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SUMMARY

Even with great advances in machine vision, animals
are still unmatched in their ability to visually search
complex scenes. Animals from bees [1, 2] to birds
[3] to humans [4–12] learn about the statistical rela-
tions in visual environments to guide and aid their
search for targets. Here, we investigate a novel
manner in which humans utilize rapidly acquired
information about scenes by guiding search toward
likely target sizes. We show that humans often miss
targets when their size is inconsistent with the rest
of the scene, evenwhen the targets weremade larger
and more salient and observers fixated the target. In
contrast, we show that state-of-the-art deep neural
networks do not exhibit such deficits in finding mis-
scaled targets but, unlike humans, can be fooled by
target-shaped distractors that are inconsistent with
the expected target’s size within the scene. Thus, it
is not a human deficiency to miss targets when they
are inconsistent in size with the scene; instead, it is
a byproduct of a useful strategy that the brain has im-
plemented to rapidly discount potential distractors.

RESULTS

Searching for a target in an unfamiliar environment can be diffi-

cult. But in their daily lives, humans visually search in familiar

environments. The human brain rapidly processes a scene and

utilizes relationships among objects and global properties of

scenes to guide search toward likely target locations and facili-

tate target detection [4–6, 8, 10, 13–16]. For example, when

searching for a toothbrush in a bathroom (Figure 1A), observers

typically look toward the sink, where toothbrushes are often

placed [8, 10, 13, 14, 17, 18]. When the toothbrush is placed

at an unexpected location in the scene (Figure 1B), search

becomes more difficult [7, 18, 19].

Here, we hypothesized that scene information also guides

search toward likely target sizes. The human brain rapidly pro-

cesses a scene and evaluates visual sensory evidence (spatial

forms in the image) at spatial scales that are consistent with likely

sizes of the target object relative to the rest of the scene.
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We reasoned that if search is guided toward target sizes

consistent with the scene, then if we scaled the target to be

larger but inconsistent in size with the scene (Figure 1C), it

would bemissedmore often during visual search. This prediction

would not be expected based on classic visual search results

with simple symbols (e.g., circles) on uniform backgrounds

that predict lower error rates with larger targets among smaller

distractors [20].

Sixty observers viewed a total of 42 rendered scenes (28.2 3

22.6 degrees visual angle), each with a unique target object

that would be searched for by participants in the experimental

task. There were a total of 14 target objects (toothbrush, com-

puter mouse, parking meter, etc.), each repeated three times

but never identically (i.e., color and viewing angle changed

across the three instances). After looking at an initial fixation

cross and being presented with a word of the target object,

observers had 1 s to search through the scene (Figure 1E)

and report whether the target was present or absent (half of

the images contained the target). They were allowed to freely

make eye movements.

In one-third of the target present scenes, the target was mis-

scaled so that it was inconsistent in size with the surrounding

objects and the rest of the scene. The mis-scaled targets were

enlarged by a factor of 33 to 43 to ensure that the manipulation

did not reduce the visibility of the low-level features defining the

target. The location of the target was preserved as well as its

local background to try to preserve the saliency (Figure 1C). To

dissociate changes in search performance due to target and/or

scene size inconsistency rather than physical change in target

size, one-third of the target present scenes consisted of a control

condition for which the entire image was rescaled and cropped

so that the target size matched that of the target in the mis-

scaled condition (Figure 1D). The remaining target present trials

contained targets that were consistent in size with the surround-

ing scene (Figure 1A). Images from all conditions were randomly

interleaved with target absent images (i.e., Figures 1A and 1D,

but without the target, referred to as ‘‘normal (target absent)’’

and ‘‘control (target absent),’’ respectively). We measured

observers’ ability to detect the target in the scenes.

Figure 2A shows that the proportion of target present trials for

which the observers correctly detected the target (hit rate) was

significantly lower when the target was mis-scaled compared

to when it was at normal scale within the scene (t(59) = �3.94,

p < 0.001; bootstrap resampling, p < 0.001).
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Figure 1. Visual Search for Objects in

Scenes

(A) Sample image of a bathroom (28.2 3 22.6

degree visual angle) and toothbrush at a likely

location (on the sink).

(B) Toothbrush at an unexpected location (on the

floor rug).

(C) Mis-scaled toothbrush with a size inconsistent

with the scene but placed at the expected location

(sink).

(D) Entire image is rescaled so that the toothbrush

is consistent in size with scene but has the same

physical size as in the mis-scaled toothbrush

image in (C).

(E) Timeline of a single experimental trial.
For both of these conditions (normal and mis-scaled target

present), the target absent versions of the scenes were the

same (normal (target absent)), and therefore the false alarm

rate was the same for both conditions. The difference in hit

rate between the normal and mis-scaled conditions translates

to a 24% difference in the index of detectability (d0 = 2.09 for

the normally scaled targets; d0 = 1.68 for the mis-scaled targets).

The deficit for mis-scaled targets persisted across five blocks

(containing seven trials each) but diminished in the last block

(Figure 2B).

We evaluatedwhether higher error rates for mis-scaled targets

was related to observers’ failure to scrutinize the missed size-

inconsistent targets with the high-resolution fovea through eye

movements. For example, mis-scaled targets could potentially

disrupt the guidance of eyemovements toward likely target loca-

tions, forcing decisions to rely more on lower-resolution periph-

eral processing and increasing miss rates. We analyzed fixation

patterns separately for each experimental condition.

The closest distance from the fovea to the target, in trials

where the target was missed, was no different between the

normal and mis-scaled target conditions (0.12� closer when

mis-scaled, t(35) = 1.48, p = 0.15) (Figure 2C). Furthermore, anal-

ysis of only those trials in which the observers fixated the target

(within 2 degrees, to account for eye tracking errors) still showed

significantly larger miss rates for the mis-scaled targets (0.24)

compared to the normal targets (0.12) (t(59) = 3.49, p < 0.001;

bootstrap resampling, p < 0.001) (Figure 2D). The total difference

in miss rate between normal and mis-scaled trials for foveated

target trials (0.12) was similar to the overall difference in miss
2828 Current Biology 27, 2827–2832, September 25, 2017
rate across all trials (0.13). Therefore,

when observers are failing to detect the

mis-scaled target, there is no indication

that it is due to differences in the spatial

guidance of eye movements.

The difference in target misses across

size-consistent (normal) and inconsistent

(mis-scaled) conditions cannot be attrib-

uted to feature-based changes from

scaling the target object. A control condi-

tion that scaled the entire image to match

the target object’s physical size to that of

the target size-inconsistent condition

was detected near perfectly (see ‘‘control
(target present)’’ condition, Figure 2A). We also evaluated the

possibility that our object rendering software did not result in

realistic objects that would be recognizable outside of their usual

context. A separate group of 105 observers completed a task

where they were shown an image of the mis-scaled target object

in isolation on a gray background and were asked to name the

object shown. Thirty of the 42 objects were correctly identified

by more than 80% of the observers. We repeated our analysis

while including only the thirty correctly identified objects to

assess whether ambiguity over object identity could be driving

the results, but the difference in miss rates between target

size-consistent (miss rate = 0.16) and inconsistent (miss rate =

0.29) conditions remained the same (M = �0.13, t(59) = �3.95,

p < 0.001; bootstrap resampling, p < 0.001). This result suggests

that our effect is not due to ambiguity in the selected computer-

rendered target objects.

We then asked whether failing to find mis-scaled objects is a

property of the human brain or whether state-of-the-art deep

neural networks (Faster R-CNN [23], R-FCN [21], and YOLO

[22]) would demonstrate similar behavior. The neural networks

take an image as an input and return bounding boxes outlining

possible target locations with an associated probability. We

analyzed a subset of 12 of the experimental images from our hu-

man study as well as 31 additional computer-rendered scenes

containing targets. We assessed the detection probability of

the networks for targets when these were normally scaled or

mis-scaled relative to the scene. Our results (Figure 2E) show

that, unlike in humans, the target probabilities for the neural net-

works did not decrease when the target was mis-scaled relative



Figure 2. Target Detection by Humans and Deep Neural Networks

(A) Hit rates for images with target objects consistent (normal) or inconsistent (mis-scaled) in size with the scene, and the control condition. ***p < 0.001. The

correct rejection rate for target absent images is also shown, for reference.

(B) Hit rate for normal and mis-scaled target conditions across blocks of seven trials.

(C) Distance in degrees of closest fixation to the target for missed target trials in normal and mis-scaled target conditions. n.s., not statistically significant.

(D) Proportion of trials in which the target was missed even if it was foveated for the normal and mis-scaled conditions. ***p < 0.001.

(E) Hit rate for humans detecting targets consistent (normal) and inconsistent (mis-scaled) in spatial scale with the scenes for a subset of 12 images, on which the

deep neural networks were tested. Also plotted are the target probabilities associated with this subset of images (as well as 31 additional scenes) for normal and

mis-scaled targets, shown for three different deep neural networks: R-FCN [21], YOLO [22], and Faster R-CNN [23].

All error bars are SEM.
to the scene. These results suggest that state-of-the-art deep

neural networks do not fail to find targets that are inconsistent

in size within a scene.

DISCUSSION

The guidance of eye movements and covert attention is funda-

mental to successful visual search [5, 7, 24–26]. Factors [7]

that guide visual search include bottom-up saliency, visual attri-

butes (features) that define the target [26–30], properties of

scenes that predict the likely target location [4, 6, 8, 13, 14, 19,

31–35], and rewards [36–39]. Classic studies have demonstrated

that a variety of violations in the relationship between a target

and a scene can influence object detection for very briefly pre-

sented (150 ms) line drawings in the visual periphery [40, 41].

For longer presentations where observers engage in active visual

search, placing targets at locations where they rarely occur natu-

rally leads to increased misses or longer reaction times [34].

Here, we showed that observers utilize scene information

to guide search toward likely target sizes, which results in

increased miss rates for targets that are inconsistent in size

with the scene. This phenomenon is not present in deep neural

networks [23]. Do the errors in detecting mis-scaled targets
reflect limitations of human visual processing, such as those

shown by change blindness [42]? Or do they reflect a strategy

that has some functional importance to successfully accomplish

visual search?We suggest that the human brain utilizes informa-

tion about the scene to give priority to objects that are at a likely

spatial scale for the target, in order to rapidly discount other ob-

jects that resemble the target but are not at a consistent spatial

scale. This strategy allows humans to reduce false positives

when making fast decisions. To illustrate this concept, we iden-

tified images that a deep neural network (Faster R-CNN) incor-

rectly identified as containing a target; these targets would be

easily dismissed by humans for not being at the appropriate

spatial scale relative to the scene.

Figure 3A (top row) shows a series of such examples with false

positives and their associated target probabilities for Faster

R-CNN. Figure 3A also shows a sample of the five comparison

images, where the object was correctly detected by Faster

R-CNN with a target probability comparable to the images with

the false positives (Figure 3A, bottom row). For example, the

object detector gives a probability of 0.5 to a computer keyboard

incorrectly identified as a cell phone. The location of the

keyboard is in spatial proximity to a human hand, as would be

expected of a cell phone, but its size is inconsistent with a cell
Current Biology 27, 2827–2832, September 25, 2017 2829



Figure 3. Deep Neural Network False Posi-

tives that Are Inconsistent in Size with the

Scene

(A) Top row: sample images where the target is

absent but other objects in the image produce

high target probabilities for Faster R-CNN; these

objects would be inconsistent in size (mis-scaled)

with the scene if they were the target. Bottom row:

comparison sceneswhere Faster R-CNN correctly

identifies target objects, resulting in probabilities

that are comparable or lower than the mis-scaled

object false positives shown in the top row. The

target object names are listed above the images

and apply to both rows. Above each image,

the target object probabilities are shown in

green, and the false alarm or hit rates from

humans are shown in orange. Image credits:

Ronnie Macdonald (https://www.flickr.com/

photos/ronmacphotos/), Brian Dryden, Aimee

Wanner/TTN, dhgate.com, atlantacloset.com,

Monkey Business Images (dreamstime.com),

and Fotoamator (iStockPhoto.com).

(B) Hit rate and false alarm rate for humans

(orange) and associated target probabilities for

Faster R-CNN (green) for all of the real-world

images that were tested (including the samples

shown in A). Error bars are SEM. Humans can

discount distractors that elicit large probabilities

in Faster R-CNN because they are inconsistent

with the expected size of the searched target

relative to the scene.
phone, being five times larger than a hand. A human observer

would likely easily dismiss the keyboard due to its inconsistency

with typical sizes for cell phones. All of the real-world images that

were used in Faster R-CNN were assessed with 60 additional

subjects. This experiment confirmed that humans rarely misclas-

sify such distracters as the target when viewing the scene for 1 s

(Figure 3A shows individual hit rates/false alarm rates for the

sample images; Figure 3B shows the means across all images

for both humans [significantly lower false alarm rate than hit

rate, bootstrap, p < 0.001] and Faster R-CNN). However, typical

current deep neural networks do not evaluate the size of the po-

tential cell phone (i.e., the keyboard in Figure 3A) to determine

whether it has an unlikely large size for a cell phone relative to

surrounding objects and thus discount it as a target. Our exam-

ples illustrated false positives for Faster R-CNN, but the same

principle can be demonstrated for other deep neural networks.

An unwanted byproduct of the human brain’s strategy of guid-

ing attention toward probable target sizes is that when the tar-

gets are inconsistent in size with the scene, the observers will

more often miss those targets. Yet, the incurred cost of the strat-

egy is not high since such scenarios are not found often in the

real world. And when these atypical circumstances do occur,

our results show that, after repeated exposure, humans are

eventually able to learn the unusual scenario. They then attend
2830 Current Biology 27, 2827–2832, September 25, 2017
to the atypical target sizes and reduce

the miss rate (see last block in Figure 2B).

The ability to continuously learn changes

in the statistical relationship among ob-

jects and scenes is another characteristic
that distinguishes the human brain from the majority of current

deep neural network frameworks, which rely on pre-training

but typically do not continuously adapt through unsupervised

learning from object detections in changing environments.

It is not known how the brain takes the scene into account

to represent likely target sizes. In terms of computations, the

human brain rapidly extracts information about the scene back-

ground [31, 43], other objects in the scene [13, 18, 35], and depth

information [44, 45]. It is likely that the brain utilizes this informa-

tion as a prior probability to favor sensory evidence for likely

target sizes, possibly in a manner similar to that proposed for

contextual locations within scenes and as a basic mechanism

of spatial attention [4, 19, 46, 47]. This could be implemented

in terms of increased baseline activity for neurons tuned to target

sizes likely to appear in the scene [48]. Where might these neu-

rons reside? Subpopulations of neurons in the occipitotemporal

areas are probable candidates. The occipitotemporal areas

of the human brain represent many important components of

visual search including the category of the object being searched

[49, 50], its expected location within the scene [51], and the

physical size of objects in the real world [52].

Is this mechanism present in non-human animals? This is also

unknown, but it is likely that, as with other statistical relationships

in the visual environment, the visual systems of insects,

https://www.flickr.com/photos/ronmacphotos/
https://www.flickr.com/photos/ronmacphotos/
http://dhgate.com
http://atlantacloset.com
http://dreamstime.com
http://iStockPhoto.com


mammals, and non-human primates also have an ability to use

scene information to guide search toward the probable size of

searched targets.

In conclusion, our results provide a functional explanation

about why humans often miss searched objects if they are

inconsistent in size within scenes. The findings also suggest

a possible additional source of information from scenes, in or-

der for deep neural networks to reduce false positives. Indeed,

some studies have shown how incorporating information

about likely target size can potentially reduce false positives

for machine object detectors [53]. However, it is likely that hu-

mans would benefit from this additional information more than

deep neural networks, because of the varying fidelity of human

vision across the visual field. Objects away from the point of

fixation are processed with lower resolution and are subject

to crowding, making them confusable with the searched

target. Thus, utilizing scene information to guide search to-

ward likely target sizes might be an even more critical strategy

for humans than machines to discount distractors and reduce

false positives.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Eye-tracking and target detection response data were collected from 60 undergraduate students at the University of California, Santa

Barbara who received course credit in exchange for participation. All participants were verified to have normal or corrected-to-

normal vision. A second group of 105 observers performed an object labeling task that served as a control experiment, and a third

group of 60 subjects performed an object detection task for the real-world scenes (Figure 3A). Both of the latter groupswere recruited

via the Amazon Mechanical Turk website, and received payment in exchange for participation, equivalent to a rate of approximately

$10 per hour. The gender balance for the experimental studies at UC Santa Barbara followed an approximate breakdown of 60%

females and 40% males and ages 18-22 years. The gender and age of our individual participants was not recorded for the experi-

ments, as we had no hypotheses that related to this information. All participants provided informed written consent and were re-

cruited and treated according to approved human subject research protocols by the University of California, Santa Barbara.

METHOD DETAILS

Stimuli and Design
The computer generated scenes were created in Unity 3D (Unity Technologies, Bellevue, WA, USA), each with a unique target object

that would be searched for by participants in the experimental task. From each scene, five images were created: (1) normal scene

with target scaled proportionally to surroundings, (2) scene with target scaled 3x and 4x larger than the normal scene, (3) zoomed-in

image of scene where target is identical in size to (2), but all other objects are proportionally larger as well, (4) target absent version of

(1), and (5) target absent version of (3). A total of 42 scenes were created in this manner, along with an additional 31 scenes that were

not shown to the human observers, but used to create a larger set of images containing targets for which the deep neural networks

had pre-trained detection models.

Images were divided into the five conditions using a Latin square design, resulting in 7 images per condition, with the exception of

the normal target absent scenes (see (4), above), of which there were two groups of seven (fourteen total). This ensured there was an

equal number of target present and target absent scenes. Participants were randomly assigned to view a particular stimulus set

shown in randomized order.

The ten images of real-world scenes used in the target detection task and deep neural networks were acquired from different

sources on the internet (see Figure 3 caption for credits of the images shown in Figure 3A, where credits are applicable). Five images

contained one of five target objects (airplane, airplane, cell phone, sports ball, toothbrush), and five images did not contain any of
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these objects. These sets of images were paired, so that for each of the five target objects, there was a target present image and a

target absent image.

Apparatus
Stimuli from the search task were displayed on a 1280 3 1024 pixel resolution Barco MDRC-1119 monitor. Each pixel subtended

0.022 degrees of visual angle. The display subtended an angle of 28.23 22.6 degrees visual angle. Eye tracking data were recorded

on an Eyelink 1000 (SR Research, Mississauga, ON, Canada) monitoring gaze position at 250 Hz and was calibrated and validated

using a nine-point grid system. A velocity greater than 22�/s and acceleration greater than 4000�/s2 classified an event as a saccade.

The stimuli used in the object labeling tasks were presented using PsiTurk (https://psiturk.org/), and the stimuli for the real-world

target detection taskwere presented in the form a questionnaire, built usingQualtrics software (Qualtrics, Provo, UT, USA). Bothwere

distributed through AmazonMechanical Turk (https://www.mturk.com/). All subjects therefore viewed the images on their own com-

puters, where monitor specifications, internet speed (for presentation timings) and viewing distance could not be fully controlled.

Psychophysical Study Procedures
In the human behavioral search task, participants were instructed that they would be viewing a series of images and determining

whether or not a particular object was present within them. They were told there was a 50% likelihood that the target would be

present, but were not given any indication that some target objects may be abnormally sized. Each trial began with the presentation

of a word, stating the target object to be searched for, followed by a fixation cross in the bottom-center of where the image would

appear. Participants fixated the cross and pressed a button to initiate the trial. The image appeared after the participant maintained

fixation on the cross for a random interval between 0.5-1.5 s. The participants had 1000 ms to search for the target object while their

eyes were tracked before a response screen appeared where they indicated on a ten-point scale whether the target was present and

how confident they were in their response.

Given that the objects in the scenes were 3D renderings of real objects, a separate group of participants completed a control task

to ensure that they were able to properly identify the simulated target object as intended in the complete absence of contextual

information. A total of 105 observers completed a taskwhere they were shown an image of the target objects (physical size equivalent

to that in themis-scaled condition) in isolation on a gray background and were asked to freely name the object shown. The observers

were split into three separate groups (76 observers in group 1, 17 in group 2, and 12 in group 3) so that each group would only see a

single instance of each target object (recall that three versions of each target were used for a total of 42 scenes), thus each group

viewed a total of 14 objects. We evaluated the proportion of observers correctly naming the object.

A final human experiment was performed using 10 real-world scenes. Five of the images were selected to illustrate examples of

distractors, which are objects that are inconsistent in size compared to that of the searched target (relative to the scene). The Figure 3

caption lists the credits for these images, where applicable. Subjects were presented with the name of the target object for a

maximum of 2000 ms before being shown an image for 1000 ms, which contained a red box surrounding the object in the scene

that was identified as the target by Faster R-CNN. For the target present images, the red box surrounded the target object, and in

the target absent images the red box surrounded the distractor object in the scene (which was identified as the target, incorrectly,

by Faster R-CNN). Subjects were then asked whether the red box in the image contained the target object. The images were pre-

sented in a randomized order for each subject, with all subjects viewing all images.

Deep Neural Networks
Currently, there are three meta-architectures for state-of-the-art convolutional neural network based object detection [54]: 1) Faster

R-CNN, 2) R-FCN and 3) single shot detection (SSD). Both Faster R-CNN and R-FCN are two stage networks where generic object

proposals are generated in the first stage and they are recognized in the next. The models initially propose candidate image regions

to contain any object type, and then compute a probability for each instance of each object category, within each region. Typically,

the category with the highest probability is nominated as the object within the region and non-maxima suppression is applied so that

object proposal regionswith significant overlap do not produce redundant object labels. Themajor difference between Faster R-CNN

and R-FCN lies in how they do the region-of-interest pooling of the features in the last layer of the network. R-FCN is usually faster

than Faster R-CNN. On the other hand, YOLO is a single shot detection (SSD) network and directly predicts both boxes and their

class probabilities without requiring a separate recognition stage.

We ran Python implementations of Faster R-CNN (https://github.com/rbgirshick/py-faster-rcnn) and R-FCN (https://github.com/

YuwenXiong/py-R-FCN). We ran a C implementation of YOLO (https://github.com/pjreddie/darknet). The implementations are pre-

trained on the 80 categories of objects in images from theMicrosoft CommonObject in Context (MSCOCO [55]) database. MSCOCO

is an image database chosen to contain cluttered scenes with detailed backgrounds, as opposed to more typical databases that

contain images of a single object against a mostly uniform background. Three of the MSCOCO object categories were target objects

in the visual search stimuli: toothbrush, parking meter, and computer mouse. To directly compare human and model behavior, we

assessed any object proposal region that overlapped with the target objects in the images used for the visual search task. We then

selected the region with the highest probability associated with the target category (in all cases, the region contained at least half of

the target object) and compared the average model detection probability with observer detection hit rates.
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Additionally, we ran Faster R-CNN on a small set of 10 photographic images containing real-world scenes and assessed the

detections of object categories (Figure 3). We compared the object probabilities to the hit rate and false alarm rates of human sub-

jects (see psychophysics studies section, and Figure 3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Parametric independent sample t tests using MATLAB (version R2016b) were used to assess statistical significance of hit and miss

rates, target probabilities of themodels, aswell as the distance of the fovea to the target. Error bars on graphs correspond to standard

error of the mean. The significance levels indicated on the figure are based on the results of these t tests. For all statistical tests, a

significance criteria of p < 0.05 was used.

Due to possible violation of the normal distribution assumption for proportions we also tested statistical significance utilizing boot-

strap re-sampling methods which do not make assumptions about the underlying distribution of the population nor the distribution of

samplemeans. To assess differences in hit rates (HR)/false alarm (FA) rates between the normal andmis-scaled trials, we re-sampled

10,000 sets of trials for each condition. We calculated the difference in hit rate/false alarm rate across each of the 10,000 bootstrap-

ped samples (Normal HR - Mis-scaled FA) and assessed the distribution of the differences. The reported p values correspond to the

proportion of re-sampled differences that are less than/greater than a difference of zero.

Each reported experimental result in the Results section indicates the statistical test, degrees of freedomwhen appropriate and the

associated p value. Our sample sizes varied across experiments. For the search experiment our sample size (n = 60 subjects) was

based on the goal of having enough statistical power for hypothesis testing, estimated effect sizes for previous scene context studies

we recently conducted [18], and consideration that eye tracking studies aremore time consuming and limited by the availability of the

equipment. The larger sample size (n = 105) for the object identification experiment was determined by taking into account that the

objective was not hypothesis testing but obtaining reliable estimates of the mis-identifications for each individual image, the study

was also less time consuming and easier to collect. The final experiment with the 10 real-world scenes included 60 subjects, and this

sample size was also based on demonstrating a statistically significant difference in hit rate and false alarm rate across the two sets of

images. The Results section indicates samples sizes for each study.

DATA AND SOFTWARE AVAILABILITY

All of the raw data from this article are accessible via Mendeley Data (http://dx.doi.org/10.17632/rwy2nb24df.1). The main analysis

scripts are available by request to the Lead Contact. The various software implementations for the deep neural networks are publicly

available and are listed in the Key Resource Table.
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