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Abstract The mass and pole residue of the first orbitally
and radially excited � state as well as the ground state residue
are calculated by means of the two-point QCD sum rules.
Using the obtained results for the spectroscopic parame-
ters, the strong coupling constants relevant to the decays
�(1690) → �K and �(1690) → �K are calculated within
the light-cone QCD sum rules and width of these decay chan-
nels are estimated. The obtained results for the mass of ˜� and
ratio of the Br(˜� → �K )/Br(˜� → �K ), with ˜� repre-
senting the orbitally excited state in � channel, are in nice
agreement with the experimental data of the Belle Collab-
oration. This allows us to conclude that the �(1690) state,
most probably, has negative parity.

1 Introduction

Understanding the spectrum of baryons and looking for new
baryonic states constitute one of the main research direc-
tions in hadron physics. Impressive developments of exper-
imental techniques allow discovery of many new hadrons.
Despite these developments, the spectrum of � baryon is
still not well established. This is due to the absence of high
intensity anti-kaon beams and small production rate of the �

resonances. At present time only the ground state octet and
decuplet baryons as well as �(1320) and �(1530) baryons
are well established. Up to present time the quantum num-
bers of �(1690), �(1820) and �(1950) have not been deter-
mined. Theoretically, the spectrum of � baryon, within dif-
ferent approaches, have been studied intensively (see [1–9]
and references therein).

The main results of these studies are that different phe-
nomenological models explain successfully the nature of
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�(1320) and �(1530) states. However, these approaches
predict controversially results for other excitations of �

baryons. In [8] using the nonrelativistic quark model the
mass of �(1690) is calculated and it is obtained that it might
be radial excitation of � with J P = 1

2
+

. This result was
then supported by the quark model calculations in [5]. How-
ever within the relativistic quark model in [9] it was estab-
lished that the first radial excitation should have mass around
1840 MeV. In [4] the authors suggested that the �(1690)

state might be orbital excitation of � with J P = 1
2
−

.
This point of view was supported by calculations performed
within Skyrme model [2] and chiral quark model [7]. The
controversy results suggests independent analysis for estab-
lishing the nature of �(1690) state.

In the present study, within the light cone QCD sum rules,
we estimate the widths of the � → �K and � → �K
transitions. We suggest that �(1690) state may be radial (˜�)
or orbital (�′) excitation of � baryon. For establishing these
decays we need to know the residue of �(1690) as well as the
strong coupling constants for these decays. For calculation
of the mass and residue of the � states as the main inputs
of the calculations we employ the two point QCD sum rule
method.

The paper is arranged as follows. In Sect. 2 the mass and
residue of �(1690) baryon within both scenarios, namely
considering �(1690) as the orbital and radial excitations
of � baryon, are calculated. In Sect. 3 we present the
calculations of the strong coupling constants defining the
�(1690) → �(�)K transitions within both scenarios. By
using the obtained results for the coupling constants we esti-
mate the relevant decay widths and compare our predic-
tions on decay widths with the existing experimental data
in this section, as well. We reserve Sect. 1 for the conclud-
ing remarks and some lengthy expressions are moved to the
Appendix.
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2 Mass and pole residue of the first orbitally and
radially excited � state

For calculation of the widths of � → �K and � → �K
decays we need to know the residues of �, � and � baryons.
In present work we consider two possible scenarios about
nature of the �(1690): (a) it is represented as radial excitation
of the ground state �. In other words it carries the same
quantum numbers as the ground state �, i.e. J P = 1

2
+

. (b)
The �(1690) state is considered as first orbital excitation of
the ground state �, i.e. it is negative parity baryon with J P =
1
2
−

. In the following we will try to answer the question that
which scenario is realized in nature? To answer this question
we will calculate the mass of �(1690) state and decay width
of the � → �K and � → �K transitions and then compare
the ratio of these decays as well as the prediction on the
mass with existing experimental data. Note that the BABAR
Collaboration has measured the mass (m = 1684.7±1.3+2.2

−1.6)

MeV and width (� = 8.1+3.9+1.0
−3.5−0.9) MeV of �(1690) [10,11]

and Belle Collaboration has measured the mass (m = 1688±
2) MeV and width (� = 11 ± 4) MeV of this state as well as

the ratio B(�(1690)0→K−�+)

B(�(1690)0→K̄ 0�0)
. The experimental value for this

ratio measured by Belle is 0.50 ± 0.26 [12].
For determination of the mass and residue of � baryon,

we start with the following two point correlation function:

�(q) = i
∫

d4xeiq·x 〈0|T
{

η�(x)η̄�(0)
}

|0〉, (1)

where η�(x) is the interpolating current for � state with spin
J P = 1

2
+

and T indicates the time ordering operator. The
general form of the interpolating current for the spin- 1

2 �

baryon can be written as [13,14]:

η� = εabc
{(

sT,a(x)Cub(x)
)

γ5s
c(x)

+β
(

sT,a(x)Cγ5u
b(x)

)

sc(x)
}

, (2)

wherea, b, c are the color indices and β is an arbitrary param-
eter with β = −1 corresponding to the Ioffe current. C is the
charge conjugation operator.

According to the general philosophy of QCD sum rules
method, for calculation of the mass and residue of � baryons
the correlation function needs to be calculated in two dif-
ferent ways: (a) in terms of hadronic degrees of freedom
and (b) in terms of perturbative and vacuum-condensates
contributions expressed as functions of QCD degrees of free-
dom in deep- Euclidian domain q2 � 0. After equating
these two representations, the desired QCD sum rules for
the physical quantities of the baryons under consideration
are obtained. As already noted, the quantum numbers J P

of �(1690) state have not been determined via experiments

yet. Therefore, firstly we consider the case when �(1690)

represents a negative parity baryon. The hadronic side of the
correlation function is obtained by inserting complete sets of
relevant intermediate states. For calculation of the hadronic
side of the correlation function, we would like to note that
the above interpolating current has nonzero matrix element
with baryons of both parities. Taking into account this fact
and saturating the correlation function by complete sets of
intermediate states with both parities we obtain:

�Phys(q) = 〈0|η|�(q, s)〉〈�(q, s)|η|0〉
m2 − q2

+〈0|η|˜�(q, s̃)〉〈˜�(q, s̃)|η||0〉
m̃2 − q2

+ . . . , (3)

where m, m̃ and s, s̃ are the masses and spins of the ground
and first orbitally excited � baryons, respectively. Here dots
represent the contributions of higher states and continuum.

The matrix elements in Eq. (3) are determined as

〈0|η|�(q, s)〉 = λu(q, s),

〈0|η|˜�(q, s̃)〉 = ˜λγ5u(q, s̃). (4)

Here λ and˜λ are the residues of the ground and first orbitally
excited � baryons, respectively. Using Eqs. (3) and (4)
and performing summation over the spins of corresponding
baryons, we obtain

�Phys(q) = λ2(/q + m)

m2 − q2 + ˜λ2(/q − m̃)

m̃2 − q2 + · · · .

We perform Borel transformation in order to suppress the
contribution of higher state and continuum,

B�Phys(q) = λ2e− m2

M2 (/q + m) +˜λ2e− m̃2

M2 (/q − m̃). (5)

where M2 is the square of Borel mass parameter.
The correlation function from QCD side can be calculated

by inserting Eq. (2) to Eq. (1) and usage of Wick’s theorem
to contract the quark fields. As a result we have an expres-
sion in terms of the involved quark propagators having per-
turbative and non-perturbative contributions. For calculation
of these contributions we need explicit expressions of the
light quark propagators. By using the light quark propaga-
tors in the coordinate space and performing the Fourier and
Borel transformations, as well as performing the continuum
subtraction by using the hadron-quark duality ansatz, after
lengthy calculations, for the correlation function we obtain

B�QCD(q) = B�
QCD
1 /q + B�2

QCD I, (6)

where, the expressions for B�
QCD
1 and B�2

QCD are pre-
sented in Appendix.
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Having calculated both the hadronic and QCD sides of the
correlation function, we match the coefficients of the corre-
sponding structures /q and I from these representations to
find the following sum rules:

λ2e− m2

M2 +˜λ2e− m̃2

M2 = B�
QCD
1 ,

λ2me− m2

M2 −˜λ2m̃e− m̃2

M2 = B�
QCD
2 . (7)

From these equations one can easily find:

m̃2 = B˜�
QCD
2 − mB˜�

QCD
1

B�
QCD
2 − mB�

QCD
1

,

˜λ2 = mB�
QCD
1 − B�

QCD
2

m + m̃
e

m̃2

M2 ,

λ2 = m̃B�
QCD
1 + B�

QCD
2

m + m̃
e

m2

M2 , (8)

where B˜�
QCD
1(2) = − d

d(1/M2)
B�

QCD
1(2) .

The sum rules for mass and residue of the radially excited
state �′ are obtained from Eq. (8) by replacements m̃ → −m′
and˜λ → λ′. Note that, there are other approaches to separate
the contributions of the positive and negative parity baryons
(for instance see [15–18]).

The sum rules for the mass and residue of the orbitally
and radially excited state of the � baryon as well as the
residue of the ground state contain many input parameters.
Their values are presented in Table 1. For performing analy-
sis of widths of the � → �K and � → �K decays in next
section, we also need the residues of the � and � baryons.
We use the values of these residues calculated via QCD sum
rules [20]. The mass of the ground state � is taken as input
parameter, as well. Besides these input parameters, QCD sum
rules contains three auxiliary parameters, namely the value
of continuum threshold s0, Borel mass square M2 and β arbi-

Table 1 Some input parameters used in the calculations

Parameters Values

ms 96+8
−4 GeV [19]

m� (1314.86 ± 0.20) MeV [19]

m� (1189.37 ± 0.07) MeV [19]

m� (1115.683 ± 0.006) MeV [19]

λ� (0.014 ± 0.03) GeV3 [20]

λ� (0.013 ± 0.02) GeV3 [20]

〈ūu〉 (−0.24 ± 0.01)3 GeV3

〈s̄s〉 0.8 · (−0.24 ± 0.01)3 GeV3

〈ugsσGu〉 m2
0〈ūu〉

〈sgsσGs〉 m2
0〈s̄s〉

m2
0 (0.8 ± 0.1) GeV2

〈 αsG2

π
〉 (0.012 ± 0.004) GeV4

trary parameter. Obviously any measurable physical quantity
must be independent of these parameters. Hence we need to
find the working regions of these parameters, where physical
quantities demonstrate good stability agains the variations of
these parameters. The window for M2 is obtained by requir-
ing that the series of operator product expansion (OPE) in
QCD side is convergent and the contribution of higher states
and continuum is sufficiently suppressed. Numerical analy-
ses lead to the conclusion that both conditions are satisfied
in the domain

1.8 GeV2 ≤ M2 ≤ 2.2 GeV2. (9)

The considerations of the pole dominance and OPE conver-
gence lead to the following working window for the contin-
uum threshold:

1.92 GeV2 ≤ s0 ≤ 2.12 GeV2. (10)

In Figs. 1, 2, 3 and 4 we present, as examples, the depen-
dence of the mass of the ˜� state and residues of the �, ˜� and
�′ baryons on M2 and s0 at fixed value of cos θ = 0.7, with
β = tan θ . From these figures we observe that the results
shows quite good stability with respect to the variations of
M2 and s0.

In order to find the working region of β, as an example
in Fig. 5 we present the dependence of the ground-state �

baryon’s residue on the cos θ . From this figure we see that
the residue is practically insensitive to the variations of cos θ

in the domains

−1 ≤ cos θ ≤ −0.3, 0.3 ≤ cos θ ≤ 1. (11)

We depict the numerical results of the masses and residues
of the first orbitally and radially excited � baryon as well as
the ground state residue in Table 2. The errors in the presented
results are due to the uncertainties in determinations of the
working regions of the auxiliary parameters as well as the
errors of other input parameters. From this table we see that
although consistent with the experimental data [10–12], the
radial and orbital excitation of � receive the same mass,
which prevent us to assign any quantum numbers to �(1690)

only via mass calculations. The residue of these two states are
obtained to be differ from each other by a factor of roughly
three.

3 ˜� and �′ transitions To �K and �K

In present section we calculate the strong couplings g
˜��K ,

g
˜��K , g�′�K and g�′�K defining the ˜� → �K , ˜� → �K ,

�′ → �K and �′ → �K transitions.
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s
s
s

M

m M
M
M

s

m

Fig. 1 The mass of the ˜� baryon as a function of the Borel parameter M2 at chosen values of s0 (left panel), and as a function of the continuum
threshold s0 at fixed M2 (right panel) with β = 0.7

s
s
s

M

M
M
M

s

Fig. 2 The rediue of the � baryon as a function of the Borel parameter M2 at chosen values of s0 (left panel), and as a function of the continuum
threshold s0 at fixed M2 (right panel) with β = 0.7

s
s
s

M

M
M
M

s

Fig. 3 The same as in Fig. 2, but for the orbitally excited ˜� baryon with β = 0.7

123



Eur. Phys. J. C (2018) 78 :396 Page 5 of 8 396
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Fig. 4 The same as in Fig. 2, but for the radially excited �′ baryon with β = 0.7

Fig. 5 The residue of the ground state � baryon as a function of the
cos θ at central values of the s0 and M2

For this aim we introduce the correlation function

�(p, q) = i
∫

d4xeipx 〈K (q)|T {η�(�)(x)η̄�(0)}|0〉, (12)

where η�(x) and η�(x) are the interpolating currents for the
� and � baryons, respectively. The general forms of these
currents are taken as [13,14]

η�(x) = − 1√
2
εabc

2
∑

i=1

[(

uT,a(x)CAi
1s

b(x)
)

Ai
2d

c(x)

−
(

dT,c(x)CAi
1s

b(x)
)

Ai
2u

a(x)
]

,

η�(x) = 1√
6
εabc

2
∑

i=1

[

2
(

uT,a(x)CAi
1d

b(x)
)

Ai
2s

c(x)

+
(

uT,a(x)CAi
1s

b(x)
)

Ai
2d

c(x)

+
(

dT,c(x)CAi
1s

b(x)
)

Ai
2u

a(x)
]

, (13)

Table 2 The sum rule results for the masses and residues of the first
orbitally and radially excited � baryon as well as residue of the ground
state

� ˜� �′

m (MeV) 1685 ± 69 1685 ± 69

λ (GeV3) 0.047 ± 0.007 0.019 ± 0.004 0.055 ± 0.010

where a, b, c are color indices, C is the charge conjugation
operator and A1

1 = I , A2
1 = A1

2 = γ5, A2
2 = β. According to

the method used, we again calculate the aforesaid correlation
function in two representations: hadronic and QCD. Match-
ing these two sides through a dispersion relation leads to the
sum rules for the coupling constants under consideration.

Firstly let us consider the ˜� → �K transition. As we
already noted, the interpolating currents for baryons can
interact with both the positive and negative parity baryons. In
what follows, we denote the ground state positive (negative)
parity baryons with �(˜�) and �(˜�). Taking into account
this fact, inserting complete sets of hadrons with the same
quantum numbers as the interpolating currents and isolating
the ground states, we obtain

�Phys(p, q) = 〈0|η� |�(p, s)〉
p2 − m2

�

〈K (q)�(p, s)|�(p′, s′)〉

×〈�(p′, s′)|η̄�|0〉
p′2 − m2

�

+〈0|η� |˜�(p, s)〉
p2 − m2

˜�

〈K (q)˜�(p, s)|�(p′, s′)〉

×〈�(p′, s′)|η̄�|0〉
p′2 − m2

�

+〈0|η� |�(p, s)〉
p2 − m2

�

〈K (q)�(p, s)|˜�(p′, s′)〉
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×〈˜�(p′, s′)|η̄
˜�|0〉

p′2 − m2
˜�

+〈0|η� |˜�(p, s)〉
p2 − m2

˜�

〈K (q)˜�(p, s)|˜�(p′, s′)〉

×〈˜�c(p′, s′)|η̄
˜�|0〉

p′2 − m2
˜�

+ · · · , (14)

where p′ = p + q, p and q are the momenta of the �, �

baryons and K meson, respectively. In this expression m�

is the mass of the � baryon. The dots in Eq. (14) stand for
contributions of the higher resonances and continuum states.

The matrix elements in Eq. (14) are determined as

〈0|η� |�(p, s)〉 = λ�u(p, s),

〈0|η
˜� |˜�(p, s)〉 = λ

˜�γ5u(p, s),

〈K (q)�(p, s)|�(p′, s′)〉 = g��K u(p, s)γ5u(p′, s′),
〈K (q)�(p, s)|˜�(p′, s′)〉 = g

˜��K u(p, s)u(p′, s′),
〈K (q)˜�(p, s)|�(p′, s′)〉 = g�˜�K u(p, s)u(p′, s′),
〈K (q)˜�(p, s)|˜�(p′, s′)〉 = g

˜�˜�K u(p, s)γ5u(p′, s′).
(15)

where gi are the strong coupling constants for the correspond-
ing transitions.

Using the matrix elements given in Eq. (15) and perform-
ing summation over spins of � and � baryons and applying
the double Borel transformations with respect p2 and p′2 for
physical side of the correlation function we get

B�Phys(p, q) = g��Kλ�λ�e
−m2

�/M2
1 e−m2

�/M2
2

× (

/p + m�

)

γ5
(

/p + /q + m�

)

−g
˜�˜�Kλ

˜�λ
˜�e

−m2
˜�
/M2

1 e−m2
˜�

/M2
2

×γ5
(

/p + m
˜�

)

γ5
(

/p + /q + m
˜�

)

γ5

−g
˜��Kλ

˜�λ�e
−m2

˜�
/M2

1 e−m2
�/M2

2

× (

/p + m�

) (

/p + /q + m
˜�

)

γ5

+g�˜�Kλ�λ
˜�e

−m2
�/M2

1 e−m2
˜�

/M2
2

×γ5
(

/p + m
˜�

) (

/p + /q + m�

)

, (16)

where M2
1 and M2

2 are the Borel parameters.
From Eq. (16) it follows that we have different structures

which can be used to obtain sum rules for the strong cou-
pling constant of ˜� → �K channel. We have four couplings
(see Eq. 16), and in order to determine the coupling g

˜��K
we need four equations. Therefore we select the structures
/q /pγ5, /pγ5, /qγ5 and γ5. Solving four algebraic equations for
g

˜��K , finally we get

g
˜��K = e

m2
˜�

M2
1 e

m2
�

M2
2

λ
˜�λ�(m� + m

˜�)(m� + m
˜�)

×
[

�
′OPE
1

(

m2
K + m

˜�m� − m�m˜�

)

+ �
′OPE
2

(

m
˜� − m

˜� − m�

)

+ �
′OPE
3

(

m
˜� − m

˜�

) − �
′OPE
4

]

, (17)

where �
′OPE
1 , �

′OPE
2 , �

′OPE
3 and �

′OPE
4 are the invariant

amplitudes corresponding to the structures /q /pγ5, /pγ5, /qγ5

and γ5 for ˜� → �K decay, respectively.
If we carry out the same procedures for ˜� → �K decay,

for the coupling constant g
˜��K we obtain:

g
˜��K = e

m2
˜�

M2
1 e

m2
�

M2
2

λ
˜�λ�(m� + m

˜�)(m� + m
˜�)

×
[

˜�
′OPE
1

(

m2
K + m

˜�m� − m�m˜�

)

+ ˜�
′OPE
2

(

m
˜� − m

˜� − m�

)

+ ˜�
′OPE
3

(

m
˜� − m

˜�

) − ˜�
′OPE
4

]

, (18)

where ˜�
′OPE
1 , ˜�

′OPE
2 , ˜�

′OPE
3 and ˜�

′OPE
4 are the invariant

amplitudes corresponding to the structures /q /pγ5, /pγ5, /qγ5

and γ5 for ˜� → �K decay, respectively.
The general expressions obtained above contain two Borel

parameters M2
1 and M2

1 . In our analysis we choose

M2
1 = M2

2 = 2M2, M2 = M2
1 M

2
2

M2
1 + M2

2

, (19)

since the masses of the involved � and �(�) are close to
each other.

The sum rules for the coupling constants for �′ → �K
and �′ → �K transitions can be easily obtained from Eqs.
(17) and (18), by replacing m

˜� → −m�′ and λ
˜� → λ�′ .

The OPE side of the correlation function �OPE(p, q) can
be obtained by inserting the corresponding interpolating cur-
rents to the correlation function, using Wick’s theorem to
contract the quark fields, and inserting into the obtained
expression the relevant quark propagators. The nonpertur-
bative contributions in light cone QCD sum rules, which are
described in terms of the K -meson distribution amplitudes
(DAs), can be obtained by using Fierz rearrangement formula

saαu
b
β = 1

4
�i

βα(sa�i ub),

where �i = 1, γ5, γμ, iγ5γμ, σμν/
√

2 is the full set of
Dirac matrices. The matrix elements of these terms between
the K -meson and vacuum states, as well as ones generated
by insertion of the gluon field strength tensor Gλρ(uv) from
quark propagators, are determined in terms of the K -meson
DAs with definite twists. The DAs are main nonperturbative
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Table 3 The sum rule results for the strong coupling constants and
decay widths of the first orbitally and radially excited � baryon

g �(MeV)

˜� → �K 1.35 ± 0.37 32.73 ± 9.16

�′ → �K 69.57 ± 19.48 3.08 ± 0.86
˜� → �K 1.65 ± 0.48 65.13 ± 18.89

�′ → �K 8.41 ± 2.44 18.23 ± 5.29

inputs of light cone QCD sum rules. The K -meson distribu-
tion amplitudes are derived in [21–23] which will be used in
our numerical analysis. All of these steps summarized above
result in lengthy expression for the OPE side of correlation
function. In order not to overwhelm the study with overlong
mathematical expressions we prefer not to present them here.
Apart from parameters in the distribution amplitudes, the sum
rules for the couplings depend also on numerical values of
the � and � baryon’s mass and pole residue, which are given
in Table 1. Note that the working region of the Borel mass
M2, threshold s0 and β parameters for calculations of the
relevant couplings are chosen the same as in the residue and
mass computations.

Performing numerical analysis for the relevant coupling
constants we get values presented in Table 3. Using the cou-
plings g

˜��K , g�′�K g
˜��K and g�′�K we can easily cal-

culate the width of ˜� → �K , �′ → �K , ˜� → �K and
�′ → �K decays. After some computations we obtain:

�
(

˜� → �K
) = g2

˜��K

16πm3
˜�

[

(m
˜� + m�)2 − m2

K

]

×λ1/2
(

m2
˜�
,m2

�,m2
K

)

, (20)

and

�
(

�′ → �K
) = g2

�′�K

16πm3
�′

[

(m�′ − m�)2 − m2
K

]

×λ1/2
(

m2
�′,m2

�,m2
K

)

. (21)

In expressions above the function λ(x2, y2, z2) is given as:

λ(x2, y2, z2) = x4 + y4 + z4 − 2x2y2 − 2x2z2 − 2y2z2.

The expressions for the widths of the ˜� → �K and �′ →
�K can be easily obtained from Eqs. (20) and (21), by the
replacement m� → m�.

Using the values of coupling constants and formulas for
the decay widths we obtain the values of the partial width at
different decay channels presented in Table 3.

Using the values of the partial decay widths from Table
3, we finally obtain the ratio of the branching fractions in ˜�

channel as

Br
(

˜� → �K−
)

Br
(

˜� → �K
0
) = 0.50 ± 0.14, (22)

and for �′ channel we get

Br
(

�′ → �K−
)

Br
(

�′ → �K
0
) = 0.17 ± 0.05. (23)

As is seen, the obtained value for the ratio of the branch-
ing fractions in ˜� channel is in nice consistency with the
experimental data of Belle Collaboration [12]:

Br
(

�(1690) → �+K−
)

Br
(

�(1690) → �0K
0
) = 0.50 ± 0.26, (24)

Note that in [24], within the coupled channel approach, a very
similar results has been found. The authors have concluded
that the �(1690) has spin-1/2, but its parity has not been
established. Our prediction for the corresponding ratio in �′
channel is considerably small compared to the experimen-
tal data. From these results and those for the values of the
corresponding masses we conclude that the �(1690) state,
most probably, has quantum numbers 1

2
−

, i.e. it represents a
negative parity spin-1/2 baryon.
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Appendix: The QCD side of the correlation function in
mass sum rules

In present Appendix we present explicit forms of the func-
tions in QCD side of the two point correlation function used
in mass sum rules:

B�
QCD
1 (q) =

∫ s0

0
ds e− s

M2
1

27π2

{

s2(5β2 + 2β + 5)

24π2

+ms

[

〈s̄s〉(5β2 + 2β + 5) + 6
(

〈ūu〉 + 〈d̄d〉
)

(β2 − 1)
]

+〈g2
s GG〉(5β2 + 2β + 5)

24π2

−
3m2

0

(

〈ūu〉 + 〈d̄d〉
)

ms(β
2 − 1)

M2 log
[ s

�2

]

+
〈g2

s GG〉
(

〈ūu〉 + 〈d̄d〉
)

3M4

123
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×ms(β
2 − 1) log

[ s

�2

]

}

− ms

3 · 28π2

[

3m2
0

(

〈ūu〉 + 〈d̄d〉
)

(β2 − 1)(6γE − 13)

−8m2
0〈s̄s〉(β2 + β + 1)

]

+β − 1

24

[

3
(

〈s̄s〉〈d̄d〉 + 〈s̄s〉〈ūu〉
)

(β + 1)

+〈ūu〉〈d̄d〉(β − 1)
]

+ ms(β + 1)

3 · 29π2M2 〈g2
s GG〉

[

4
(

〈ūu〉 + 〈d̄d〉
)

×(β − 1) − 〈s̄s〉(β + 1)
]

+e− s0
M2

〈g2
s GG〉

(

〈ūu〉 + 〈d̄d〉
)

3 · 27π2s0M2 ms(β
2 − 1)

×
(

M2 + s0 log
[ s0

�2

])

+ (β − 1)

3 · 25M2
m2

0

[

6
(

〈s̄s〉〈d̄d〉

+〈s̄s〉〈ūu〉
)

+ (β − 1)〈ūu〉〈d̄d〉
]

+ ms(β
2 − 1)

3 · 2(11)π2M4
〈g2

s GG〉m2
0

(

〈ūu〉 + 〈d̄d〉
)

,

(A.1)

and

B�
QCD
2 (q) =

∫ s0

0
ds e− s

M2
1

26π2

⎧

⎨

⎩

mss2(β − 1)2

23π2

+s(β − 1)
[

3
(

〈ūu〉 + 〈d̄d〉
)

(β + 1) + 〈s̄s〉(β − 1)
]

−〈g2
s GG〉

3 · 24π2 ms(β − 1)2
(

8 + 3γE − 3 log
[ s

�2

])

+
3m2

0

(

〈ūu〉 + 〈d̄d〉
)

2
(β2 − 1)

⎫

⎬

⎭

+ 〈g2
s GG〉

210π4

×γEmsM
2(β − 1)2

(

1 − e− s0
M2

)

− ms

3 · 24

[

3
(

〈s̄s〉〈d̄d〉 + 〈s̄s〉〈ūu〉
)

(β2 − 1)

+2〈ūu〉〈d̄d〉(5β2 + 2β + 5)
]

+ β − 1

3 · 28π2 〈g2
s GG〉

[

3
(

〈ūu〉 + 〈d̄d〉
)

(β + 1)

−〈s̄s〉(β − 1)
]

+ 〈g2
s GG〉〈ūu〉〈d̄d〉

32 · 26M4

×ms(5β2 + 2β + 5) + m2
0〈ūu〉〈d̄d〉
3 · 24M2 ms(3β2 + 2β + 3)

+〈g2
s GG〉m2

0〈ūu〉〈d̄d〉
32 · 26M6 ms(5β2 + 2β + 5), (A.2)

where, to shorten the expressions, the terms proportional to
mu and md are not presented, although their contributions
are taken into account in performing numerical analysis.
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