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 20 

Abstract: 21 

Western Turkey belongs to the regions with the highest geothermal potential in the world, 22 

resulting in significant electricity production from geothermal resources located predominantly in 23 

the Menderes Massif. Although geothermal exploitation is increasingly ongoing, geological and 24 

physical processes leading to the emplacement of geothermal reservoirs are hitherto poorly 25 

understood. Several studies on the Menderes Massif led to different interpretations of structural 26 

controls on the location of hot springs and of the heat source origin. This paper describes 27 
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geological evidence showing how heat is transmitted from the abnormally hot mantle to the 28 

geothermal reservoirs. On the basis of field studies, we suggest that crustal-scale low-angle 29 

normal faults convey hot fluids to the surface and represent the first-order control on geothermal 30 

systems. At the basin-scale, connected on low-angle normal faults, kilometric high-angle transfer 31 

faults are characterized by dilational jogs, where fluids may be strongly focused. In addition, 32 

favourable lithologies in the basement (e.g. karstic marble) could play a critical role in the 33 

localization of geothermal reservoirs. Finally, a compilation of geochemical data at the scale of 34 

the Menderes Massif suggests an important role of the large mantle thermal anomaly, which is 35 

related to the Hellenic subduction. Heat from shallow asthenospheric mantle is suggested to be 36 

conveyed toward the surface by fluid circulation through the low-angle faults. Hence, geothermal 37 

activity in the Menderes Massif is not of magmatic origin but rather associated with active 38 

extensional tectonics related to the Aegean slab dynamics (i.e. slab retreat and tearing).  39 

  40 

Keywords: Menderes Massif, structural control, detachment, transfer fault, hot mantle anomaly, 41 

slab dynamics 42 

 43 

1. Introduction: 44 

The high heat flow driving active geothermal systems is often believed to find its source in 45 

portions of crust invaded by magmas, but some of significant geothermal provinces are considered 46 

amagmatic namely not of magmatic origin in terms of heat source (i.e. no magmatic intrusions in 47 

the upper crust). In this case, large-scale processes (e.g. slab dynamics) inducing large-scale 48 

thermal anomalies are favoured, as for the Basin & Range Province in the Western US. In this 49 

extensional context, geothermal systems have been described as amagmatic in origin (e.g. Benoit 50 

1999; Blackwell et al. 2000; Faulds et al. 2004; 2011). The exact origin of heat remains debated 51 

and, for instance, magmatic underplating under the overriding plate (Wannamaker et al. 2006) 52 
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and/or shear heating in the mantle in actively deforming area (e.g. Roche et al. 2018) are some 53 

hypothesis of heat source possibilities. Despite the well-documented existence of large-scale 54 

seismic velocity anomalies in the mantle of the Eastern Mediterranean region (e.g. De Boorder et 55 

al. 1998), very few studies have actually considered such amagmatic geothermal provinces in 56 

their large-scale geodynamic contexts (e.g. Roche et al. 2015; 2016; 2018; Gessner et al. 2017). 57 

The path of heat transport from mantle to surface, either conductive or through advection of hot 58 

fluids, remains to be described in such environments. The Menderes Massif is one of the best 59 

examples where such a description can be done, from the mantle to the actively extending crust, 60 

up to the geothermal reservoirs. 61 

The Menderes Massif is recognized as an active geothermal area where extensional or 62 

transtensional tectonics is accompanied by elevated heat flow values (~ 100 mW m-2), which 63 

appear to extend to almost the entire Aegean domain (Erkan 2014; 2015). There, high heat flow 64 

estimated by Jongsma (1974) may correspond to the low P- wave seismic velocity zone described 65 

by Piromallo and Morelli (2003). Surprisingly, magmatic activity and related volcanism have been 66 

very sparse there in the recent period (i.e. Pliocene and Quaternary); the unique volcanic activity 67 

occurred in the Kula volcanic field during the Quaternary between 2 and 0.2 Ma (e.g. Richardson-68 

Bunbury 1996; Bunbury et al. 2001; Maddy et al. 2017) where geothermal activity is absent. 69 

Existing models suggest probable magmatic reservoirs in the upper crust as heat source of the 70 

geothermal system in this area, more or less connected with the Kula basaltic activity (e.g. Simsek, 71 

1985; Filiz et al. 2000; Karamanderesi and Helvaci 2003; Yilmazer et al. 2010; Bülbül et al. 2011; 72 

Özen et al. 2012; Özgür et al. 2015; Ozdemir et al. 2017; Alçiçek et al. 2018). Nonetheless, others 73 

authors have also suggested a deeper and larger heat source triggered by slab dynamics (i.e. 74 

astenospheric mantle flow due to slab rollback and tearing; e.g. Kaya 2015; Roche et al. 2015; 75 

2016; 2018; Gessner et al. 2017). It is then worth studying the consequences of these processes 76 

on the distribution of heat at the surface. In this case, recent tectonic activity and related graben 77 
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structures have a major interest because they could control the fluid flow processes (e.g. Tarcan 78 

and Gemici 2003; Faulds et al. 2010; Haizlip et al. 2013; Kocyigit 2015; Kaya 2015; Haklidir et 79 

al. 2015). 80 

Consequently, this study is dedicated to a multi-scale analysis of the different identified 81 

features of several geothermal fields of the Menderes Massif. We present a detailed structural 82 

analysis of main geothermal fields (i.e. Salihli, Alaşehir, Salavatlı and Seferihisar, Kızıldere, 83 

Germencik) to better characterize the fluid flow pattern. It is critical to evaluate which type of 84 

faults and which parts of them are most favourable for focusing geothermal activity. Our results 85 

are then discussed at different scales including that of the “Menderes geothermal Province”. At 86 

the scale of lithosphere-mantle interactions, we use a broad compilation of mantle-He and oxygen-87 

hydrogen isotopic data to propose and discuss a new conceptual model explaining the regional 88 

thermal anomaly with reference to geodynamic processes. 89 

 90 

2. Geological setting 91 

2.1. The Eastern Mediterranean region 92 

During the Cenozoic, the Eastern Mediterranean region (Fig. 1a) has undergone a two-step 93 

tectono-metamorphic evolution. Firstly, in the late Cretaceous-Eocene, the convergence of Africa 94 

and Eurasia has led to the closure of the Izmir-Ankara Ocean and to the accretion of subducting 95 

continental and oceanic lithospheres (Bonneau and Kienast 1982; Dercourt et al. 1986; Jolivet 96 

and Brun 2010). Secondly, since the Oligo-Miocene, the kinematics in Mediterranean region has 97 

been mainly controlled by the southward retreat of the African slab responsible for back-arc 98 

extension (e.g. Malinverno and Ryan 1986; Jolivet and Faccenna 2000; Jolivet and Brun 2010; 99 

Ring et al. 2010). The Oligo-Miocene geological evolution of the Aegean region, including the 100 

Menderes Massif and the Cyclades, results from this episode of slab roll-back (e.g. Seyitoglu and 101 
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Scott 1991; Seyitoğlu et al. 1992; Seyitoglu and Scott 1996; Jolivet et al. 1996). In addition, recent 102 

studies based on geochemical analyses (e.g. Dilek and Altunkaynak 2009; Ersoy et al. 2010; 103 

Prelevic et al. 2012), on tomographic models (e.g. De Booder et al. 1998; Biryol et al. 2011; 104 

Salaün et al. 2012) and on tectonic and magmatic evolution in this area (Dilek and Altunkaynak 105 

2009; Jolivet et al. 2015; Menant et al. 2016; Govers and Fichtner 2016) invoke the particular 106 

slab dynamics beneath western Turkey, which would be characterized by a slab tear since the 107 

Miocene (Jolivet et al. 2015) (Fig. 1a). The complex geometry of subduction zones and the tight 108 

arcs characterizing the Mediterranean region as a whole are direct consequences of slab retreat 109 

and slab tearing (Wortel and Spakman 2000; Spakman and Wortel 2004; Faccenna et al. 2004; 110 

Govers and Wortel 2005; Faccenna et al. 2006). Beside the heat wave caused by the advection of 111 

hot asthenosphere to shallow depths during retreat, slab tearing tends to efficiently localize 112 

deformation, and to facilitate high-temperature metamorphism, crustal melting, granitic intrusions 113 

and fluid circulations (Jolivet et al. 2015; Menant et al. 2016; Roche et al. 2018). Therefore, 114 

magmatic activity during the Miocene was intense in western Turkey, but it has significantly 115 

decreased since 12 Ma (e.g. Ersoy et al. 2010). In addition, this slab dynamics has a direct 116 

consequence on Moho depth, estimated only at ~ 25 – 30 km in the Menderes Massif (based on 117 

geophysical data such as receiver functions computed from teleseismic earthquakes from 118 

Karabulut et al. (2013); deep seismic reflection data from Cifci et al. (2011); Bouguer gravity data 119 

from Altinoğlu et al. 2015 and conductivity data from Bayrak et al. (2011)). 120 

The current tectonic evolution in this region is mainly controlled by the westward motion 121 

of Anatolia (Reilinger et al. 2006) and by N-S extension, both consequences of the same slab roll-122 

back process complicated by several episodes of slab tearing (e.g. Faccenna et al. 2006; Jolivet et 123 

al. 2013; 2015). This direction of extension is also well constrained by the orientation of regional-124 

scale anisotropic fabrics, suggesting a large-scale viscous flow in the lower crust and lithospheric 125 

mantle since the Miocene (Endrun et al. 2011). 126 
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 127 

2.2. The Menderes Massif 128 

The Menderes Massif is located in the back-arc domain of the Hellenic subduction zone in 129 

the western part of Turkey (Figs. 1a and 1b), and constitutes a part of the Anatolide-Tauride block. 130 

After a first episode of nappe stacking and crustal thickening (e.g. Collins and Robertson 1998; 131 

Ring et al. 1999; Gessner et al. 2001a), the thickened crust of the Menderes Massif has undergone 132 

a NNE-SSW post-orogenic extension stage since the Oligo-Miocene (e.g. Seyitoglu and Scott 133 

1991; Seyitoglu et al. 1992; Bozkurt and Oberhänsli 2001; Bozkurt et al. 2011). Considered as a 134 

single large metamorphic core complex, this massif has recorded a controversial two-stage 135 

exhumation process. According to Ring et al. (2003), these two stages are symmetrical, first along 136 

the south-dipping Lycian and north-dipping Simav detachments on the southern and northern 137 

edges of the massif, and then located in the Central Menderes Massif (CMM) along the Alaşehir 138 

and the Büyük Menderes detachments (Fig. 1b). But Seyitoglu et al. (2004) challenged the first 139 

stage of exhumation suggesting that this massif was exhumed initially as an asymmetric core 140 

complex in the Early Miocene. In any case, this post-orogenic extension has led to the exhumation 141 

of three submassifs, from north to south: the Gördes, Ödemiş (corresponding to the CMM) and 142 

Çine submassifs. These submassifs are separated by E-W striking half-grabens that are seismically 143 

active. The northern part of the Gördes submassif is limited in the north by the Simav graben, the 144 

Ödemiş submassif by the Alaşehir graben (also known as Gediz graben) to the north, and by the 145 

Büyük Menderes graben to the south (Fig. 1b, see more details in the Appendix for the studied 146 

grabens). 147 

Post-orogenic extension was thus accommodated by three main detachment faults (i.e. low-148 

angle normal faults) in the central and northern submassifs, namely: 149 
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(i) the Büyük Menderes detachment along the northern margin of the Büyük Menderes 150 

graben with top-to-the-S kinematic criteria (Fig. 1b; e.g. Emre and Sözbilir, 1997; 151 

Gessner et al. 2001b; Ring et al. 2003); 152 

(ii) the Alaşehir detachment (also named Gediz detachment, Lips et al. 2001) along the 153 

southern margin of the Alaşehir graben with top-to-the-N sense of shear (Fig. 1b; 154 

e.g. Emre, 1992; Hetzel et al. 1995a; 1995b; Gessner et al. 2001b; Sözbilir 2001; 155 

Seyitoglu et al. 2002; Işık et al. 2003; Bozkurt and Sözbilir 2004; Hetzel et al. 2013) 156 

and 157 

(iii) the Simav detachment, later cut by the high angle Simav normal fault that bounds to 158 

the south the Simav graben with top-to-the-NE kinematic indicators (Fig. 1b; e.g. 159 

Seyitoglu 1997; Isik et al. 1997; Isik and Tekeli, 2001; Işık et al. 2004). 160 

However, the exhumation history of the Menderes Core complex and the multi-staged 161 

activity of the detachments remain matters of debate. Several authors suggest that the Alaşehir 162 

graben formation is controlled by (i) low-angle normal faults that have been active since the 163 

inception of the basin, and then by (ii) more recent high-angle faults crosscutting the earlier-ones 164 

(e.g. Hetzel et al. 1995a; 1995b; Emre and Sozbilir 1997; Sozbilir 2001; Oner and Dilek 2011). 165 

For others, the initiation of the graben involved high-angle normal faults that gradually became 166 

low angle with time (e.g. Gessner et al. 2001b; Bozkurt 2001; Seyitoğlu et al. 2002; Purvis and 167 

Robertson 2005; Ciftci and Bozkurt 2009; 2010; Demircioğlu et al. 2010; Seyitoğlu et al. 2014). 168 

According to Seyitoğlu and Işik (2015), this last hypothesis may explain the large range values of 169 

ages from the Alaşehir detachment, explaining a continuum of deformation since Early Miocene 170 

in the framework of a rolling hinge model (Buck 1988) for the formation of the grabens and 171 

exhumation of the CMM (e.g. Gessner et al. 2001b; Seyitoglu et al. 2002; 2014). Note that syn-172 

extensional Miocene granitoid intrusions are also recorded in the footwall of the Alaşehir and 173 

Simav detachments (e.g. Hetzel et al. 1995b; Isik et al. 2003; 2004). 174 
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The early Miocene evolution of the Menderes Massif is dominated by high-angle E-W 175 

striking normal faults that root into (Seyitoglu et al. 2002) or cut the current low-angle normal 176 

faults (e.g. Koçyigit et al. 1999; Yılmaz et al. 2000), and control basin sedimentation (i.e. the 177 

initiation of the Alaşehir and Büyük Menderes grabens formation; e.g. Seyitoglu 1997; Seyitoglu 178 

et al. 2002). During Pliocene-Quaternary times, another set of high-angle normal faults is 179 

recorded, controlling the youngest grabens such as the Küçük Menderes and Simav grabens 180 

(Seyitoglu et al. 2004) and the current geometry of the basin (Bozkurt and Sozbilir 2004; Kent et 181 

al. 2016). Furthermore, an additional distributed strike-slip tectonics with a normal component is 182 

well observed in the Alaşehir graben with high-angle N-S striking faults crosscutting the Neogene 183 

sediments (e.g. Çiftçi and Bozkurt 2010; Yilmazer et al. 2010; Ozen and Dilek 2011) and affecting 184 

the basement of the Menderes Massif (see black dotted line in the Alaşehir graben in Fig. 1b). 185 

Similar strike-slip faults are observed in the Büyük Menderes graben, which can be interpreted as 186 

transfer faults (e.g. Çifçi et al. 2011). 187 

 188 

3. Geothermal setting in the Menderes Massif 189 

3.1. Thermal anomalies at different scales 190 

At first glance, there is a strong correlation between the distribution of geothermal fields 191 

with its hot springs and the location of detachments (Fig. 1b). According to recent studies (e.g. 192 

Roche et al. 2015; 2016; 2018; Kaya, 2015; Gessner et al. 2017), these large-scale structures may 193 

represent the first-order control on geothermal fields in this massif. In that instance, Gessner et al. 194 

(2017) showed that most of hotter thermal springs are located in areas of structural complexity 195 

such as Seferihisar, Denizli, Salihli and Alaşehir. Similar correlations between high heat flow 196 

values and complex graben structures are emphasized by many studies (Tezcan 1995; Pfister et 197 

al. 1998; Erkan 2014; 2015). For instance, Erkan (2014) estimated heat flow values of 85 – 90 198 

mW m-2, locally higher than 100 mW m-2 in the northeastern part of the Alaşehir graben. These 199 
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data are in accordance with locations of several geothermal reservoirs of interest, but also with 200 

shallow Curie-point depth (CPD) published in the Menderes Massif area (Aydin et al. 2005; 201 

Dolmaz et al. 2005; Bilim et al. 2016). According to Bilim et al. (2016), the average of CPD in 202 

the whole Menderes area (assumed to represent the depth of the 580 °C isotherm, Schlinger 1985; 203 

Ross et al. 2006) is ca. 9.5 km with a shallowest point at 6.21 km around the Kula basaltic area. 204 

A thermal anomaly thus encompasses the whole Menderes Massif. The same authors also suggest 205 

that locations of geothermal fields belonging to the Büyük Menderes graben area coincide with 206 

the lowest values of the magnetic intensity, which are aligned along the boundary fault of this 207 

graben. Furthermore, using the magnetotelluric method through the northern part of the Menderes 208 

Massif, Ulugergerli et al. (2007) proposed a large partial melting zone located at ~ 12 km depth 209 

and deep intrusions (i.e. ~ 15 km depth) located below the Simav graben and the Kula volcano, 210 

therefore suggesting abnormal high temperature values. 211 

To sum up, all these studies confirm that thermal anomalies in the Menderes Massif are 212 

observed with different wavelengths (i.e. crustal-scale to geothermal field-scale), thus different 213 

depths. The short wavelength anomalies result from shallow depth processes and those with long 214 

wavelength (crustal-scale) from deep processes, and thus large-scale dynamics (e.g. Roche et al. 215 

2015; 2016; 2018; Gessner et al. 2017). However, the plumbing system (i.e. circulation pathways) 216 

of such hot crustal fluids are not yet properly understood. 217 

 218 

3.2. Synthesis of fluids and isotopes 219 

3.2.1. Studies on oxygen and hydrogen isotopes of the main geothermal fluids 220 

Many studies on the isotopic composition of water samples in the CMM area have been 221 

performed (Fig. 2; Filiz et al. 2000; Özgür 2002; Tarcan and Gemici 2003; Özen et al. 2012; Baba 222 

et al. 2014). To the first order, they show that most of the data from the Alaşehir and the Büyük 223 

Menderes grabens are close to the global meteoric water line (GMWL) thus indicating a meteoric 224 
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origin for most of the geothermal fluids (Figs. 2b and 2c). Indeed, the distribution of isotopic 225 

compositions of the thermal waters in Salihli, Aydin-Germencik, Salavatlı and Denizli-Kızıldere 226 

geothermal fields shows a meteoric origin. However, some variations in isotopic distributions can 227 

be noted. There is a clear δ18O shift from the MMWL (Mediterranean Meteoric Water Line) and 228 

cold-water values (empty symbols in Fig. 2b) that indicate strong water-rock interaction for all 229 

geothermal fields (Figs. 2b and 2c). For example, the isotopic distribution of hot waters in 230 

Kurşunlu and in greenhouses well is located below the GMWL, which suggests a probable mixing 231 

of deep and shallow thermal waters (Özen et al. 2012). Bülbül et al. (2011) reported a similar 232 

observation from the Alaşehir geothermal field, suggesting that thermal water reservoirs are fed 233 

by ground waters of dominant meteoric origin. They estimated cold-water contributions to thermal 234 

waters ranging from 75 to 95%. Moreover, the Seferihisar geothermal field, in the Cumaovası 235 

basin, shows additional variations in isotopic compositions (Fig. 2d): isotopic values approach the 236 

isotopic value of Agean sea water, implying a mixing with seawater related to the proximity of 237 

the Mediterranean Sea (Tarcan and Gemici 2003). Similar signatures are observed in the Söke 238 

geothermal field (Simsek 2003), with slight deviations from the MMWL line of isotopic 239 

distribution, implying an evaporation effect on cold-waters (Fig. 2d). The isotopic composition of 240 

thermal waters indicates that they are of meteoric origin and then mixed with seawater in the 241 

western part of Söke, particularly near the coast. 242 

 243 

3.2.2. Helium isotopic signature 244 

In a tectonically active continental setting, the presence or the absence of mantle helium 245 

(3He) in hydrothermal fluids can constrain the relationships between tectonics, magmatism and 246 

fluid circulation in faulted settings (O'Nions and Oxburgh 1988; Marty et al. 1992; Kennedy et 247 

al. 1997; Kulongoski et al. 2005; Pik and Marty 2009). It has been established that the 3He/4He 248 

ratio can be used as tracer of the competing influence of crustal vs. mantle volatiles in various 249 
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tectonic settings (Mutlu et al. 2008). Based on the analyses of water and gas samples, and/or fluid 250 

inclusion trapped in calcite, many studies have discussed the isotopic composition of He in the 251 

Eastern Mediterranean region (Güleç 1988; Güleç et al. 2002; Shimizu et al. 2005; Güleç and 252 

Hilton 2006; Mutlu et al. 2008; Pik and Marty 2009; Karakus 2015). Below, we present a new 253 

compilation of recent isotopic studies using the classification of Pik and Marty (2009) (Fig. 3). 254 

In the Aegean domain, the Corinth rift shows a crustal signature while the Hellenic volcanic 255 

arc is characterized by high values of 3He/4He ratio, Ra (> 15% of mantle-He) suggesting a mantle 256 

origin (Fig. 3a). In addition, estimated 3He/4He ratios of samples normalized to the atmospheric 257 

3He/4He ratio range from 0.10 to 1.44 in the western part of Anatolia (Figs. 3a and 3b). These 258 

values are significantly higher than the crustal production value of 0.05 (Mutlu et al. 2008). 259 

Karakuş (2015) added new data on the 3He/4He ratios for the Simav geothermal field (values range 260 

from 1.36 to 1.57). The highest values of helium ratio correspond to the Quaternary alkaline 261 

activity of Kula volcano and to the Pliocene Denizli volcanics (2.52) along the Alaşehir and the 262 

eastern segment of the Büyük Menderes grabens (Fig. 3b). These results reveal a mixed origin for 263 

helium between mantle and continental crust components. 264 

 265 

4. Analysis of the tectonic and structural settings of geothermal fields in the Menderes 266 

Massif at local and regional scale 267 

 268 

In this chapter, we summarize the structural framework of several geothermal fields, in order 269 

to identify the main conduits for geothermal fluid flow and related reservoirs. Our field survey 270 

consisted of (i) field mapping in order to complement the existing geological and geothermal maps 271 

and (ii) structural data acquisition and (iii) general cross-sections. We have first focus on the 272 

Alaşehir graben (Fig. 1b), where numerous geothermal wells have been drilled by MTA (General 273 

Directorate of Mineral Research and Exploration of Turkey) or by private companies since the 274 

1980s, and where two most important geothermal fields are recognized (Salihli and Alaşehir, Fig. 275 
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4a). We will then focus on the Germencik and Salavatlı geothermal fields located along the 276 

northern margin of the Büyük Menderes half-graben (Fig. 1b). Finally, the structural framework 277 

of the Seferihisar geothermal field is also provided (Fig. 1b). A brief description of all these 278 

geothermal systems is presented in the Appendix. They are generally characterized by medium- 279 

to high-enthalpy, with reservoir temperature values ranging from 120 to 287 °C (e.g. 280 

Karamanderesi, 2013; Baba et al. 2015). 281 

 282 

4.1. Structural features of the Salihli geothermal field 283 

At regional-scale, the Alaşehir detachment is one of the best-preserved crustal structure in 284 

the study area (Fig. 5a). Both metamorphic rocks and Miocene intrusions in the footwall of the 285 

detachment present a pervasive network of kilometric to millimetric structures developed from 286 

the ductile-brittle transition to the brittle deformation field during extension and exhumation (Fig. 287 

4b) (e.g. Emre 1992; Hetzel et al. 1995a; 1995b; Isik et al. 2003). Close to the main contact 288 

between the Menderes basement rocks and Neogene sediments, the foliation of basement rocks 289 

strikes E-W with low to moderate dip values toward the north and carries a N-S trending stretching 290 

lineation (Fig. 4). Most ductile kinematic indicators are top-to-the-NNE. All lithologies are 291 

deformed by asymmetric structures and folds at various scales consistent with top-to-the-NNE 292 

shear sense such as asymmetric boudinaged quartz veins within tight overturned folds indicating 293 

a top-to-the-NE sense of shear (Fig. 5b). On the other hand, ductile-brittle fault system 294 

corresponds to listric and gently dipping centimetric to decametric faults within schist and marble 295 

layers that may reactivate and (or) cross-cut low-angle ductile shear zones (Fig. 5c). This brittle 296 

stage is associated with slickenlines and kinematic indicators indicating also top-to-the-NNE 297 

motion (Fig. 4a, #2). Finally, the brittle detachment fault plane is well observed in the landscape 298 

(Fig. 5a), controlling the present-day topography of the CMM at regional scale and strikes E-W 299 

with a moderate dip toward the north (Fig. 4a, #8). It is associated with a thick (approximately 50 300 
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cm to 3 m) zone of cataclasites or a thick quartz-breccia vein (Fig. 5d), which locally hosts Sb-301 

Hg(-Au) ore deposits (Larson and Erler 1993). Fault plane and associated striae (e.g. Fig. 4a, #3 302 

and #4) are consistent with a NNE-SSW extension. In addition, vein networks mostly filled by 303 

calcite or quartz in the footwall of the detachment (Fig. 5e) present an approximately NW-SE (i.e. 304 

parallel to the detachment) and NE-SW preferred orientations (i.e. perpendicular to the 305 

detachment) (Fig. 4a, #2). This shows evidence of a significant older fluid circulation in the fault 306 

plane during the exhumation of the deeper parts of the Menderes Massif. 307 

In the entire studied area, faults that are particularly abundant play a major role in the 308 

formation and development of longitudinal and transverse valleys (e.g., Kurşunlu valley, Alaşehir 309 

graben). Three types of plurimetric to kilometric faults, particularly frequent in this area, are 310 

observed in the field (Fig. 4a). The first one is characterized by NNE-dipping normal faults (i.e. 311 

E-W trending) and the second one is defined by sub-vertical N-S striking strike-slip faults (Figs. 312 

4a, #2; 6a and 6b). In the second case, slickenlines are gently plunging consistently 15 to 30°N 313 

(Figs. 6a and 6c) and kinematic indicators indicate a main dextral movement with a slight normal 314 

component. Locally, these faults are accompanied with a cluster of calcite veins as dilational jog 315 

structures (Fig. 6d). The third type of faults consists in a set of conjugate faults strikes NE-SW 316 

and dips with an approximately 60° mean dip angle, is well developed in quartzite levels in the 317 

Kurşunlu valley (Fig. 4a, #2). The different fault sets, including the detachment and the associated 318 

high-angle E-W conjugate normal faults and the N-S strike-slip faults to NE-SW faults, are 319 

compatible with N-S extension, where strike-slip faults act as transfer zones between extensional 320 

blocks. All these faults affect the basement and the Neogene sediments, but the chronologic 321 

relationships are not clear in the field. 322 

 323 
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4.2. Structural features of the Alaşehir geothermal field 324 

The Alaşehir geothermal field is located between Alaşehir and Salihli in the eastern part of 325 

Alaşehir graben. It is one of the most important geothermal areas characterized by the highest 326 

reservoir temperature (287 °C) ever reached in Turkey (in a deep well, 2750 m, from Baba et al. 327 

(2015), Table 1). As for the Salihli geothermal field, the recent tectonic activity is assumed to 328 

control the location of the thermal springs and related geothermal reservoirs (Bülbül et al. 2011). 329 

In this area, the detachment fault plane is attested by the development of a thick zone (~ 1 m) of 330 

cataclasites (Fig. 7a). It consists of yellow and red foliated cataclasites directly overlain by 331 

unaltered Neogene sediments (Fig. 7b). Close to the kinematics recorded in the area of Salihli, 332 

striae are compatible with a NE-SW extension (Fig. 7a and 4, #7). Additional low-angle normal 333 

faults in the hanging-wall of the detachment are observed between 1 metre-thick cataclasites and 334 

sediments (Figs. 7c, 7d and 7e). Locally pseudotachylytes are observed (Fig. 7f) and medium-335 

angle normal faults in sediments merge with the main fault plane (Fig. 7g). According to Hetzel 336 

et al. (2013), this brittle deformation stage observed in the Alaşehir detachment system was active 337 

from ~ 9 Ma to 4 – 3 Ma. This may be consistent with rapid Pliocene cooling inferred from 338 

published thermochronological data (Gessner et al. 2001b; Ring et al. 2003). While the Alaşehir 339 

detachment is well defined in the landscape at Salihli, it is however often crosscut by a set of E-340 

W high-angle north-dipping normal faults in the Alaşehir area (Figs. 4b and 8a). Brittle structures, 341 

shallow- and steeply-dipping faults present a marked consistency of the extension direction (Fig. 342 

4a, #6). Locally, fluid circulation occurs along fault planes (Fig. 8b), suggesting that these faults 343 

may also control meteoric fluid circulations. The absence of any hot springs close to the E-W 344 

striking faults suggest that these faults play as recharge pathway for reservoirs at depth.  345 

Furthermore, another set of faults is observed at some places. At landscape-scale, in the 346 

south-east of Alaşehir, we identified triangular facets within synrift sediments due to NW-SE 347 

trending high-angle normal fault (Fig. 8c). The latter are horizontally offset from 2 km toward the 348 
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south in the Narlıdere area, defining a NE-SW transfer fault (Figs. 8c and 1b for the location). 349 

Similar features are also observed in the Dereköy traverse valley, close to the Horzum Turtleback 350 

structure described by Seyitoglu et al. (2014). There, we identified a N-S striking high-angle fault 351 

(Fig. 8d). Fault kinematics indicates an early sinistral movement followed by normal movement 352 

(Figs. 4a, #5 and 8d). The synrift sediments are offset southward and face the Paleozoic basement 353 

of the detachment footwall across the valley, indicating the presence of left-lateral strike-slip fault 354 

in the vicinity of the Horzumsazdere geothermal system (black line in Fig. 4a). Close to the 355 

detachment and to these N-S strike-slip faults, a weak fumarole activity associated with a probable 356 

acidic alteration (with the typical H2S smell) affects Neogene sediment deposits (Fig. 8e). Down 357 

in the valley, several thermal springs (medium temperatures ranging around 25 and 30 °C) reach 358 

the surface in Neogene sediments where they form travertines. 359 

 360 

4.3. Structural features of the Salavatlı and Germencik geothermal fields 361 

South of the CMM, the Salavatlı and Germencik geothermal fields (Table 1 for more 362 

information) are respectively located on the northern flank of the Büyük Menderes graben 363 

between Sultanhisar and Köşk (Figs. 1b and 9), and at 20 km west of Aydin (Figs. 1b and 10). 364 

Similar to the previous geothermal systems, both Salavatlı and Germencik geothermal systems 365 

are located close to the Büyük Menderes detachment (Fig. 1b). Even though the age of top-to-the-366 

north ductile deformation is still controversial (e.g. Bozkurt 2001; Gessner et al. 2001a; Seyitoglu 367 

and Işik 2015), all studies indicate a second top-to-the-south ductile-brittle shearing event (e.g. 368 

Hetzel et al. 1995a; 1995b; Gessner et al. 2001b; Bozkurt and Sözbilir 2004). 369 

In details, the geological sequence of the Salavatlı geothermal field is composed of Neogene 370 

sediments deposited over schist-marble sequences and augen gneiss unit (Fig. 9a). Even though 371 

the major structural feature does not clearly outcrop in this area due to strong neo-tectonic 372 

overprint, the Büyük Menderes detachment was identified in two different drill holes 373 
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(Karamanderesi and Helvaci 2003). According to this study, the marble sequences in the 374 

Menderes massif at ~ 800 m depth host the main geothermal reservoirs. Our new field 375 

observations suggest that the general structure and the topography are mainly induced by a set of 376 

major normal- to strike-slip faults. These faults control the first-order distribution of lithologies 377 

of the two main units (augen gneiss and schist-marble sequences, Fig. 9a). The first ones are NW-378 

SE trending faults with opposite dips (Figs. 9b and 9c), showing kinematic indicators of a normal 379 

movement. Here, kinematic indicators are compatible with a top-to-SW motion. The second ones 380 

are the most important and they strike N-S to NE-SW (Fig. 9c). Locally, slickenlines are well 381 

preserved and indicate a sinistral movement. These high-angle faults are characterized by a thick 382 

fault gouge and crosscut all earlier structures, such as NW-SE trending faults, and also the 383 

detachment (see the profile of Karamanderesi and Helvaci 2003). Close to these main structures, 384 

hot springs are often observed (Fig. 9a), suggesting a first-order control on the emergence of 385 

thermal fluids. In addition, the presence of N-S to NE-SW trending travertine deposits in higher 386 

altitudes (Karamanderesi and Helvaci 2003) confirm the key role of such structures. 387 

The Germencik geothermal field is characterized by numerous fumaroles, hot springs, 388 

travertines and widespread hydrothermal alterations (e.g. Çamurlu and Bozköy hot springs; Fig. 389 

10a). The Menderes basement rocks are mainly composed of Paleozoic metamorphic rocks such 390 

as the augen gneiss and schist-marble sequences, overlain by Neogene sediments. North of 391 

Çamurlu hot spring (Fig. 10a), the main foliation of metamorphic units strikes E-W and the 392 

Neogene sediments dip slightly toward the north (Fig. 10a). Locally, travertines are located close 393 

to this contact (Fig. 10a), showing that it acts as a major drain for fluid circulation. In addition, in 394 

the vicinity of Bozköy, the main foliation of metamorphic units strikes NW-SE with a low dip 395 

values (~ 5 ‒ 10°) (Fig. 10b), whereas the Neogene sediments dips to the south (Fig. 10c). Such 396 

an unexpected change of dip direction may suggest a fault drag area and the possible presence of 397 

a N-S high-angle strike-slip transfer fault (Fig. 10a). Here again, the occurrence of geothermal 398 
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surface expressions suggests that this type of faults favours fluid circulation (Fig. 10d). More 399 

recent tectonic features are also well expressed and consist in the development of E-W striking 400 

high-angle normal faults (Figs. 10a and 10f). Some of them are characterized by dip values 401 

(reaching ~ 60°; Fig. 10e). When such faults root in the Büyük Menderes detachment at depth 402 

(Fig. 10e), others dip steeper (~ 80°) and crosscut it. This latter set of faults has allowed for 403 

instance the exhumation of the Kızılcagedik Horst. This area is also characterized by numerous 404 

deep wells (see location of Ömerbeyli in Fig. 10a), and the highest temperatures were reached in 405 

the Büyük Menderes graben (~ 230 °C at a depth of 975 m and 1196 m; Filiz et al. 2000). Here, 406 

the E-W trending high-angle faults generate a wide fractured zone. 407 

 408 

4.4. Structural features of the Seferihisar geothermal field 409 

The Seferihisar geothermal field (Table 1 for more information) is located in the northern 410 

flank of the Büyük Menderes graben between Sultanhisar and Köşk (Figs. 1b and 11a). The 411 

basement of the Menderes Massif in this area is made of metamorphic rocks such as schists, 412 

marbles and local phyllite intercalations (e.g. Dora et al. 1990; Güngör and Erdoğan 2002) topped 413 

by the Bornova flysch mélange. This area is similar to the central part of the Menderes Massif, 414 

but shows some differences such as lower topography and a hidden tectonic contact localized 415 

between the Bornova flysch mélange and the Menderes Massif as suggested by Erdoğan (1990). 416 

We briefly present below the relationships between hot spring locations and faults, and we refer 417 

the reader to the study of Ring et al. (2017) for more information about the Miocene-to-Present 418 

tectonic evolution. Field observations show that hot springs are generally located close to NE to 419 

SW striking strike-slip faults (Figs. 11a, 11b and 11c). Kinematic indicators suggest a dextral 420 

strike-slip movement with lineation pitch ranging from 10°S to 22°S (Fig. 11d). In addition, these 421 

faults are characterized by multi-metric damaged zones, locally strongly altered, attesting for 422 

recent fluid circulation. Dextral strike-slip movement is associated with dilational jogs and pull-423 
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apart structures (Fig. 11a), probably close to the intersection zones between N-S strike-slip fault 424 

and the early contact between the Bornova mélange and the Menderes basement rocks (i.e. the 425 

tectonic contact descibed by Erdoğan (1990)). Furthermore, in places, E-W trending fault 426 

corridors cut these first faults (Fig. 11e). These later sub-vertical faults show several sub-vertical 427 

and sub-horizontal slickenlines, with plunging values ranging from 85°W to 49°E and 24°E to 428 

4°W, respectively (Fig. 11e). The calculated paleo-stress analysis suggests that kinematic 429 

indicators are compatible with a NW-SE extension (Fig. 11a). All along the main road between 430 

Cumhuriyet and Orhanlı (Fig. 11a), sandstones of Bornova mélange usually display a strong 431 

alteration. Hence, it seems reasonable to assume the existence of others faults, which would be 432 

parallel to the previous one in this area. 433 

 434 

5. Discussion 435 

5.1. The Menderes Massif Core complex and associated geothermal fields 436 

The genesis of a geothermal system requires source of high temperatures, reservoirs of large 437 

quantity of hot fluids (permeable structures and lithology) and its caprock. All of these features 438 

are present in the Menderes Massif, thus explaining the geothermal potential. As seen previously, 439 

thermal anomalies show different wavelengths at different depths in the Menderes Massif (i.e. 440 

crustal-scale to geothermal field-scale). Whereas the short wavelength anomalies result from 441 

shallow depth processes and may be associated with N-S transfer faults, the long wavelength (i.e. 442 

crustal-scale or mantle-scale) result from deep processes and may be associated with detachments 443 

activity. Therefore, as for many geothermal fields in western Turkey and abroad, faults appear to 444 

represent a first-order control on fluid flow and heat transport, and thus on the location of 445 

reservoirs at depth and hot springs at the surface as leak of reservoir (Fig. 12a). In the following, 446 

we first focus on detachments at crustal-scale, then we highlight the role of N-S transfer faults at 447 

basin-scale. 448 
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 449 

5.1.1. Crustal-scale: the role of detachments 450 

At the scale of the Menderes Massif, the presence at the surface of numerous hot springs 451 

close to E-W striking, northward and/or southward dipping low-angle normal fault (Fig. 1b) 452 

suggests that detachments control fluid circulations. These latter are controlled by the current 453 

global structure of the Menderes core complex resulting from a multi-staged activity of the 454 

detachments since the Miocene. Indeed, ongoing tectonic lets the detachment systems active, and 455 

meanwhile, (i) detachment faults became incrementally split into many sections separated by 456 

transfer faults and (ii) different sets of faults (i.e. E-W striking faults) merge at depth into the 457 

detachments (see Seyitoglu et al. 2002). This complex tectonic evolution may induce an intense 458 

hydrothermal activity (e.g. silicified detachment in some areas), for instance within thick damage 459 

zone (e.g. up to 10 m of cataclasites associated with the Alaşehir detachment are present in the 460 

hanging-wall and the footwall of the detachment, Fig. 7) reaching ~ 10 km (containing the ductile-461 

brittle deformation associated with the detachment) according to Bozkurt (2001). One can 462 

question whether such detachment fault systems have acted as important conduits for fluid 463 

circulations since the Miocene. In any case, these structures generate zones of high fracture 464 

density and permeability that channel and host significant fluid flows in the upper crust. They are 465 

also connected with most superficial structures (i.e. N-S transfer faults) and probably seem highly 466 

effective for heat transport and fluid circulation at deeper depth toward specific reservoirs (Figs. 467 

12a and 12b).  468 

Many studies on fluid compositions (Famin et al. 2004; Mulch et al. 2007; Gottardi et al. 469 

2011; Hetzel et al. 2013; Quilichini et al. 2015) suggest that low-angle detachments permit 470 

pervasive meteoric fluid flow downward and/or upward along detachment fault planes, reaching 471 

depths of 10 – 15 km. In addition, isotopic studies show the presence of small amounts of deep 472 

CO2, H2S, B and He in thermal waters (see our compilation, section 3.2). We thus suggest that 473 

large-scale detachment faults may represent the conduits allowing the escape of helium to the 474 
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surface in the Menderes Massif. In others words, fault-controlled circulation of meteoric fluids is 475 

the dominant mechanism to explain the migration of mantle volatiles from the ductile-brittle 476 

transition zone to the near-surface (Fig. 12b) (Mutlu et al. 2008; Jolie et al. 2016). Brittle fault 477 

systems are thus probably connected at depth with ductile shear zones (Fig. 12b). 478 

Ductile shear zones may indeed represent efficient pathways for hydrothermal fluids (e.g. 479 

Oliver, 1996; Taillefer et al. 2017). Two main mechanisms explain the fluid migration in the 480 

deeper part of the crust: deformation-driven flow (Oliver, 1996) and thermally-driven flow (i.e. 481 

buoyancy-driven) through the crust, which is favoured by the high (i) permeability of detachments 482 

that collect and bring up deep hot fluids and (ii) temperature induced by the shear heating 483 

mechanism. This latter term refers to the generation of heat from the mechanical work of tectonic 484 

processes (Scholz 1980). It thus increases with slip rate, friction coefficient and stiffness of 485 

materials (Leloup et al. 1999; Souche et al. 2013). Considered as a most rapidly deforming regions 486 

(e.g. Reilinger et al. 2006), western Anatolia domain would favour the development of such 487 

mechanism at crustal-scale. Indeed, neo-tectonic activity in the Menderes Massif is characterized 488 

by earthquakes occurring in the shallow crust, with the mean depth being shallower in the Simav 489 

domain (9.7 km) compared to the western domain (11.9 km) and the central Menderes (11.2 km) 490 

domain (Gessner et al. 2013). Brittle deformation is still active (e.g. the Gediz detachment, 491 

Buscher et al. (2013)) and may locally occur under high temperatures conditions (e.g. 580 °C at 492 

~ 10 km, Bilim et al. 2016), probably close to the ductile-brittle transition zone. The numerous 493 

ductile shear zones may have had (and perhaps still have; e.g. Ring et al. 2017) a strong and 494 

continuous thermal effect at depth, explaining also the anomalously shallow position of Curie-495 

point depths. Hence, in these areas heat could also be generated by tectonic processes, probably 496 

along the brittle-ductile shear zones in the upper levels of the continental crust (Fig. 12b) (Scholz 497 

1980). Although the contribution of shear heating at crustal scale is debated (Lachenbruch and 498 
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Sass 1992), more studies would be needed to explore this possibility. In particular, the amount of 499 

heat produced and the time constants of such heat production should be addressed. 500 

Furthermore, using a numerical model of coupled fluid flow and heat transport processes, 501 

Magri et al. (2010) showed that temperature patterns in the Seferihisar-Balçova area result from 502 

both interaction of convective flow (i.e. buoyancy-driven flow) and meteoric recharge induced by 503 

the horst (i.e. mixed convection) in the shallower crust. Recently, Roche et al. (2018) showed that 504 

high temperatures at 6 km depth (300 – 350 °C) are sufficient to allow a high fluid density contrast, 505 

permitting upward flow along the low-angle fault, using also 2-D numerical models (see Fig. 8 in 506 

their study). This implies that buoyancy-driven flow is superimposed to topography-driven flow 507 

in some places. This case is, for instance, well observed in the Seferihisar geothermal systems 508 

where the topographic gradient related to the formation of MCC appears to be negligible. This 509 

implies that the observed temperature patterns result mainly from the thermally driven flow within 510 

permeable faults. In all cases, hot fluids in the detachments will further enhance temperature 511 

increase in the upper part of the fault zone, thus generating high thermal gradients in these areas. 512 

For instance, Gottardi et al. (2011) estimated high temperature gradient of ~140 °C/100 m across 513 

the Miocene Raft River shear zone in the United States, as revealed by isotope thermometry. 514 

There, the geotherm is quasi-stable over a long time duration. As a consequence, it raises the 515 

question whether similar geothermal fields in the Menderes Massif could have been active during 516 

millions of years. 517 

Additionally, it is clear that permeability related to fault zones architecture is a first-order 518 

control on fluid flow in the upper crust (e.g. Caine et al. 1996). Our study shows that the thick 519 

siliceous microbreccia of the Alaşehir detachment fault plane (Table 2) acts as cap fault of the 520 

fluid circulating below this plane. Thus, depending on the area, the detachment can be considered 521 

at kilometric-scale as a combined “conduit-barrier” and as a “localized conduit” (Caine et al. 522 

1996), where the conduit corresponds to the thick shear zone and the barrier is associated with the 523 
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fault plane and/or with the hanging wall of the detachment. Depending on the pressure gradients, 524 

the flow within the detachment may be characterized by horizontal-flow according to normal 525 

kinematic and related dilatancy (Fig. 12a). In both cases, the high permeability in the shear zone 526 

favours fluid circulation (e.g. in marbles levels through karstification process in the Menderes 527 

Massif) and thus generates secondary reservoirs (Fig. 12a).  528 

 529 

5.1.2. Basin-scale: the N-S transfer faults 530 

Based on our structural observations, we highlight that strike-slip faults control many 531 

geothermal reservoirs in depth, related to hot springs and travertine deposits at the surface. In 532 

terms of geometry, for instance, Çiftçi and Bozkurt (2010) suggested, from a seismic profile 533 

interpretation, the existence of two kilometric transfer faults with a large normal component in 534 

the Alaşehir graben (Fig. 4a). These transfer faults correspond to the location of several travertines 535 

oriented NW-SE and NE-SW and hot springs at the surface, which are respectively associated 536 

with the Urganlı (Temiz and Eikenberg 2011) and Alaşehir geothermal field (Fig. 4a). Kaya 537 

(2015) also suggests that the Tekkehamam geothermal field (located in the southern part of the 538 

Büyük Menderes graben, Fig. 1b) is associated with a N-S transfer fault that cuts both the 539 

basement and Neogene sediments. Thus, this set of faults is a good candidate to act as conduit for 540 

fluid circulation when hot springs and related travertines are located far from the detachment (Fig. 541 

12a; Table 2). Here, horse-tail termination of these strike-slip faults (see more details in Faulds et 542 

al. 2011), generates many closely spaced faults that locally increase permeability, favouring the 543 

growth of reservoirs. 544 

Although no clear chronology between detachments and the N-S strike-slip transfer zones 545 

can be observed in the field, we favour a contemporaneous and ongoing development of these 546 

faults systems during the development of the sedimentary basin according to Oner and Dilek 547 

(2013). They are mainly found at the foothills of the main Menderes mountains, crosscutting the 548 
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detachments in high topographic zones. Nonetheless, we suggest that these faults may also root 549 

to detachments at deeper depth (Fig. 12a). There, pull-apart structures, en échelon and relay-ramp 550 

faults may be locally developed, generating dilational jogs with vertical pitch that focus fluid 551 

circulation and thus geothermal upflow (Fig. 6d and Fig. 11c). In addition, reservoirs are 552 

commonly focused at the dilational junction between detachments and nearby N-S strike-slip 553 

faults or within the strike-slip faults (e.g. Cumalı fault, Figs. 11a and 12a). 554 

To sum-up, these faults define several hundred meters wide relay zones where faults are 555 

considered as “distributed conduits” (Caine et al. 1996). They are characterized by multiple minor 556 

faults, connected with major structures where fluids can flow through highly fractured 557 

metamorphic rocks thanks to the seismic pumping mechanism (e.g. Sibson et al. 1975; McCaig 558 

1988; Famin et al. 2005). Consequently, we refer hereafter to these sinistral or dextral strike-slip 559 

faults as the “geothermal transverse and transfer faults” related to main reservoirs (Fig. 12a). 560 

Hence, these faults should be used as a main guide for geothermal exploration. This hypothesis is 561 

opposed to the idea of Gessner et al. (2017), suggesting that NNE-SSW-orientated lineaments do 562 

not have a significant role in fluid flow pattern. 563 

 564 

5.2. Possible fluid pathways in the Menderes Massif: from the mantle to the geothermal 565 

reservoir 566 

In this study we have emphasized two types of control on hot springs and related geothermal 567 

fluid flow in the Alaşehir, Büyük Menderes and Cumaovası basins: a structural control and a 568 

lithological control (Table 2), which is also determinant to understand the location of hot springs 569 

and to explain the position of reservoirs at depth. In the following, we first propose a fluid pathway 570 

at the scale of the Menderes Massif (Fig. 12a) and then we mention a possible long-live duration 571 

for this type of systems. 572 

 573 
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5.2.1. Source to sink 574 

Based on structural analyses of field data and isotopic distribution of waters, we suggest 575 

similar pathways of fluids for the Alaşehir and the Büyük Menderes half-grabens, that could also 576 

extend to the Simav graben and Cumaovası basin: meteoric cold waters and/or sea waters (i.e. for 577 

the Seferehisar case) circulate downwards along E-W high-angle to listric normal faults (e.g. 578 

Salihli and Alaşehir geothermal systems), implying that such faults control the meteoric recharge 579 

of deeper reservoirs (Fig. 12a). More generally, meteoric water infiltration along fractured rocks 580 

of the basement of the Menderes Massif is controlled by (i) the footwall topography gradient 581 

induced by MCC exhumation, and by (ii) the stress regime in the crust, allowing recharge and 582 

hydrothermal fluid circulation. Then, temperature of fluids increases progressively. Hot fluids can 583 

circulate along the main detachments (i.e. Simav, Alaşehir and Büyük Menderes detachments) 584 

related to karstified marbles or/in fractured rocks of the basement. During this stage, the 585 

geochemical properties of meteoric waters are modified and their composition (e.g. Na-HCO3 586 

type) is mainly controlled by calcite dissolution in the marbles layers of the Menderes Massif 587 

under high temperature conditions. Locally, some exchange with mantle-He, CO2, B and H2S 588 

isotopes could occur in deep parts of the crust in the ductile-brittle transition zone (Fig. 12b). 589 

Through a seismic pumping mechanism (e.g. Sibson et al. 1975; McCaig 1988; Famin et al. 2005), 590 

hydraulic gradients may force fluid downward across the ductile-brittle transition using the high 591 

permeability of microcrack networks (e.g. after earthquake rupture). After a complex deep fluid 592 

pathway, thermal waters may then recharge reservoirs of the metamorphic rocks of the Menderes 593 

at depth (Figs. 12a and 12b). 594 

Different lithologies may behave as reservoirs (Table 1). Reservoirs are herein defined by 595 

highly fractured but also by karstified carbonate layers of the CMM (e.g. Salihli, Alaşehir, 596 

Germencik, Salavatlı…; Tarcan et al. 2000). For instance, the high-temperature geothermal 597 

reservoir observed in Alaşehir, is located in the upper section of the Paleozoic basement, with 598 
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feeder zones in the upper Paleozoic carbonates at approximately 1150 m and 1600 m of depth 599 

(Akin et al. 2015). Fractured metamorphic rocks such as quartzite can also act as an aquifer for 600 

geothermal fluid (e.g., Kızıldere; Simsek 2003). In both cases, the main reservoirs are located just 601 

below the detachments, which is in some places silicified (Fig. 12a). There, blind geothermal 602 

reservoirs may also form. Indeed, according to Magri et al. (2010), when hydrothermal plumes 603 

reach the upper impermeable boundary (e.g. the Alaşehir detachment), over-pressured blind 604 

geothermal reservoirs are formed. This implies that other geothermal systems in the Menderes 605 

Massif are yet to be discovered. In order to fully understand these geothermal systems, stress 606 

modelling related to faulting is necessary to bring new constraints on the evolution of fluid 607 

pathways (Moeck et al. 2009). In addition, other reservoir types may be developed in the hanging-608 

wall of detachments. For example, in the Cumaovası basin, it is made of fractured submarine 609 

volcanics of the Bornova mélange (Tarcan and Gemici 2003). Because of the high permeability 610 

units in Neogene continental silicoclastic rocks, secondary aquifers may also occur (Fig. 12a). 611 

Indeed, Neogene sediments may have highly variable permeability, but they usually rather display 612 

mega-cap rocks related to underlying geothermal system (Tarcan et al. 2000; e.g. the Alaşehir 613 

geothermal system). 614 

After a short time of residence (around 20 ‒ 50 years, Simsek 2003) in different kinds of 615 

reservoirs, hot thermal fluids can flow along the dilational intersections or junction between the 616 

N-S strike-slip faults and the detachment, and then emerge at the surface (e.g. Kurşunlu, Sart-617 

Çamur, Germencik hot springs) (Fig. 12a). In this case, the direction of flow is mainly determined 618 

by the prevailing permeability and by the regional stress field. Similar features of fluid flow 619 

pattern are observed in the Cumaovası basin where the NE-SW trending strike-slip faults affected 620 

also the detachment, forming dilational jogs and favouring hot water circulation from karstic and 621 

fractured reservoirs to the surface (e.g. Figs. 11b and 11c). 622 

 623 
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5.2.2. A long-lived duration geothermal Province? 624 

Hetzel et al. (2013) suggested that the Alaşehir and Büyük Menderes detachments recorded 625 

a long-lived brittle deformation from around 22 Ma until 4 – 3 Ma. Hence, the low-angle crustal 626 

normal faults were (still) active over a long period of time. We thus suggest that detachments 627 

controlled magma ascent (e.g. Salihli granodiorite, Egrigöz granite) as well as fluid circulation in 628 

the Menderes Massif during the Miocene. Nonetheless, the presence of Kursunlu Sb-Hg(-Au) 629 

deposit (Larson and Erler 1993) located within the Alaşehir detachment system, implies a drastic 630 

change in the fluid pathway evolution compare to the Miocene. Indeed, according to Larson and 631 

Erler (1993), Alaşehir detachment conveyed deep circulation of shallow hydrothermal fluids (i.e. 632 

meteoric origin) with a minor component of crustal and mantellic origin, thus similar to the 633 

present-day hot springs. Hence, the mineralizing fluid seems to be not related to the Miocene 634 

intrusions. To better characterize this evolution, a detailed study of such deposit would be useful, 635 

bringing new constraints on the structural control of the mineralization and the timing of 636 

mineralizing processes. This imply that detachments control fluid pathways over millions years 637 

(episodic or continuous mineralized pulse(s)?). 638 

 639 

5.3. Origin of heat source in the Menderes Massif 640 

At geodynamic-scale, the origin of the thermal anomalies propagating all the way to the 641 

surface could reflect both slab-rollback and slab tear below western Turkey. Heat can be generated 642 

by many processes, including anomalous mantle heat flow mainly due to asthenospheric flow and 643 

shear heating (Fig. 12c) (Roche et al. 2018). Based on heat conduction, the time scale tdiff is 644 

defined by the following equation:  645 

tdiff = L²/ к                    (1) 646 

where L is Moho depth (meter) and к is the thermal diffusivity (m² s-1). Considering a Moho depth 647 

of ~ 25 km under the Menderes Massif (e.g. Karabulut et al. 2013) and taking a thermal diffusivity 648 
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(к) of 10-6 m² s-1, the current thermal anomaly observed at the surface (shown by the presence of 649 

numerous sources and gas events) could reflect the thermal expression of a 20 Ma old slab tear at 650 

Moho depth. In other words, the heat source at the base of the crust coupled to the exhumation of 651 

the MCC is induced by slab dynamics since the Miocene as suggested by previous authors (e.g. 652 

Jolivet et al. 2015; Menant et al. 2016; 2018; Roche et al. 2018). This increase of temperature 653 

recorded in the mantle and in the crust favours the emplacement of a large zone of migmatization 654 

and/or magmatic underplating at the base of the crust. This hypothesis is also consistent with: 655 

(i) the presence of high temperatures (~ 580 °C) at shallow depths (~ 10 km under the 656 

Menderes; Aydin et al. 2005; Bilim et al. 2016); 657 

(ii) the current models of Miocene slab tearing in this region (Jolivet et al. 2015). 658 

(iii) the enrichment of mantle-He (Mutlu et al. 2008), B and sometimes high content of 659 

CO2 and H2S within all thermal waters (Vengosh et al. 2002); for instance, mantle-660 

He values suggest that helium is probably transferred to the lower crust by degassed 661 

fluids from deep mantle melts (Mutlu et al. 2008); these values comparable to that 662 

observed in hydrothermal fluids from the western part of the Basin & Range 663 

Province (4 ‒ 25% mantle-He) where active volcanism is also absent (Kennedy and 664 

Soest 2007). 665 

To sum-up, the lack of significant magmatic activity in this area shows that the upper crust 666 

and related magmatic bodies is not a direct heat source for these geothermal systems (Faulds et 667 

al. 2010). Nevertheless, based on 3-D Vp imaging of the upper crust beneath the Denizli 668 

geothermal field, Kaypak and Gökkaya (2012) showed that intrusive magmatic bodies may also 669 

explain the heat source of few geothermal systems in this area. According to this study and others 670 

(e.g. Faulds et al. 2010; Kaya 2015; Gessner et al. 2017) the spatial distribution of hot springs and 671 

fumaroles is associated with the tectonic activity. Using the classification of Moeck (2014), the 672 

“geothermal Province” of the Menderes Massif can be considered as a fault controlled system in 673 
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an extensional domain, where convection occurs along the transfer fault systems. Although most 674 

of existing models of geothermal heat source suggest a probable magmatic intrusion in the upper 675 

crust, this study argues that the tectonic activity induced by subduction dynamics controls the 676 

spatial distribution of heat in the Menderes massif (Fig. 12c) (e.g. Kaya 2015; Gessner et al. 2017; 677 

Roche et al. 2018). We thus think that this area may be used as a reference case to better 678 

understand the amagmatic geothermal systems/Provinces. 679 

 680 

5.4. An underestimated geothermal potential? 681 

It is clear that dense fracturing caused by tectonic activity implies a modification of the 682 

regional fluid flow, which is controlled by the state of stress in the crust, and influences the 683 

localisation and the typology of reservoirs. Reilinger et al. (2006) have estimated fault-slip rates 684 

in a block model consisting of 19 plates/blocks and using M>4.5 earthquakes above 35 km. Based 685 

on GPS-derived velocity field data, they suggested a total extension of approximately 25 mm/yr 686 

corresponding to 10.9 ± 0.3 mm/yr for the left lateral strike-slip component and 14.5 ± 0.3 mm/yr 687 

of pure extension. This rapid relative motion is twice the rate reported from the Basin & Range 688 

Province where Bennett et al. (2003) estimate relative motion of 9.3 ± 0.2 mm/yr with high strain 689 

rates, using the same method (i.e. GPS-derived velocity field data). Faulds et al. (2012) showed 690 

that the regional pattern of geothermal activity in the same area is directly correlated with strain 691 

rates. If we compare, for instance, the total discharge of the Seferihisar geothermal field (e.g. 100 692 

‒ 150 L/s to 300 L/s according to Tarcan and Gemici (2003)), located in a seismically active zone 693 

(e.g. see compilation from Özkaymak et al. 2013) is twice to four times that of the Salihli 694 

geothermal field (2 – 80 l/s; Özen et al. 2012), which is a less active zone. Paradoxically, the 695 

topography is less steep in Seferihisar area than in Salihli area. Therefore, we suggest that active 696 

deformation could affect fluid velocity in the upper crust, improving the flow rates of a geothermal 697 

system. 698 
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Furthermore, the Basin & Range Province is quite similar to the Menderes Province because 699 

MCCs are exhumed along low-angle normal faults, and represent a favourable setting for 700 

amagmatic high enthalpy geothermal resources (Roche et al. 2018). In addition, the origin of the 701 

heat of these systems may be also associated with a deeper source induced by subduction 702 

dynamics (i.e. magmatic underplating under the overriding plate; Wannamaker et al. 2006). 703 

Because of the similarities between these both geothermal Provinces, we suggest that the 704 

geothermal potential in the Menderes is probably underestimated (~ 820 MWe, Geothermal 705 

Resource Association estimated in 2018). Indeed, the current geothermal installed capacity of the 706 

Basin & Range province is estimated at ~ 2349 MWe (Bertani, 2016). 707 

 708 

6. Conclusion  709 

Our work is based on a multiscale study and on a compilation of geothermal and structural 710 

observations in the whole Menderes Massif. It provides a new vision on the role of a large-scale 711 

thermal anomaly below the Menderes Massif and more generally in the Eastern Mediterranean 712 

region. We suggest that such regional thermal anomalies at the origin of the Menderes geothermal 713 

Province result from the tectono-thermal evolution of the Aegean subduction zone at depth. This 714 

Province is characterized by an intense hydrothermal activity, favoured by both a high elevation 715 

area and a neo-tectonic activity in absence of magmatic input. Such proxies are related to the 716 

Menderes Core Complex evolution, which is structured by three main detachments. We also have 717 

identified, at crustal-scale, the essential role of the low-angle normal faults, corresponding to a 718 

permeable channelized fluid flow systems for ascending fluid flows. N-S transfer faults then 719 

control the position of geothermal systems and should be used as a main guide for geothermal 720 

exploration. In addition, we emphasize that the lithological control is determinant for 721 

understanding the location of geothermal reservoirs, and may have a strong influence in the fluid 722 

circulation pattern of thermal waters. Eventually, we highlight that an episodic model (e.g. seismic 723 
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pumping) and / or a continuous model seem possible over several million years in the Menderes 724 

Massif.  725 
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Tables 1221 

Table1: Catalogue of hot springs and geothermal fields associated with the metamorphic core 1222 

complex formation in the Menderes Massif. ADFP: Alaşehir detachment fault plane. Compilation 1223 

data from Simşek (1984; 2003), Simsek and Demir (1991), Yılmazer and Karamanderesi (1994), 1224 

Karamanderesi (1997; 2013), Özgür et al. (1998a; 1998b), Tarcan et al. (2000); Gemeci and 1225 

Tarcan (2002), Tarcan and Gemici (2003), Yildirim et al. (2005), Kose (2007), Faulds et al. 1226 

(2010), Kindap et al. (2010), Tekin and Akin (2011), Özen et al. (2012), Baba et al. (2014 ; 2015), 1227 

Akin et al. (2015) and Tureyen et al. (2016). 1228 

 1229 

Table 2: Main controls on geothermal fields in the Menderes Massif. BD: Büyük Menderes 1230 

detachment, BM: Bornova Mélange, FC: Fault controlled, FRC: Fracture controlled, FW: Foot 1231 

wall, AD: Alaşehir detachment, HW: Hanging wall, KC: Karstic controlled, MU: Menderes Unit, 1232 

NF: Normal fault. 1233 

 1234 

Figure Captions: 1235 

 1236 
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 1237 

Fig. 1: Tectonic map of Eastern Mediterranean region highlighting the main tectono-metamorphic 1238 

domains and showing location of the study area. Modified from Jolivet et al. (2013) and Gessner 1239 

et al. (2013). (a) Simplified tectonic map showing major thermal occurrences based on a 1240 

compilation of several data sources (Akkuş et al. 2005; Bayram and Simsek 2005, Mendrinos et 1241 

al. 2010 and Andritsos et al. 2015) and spatial distribution of Upper Terciary-Quaternary 1242 
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volcanics rocks (from the geological map of the MTA). Note that white triangles indicates active 1243 

volcanoes. Base maps made with GeoMapApp (https://www.geomapapp.org). Tomographic 1244 

model of Piromallo and Morelli (2003) showing the Vp anomalies at the ~ 100 km depth in the 1245 

bottom right corner of this Figure. The white circle illustrates the schematized position of the slab 1246 

tearing. Note that NAF is the abbreviation for North Anatolian Fault.  (b) Tectonic and geological 1247 

map of the Menderes Massif modified from the geological map of the MTA and Bozkurt et al. 1248 

(2011). Red triangles represent main geothermal areas of the Menderes Massif, from Faulds et al. 1249 

(2010) and Kaya (2015). Thermal spring locations correspond to our study, and to the studies 1250 

from Akkuş et al. (2005) and Bayram and Simsek (2005). Also indicated is the position of the 1251 

Figs. 4, 8c, 9, 10 and 11. Main structures and grabens are indicated in abbreviations: AD (Alaşehir 1252 

detachment); AG (Alaşehir graben); BD (Büyük Menderes detachment); BG (Büyük Menderes 1253 

graben); CB (Cumaovası basin); CMM (Central Menderes Massif); KG (Küçük Menderes 1254 

graben); LC (Lycian contact); OFZ (Orhanlı fault zone); SMSZ (Southern Menderes shear zone); 1255 

SD (Simav detachment) and SG (Simav graben). 1256 

 1257 

 1258 

https://www.geomapapp.org/


49 
 

Fig. 2: δD vs δ18O diagrams. (a) Plot of δD vs δ18O diagram for different water types. The field 1259 

of magmatic water and formation waters are taken from Taylor (1974). The field for magmatic 1260 

waters from the granites of Cornwall is from Sheppard (1977). The meteoric water line is from 1261 

Epstein et al. (1965). The metamorphic water field combines the values of Taylor (1974) and 1262 

Sheppard (1981). Red rectangle indicates the field of all isotopic data from the Menderes Massif. 1263 

(b) Stable isotope compositions of the geothermal reservoir fluids in the studied areas showing 1264 

hot and cold waters wells. Abbreviations: HW (Hot water well), CW (Cold water well). (c) Stable 1265 

isotopes of different geothermal fields in the Büyük Menderes Graben. Abbreviation: UK 1266 

(unknow sampling locations). (d) Stable isotopes of springs in three main basins. Abbreviations: 1267 

HS (Hot spring), CS (Cold spring). Compilation of data from Filiz et al. (2000), Özgür (2002), 1268 

Tarcan and Gemici (2003), Simsek (2003) and Özen et al. (2012). 1269 

 1270 
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 1271 

Fig. 3: Isotopic composition of Helium. (a) Fraction of mantle-He in hydrothermal fluids from 1272 

the Aegean Anatolian domains computed from helium isotopic data, assuming mixing between a 1273 

crustal component (0.04 Ra) and a mantle component (8 Ra), modified from Pik and Marty (2009). 1274 

Helium isotopic data are from Pik and Marty (2009) and Karakuş (2015). (b) R/Ra diagram for 1275 

the Eastern Mediterranean region from Güleç (1988), Güleç et al. (2002), Güleç and Hilton 1276 

(2006), Mutlu et al. (2008), Pik and Marty (2009) and Karakuş (2015). Black dots showing data 1277 

of the west Anatolian domain, red dots data of the gulf of Corinth, Blue dots data of the magmatic 1278 

arc and white dots data of the back arc region in Greece. In addition, white and black squares 1279 

indicate respectively the Denizli and Kula areas which are located in the Menderes Massif. The 1280 

fields of the three groups of hydrothermal fluids (Pik and Marty 2009), are also presented: I = arc 1281 
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magmatic fluids (>15% mantle-He), II = crustal signature (<1% mantle-He), III = other 1282 

intermediate fluids (2–15% mantle-He). 1283 

 1284 
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 1285 
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Fig. 4: Geological and tectonic map of the Alaşehir graben modified from Asti (2016). (a) Map 1286 

showing main structures: the Alaşehir low-angle normal fault, E-W striking high-angle normal 1287 

faults and N-S striking high strike-slip faults which are described by Çiftçi and Bozkurt (2010). 1288 

Thermal springs and fumarole activity are also located in the map. Brittle structures, foliation, 1289 

veins and fractures are presented in Schmidt’s lower hemisphere equal-area projection. Detailed 1290 

results of the fault slip data inversion are also presented using the Win-Tensor software (Delvaux 1291 

& Sperner, 2003). Also indicated is the position of the Figs. 5, 6, 7 and 8. (b) Cross-sections 1292 

through the northern part of the Ödemiş Massif. Sections are all roughly parallel to the tectonic 1293 

transport. To draw the shape of stratification, we used the bedding data of the Neogene sediments 1294 

from Asti (2016). Colours show different rock types. Cross-sections are indicated by red solid 1295 

lines in Fig. 4a. 1296 

 1297 
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 1298 

Fig. 5: Kinematic of deformation associated with the Alaşehir detachment. (a) Large-scale view 1299 

of the Alaşehir detachment surface close to Salihli area. (b) Asymmetric boudins compatible with 1300 

top-to-the-NNE ductile deformation in marbles layers. (c) Representative outcrop recognized as 1301 

demonstrative of a brittle stage subsequently developed after the ductile one where shear zones 1302 

are locally reactivated in the brittle field. (d) Fault plane of the Alaşehir detachment with 1303 
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slickenlines. (e) Calcite and quartz vein parallel to the bedding, located few meters below the main 1304 

fault plane. The position of the pictures is indicated in Fig. 4a.  1305 

 1306 

 1307 

Fig. 6: Brittle deformation in the Salihli area. (a) N-S strike-slip fault in the Kurşunlu valley. (b) 1308 

E-W striking normal faults are cross-cut by N-S strike-slip fault. (c) Close-up view of a slip-plane 1309 

in the basement of the Menderes indicating nearly horizontal with a normal component 1310 

slickenlines. (d) Calcite indicating fluid circulation close to the strike-slip fault. The position of 1311 

the pictures is indicated in Fig. 4a. 1312 

 1313 
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 1314 

Fig. 7: Brittle deformation associated with the Alaşehir detachment in the Alaşehir area. (a) 1315 

Detachment surface marked by a thick zone of cataclasites. (b) Foliated cataclasites below the 1316 

main fault plane. Note that the shearing is toward the north. (c) Sketch depicting the relationships 1317 

between the detachment fault plane and Neogene sediments in the NNW of Kara Kirse. (d) Low-1318 
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angle contact between metamorphic rocks (augen gneiss unit) and Neogene sediments. (e) and (f) 1319 

Close-up view of ultracataclasites and centimetric pseudotachylytes, respectively. (g) Metric 1320 

damaged zone in sediments. The position of the pictures is indicated in Fig. 4a. 1321 

 1322 

 1323 

Fig. 8: Brittle deformation in the Alaşehir area. (a) Large-scale E-W high-angle normal faults. 1324 

Outcrop shows hanging wall displacements toward the north. (b) Close-up view of E-W striking 1325 

fault showing centimetric and angular blocs (i.e. cataclase). Note also the alteration of the 1326 
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basement rocks implying a probable meteoric fluid circulation during fault activity. (c) Land-1327 

scape view of triangular facets in the eastern part of Alaşehir. Note the probable position of strike-1328 

slip fault. This fault is also mapped by Oner and Dilek (2013). See location in Fig. 4a. (d) Fault 1329 

plane and associated striae (two generations) of N-S striking strike-slip fault. Note that 1330 

stereographic projection of striated fault planes corresponds to the number #5 in Fig. 4a. (e) 1331 

Picture showing an acidic alteration related to fumarole activity. See Fig. 4a for the location of 1332 

pictures. 1333 

 1334 

 1335 

Fig. 9: Brittle deformation in the Salavatlı area. (a) Simplified geological map of Salavatlı 1336 

geothermal field modified from (Karamanderesi and Helvaci, 2003). (b) Google earth view of the 1337 

area. Main structures and stereographic projections of faults systems are indicated. Location is 1338 

indicated in Fig. 9a. (c) NW-SE trending normal fault between gneiss and schists. (d) N-S trending 1339 

faulted contact between schists/marbles sequences and gneiss. Note the metric fault breccia 1340 

between these both units.  1341 
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 1342 

 1343 

Fig. 10: Structures and geothermal activities in the Germencik geothermal field. (a) Simplified 1344 

geological map of Germencik area modified from Karamanderesi (2013), showing thermal 1345 

springs and fumaroles locations. (b) Shallow dipping E-W trending foliation in the basement of 1346 

the Menderes units. (c) Dip inversion of the bedding in Neogene sediments close to the basement. 1347 

(d) Travertine indicating fluid circulation. (e) Sallow dipping E-W striking fault in Neogene 1348 
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sediments of the Büyük Menderes graben. (f) Simplified cross-section of the Germencik area (see 1349 

location on Fig. 10a). 1350 

 1351 

 1352 

Fig. 11: Brittle deformation in the Seferihisar area. (a) Simplified tectonic and geological map of 1353 

Seferihisar geothermal areas showing main structures: the Cumalı Fault (CF), the Tuzla Fault (TF) 1354 

and the Doğanbey Fault (DF). Modified from Genç et al. (2001) and Drahor and Berge (2006). 1355 

Also are represented stereographic projections of striations and kinematics of the main fault 1356 

planes. (b) CF showing the altered contact between the basement and Neogene sediments. (c) 1357 

Field photograph of TF plane in the Bornova mélange showing a NNE-SSW trending. Note the 1358 

strong alteration at the foot of the fault implying the presence of hot spring. (d) Close-up view of 1359 
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the fault plane showing well-preserved slickenlines. (e) Fault plane and associated striae 1360 

belonging to the E-W trending normal fault. See Fig. 11a for location. 1361 

 1362 
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 1363 
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Fig. 12: Conceptual models at different scales showing the heat source origin and main structural 1364 

controls on fluid flows in the Menderes Massif. (a) Synthetic simplified block diagram at basin-1365 

scale showing the relationships between these faults. Numbers show different type of faults. 1366 

Geothermal features and fluid circulation are also indicated. (b) Role of the detachment on deep 1367 

circulation in the Menderes Massif. Main structures are indicated in abbreviations: AD (Alaşehir 1368 

detachment); BD (Büyük Menderes detachment); SD (Simav detachment) and SMSZ (Southern 1369 

Menderes shear zone). (c) Tentative 3D reconstruction and flow directions in the mantle (red 1370 

arrows) of the Aegean region before the recent slab tear below the Corinth Rift and after. Red 1371 

line and red arrows show the main detachments and kinematic of extension in this region, 1372 

respectively. Yellow arrows indicate the slab retreat in the Aegean domain. Main structures are 1373 

indicated in abbreviations: AD (Alaşehir detachment), BD (Büyük Menderes detachment), NAF 1374 

(North Anatolian Fault), NCDS (North Cycladic Detachment System) and SD (Simav 1375 

detachment). 1376 
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graben 
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Seferihisar 
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HW and FW 
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side of the 

graben 
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detachment, N-S trending strike-slip 
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FC 

Büyük 

Menderes 

graben 

Germencik 

HW and FW 

of the north 

side of the 

graben 

Intersections between S-dipping 

detachment, N-S trending strike-slip 
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FC, FRC Salavatlı 

HW and FW 

of the north 

side of the 

graben 

Intersections between NNE-SSW 

trending strike-slip faults and SE-NW 

striking normal faults 

Kızıldere 

HW and FW 

of the north 

side of the 

graben 

Eastern termination of major normal 

fault; Intersections between N-S 

trending strike-slip faults and E-W 
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Seferihisar 

HW and FW 

of the contact 

between 
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Intersections between N-S transfer 

faults and the contact between 
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FC 

Simav 

graben 
Simav 

HW and FW 

of the north 

side of the 

graben 

N-dipping detachment and 

intersections between N-S striking 

transfer fault and S-dipping normal 

fault 
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