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Proportional Fair Resource Allocation on an

Energy Harvesting Downlink - Part II:

Algorithms
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Abstract

In this paper, theproportionally fair allocation of time slots in a frame, as well as power level to

multiple receivers in an energy harvesting broadcast system, is considered. Energy harvest times in a

frame are assumed to be known at the beginning of that frame. The goal is to solve an optimization

problem designed to maximize a throughput-based utility function that provides proportional fairness

among users. An optimal solution of the problem was obtainedby using a Block Coordinate Descent

(BCD) method in earlier work (presented in Part I of this study). However, finding the optimal allocation

entails a computational complexity that increases sharplyin terms of the number of users or slots. In

this paper, certain structural characteristics of the optimal power-time allocation policy are derived.

Building on those, two simple and computationally scalableheuristics, PTF and ProNTO are proposed.

Simulation results suggest that PTF and ProNTO can closely track the performance of the BCD solution.
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Broadcast channel, energy harvesting, offline close-to-optimal algorithms, optimization, biconvex,
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I. INTRODUCTION

With increasing awareness of the potential harmful effectsto the environment caused by

“greenhouse gas” emissions and the depletion of non-renewable energy sources, there is a

growing consensus on the need to develop more energy-efficient communication systems [1].

Whether the objective is to decrease the carbon footprint ofwireless communications or to

make nodes of a wireless network energy-wise self-sufficient, harvesting ambient energy is

a promising approach for wireless communications. Ambientenergy sources include sunlight,

heat differentials, mechanical vibration, RF radiation, or any other physical source that can

produce an electrical charge through a transducer (photovoltaic cell , piezoelectric element,

etc.). Communication devices that can be powered by rechargeable batteries which store energy

harvested through such means are already commercially available. However, harvested power

is typically irregular and can at times fall short providingtypical power consumption levels in

wireless nodes. If it is desired for energy harvesting systems to match the performances their

regular battery or grid-powered counterparts, the need to accomplish this by efficiently utilizing

an unsteady power source opens up new challenges for the design of transmission as well as

resource allocation schemes.

There has been a considerable amount of recent research effort on optimizing data transmission

with an energy harvesting transmitter. A single-user communication system operating with an

energy harvesting transmitter is considered in [2], where apacket scheduling scheme that

minimizes the time by which all of the packets are delivered to the receiver is obtained. A

multi-user extension of [2] has also been considered in [3],[4] and the same time minimization

problem is solved for a two user broadcast channel. These approaches are exended in [5] and [6]

to the case of a transmitter with a finite capacity battery. [7] extends [2] to propose the directional

water-filling algorithm that finds the optimal energy management schemes for energy harvesting

systems operating in fading channels, with finite capacity rechargeable batteries. In [8], the
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authors consider the problem of energy allocation over a finite horizon for point-to-point wireless

communications and use dynamic programming and convex optimization techniques to obtain

the throughput-optimal energy allocation.

The first part of our study on this problem [9] differs from theabove-mentioned studies

(and others cited in [9]) particularly in its aim to maximizethe throughput in aproportionally

fair way, taking into account the inherent differences of channel quality among users. In [9],

we considered allocating among users the transmission power and the proportion of the time

between energy harvests, to achieve a good balance between throughput and fairness on an energy

harvesting downlink. Specifically, a proportional fairness based utility maximization problem in

a time-sharing multi-user additive white Gaussian noise (AWGN) broadcast channel, where the

transmitter is capable of energy harvesting is considered.The aim is to achieve the optimum

off-line schedule, by assuming that the energy arrival profile at the transmitter is deterministic

and known ahead of time in an off-line manner for a time window, called frame, i.e., the energy

harvesting times and the corresponding harvested energy amounts are known at the beginning

of each frame. The treatment in [9] considers the general case in which the interarrival times

between consequtive harvests do not have to be equal. Here, we focus on the case where energy

interarrival times are equal. Not all generality is lost, because harvest amounts are arbitrary and

the absence of a harvest in a certain slot can be expressed with a harvest of amount zero for the

respective slot. Periodic sampling of harvests is also consistent with practice as in many energy

harvesting systems, transmitters have supercapacitors that can store the harvested energy and

supply in every predetermined time window, allowing the case of periodic energy arrivals.

In this paper, we show that by using the periodic energy arrivals assumption, it is possible

to analytically derive the characteristics of the optimal solution of the Problem proposed in [9].

In [9], we proved that the problem in hand is a biconvex problem and has multiple local optima.

This allowed us to decompose the problem into two parts (power allocation, time allocation)

and present a Block Coordinate Descent based optimization algorithm, BCD [9], that converges
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to a partial optimal solution. We believe that the partial optima found by BCD algorithm is

very close to the local optima of the problem and thus, it achieves optimal or close to optimal

utility [9]. Although BCD is guaranteed to converge to a partial optimal solution and thus the

partial optimal utility, it is computationally expensive and when there are tens of users and energy

arrivals, forming invertible hessian matrices (needed forthe optimization of the power variables)

may be computationally excessive. Hence in this paper, we first derive the characteristics of the

optimal solution and then, build on those to develop simple heuristics, PTF and ProNTO that

closely track the performance of the BCD solution.

We start by describing the system model in the next section. Next, we make the problem

statement precise in Section III. Section IV discusses the structure and properties of the optimal

solution. Depending on these properties, PTF and ProNTO heuristics are proposed in Section V.

In Section VII, we present our numerical and simulation results. We conclude in Section VIII

with an outline of future directions.

II. SYSTEM MODEL

Consider a time-slotted system where each frame, of lengthFi, is divided intoK slots. There

is a single transmitter that transmits toN users by time sharing. Channel conditions remain

constant duringFi (gn, the gain of usern, is chosen to be constant throughout the frame). The

transmitter is equipped with a rechargeable battery such that some energy,Eti, is harvested from

the environment at the beginning of each time slott of frame i. The length of thetth slot of

frame i may be represented asTti. However, as we are interested in a specific frame, we drop

the frame indicatori and define the harvested energy in slott asEt, and, the length of slott as

Tt. Note that, we use the same system model as in [9]. However, unlike [9], in this paper we

assume periodic energy arrivals and hence equal slot lengths (Tt = T for all t = 1, . . . , K), as

shown in Figure 1, to reveal the characteristics of the optimal solution of Problem 1.

Similar to the setting in [9], for a given frame, the transmitter chooses a power levelpt and
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a time allocation vectorτt = (τ1t, ..., τNt), for each time slott of the frame, wherepnt = pt

is the selected transmission power for usern during slot t and, τnt is the time allocated for

transmission to usern during slott.

III. PROBLEM STATEMENT

The total achievable number of bits sent to usern within one frame (proportional to the

throughputobtained by that user in the frame), is
∑K

t=1 τntW log2

(
1 + ptgn

NoW

)
[9]. We aim to

maximize a utility function, the log-sum throughput over the users
∑N

n=1 log2(Rn), which is

known to achieve proportional fairness [10], in the presence of energy harvesting. We start with

the problem of interest, Problem 1 defined in [9]. This is a constrained optimization problem

that aims to maximize the utility function with respect to the time and energy constraints.

Problem 1:

Maximize:U(τ, p) =

N∑

n=1

log
2

(
K∑

t=1

τntW log
2

(
1 +

gnpt

NoW

))

subject to:τnt ≥ 0 , pt ≥ 0 (1)

N∑

n=1

τnt = T (2)

K∑

t=1

τnt ≥ ǫ (3)

t∑

i=1

piTi ≤

t∑

i=1

Ei (4)

wheret = 1, ..., K andn = 1, ..., N . W is the bandwidth for a single link channel, andNo

is the power spectral density of the background noise. Hence, gnpt
NoW

represents theSNR of user

n in slot t. Equations in (1) represent the nonnegativity constraints. The time-limit constraints,

the set of equations in (2), ensure that the total time allocated to users does not exceed the

slot length. The set of equations in (3), on the other hand, are technical constraints and ensure
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that every user gets some time (≥ ǫ where ǫ is an infinitely small number) during the frame.

The set of equations in (4) are called energy causality constraints as these ensure no energy is

transmitted before becoming available.

One might hope that this problem has a unique solution and no local optima except for one

global optimum. Unfortunately, (1) is a nonlinear non-convex problem with potentially multiple

local optima. Indeed, in [9], analysis of structural characteristics of the problem revealed that

it can be formulated as a biconvex optimization problem, andthat it has multiple optima. In

the next section, we decompose Problem 1 into two parts (power allocation, time allocation) to

investigate and derive the characteristics of these optima.

IV. STRUCTURE AND PROPERTIES OF THEOPTIMAL SOLUTION

In this section, we analyze the structure and properties of the hybrid power-time allocation

policy. Remember that the utility function of Problem 1 is

U =
N∑

n=1

log2(
K∑

t=1

τntRnt) (5)

whereRnt represents the rate of linkn in tth slot:

Rnt = Wlog2 (1 + Lnpt) where Ln =
gn

NoW
(6)

Let Rn = [Rn1 Rn2 . . . RnK ]
T andτn = [τn1 τn2 . . . τnK ]

T . Then, utility can be rewritten as

U =

N∑

n=1

log2(τn
TRn) (7)

= U1 + U2 + . . .+ UN (8)

whereUn, the utility of usern, is
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Un = log2(τn
TRn) (9)

In order to reveal characteristics related to the optimal solution that will help us develop

computationally efficient and close-to-optimal heuristics, we decompose the problem into two

parts (similarly as in [9]): power allocation and time allocation.

A. Structure of an Optimal Power Allocation Policy

In this section, we analyze the structure and properties of the optimal power allocation policy.

In order to do this, we assume that the time allocation is determined, and try to characterize the

structure of the optimal solution of the power allocation problem for this time allocation. Clearly,

when the only variables are power variables, Problem 1 reduces to the following constrained

optimization problem:

Problem 2:

Maximize:U(p) =
N∑

n=1

Un(p)

subject to:pt ≥ 0 (10)

t∑

i=1

piTi ≤

t∑

i=1

Ei (11)

wheret = 1, ..., K and,Un is a function of the power variables (as defined in Eq. (9)). Inour

previous work [9], we proved the strict convexity1 of Problem 2. Similarly, the general problem,

Problem 1, is shown to be a biconvex optimization problem that has many local minima [9].

As Problem 2 has a unique optimum, the optimal power allocation changes for every given

1Maximizing U(p) is equivalent to minimizing−U(p) which is a convex objective function.
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time allocation. In Theorem 1, we claim that one of the optimum schedules of Problem 1 has a

nondecreasing power schedule. Lemma 1 not only helps us to prove our claim but also reveals

that Problem 1 has multiple optima. From the proof Lemma 1, the attentive reader can observe

that any feasible permutation2 of the optimal schedule(τ ∗, p∗), described in Theorem 1, is also

optimal.

Theorem 1:When all slots have equal length (Tj = T, for ∀j ∈ {1, ..., K}), there exists an

optimal schedule(τ ∗, p∗) such thatp∗ is nondecreasing, (e.g.,p∗ = (p1, ..., pK) wherep1 ≤ p2 ≤

... ≤ pK).

Proof: The proof is provided in Appendix A, and rests on Lemma 1 below.

We shall need the following definition of a permutation of a vector sorted in nondecreasing order

of elements, for stating Lemma 1.

Definition 1: Given a vectorRn = [Rn1 Rn2 . . . RnK ]
T , we defineRn

↑
= [Rnπ(1) Rnπ(2) . . . Rnπ(K)]

T

whereRn

↑
is a permutation (sorted in increasing order) ofRn, such that

Rnπ(1) ≤ . . . ≤ Rnπ(2) ≤ . . . ≤ Rnπ(K) (12)

Lemma 1:When all slots have equal length (Tj = T, for ∀j ∈ {1, ..., K}), for any given

schedule(τ ,PC), we can find suchτ ′n,R′
n (whereR′

n = Rn

↑
) that (τ ′n)

TR′
n = τn

TRn for all

n = 1, . . . , N ; i.e., the utility,U , does not change. Hence, if (τn
∗, Rn

∗
) is optimal, then (τ ′n

∗
, R′

n

∗
)

is also optimal.

Proof: The proof is provided in Appendix B.

B. Structure of an Optimal Time Allocation Policy

In this section, we assume that the power allocation throughthe slots is determined. Then,

given that the power variables are known constants, we determine the structure and properties

2A feasible permutation is any permutation of a given schedule that does not violate the constraints described in Eqns. (1)-(4).
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of the optimal time allocation policy. Since, the only variables are time variables, Problem 1

reduces to Problem 3:

Problem 3:

Maximize:U(τ ) =

N∑

n=1

Un(τ )

subject to:τnt ≥ 0 (13)

N∑

n=1

τnt = T (14)

K∑

t=1

τnt ≥ ǫ (15)

wheret = 1, ..., K, n = 1, ..., N and,Un is a function of the time variables (as defined in Eq.

(9)). In [9], Problem 3 is shown to be convex. Thus, the analysis can rely on KKT (Karush-

Kuhn-Tucker) optimality conditions, which must be satisfied by the global optimum. We start

by forming the Lagrangian function as follows:

L(τ , λ, µ) =− U(τ ) +
K∑

j=1

N∑

i=1

µ(N(j−1)+i)τij +
NK+N∑

j=NK+1

µj(ǫ−
K∑

t=1

τ(j−NK)t) +
K∑

i=1

λi(
N∑

n=1

τni − Ti)

(16)

whereµ’s are the Lagrange multipliers, and, the total number of constraints3 is N(K+1)+K.

After defining the Lagrangian as in Eq. (16), one can construct the KKT conditions for the optimal

solution. Due to space limitations, we do not list the conditions here but refer the interested

reader to the associated technical report [11] for the details. Please note that the optimal time

allocation should jointly satisfy the set of equations thatarise from KKT conditions. Clearly,

as the number of users,N , and, the number of slots,K, increase, the number of equations

3There areK equality constraints andNK +N inequality constraints.
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increases dramatically making it cumbersome to write analytical solutions. Therefore, for the

sake of conciseness, we continue the analysis with the special case of two users and two slots

which allows us to construct the characteristics of the optimal time allocation policy.

Consider two consequtive slots with different power levels. Let us call the one with the least

power the weak slot, and the one with the highest powerthe strong slot. When the slots have

equal length (T1 = T2 = T ), the optimal policy has the properties described in Lemma 2.

Lemma 2: In an optimal schedule, time allocation over the two slots (of equal length) has the

following properties:

1) The weak slot is assigned to only one of the users. The strong slot, however, is shared

between users. When both power levels are equal; if one slot is assigned to user 1 (user

2), the other slot is assigned to user 2 (user 1).

2) To whom the the weak slot will be assigned depends on two criteria: first,Γn = Rn2

Rn1

, which

is the ratio of usern’s rate in the second slot to that in the first, and second, whether the

strong slot is before or after the weak slot. When the weak slot preceeds the strong slot,

it is assigned to the user with the smallerΓ. Otherwise (implying the decrease in power

level), it is assigned to the user with the higherΓ.

3) In a strong slot, the user that did not (or will not) receiveany data in the weak slot is

favored, i.e., more than half of the slot is assigned to that user. In order to preserve fairness,

this favoring operation is done by consideringΓ1 andΓ2.

Proof: The proof is provided in Appendix C.

V. PTF HEURISTIC

In this section, we develop a heuristic algorithm, Power-Time-Fair (PTF), based on the char-

acteristics (discovered in the previous section) of an optimal power/time allocation schedule. The

PTF algorithm operates as follows:

1) For Power Allocation: Assign nondecreasing powers through the slots by using the energy
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harvest statistics, as follows:

a) From a slot, sayi, to the next onei + 1: If harvested energy decreases, defer a∆

amount of energy from sloti to slot i+1 to equalize the power levels. Do this until

all powers are nondecreasing, and, form a virtual nondecreasing harvest order.

b) By using the virtual harvest order, assign nondecreasingpowers through the slots,

i.e., in each slot, spend what you virtually harvested at thebeginning of that slot.

2) For Time Allocation: For the power allocation found in1), let,Bnt = RntT be the number

of bits that would be sent by usern if the whole slot (of lengthT ) was allocated to that

user. Assign the first slot to the user who has the maximum rate, Rnt, in that slot. For the

other slots, apply the following: At the beginning of each slot, t ∈ {2, . . . , K}, determine

the user with the maximumβ where,

βn =
Bnt∑t

i=1Bni

and, assign the whole slot to that user. If multiple users share the sameβ, then, allocate

the slot to the user with the best channel.

Simulation results show that the performance of the PTF algorithm is close to the performance

of the BCD algorithm.

VI. PRONTO HEURISTIC

In this section, we develop a fast and simple heuristic, ProNTO (Powers Nondecreasing - Time

Ordered), based on the optimal power allocation related characteristics discovered in Section IV-A

and the simulation results obtained by running BCD algorithm for periodic energy arrivals. The

ProNTO algorithm operates as follows:

1) For Power Allocation: Assign nondecreasing powers through the slots by using the energy

harvest statistics, as done in part (1) of PTF algorithm.
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2) For Time Allocation: Order the users,u1, . . . , uN , according to their channel quality

and form a user priority vector,u↓ = [u↓
1, . . . , u

↓
N ] where u↓

1 represents the user with

the best channel. AsK > N , Allocate every userK−mod(K,N)
N

slots as follows: The first

K−mod(K,N)
N

slots are allocated tou↓
1, the nextK−mod(K,N)

N
slots are allocated tou↓

2, etc.

Add the remainingmod(K,N) slots to the most powerfulmod(K,N) users’ slots. For

example; LetK = 12 andN = 5, and the path losses of the users to be 13 dB, 17 dB,

10 dB, 12 dB, 20 dB respectively. Then, the first 3 slots are allocated to user 3, the next

3 slots are allocated to user 4, the following 2 slots are allocated to user 1,9th and10th

slots are allocated to user 2, and the last 2 slots are allocated to user 5.

Thus PTF and ProNTO differ only in time allocation part. The time allocation method used

in ProNTO is proposed according to the following observation: when a partial optimal solution

obtained by BCD algorithm is modified as described in Lemma 1 and its proof, to form the

nondecreasing optimal schedule, the time allocation becomes ordered, e.g., as shown in Table

III. As time allocation method used in ProNTO is simpler thanthe one used in PTF, ProNTO

can operate faster. Simulation results show that the performance of ProNTO is close to the

performance of the BCD algorithm.

VII. N UMERICAL AND SIMULATION RESULTS

In this section, we present the numerical and simulation results related to PTF and ProNTO

heuristics. Throughout our simulations, we use the folowing setup:W = 1kHz, No = 10−6W/Hz.

We assume that some amount of energy (ǫ < E < ∞ where ǫ is an infinitely small value)

is harvested every 10 seconds (T = 10), within a frame (period of known harvests). Note

that, throughout this section, the units used for frame length, energy, and power are; seconds,

Joules, and Watts respectively. Throughout our simulations, we use four different frame lengths;

20, 80, 100, 120. For the frame of 20 secs, we use three different energy harvest models;

[0.5, 50], [50, 0.5], [6020]. We define different cases for the remaining three frame lengths;
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Regular, Bursty, and, Very Bursty. In Regular, the harvest amounts are close to each other

and form a regular pattern;ER = [73, 65, 9, 19, 40, 37, 22, 84, 39, 67, 81, 100]. In Bursty, there

are short term sudden decreases and increases in harvest amounts, causing a bursty pattern;

EB = [20, 100, 1, 1, 1, 70, 100, 1, 10, 40]. Finally, Very Burstyrepresents an extreme case where

the transmitter stays energy-hungry for a long time;EV = [90, 2, 0.5, 0.1, 0.3, 0.7, 40, 60].

We start by the simplest case of two users and two slots (N = 2, K = 2, frame of 20 secs)

to compare the results obtained by BCD algorithm [9], with the optimal ones presented in Table

I. Our objective in doing such a comparison is to prove the accuracy of both theoretical and

simulation results. We refer the interested reader to Appendix C for the details of the optimality

table, and provide the comparison in Table II. Note that as in[9], the starting point of the

algorithm is the Spend What You Get (SG) policy (proposed by Gorlatova et. al. [12]) combined

with TDMA time allocation (SG+TDMA). The first column of Table II shows the amount of the

harvests (E1, E2). The second column represents the mean path loss (in dB) of the two users.

As observed from the table, for a given power allocation, theresults found by BCD algorithm

and the optimal ones (obtained by KKT optimality conditions) are almost the same, verifying

the consistency and optimality of the algorithm.

The attentive reader can observe from Table II that, when harvests decrease from one slot

to another, the optimal powers tend to be nondecreasing. Hence in that case, the algorithm

seems to be converged to the nondecreasing optimal discussed in Theorem 1. Note that, this

nondecreasing optimal could also be obtained by using the modification method explained in

Lemma 1. By using that method, we modify the results obtainedby BCD algorithm to reveal the

optimal (nondecreasing) power and time allocation policies for increasing number of users. For

our analysis, we use three different path loss patterns, called, Low, Moderate, High respectively.

In Low, the strongest user in the system has 13 dB path loss, and, every new user that joins the

system deviates by 3 dB from the previous one (has 3 dB more path loss than the preceding

user). InModerate, the strongest user has 19 dB path loss, and, every new user deviates by 3
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dB. Finally, in High, the strongest user has 25 dB path loss, and, every new user deviates 3 dB.

Due to space limitations, we present only theBursty-Moderatecase’s results in Table III. As

illustrated, when the number of users increase, BCD algorithm tends to assign increasing powers

rather than nondecreasing. One can also see from the table that, no matter how many users exist

in the system, ordering powers in nondecreasing order, causes the time allocation to be ordered

too. By ordered, we mean that the first slot(s) are allocated to the user with the best channel, the

next slot(s) are allocated to the user with the second best channel, etc. , and the last slot(s) are

allocated to the user with the worst channel. This observation constitutes the main motivation

for the ProNTO heuristic.

We next use the above-mentioned energy harvesting cases (Regular, Bursty, Very Bursty) to

compare the PTF and ProNTO heuristics’ performances to thatof BCD’s. We start by testing

the utility and throughput improvement (over SG+TDMA) performances of the heuristics for

increasing path losses. For this, we set the number of users to two, i.e.,N = 2. The results

are presented in Figure 2 and Figure 3, respectively. In bothfigures, the Mean Path Loss, is

computed as̃L = 1
N

∑N

i=1 Li whereLi represents the path loss of useri. Hence, the three mean

path losses seen in the figures represent theLow, Moderateand High cases. One can observe

from Figure 2 that, the utility improvements of all algorithms tend to increase (or at least stay

constant) when path loss increases, and the utility improvement performances of the proposed

heuristics are very close to that of BCD’s. For the chosen cases, ProNTO outperforms PTF. This

is more obvious for theVery Burstycase. The corresponding throughput improvements are shown

in Figure 3. As illustrated, for the case ofN = 2, even with≈ 5% of utility improvement, a

≈ 65% of improvement in total throughput is possible. Note that, in all cases, the performances

are very close to each other.

In order to determine the effect of number of users to the performances of our proposed heuris-

tics, we next perform a series of simulations by consideringall energy harvesting cases (Regular,

Bursty, Very Bursty) and different number of users. By taking average over all energy harvesting

DRAFT



15

cases, we present the average utility improvement results in Figure 4, for theModeratecase. As

illustrated in the figure, when the number of users increase,the average utility improvements

of all schemes also increase. Note that, both heuristics closely track the BCD algorithm. When

there are few users in the system, PTF and ProNTO are competitive. However, when there are

more users, ProNTO seems to outperform PTF in terms of average utility improvement. At all

instances, ProNTO is within the 1% neighbourhood of the BCD algorithm.

Although we aim at proportional fairness in this work, it maybe interesting to analyse max-

min fairnesses of the proposed algorithms, PTF and ProNTO. Jain’s index is a well-known

measure of fairness [13], [14]. The indexFI takes the value of 1 when there is a complete fair

allocation.

FI =
(
∑N

i=1 xi)
2

N ·
∑N

i=1 x
2
i

(17)

For computingFI, we use the no. of bits transmitted to the users,xi = 2Ui for i = 1, . . . , N ,

whereUi is as defined in Eq. (9). From Table IV, it is clear that SG+TDMAis the worst choice

in terms of fairness. Although low path losses embrace lowerutility improvement, they mainly

allow both PTF and ProNTO to be very efficient in terms of fairness. However, as observed

from the table, when all three cases are considered, PTF seems to be more fair than ProNTO is.

Hence, ProNTO seems to trade of fairness for utility improvement. It can also be inferred from

Figure 4 and Table IV that, when ProNTO outperforms PTF in terms of utility improvement, the

difference between two heuristics is not high. However, this is not the case for fairness,.i.e., when

PTF outperforms ProNTO, the difference can be considered ashigh. Hence, although ProNTO

seems more promising in terms of utility improvement, depending on system requirements, one

can still choose PTF over ProNTO for more fairness.
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VIII. C ONCLUSION

This paper presented the second part of a study whose first part was reported in [9]. Building on

the problem formulation and the optimal solution method in [9], the optimal resource allocation

policy was further studied and certain structural characteristics of the optimal solution were

established. In particular, the existence of an optimal nondecreasing power schedule and, an

ordered time allocation schedule were proved. This allowedus to propose two alternative efficient

and scalable heuristics, PTF and ProNTO. The computationalease of these algorithms were

observed in numerical examples, while the policies they result in coincide with the structural

properties we have shown the optimal to have. Simulation results indicate that, despite their

simplistic design, PTF and ProNTO heuristics can closely track the performance of the optimal

BCD algorithm. In our examples, which were computed for small or moderate problem sizes,

both PTF and ProNTO took one or two orders of magnitude smaller time to converge than

BCD, which has to compute a Hessian. Typically, ProNTO outperforms PTF in terms of utility

improvement, whereas the latter is fairer. The utility improvement difference between BCD and

ProNTO is shown to be less than 1% at all instances.

An interesting future direction could be the development ofan online algorithm that will

bypass the need for offline knowledge about the energy harvesting statistics. This algorithm may

use energy harvesting prediction algorithms to predict theenergy that will arrive in the future,

or estimate it on the fly during network operation.

APPENDIX A

PROOF OFTHEOREM 1

The proof is done by contradiction. For any given time allocation τ , consider a given power

sequence,PC = (p1, ..., pd−1, pd, ..., pK), in which the power level decreases at some time, say

d > 1. In such a case, we can defer some energy,0 < ∆ ≤ pd−1Td−1 , from the(d− 1)th slot to

the dth slot forming a modified schedule,P ′
C = (p1, ..., p

′
d−1, p

′
d, ..., pK), that will not violate the
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energy causality conditions (as shown in Fig. 5). Clearly, we can continue this deferral operation

until p′d−1 < p′d and still not violate the energy causality conditions. Applying the same method

for every possible decrease leads us to a nondecreasing schedule,P↑
C = (p′1, ..., p

′
d−1, p

′
d, ..., p

′
K),

wherep′1 ≤ p′2 ≤ ... ≤ p′K .

From Lemma 1,U(τ ,PC) = U(τP
↑

C ,P↑
C). Thus, for time allocationτ ∗ = τP

↑

C , P↑
C is optimal.

This completes the proof.

APPENDIX B

PROOF OFLEMMA 1

Let, R′
n = Rn

↑
whereRn

↑
is as defined in Definition 1. Note that Eq. (12) forces

log2(1 + Lnp
′
1) ≤ . . . ≤ log2(1 + Lnp

′
l) ≤ . . . ≤ log2(1 + Lnp

′
K) (18)

1 + Lnp
′
1 ≤ . . . ≤ 1 + Lnp

′
l ≤ . . . ≤ 1 + Lnp

′
K (19)

p′1 ≤ . . . ≤ p′l ≤ . . . ≤ p′K (20)

Hence, sortingRn in increasing order, forces nondecreasing powers (orderedscheduleP↑

C

mentioned previously), which indeed forces all otherRi (wherei ∈ {1, . . . , i− 1, i+ 1, . . . , N})

to be sorted in increasing order, to formR′
i. Now, we have new rates,R′

i for all usersi =

1, . . . , N . Remember that the utility of a user is defined as in Eq. (9). Thus, changing the order

of Ri vector does not change the value ofUi if the order of τi is also changed so that the

previous element pairs are matched again. Let us explain this, with an example. LetRi2 < Ri1,

RNK < Ri2, and, Ri1 ≤ Ri3 ≤ . . . ≤ Ri(K−1). Then, τ ′i , and, R′
i vectors are defined as

R′
i = [RiK Ri2 Ri1 Ri3 . . . Ri(K−1)]

T and τ ′i = [τiK τi2 τi1 τi3 . . . τi(K−1)]
T . Hence, it is

straight forward to write that
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τ ′i
T
R′

i = τiKRiK + τi2Ri2 + τi1Ri1 + . . .+ τi(K−1)Ri(K−1)

= τi1Ri1 + τi2Ri2 + . . .+ τi(K−1)Ri(K−1) + τiKRiK

= τi
TRi (21)

whereτi andRi are as defined in Eq. (7). As it can be observed,Ui = U ′
i as long asR′

i = Ri

↑

and τ ′i = (τi)
Ri

↑

. Here, τiRi

↑

indicates theτi vector ordered according toRi

↑
. Under these

circumstances,Ui = U ′
i for all i = 1, . . . , N , and, the overall utility does not change,U = U ′.

This completes the proof.

APPENDIX C

PROOF OFLEMMA 2

For the proof of Lemma 2, we use the KKT optimality conditions. Let,An = τ ∗n1Rn1+τ ∗n2Rn2.

Then, for the special case, (N = 2 , K = 2), the set of KKT conditions described in [11] reduces

to Eqns. (22a)-(22g).

∂L

∂τnt
=

1

ln2

Rnt

An

+ µ∗
2(t−1)+n + µ∗

n+4 − λ∗
t = 0 (22a)

µ∗
i ≥ 0 (22b)

τ ∗nt ≥ 0 (22c)

τ ∗n1 + τ ∗n2 ≥ ǫ (22d)

τ ∗1t + τ ∗2t = T (22e)

µ∗
2(t−1)+nτ

∗
nt = 0 (22f)

µ∗
4+n(τ

∗
n1 + τ ∗n2 − ǫ) = 0 (22g)

for i = 1, . . . , 6, n = 1, 2 and t = 1, 2. Combining the set of equations described above leads
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us to the following optimality conditions for the time allocation:

µ∗
2t−1τ

∗
1t = 0 (23a)

(
R1t

A1ln2
−

R2t

A2ln2
+ µ∗

2t−1

)
(T − τ ∗1t) = 0 (23b)

Solving the set of equations in Eq. (23), one can obtain the desired relation between power

allocation and time allocation, as illustrated in Table I. Due to the convex nature of the problem,

the solutions presented in Table I represent the global optima, when the rate improvements of

the users,Γn, are equal. By inspecting Table I, one can observe the properties mentioned in

Lemma 2. All cases are summarized in Table I, which completesthe proof.
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Fig. 1. Problem illustration: There areK energy arivals in a frame, and, the time between consecutivearrivals are allocated
to N users.
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TABLE I
OVERALL OPTIMALITY CONDITIONS FOR THESPECIAL CASE OF TWO USERS ANDTWO SLOTS (T1 = T2): CATEGORIZED

ACCORDING TO THE RELATION BETWEEN THE POWERS ALLOCATED IN THE FIRST AND SECOND SLOTS. FOR A GIVEN

POWER ALLOCATION, THE OPTIMAL TIME ALLOCATION DIFFERS ACCORDING TO THE RELATION BETWEEN THE RATE

IMPROVEMENTS OF THE USERS.
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TABLE II
BCD VS. OPTIMAL RESULTS FOR THESPECIAL CASE OFTWO USERS ANDTWO SLOTS
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Fig. 2. Utility Improvement (BCD, PTF, ProNTO) vs. Mean PathLoss forN = 2: The effect of mean path loss on utility
improvement for the three energy harvesting cases;Regular, Bursty, Very Bursty.
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TABLE III
OPTIMAL TIME AND POWER ALLOCATION POLICIES VS. NUMBER OF USERS: FOUND BY BCD ALGORITHM AND MODIFIED

ACCORDING TOLEMMA 1

DRAFT



24

16 18 20 22 24 26
0

10

20

30

40

50

60

70

80

90

100

 

 

PTF 
(Very Bursty)

ProNTO 
(Very Bursty)

BCD 
(Very Bursty)

PTF 
(Bursty)

ProNTO 
(Bursty)

BCD 
(Bursty)

PTF 
(Regular)

ProNTO 
(Regular)

BCD 
(Regular)

PSfrag replacements

Mean Path Loss

T
h

ro
u

g
h

p
u

t
Im

p
ro

ve
m

en
t

(%
)

Fig. 3. Throughput Improvement (BCD, PTF, ProNTO) vs. Mean Path Loss forN = 2: The effect of mean path loss on
throughput improvement for the three energy harvesting cases; Regular, Bursty, Very Bursty.

TABLE IV
FAIRNESS INDEX (SG+TDMA, PTF, PRONTO, BCD) VS. NO. OF USERS: THE FAIRNESS OFPTFAND PRONTO

HEURISTICS ARE COMPARED TO THAT OFSG+TDMA’S AND BCD’S, THROUGHFI .
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Fig. 4. Average Utility Improvement (PTF, ProNTO, BCD) vs. No. of Users: The average is taken overRegular, Bursty, Very
Bursty cases. The average utility improvements of the proposed algorithms over SG+TDMA, for increasing number of users,
are compared. Utility improvment increases with increasing number of users.

Fig. 5. Maintaining Energy Causality After Energy Deferral
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