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Language-Guided Controller Synthesis
for Linear Systems

Ebru Aydin Gol, Student Member, IEEE, Mircea Lazar, Member, IEEE, and Calin Belta, Senior Member, IEEE

Abstract—This paper considers the problem of controlling dis-
crete-time linear systems from specifications given as formulas of
syntactically co-safe linear temporal logic over linear predicates
in the state variables. A systematic procedure is developed for the
automatic computation of sets of initial states and feedback con-
trollers such that all the resulting trajectories of the closed-loop
system satisfy the given specifications. The procedure is based on
the iterative construction and refinement of an automaton that en-
forces the satisfaction of the formula. Linear programming based
approaches are proposed to compute the polytope-to-polytope con-
trollers that label the transitions of the automaton. Extensions to
discrete-time piecewise affine systems and specifications given as
formulas of full linear temporal logic are included. The algorithms
developed in this paper were implemented as a software package
that is available for download. Their application and effectiveness
are demonstrated for several case studies.

Index Terms—Constrained control, linear temporal logic (LTL).

I. INTRODUCTION

T EMPORAL logics, such as linear temporal logic (LTL)
and computation tree logic (CTL), and model checking

algorithms [1] have been primarily used for specifying and ver-
ifying the correctness of software and hardware systems. In re-
cent years, due to their expressivity and resemblance to natural
language, temporal logics have gained increasing popularity as
specification languages in other areas such as dynamical sys-
tems [2]–[6], biology [7]–[9], and robotics [10]–[14]. These ap-
plication areas also have emphasized the need for formal syn-
thesis, where the goal is to generate a control strategy for a dy-
namical system from a specification given as a temporal logic
formula. Recent efforts resulted in control algorithms for contin-
uous and discrete-time linear systems from specifications given
as LTL formulas [3], [6], motion planning and control strategies
for robotic systems from specifications given in -calculus [11],
CTL [12], LTL [13], and fragments of LTL such as GR (1)[5],
[10] and syntactically co-safe LTL [14].
We consider the following problem: given a discrete-time

linear system and a syntactically co-safe LTL formula [15] over
linear predicates in the states of the system, find a set of initial
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states (if possible, the largest) for which there exists a control
strategy such that all the trajectories of the closed-loop system
satisfy the formula. The syntactically co-safe fragment of LTL
is rich enough to express a wide spectrum of finite-time proper-
ties of dynamical systems, such as finite-time reachability of a
target with obstacle avoidance (“go to and avoid and for
all times before reaching ”), enabling conditions (“do not go
to unless was visited before”), and temporal logic combi-
nations of the above. For example, the syntactically co-safe LTL
formula “ ” requires convergence
to target region through regions or while avoiding ob-
stacle . For simplicity of presentation, throughout the paper
we focus on linear systems. We show, however, that the results
can be easily extended to discrete-time piecewise affine sys-
tems. We also discuss the extension to specifications given as
LTL formulas.
Central to our approach to the above problem is the construc-

tion and refinement of an automaton that restricts the search for
initial states and control strategies in such a way that the sat-
isfaction of the specifications is guaranteed at all times. The
automaton produces the language satisfying the specification,
hence the name language guided for our approach. The states
of the automaton correspond to polytopic subsets of the state-
space. Its transitions are labeled by state-feedback controllers
that drive the states of the original system from one polytope to
another. We propose techniques based on linear programming
for the construction of these controllers. The refinement pro-
cedure iteratively partitions the state regions, modifies the au-
tomaton, and updates the set of initial satisfying states by per-
forming a search and a backward reachability analysis on the
graph of the automaton. The automaton obtained at the end of
the iteration process provides a control strategy that solves the
initial problem.
The main contributions of this work are the following. First,

we provide a computational framework in which the exploration
of the state-space is “guided” by the specification. This is in con-
trast with existing related works [6], [16], in which an abstrac-
tion is first constructed through the design of polytope-to-poly-
tope feedback controllers, and then controlled by solving a tem-
poral logic game on the abstraction. By combining the abstrac-
tion and the automaton control processes, the method proposed
in this paper avoids regions of the state-space that do not contain
satisfying initial states, and is, as a result, more efficient. In addi-
tion, it naturally induces an iterative refinement and enlargement
of the set of initial conditions, which was not possible in [16]
and was not formula-guided in [6]. Second, this paper provides
two solutions based on linear programming for solving poly-
tope-to-polytope control problems. The first solution is based
on vertex interpolation and requires iteratively solving a finite
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number of linear programs. The second solution is based on con-
tractive sets. While more conservative, it only requires solving a
single linear program. The existing approaches on solving poly-
tope-to-polytope control problems for discrete-time systems are
based on iterative computations of one-step controllable sets,
e.g., [17]. For continuous-time systems the problem of control-
ling a linear system from one polytope to another is defined
as a facet reachability problem [18], [19]. Similar to the pro-
posed vertex interpolation method, to solve the facet reacha-
bility problem, first controls for the vertices are computed via
linear programming, and then these controls are used to define a
state feedback control law. While facet reachability is enforced
by a flow constraint in the linear program [18], in the vertex in-
terpolation method reachability of the polytope is enforced by
direct constraints on the trajectories originating at the vertices.
This paper extends current results on obstacle avoidance [17],

[20], [21]. It provides a systematic way to explore the feasible
state-space from “rich” temporal logic specifications that are
not limited to going to a target while avoiding a set of obsta-
cles. Furthermore, it does not necessarily involve paths charac-
terized by unions of overlapping polytopes and the existence of
artificial closed-loop equilibria. As a byproduct, the approach
developed in this paper provides an upper bound for the time
necessary to satisfy the temporal logic specifications by all the
trajectories originating from the constructed set of initial states.
The proposed computational framework was implemented as a
Matlab software package, which is freely downloadable from
hyness.bu.edu/software together with the examples presented in
the paper.
A preliminary version of this work appeared in [22]. Here,

we expand this preliminary version in three main directions.
First, we propose a novel and efficient method to solve the poly-
tope-to-polytope control problem. Second, we show how the
proposed language-guided approach can be extended to piece-
wise-affine (PWA) systems and specifications given as formulas
of full LTL. Third, we provide extensive analysis of complexity.
The paper is organized as follows. We review some notions

necessary throughout the paper in Section II before formulating
the problem and outlining the approach in Section III. The iter-
ative construction of the abstraction is presented in Section IV.
The LP-based algorithms for solving polytope-to-polytope con-
trol problems are described in Section V. The main theorem is
stated in Section VI. The extensions to PWA systems and full
LTL specifications are discussed in Section VII, while illustra-
tive examples are shown in Section VIII. Conclusions are sum-
marized in Section IX.

II. NOTATION AND PRELIMINARIES

For a set , , , , and stand for its interior,
convex hull, cardinality, and power set, respectively. For
and , let . We use and
to denote the sets of real numbers, non-negative reals, integer
numbers, and non-negative integers. For , we use
and to denote the set of column vectors and matrices with
and real entries. stands for the identity

matrix. For a matrix , and denote its -th row and
-th column, respectively. Given two arbitrary sets ,

denotes their Minkowski sum.
A polyhedron (polyhedral set) in is the intersection of a

finite number of open and/or closed half-spaces. A polytope is a

compact polyhedron. We use to denote the set of vertices
of a polytope . Both the -representation and the
-representation ( , where matrix

and vector have suitable dimensions) [23] of a polytope
will be used throughout the paper.
Definition II.1: [24] An scLTL formula over a set of atomic

propositions is inductively defined as follows:

(1)

where is an atomic proposition, (negation), (disjunc-
tion), (conjunction) are Boolean operators, and (“next”),
(“until”), and (“eventually”) are temporal operators.
An infinite word over a finite set is an infinite sequence

, where for all . Similarly, a finite
word over a finite set is a finite sequence ,
where and for all . The semantics
of scLTL formulas is defined over infinite words over as
follows:
Definition II.2: The satisfaction of an scLTL formula at

position of a word over , denoted by , is
recursively defined as follows: 1) if , 2)
if , 3) if or , 4)

if , 5) if there exists
such that and for all , and 6)

if there exists such that . A word
satisfies an scLTL formula , written as , if .
An important property of scLTL formulas is that, even though

they have infinite-time semantics, their satisfaction is guaran-
teed in finite time. Explicitly, for any scLTL formula over ,
any satisfying infinite word over contains a satisfying finite
prefix1. We use to denote the set of all (finite) prefixes of all
satisfying infinite words.
Definition II.3: A deterministic finite state automaton (FSA)

is a tuple , where is a finite set of
states, is a set of symbols, is a deterministic
transition relation, is a set of initial states, and
is a set of final states.
An accepting run of an automaton on a finite word

over is a sequence of states
such that , and for all

. The set of all words corresponding to all of the
accepting runs of is called the language accepted by and is
denoted as .
For any scLTL formula over , there exists a FSA with

input alphabet that accepts the prefixes of all the satisfying
words, i.e., [24]. There are algorithmic procedures and off-
the-shelf tools, such as scheck2[25], for the construction of such
an automaton.
Definition II.4: Given a FSA , its

dual automaton is a tuple
where ,

,
, ,

and .
Informally, the states of the dual automaton are the tran-

sitions of the automaton . is a transition
relation and a transition is defined between two states of if

1We abuse the terminology and say that a finite word satisfies a formula if it
contains a satisfying finite prefix.
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the corresponding transitions are connected by a state in . The
set of output symbols of is the same as the set of symbols
of , i.e., . is an output function. For a state of ,
produces the symbol that enables the transition in . The set of
initial states of is the set of all transitions that leave an
initial state in . Similarly, the set of final states of is
the set of transitions that end in a final state of .
An accepting run of a dual automaton is a sequence of

states such that , and
for all . An accepting run

produces a word over such that ,
for all . The output language of a dual au-
tomaton is the set of all words that are generated by ac-
cepting runs of . The construction of a dual automaton
from a FSA guarantees that any word produced by is ac-
cepted by :
Proposition II.5: The output language of the dual automaton
coincides with the language accepted by the automaton ,

i.e., .
Proof: : For every word accepted

by automaton , there exists a run such
that , and for all

. The transition sequence of this run corre-
sponds to a run of the dual automaton which generates the
word since , and

for all . :
Similarly, a run of that
produces the word yields a run
of which accepts the word .

III. PROBLEM FORMULATION

Consider a discrete-time linear control system of the form2

(2)

where and describe the system dy-
namics, and are polyhedral sets, and
and are the state and applied control at time ,
respectively.
Let for some be a set of atomic propo-

sitions given as linear inequalities in . Each atomic proposi-
tion induces a half-space

(3)

A trajectory of system (2) produces a word
where is the set of atomic propositions satisfied by ,
i.e., . scLTL formulas over the set of pred-
icates can therefore be interpreted over such words (see Sec-
tion II). A system trajectory satisfies an scLTL formula over if
the word produced by the trajectory satisfies the corresponding
formula.
Given an scLTL formula over , we use to denote the

set of all initial states of system (2) for which there exist control
sequences producing trajectories satisfying .
Problem III.1: Given an scLTL formula over a set of linear

predicates and a dynamical system as defined in (2), construct

2We focus on discrete-time linear systems to keep the notation to a minimum.
In Section VII, we show how the solution can be easily extended to accommo-
date discrete-time piecewise affine systems.

a set of initial states (possibly ) and a feedback
control strategy such that all the closed-loop trajectories origi-
nating in satisfy .
We propose a solution to the above problem by relating

the control synthesis problem with the construction of a dual
automaton (Def. II.4), whose states correspond to polyhedral
subsets of the system state-space and whose transitions are
mapped to state feedback controllers. This automaton will be
constructed from the automaton that accepts the prefixes of
all words satisfying formula . Its states will be refined until
feasible polytope-to-polytope controllers are obtained. This
approach reduces the controller synthesis part of Prob. III.1
to solving a finite number of polytope-to-polytope control
problems.
The proposed solutions to polytope-to-polytope controller

synthesis give a worst case time bound such that every trajec-
tory originating from the source polytope reaches the target
polytope within the provided time bound. These bounds can be
further used to compute an upper time bound for a given initial
state, such that the trajectory starting from this state satisfies
the specification within the computed time bound.

IV. AUTOMATON GENERATION AND REFINEMENT

In this section, we present algorithms for the construction and
refinement of the dual automaton that corresponds to a desired
scLTL specification.

A. FSA and Dual Automaton

All words that satisfy the specification formula are ac-
cepted by a FSA . The dual automaton

is constructed by inter-
changing the states and the transitions of the automaton (Def.
II.4). As the transitions of become states of , elements
from label the states and define polyhedral sets within the
state-space of system (2).
1) Automaton Representation: A FSA with input alphabet
that accepts the language of an scLTL formula over

is constructed with the tool scheck2 [25]. This tool labels each
transition of the produced FSA with a disjunctive normal form
(DNF) , where each is a conjunctive clause
over . This is a compact representation of the corresponding
FSA in which each transition is labeled by a conjunctive clause.
Given a DNF formula ,

denotes the set of states of system (2) that satisfy
where ,

for all , and denotes the set of states of
system (2) that satisfy .
While constructing the dual automaton, each of the conjunc-

tive clauses is used as a separate transition, which ensures that
all corresponding subsets of the state-space are polyhedra. Be-
fore constructing the dual automaton, each DNF formula

is simplified by applying the following rules:
1) Empty set elimination: is eliminated if the corre-
sponding region is empty, i.e., . The symbols that
satisfy such clauses can not be generated by the system
trajectories.

2) Subset elimination: is eliminated if its corresponding
set is a subset of the set corresponding to , , i.e.,

. The system states that satisfy also satisfy
, which enables the same transition.
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Fig. 1. (a) Half-spaces generated by the linear predicates in (4). (b) Compact
representation of a FSA that accepts the language satisfying formula in (4).
The initial states are filled with gray and the final state is marked with a double
circle. stands for the Boolean constant true.

Even though these simplifications change the language of
the dual automaton, it can be easily seen that the set of corre-
sponding satisfying trajectories of system (2) is preserved.
In what follows, we use to denote the set of states of

system (2) that satisfy the Boolean formula of a dual automaton
state .
Example IV.1: Consider the following scLTL formula:

(4)

over , where , ,
, , , , ,

, , . The trajectories that satisfy
evolve in the region until they reach the target
region . The regions defined by this set of
predicates and the compact representation of a FSA that accepts
the language satisfying formula are shown in Fig. 1. For ex-
ample, the transition from the state labeled with to the state
labeled with , which is labeled by , cor-
responds to two transitions labeled by and

, respectively.
The compact representations of dual automata constructed

with and without simplifying the DNF formulas are shown in
Fig. 2, where a state label corresponds to the subsets of which
can be produced by in that state. The simplification deletes

from the self transition of the state la-
beled with in Fig. 1(b), since the set of states that satisfies
this clause is empty. The transitions of dual automata are added
with respect to graph structure of the FSA as defined in Def.
II.4. For example, there is a transition from the state labeled
with to the states that correspond to
transitions leaving the state labeled with .
An accepting run of defines a sequence of

polyhedral sets . Any trajectory of system
(2) with , satisfies the specification by
Prop. II.5. We say that a transition of is enabled if
there exists an admissible control law that achieves the transi-
tion for all . Two conditions are introduced for con-
structing admissible controllers according to existence of a self
transition of the source state . When , a controller
enables a transition if the corresponding closed-loop tra-
jectories originating in reach in finite time and remain
within until they reach . When , a transition

Fig. 2. Dual automata for the FSA from Fig. 1(b): (a) without Boolean simpli-
fication; (b) with Boolean simplification.

is only enabled if there exists a controller such that the
resulting closed-loop trajectory originating in reaches
at the next discrete-time instant. For every transition of , if
a controller that enables the transition can be constructed, then
every resulting closed-loop trajectory originating in
will satisfy the specifications by Prop. II.5. However, existence
of such controllers is not guaranteed for all the states of system
(2) within .
Prob. III.1 aims at finding a subset of for which the poly-

tope-to-polytope control problems induced by scLTL specifica-
tions are feasible. To this end, first, the dual automaton is pruned
by checking the feasibility of transitions and states for the given
system (2). Second, an iterative partitioning procedure based
on a combination of backward and forward reachability will be
applied to the automaton states, which correspond to polytopic
subsets of .
2) Initial Pruning: The feasibility of the transitions of the

dual automaton is first checked by considering the particular dy-
namics of system (2) and the set where the control input takes
values. denotes the set of states that can be reached
from in one discrete-time instant under the dynamics (2) and

is formally defined as

(5)

For a transition , if , then this transi-
tion is considered infeasible , since there is no admissible con-
troller that enables this transition. As and are polytopes,

can be computed as follows:

(6)

Alg. 1 summarizes the procedure. Once the infeasible transi-
tions are removed as in line 2,the following feasibility tests are
performed. A state and all of its adjacent transitions are deleted
either if it does not have an outgoing transition and it is not a
final state or if it does not have an incoming transition and it is
not an initial state (line 6). Removing such states and transitions
does not reduce the solution space since such states cannot be
part of any satisfying trajectory.
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Algorithm 1 Initial Pruning

Input: Dual automaton .

Output: Pruned dual automaton

1:

2:

3:while do

4: for all do

5:

6: if OR
then

7:

8:

9:

10: end if

11: end for

12: end while

13:

B. Automaton Refinement

Alg. 1 guarantees that a non-empty polyhedral subset of a
source polytope is one-step controllable to the target poly-
tope corresponding to the transition . However, this
does not imply the feasibility of the corresponding polytope-to-
polytope control problem. An iterative algorithm is developed
to refine the polytope and hence, the corresponding state of
the dual automaton, whenever the feasibility test fails. Alg. 2
refines the automaton at each iteration by partitioning the states
for which there does not exist an admissible sequence of con-
trol actions with respect to reaching a final state. The algorithm
does not affect the states of system(2) that can reach a final state
region and as such, it results in a monotonically increasing, with
respect to set inclusion, set of states of system(2) for which there
exists an admissible control strategy.

Algorithm 2 Refinement

Input: Dual automaton
.

Output: Refined dual automaton

1: , for each

2:

3:

4:

5:while do

6:

7:

8: , for each

9:

10:

11:

12: end while

For a transition , the set of states in that can
reach in one step is called a beacon . We use to denote
the beacon corresponding to transition , which can be ob-
tained as , where

(7)

If and are polytopes, then can be computed via or-
thogonal projection. Given a controller that enables a transition

, the cost of transition is defined as the
worst-case time bound such that every trajectory originating in
reaches . The computational aspects of this cost are pre-

sented in Section V. The cost of a state is defined as
the shortest path cost from to a final state on the graph of the
automaton weighted with transition costs.
The refinement algorithm uses three subroutines:

, and .
The procedure computes a shortest path cost
for every state of using Dijkstra’s algorithm [26]. The

procedure, which will be presented in detail in
the next subsection, partitions a state region and modifies
accordingly.
The procedure checks if there exists

a controller that enables and returns the cost .
The cost is set to infinity when no feasible controller is found.
When has a self transition, the procedure checks if there exists
a controller that steers all trajectories originating in to the
beacon of , i.e., , in finite time without leaving the
set . Notice that to solve the -to- problem it suffices to
solve the problem, since a trajectory originating
in will reach without leaving only through the beacon

. By definition, there exists an admissible control action for
all such that is reached in one step. If does not
have a self transition, the transition is only enabled when

, since is the largest set of states in that can
reach in one step.
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At each iteration of the refinement algorithm, the transition
costs and shortest path costs are updated, and the set of can-
didate states for partitioning is constructed as follows. A state
that has an infinite cost and a transition

to a state that has a finite cost
is chosen as a candidate state for partitioning (lines 3 and 10).
Then, a state is selected from the set of candidate states for
partitioning by considering the path costs in line 6.
Partitioning: A state is partitioned into a set of states

via a polytopic partition of . The transitions
of the new states are inherited from the state and new states
are set as start states if to preserve the automaton
language. The partitioning procedure is summarized in Alg. 3.

Algorithm 3 Partitioning

Input: Dual automaton ,
a state

Output: Partitioned automaton

1: , and

2:

3:

4: for each , and
for each

5:

6: if

7:

8:

A heuristic partitioning strategy guided by a transition
is used: the region is partitioned in two subregions using a hy-
perplane of the beacon . Notice that beacons will always be
polytopes, as is a polytope for linear dynamics, is
a polytope and the intersection of two polytopes is a polytope.
The hyperplane, which maximizes the radius of the Chebyshev
ball that can fit in any of the resulting regions, is chosen as the
partitioning criterion. Choosing a hyperplane of the beacon en-
sures that only one of the resulting states can have a transition to
. Even if a controller that enables the transition to does not

exist for this state, after further partitioning the beacon becomes
a state itself and the transition is enabled for it. The employed
maximal radius criterion is likely to result in a less-complex par-
tition, as opposed to iteratively computing one-step controllable
sets to .
Let denote the dual

automaton after refinement iteration , and let denote the
initial dual automaton. For a dual automaton , the set

denotes the union of the regions corresponding to start states
of automaton with finite path costs, i.e.

(8)

The refinement algorithm (Alg. 2) stops when there are no
transitions from infinite cost states to finite cost states, i.e., when
the set of candidate states for partitioning is empty. Note that
when a state is partitioned, the new states inherit only the tran-
sitions that satisfy a reachability condition (see lines 7 and 8 of
Alg. 3). Therefore, when the algorithm stops either all the states
have finite costs or the regions associated with states that have
finite costs are not reachable from the regions associated with
states that have infinite costs through automaton transitions.
Example IV.2: Consider system (2) with , ,

and
specification from Ex. IV.1 [Note that the automata in Fig. 1(b)
and in Fig. 3(a) represent . For simplicity the final state
labeled by is not shown in Fig. 3(a)]. has two states

; both are initial states and is a final state. Since
, initially only has finite cost and is a can-

didate state for partitioning. Using a hyperplane of gen-
erates the state regions and the automaton shown in Fig. 3(c)
and (d). As , the transition is not
added. In the next iteration is partitioned using and the
algorithm terminates after this iteration, since there exists a fi-
nite cost automaton path from all states to the final state and the
candidate set is empty. The control synthesis tools of Section V
were used to check the costs of the transitions.
Proposition IV.3: Assume is non-empty. Given an arbi-

trary iteration of Alg. 2, the set as defined in Equation
(8) has the following properties:
(i) There exists a sequence of admissible control actions such
that every closed-loop trajectory of system (2) originating
in satisfies the formula , and

(ii) .
Proof: (1) A finite path cost for a state implies

that there exists an automaton run with
for all and .

As a transition cost is assigned according to the existence of
the controller that enables the transition, there exists a control
sequence that ensures that every closed-loop trajectory origi-
nating in reaches by following the automaton path.
Considering that removing states and transitions only reduces
the language of the automaton, by Prop. II.5 it follows that

. Since the proposed partitioning procedure pre-
serves the language, we have . Consequently,

and the resulting trajectories satisfy the formula.
(ii) For any , there exists an accepting

automaton run with and
. Let be the state

chosen for partitioning at iteration . Then,
and for all as for all

. As only the transitions adjacent to are af-
fected by partitioning, for all and

for all . Therefore, ,
is an accepting run of with finite cost
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Fig. 3. Automata and their corresponding polytopic state-space partitions for the iterations of Ex. IV.2. The polytopes are shown with black borders and is
shown in light gray. The beacon of transition is shown in dark gray in Figs. (b) and (d). A transition is shown with dashed line if a controller that enables
the transition was not found, otherwise the transition is marked with a time bound.

and thus, . Observing that was chosen
arbitrarily completes the proof.
The automaton refinement algorithms presented in this sec-

tion generate a finite set of polytope-to-polytope control prob-
lems. Several tractable approaches for solving these problems
are proposed in the next section.

V. POLYTOPE-TO-POLYTOPE CONTROL

Enabling a transition requires an admissible control
law that solves the -to- control problem. By the definition
of , this problem can be decomposed in two subproblems.
The first problem concerns the computation of a control law
which generates a closed-loop trajectory, for all , that
reaches in one discrete-time instant. The second problem
concerns the construction of a control law which generates a
closed-loop trajectory, for all , that reaches in a fi-
nite number of discrete-time instants. These synthesis problems
are formally stated next.
Problem V.1: Let and be polytopes in with

and consider system (2). Construct a state-feedback
control law such that

1) Problem V.2: Let , and , and be
polytopes in with and consider system (2). Construct
a state-feedback control law such that for all

Notice that while Prob. V.1 is always feasible since
, Prob. V.2 needs not be feasible for any set

and corresponding beacon . In what follows, sufficient
conditions for feasibility of Prob. V.2 will be given.
First, we present a vertex interpolation-based solution to

Prob. V.1. Let denote the set of vertices of
and let denote a corresponding set of control
actions. Consider the following set of linear inequalities in the
variables :

(9)

A solution to (9) can be obtained off-line by solving a feasibility
LP. It is trivial to deduce that the control law

(10)

where , , are such that ,
solves Prob. V.1. The evaluation of the control law (10) requires
on-line calculation of the coefficients , which
amounts to solving a system of linear equations and can also be
formulated as a feasibility LP.
Alternatively, an explicit PWA form of can be obtained

by a simplicial partition of . Then, the evaluation of requires
solving on-line a point location problem [27], which consists of
checking a finite number of linear inequalities. Although effi-
cient ways to solve point location problems exist, depending on
the complexity of the partition (number of simplices), the point
location problem may be more computationally expensive than
calculating the coefficients on-line . Yet an-
other explicit PWA solution to Prob. V.1 can be obtained via
direct synthesis of a PWA control law defined over an arbitrary
polytopic partition of , which can still be formulated as a LP.
While this approach may lead to a less complex point location
problem, however, feasibility is not necessarily guaranteed for
an arbitrary partition.
Next, two approaches are proposed to solve Prob. V.2, i.e.,

vertex interpolation and contractive sets.
Vertex interpolation Let be the vertices of
and let denote a corresponding set of finite

sequences of control actions, where for
all and . For each define
the following set of linear equality and inequality constraints in
the variables :

(11)

A solution to the set of problems (11) can be searched for off-
line by solving repeatedly a corresponding set of feasibility LPs
starting with , for all , and increasing
until a feasible solution is obtained for all LPs and the same
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value of . Let denote the minimal for which a fea-
sible solution was found. Then, it is straightforward to establish
that for any , the control law

(12)

where and , , are such that
, solves Prob. V.2 and yields that closed-loop

trajectories reach in at most discrete-time instants.
Evaluation of the control law of (12) at time requires

on-line calculation of the coefficients , which
is a LP, while at every the analytic expression
of is implemented. However, a faster convergence to can
be obtained by taking , , such that

, where

Then, the resulting closed-loop trajectories will reach in at
most discrete-time instants.
Similarly as in the case of the control law (10), simplicial

decompositions of can be employed to obtain an explicit PWA
form of the control law , , both for its
standard and faster variants presented above.
Remark V.3: In general, existence of a finite, common

such that all LPs (11) are feasible is not guaranteed. If a cer-
tain upper bound on is reached, the off-line synthesis pro-
cedure is stopped and Alg. 3 is employed to further partition
the set . In the “worst” case, the partitioning converges to the
maximal controllable subset of with respect to , which ulti-
mately recovers the “one-step controllable sets” partition of the
state-space. However, if a solution is found for a finite , there
is no need to further partition , which can result in a signifi-
cant complexity reduction, as it is illustrated for the case studies
presented in Section VIII.
Sufficient conditions for feasibility of the LPs (11) can be

obtained as follows. Let

If and the polytope induces [28] a local control
Lyapunov function for system(2) with respect to an equilibrium
point3 , there always exists a such that the LPs
(11) are feasible for all . Then interpolation
becomes feasible as control sequences of equal length can be
obtained via augmentation with a suitable control action ,
which corresponds to some . Notice that the same as-
sumptions were employed in [21], where only obstacle avoid-
ance specifications were considered and polyhedral Lyapunov
functions were used. In this respect, the proposed vertex inter-
polation solution for solving Prob. V.2 can be regarded as a re-
laxation of standard interpolation synthesis methods, where ex-
istence of a closed-loop equilibrium is assumed.
Contractive Sets Pick any (not necessarily an

equilibrium point) and let

3When , the function induced by is called the Minkowski or gauge
function of [28]. For Lyapunov functions induced by sets that do not contain
the origin we refer the interested reader to [29].

denote a function induced by the polytope and the point ,
where is the number of lines of the matrix ,
which is such that . Moreover,
let . Note that

whenever and ; pick any such that
. Next, consider the conic polytopic partition

of induced by , which is constructed as follows:

Notice that and for all
. Let with denote a desired convergence

rate. Consider the PWA control law

(13)

and the following feasibility LP in the variables
, to be solved off-line:

(14)

Notice that can be minimized to obtain an optimal conver-
gence rate and a different can be assigned to each cone ,
while (14) remains a LP. If the LP (14) is feasible, then by con-
struction and the definition of , for all it holds that

(15)

The recursive application of (15) implies that for a closed-loop
trajectory , the following inequality holds for all :

(16)

The above property can be exploited to establish the following
result.
Lemma V.4: Suppose that the LP (14) is feasible and let

(17)

Then for all trajectories with of system (2) in
closed-loop with(13) there exists a such that and,
moreover, .

Proof: Let . To prove the claim consider two cases,
i.e., and . Notice that for any ,

implies that and thus,
it implies that . As such, in the case when ,
the claim holds by the definition of (Equation (17)).
Next, consider the case when and suppose that

the inequality

(18)

holds for all . By taking the limit when tends to infinity
in the above inequality yields that and thus, a contra-
diction was reached. As such, there must exist a such that

(19)



AYDIN GOL et al.: LANGUAGE-GUIDED CONTROLLER SYNTHESIS FOR LINEAR SYSTEMS 1171

holds. Equation (16) and(19) imply that and
hence, . Furthermore, reordering the terms and taking
the logarithm of both sides in Equation(19) yields

(20)

Noticing that for all , the fact that
follows directly from the definition of (Equation (17)). As the
point was chosen arbitrarily, the claim was established.

The above result establishes that if the LP (14) is feasible, the
PWA control law(13) is an admissible solution to Prob. V.2. The
on-line evaluation of (13) reduces to a point location problem
that can be solved in logarithmic time due to the specific conic
partition.
Remark V.5: Notice that if is an equilibrium point, then by

augmenting the constraints of the LP (14) with the equilibrium
point constraints, i.e., , for all

, and setting to 0 we recover the solution proposed
in [22] and the function becomes a standard Lyapunov
function with respect to the equilibrium .

VI. COMPLETE CONTROL STRATEGY

In this section, we provide a solution to Prob. III.1 by using
the results from Sections IV and V. The proposed control
strategy that solves Prob. III.1 is composed of a finite state dual
automaton (see Def. II.4) and a map from transitions of

to state feedback controllers. The control strategy
is constructed as defined in Def. VI.1 from the dual automaton

and the cost functions and obtained from Alg. 2.
The state feedback controllers assigned by are constructed
as described in Section V. Existence of these controllers is
guaranteed, since has only finite cost transitions.
Definition VI.1 (Control Strategy): Given a dual au-

tomaton , and
cost functions and , the
control strategy is a pair , where

is a dual automaton defined as

and is a map from transitions of to corresponding state
feedback controllers.
Given a state of system (2) for some

, there exists an accepting run of
. The run corresponds to a control sequence

. Starting from , the
state feedback controller is applied to system (2)
until the trajectory reaches . Then, the applied feedback
controller switches to . This process continues until
the trajectory reaches while is applied.

The union of the regions corresponding to the initial states of
automaton defines the set of initial system states , such
that closed-loop trajectories originating in satisfy formula

(21)

For a given accepting run of , the time
required to satisfy the specification for trajectories origi-
nating in is upper bounded by when

is applied. If the
control sequences are chosen according to shortest paths for
each , the time required to satisfy the specification
starting from any state of system (2) is upper bounded
by .
Proposition VI.2: Every closed-loop trajectory produced by

the control strategy ( ) satisfies the formula .
Proof: The proof that all the trajectories of the closed loop

system satisfy the formula follows immediately from Prop. IV.3
since .
The following theorem states that when the refinement

algorithm terminates, the proposed solution to Prob. III.1 is
complete.
Theorem VI.3: Suppose Alg. 2 terminates. Then any trajec-

tory of system(2) that produces a word originates in
, i.e., .
Proof: To show that any satisfying trajectory originates

in , assume by contradiction that there exists
such that is a satisfying trajectory of system (2), i.e.,

. Then by Prop. II.5, there exists an accepting
run of the initial dual automaton such that

, . The run induces a unique re-
fined dual automaton run where and
coincide or is obtained from through partitioning and

for all .
Let be obtained by eliminating consec-

utive duplicates in . Then, for each ,
and for all .

Then, indicates that . Hence, ei-
ther or for
some . Let be the maximal index where

or . Therefore,
, and ,

. As Alg. 2 terminates, it holds that

(22)

for all with . Consequently,
. As and , there is no

control that satisfies . Therefore
is not a trajectory of system (2) and thus, we reached

a contradiction.
As shown in Prop. IV.3, Alg. 2 establishes a set iteration

which produces a monotonically increasing, with respect to set
inclusion, sequence of sets described by unions of polytopes.
Thm. VI.3 states that when this iteration converges in finite time
then the maximal set of satisfying states has been obtained, i.e.,
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. This is possible whenever the maximal set is a poly-
tope or a union of polytopes, since is defined as union of
polytopes and we obtain one-step controllable sets partition of
each state region in the worst case. As this is not necessarily the
case for an arbitrary specification, in practice, to guarantee fi-
nite time termination, an artificial stopping criterion can be used,
such as, e.g., the size of the region of satisfying states of system
(2). Notice that stopping Alg. 2 at any iteration will still
result in a set of initial satisfying states by Prop. IV.3. As such,
indeed, Alg. 2 can be stopped whenever a desired subset of the
state-space has been covered.

A. Complexity

The complexity of the proposed solution can be analyzed in
two aspects: off-line and on-line parts. The off-line part involves
the construction of the dual automaton, the simplification rou-
tines, and the refinement algorithm. The construction of an FSA
from a co-safe LTL formula leads to a double exponential
blowup [24], therefore the dual automaton has tran-
sitions. However, this theoretical bound is not usually achieved
in practice [25]. Moreover, the compact representation, the DNF
simplification and the pruning algorithm significantly reduce the
automaton size (see Table I for experimental results). In Alg. 1,
one step reachable sets are computed for each state to check the
feasibility of transitions, which requires basic
polyhedral operations [see (6)]. Then, the feasibility of the states
are checked by traversing the underlying graph, which is poly-
nomial in .
The complexity of Alg. 2 is dictated by the number of

iterations , which depends on the control system (2),
the specification, and the employed polytope-to-polytope
controller synthesis method. Initially, transition and state

costs are computed via and Dijkstra’s
algorithm, respectively. The run time of Dijkstra’s algorithm
is . procedure involves basic
polyhedral operations (see (7)) and controller synthesis, i.e.,
solving Prob. V.1 and Prob. V.2. The proposed controller syn-
thesis methods are based on linear programming. The number
of constraints of the vertex interpolation-based solutions de-
pend exponentially on the size of the state space, whereas, the
number of constraints of the contractive sets method depends
polynomially on the size of the state space. At each iteration
of Alg. 2, a candidate state is partitioned into two states, and

procedure is used to compute the costs of
the new transitions. Let be the maximum number of transi-
tions incident to a state for all iterations .
Then, the total number of procedures run is
upper bounded by . Note that, at each iteration
it is sufficient to compute costs for the new states and the
states that can reach these states.
The on-line part deals with the generation of the control input

for system (2) and involves linear programming.

VII. EXTENSIONS

In this section, we discuss some extensions of the approach
presented above to more general system dynamics and spec-
ifications. A quick examination of the algorithms shows that
the method works if the regions in the partitions are poly-
topes, their pre-images through the system dynamics

are computable, the beacons of transitions are polytopes, and
the polytope-to-polytope controllers can be computed. Discrete-
time PWA systems with polytopic partitions satisfy these con-
ditions. In Section VII-A, we discuss the details of this exten-
sion. To accommodate richer temporal logic specifications, the
refinement algorithm (Alg. 2) needs to be adapted to different
types of automaton acceptance conditions. In Section VII-B, the
extension to full LTL is explained briefly.

A. Extension to PWA Systems

A discrete-time PWA control system is described by

(23)

where is the number of modes (different dynamics), ,
provide a polytopic partition of

, are arbitrary polytopes in , and , , and are
matrices of appropriate sizes.
The extension of the method from the linear dynamics (2)

to the PWA dynamics (23) requires an additional refinement
procedure that takes into account the particular structure of the
state space . This procedure is summarized in
Alg. 4.
Alg. 4 preserves the dual automaton language while ensuring

that for each dual automaton state there exists such that
. Consequently, for each dual automaton state there

exist an associated system dynamics and an admis-
sible set of controls that can be used to compute the beacons

of transitions leaving the state and , and to solve
controller synthesis problems of type Prob. V.1 and Prob. V.2
Therefore, the algorithms proposed in Section IV with control
synthesis tools described in Section V can directly be used for
PWA systems after the refinement step. Also, it is easy to see that
the completeness of the solution for PWA systems is guaranteed
under the same finite time termination assumption of Alg. 2 as
in Thm VI.3. The extension to PWA systems is illustrated for an
example inspired by systems biology in Section VIII.

Algorithm 4 PWA Refinement

Input: Dual automaton ,
and regions

Output: Refined automaton

1:for all do

2:

3:

4:

5: if

6: if

7: for all

8:end for
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TABLE I
CASE STUDY SUMMARY

B. Extension to Full LTL

To extend the set of allowed specifications from scLTL to full
LTL, the main challenge is to extend our approach from the ac-
ceptance condition of an FSA to the more complicated accep-
tance condition of a Büchi automaton. There exist algorithms for
the construction of such an automaton that accepts the language
satisfying an arbitrary LTL formula [1]. The extension involves
the solution of a backward reachability problem, which enforces
the Büchi acceptance condition. Briefly, any run accepted by a
Büchi automaton has a prefix-suffix structure [30]. The suffix
is an infinite Büchi automaton run that periodically visits some
accepting state. Starting from this observation, the scLTL ap-
proach can be extended to full LTL in two steps. First, the re-
finement algorithm (Alg. 2) can be used to find a cycle origi-
nating from an accepting state of the Büchi automaton. When a
cycle is found, the algorithm can be used to find the set of states
that can reach the corresponding accepting state. The full LTL
extension is not implemented in the software package.
A limitation of this extension is that completeness cannot be

guaranteed. Since only a single cycle is used, the initial states
that can reach another cycle are not taken into consideration.
Our proposed solution provides the maximum time to reach
the accepting state from the cycle (for prefix), and the max-
imum time between consecutive visits of an accepting state (for
suffix).

VIII. IMPLEMENTATION AND CASE STUDIES

The computational framework developed in this paper was
implemented as a Matlab software package LanGuiCS (Lan-
guage-Guided Control Synthesis), which is freely download-
able from hyness.bu.edu/software. The toolbox takes as input
an scLTL formula over a set of linear predicates, the matrices of
a PWA system, control constraints sets and operating regions,
and produces a solution to Prob. III.1 in the form of a set of ini-
tial states and a state-feedback control strategy. The tool, which
uses scheck2 [25] for the construction of the FSA, MPT [31] for
polyhedral operations, and Gurobi [32] for solving LPs, also al-
lows for displaying the set of initial states and simulating the tra-
jectories of the closed-loop system for 2-D or 3-D state-spaces.
The three case studies described below were generated using

LanGuiCS running on an iMac with a Intel Core i5 processor at
2.8 GHz with 8 GB of memory. Some illustrative numbers in-
cluding the computation times are summarized in Table I. Note
that in all case studies the refinement algorithm (Alg. 2) termi-
nated in a finite number of steps, which implies that the set of
satisfying initial states was maximal.

A. Case Study 1 : Double Integrator

Obstacle avoidance for double integrators is a particularly
challenging problem [20]. The double integrator dynamics with
sampling time of 1 sec. are of the form in Equation (2), where

(24)

We assume that the control constraint set is
. The specification is to visit region or region ,

and then the target region , while always avoiding obstacles
and , and staying inside a safe region given by

. The sets
and the obstacles and are the same as the ones used
in [20], where the goal was to synthesize a control strategy
such that a trajectory of a double integrator with disturbance
originating in a given state reaches the target while
avoiding obstacles. All these polytopic regions, together with
the linear predicates used in their definitions, are shown in Fig.
4(a). Using these predicates, the specification can be written as
the following scLTL formula:

The computation summary for this case study is given in the
first row of Table I. The set and a sample of satisfying tra-
jectories of the closed loop system are shown in Fig. 4(b). Every
trajectory originating in satisfies the specification within 20
discrete-time instants. The polytope-to-polytope controllers are
synthesized using vertex interpolation.
As discussed in the paper, the upper time bound is affected

by the choice of candidate polytopes for partitioning. In this ex-
ample, a transition is selected from the candidate set according
to the cost of the target state as described in Alg. 2. Our ex-
periments showed that choosing the transition corresponding to
the beacon with the highest Chebychev ball radius resulted in
a faster coverage (94 iterations). However, it also produced a
higher time bound of 43 steps.
For the double integrator dynamics (24), the control strategy

developed in this paper was also tested for a “classical” control
specification, i.e., computation of the maximal constrained con-
trol invariant set within . The method converged to the actual
maximal set shown in Fig. 4(c) for the dynamics(24) and the
given sets and , which is an indication of the non-conser-
vatism of the vertex interpolation method that solves Prob. V.2.
The computation of the actual maximal set can easily be veri-
fied by iteratively computing one-step controllable sets within
starting from an invariant polytopic set which contains the

origin, i.e, .
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Fig. 4. Case study 1: (a) The regions and the corresponding linear predicates. The predicates are shown in the half planes where they are satisfied; (b) The set of

satisfying initial states (light gray region) and some trajectories of the closed loop system (the initial states are marked by circles); (c) The maximal constrained
control invariant set within .

Fig. 5. Case study 2: (a) The set of satisfying initial states is shown in light gray; (b) Some satisfying trajectories of the closed loop system (the initial states are
marked by circles).

B. Case Study 2 : Triple Integrator

Consider a triple integrator with sampling time of 1 sec.,
whose dynamics are described by Equation (2) with

(25)

and .
The specification is to reach a target region , while always

staying inside a safe set and avoiding obstacles and ,
where ,

,
, and

. These regions, which are all
boxes, are shown in Fig. 5(b). Each box is represented using six
predicates, one for each facet, where ,

; , ; ;
and , . The specifica-

tion can be formally stated as the following scLTL formula:

.
The computation summary for this case study is given in the

second row of Table I. and some satisfying trajectories are

shown in Fig. 5. Note that covers 37% of the obstacle free

safe region and any trajectory originating in satisfies the
specification in less than 10 steps.
In this experiment, the candidate states for partitioning are

chosen according to the Chebychev ball radius. This example
presents a worst case scenario for the developed framework,
since all of the encountered controller synthesis problems of the
type Prob. V.2 were infeasible and the states were partitioned
until all of them became a beacon for a transition.

C. Case Study 3 : Toggle Switch

In this case study, we apply the proposed methods to a PWA
system, which models a synthetic biological repressor network
known as the toggle switch [33]. The system and the specifica-
tion are adapted from [16], where the goal was to find a con-
stant control for each operating region from LTL specifications.
The state space of the PWA system is partitioned into 36 poly-
topic operating regions that are shown in Fig. 6. We assume that
the controls are constrained to set

and we omit the dynamics due to the space
constraints.
The specification is to reach a target region , while staying

inside a safe set and avoiding a region . The polytopic
regions and linear predicates used to define these regions are
shown in Fig. 6. The specification is formally stated as the fol-
lowing scLTL formula:
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Fig. 6. Case study 3: (a) The regions and the corresponding linear predicates. The predicates are shown in the half planes where they are satisfied. The operating

regions of the PWA system are shown with thick black borders and two of them are labeled. (b-c) The set of satisfying initial states (light gray region) and
some trajectories of the closed loop system (the initial states are marked by circles). (b) Vertex interpolation; (c) Contractive sets.

The computation summary for this case study is given in the
third row of Table I. We apply both of the controller synthesis
methods presented in Section V. When the vertex interpolation
method is used with a maximal transition cost 5 ( , see
Remark V.3), the refinement algorithm terminates after 75 iter-
ations. The resulting control strategy guarantees that any trajec-
tory originating in , which covers the safe region except
the region , satisfies the specification within 54 steps. When
the contractive sets method is employed, the dual automaton is
not refined since all the states have finite costs. Hence, the com-
putation time is much less as given in Table I. In this case any
trajectory originating in satisfies the specification within

175 steps. , the regions of automaton states and some
sample trajectories are shown in Fig. 6.
Remark VIII.1: The applicability and performance of the de-

veloped tool was assessed in comparison with existing tools. For
example, Pessoa [34] and ConPAS2 [16] implement synthesis
of control strategies for discrete time systems from reach-avoid
and LTL specifications, respectively. These tools first construct
a finite abstraction of the system, synthesize a control strategy
for the abstract model and then refine this strategy to the orig-
inal system.
Pessoa constructs a finite approximate simulation (or bisim-

ulation) quotient of a dynamical system by quantizing the state
and the control spaces, and supports controller synthesis from
reach-avoid specifications. In contrast our approach does not as-
sume quantized controls and it is iterative. As a result it is dif-
ficult to compare the two methods. However, the computation
times are comparable for the double integrator dynamics, e.g.,
109 s reported in [34] as compared to our first entry (89 s) in
Table I, while the setting considered in this paper (control and
state spaces, and scLTL specifications) is of significantly higher
complexity.
ConPAS2 constructs a finite abstraction of a PWA system for

a given partition of its state space through construction of equiv-
alence classes in the control space. While the approach is ro-
bust with respect to control perturbations, and can handle any
LTL specification, it is not iterative, and hence relies on the ini-
tial partition. The computational complexity associated with the
construction of the abstraction is characterized by the number of
polyhedral operations performed and it depends exponentially
on the size of the initial partition. On the other hand, our ap-

proach is iterative and the complexity is defined with respect
to the specification automaton. The number of the polyhedral
operations performed and the LPs solved in the first iteration of
our approach are linear in the number of transitions of the initial
dual automaton. The tool ConPAS2 was tested on Case Studies
1 and 3. For Case Study 1, ConPAS2 did not find any satisfying
initial states on the partition induced by the linear predicates,
and for Case Study 3, although we used a smaller control set ,
the set of satisfying initial states found by ConPAS2 was smaller
than . These are due to our refinement procedure and con-
trol strategies (in [16], a constant control input is assigned to
each partition set).
As the specification from Case Study 2 is simple enough to

represent as a reach-avoid problem, the set of satisfying initial
states can be found through iterative computation of the one step
controllable sets within , i.e.,

, where . This
computation took 556 minutes. The simple case of finding the
set of states that can reach in steps can be
directly handled by the standard constrained synthesis methods,
such as predictive control. Using the mpt_ownMPC function
implemented in the MPT toolbox, (which covers

93% of ) were computed in 11 min. For , no solution
was returned within a day. These findings indicate the utility of
the developed tool for obstacle-avoidance problems, compared
with existing MPC-type solutions.

IX. CONCLUSION

This paper considered the problem of controlling discrete-
time linear systems from specifications given as formulas of
syntactically co-safe linear temporal logic over linear predi-
cates in the state variables of the system. A systematic proce-
dure was developed for the automatic computation of sets of
initial states and feedback controllers such that all the resulting
trajectories of the corresponding closed-loop system satisfy the
given specifications. The developed procedure is based on the
iterative construction and refinement of an automaton that en-
forces the satisfaction of the formula. Interpolation and set con-
traction based approaches were proposed to compute the poly-
tope-to-polytope controllers for the transitions of the automaton.
The algorithms developed in this paper were implemented as a
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software package that is available for download. Their applica-
tion and effectiveness were demonstrated for several non-trivial
case studies.
Directions for future research include the formulation of less

conservative sufficient conditions for feasibility of Prob. V.2
and the synthesis of provably-correct (i.e., satisfying temporal
logic constraints) optimal control strategies.
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