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Abstract: This study investigates the utility of satellite-based rainfall estimates in simulating
flash floods in Karpuz River Basin, Turkey, characterized by limited rain gauge network. Global
Satellite Mapping of Precipitation (GSMaP) product was evaluated with the rain gauge network
at daily and monthly time-scales considering seasonality, elevation zones, extreme events and
rainfall intensity thresholds. Statistical analysis indicated that GSMaP shows acceptable linear
correlation coefficient with rain gauges, however, suffers from significant underestimation bias.
Statistical measures exhibited a remarkable deterioration with increasing elevation-following a
linear relationship; for example, percent bias was found to increase by a rate of 11.7% with every
400 m interval. A multiplicative bias correction scheme was devised, and Hydrological River Basin
Environmental Assessment Model (Hydro-BEAM) was implemented to simulate flash floods driven
by the uncorrected/corrected GSMaP data. Analysis of intensity thresholds revealed that appropriate
threshold selection is critically important for the bias correction procedure. The hydrological model
was calibrated for flash flood events during October–December 2007 and 2012 and validated during
October–December, 2009 and 2010. Flash floods simulations were improved by the local bias
correction procedure applied to the GSMaP data, but the degree of improvement varied from
one period to another. The results of the study indicate that bias factors incorporating multiple
variables such as extreme events and elevation variability have the potential to further improve
flood simulations.

Keywords: satellite-based precipitation; bias correction; GSMaP; flash flood modelling;
Mediterranean; Turkey

1. Introduction

Globally, flash floods are among the most devastating natural hazards regarding both mortality
and economic loss [1,2]. In particular, the Mediterranean region is projected to become increasingly
exposed to flash floods due to the projected increase in hydrologic extremes [3] and rapid population
growth. Flood early warning systems are important tools to effectively mitigate flood-induced hazards.
Operation of early warning systems requires good-quality observations (precipitation, streamflow, etc.),
reliable model(s)—for hydrologic and weather prediction—and adequate lead time for the warning to
be issued. However, each of the above factors are problematic when it comes to predicting flash floods;
for example, see [4]. In the Mediterranean region, flash floods are triggered by heavy precipitation
events with accumulated rainfall higher than 100 mm, often within a few hours. Such intense rainfall
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events are naturally induced by quasi-stationary mesoscale convective systems [5]. The concurrence of
such heavy rainfall events superimposed on the Mediterranean catchments, characterized by small
area, steep topography, and very poor land cover, often triggers devastating flash flood events. Thus,
both small scale occurrence and rapid onset of flash flood events hinder observation, prediction and
warning efforts. Although coordinated efforts have been made to improve the flash flood forecast skill
in the Mediterranean region (e.g., The Hydrological Cycle in the Mediterranean Experiment (HyMeX)
program and EU Project HYDRATE [6] in Europe), these efforts do not span the whole Mediterranean
region, and the accuracy of the models is still insufficient. Estimates of extreme rainfall rates by weather
radar at space and time scales appropriate for flash floods is seen as the cornerstone for flash flood
modelling [7]. However, complex topography associated with the Mediterranean basins complicates
the radar signal with ground clutter and mountain blockage [6]. Majority of the Mediterranean basins
are poorly gauged or ungauged, hence making satellite-based precipitation (SBP) retrieval algorithms
potentially attractive for basin scale hydrologic studies over these regions.

Although SBP products are freely available for most regions of the world, they have certain
limitations, primarily due to the indirect nature of precipitation retrieval. Satellite-based precipitation
algorithms estimate precipitation rate based on remote sensing features of clouds derived from the
sensors that are sensitive to visible (reflectivity of clouds), infrared (IR; cloud-top temperature; [8],
and microwave (scattering from rain/ice particles; [9] portions of the electromagnetic spectrum.
Visible and IR sensors are accessible on geostationary orbiting satellites and hence offer data at fine
temporal scales. However, precipitation estimates by these sensors are rather crude because the
cloud-top temperature is indirectly—and often poorly—related to precipitation. Passive Microwave
(PMW) sensors on polar-orbiting satellites provide more precise estimates of precipitation but with
low temporal resolutions. Recent SBP products merge information from several sources, such as rain
gauges, PMW, and IR, to get the benefit of the strengths of such sources. A few free and open access
SBP products to note are The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation
Analysis (TMPA; [10,11], Climate Prediction Center (CPC) MORPHing technique (CMORPH) [12,13]),
PERSIANN: Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks [14] and PERSIANN-CDR [15], Global Satellite Mapping of Precipitation (GSMaP) [16,17],
and IMERG [18]. Some of these quasi-global SBP products incorporate rain gauge information
from globally available datasets (such as GPCC) which are generally insufficient for resolving
spatio-temporal characteristics of rainfall required for basin scale hydrologic applications. Hence,
many researchers developed bias adjustment algorithms to correct satellite-only SBP products with
locally-available, relatively dense gauge networks reporting at or near real time. The nature of the bias
adjustment algorithms highly depend on the density of the available gauge networks, and include
deterministic bias correction models such as additive [19], multiplicative [20] or a combination of the
additive/multiplicative models [21], inverse distance weighting [22], linear regression models [23],
artificial neural networks [24] and geostatistical models such as various types of Kriging [25,26]. In the
literature, many studies conclude that bias correction of satellite-based precipitation products using
ground-based observations leads to improvement in hydrological model performance [27].

Satellite-based remote sensing products are increasingly becoming more applicable in hydrological
studies. Therefore, techniques focusing on enhancement of the quality as well as spatial and temporal
resolutions of the satellite-based rainfall measurements are crucial to understanding the hydrological
processes in many regions that suffer from a lack of dense ground-based measurement network.
The availability of such products at spatial and temporal scales that are relevant to hydrologic
and hydraulic modeling studies can sensibly improve the reliability of the simulated variables of
interest [28]. As such, the MOXXI (Measurements and Observations in the XXI century) Working
Group highlighted and proposed multi-disciplinary and innovative approaches for merging all the
available rainfall data sources such as rain gauges, radar data, and satellite-based products, that could
provide a better rainfall estimation to improve the quality of hydrological analysis. For example,



Water 2018, 10, 657 3 of 24

a distributed rainfall methodology was developed from satellite-based soil moisture observations by
Brocca et al. [29].

The literature on the utility of SBP products for flood simulation has been rapidly growing over
the last decade [30,31]. Mei et al. [32] investigated the errors in SBP products and its propagation in
streamflow simulations regarding rainfall and runoff volumes and time series shape in the Eastern
Italian Alps. The study concluded that the SBP products can capture the shape parameters of the
events better and that the gauge adjustments have an effect on the volumetric parameters but not on
the shape parameters. Kim, et al. [33] examined the uncertainty in the satellite-derived precipitation
data and its propagation through the hydrological model. They stated that GSMaP and CMORPH
products suffer from the consistent underestimation of precipitation and more significantly during the
wet periods. The feasibility of using satellite rainfall estimates to simulate flash floods was investigated
at complex terrain basins in Northern Italy [34]. They found that the simulated hydrographs only
become meaningful after recalibration of the model, separately for each satellite precipitation products.

Only a few studies have investigated the utility of SBP products in the Mediterranean region.
In particular, Stampoulis et al. [35] studied the error analysis of SBP products for flood producing
heavy precipitation events over complex terrain basins in Italy and France and found that precipitation
type has an important effect on the SBP product accuracy. Similarly, Mei et al. [32] investigated the
error in SBP-driven hydrological model simulation over complex terrain in Eastern Italian Alps
and found that error characteristics revealed the dependency on the flood type (rain floods vs.
flash floods). They concluded that random error dampening effect is less evident for the flash
flood events. Ciabatta et al. [36] stated that integration of observed and satellite rainfall data led
to more accurate rainfall input with respect to ground observations for discharge simulation over
Italy. Milewski et al. [37] evaluated the TMPA products against 125 rain gauges in northern Morocco
and found that TMPA products overestimated precipitation in arid regions and underestimated in
high elevations. Tramblay et al. [38] evaluated various SBP products for hydrological modelling in
Makhazine catchment, Morocco and reported that hydrological model driven by the TMPA product
(Version 7) resulted in poor performance in simulating daily discharge while being adequate at
the monthly timescale. Although several studies have evaluated SBP products over Turkey [39,40],
the performance of these products has not yet been evaluated over the Mediterranean region of Turkey
in hydrologic modelling.

In general, most of the previous studies for floods simulation were conducted by using the
hydrological models, but recently, hydraulic models have been increasingly used in such applications.
Several studies have been performed for coupling of hydrological and hydraulic models (e.g., [41–43]),
and application for hydrodynamics models (e.g., [44–48]). An investigation of the coupled models in
improving the flow simulations and reducing the uncertainty in arid and semi-arid regions would
provide interesting perspectives. For instance, coupling the hydrological models for the upstream
catchments and hydraulic models for the downstream and floods plains could potentially improve the
model performance, especially for flash floods in arid and semi-arid regions.

Mediterranean coast of Turkey is prone to frequent flash floods. In Turkey, flooding is the second
most important natural hazards, after the earthquakes with 22 floods and 19 deaths per year on
average [49]. Turkey is the fourth Mediterranean country with the highest loss from flash floods
after Italy, France, and Romania [50]. Moreover, the Mediterranean region of Turkey is marked by
rapid population growth and urbanization, which will likely exacerbate the impacts of flash floods.
Therefore, the main goal of this paper is to investigate the utility of SBP products in modelling flash
flood events over the Mediterranean catchments characterized by scarce ground-based observations
and steep topography. This goal is achieved in three major steps. First, SBP estimates from the GSMaP
product is compared with the rain gauge-based estimates around Karpuz River basin located in the city
of Antalya, Turkey. Next, a simple bias correction scheme is devised to correct the GSMaP precipitation
estimates using a relatively scarce rain gauge network. Lastly, a distributed hydrologic model suited
to flash flood simulation is driven by GSMaP-based precipitation estimates before and after the bias



Water 2018, 10, 657 4 of 24

correction scheme, and the simulation performance is assessed using observed hydrographs of flash
flood events together with performance statistics. This last step is seen as an independent check on the
accuracy of the GSMaP product before and after the bias correction.

2. Study Area, Datasets and Hydrologic Model

2.1. Study Area

The study area is located to the east of Antalya city in the Mediterranean region of Turkey
(Figure 1). According to the Köppen climate classification, the climate of the Mediterranean region is
characterized by hot, dry, sunny summers and rainy winters. The study area is located between
36.00 N–37.50 N latitude bands and 30.50 E–32.50 E longitude bands covering an area of about
1920 km2. Note that only the land area within this bounding grid was considered for the analysis
(Figure 1a). This area was considered for the satellite data in comparison to the rain gauges due to the
coarse resolution of satellite data. However, for flash floods simulation, Karpuz River basin (Figure 1b)
was selected. Karpuz River basin (Figure 1b) is located in the study area between 36.6–37 N latitude
bands, and 31.5–32.1 E longitude bands, and covers an area of 303 km2.
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Figure 1. The study area selected for the comparison between GSMaP and rain gauge data (a),
Karpuz River basin and the digital elevation model (DEM) at 1 km × 1 km spatial resolution grids
matching the hydrologic model resolution (b).

Settlements located around Karpuz Stream valley are Akseki, Gündoğmuş, Taşkent, Manavgat,
Alanya and İbradı towns. Karpuz Stream flows through the mountains and discharges into Mediterranean
sea near Manavgat [51]. The study region is topographically complex including mountainous
regions with elevations reaching up to 2500 m (Figure 2a). Based on AVHRR satellite land cover
classification [52], the dominant land cover in the study area varies between grassland and shrub
lands with sparse woodlands (Figure 2b). The daily rainfall data (Figure 2c) show that the region is
characterized by a dry season (April–September), and a wet season (October to March). The extreme
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rainfall events usually occurred in the rainy seasons, especially in November and December.
Climatologically, the region has a Mediterranean climate conditions with hot to dry summer and rainy
winter. Temperature is variable between 2 ◦C in the winter and 36 ◦C during the summer (Figure 2d).
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Figure 2. Topography of the study area based on ASTER Global DEM (a), Land cover classification
obtained from AVHRR satellite data (b), daily precipitation data (c), and daily air temperature (◦C)
data (d).

2.2. Satellite-Based and Rain Gauge-Based Precipitation Datasets

The GSMaP project was supported by Core Research for Evolutional Science and Technology
(CREST) of the Japan Science and Technology Agency (JST) and promoted by the JAXA Precipitation
Measuring Mission (PMM) Science Team, and was disseminated by the Earth Observation Research
Center, Japan Aerospace Exploration Agency. The GSMaP algorithm combines the information from
microwave and infrared radiometers aboard multiple satellites [53]. The algorithmic structure of the
GSMaP products was discussed in detail in the literature [16,54–56]. GSMaP products are offered
at two spatial resolutions: 0.1◦ × 0.1◦ and 0.25◦ × 0.25◦ grids, and two temporal scales: hourly and
daily. The GSMaP product is provided at various processing levels (satellite-only vs. corrected) as
listed in Table A1 (See Appendix A). In this study, we used hourly GSMaP data with 0.1◦ × 0.1◦

spatial resolution.
Daily precipitation data from five rain gauge stations distributed over the study area were

obtained from the General Directorate of Meteorology in Turkey (Table A2 in Appendix A). The rain
gauge data and GSMaP product span different time periods, thus an overlapping period (2007–2013)
was selected for the study. The time stamps of both GSMaP and rain gauge data were adjusted for
proper comparison.

2.3. Hydrologic Model Description and Implementation

The Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) was chosen to
simulate flash floods in the study basin. Hydro-BEAM is a distributed hydrological model originally
developed by [57], which subsequently was adopted to simulate flash floods in arid regions [58–60],
and later utilized to investigate the flash floods response with respect to geomorphic parameters in
wadi basins [61]. HydroBEAM model was also used as a tool for integrated water management [62,63]
and for climate change applications in Japan [64,65]. The Hydro-BEAM model includes a GIS interface
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for data input and visualization, surface runoff and stream routing components based on the kinematic
wave approximation. The initial and transmission losses are estimated based on the Curve Number
approach [66] and Walter’s equation [67], respectively, and groundwater component is represented
by a linear storage model. Hydro-BEAM is a distributed model consisting of horizontal spatial
discretization, the scale of which could be adjusted based on the basin scale. Each pixel is vertically
represented by a combination of one surface layer and three subsurface layers. The surface and
subsurface layers are noted as A, B, C and D. A-Layer and the river channel are governed by the
kinematic wave model for the overland flow estimation and the subsurface layers are modeled based
on the linear storage model. The Hydro-BEAM model has been widely used for flash floods modeling
in arid regions such as in Oman, Egypt, and Saudi Arabia [58–69], mainly due to its advantages
including spatially distributed representation of the catchment processes and capability for daily and
hourly simulations. Moreover, the model code is written in FORTRAN language, thus enabling easy
and rapid reproduction and modification of the code for various hydrological applications.

The model setup was implemented using spatial characteristics of the study basin (i.e., elevation,
flow direction, basin boundary, river channel, land use/landcover types and spatial grid resolution).
ASTER Global Digital Elevation Model [70] having a 30 m spatial resolution was used to identify the
stream network and to delineate the watershed boundary. Global Land Cover Characterization (GLCC)
dataset [71] having a 1 km2 spatial resolution was used to classify the land use types. The Hydro-BEAM
model was implemented at 1 km × 1 km spatial resolution. Hourly GSMaP rainfall data before and
after bias correction (see Section 3.1.2) was used as the input to the model. Thornthwaite method was
used to calculate daily mean potential evapotranspiration for each grid considering the data availability.

3. Methodology

3.1. Comparison of GSMaP Product with Rain Gauge Dataset

The objective of the comparison was to evaluate the GSMaP product with the rain gauge dataset
in the surroundings of the Karpuz River Basin. The evaluation period spans the years 2007 through
to 2013 based on the rain gauge data availability. The rain gauge rainfall data were interpolated to a
0.1◦ × 0.1◦ spatial resolution grid to be consistent with the spatial resolution of the GSMaP data using
the automated Thiessen polygon generation algorithm [72], based on the distance formula:

D =
√(

xi − xj
)2

+
(
yi − yj

)2 (1)

where, D is the distance between the target pixel centroid (x, y), and the rain gauge i and j refer to the
number of stations and the pixel numbers, respectively. In this technique, the pixels are allocated to the
same rainfall rate with the adjacent station. We note that the selection of the interpolation technique
depends highly on the density of the available gauge network and may introduce additional errors to
the rainfall dataset. Interpolation by using more comprehensive geostatistical models, such as kriging,
requires a denser gauge network to characterize the error structure [26].

Daily and monthly rainfall averages were estimated from hourly GSMaP data, and daily rain
gauges with the same spatial resolution. Statistical analysis was performed to compare GSMaP data
with the gauged-based rainfall dataset. The comparison includes several scenarios involving different
time scales (daily, monthly, seasonal), spatial scales (areal average, grid-based and grid vs. point-based),
elevation zones and rainfall intensity thresholds (e.g., ≥0 mm (detection), ≥1 mm, ≥2 mm, ≥5 mm,
and ≥10 mm (heavy rainfall)). In this comprehensive analysis, additional consideration was given to
evaluate the GSMaP product for the extreme events in an effort to explore its potential use in flash
floods simulations.

3.1.1. Evaluation Statistics

Statistical measures utilized to evaluate GSMaP product with rain gauge observations include:
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1. The correlation coefficient (R, Equation (2)) refers to the agreement between satellite-based
rainfall and gauge-based rainfall. R ranges between −1 and +1. The value of +1 indicates a
perfect positive fit, in other words, a perfect linear correlation.

2. RMSE: Root Mean Square Error (Equation (3)) is one of the most commonly used methods [73,74]
to measure the absolute average error and is sensitive to the larger errors.

3. The Nash-Sutcliffe efficiency (NSE, Equation (4)) is a normalized indicator that determines the
relative magnitude of the residual variance (“noise”) compared to the observed data variance
(“information”) [75]. NSE point out how well the satellite estimates match the rain gauge
estimates, and it ranges between negative infinity and unity; the latter being the best score.

4. Percent bias (PBIAS; Equation (5)) indicates the average tendency of the satellite-based rainfall
fields to be larger or smaller than the rain gauges; the best value is 0.0; negative (positive) values
indicate an underestimation (overestimation) by GSMaP [76].

R =
∑n

i=1
(

Pi
S − Pmean

S
)(

Pi
G − Pmean

G
)√

∑n
i=1
(

Pi
S − Pmean

S
)2
√

∑n
i=1
(

Pi
G − Pmean

G
)2

(2)

RMSE =

√
1
n

n

∑
i=1

(
Pi

S − Pi
G
)2 (3)

NSE = 1 − ∑n
i=1
(

Pi
S − Pi

G
)2

∑n
i=1
(

Pi
G − Pmean

G
)2 (4)

PBIAS =
∑n

i=1
(

Pi
S − Pi

G
)

∑n
i=1 Pi

G
× 100 (5)

where Pi
G is the gauge-based and Pi

S is the satellite-based precipitation values at time i. n is the number
of time steps included in the analysis.

Additionally, two categorical verification statistics, namely, Probability of Detection (POD) and
False-alarm Rate (FAR) were used to evaluate the consistency between GSMaP product and rain gauge
dataset for various rainfall magnitude thresholds. These categorical measures are based on a 2 × 2
contingency table [a: GSMaP yes, Gauge yes; b: GSMaP yes, Gauge no; c: GSMaP no, Gauge yes; and
d: GSMaP no, Gauge no]. The POD [=a/(a + c)], also known as hit rate, represents the fraction of
correctly detected rain events and ranges from 0 to 1; 1 being the best score. The FAR [=b/(a + b)] gives
the fraction of rain events that were false alarms and ranges from 0 to 1; 0 being the best score. Note
that a rain event (yes) and a no rain event (no) indicated above means that the product (GSMaP/gauge)
reported a rain event and not reported a rain event above the given threshold (e.g., ≥0.0 mm, ≥1 mm,
≥2 mm, ≥5 mm, and ≥10 mm), respectively.

3.1.2. Bias Correction of the GSMaP Rainfall

Using accurate satellite-based precipitation estimates has the potential to reduce the uncertainty
in flash floods simulation [77]. Thus, we investigated whether an improvement in the flash flood
simulation performance of the hydrological model is possible through bias correction of the GSMaP
product with the local rain gauge network. Due to the availability of relatively scarce rain gauge
network within the study area, we employed a simple multiplicative bias correction procedure.
Tian et al. [78] evaluated additive and multiplicative bias correction schemes and suggested the use
of multiplicative error model for bias removal of daily satellite-based precipitation products. In the
procedure, monthly bias factors (Equation (6)) were used to correct the hourly GSMaP data product
(Equation (7)):

Bias Factor (Tm) =
GSMap (Tm)

Rain gauge (Tm)
(6)
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GSMaPcorr

(
P(x,y), Ti

)
=

GSMaP
(

P(x,y), Ti

)
Bias Factor(Tm)

(7)

where GSMaP(Tm) and Rain gauge(Tm) are the GSMaP-based and rain gauge-based rainfall
estimates at the monthly timescale (one bias factor is calculated for each month in a year),
GSMaP

(
P(x,y), Ti

)
and GSMaPcorr

(
P(x,y), Ti

)
are the GSMaP data for hour Ti at grid P(x,y) before

and after the bias correction procedure.

3.2. Calibration and Performance Assessment of the Hydrologic Model

The HydroBEAM distributed hydrological model was calibrated using the Shuffled Complex
Evolution Algorithm [79]. Among the four hourly flow time series consisting of flash flood events
and each spanning a period of 3 months (October, November, December), years 2007 and 2012 were
selected as the model calibration period, and years 2009 and 2012 were selected as the model validation
period. The time periods were selected based on the occurrence of flash flood events and the availability
of the hourly stream flow data for the Karpuz River outlet (Figure 1). During calibration, the model
was driven by the corrected GSMaP product that was mapped to 1 km x 1 km grid of the hydrologic
model. The model performance during calibration and validation periods was assessed by statistical
measures such as correlation coefficient (R), Kling–Gupta efficiency (KGE), in addition to NSE and RMSE.
The Kling–Gupta efficiency (KGE), is an alternative model performance criterion developed by [80]:

ED =

√
(r − 1)2 + (∝ −1)2 + (β − 1)2 (8)

KGE = 1 − ED (9)

where ED is the Euclidian distance from the ideal point; β is the ratio between the average simulated
and observed flows, i.e., β represents the bias; r is the linear correlation coefficient between simulated
and observed flows and ∝ is the ratio between standard deviations of simulated and observed flows
(an indicator of the relative variability of flows).

4. Results

4.1. Comparison of the GSMaP Product with Rain Gauge Dataset

The results of the statistical analysis (Table A3 in Appendix A) show that daily rainfall estimates
derived from GSMaP product are well correlated (correlation coefficient values between 0.78 and 0.83)
with rain gauges but remarkable underestimation of bias is evident (PBIAS values around negative
55%and negative 65%). These statistics improve over longer averaging timescales—monthly and
annual—as expected. It was also found that the magnitude of bias slightly varied as a function of
the season (complete time series, April–September (dry season), or October to March (wet season)),
as well as the rainfall threshold (0 mm, 1 mm, 2 mm, 5 mm, 10 mm). The total average PBIAS for
the daily and monthly data comparison indicated underestimation for the different thresholds in
the case for the wet and whole time series, but overestimation bias was observed in the case of dry
season at the daily time scale; which is likely due to division by precipitation values that are less
than unity. This implies that GSMaP algorithm frequently report false precipitation values that are
less than 1 mm/day. Hence, a minimum precipitation threshold should be set for bias correction
and evaluation of SBPs. Direct comparison and correction of the data would lead to an unintentional
increase in the bias (instead of correction). Consequently, that will contribute to the low performance
of the hydrological model.

4.1.1. Evaluation for Different Rainfall Intensity Thresholds

In this section we compare the number of daily rainfall occurrences reported by the GSMaP
product and rain gauge dataset above various intensity thresholds (mm/day) for the whole study
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area and rain gauge stations; Antalya, Gazipasa, and Ibradi (Figure 3). It is interesting to note that
GSMaP product reports almost 50% more daily rainfall occurrences (larger than 0 mm threshold)
compared to the rain gauges. Daily rainfall occurrences reported by GSMaP and rain gauges become
comparable (only about 2% difference) when 1 mm/day and 2 mm/day thresholds are considered.
Hence, to remove false GSMaP daily rainfall intensities that are less than 1 mm/day, we utilized a
1 mm/day threshold for the bias correction procedure. Also note that, GSMaP product significantly
underestimated the number of daily rainfall occurrences greater than 10 mm/day. The tendency for
the GSMaP product to underestimate the number of days with high rain rates (greater than 5 mm/day
and 10 mm/day thresholds) was found to be more severe for Ibradi station located at higher elevation
(1036 m) compared to other stations. For instance, at Ibradi station, the difference in daily rainfall
occurrence reported by GSMaP and rain gauge was 141 days, whereas the difference was only 8 days
at Antalya rain gauge situated at a lower elevation (50 m). This result infers that GSMaP data has
difficulty in detecting rainfall at high elevations compared to low elevations. One possible explanation
for this behavior is the snow cover, which poses a major challenge to SBP estimation algorithms over
complex topography [39].
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Figure 3. Numbers of rainy days were estimated for the time period from 2007 to 2013 above selected
threshold for (a) the whole study area (average), (b) Antalya rain gauge station (Elevation: 50 m),
(c) Gazipasa rain gauge station (Elevation: 21 m), and (d) Ibradi rain gauge station (Elevation: 1036 m).

4.1.2. Temporal Analysis over the Whole Study Area

GSMaP product and rain gauge dataset were spatially averaged over the whole study area and
compared using scatterplots (Figure 4) and statistical measures (Figure 5). The analysis was performed
using two rainfall intensity thresholds—a 1 mm/day threshold due to discussion provided in the
previous section and a 10 mm/day threshold to investigate GSMaP performance for high rainfall
events. The results indicate that most of the scenarios investigated exhibit an underestimation by
GSMaP. For instance, at the daily time scale, the correlation between GSMaP and rain gauge data are
over 0.65 and 0.60, respectively. However negative PBIAS value is evident for the whole time series and
wet seasons, but positive values are observed for the dry seasons, or low rainfall periods. This indicates
that GSMaP has a general tendency to underestimate precipitation with an exception of dry-season
overestimation tendency, which is possibly due to reporting of non-realistic low-rainfall occurrences as
discussed during our earlier analysis (see Figures 3 and 4). The average PBIAS is about negative 56%
at the daily time scale and about negative 48% at both monthly and annual time scales. Most of the
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statistics for monthly and annual scales show similar trends as daily timescale, except with increasing
RMSE values due to the time scale differences. Note that the results for area-averaged analysis for the
thresholds (0 mm, 1 mm, 2 mm) are similar; the reason being due to the GSMaP having the tendency
to underestimate. GSMaP, however, frequently reports unrealisticly low rainfall which in the overall
average could give the same statistics in comparison with rain gauges for the low threshold values
(from 0 mm to 2 mm). As noted earlier, consideration of less than 1 mm/day rainfall intensities for
the bias correction will mislead to unrealistic events and hence it is not recommended. Consequently,
our results indicate that 1 mm/day threshold (or in some cases 2 mm/day) is a reasonable choice for
the following reasons: (1) The number of days with rainfall occurrence is similar between the rain
gauges and GSMaP data above these thresholds (Figure 3), and (2) low rainfall values that might lead
to high uncertainty in case of bias correction are eliminated. Analysis of categorical measures (Figure 5)
indicate that rainfall detection capacity of the GSMaP deteriorates as the rainfall intensity increases,
accompanied by slight reduction (better) in false alarm rate.
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4.1.3. Wet Season and Extreme Events

In this section, the performance of the GSMaP product was evaluated for the complete time series,
rainy season, and for the selected extreme events. The threshold of 1 mm/day rainfall was applied
for two rainy periods including the months of October to December in 2007 and 2009. We tested the
performance of GSMaP product with rain gauges over the whole target basin considering three cases:
(1) daily time scale average from 2007–2013, (2) only two rainy seasons (October to December) in
years 2007 and 2009, (3) Selected extreme events occurred during 4–16 December 2007 (two rainfall
peaks, 88 mm/day and 30 mm/day), 3–6 November 2009 (two peaks, 88 mm/day and 63 mm/day),
and 10–14 December 2009 (one peak, 74 mm/day)). The results (Figure 6) indicate that GSMaP suffers
from more significant underestimation (more negative PBIAS) during the wet season and extreme
event situations; PBIAS is around 5% and 13% more negative, respectively, compared to the whole
time series from 2007–2013. Also, POD and FAR values deteriorated for the rainy season and for
extreme events compared to the complete time series. POD values are 0.74, 0.23, and 0.10 for the whole
time period, rainy season, and for extreme events, respectively, revealing that GSMaP suffers from
rainfall detection performance during the rainy season and more significantly, for the extreme events.
Categorical measures POD and FAR are 0.10 and 0.41 for the extreme events, and around 0.74 and 0.37
for the whole time series, generally indicating a better performance for the latter case. PBIAS values
are strongly negative in all cases but more significant in the case of extreme events (around negative
70%). GSMaP product shows good correlations with rain gauge dataset for all time periods/events
considered. This analysis implies that GSMaP is able to catch the extreme event occurrence, but with a
significant systematic underestimation bias, which could be corrected through a methodology based
on the estimated bias factors.
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Figure 6. Analysis of statistical measures for GSMaP and rain gauge daily precipitation considering
the whole time series, rainy season from October to December in 2007 and 2009, and average for three
extreme flash floods events, (a) RMSE, and PBIAS, (b) R, NSE, POD, FAR (1 mm/day threshold is
considered in this comparison).

4.1.4. Elevation Zones

Earlier studies that evaluated the performance of satellite-based precipitation products indicated
that the algorithms are still challenged by estimation at high elevations (e.g., [81–83]). We, therefore,
examine the performance of GSMaP product over different elevation zones at daily and monthly
temporal scales. The study region is topographically complex including mountainous regions with
elevations reaching up to 2600 m. For the sake of the analysis, we considered the elevation values
less than or equal to 500 m as low lands and greater than 500 m as high lands. The performance
comparison between the two elevation zones (Figure 7 and Table 1) indicate that GSMaP shows
elevation dependent underestimation; values of high land PBIAS (−62.99%) is about −27% higher
than the low land PBIAS (−36.45%). This finding is in line with the results of [33] who evaluated
multi-satellite precipitation products over the mountainous area in South Korea. Statistical measures
such as RMSE and NSE also show better performance in low land compared to the high elevations
for all the time scales considered. Additionally, the ability of detection is also better in the case of the
low lands (0.83) than high lands (0.79), however, with similar values for FAR measure. These results
strongly support the previous findings, in which the satellite-based rainfall products were challenged
in topographically complex regions, especially in the high lands.

Next, we investigated the elevation dependency of the GSMaP product in a more detailed manner
through investigating linear regression relationships between performance statistics and elevation
zones. We classified the study area into four elevation zones (0–400 m, 400–800 m, 800–1200 m,
and ≥1200 m) and calculated the values of statistical and categorical measures for the whole period
(considering 1 mm/day threshold). Based on the linear slope rate for the discussed elevation ranges
(Figure 8), we could estimate the average range of decreasing GSMaP performance with increasing
elevation. As shown in Figure 8, the values of R, RMSE, NSE, PBIAS, and POD are deteriorating with
a rate of 1.5%, 1 mm (100%), 20%, 11.7%, 1.2%, respectively. These rates of change reveal that GSMaP
data has a reasonable linear correlation with the rain gauges at both low and high elevations where
R is about 0.75, and POD value is greater than 0.8; indicating that GSMaP is capable of detecting the
events regardless of the elevation, but with a significantly high negative bias as confirmed by RMSE
and PBIAS values. The results of this analysis indicate that in the study area, GSMaP product shows
good correlation with a possibility of detecting rainfall events similarly in high and low lands, but the
bias and mean error become more negative with increasing elevation.

The tendency of underestimation of GSMaP data in relation with the extreme events (Section 4.1.3)
could be due to the coarse scale of the product which may not resolve small scale convective
precipitation and that in relation with the elevation (Section 4.1.4) might be due to the snow cover
effect [39]. The limitation of the gauge networks over the highlands may be one of the reasons stated
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by [84]. They found that the rain gauge network in the high Himalayas is not sufficient to characterize
the orographic precipitation correctly. Moreover, the extreme rainfall events are usually localized [84]
and not well recorded by the scattered ground-based gauges. Hence, the evaluation of satellite data is
challenging during the extreme events as well as at the orographic regions.

Table 1. Statistical analysis of GSMaP performance for different elevations zones; <500 m, and ≥500 m
(rainfall intensity threshold is set to 1 mm/day).

Time Scale Daily Monthly

Statistics/Elevation Zone ≥500 m <500 m ≥500 m <500 m
R 0.79 0.79 0.86 0.90

RMSE (mm) 6.10 1.03 81.48 15.91
NSE 0.43 0.87 0.34 0.68

PBIAS −62.99 −36.45 −53.52 −28.49
POD 0.79 0.83
FAR 0.36 0.37
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for the period 2007–2013 for 0 m–500 m elevation zone (left column) and for >500 m elevation zone
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Figure 8. Statistical and categorical measures showing the GSMaP performance (daily time scale) as a
function of elevation. Elevation zones are (<400 m), (400 m–800 m), (800 m–1200 m), and (≥1200 m).
Measures include R, RMSE, NSE, PBIAS, and POD (a–e), respectively.

4.1.5. Point vs. Grid Scale Rainfall Comparison

Point-scale rainfall measurements at Antalya meteorological station (50 m elevation) were
compared with the corresponding single grid of the GSMaP product at daily and monthly time
scales using several rainfall intensity thresholds (Table 2, and Figure 9). The results of the comparison
show that the correlation values are around 0.64, and 0.85 between GSMaP product and the rain gauge
data for daily and monthly time scales, respectively. PBIAS values for the three time series show that
GSMaP underestimates rainfall compared to rain gauges with PBIAS values around negative 18%
for 1 mm/day threshold and negative 25% for 10 mm/day threshold; indicating more significant
underestimation for high rainfall intensities. This situation is more clearly shown for each daily rainfall
occurrence (points) in the scatterplots given in Figure 9. It is clear from Figure 9a,b that points scattered
below the diagonal line (shown in red), thus, indicating underestimation tendency of the GSMaP
product, is more significant for the high daily rainfall rates. Categorical performance measures POD
and FAR values are 0.82 and 0.33, respectively, at daily timescale for 1 mm/day threshold indicating the
relatively high performance of rainfall detection over Antalya Station. These measures also deteriorate
for rainfall intensities above 5 mm/day threshold.

Table 2. Statistical and categorical measures for various thresholds (0.0–10 mm), in case of point to grid
comparisons (Antalya station vs. overlying GSMaP grid).

Time Series Measures
Thresholds

0.0 mm 1 mm 2 mm 5 mm 10 mm

Daily

R 0.64 0.64 0.63 0.63 0.61
RMSE 3.30 3.31 3.38 3.62 3.28
NSE 0.93 0.93 0.93 0.91 0.93

PBIAS −17.94 −18.32 −18.49 −19.78 −22.41
POD 0.95 0.82 0.83 0.78 0.66
FAR 0.52 0.33 0.32 0.28 0.35

Monthly

R 0.85 0.85 0.85 0.84 0.82
RMSE 58.07 58.28 58.23 59.58 60.85
NSE 0.68 0.67 0.67 0.65 0.61

PBIAS −16.76 −18.11 −19.08 −21.57 −25.89
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Figure 9. Scatterplots of (a,b) daily and (c,d) monthly precipitation between Antalya station and
overlying GSMaP grid for the period 2007–2013 for (left) 1 mm/day and (right) 10 mm/day rainfall
intensity thresholds. Red line represents equal precipitation for both axes.

4.1.6. Bias Correction of GSMaP Product and Spatial Distribution of Rainfall over the Study Area

The analysis presented in the previous sections indicated that GSMaP product suffers from
seasonal, elevation and rainfall magnitude (i.e., extreme events) dependent bias. Hence, a bias
correction procedure is deemed necessary prior to using the GSMaP product as input to the
hydrological model. In an effort to reduce the GSMaP bias, we employed a multiplicative correction
procedure detailed in Section 3.1.2. Moreover, GSMaP product was found to report frequent false light
rainfall (less than 1 mm/day). To remove these false GSMaP rainfall occurrences, we set a rainfall
intensity threshold of 1 mm/day. The results are shown in Table 3 and Figure 10, which indicate
that significant improvements were obtained for the bias corrected daily GSMaP product compared
to the original GSMaP product. Note that R, RMSE, NSE, PBIAS, POD, FAR were improved from
(0.81 to 0.98), (6.97 to 1.21), (0.57 to 0.99), (−56.44 to −0.20), (0.74 to 0.88), (0.37 to 0.25), respectively,
for 1 mm/day threshold. Also, note that the statistics of 1 mm/day threshold show better performance
compared to the 10 mm/day threshold.

Figure 11 exhibits the spatial distribution of GSMaP product before and after the bias correction
procedure for the day of 4 November 2009. Note that the magnitude of the rainfall for the corrected
GSMaP is similar to the rain gauges, while the spatial distribution is similar to the original GSMaP
product. For the maps shown in Figure 11, the average rainfall values for GSMaP data was improved
from 12.27 mm/day to 30.73 mm/day after correction which closely matches the average rainfall
obtained from the rain gauges (33.27 mm/day).

Table 3. Statistical analysis comparing original and corrected daily GSMaP data for different
rainfall thresholds.

Statistical Measures

GSMaP before Correction GSMaP after Correction

Threshold

1 mm/day 0 mm/day 1 mm/day 2 mm/day 10 mm/day

R 0.81 0.98 0.98 0.97 0.92
RMSE 6.97 1.19 1.21 1.96 3.25
NSE 0.57 0.99 0.99 0.97 0.91

PBIAS −56.44 −5.42 −4.92 −4.58 −25.56
POD 0.74 0.85 0.88 0.88 0.62
FAR 0.37 0.24 0.25 0.26 0.22
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Figure 11. Spatial distribution of daily rainfall data for the date 2009-11-04, obtained from (a) rain
gauges, (b) GSMaP, and (c) corrected GSMaP.

4.2. Flash Floods Modeling at Karpuz River Basin

This section investigates the potential of SBP estimates (GSMaP) for flash floods simulation in
the Karpuz River Basin before and after the bias correction procedure. The motivation is that the
satellite-based rainfall products have a more complete spatial coverage compared to rain gauges and
are available at hourly temporal resolution without gaps—these factors are important for hydrologic
modelling studies focusing on flash floods simulation. Note that, due to the availability of raingauge
data at the daily time scale, precipitation comparison and bias correction analysis were performed
using daily datasets, but the flash floods simulation study was performed using the hourly GSMaP
data before and after the bias correction procedure assuming that the bias is preserved across the
time scales.

Analysis of the Hydrologic Model Performance

A comprehensive analysis of the HydroBEAM model performance for simulating flash flood
events was conducted to understand the degree of improvement in model performance before and
after the bias correction of the GSMaP product. Among the four hourly time series each spanning
3-months (October, November, December), years 2007 and 2012 were selected as the model calibration
period and years 2009 and 2012 were selected as the model validation period. Figure 12a,b show
the observed hydrographs together with the simulated hydrographs driven by the GSMaP and
corrected GSMaP during the calibration period; October–December 2007 and October–December 2012,
respectively. Note that simulated flows driven by the GSMaP product are capable of detecting
the flow events, however, significantly underestimate the peak flows for both periods (more
significant for the year 2012). This result is expected due to our earlier finding that GSMaP product
significantly underestimates the precipitation in the study area. Simulated hydrographs driven by
the corrected GSMaP represent the observed hydrographs better, more specifically, the high flow
events. Flow underestimation bias was significantly reduced and a few events were overestimated
by the model driven by the corrected GSMaP. Figure 12c,d summarize the change in performance
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statistics for the model driven by GSMaP and corrected GSMaP during the model calibration period;
October–December 2007 and October–December 2012, respectively. A significant improvement in
all the performance statistics (higher R, KGE and NSE values and lower RMSE values) is evident
when the model is driven by the corrected GSMaP instead of the GSMaP product. In summary, R,
KGE, NSE and RMSE statistics changed from 0.67, 0.12, 0.29, 13.68 to 0.71, 0.66, 0.48 and 11.70 for
the October–December 2007 period and from 0.69, 0.08, 0.26, 12.00 to 0.77, 0.72, 0.60 and 8.88 for the
October–December 2012 period.

Although the model performance improvement during the calibration period is important
to assess the influence of the GSMaP bias correction on the model simulation, the model
performance assessment during evaluation period is another crucial step. For example, Figure 12
shows the performance statistics during validation period, namely October–December 2009 and
October–December 2010, respectively, for the model calibrated to the October–December 2007 period.
Figure 12f,h shows the same information but for the model calibrated to the October–December
2012 period. It can be seen from these figures that the model performance significantly deteriorates
during the validation period compared to the calibration period. Among the four validation cases
tested, only one case (Figure 12g) revealed noticeable improvement in model performance upon using
corrected GSMaP instead of GSMaP to drive the hydrological model. In this case, R, KGE, NSE and
RMSE statistics changed from 0.52, −0.33, 0.01, 35.89 to 0.60, 0.06, 0.26 and 30.92 upon using the
corrected GSMaP. In other validation cases tested, statistical measures either slightly improved or
did not change when using the corrected GSMaP instead of GSMaP. The generally poor performance
behavior of the model during the validation period is likely due to a combination of factors including
short calibration period, inherent errors in precipitation measurements (especially for flash floods
with a scarce gauge network) and satellite-based precipitation products, and limitations in the bias
correction procedure utilized.

Hence a more comprehensive approach for bias correction is needed to account for the high
(negative) bias inherent in the GSMaP, especially for the extreme events. Also note that the bias
increases with the elevation as described earlier. Use of a dense gauge network in bias correction
procedure will be likely to increase the model performance [31]. However, this option is not available
for the study area. The hydrograph of the calibration period (Figure 12a,b) shows that high and low
flow magnitudes are well simulated by the model. However, there is a shift in the timing of the events,
as detected by the correlation statistic (Figure 12c,d). Westerberg et al. [85] stated that recalibration
based on satellite precipitation data is not always a reliable approach because satellite errors can lead
to biased inferences in the subsequent hydrological model calibration.

In summary, although the bias correction procedure resulted in improved simulated hydrographs,
the uncertainty of the hydrological model output is still controlled by many factors including the
limitation of the bias correction approach. We also found that seasonal, elevation and magnitude
(extreme events) dependent bias deteriorates the model performance and increase uncertainty in
model performance slightly during the calibration and more significantly during the evaluation
periods. Moreover, although the model performance generally improved upon driven by corrected
GSMaP, the performance varied from one event to another. Therefore, improved bias correction
schemes incorporating multiple attributes (such as elevation, seasonality, and precipitation magnitude)
should also be investigated in regions where denser gauge network and longer time series datasets
are available.

Another possibility of the model uncertainty is due to the underestimation or overestimation
of the precipitation by the rain gauges. There are several causes of the rain gauge errors such as
the wind effects [86–88], wetting losses [86,89], evaporation, and splashing effects [86,90]. Recently,
Grimaldi et al. [91] investigated the errors stemming from the scale (orifice dimension) of standard
rain gauges through introducing a giant rain gauge with collecting a surface area of 100 square
meters. They found major discrepancies in standard gauges, especially for the low time resolutions
(less than 15 min) and also in the case of high rainfall intensities. In summary, the uncertainty in
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hydrological models could stem from several issues, thus addressing and highlighting the reasons
of such uncertainty in the future studies are important to increase the reliability and to enhance the
performance of the hydrological models.
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Figure 12. Discharge hydrographs for calibration period (a) October–December, 2007 and (b)
October–December, 2012. Performance statistics R, KGE, NSE and RMSE, showing the change in
the performance of the model driven by the GSMaP and bias corrected GSMaP (x-axis), (c) for the
calibration period October–December 2007 and for the validation periods (e) October–December,
2009, and (g) October–December, 2010; (d) for the calibration period Oct–December, 2012 and for the
validation periods (f) October–December, 2009, and (h) October–December, 2010. Note that the first
column shows the results for the model calibrated for October–December, 2007 period and the second
column shows the results for the model calibrated for October–December, 2012 period, respectively.

5. Conclusions

The Mediterranean region is projected to become increasingly vulnerable to flash floods due to a
combination of factors including the projected increase in hydrologic extremes and rapid population
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growth. On the contrary, the Mediterranean basins are characterized by poor observation networks
and complex topography which in turn hinders the efficacy of ground-based observational networks.
This situation makes satellite-based precipitation (SBP) retrieval algorithms potentially attractive for
modeling flash floods. Thus, the main goal of this paper was to explore the utility of a satellite-based
precipitation product, GSMaP, in modelling flash flood events over the Mediterranean catchments. This
goal was achieved in three major steps. First, SBP estimates from the GSMaP product was compared
and evaluated with the gauge-based precipitation estimates around Karpuz River basin located in
the city of Antalya, Turkey. Next, a simple bias correction scheme was devised to correct the GSMaP
precipitation estimates using the relatively scarce rain gauge network. Lastly, a distributed hydrologic
model, Hydro-BEAM, suited to the simulation of flash floods was driven by GSMaP-based precipitation
estimates before and after the bias correction scheme, and the simulation performance was assessed
using the observed hydrographs of flash flood events together with several performance statistics.

The comparison of GSMaP data with the rain gauge dataset consisted of several scenarios
including different time scales (daily, monthly, seasonal), spatial scales (areal average, grid-based and
grid vs. point-based/gauge-based), elevation zones and rainfall intensity thresholds. This analysis
indicated that GSMaP product generally suffers from a tendency to underestimate precipitation
compared to the rain gauge network as a function of the season, elevation and rainfall intensity;
however, showed reasonable linear correlations. Specifically, the underestimation by GSMaP was
more significant for high elevations and for high rainfall intensities, which is alarming for flash flood
monitoring efforts. Moreover, GSMaP product significantly underestimated the number of daily rainfall
occurrences for high rainfall intensity events (greater than 10 mm/day). On the contrary, significant
overestimation by GSMaP product for low rainfall intensity events (less than 1 mm/day) was evident.
Hence we suggest to include threshold-based analysis in studies focusing on evaluation and bias
correction of satellite-based rainfall products. For instance, in this study, false daily light rainfall
intensities (less than 1 mm/day) reported by GSMaP product were not included in the comparison
and bias correction procedure.

Next, a multiplicative bias correction scheme was employed to correct the hourly GSMaP rainfall
estimates using the monthly bias factors computed as the ratio of monthly total rainfall reported
by GSMaP and rain gauges for each month of the year. The effectiveness of this rather simple
correction scheme was tested through the investigation of the performance of the hydrological model,
Hydro-BEAM, in simulating the hourly hydrographs of flash flood events in Karpuz River Basin.
The results of the model simulations indicated that the performance of the model improves upon
using the bias-corrected GSMaP product as input compared to using the uncorrected GSMaP product
in most cases studied but others show some limitation, especially during the evaluation periods.
Investigation of alternative schemes that incorporate local hydroclimatic and physiographic variables
such as elevation, season and extreme events in the bias correction procedure will shed further light
on the impact of these factors on the flash flood simulation and early warning system performance.
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Appendix

Table A1. GSMaP data products used in the analysis (Last access, 1 March 2016).

Data Product ftp Spatio-Temporal
Resolution Available Data

Standard gauges (v5) ftp://hokusai.eorc.jaxa.jp/standard_gauge/v5/hourly/ 0.1◦ × 0.1◦, Hourly 2000/03–2010/11
reanalysis gauge (v6) ftp://hokusai.eorc.jaxa.jp/reanalysis_gauge/v6/gauge_hr/ 0.1◦ × 0.1◦, Hourly 2011/01–2014/02

Real time ftp://hokusai.eorc.jaxa.jp/realtime/archive/ 0.1◦ × 0.1◦, Hourly 2008/10–2016/02

Table A2. Meteorological stations used in the study.

Station Name Station ID Start Year End Year Latitude Longitude Elevation (m)

Antalya 17300 1965 2015 36.91 30.80 50
Gazipasa 17974 1970 2015 36.26 32.31 21

Manavgat 17954 1965 2015 36.78 31.43 38
Alanya 17310 1965 2015 36.55 31.98 5.88
Ibradi 27 2007 2015 37.09 31.59 1036

Table A3. Statistical and categorical measures between GSMaP product and rain gauge dataset at
daily and monthly time scales over the whole area considering different rainfall thresholds and
climatic seasons.

Time Scale Parameters Time Period
Threshold

0.0 mm 1 mm 2 mm 5 mm 10 mm

Daily

R
2007–2013 0.81 0.81 0.81 0.80 0.78

Wet 0.81 0.81 0.81 0.80 0.78
Dry 0.83 0.83 0.83 0.82 0.79

RMSE
(mm)

2007–2013 6.97 6.97 7.00 7.10 7.32
Wet 6.97 6.97 7.00 7.10 7.32
Dry 1.43 1.46 1.41 1.24 0.98

NSE
2007–2013 0.58 0.57 0.57 0.56 0.53

Wet 0.59 0.59 0.59 0.57 0.55
Dry −0.37 −0.40 −0.34 −0.14 −0.32

PBIAS (%)
2007–2013 −55.83 −56.44 −58.12 −62.73 −65.84

Wet −55.83 −56.44 −58.12 −62.73 −65.84
Dry 260.73 278.89 254.03 259.44 619.41

POD
2007–2013 0.91 0.74 0.69 0.59 0.44

Wet 0.83 0.74 0.69 0.60 0.45
Dry 0.87 0.73 0.68 0.58 0.43

FAR
2007–2013 0.30 0.37 0.33 0.27 0.27

Wet 0.24 0.28 0.25 0.21 0.22
Dry 0.41 0.55 0.51 0.44 0.44

Monthly

R
2007–2013 0.89 0.89 0.89 0.89 0.87

Wet 0.86 0.86 0.86 0.85 0.84
Dry 0.89 0.89 0.88 0.87 0.83

RMSE
(mm)

2007–2013 94.89 95.26 96.14 98.48 101.70
Wet 860.13 863.24 871.01 891.60 920.14
Dry 128.27 130.73 133.36 140.64 148.85

NSE
2007–2013 0.45 0.44 0.43 0.39 0.31

Wet 0.29 0.28 0.27 0.22 0.13
Dry 0.95 0.95 0.94 0.94 0.92

PBIAS (%)
2007–2013 −47.14 −48.23 −49.72 −53.99 −60.75

Wet −53.63 −54.22 −55.17 −58.29 −60.75
Dry −8.96 −12.65 −16.90 −27.04 −60.75

ftp://hokusai.eorc.jaxa.jp/standard_gauge/v5/hourly/
ftp://hokusai.eorc.jaxa.jp/reanalysis_gauge/v6/gauge_hr/
ftp://hokusai.eorc.jaxa.jp/realtime/archive/
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