
ar
X

iv
:1

00
7.

08
14

v2
  [

he
p-

ph
] 

 2
3 

A
ug

 2
01

0

Mixing Angle of Hadrons in QCD: A New

View

T. M. Alieva ∗†, A. Ozpinecia ‡, V. Zamiralovb §

aMiddle East Technical University, Ankara, Turkey

bInstitute of Nuclear Physics, M. V. Lomonosov MSU, Moscow, Russia

October 30, 2018

Abstract

A new method for calculation of the mixing angle between the
hadrons within QCD sum rules is proposed. In this method, the mix-
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1 Introduction

During the last years, many new and unexpected experimental data appeared
on heavy hadron spectroscopy [1]. The study of spectroscopy and decays of
heavy hadrons can give essential information on the quark structure of these
hadrons, in particular of the properties of the cascade baryons [6].

The impressive progress on the experimental physics stimulated com-
prehensive theoretical studies for understanding dynamics of heavy flavored
hadrons at the hadronic scale. This scale belong to the non-perturbative
sector of QCD and therefore for the calculations of different characteristics
of the baryons, a non-perturbative approach is needed. Among existing non-
perturbative methods, the QCD sum rules method [2] is one of the most
predictive in studying properties of hadrons. The main ingredient of the
QCD sum rules method is the choice of the interpolating currents which is
directly related to the quark content of the corresponding baryons.

Approximate flavor symmetries are useful tools in classifying hadrons.
Breaking of these symmetries might lead to mixing of hadrons which differ
only in the flavor quantum numbers. For example, two baryons that mix due
to flavor symmetry violation are ΞQ and Ξ′

Q baryons, both of which are made
up of q (q = u, d), s and Q (Q = b, c) quarks. This mixing of charmed Ξc

baryons has been calculated using quark model in [3,4] and using heavy quark
effective theory with 1/mQ corrections, in [5]. In [6], it was shown that this
mixing can be important in determining properties of these baryons and a
framework has been proposed to calculate this mixing within the QCD sum
rules method. In the present work, we demonstrate the new approach for
the calculation of the mixing angle between hadrons in the QCD sum rules
framework and an application of the proposed method to study the mixing
angle between the ΞQ and Ξ′

Q baryons carried out.
Approximate SU(3)f flavor symmetry of QCD allows us to identify the

observed hadrons with multiplet of the SU(3)f group. If this symmetry were
exact, the observed hadrons all would have definite flavor quantum numbers
under this flavor symmetry. The mass differences between the light u, d and
s quarks, breaks this symmetry explicitly and hence the mass eigenstates
need not be definite eigenstates of the SU(3)f symmetry, i.e. definite flavor
eigenstates can mix to form the physically observed particles (unless there is
another symmetry which prevents this mixing).

In QCD sum rules, the main object of interest is a correlation function
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of the form

Π = i

∫

d4xeipx〈0|T ηH(x)η̄H |0〉 (1)

where T is the time ordering operator and ηH is an operator that can create
the hadron H from the vacuum. If the pure H0

1 and H0
2 states mix, then the

physical states, i.e. states that have definite mass, should be represented as a
linear combination of these states. In such a case, currents corresponding to
physical states should also be written as a superposition of the pure operators:

ηH1 = cos θηH0
1
+ sin θηH0

2

ηH2 = − sin θηH0
1
+ cos θηH0

2
(2)

where θ is the mixing angle between H1 and H2.
Consider the following two-point correlation function:

ΠH1H2(p) = i

∫

d4xeipx〈0|T {ηH1(x)ηH2(0)}|0〉 (3)

If ηH1(2)
creates only H1(2) and not the other one, this correlation function

should be zero. Hence, the angle θ should be chosen in such a way as to give
ΠH1H2 = 0.

The general form of the correlation function can be written as

ΠH1H2(p) = 6pΠ1(p
2) + Π2(p

2) (4)

Generally speaking, any of the functions Πi (i = 1, 2) can be used for the
sum rules analysis. In this work, the coefficient of the 6p structure has been
chosen to obtain a prediction for the mixing angle.

Using the notation

Π0
HiHj

= i

∫

d4xeipx〈0|T {ηH1(x)ηH2(0)}|0〉 (5)

it is straightforward to show that the angle θ that makes ΠH1H2 = 0 can be
expressed as:

tan 2θ =
−ac± b

√
b2 + a2 − c2

−bc∓ a
√
b2 + a2 − c2

(6)
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where a = 1
2
(Π0

H2H2
− Π0

H1H2
), b = 1

2
(Π0

H1H2
+ Π0

H2H1
) and c = 1

2
(Π0

H1H2
−

Π0
H2H1

). This expression can be simplified further by noting that, as explicit
calculation have shown, Π0

H2H1
= Π0

H1H2
, i.e. c = 0, which yields

tan 2θ = − b

a
=

2Π0
H2H1

Π0
H1H1

− Π0
H2H2

(7)

Note that, Eq. 7 has two solutions for 0◦ < θ < 180◦ that differ by 90◦.
In this work, we present the solution that is close to 0◦. The other solution
corresponds to exchanging the identification of the dominant part of H1(2)

with H0
2(1). Further studies of other properties of H1(2) baryons is necessary

to remove this ambiguity.
After setting up the framework for the study of the mixing angle between

the hadrons, let us concentrate on this mixing angle of the heavy cascade
baryons. In SU(3)f classification, baryons containing two light and one heavy
quarks can be grouped into an anti-triplet and a sextet representation. It
is well known that the dominant components of ΞQ and Ξ′

Q belong to the
anti-triplet and sextet representations of SU(3)f respectively, i.e. ΞQ(Ξ

′
Q) is

approximately antisymmetric(symmetric) under the exchange of light quarks.
The reason of why they are not exactly (anti)symmetric is the mixing between
the SU(3)f representations. Note that, in the infinite heavy quark mass limit,
there is an additional conserved quantity: the total angular momentum of
the light degrees of freedom, sl. Since Ξ0

Q and Ξ′0
Q correspond to different

values of sl, this additional symmetry prevents the mixing of these two states.
Using the SU(3)f classification, the interpolating currents for the un-

mixed states can be chosen as:

η0ΞQ
=

1√
6
ǫabc

[

2(sTaCqb)γ5Qc + 2t(sTaCγ5qb)Qc

+(sTaCQb)γ5qc + t(sTaCγ5Qb)qc

− (qTa CQb)γ5sc − t(qTa Cγ5Qb)sc
]

η0Ξ′

Q
=

1√
2
ǫabc

[

(sTaCQb)γ5qc + t(sTaCγ5Qb)qc+

(qTa CQb)γ5sc + t(qTa Cγ5Qb)sc
]

(8)

Here a, b and c are the color indices, q = u or d and t is an arbitrary auxiliary
parameter. The t = −1 case, corresponds to the Ioffe current. The notation
η0 is used to denote that these operators are pure 3̄ or 6 operators.
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The correlation function, Eq. 1, can also be calculated in terms of quark
and gluon degrees of freedom in the deep Euclidean region, p2 << 0, using
operator product expansion. The analytical results for the corresponding
correlators are presented in the appendix.

2 Numerical Analysis

In this section, we present the numerical analysis of our results. The numer-
ical values for the input parameters are 〈q̄q〉 = (−0.243 GeV )3, 〈s̄s〉

〈q̄q〉
= 0.8,

〈g2sG2〉 = 0.47 GeV 4, m2
0 = 0.8 GeV 2, mb = 4.8 GeV , mc = 1.4 GeV and

ms = 0.14 GeV .
The sum rules results depend on three auxiliary parameters: the con-

tinuum threshold s0, the Borel parameter M2 and the arbitrary parameter
t in the interpolating current. The continuum threshold should be close to
the first excited state that can couple to the current. In our analysis, it is
chosen to be near s0 = (mB +0.5)2. The lower limit of the working region of
the Borel parameter can be found by requiring that the contribution of the
highest dimensional operator is less than 20% of the perturbative term. Its
upper limit is determined in such a way that the contribution of the higher
states and the continuum is less then the contribution of the first pole.

In Figs. 1(2), the dependence of θb(θc) on the Borel parameter is plotted,
at t = 3. For Ξb, the continuum threshold is chosen to be s0 = 40 GeV 2, and
42 GeV 2, and for Ξc, it is chosen to be s0 = 9 GeV 2 and 10 GeV 2. It is seen
that although the Borel parameter is allowed to change in a wide range of
values, there is practically no dependence of the predictions of the sum rules
on the value of the Borel parameter.

In Figs. 3(4), the mixing angle θb(θc) is plotted as function of cosα, where
α is defined through t = tanα at M2 = 10 GeV 2 and 15 GeV 2(M2 = 5 and
8 GeV 2). It is seen that in both graphs, the mixing angle take very large
values at certain values of cosα. This enhancement can be understood by
noting that the tangent of the mixing angle, Eq. 7, is a ratio of two sum
rules. In principal, both the numerator and the denominator should become
zero at the same value of t. But due to approximations in the sum rules,
their zeros are shifted. Hence, when the denominator becomes zero, and the
numerator is non-zero (although small), tan θ diverges. Near these points
the sum rules is not reliable, hence in obtaining a prediction for the mixing
angle, one should keep away from these points. From the figures, it is seen
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that, sum rule predictions on the mixing angle is almost independent of the
value of t chosen.

Finally, the predictions on the mixing angle between ΞQ and Ξ′
Q baryons

of QCD sum rules are:

θb = 6.4◦ ± 1.8◦ (9)

for the Ξb − Ξ′
b mixing and

θc = 5.5◦ ± 1.8◦ (10)

for the Ξc − Ξ′
c mixing. In these predictions, the uncertainties are due to

the neglected higher dimensional operators and the uncertainties in the aux-
iliary parameters of the sum rules. The largest source of uncertainty is the
variations in the continuum threshold s0. In Table 2, sum rules predictions
and the predictions of [3–5] are presented. It is seen that, within errors,
the predictions for θc are in agreement, whereas, our prediction on θb is in
disagreement with the prediction of [4].

As also mentioned previously, in the heavy quark limit, the mixing angle
should be zero. The heavy quark limit of the sum rules can be obtained by
taking the mQ → ∞ limit after setting M2 → m2

Q+2mQT , s → m2
Q+2mQν

and s0 → m2
Q + 2mQν0, where T is the new Borel parameter, ν is the four

velocity of the heavy baryon, and ν0 is the threshold in the heavy quark limit.
Using the expressions in the appendix, it can be shown that, in the heavy
quark limit tan θQ ∝ 1

m2
Q

. But the numeric results for the b and c quarks

show that the suppression of the mixing angle in the heavy quark limit is not
realized at the physical b quark mass. The suppression starts at much larger
values of the heavy quark mass.

θQ This Work [3] [4] [5]
θc 5.5◦ ± 1.8◦ 3.8◦ 3.8◦ 14◦ ± 14◦

θb 6.4◦ ± 1.8◦ – 1.0◦ –

Table 1: The predictions of QCD sum rules on the mixing angle along with
the prediction of quark model [3, 4] and heavy quark effective theory [5]

In conclusion, a new method is presented for the determination of the
mixing angle between the hadrons in QCD sum rules. This method is applied
to the calculation of the mixing angle between the heavy cascade hyperons
ΞQ and Ξ′

Q.
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A Analytical Results

In this appendix, we present the explicit expression for the coefficient of the
6p structure in the correlation function

Π0
ΞΞ = − 1

288M4
e−

m2
Q

M2 m2
0〈q̄q〉〈s̄s〉mQ

(

ms(−1 + t)2 + 2mQ(−13 + 2t+ 11t)
)

+
1

144M2
e−

m2
Q

M2 msmQ〈q̄q〉〈s̄s〉(1 + 4t− 5t2)

(

1− 5

12

m2
Qm

2
0

M4

)

+
1

288M2
e−

m2
Q

M2 m2
0〈q̄q〉〈s̄s〉(25− 2t− 23t2)

− 1

72
e−

m2
Q

M2 〈q̄q〉〈s̄s〉(13− 2t− 11t2)

+
1

768π2
e−

m2
Q

M2 msm
2
0

(

3〈s̄s〉(1 + t)2 + 2〈q̄q〉(−13 + 2t + 11t2)
)

+

∫ ∞

m2
Q

dse−
s

M2 ρ11(s) (11)

where

ρ11(s) =
3m4

Q

512π4
(5 + 2t+ 5t2) ln(1 + ŝ)

+
3m3

Q

384π2
ŝ
(2 + ŝ)

(1 + ŝ)2

[

mQ

16π2
(−6− 6ŝ+ ŝ2) +

ms

m3
Q

〈s̄s〉
]

(5 + 2t+ 5t2)

+
1

1536π4
m3

Qms(−1− 4t+ 5t2)

[

6 ln(1 + ŝ)− ŝ
6 + 9ŝ+ 2ŝ2

(1 + ŝ)2

]

− 1

192π2
mQ(〈q̄q〉+ 〈s̄s〉) ŝ2

(1 + ŝ)2
(−1 − 4t+ 5t2)

− 1

192π2
msŝ

2 + ŝ

(1 + ŝ)2
〈q̄q〉(−13 + 2t+ 11t2)
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− 1

768mQπ2
m2

0(〈q̄q〉+ 〈s̄s〉) 1

(1 + ŝ)2
(−1 + t)(−1 − 5t+ 6ŝ(1 + t))

+
1

768m2
Qπ

2
msm

2
0(〈q̄q〉+ 〈s̄s〉) 1

(1 + ŝ)2
(−1 + t)2

+
1

16m2
Qπ

2
msm

2
0〈q̄q〉

1

(1 + ŝ)3
(1− t2) ln ŝ

− 1

32π2M2
msm

2
0〈q̄q〉(−1 + t2)

[

ln
m2

Q

Λ2
+

(

1 +
1

(1 + ŝ)2

)

ln ŝ

]

(12)

Π0
Ξ′Ξ′ = − 1

48M4
e−

m2
Q

M2 m2
0〈q̄q〉〈s̄s〉mQ(−1 + t) (ms(1 + t) +mQ(−1 + t))

+
1

16M2
e−

m2
Q

M2 msmQ〈q̄q〉〈s̄s〉(1− t2)

(

1− 5

12

m2
Qm

2
0

M4

)

− 1

96M2
e−

m2
Q

M2 m2
0〈q̄q〉〈s̄s〉(−1 + t)2

+
1

24
e−

m2
Q

M2 〈q̄q〉〈s̄s〉(−1 + t)2

+
1

768π2
e−

m2
Q

M2 msm
2
0

(

−〈s̄s〉(13 + 10t+ 13t2) + 6〈q̄q〉(−1 + t)2)
)

+

∫ ∞

m2
Q

dse−
s

M2 ρ22(s) (13)

where

ρ22(s) =
3m4

Q

512π4
(5 + 2t+ 5t2) ln(1 + ŝ)

+
m3

Q

128π2
ŝ
(2 + ŝ)

(1 + ŝ)2

[

mQ

16π2
(−6− 6ŝ+ ŝ2) +

ms

m3
Q

〈s̄s〉
]

(5 + 2t+ 5t2)

+
3

512π4
m3

Qms(−1 + t2)

[

6 ln(1 + ŝ)− ŝ
6 + 9ŝ+ 2ŝ2

(1 + ŝ)2

]

− 3

64π2
mQ(〈q̄q〉+ 〈s̄s〉) ŝ2

(1 + ŝ)2
(−1 + t2)

− 1

64π2
msŝ

2 + ŝ

(1 + ŝ)2
〈q̄q〉(−1 + t)2

− 1

256mQπ2
m2

0(〈q̄q〉+ 〈s̄s〉) 6ŝ− 7

(1 + ŝ)2
(−1 + t2)
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+
1

256m2
Qπ

2
msm

2
0

1

(1 + ŝ)2
[

−〈q̄q〉(−1 + t)2 + 〈s̄s〉(3 + 2t+ 3t2)
]

(14)

√
3Π0

ΞΞ′ =
√
3Π0

Ξ′Ξ = − 1

192M4
e−

m2
Q

M2 msmQm
2
0〈q̄q〉〈s̄s〉(−3 + 2t+ t2)

− 1

24M2
e−

m2
Q

M2 msmQ〈q̄q〉〈s̄s〉(−2 + t+ t2)

(

1− 5

12

m2
Qm

2
0

M4

)

+

∫ ∞

m2
Q

dse−
s

M2 ρ12(s) (15)

where

ρ12(s) = − 1

256π4
m3

Qms(−2 + t+ t2)

[

6 ln(1 + ŝ)− ŝ
6 + 9ŝ+ 2ŝ2

(1 + ŝ)2

]

− 1

32π2
mQ(〈q̄q〉 − 〈s̄s〉) ŝ2

(1 + ŝ)2
(−2 + t + t2)

− 1

128mQπ2
m2

0(〈q̄q〉 − 〈s̄s〉) 1

(1 + ŝ)2
(−1 + t)(−3 − 2t+ 3ŝ(1 + t))

− 1

128m2
Qπ

2
msm

2
0

1

(1 + ŝ)2
(

〈q̄q〉(−1 + t2) + 2〈s̄s〉(1 + t + t2)
)

(16)

where ŝ = s
m2

Q

− 1

The contribution of the higher states and the continuum is subtracted
using quark hadron duality. It amounts to replacing the upper limit of inte-
gration in s with s0, i.e.

∫ ∞

m2
Q

ds →
∫ s0

m2
Q

ds (17)
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