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1 Introduction

The quark model predicts heavy baryons containing single, doubly or triply heavy charm
or bottom quarks having either spin–1/2 or spin–3/2. So far, all heavy baryons with single
charm quark have been discovered in the experiments. Some of the heavy baryons with
single bottom quark like Λb, Σb, Ξb and Ωb baryons with spin–1/2 as well as Σ∗

b baryon
with spin–3/2 have been observed in the experiments (for a review see for instance [1]).
In 2012, the CMS Collaboration reported the observation of the Ξ∗

b state with spin–3/2
[2]. At present, among all possible doubly heavy baryon states only the spin–1/2 Ξ+

cc

charmed baryon have experimentally been observed by the SELEX Collaboration [3–5].
The experimental attempts, especially at LHCb, have still been continuing to complete the
remaining members of the heavy baryons with one, two or three heavy quarks predicted by
the quark model.

From the theoretical side, there are a lot of works in the literature devoted to the
spectroscopy and decay properties of the heavy baryons containing single heavy quark.
There are also dozens of works dedicated to the study of the properties of the doubly heavy
baryons. However, there are limited numbers of works devoted to the investigation of the
properties of the triply heavy baryons. The masses of the triply heavy baryons have been
studied in framework of the various approaches such as effective field theory, lattice QCD,
bag model, various quark models, variational approach, hyper central model, potential
model and Regge trajectory ansatz [6–19]. The masses and residues of the triply heavy
spin–1/2 baryons for the Ioffe current, as well as the masses of the triply heavy spin–3/2
baryons, are also calculated in [20, 21] in framework of the QCD sum rule approach. In the
present work, we extend our previous work on the spectroscopy of the triply heavy spin–1/2
baryons for the general form of the interpolating current [22] to calculate the masses and
residues of both positive and negative parity triply heavy spin–3/2 baryons in framework
of the QCD sum rules. We compare our results on the masses and residues of these baryons
with the predictions of the existing approaches in literature [8–15, 20, 21]. Information on
the masses of the triply heavy baryons can play essential role in understanding the heavy
quark dynamics.

The paper is organized as follows. In the following section, we derive QCD sum rules for
the masses and residues of both negative and positive parity triply heavy spin–3/2 baryons.
Section 3 is devoted to the analysis of the sum rules for the masses and residues of the
triple heavy baryons. This section contains also a comparison of the obtained results with
the predictions of other approaches existing in literature.

2 QCD sum rules for the masses and residues of the

triply heavy spin–3/2 baryons

In order to calculate the masses and residues of the triply heavy spin–3/2 baryons we start
by the following two–point correlation function as the main object of the method:

Πµν(q) = i

∫
d4xeiqx 〈0 |T {ηµ(x)η̄ν(0)}| 0〉 , (1)
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where T is the time ordering operator, q is the four–momentum of the corresponding triply
heavy baryon and ηµ stands for its interpolating current, whose general form can written
as

ηµ =
1√
3
ǫabc

{
2(QaTCγµQ

′b)Qc + (QaTCγµQ
b)Q′c

}
, (2)

where Q and Q′ are heavy quarks. The quark contents for all members of the triply heavy
spin–3/2 baryons are given in Table 1.

Baryon Q Q′

Ω∗
bbc b c

Ω∗
ccb c b

Ω∗
bbb b b

Ω∗
ccc c c

Table 1: The quark contents of the triply heavy spin–3/2 baryons.

Having constructed the correlation function, our next task is construction of the sum
rule for the masses of the triply heavy baryons. In order to construct the sum rules,
this correlation function should be calculated in two different ways: in terms of hadronic
parameters (physical side), and in terms of QCD degrees of freedom (QCD side). Equating
these two representations of the correlation function gives us the sum rules for the masses
of the triply heavy baryons in terms of quark and gluon degrees of freedom.

Before calculating the correlation function from the physical side, we should mention
that the interpolating current ηµ of the triply heavy baryons can interact not only with
the positive and negative parity spin–3/2 baryons, but also it couples to the triply heavy
spin–1/2 baryons with both parities. In order to obtain reliable results we should eliminate
the unwanted spin–1/2 baryons’ contributions.

Let us discuss the elimination of the contributions coming from spin–1/2 states. Using
the parity and Lorentz covariance considerations, the matrix elements of the interpolating
current ηµ for the masses of the spin–3/2 triply heavy baryons between the vacuum and
the baryonic states, are defined as:

〈
0 |ηµ|B(3/2)+(q)

〉
= λ(3/2)+uµ(q) ,〈

0 |ηµ|B(3/2)−(q)
〉
= λ(3/2)−γ5uµ(q) ,

〈
0 |ηµ|B(1/2)+(q)

〉
= λ(1/2)+

(
4qµ

mB(1/2)+

+ γµ

)
γ5u(q),

〈
0 |ηµ|B(1/2)−(q)

〉
= λ(1/2)−

( −4qµ
mB(1/2)−

+ γµ

)
u(q) , (3)

where u(q) and uµ(q) are the Dirac and Rarita–Schwinger spinors for the spin–1/2 and
spin–3/2 baryons, respectively, and λi are the corresponding residues. Obviously, we see
from Eq. (3) that the contributions coming from the spin–1/2 states are proportional to
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qµ or γµ. The physical part of the correlation function can be calculated by saturating the
correlation function with the ground state baryons as follows:

Πµν =
〈0 |ηµ|B(q)〉 〈B(q) |η̄ν | 0〉

q2 −m2
B

+ · · · , (4)

where dots represent the contributions coming from the higher states and continuum. Using
Eqs. (3) and (4), for the physical part of the correlation function we get

Πµν(q) =
λ2(3/2)+

m2
(3/2)+ − q2

(/q +m(3/2)+)

(
gµν −

1

3
γµγν −

2qµqν
m2

(3/2)+
+
qµγν − qνγµ
3m(3/2)+

)
,

−
λ2(3/2)−

m2
(3/2)− − q2

γ5(/q +m(3/2)−)

(
gµν −

1

3
γµγν −

2qµqν
m2

(3/2)−
+
qµγν − qνγµ
3m(3/2)−

)
γ5 ,

−
λ2(1/2)+

m2
(1/2)+ − q2

(
4qµ

m(1/2)+
+ γµ

)
γ5(/q +m(1/2)+)

(
4qν

m(1/2)+
+ γν

)
γ5

+
λ2(1/2)−

m2
(1/2)− − q2

(
− 4qµ
m(1/2)−

+ γµ

)
(/q +m(1/2)−)

( −4qν
m(1/2)−

+ γν

)
, (5)

where summation over spins of the Dirac and Rarita–Schwinger spinors is performed using

∑
u(q, s)ū(q, s) = (/q +mB),

∑
uµ(q, s)ūν(q, s) = (/q +mB)

(
gµν −

1

3
γµγν −

2qµqν
3m2

B

+
qµγν − qνγµ

3mB

)
. (6)

If we now take into account the fact that the contributions of the spin–1/2 states are
proportional to γµ(γν) and qµ(qν). It follows from Eq. (5) that only the structures /qgµν
and gµν contain contributions solely coming from the spin–3/2 baryons, which we shall
consider in further discussion. As a result, for the physical part of the correlator containing
contributions only of the positive and negative parity heavy spin–3/2 baryons, we get

Πµν(q) =
λ2(3/2)+

m2
(3/2)+ − q2

(/q +m(3/2)+)gµν +
λ2(3/2)−

m2
(3/2)− − q2

(/q −m(3/2)−)gµν + · · · (7)

On the QCD side, the correlation function in Eq. (1) is calculated in terms of the quark
and gluon degrees of freedom using the operator product expansion in deep Euclidean re-
gion, where the large and short distance effects are separated. After some simple calculation
for the correlation function, we obtain

Πµν(q) =
1

3
ǫabcǫa

′b′c′
∫
d4xeiqx〈0|

{
4Scb

′

Q γνS̃
ba′

Q′ γµS
ac′

Q + 2Sca
′

Q γνS̃
ab′

Q γµS
bc′

Q′ − 2Scb
′

Q γνS̃
aa′

Q γµS
bc′

Q′

+ 2Sca
′

Q′ γνS̃
ab′

Q γµS
bc′

Q − 2Sca
′

Q′ γνS̃
bb′

Q γµS
ac′

Q − Scc
′

Q′ Tr
[
Sba

′

Q γνS̃
ab′

Q γµ

]

+ Scc
′

Q′ Tr
[
Sbb

′

Q γνS̃
aa′

Q γµ

]
− 4Scc

′

Q Tr
[
Sba

′

Q′ γνS̃
ab′

Q γµ

]}
|0〉 , (8)
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where SQ is the heavy quark operator; and S̃ = CSTC. The expression for the heavy quark
propagator in x-representation is given by

SQ(x) =
m2
Q

4π2

K1(mQ

√
−x2)√

−x2
− i

m2
Q/x

4π2x2
K2(mQ

√
−x2)

− igs

∫
d4k

(2π)4
e−ikx

∫ 1

0

du

[
/k +mQ

2(m2
Q − k2)2

Gµν(ux)σµν +
u

m2
Q − k2

xµG
µνγν

]
+ · · · ,

(9)

with K1 and K2 being the modified Bessel functions of the second kind. The invariant
functions of the structures /qgµν or gµν in QCD side can be written in terms of the dispersion
relations Πi as

Πi(q) =

∫
ds

ρi(s)

s− q2
, (10)

where i = 1(2) corresponds to the structure /qgµν (gµν), and the spectral density ρi is given
by the imaginary part of the invariant function as

ρi(s) =
1

π
ImΠi(s) .

In order to calculate the invariant function we need to know the spectral densities ρ1(s)
and ρ2(s). Using Eq. (9) in Eq. (8), and after lengthy calculations we get

ρ1(s) =
1

8π4

∫ ψmax

ψmin

∫ ηmax

ηmin

dψdη

{
µQQQ′

[
2m2

Qψ − 4mQmQ′(−1 + ψ + η)

+ 3ηψ(−1 + ψ + η)(µQQQ′ − s)

]}

+
〈g2sGG〉

288π4mQmQ′

∫ ψmax

ψmin

∫ ηmax

ηmin

dψdη

{
− 6(−3 + 4η)(−1 + ψ + η)m2

Q′

− 6(−1 + ψ + η)m2
Q(−3 + 4ψ) +mQmQ′

[
10− 12η2 + η(2− 60ψ) +

+ (25− 48ψ)ψ

]}
, (11)

ρ2(s) =
1

8π4

∫ ψmax

ψmin

∫ ηmax

ηmin

dψdη

{
µQQQ′

[
3m2

QmQ′ + ηmQ′(−1 + ψ + η)(µQQQ′ − 2s)

+ 2mQψ(−1 + ψ + η)(µQQQ′ − 2s)

]}

+
〈g2sGG〉

288π4mQmQ′

∫ ψmax

ψmin

∫ ηmax

ηmin

dψdη

ηψ

{
2ψm2

QmQ′ + η

[
10m2

QmQ′ψ

+ 9m3
Q(−1 + ψ)ψ +mQm

2
Q′

[
2 + (7− 24ψ)ψ

]
+ 6ψ2(−1 + ψ)mQ′(−3µQQQ′ + 5s)

]
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+ η3ψ
[
8mQ′ψ(3µQQQ′ − 7s) +mQ(−9µQQQ′ + 12µQQQ′ψ + 15s− 28ψs)

]

− η2
[
6m2

QmQ′ψ + 2mQ′ψ2
[
3µQQQ′(7− 4ψ) + (−43 + 28ψ)s

]

+ mQ

[
m2
Q′(2 + 24ψ)− (−1 + ψ)ψ(−9µQQQ′ + 12µQQQ′ψ + 15s− 28ψs)

]]}
, (12)

where

µQQQ′ =
m2
Q

1− ψ − η
+
m2
Q

η
+
m2
Q′

ψ
− s ,

ηmin =
1

2

[
1− ψ −

√
(1− ψ)

(
1− ψ −

4ψm2
Q

ψs−m2
Q′

) ]
,

ηmax =
1

2

[
1− ψ +

√
(1− ψ)

(
1− ψ −

4ψm2
Q

ψs−m2
Q′

) ]
,

ψmin =
1

2s

[
s+m2

Q′ − 4m2
Q −

√
(s+m2

Q′ − 4m2
Q)

2 − 4m2
Q′s

]
,

ψmax =
1

2s

[
s+m2

Q′ − 4m2
Q +

√
(s+m2

Q′ − 4m2
Q)

2 − 4m2
Q′s

]
. (13)

It should be noted here that, these expressions for the spectral densities do not coincide
with the results presented in [20, 21].

Having calculated the correlation function for both physical and QCD sides we now
equate the coefficients of the structures /qgµν and gµν from both sides and perform Borel
transformation with respect to q2. The continuum subtraction is done using the quark–
hadron duality ansatz. Finally, we get the following results for the sum rules:

λ2(3/2)+e
−m2

(3/2)+
/M2

+ λ2(3/2)−e
−m2

(3/2)−
/M2

=

∫ s0

(2mQ+m′

Q)2
dsρ1(s)e

−s/M2

,

(14)

λ2(3/2)+m(3/2)+e
−m2

(3/2)+
/M2

− λ2(3/2)−m(3/2)−e
−m2

(3/2)−
/M2

=

∫ s0

(2mQ+m′

Q)2
dsρ2(s)e

−s/M2

,

(15)

where M2 and s0 are Borel mass parameter and continuum threshold, respectively. These
equations contain four unknowns: λ(3/2)+ , m(3/2)+ , λ(3/2)− and m(3/2)− . Hence we need two
more equations in order to solve for these quantities. Two more equations can be found by
taking derivatives of both sides of the above equations with respect to −1/M2, which gives:

λ2(3/2)+m
2
(3/2)+e

−m2
(3/2)+

/M2

+ λ2(3/2)−m
2
(3/2)−e

−m2
(3/2)−

/M2

=

∫ s0

(2mQ+m′

Q)2
ds sρ1(s)e

−s/M2

,

(16)

λ2(3/2)+m
3
(3/2)+e

−m2
(3/2)+

/M2

− λ2(3/2)−m
3
(3/2)−e

−m2
(3/2)−

/M2

=

∫ s0

(2mQ+m′

Q)2
ds sρ2(s)e

−s/M2

.

(17)
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Solving equations (14), (15), (16) and (17) simultaneously, one can find the four unknowns
λ(3/2)+ , m(3/2)+ , λ(3/2)− and m(3/2)− .

At the end of this section we would like to make the following remark about the radiative
O(αs) corrections to the spectral densities. These corrections modify the perturbative parts
by the factor of 1 + αs

π
f(mQ, m

′
Q, s), where f(mQ, m

′
Q, s) is a function of quark masses and

s. The mass of baryons from sum rules is determined by the ratio of the two corresponding
spectral densities. Therefore, even if the radiative corrections are large, they can not change
the values of the masses, considerably. Because these two large corrections are practically
cancel each other. Formally, these corrections can be absorbed by the pole residues.

3 Numerical results

In performing the numerical analysis of the sum rules for the masses and residues of the
triply heavy spin–3/2 baryons, we need the values of the input parameters entering into
the sum rules. For the heavy quark masses we use their pole values, mb = (4.8± 0.1) GeV
and mc = (1.46 ± 0.05) GeV [23]. The numerical value of the gluon condensate is taken
to be 〈g2sGG〉 = 4π2(0.012 ± 0.004) GeV 4 [23]. It should be noted here that, if instead of
the pole mass values of the heavy quarks their MS [24] values are used, our analysis shows
that the results for the masses do not change considerably.

The sum rules for the masses and residues contain two auxiliary parameters, namely
continuum threshold s0 and Borel mass parameter M2. Obviously, the physical quantities
should be independent of the variations of these auxiliary parameters. The continuum
threshold is not totally arbitrary but it is correlated with the energy of the first excited
state in each channel. It is usually chosen as

√
s0 = (mground + 0.5) GeV , and the domain

of those values of s0 is searched which reproduces this relation. As the result of using this
requirement we have obtained the intervals of s0 for each baryon, and presented them in
Table 2. Numerical analysis shows that our results on the masses are weakly dependent on
the variations in s0 in the considered interval.

The working region for the Borel mass parameter M2 is found as follows. The upper
bound on this parameter is obtained by requiring that the pole contribution to the sum
rules exceeds the contributions of the higher states and continuum, i.e., the condition,

∫ ∞

s0

dsρ(s)e−s/M
2

∫ ∞

smin

dsρ(s)e−s/M
2

< 1/3 , (18)

should be satisfied. The lower bound onM2 is obtained by demanding that the contribution
of the perturbative part exceeds the non-perturbative contributions. From these restrictions
we obtain the working regions for the Borel mass parameter for all members of the triply
heavy baryons, which are also presented in Table 2.

Having determined the working regions for Borel mass parameter M2 entering the sum
rules, now we are ready to calculate of the masses and residues of the corresponding triply
heavy baryons. As example, in Figs. (1) and (2) we present the dependence of the mass
of Ωccc(

3+

2
) and Ωccc(

3−

2
) baryons on the Borel mass parameter M2. We deduce from these
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M2(GeV 2)
√
s0(GeV ) m(GeV ) λ(GeV 3)

Ωccc(
3
2

+
) 4.5− 8.0 5.6±0.2 4.72±0.12 0.09±0.01

Ωccc(
3
2
−
) 4.5− 8.0 5.8±0.2 4.9±0.1 0.11±0.01

Ωccb(
3
2
+
) 6.0− 10.0 8.8±0.2 8.07±0.10 0.06±0.01

Ωccb(
3
2

−
) 6.0− 10.0 9.0±0.2 8.35±0.10 0.07±0.01

Ωbbc(
3
2

+
) 8.0− 10.5 12.0±0.2 11.35±0.15 0.08±0.01

Ωbbc(
3
2

−
) 8.0− 10.5 12.2±0.2 11.5±0.2 0.09±0.01

Ωbbb(
3
2
+
) 12.0− 18.0 15.3±0.2 14.3±0.2 0.14±0.02

Ωbbb(
3
2

−
) 12.0− 18.0 15.5±0.2 14.9±0.2 0.20±0.02

Table 2: Working regions of auxiliary parameters M2 and s0 together with the masses m
and residues λ of the triply heavy spin–3/2 baryons. In the numerical analysis we use pole
mass of the heavy quarks.

figures that the masses of the Ωccc(
3+

2
) and Ωccc(

3−

2
) baryons are equal to (4.72±0.12) GeV

and (4.9± 0.1) GeV , respectively. We have performed similar analysis for the other triply
heavy baryons. The results for the masses and residues of all members of the triply heavy.
spin-3/2 baryons of both parities are presented in Table 2. From this Table we see that, for
the Ω baryons the masses of the negative parity baryons are slightly greater than those of
the positive parity baryons. In the case of residues, also, the negative parity baryons have
residues slightly higher than those of positive parity baryons.

Now, we compare our results on the masses and residues obtained from using the pole
masses of the quarks with the existing predictions of other theoretical approaches. First, in
Table 3, we compare our results on the masses with existing predictions of approaches like
lattice calculation, QCD bag model, variational method, modified bag model, relativistic
quark model, non-relativistic quark mode, QCD sum rules and lattice calculations [8–
15, 20, 21]. In all cases the predictions for the masses of the ccc, ccb and bbc baryons are,
roughly, in good agreement within the error limits, except than the results of [20], which
are considerably low compared to the other predictions. For the bbb baryons, our results are
approximately consistent with the existing results of [10, 12, 13], however, our predictions
on these baryons are lower compared to the existing predictions of [11, 14, 15, 21]. In the
meanwhile, our result on the positive parity bbb baryon is considerably high compared to the
result of [20]. The differences between our results for the masses and those presented in [20]
can be due to the following reasons. Firstly, in [20] the contributions of the negative parity
baryons are not taken into account. Secondly, our spectral densities are different than those
presented in [20] for positive parity baryons. Note that predictions for the residues of triply
heavy baryons are absent at all in [20].

The comparison of our results on the residues of the triply heavy baryons with those
of the [21] as the only existing results in the literature is made in Table 4. From this
Table we observe that the predictions of [21] on the residues are approximately (2-5) times
grater than our results depending on the quark contents of the baryons. These differences
can be attributed to the different interpolating currents that have been used in these two
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Our work [21] [10] [11] [12] [13] [14] [20] [15] [9] [8]

m
Ωccc(

3
2

+
)

4.72±0.12 4.99±0.14 4.79 4.925 4.76 4.777 4.803 4.67 ± 0.15 4.965 4.7

m
Ωccc(

3
2

−

)
4.9±0.1 5.11±0.15 5.1

m
Ωccb(

3
2

+
)

8.07±0.10 8.23±0.13 8.03 8.200 7.98 8.005 8.025 7.45 ± 0.16 8.265 8.05

m
Ωccb(

3
2

−

)
8.35±0.10 8.36±0.13

m
Ωbbc(

3
2

+
)

11.35±0.15 11.49±0.11 11.20 11.480 11.19 11.163 11.287 10.54 ± 0.11 11.554

m
Ωbbc(

3
2

−

)
11.5±0.2 11.62±0.11

m
Ωbbb(

3
2

+
)

14.3±0.2 14.83±0.10 14.30 14.760 14.37 14.276 14.569 13.28 ± 0.10 14.834 14.37

m
Ωbbb(

3
2

−

)
14.9±0.2 14.95±0.11 14.72

Table 3: The masses of the triply heavy spin–3/2 baryons in units of GeV , calculated using
the pole masses of the heavy quarks, compared with other theoretical predictions.

works. Moreover, in determination of the masses and residues of the negative and positive
parity baryons we have coupled four equations but in [21], only two equations exist. In the
case of masses, the ratios of two corresponding sum rules are considered and therefore the
errors cancel each other. For this reason our predictions for the masses are comparable with
those of [21]. But in determination of the residues, there are no ratios of sum rules and
one of the obtained equations are used, which leads to the above-mentioned considerable
differences. Although triply heavy baryons have not yet been discovered in experiments,
their production at LHCb has theoretically been studied in [25], and it is found that 104-105

events of triply heavy baryons can be produced at 10 fb−1 integrated luminosity.

Present study [21]

λ
Ωccc(

3
2

+
)

0.09±0.01 0.20±0.04

λ
Ωccc(

3
2

−

)
0.11±0.01 0.24±0.04

λ
Ωccb(

3
2

+
)

0.06±0.01 0.26±0.05

λ
Ωccb(

3
2

−

)
0.07±0.01 0.32±0.06

λ
Ωbbc(

3
2

+
)

0.08±0.01 0.39±0.09

λ
Ωbbc(

3
2

−

)
0.09±0.01 0.49±0.10

λ
Ωbbb(

3
2

+
)

0.14±0.02 0.68±0.16

λ
Ωbbb(

3
2

−

)
0.20±0.02 0.86±0.17

Table 4: The residues of the triply heavy spin–3/2 baryons in units of GeV , calculated
using the pole masses of the heavy quarks, compared with the predictions of [21].
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In summary, we evaluated the masses and residues of the triply heavy spin–3/2 baryons
with both positive and negative parities in the framework of the QCD sum rules as one of the
most powerful non-perturbative method. The results obtained in this work are compared
with the predictions of other theoretical approaches.

We hope it would be possible to measure the masses and decays of the triply heavy
baryons in the near future at LHCb.
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Figure 1: Dependence of the mass of the triply heavy, positive parity Ωccc(
3
2

+
) baryon on

the auxiliary Borel mass parameter M2, at several fixed values of the continuum threshold
s0.
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Figure 2: The same as Fig. 1, but for the negative parity Ωccc(
3
2

−
) baryon.
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