deduce that Normqn/q(ζ) is a

square in Fq. Combining both we see that Normqn/q(η) =
Normqn/q(β)

Normqn/q(ζ)
is a non-square in Fq.

• Subcase 2. Suppose that h = n/2.
– Subcase 2.1. In case i = 0 and α ∈ F?

qn/2 , equation (18) implies that

−1 = α1−qn/2

= 1, a contradiction.
– Subcase 2.2. In case i = n/2 and β ∈ F?

qn/2 , we observe from the

equations in (15) and Lemma 2.4(1) that Normqn/q(α) is a non-square in

Fq. On the other hand, equation (18) reduces to −1 = α1−qn/2

ηq
n/2−1.

Taking ζ = α/η we get

ζq
n/2−1 = −1

again. Considering (17) and using Lemma 3.5 we deduce that Normqn/q(ζ)

is a square in Fq. Combining both we see that Normqn/q(η) =
Normqn/q(α)

Normqn/q(ζ)
is a non-square in Fq.

(⇐) : Reverse steps of part (⇒) can be applied to complete the proof.

4.3. Case η 6= 0 and the equivalence is non-proper. In this case our proof
is similar to the case in Section 4.2 with some differences.

(⇒) : Suppose that Hn,n2 ,s(η, h) is non-properly equivalent to a self-dual MRD

code C. Then Ĥ and C are properly equivalent. Using Lemma 3.3 and Theorem 2.3
we get

H⊥n,n2 ,s
(
η−q

−h

, s
n

2
− h
)

= a ◦ Hn,n2 ,s
(
η−q

−h

, s
n

2
− h
)
◦ b

and according to Lemma 3.4 we obtain

t ◦
(
xq

s n
2
)
◦ Hn,n2 ,s

(
−η−q

s n
2

−2h

, h− sn
2

)
◦ t−1 = a ◦ Hn,n2 ,s

(
η−q

−h

, s
n

2
− h
)
◦ b

for some invertible linearized polynomials a(x), b(x) ∈ Ln, where [a]Γ and [b]Γ are
symmetric matrices and det[a]Γ,det[b]Γ are squares in F?q . Then by Lemma 3.1 we
obtain that

αxq
i

= a−1(x) ◦ t(x) ◦ (xq
s n

2 ) and βxq
−i

= t−1(x) ◦ b−1(x)

for some α, β ∈ F?qn and 0 ≤ i ≤ n− 1, similarly. Note that this set of equations is
exactly the set of equations in (14) which according to the arguments in Section 4.1
implies that n ≡ 2 mod 4 and q ≡ 3 mod 4. In addition, Lemma 3.1 also implies
that h ∈ {0, n2 } and

(19) − 1 = α1−qs
n
2

−h

βq
s n

2
+i−qs

n
2

+i−h

ηq
s n

2 −qi−h

.

We analyze the possibilities in (16) on equation (19) for h = 0 and h = n/2 sepa-
rately as follows.

• Subcase 1. Suppose that h = 0.
– Subcase 1.1. In case i = n/2 and β ∈ F?

qn/2 we see by equation (15)

that Normqn/q(α) is a non-square in Fq. Furthermore equation (19) leads
to

αq
n/2−1 = −1.
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Using Lemma 3.5 we deduce that Normqn/q(α) is a square in Fq, contra-
diction.

– Subcase 1.2. In case i = 0 and α ∈ F?
qn/2 , equation (19) reduces to

(20) ηq
n/2−1 = −1,

since αq
n/2−1 = 1. By Lemma 3.5 we deduce that Normqn/q(η) is a square

in Fq.
• Subcase 2. Suppose that h = n/2.

– Subcase 2.1. In case i = 0 and α ∈ F?
qn/2 we see by equation (15) that

Normqn/q(β) is a non-square in Fq. However, equation (19) reduces to

βq
n/2−1 = −1.

Hence, by Lemma 3.5, Normqn/q(β) is a square in Fq, a contradiction.
– Subcase 2.2. In case i = n/2 and β ∈ F?

qn/2 , equation (19) leads to

equation (20), which again means that Normqn/q(η) is a square in Fq.
(⇐) : Reverse steps of part (⇒) complete the proof.
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