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Abstract
Tunnel wall convergences should be predicted before the excavation and should be determined accurately in order to 
ensure safe and economic tunnel excavation media. For this to be possible, rock mass behaviors in the tunnel should also 
be estimated prior to excavation. This could be ensured by site investigation studies, numerical models and predictive 
statistics. In this study, the development of convergences during a tunnel excavation in Turkey, excavated by NATM tech-
nique, was evaluated by using statistical prediction techniques for weak-to-fair-quality rock masses. For this aim, actual 
tunnel wall convergence data and rock mass strength parameters were used. For prediction of tunnel wall convergence, 
multivariable regression analysis, artificial neural networks (ANNs), classification and regression tree (CHAID) and Chi-
square automatic interaction detection (C&RT) methods were used and prediction results were compared to each other 
in terms of superiority and practicality. For this aim, 112 tunnel sections were used for prediction model and 30 different 
tunnel sections were used for validation. According to the obtained statistical prediction findings, it is seen that C&RT and 
ANN methods provide good prediction of tunnel wall convergences. However, C&RT method was found more practical in 
field use when compared to ANN. The results have shown that overburden thickness is the most effective parameter on 
tunnel convergence when compared to Crm, Φrm, Erm, RMR and Q. However, the best way for determination of tunnel wall 
convergences is to use in situ measurements, but in case of the lack of in situ measurement instruments, the suggested 
probability-based statistical approach is proven to be very effective and practical. Ultimate convergence level for any 
cross section with similar geological and geotechnical parameters to those analyzed before can be predicted by using 
the suggested method in this study. Yet, it should be kept in mind that the findings of this study are limited with the data 
used in this study. Although the aim of this study is to ensure a different point of view for determination of convergences 
in case of lack of convergence measurements and field data, by adding up more convergence measurements and rock 
mass strength data to the proposed statistical method, prediction power of this method can be improved and then this 
method can be used as a practical tool for the prediction of tunnel convergences. Besides, the user-friendly and open-
to-development structure of this study can be a very useful tool for the geotechnical engineers, engineering geologist 
and mining engineers, if it can be developed by more field data.
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1 Introduction

Owing to the nature of the ground, all underground exca-
vations are challenging operations. Every underground 
excavation has its very own characteristics and has to be 
understood clearly prior to commence of the excavation. 
In Turkish tunneling practice, geological and geotechni-
cal site investigation studies are done during the project-
ing stage, but do not keep going as required during the 
excavation. Site investigation studies should continue 
through the whole life of the project because rock mass 
response to the excavation is hard to determine during 
the construction unless in situ measurement techniques 
are used. In practice, excavated area become narrower 
owing to the convergnence movements of the tunnel 
wall. To stop this movement and to ensure economy and 
safety inside the tunnel, convergences should have to be 
determined and predicted accurately. This convergence 
behavior of the ground is regarded as a reaction to newly 
generated stress conditions. These movements through 
the excavated space are named as “deformation” or “dis-
placement,” and the prediction of it prior to the advance 
of the tunnel face is an important issue. Several research-
ers have tried to predict tunnel wall convergences before 
excavation of the face by different manners such as 
empirical methods, in situ testing or statistical predic-
tion techniques [5, 7, 21, 25, 29, 34, 36–39, 46, 47, 49, 
56, 70, 75]. In some of the studies, it was stated that the 
maximum convergence value can be obtained at about 
one and a half tunnel diameter behind the face with an 
assumption that at the face position about 20–30% of 
total convergences have already occurred before the 
measurement [7, 29, 34, 36]. As the initial convergences 
have developed immediately before the next excavation 
section, at least 30% of total convergences cannot be 
measured by using geodetic or other monitoring tech-
niques. Some researchers claim that this amount reaches 
up to a level of 60–80% [32]. Therefore, it is clear that 
there will always be a measurement deficit between exca-
vation period and the first geodetic monitoring reading. 
Deformations occurred in this time gap which cannot be 
measured by conventional monitoring methods unless 
buried monitoring devices like rod extensometers are 
used. Using extensometers ahead of the excavation face 
may be undoubted way to learn damaged zone thickness 
and convergences, but their use is not common in Turk-
ish highway tunneling practice, because of the cost and 
practicality concerns. There are some rare examples in the 
world of using extensometers in underground excava-
tions, but most of them were used in nuclear repository 
sites [8, 35, 40, 49, 67, 71] where host rocks are almost 
massive. There are some studies in highway tunnels of 

estimation of tunnel wall convergences. Yet, these stud-
ies have not been used regularly and have been used for 
only unstable zones or for only one tunnel [1, 7, 13, 20, 
21, 24, 26, 32, 34, 36–40, 43–45, 47, 48, 55, 56, 59, 70, 74].

In the literature, various statistical techniques have 
been used to estimate tunnel convergences by using some 
rock strength parameters and have applied for solution of 
geotechnical and rock engineering problems. Some of the 
applied techniques are multivariable regression analysis 
(MVR), artificial neural networks (ANNs), multivariate adap-
tive regression splines (MARS) and support vector machine 
(SVM) methods [1, 7, 47, 48, 77]. In Mahdevari and Torabi 
[47] study, various statistical estimation approaches were 
used to predict convergences at Ghomroud water con-
veyance tunnel in Iran. The aim of the study was to reveal 
relationship between the selected rock parameters and 
convergences of the tunnel. For this aim, real convergence 
monitoring data, geomechanical and geological param-
eters obtained through site investigation and laboratory 
tests were introduced as an input to artificial neural net-
work. In order to predict tunnel convergences, two differ-
ent artificial neural network (ANN) approaches were used: 
multilayer perceptron (MLP) and radial basis function (RBF) 
analysis. Besides, multivariable regression (MVR) analysis 
was also used to predict convergences in the study. Yet, 
the findings of MVR were not satisfactory when compared 
with the real-field measurements. So, the study showed 
that ANN has great superiority when compared with MVR. 
In Adoko et al. [1], two different approaches, MARS and 
ANN, were used to predict convergences of a high-speed 
railway tunnel in weak rocks located in Hunan province 
(China). Limitations of ANNs were stated and superiorities 
of MARSs were highlighted in terms of explaining non-
linear multidimensional relationships among the factors 
influencing the tunnel convergences. The class index of 
surrounding rock mass, angle of internal friction, cohe-
sion, Young’s modulus, rock density, tunnel overburden, 
distance between monitoring stations, tunnel heading 
face and elapsed monitoring time were chosen as input 
parameters. Performance of the two models was evalu-
ated by comparing the predicted convergences with the 
measured data using several performance indices. As 
a result, it has been observed that both models show a 
good agreement with the field monitoring data. How-
ever, ANN models have shown a little bit better predic-
tion performance when compared with MARS prediction 
capability. Nevertheless, MARS estimation technique was 
found computationally more efficient at finding the opti-
mal model. Additionally, the model outputs of MARS have 
been expressed in a more interpretable way since it uses a 
series of linear regressions defined in distinct intervals of 
the input variable space.
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As can be seen in these studies, MVR has not shown 
satisfactory results at all. In all the previous studies, the 
best outcome has been generally obtained from the 
ANN structure. However, because of the black-box algo-
rithm, it is not practical to use it in the field and has not 
been encountered yet in application practice. Moreover, 
developing a neural network model in data mining appli-
cations is a very complex task, especially in solutions of 
geotechnical problems. SVM and MARS methods have 
also some limitations such as black-box structure and 
data normalization process, and these two methods are 
not user friendly, either. So, the end users of these stud-
ies have some difficulties in using and understanding. 
Besides, field application of these methods, especially 
in tunnel constructions, does not practical.

The aim of this study is the prediction of the amount 
of maximum tunnel wall closures in the time interval till 
to the application of first flexible supporting element, 
which is called “shotcrete” in NATM system. Because, 
maximum convergences generally start before the appli-
cation of preliminary support and at distance of 2 times 
of tunnel diameter behind the excavation face reaches 
the final value [29]. In tunnel excavation practice, it is 
unavoidable to leave an area unsupported between 
the last supported section and the last excavated face. 
Otherwise, supporting the excavated section cannot be 
furnished. This phenomenon is named as excavation 
speed and identifies how much length can be excavated 
at once without supporting or how much unsupported 
span can be allowed between the last supported sec-
tion and the face without an instant stability problem. 
Because, the excavated area between the last supported 
section and the excavated face can carry itself for a while 
as specified by “unsupported stand–up time–roof span” 
relationship Bieniawski [6]. During this period, conver-
gences cannot be measured. Moreover, in tunnel excava-
tion practice, most of the time, difficult working condi-
tions inside the tunnel do not allow to install monitoring 
station prior to at about two diameters length behind 
the excavated face. Therefore, a probability-based deci-
sion-tree structure was generated for the prediction of 
maximum level of convergence till the application of the 
first supporting for the unexcavated tunnel sections with 
similar geological and topographical conditions. All of 
the data used in this study were collected from totally 
nine highway tunnels (six tunnels for statistical predic-
tion and three more tunnels for validation, two of which 
are twin, having left and right tubes) located in various 
regions of Turkey. The studied highway tunnels are in 
horseshoe-shaped, 11  m in clearance and excavated 
in “weak to fair” quality rocks. Excavations have been 
done mostly by using “mechanical” methods and locally 
using “drilling and blasting” techniques depending on 

the rock mass conditions. All of the tunnels used in this 
study have supported and excavated in accordance with 
NATM system.

2  Methodology

The methodology is divided into three main parts in this 
study, namely literature survey and data collection, crea-
tion of statistical prediction model and validation of the 
findings. After completion of the literature survey, the 
required geological, geotechnical and convergence data 
were collected from six different highway tunnel excava-
tion sites for statistical prediction. At this stage, six tun-
nels were divided into sections showing similar geological 
structure and geotechnical rock mass properties. Length 
of the geological segments is variable depending on the 
geology. As length of the excavation is determinative for 
the convergences, it was taken into consideration and 112 
tunnel excavation sections were obtained having excava-
tion length between 0.75 and 1.5 meters. This excavation 
length has been continuously determined by the crew 
during the excavation to furnish excavation stability, and 
it is in harmony with “unsupported roof span” approach for 
weak-to-fair-quality rock masses of Bieniawski [6].

Four different statistical modeling techniques which 
are multivariable regression analysis—MVR, artificial neu-
ral networks—ANNs, classification and regression tree—
CHAID, and Chi-square automatic interaction detection—
C&RT, were used for prediction. Geological strength index 
(GSI) values of the studied tunnels ranged between 25 and 
65 which point weak-to-fair-quality rock masses. Engineer-
ing characteristics of the tunnel routes were determined 
by means of geological mapping, drillings and laboratory 
studies. Rock core samples for laboratory testing and RQD 
values were obtained from geotechnical drillings, RMR and 
Q values were obtained from field and laboratory studies, 
and the other rock mass geotechnical parameters were 
obtained from the laboratory studies. (Details are given 
in Appendices A, B and C.) All of these studies were con-
ducted in accordance with ISRM suggested method [73] 
both in the field and in the General Directorate of Turkish 
Highways accredited rock and soil mechanics laboratories. 
Tunnel wall convergences were measured by optical meas-
urement devices in three-dimensional space. Three dif-
ferent convergence points on the tunnel excavation wall 
were selected as a dependent variable input data; one of 
them was taken from the roof, one from the left shoulder 
and the other one from the right shoulder. At these points, 
all of the three-dimensional final convergence data were 
converted into one resultant vector and this final value 
was used in the statistical models. (Details are given in 
“Appendix D.”) By using independent parameters such as 
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RMR (rock mass rating system) [6], Q (engineering classifi-
cation of rock masses) [4], RQD (rock quality designation) 
[15], σci and σCrm (uniaxial compressive strength of intact 
rock and rock mass), Ei and Erm (modulus of elasticity of 
intact rock and modulus of deformation of rock mass),  ci 
and crm (cohesion of intact rock and rock mass), ϕi and ϕrm 
(internal friction angle of intact rock and rock mass) and H 
(overburden thickness) and dependency degree of actual 
convergence monitoring data with rock mass properties, 
the most effective statistical model was created. Then, cre-
ated statistical prediction structure was validated with the 
data of five different ongoing tunnel’s 30 different excava-
tion sections.

3  Geological and geotechnical properties 
of the studied tunnels

For geological–geotechnical description and convergence 
data collection, totally 142 tunnel cross sections from nine 
tunnel sites were investigated (112 data for model gen-
eration and 30 data for validation of the statistical model). 
Among selected nine tunnel sites, four out of six (Konak, 
Zonguldak 1, Zonguldak 2 and Puren tunnels) were only 
used for prediction. Two out of six (Tekir and Caglayan tun-
nels left and right tubes) were used for prediction and valida-
tion. In these tunnels, while left tubes were selected for gen-
eration of statistical modeling, right tubes were used only 
for validation. Another three tunnels (Eceabat 1, Eceabat 2 

and Tirebolu 2) were only used for validation. Location of all 
tunnels used in this study is shown in Fig. 1, and brief infor-
mation about the tunnels is provided in Table 1.

RMR and Q values were obtained from the field by direct 
measurements. While producing RMR and Q values, RMR 
and Q charts, RQD data and laboratory test results were 
used. (Input details of RMR and Q are given in “Appendices 
A and B.”) Intact rock strength properties that are uniaxial 
compressive strength (σi), modulus of elasticity (Ei), natural 
water content (γi) and Poisson’s ratio (ν) were determined 
by using core samples obtained from geotechnical drilling 
with the help of laboratory studies. All of the laboratory 
tests were conducted in accordance with ISRM standards. 
σi, Ei, RQD, γi and ν parameters were used to obtain rock 
mass strength parameters. RQD and σi are input param-
eters of RMR and Q systems. The σi, Ei and γi are input 
parameters of rock mass strength. These parameters were 
not used again in statistical prediction model (Table 2). 
Afterward, rock mass strength parameters are cohesion 
and internal friction angle of the rock mass, and the defor-
mation moduli were identified by using intact rock param-
eters obtained from geotechnical drillings and laboratory 
testing by following the methods suggested by Hoek et al. 
[30] and Hoek and Diederichs [31]. (Details are given in 
Online Appendices A and B.) Because of the lack of neces-
sary instruments for measuring in situ stresses, it was not 
possible to measure the vertical and horizontal stress con-
ditions in the field. However, the effect of horizontal stress 
can be observed in “x direction” as horizontal convergence 

Fig. 1  Location of the tunnels used in this study
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Table 1  Brief information of the studied tunnels

Tunnel name Length (m) Single or double tube Excavation method Geological units

Caglayan 2500 Double tube Mechanical Peridotite, weathered clay-
stone–mudstone, sandstone-
interbedded conglomerate, 
sandstone–claystone intercalation, 
conglomerate–sandstone–clay-
stone intercalation, claystone unit 
and residual soil

Eceabat T1 (used only for validation) 2515 Single tube Mechanical Sandstone and claystone units, 
sandstone unit is partly interca-
lated with claystone and sand 
bands observed locally, claystone 
unit is partly intercalated with 
sandstone, and fossil shells can 
also be seen

Eceabat T2 (used only for validation) 1430 Single tube Mechanical Sandy- and sand-intercalated and 
sand-banded claystone units have 
been determined; in some parts of 
the tunnel alignment, these units 
grade into sand band, sand and 
gravel-intercalated sandstone unit

Konak 3290 Double tube Mechanical, drill and blast Andesite, conglomerate, andesitic 
tuff, tuff, weathered andesite, 
sandstone, claystone and silt-
stones

Puren 2808 Double tube Mechanical Clay–claystone intercalation, 
claystone, claystone–limestone 
intercalation and fault breccia

Tekir 1154 Double tube Mechanical, drill and blast Conglomerate–sandstone intercala-
tion and limestone

Tirebolu 2
(used only for validation)

625 Double tube Mechanical, drill and blast Volcanic rocks mainly tuff, tuffite, 
agglomerate, basalt and dacite

Zonguldak Eregli T1 344 Single tube Mechanical, drill and blast Thickly bedded massive limestone, 
thinly to thickly bedded conglom-
eratic sandstone, siltstone, clay-
stone and limestone intercalation

Zonguldak Eregli T2 1445 Single tube Mechanical, drill and blast Thinly bedded conglomeratic lime-
stone, conglomerates–mudstone 
intercalation, thinly to thickly bed-
ded limestone, sandstone

Table 2  Brief of the parameters used in statistical prediction structure

a Convergence is divided by overburden height and expressed in percentage

Types of data Symbol Unit Minimum Maximum Mean Standard deviation

Measured H m 4.9 387.71 56.94 59.69
Empirical RMR No unit 30.94 66.27 42.55 9.19
Empirical Q No unit 0.0054 5.75 0.9744 1.4883
Empirical Crm MPa 0.012 0.684 0.2066 0.1551
Empirical ϕrm Degree 14.22 61.8 38.79 11.08
Empirical Erm MPa 4.36 13,861.52 2113.16 3151.41
Measured mean convergence Y mm 2.73 71.97 23.28 15.73
Normalized mean  convergencea Y′ % 0.0019 0.5127 0.092 0.1123
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movement and effect of vertical stress can be observed in 
“z direction” as vertical convergence movement.

4  Statistical prediction model, parameters 
and analyses

There are various factors affecting tunnel stability and con-
vergences. Some of them are excavation speed, excava-
tion technique, timing of supporting, selection of suitable 
supporting elements, expertise degree of excavation crew, 
clearance of the excavation, rock mass strength proper-
ties and overburden thickness. Among them, rock mass 
class, rock mass strength parameters and overburden 
thickness are easily measurable and can be more easily 
obtained from the field. Therefore, RMR, Q, Crm, ϕrm, Erm and 
overburden thickness (H) were selected as independent 
variables in this study, and their relation between tunnel 
convergences was investigated. Measuring the effects of 
the other parameters such as excavation technique, exca-
vation speed and expertise degree of the crew could not 
have been possible in this study. Brief properties of the 
statistical prediction and validation model parameters are 
given in Tables 2 and 3, respectively, and details of valida-
tion parameters are given in Appendix C. The correlation 

matrix of the selected parameters is provided in Table 4. 
The Spearman rho correlation coefficient was used in the 
correlation analysis because of the data distribution types 
of variables which are used in prediction models. Strong 
and statistically significant relationships are shown in red. 

In this study, two decision-tree structures, CHAID and 
C&RT, were used and compared with ANN and MVR analy-
sis. Decision-tree algorithms have been used before for 
solution of some geotechnical problems and gave satis-
factory results [22, 42, 57], but have never been applied 
to tunnel excavation studies and not compared with ANN 
and MVR before. However, it should be kept in mind that 
there are no statistical methods which are mutually exclu-
sive to each other. One algorithm, statistical analysis tech-
nique, used to classify selected data sets may not give sat-
isfactory results with other data sets. Different algorithms 
may work more consistently with different data sets [52, 
64].

4.1  Brief description of the statistical model 
structures

As explained above, four statistical prediction model 
structures (MVR, ANN, CHAID and C&RT) were used in 
this study. Multivariable regression (MVR) models were 

Table 3  Brief of the data used 
in validation of the prediction 
structure

a Convergence is divided by overburden height and expressed in percentage

Types of data Symbol Unit Minimum Maximum Mean Standard deviation

Measured H m 5.76 146.07 42.83 36.68
Empirical RMR No unit 16 59 38.53 15.00
Empirical Q No unit 0.003 2.25 0.54 0.568
Empirical Crm MPa 0.012 0.577 0.18 0.147
Empirical ϕrm Degree 25 65 45.40 11.41
Empirical Erm MPa 389 2440 1080.78 424.075
Normalized mean 

 convergencea
Y′ % 0.011 0.328 0.08 0.0818

Table 4  The correlation matrix of the variables used in statistical models

*Correlation is significant at the 0.05 level (two tailed)

**Correlation is significant at the 0.01 level (two tailed)

MEAN-Y (mm) MEAN-Y′ (%) H (m) RMR Q Crm (MPa) Phirm (Deg) Erm (MPa)

MEAN-Y (mm) 1.000 0.562** 0.076 − .207* 0.037 − 0.043 − .244** − .285**
MEAN-Y′ (%) 1.000 − .666** − .275** − .257** − .505** 0.118 − .486**
H (m) 1.000 0.201* 0.277** 0.589** − .309** 0.343**
RMR 1.000 0.714** 0.781** 0.605** 0.793**
Q 1.000 0.713** 0.400** 0.519**
Crm (MPa) 1.000 0.422** 0.733**
Phirm (Deg) 1.000 0.387**
Erm (MPa) 1.000
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used to attempt to assess the relationship between a 
number of independent variables and one dependent 
variable when there is a linear relation with them. In 
geotechnical studies, MVR models were designed to 
identify dependencies of the tunnel convergences, and 
the geological and geotechnical conditions encoun-
tered for prediction of the relationship between geo-
technical properties of rock mass and monitoring 
results. However, no satisfactory results have been 
obtained so far [1, 7, 47, 48, 77].

Artificial neural networks (ANNs) are kind of com-
puting systems inspired by biological neural networks 
that constitute animal brains. These systems are artifi-
cially learning mechanisms that “learn” to perform spe-
cial tasks by considering previous examples, generally 
without being programmed with task-specific rules. In 
recent years, usage of ANN has increased extensively 
for modeling various engineering cases, especially 
identification of nonlinear geotechnical problems 
[3, 11, 14, 18, 41, 50, 53, 60]. ANN structure is quite 
successful when compared to MVR, because ANN can 
identify nonlinear complex relationships between vari-
ables by its self-learning mechanism [19, 28, 54, 61, 
68, 69].

Decision tree is a kind of predictive structure 
method used in statistics, especially in data mining 
applications. It consists of a tree-type structure. In 
this structure, branches represent observations and 
leaves represent conclusions for the target born from 
observations. There are two types of tree structures. 
If the target variable takes a discrete set of values, it 
is called as “classification trees.” If the target variable 
takes a continuous value (real numbers), this time it is 
called as “regression trees” [9, 27, 58, 62, 63, 72]. This 
regression tree explains a hierarchical group of rela-
tionships, which are organized into tree-like structure. 
The structure starts with one variable called root node, 
and this root node splits into two to many branches. By 
this way, simple sequential question structures are gen-
erated [64]. The answers of these questions determine 
the next question. “if-any-and-if”-based questions are 
asked and finalized with “ends.” This generates network 
of questions and forms tree-like structures. Two popu-
lar algorithms exist in the literature, which are C&RT 
and CHAID standing for “classification and regression 
tree” and “Chi-square automatic interaction detection”, 
respectively [52]. Regression tree is a tree where their 
leaves predict a “real number” and not a class. In case 
of regression, C&RT looks for splits that minimize the 
prediction squared error (the least squared deviation). 
The prediction in each leaf is based on the weighted 
mean for node [10, 33, 51, 62, 64].

4.2  Generating of ANN and decision‑tree structures 
for prediction of tunnel convergences

Relative ground movements at each convergence 
monitoring point were recorded in three dimensions 
by the monitoring device in UTM coordinate systems. 
Then, all of the monitoring data were converted into 
vectoral absolute numbers. After that, these vectors in 
x-, y- and z-directions were transformed into one result-
ant vector which has a magnitude value represented 
as “Y” (Appendix D). Subsequently, all of the depend-
ent and independent variables, which are briefly given 
in Table 2, were evaluated together in terms of their 
interconnections (Table 4). Next, all of the dependent 
(tunnel wall convergences) and selected independent 
variables (RMR, Q, Crm, ϕrm, Erm and H) given in Appendix 
B were uploaded to statistical software tool IBM SPSS 
Modeler 17.0 for the generation of MVR, ANN, CHAID 
and C&RT structures.

The SPSS Modeler is based on nodes and streams. 
Nodes are the icons or shapes that represent individual 
operations on data. The nodes are linked together in a 
stream to represent the flow of data through each opera-
tion. Algorithms are represented by a special type of node 
known as a modeling node. There is a different modeling 
node for each algorithm that the SPSS Modeler supplies. 
Modeling nodes are shown as a five-sided shape. MVR, 
ANN, CHAID and C&RT structures have been defined in 
this stage. Other types of nodes are source nodes, process 
nodes and output nodes. Source nodes are the ones that 
bring the data into the stream, and always appear at the 
beginning of the stream. Process nodes perform opera-
tions on individual data records and fields and are usually 
found in the middle of the stream. Output nodes produce 
a variety of output for data, charts and model results, or 

Fig. 2  Working principle of IBM SPSS Modeler 17.0 for C&RT struc-
ture
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they enable to export the results to another application, 
such as a database or a spreadsheet. Output nodes usually 
appear as the last node in a stream or a branch of a stream. 
When a stream is run that contains a modeling node, the 
resulting model is added to stream, and is represented by 
a special type of node known as a model nugget which has 
a shape that looks just like a gold nugget (Fig. 2).

The SPSS Modeler has a capability of executing several 
analyses at the same time. So, the SPSS Modeler algorithm 
has been generated once in accordance with the above-
mentioned procedure for all the four statistical meth-
ods used in this study and has executed simultaneously. 
For ANN modeling, multilayer perceptron analysis was 
selected. A multilayer perceptron (MLP) is a class of feed-
forward artificial neural network. MLP consists of at least 
three layers of nodes. Except for the input nodes, each 
node is a neuron that uses a nonlinear activation function. 
MLP utilizes a supervised learning technique called back-
propagation for training. Its multiple layers and nonlinear 
activation distinguish MLP from a linear perceptron. It can 
distinguish data that are not linearly separable [12, 65].

In C&RT structure, binary trees were constructed where 
each internal node has exactly two outgoing edges. At 
each outgoing edge, splits were created for generation 
of tree-type structures by the software. The obtained tree 
has been pruned by complexity pruning method. By this 
way, a regression tree was created. In this regression tree, 
each leaf predicts “real number.” C&RT structure searches 
for splits that can minimize the prediction squared error 
(the least squared deviation). The prediction in each leaf 
is based on the weighted mean for node.

In CHAID structure, nominal attributes were searched. 
For each input attribute, the pair of values was found that 
is least significantly different with respect to the target 
attribute. For each selected pair, CHAID checks whether 
the p value obtained is greater than a certain merge 
threshold. If the answer is positive, it merges the values 
and searches for an additional potential pair to be merged. 
The process is repeated until no significant pairs are found. 
The best input attribute to be used for splitting the current 
node is then selected such that each child node is made of 
a group of homogeneous values of the selected attribute. 

In contrast to CHAID, C&RT can create regression trees, and 
when compared to CHAID, this is the superiority of C&RT.

In SPSS Modeler, each statistical model structure has 
been generated for left shoulder, roof and right shoul-
der convergences separately by selecting tunnel conver-
gences as dependent variable and RMR, Q, Crm, ϕrm, Erm 
and H parameters are selected as independent variables. 
Hence, for each of the three convergence monitoring 
points (left shoulder, roof, right shoulder), six distinct pre-
dictions were generated for each of the statistical models. 
As can be expected, this situation is complicated to inter-
pret. For this reason, right, left and roof convergence val-
ues were re-evaluated to simplify each statistical predic-
tion model. As a result, it was observed that the resultant 
convergence values at three monitoring points are consist-
ent with each other. So, these were considered as mean 
values for the three monitoring points. Besides, instead of 
the radial deformations at each monitoring point, overall 
tunnel closures have been obtained by this approach. So, 
all of the procedures above were repeated for the mean 
convergence value.

4.3  Findings of the statistical models

In this manner, dependent variable “convergences - Y” was 
transformed to percentage of overburden and named as 
“normalized convergences - Y” [66].

Results of the statistical analysis have shown that over-
burden thickness “H” is the most affective independent 
parameter, and it can mask the effects of other independ-
ent parameters in the statistical prediction model. To over-
come this issue and to observe more clearly the effects of 
other independent parameters on tunnel convergences, 
in all monitoring points convergence values were normal-
ized by dividing into its overburden thickness. Moreover, 
as the effect of overburden thickness has been embedded 
in convergences and used as a unitless percentage value, a 
universal estimation approach has been obtained by this 
way. So, the suggested method can be applied to all other 
tunnel studies no matter what the tunnel overburden 
thickness is. In this manner, dependent variable “conver-
gences - Y” was transformed to percentage of overburden 

Table 5  Results of the 
statistical analyses of tunnel 
convergences

Y (measured mean convergences) Y′ (normalized mean convergences)

Q-based model RMR-based model Q-based model RMR-based model

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

CHAID 0.454 11.567 0.719 8.301 0.861 0.042 0.813 0.048
MVR 0.088 14.944 0.088 14.944 0.252 0.097 0.252 0.097
C&RT 0.870 5.633 0.793 7.113 0.933 0.029 0.933 0.029
ANN 0.616 9.707 0.388 12.244 0.933 0.029 0.921 0.031
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and named as “normalized convergences- Y′” [66]. So, all 
the procedures explained in Sect. 4.2 have been repeated 
for the “Y′” value and much more satisfactory results were 

obtained. Results are given in Table 5, and the decision-
tree and ANN structures are shown in Figs. 3, 4 and 5, 6, 
respectively.    

Fig. 3  C&RT model structure and results for Q–Y′ model

Fig. 4  C&RT model structure and results for RMR-Y′ model
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As given in Table 5, MVR and CHAID structures do not 
have good prediction capability and do not give reliable 
results. It is clearly seen that, except for MVR method, the 
other statistical prediction models have high R2 value for 
the selected data. In statistics, the coefficient of determina-
tion, denoted as R2, is the proportion of the variance in the 

dependent variable that is predictable from the independ-
ent variables. It provides a measure of how well-observed 
outcomes are replicated by the model based on the pro-
portion of total variation of outcomes explained by the 
model. An R2 of 1 indicates that the regression line per-
fectly fits the data [16, 17, 23]. The Y and Y′ for both of the 

Fig. 5  ANN structure for Q-based model and comparison for predicted values to measured values in terms of averages of Y′ values

Fig. 6  ANN structure for RMR-based model and comparison for predicted values to measured values in terms of averages of Y′ values
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dependent variables ANN and C&RT models give a higher 
R2 value (Table 5). When the tunnel convergence (depend-
ent variable Y) is considered, it reveals that C&RT method 
has a higher R2 value than the ANN. On the other hand, 
ANN and C&RT methods have almost the same R2 values 
for the normalized convergences (dependent variable 
Y′). The R2 value of normalized convergences, which also 
reflect the vertical and horizontal field stresses, is higher 
than the R2 value of tunnel convergences (Y) decision-tree 
structure and closer to 1. RMR-based C&RT model struc-
ture has a little bit higher R2 value than the ANN. Besides, 
both the RMR and Q-based normalized convergence (Y′) 
decision-tree structures have the same R2 and RMSE val-
ues. The findings of this study show that created ANN and 
C&RT model structures are consistent with the findings of 
former studies (Table 6) and verify the estimation method. 
As can be seen from Table 6, MVR has not given satisfac-
tory results and results of the MARS and ANN have always 
given the best R2 and the least RMSE values. However, the 
best outcomes have been obtained from MARS and SVM 
analyses when compared to ANN. The R2 and the RMSE 
values of suggested C&RT structure in this study are quite 
close to ANN and the previous researchers’ findings.

According to selected input parameters in Q system-
based ANN model, rock mass internal friction angle is 
found to be the least effective parameter on convergences, 
while cohesion of the rock mass appears to be the most 
effective (Fig. 5). When it comes to RMR system-based ANN 
model, this time deformation modulus is found as the least 
effective parameter on convergences and cohesion of the 
rock mass again emerges as the most effective parameter 
on convergences (Fig. 6). In Figs. 5 and 6, generated ANN 
model structure is shown in the left and comparison of 

predicted to measured convergence values is given in 
the right. As can be seen from the figures, it is not easy to 
evaluate and interpret how the convergences are affected 
from the given independent variables. However, C&RT 
structure offers more user-friendly approach to operate 
structure in the field for the end user. Any tunnel engi-
neer can use the rock mass strength properties and the 
rock mass rating scores to operate C&RT prediction model 
given in Figs. 3 and 4. In Figs. 3 and 4, there are nodes with 
explanation boxes on each which constitute conditional 
paths. At the beginning of each split, there is the most 
effective geotechnical parameter on convergences. Then, 
this node is split into new nodes related to the most effec-
tive geotechnical parameter on convergences at one level 
above. On each node, “n” represents the number of pre-
diction data considered from the selected data set which 
are used in regression analysis for generation of decision-
tree. “ %” represents its percentage among the all data sets. 
“Predicted” represents the normalized convergence value 
(Y′) for the selected conditional path. In these figures, any 
suitable decision-tree path can be tracked by the engineer 
depending on the rock mass data to find out the related 
tunnel wall convergence value. All of the paths should be 
evaluated and followed separately depending on the geo-
logical and geotechnical conditions in the field, and the 
decision about the best path to follow should be given by 
the tunnel engineer, because there may be some paths 
which are mutually exclusive to each other.

In the C&RT structure, totally 11 distinct alternative deci-
sion paths (Figs. 3 and 4) have been emerged according to 
input data. For the prediction of Y′ value, all of the emerged 
alternative paths in the C&RT structure are given in the fol-
lowing according to input data used in this study.

Table 6  Findings of the previous studies about prediction of tunnel convergences

Researchers Used statistical methods

MVR ANN

R2 RMSE R2 RMSE

Mahdevari and Torabi [47] 0.352 3.070 0.936 0.0842

Researchers Used statistical methods

MARS ANN

R2 RMSE R2 RMSE

Adoko et al. [1] 0.96 0.42 0.97 0.9581

Researchers Used statistical methods

MVR SVM

R2 RMSE R2 RMSE

Mahdevari et al. [48] 0.13 3.921 0.941 0.271
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• If only Crm ≤ 0.013 MPa condition exists, in this case 
predicted normalized convergence (Y′) value can be at 
about 0.443% level.

• If 0.013 < Crm ≤ 0.040 MPa and Erm ≤ 5.835 MPa condi-
tions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.373% level.

• If 0.013 < Crm ≤ 0.040 MPa and Erm > 5.835 MPa condi-
tions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.291% level.

• If 0.040 < Crm ≤ 0.074 MPa and ϕrm ≤ 55.775° conditions 
exist together, in this case predicted normalized con-
vergence (Y′) value can be at about 0.125% level.

• If Crm > 0.074 MPa and ϕrm ≤ 55.775° conditions exist 
together, in this case predicted normalized conver-
gence (Y′) value can be at about 0.037% level.

• If 0.040  MPa < Crm ≤ 0.375  MPa, ϕrm > 55.775° and 
Q ≤ 0.762 conditions exist together, in this case pre-
dicted normalized convergence (Y′) value can be at 
about 0.298% level.

• If Crm > 0.375 MPa, ϕrm > 55.775° and Q ≤ 0.762 condi-
tions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.149% level.

• If Crm > 0.040 MPa, ϕrm > 55.775° and Q > 0.762 condi-
tions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.083% level.

• If 0.040  MPa < Crm ≤ 0.375  MPa, ϕrm > 55.775° and 
RMR ≤ 55.603 conditions exist together, in this case 
predicted normalized convergence (Y′) value can be at 
about 0.298% level.

• If Crm > 0.375 MPa, ϕrm > 55.775° and RMR ≤ 55.603 con-
ditions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.149% level.

• If Crm > 0.040 MPa, ϕrm > 55.775° and RMR > 55.603 con-
ditions exist together, in this case predicted normalized 
convergence (Y′) value can be at about 0.083% level.

Prediction results give the convergences as a percent-
age value. As normalized convergence value has been 
selected for prediction of convergences, the obtained 
prediction results have to be transformed into a real con-
vergence value by multiplying it with the related section’s 
overburden thickness. It should be kept in mind that 
these values are valid for the data set used in this study, 
and adding up more data will improve the decision-tree 
structure and its prediction capability. This value repre-
sents level for possible convergences for the related geo-
technical data. There is not any precise, clearly identified 
rock mass strength value in nature. None of the geological 
structures are homogeneous, and all of the specified rock 
masses should be evaluated as ranges. Therefore, speci-
fied geomechanical values for the rock masses should be 
accepted as an approach for the real case. So, predicted 
convergence values represent approximation to real case 

and can be used as a preliminary approach for support 
system when there are no other in situ tools to measure 
convergences, especially for the weak and fair rock masses.

5  Validation of the decision‑tree 
convergence prediction structure

Between the excavated face and the last supported 
section, there is unsupported area that occurs in tun-
nel excavation, and excavation crew cannot work there 
before the application of the first supporting element 
which is shotcrete in NATM system. So, finalization of 
full supporting round requires a significant amount of 
time. Because of this, a significant amount of deforma-
tions occur during this period, and in most of the tun-
nel construction studies, there will always be delayed 
in convergence monitoring activity. Therefore, a signifi-
cant amount of deformation data cannot be detected. 
In practice, most of the monitoring devices are placed at 
least 10 m behind the excavated face after the excavated 
section is fully supported. This requires at least three 
fully supported excavation rounds. For this reason, it has 
been stated that 30–80% of convergences have already 
been occurred beforehand and cannot be monitored in 
most of the tunnel excavations. When difficult working 
conditions in underground excavations are considered, 
a certain amount of increments can be accepted rea-
sonable for compensation of the missing convergence 
data [7, 32, 34, 36]. However, the tunnel designer should 
have to be sure about how much tunnel convergence 
data could not be measured till the installation of first 
monitoring station. Therefore, convergence data used for 
validation (Online Appendix C) were increased in ratio of 
30%, 60% and 80%, respectively. Besides, the raw conver-
gence monitoring data, which represent the maximum 
loose in tunnel convergence readings, are also used in 
validation step. The raw convergence data are the moni-
toring data when application of the full supporting and 
most of the convergences completed. As stated before, it 
is not possible to monitor the convergences beforehand 
the application of supporting unless in situ measure-
ment techniques are used. By this way, it can be evalu-
ated which increment amount is closer to a statistically 
predicted model value. Or, it can be stated that there 
is maximum lost in monitored convergence data if the 
prediction result is closer to raw validation data. Detailed 
philosophy of this process can be explained as this: In 
underground excavations before the installation of opti-
cal monitoring devices, there is no way to find out the 
amount of lost in convergence data without using buried 
field measurement devices such as tape extensometers. 
So, the level of lost in convergences could not have been 
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determined in a decision-tree structure generation step. 
In decision-tree and ANN structures, evaluated conver-
gences are the convergences that occur after installation 
of supports. Therefore, in a validation step, two kinds of 
convergence data were used; the first one is raw tun-
nel convergence monitoring data. In these data, just as 
it had been done in the creation of decision-tree struc-
ture step, amount of missing convergences is not known, 
either. The second is the stepwise increment in the moni-
tored convergence data. In these steps, raw convergence 
monitoring data collected for validation were increased 
by the ratio of 30, 60 and 80%, respectively. By this way, 
in each monitoring station, four types of convergence 
data were obtained. All these data include the amount of 
missing convergence data, but actual amount is still not 
known. After that, independent variables data of valida-
tion tunnels (Appendix C) were put into the previously 
generated “decision-tree” structure (Figs. 3 and 4), and by 
tracking up appropriate paths, convergence prediction 
results were obtained again. It should be kept in mind 
that neither the measured convergence data nor the pre-
diction results of the decision-tree structure include the 
convergence amount prior to application of the support. 
Besides, the aim of this study was to find out the ultimate 
excavation closures for the unsupported span section. 
So, by this way it was possible to predict an ultimate 

level of convergences for the unexcavated tunnel sec-
tions which have similar geological and topographical 
structures. Therefore, findings of the decision-tree pre-
dictions were compared with the validation data. This 
comparison gives the best coherent prediction data to 
specify the amount of missing convergence level, as the 
decision-tree structure is a kind of best probability sta-
tistics. So, to validate the suggested statistical prediction 
structure, the steps given in the following were followed:

(a) New convergence monitoring and rock mass data 
are collected from five new tunnels’ 30 cross sections 
(Online Appendix C).

(b) These data are increased by 30%, 60% and 80%, 
respectively.

(c) By using the suitable paths in decision-tree structure 
(Figs. 3 and 4), the normalized convergence (Y′) values 
were predicted for the validation data given in Online 
Appendix C.

(d) For comparison, the measured tunnel wall conver-
gences were plotted against the predicted (Fig. 7).

In Fig.  7, vertical axis represents predicted conver-
gences which use data given in Appendix C with the help 
of the decision-tree structure given in Figs. 3 and 4. The 

Fig. 7  Comparison of predicted convergence values (Y′) and raw convergence measurement data and its 30%, 60% and 80% increments
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horizontal axis shows the measured normalized conver-
gence data after the support installation and 30, 60 and 
80% increased values of these data in validation tunnel 
cross sections. As can be seen from Fig. 7, predictions of 
the decision-tree structure almost fit perfectly for all four 
situations (raw validation convergence data and incre-
mental data of 30, 60 and 80%). This proves that the sug-
gested prediction structure is working well. However, the 
obtained R2 values are the same for the entire four situa-
tions. Statistically, in comparison with two variables, multi-
plying any one of the variables with any constant number 
will not change the coefficient of determination (R2). For 
this reason, to find out the most reliable incremental ratio; 
“sum of the squared error” (SSE), which is a well-known 
statistical method for these cases, was applied to incre-
mented convergence data. According to SSE, the following 
results were obtained:

• for measured raw tunnel wall convergence data, SSE is 
0.194348.

• for 30% increment of the measured raw tunnel wall 
convergence data, SSE is 0.104747.

• for 60% increment of the measured raw tunnel wall 
convergence data, SSE is 0.104316.

• for 80% increment of the measured raw tunnel wall 
convergence data, SSE is 0.123463.

Among these results, the least SSE value was obtained 
for 60%. It should be considered that all of the SSE 
results are very close to each other. That is why com-
parison graph, given in Fig. 8, almost fits for all three 
cases. This situation can be explained with the engineer’s 
safety approach. That is to say, more increments for the 
measured tunnel convergences will create safer con-
ditions. In another words, tunnel engineer may prefer 
more conservative approach by choosing 80% incre-
ment in convergences for the further stages of the tun-
nel excavation. This approach is also parallel with Hoek 
et al. [30] study. In this study, term of “disturbance factor” 
for the rock masses was stated and it was suggested to 
decrease the rock mass strength parameters with a cer-
tain amount, ranging between 0 and 1, depending on 
the blasting or excavation quality, where zero (0) refers 
to very good quality excavation and one (1) refers to very 

Fig. 8  Comparison of predicted and measured convergence data in terms of SSE for 30%, 60% and 80% increments
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poor excavation and blasting conditions. Therefore, an 
increment in the convergence values depends on the 
excavation or blasting quality. While an 80% increment 
in convergence monitoring data is enough for compen-
sation of missing data in case of very poor-quality exca-
vation, a 30% convergence increment may be sufficient 
for good excavation conditions. However, evaluation of 
excavation quality is subjective measurement, while our 
suggested method offers more objective evaluation.

6  Results and discussion

In this study, overall ultimate tunnel wall convergences 
for weak-to-fair-quality rock masses were evaluated and 
predicted by using previously measured tunnel conver-
gence and rock mass data for the horseshoe-shaped, 
11-m clearance highway tunnels, excavated with NATM 
method. Selected tunnels were mostly excavated with 
mechanical excavations and locally using drilling and 
blasting techniques. As all of the tunnels have the same 
geometry, clearance and all of the tunnels have exca-
vated by the same methods, influence of the tunnel 
clearance and the excavation method to excavation is 
accepted to be equal for all the cases and not considered 
in the analyses. Besides, evaluations have been done for 
2D excavation space and for three diameters behind the 
excavation face. So, longitudinal radial effect on tunnel 
closures is not considered in this study. There are other 
empirical methods and in situ measurement techniques 
available for this [2, 76].

Prediction results of decision-tree structure are user 
friendly when compared to ANN structure, and its effec-
tiveness has been validated in this study. So, the sug-
gested method can be used as a tool for prediction of 
tunnel convergences beforehand the excavation. How-
ever, every underground excavation is unique and should 
be evaluated to its very own properties, while construc-
tion is going on. For this aim, rock mass classifications, 
site investigation findings, engineering geological maps 
and geological and geotechnical properties of the rock 
masses should be considered at first. Statistical prediction 
techniques and empirical methods may be preferred if no 
other in situ measurement tools are available and these 
should be used as supplemental techniques. Adding more 
field measurements, including new convergence data, 
RMR, Q and rock mass strength properties, will improve 
the prediction capability of the suggested method.

According to the results obtained from C&RT struc-
ture, tunnel overburden thickness (H) is determined as 
the most effective parameter on tunnel convergences, 
while Crm is found to be as the second most effective. 
ϕrm, Erm, RMR and Q parameters are found to be the 

other effective parameters on tunnel convergences. For 
the studied tunnel cross sections, the lowest normal-
ized convergence value is obtained as 0.037 if the Crm 
value is higher than 0.074 MPa and the ϕrm value is lower 
than 55°. The highest normalized convergence value is 
obtained as 0.443 if the Crm is lower than or equal to 
0.013. These are unitless numbers and expresses levels 
for the convergences. These values can be applied to any 
tunnel if the geological and geotechnical properties are 
similar, by multiplying it with related tunnel depth and 
dividing into 100, to find out the ultimate level of con-
vergence values.

7  Conclusions

Instrumental measurement techniques, especially buried 
ones (such as road extensometers), are the best way to 
measure the real convergences in case these instruments 
are placed before the excavation face, although they are 
expensive and require deliberate attention and consume 
crew’s time. The other optical monitoring techniques, 
which are installed inside the excavated area, may cause 
loss of convergence data. So, the suggested method in 
this study is a good starting point for prediction of overall 
tunnel convergences for the unexcavated tunnel sections 
when there is a lack of advanced field measurement tools. 
In such cases, our suggested method is practical tool for 
the prediction of tunnel convergences by using previous 
convergence data and rock mass strength properties, for 
the similar geological and topographical conditions. The 
user-friendly and open-to-development structure of this 
study finding is a very useful tool for the geotechnical 
engineers, engineering geologists and mining engineers 
for use in the field.
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