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Abstract. A code is said to be complementary dual if it meets its dual triv-

ially. We give a sufficient condition for a special class of additive cyclic codes
to be complementary dual.

1. Introduction

Additive cylic codes (AC codes) are a nonlinear generalization of linear cyclic
codes and introduced by Bierbrauer in [1]. The alphabet of these codes is not a
finite field but a vector space E over the ground field Fq. Properties of AC codes
and their relations to quantum codes are studied in [1, 2]. Bierbrauer also obtained
a BCH type lower bound on the minimum distance of AC codes. Another lower
bound on the minimum distance of AC codes were recently obtained by the authors
using the number of rational points of certain algebraic curves over finite fields ([7]).
This bound is the only general bound on such codes aside from Bierbrauer’s BCH
bound.

Linear complementary dual (LCD) codes are linear codes that meet their dual
trivially. These codes were introduced by Massey in [9]. They were rediscovered
recently in the context of counter measures to passive and active side channel anal-
ysis on embedded crypto-systems ([4]). Characterization of cyclic LCD codes ([11]),
their asymptotic goodness ([10]) and quasi-cylic LCD codes ([8, 5]) have been stud-
ied so far. The purpose of this research is to study complementary dual subclass of
AC codes.

2. Preliminaries

Let q be a prime power, F = Fqr and E = Fm
q , where m ≤ r are positive integers.

Let n | (qr − 1) be a positive integer, W be the multiplicative subgroup of F ∗ of
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order n and α be a generator of W . Fix A = {i1, ..., is} ⊂ Z/nZ. Let

P(A) := {a1x
i1 + ...+ asx

is : a1, . . . , as ∈ F},

which is an F -linear space of polynomials and set

B(A) := {(f(α0), . . . , f(αn−1)) : f(x) ∈ P(A)} ⊂ Fn.

Let Γ = {γ1, . . . , γm} ⊂ F be a linearly independent set over Fq. Define an F -linear
code of length mn

(B(A),Γ) : = {
(
γ1f(α0), . . . , γmf(α0); . . .

. . . ; γ1f(αn−1), . . . , γmf(αn−1)
)

: f(x) ∈ P(A)}.

Consider the Fq-linear mapping

φΓ : F −→ E

x 7−→ (Tr(γ1x), . . . ,Tr(γmx)) ,

where Tr denotes the trace map from F to Fq. Note that φΓ is surjective since Γ is
linearly independent. Extend φΓ naturally as follows:

φΓ : Fn −→ En

(x1, . . . , xn) 7−→ (φΓ(x1), . . . , φΓ(xn)).

Definition 2.1. An additive cyclic code of length n over E is defined as

φΓ

(
B(A)

)
=
{
φΓ

((
f(α0), . . . , f(αn−1)

))
: f(x) ∈ P(A)

}
.

The set A is called the defining set of the code.

The code φΓ

(
B(A)

)
is an additive subgroup of En. It is not difficult to see that

φΓ

(
B(A)

)
⊂ En is closed under cyclic shift. If we view the code in Fmn

q as

φΓ

(
B(A)

)
=

{(
Tr(γ1f(α0)), . . . ,Tr(γmf(α0)); . . .

. . . ; Tr(γ1f(αn−1)), ...,Tr(γmf(αn−1))
)

: f(x) ∈ P(A)
}
,

then it is an Fq-linear code of length mn over Fq, which is equal to Tr
(
(B(A),Γ)

)
.

Moreover, as a length mn code over Fq, it is closed under shift by m coordinates.
Hence over Fq, φΓ

(
B(A)

)
is a quasi-cyclic code of length mn and index m. Classical

cyclic codes correspond to the special case m = 1. In this case φΓ

(
B(A)

)
is the

cyclic code of length n over Fq whose dual’s defining zeros are {αi1 , . . . , αis}.
Define

VF (Z) : = {
(
p1(α0), . . . , pm(α0); . . .

. . . ; p1(αn−1), . . . , pm(αn−1)
)

: pi(x) ∈ P(Z)}

for a a q-cyclotomic coset Z mod n. To simplify notation, we will denote the
codeword in VF (Z) determined by pi(x) ∈ P(Z) as (p1(x), . . . , pm(x)).

Let (B(A),Γ) be the Galois closure of (B(A),Γ), i.e. the smallest Galois closed

code containing (B(A),Γ). Assume that (B(A),Γ)
⊥

= (B(B),Γ′) for some B ⊂
Z/nZ and Γ′ ⊂ Fm. Then φΓ

(
B(A)

)⊥
= φΓ′

(
B(B)

)
([7, Lemma 11]). Here the

dual is with respect to the Euclidean dot product on En: (u1, ..., un) · (v1, ..., vn) =
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i=1 ui · vi, for ui, vi ∈ E = Fm

q , where ui · vi is the Euclidean product. We can

decompose (B(A),Γ)
⊥

as

(B(A),Γ)
⊥

=
⊕
Z

[
(B(A ∩ Z),Γ)

⊥
∩ VF (−Z)

]
,

where Z runs through all q-cyclotomic cosets mod n ([7, Corollary 15]). If every

summand here can be written in the form (B(BZ),Γ′), then it follows that B =⋃
Z BZ .
In the case m = 2, the following result gives the set B explicitly, hence the dual

code.

Theorem 2.2 ([7, Theorem 4]). Let m = 2, Γ = (1, γ) and b = [Fq(γ) : Fq] > 1.
Let Z = {i, iq, ..., iqs−1} be a q-cyclotomic coset mod n of length s. For Γ′ = (−γ, 1),
we have the following:

i. If A ∩ Z = ∅, then BZ = −Z.
ii. If A ∩ Z = {iqu1 , iqu2 , ..., iqut} for some 0 ≤ u1 < u2 < · · · < ut ≤ s− 1 and

b does not divide s, then BZ = ∅.
iii. If A∩Z = {iqu1 , iqu2 , ..., iqut} for some 0 ≤ u1 < u2 < · · · < ut ≤ s− 1 and b

divides s, set ÂZ = {iqua+`b mod n : 0 ≤ ` ≤ r − 1} for some a ∈ {1, . . . , t}.
Then
• BZ = ∅ if A ∩ Z 6⊆ ÂZ .
• BZ = −ÂZ if A ∩ Z ⊆ ÂZ .

3. Additive cyclic codes with complementary duals

Let n = qr − 1 and m = 2 in this section. For Γ = (1, γ), the dual of
φΓ

(
B(A)

)
is φΓ′(B(B)), where Γ′ = (−γ, 1) and the set B is determined explic-

itly in Theorem 2.2. Elements of φΓ

(
B(A)

)
and its dual φΓ′(B(B)) are of the form

cf =
(
Tr(f(x)),Tr(γf(x))

)
for f(x) ∈ P(A) and cg =

(
Tr(−γg(x)),Tr(g(x))

)
for

g(x) ∈ P(B), respectively. Then φΓ

(
B(A)

)
is not complementary dual if and only

if there exist f(x) ∈ P(A) and g(x) ∈ P(B) such that cf 6= ~0 6= cg and cf = cg. We
will use the following result.

Lemma 3.1 ([6, Proposition 2.3]). Let λj ∈ Fqr and ij be positive integers, for
j = 1, 2, . . . , s. Assume that the q-cyclotomic cosets containing ij’s are distinct.
Then Tr(λ1x

i1 +λ2x
i2 + · · ·+λsx

is) = 0 for all x in Fqr if and only if Tr(λjx
ij ) = 0

for all x in Fqr and for all j = 1, 2, . . . , s.

A slight modification of Lemma 3.1 is needed for our purposes.

Lemma 3.2. Let λ0, λj ∈ F and ij be positive integers, for j = 1, 2, . . . , s. Assume
that the q-cyclotomic cosets mod n containing ij’s are distinct. Then Tr(λ0+λ1x

i1 +
λ2x

i2 + · · ·+ λsx
is) = 0 for all x in F ∗ if and only if Tr(λ0) = 0 and Tr(λjx

ij ) = 0
for all x in F ∗ and for all j = 1, 2, . . . , s.

Proof. Assume Tr(λ0 +λ1x
i1 +λ2x

i2 + · · ·+λsx
is) = 0 for all x in F ∗. By linearity

of the trace map, Tr(λ1x
i1 + λ2x

i2 + · · · + λsx
is) = −Tr(λ0) =: c for all x in F ∗.

Then

(qr − 1)c =
∑
x∈F∗

Tr(λ1x
i1 + · · ·+ λsx

is)
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= Tr
( ∑
x∈F∗

(λ1x
i1 + · · ·+ λsx

is)
)

= Tr
(
λ1

∑
x∈F∗

xi1 + · · ·+ λs
∑
x∈F∗

xis
)

= 0

where the last equality follows from the fact that if i is not a multiple of qr−1, then∑
x∈F∗ x

i = 0. Therefore c = 0, i.e. Tr(λ0) = 0 and Tr(λ1x
i1 +λ2x

i2 +· · ·+λsxis) =

0 for all x in F ∗. By Lemma 3.1 , Tr(λ0) = 0 and Tr(λjx
ij ) = 0 for all x in F ∗ and

for all j = 1, 2, . . . , s.
The converse is immediate from linearity of the trace map.

For A ⊆ Z/nZ, denote by A the union of all q-cyclotomic cosets mod n inter-
secting A nontrivially.

Proposition 3.3. Let A and B be defining sets for the additive cyclic code and its
dual as before. If A ∩B = ∅, then φΓ

(
B(A)

)
is complementary dual.

Proof. Let f(x) ∈ P(A) and g(x) ∈ P(B), and suppose cf = cg. Then Tr(f(x) +

γg(x)) = 0 and Tr(γf(x)− g(x)) = 0 for all x ∈ F ∗. By the assumption A∩B = ∅,
exponents of f and g cannot lie in the same cyclotomic coset. Some exponents that
appear in f (or in g) may be from the same cyclotomic coset. This is no harm for
concluding Tr(f(x)) = 0 = Tr(γg(x)) and Tr(γf(x)) = 0 = Tr(g(x)) for all x in F ∗

(by Lemma 3.2), since Tr(axj + bxjq) = Tr((a + b1/q)xj). Therefore, cf = ~0 = cg,

i.e. anything in the intersection φΓ

(
B(A)

)
∩ φΓ′

(
B(B)

)
has to be ~0.

Theorem 3.4. Let b = [Fq(γ) : Fq] > 1. Then φΓ

(
B(A)

)
is complementary dual if

the following conditions are satisfied by every q-cyclotomic coset Z mod n:

i. A ∩ Z = ∅ if and only if A ∩ (−Z) = ∅.
ii. If A∩Z 6= ∅, then A∩Z is not contained in the qb-cyclotomic coset mod n of

some element in A ∩ Z.

Proof. If a cyclotomic coset Z does not intersect A, then we also have A ∩ Z = ∅.
Therefore, such a cyclotomic coset cannot contribute to A ∩B.

Now assume that a cyclotomic coset Z intersects A. By assumption i, we have
A ∩ (−Z) 6= ∅ too. If b does not divide |Z| = | − Z|, then by Theorem 2.2 part ii,
we have B−Z = B ∩Z = ∅ and such Z cannot contribute to A∩B. So assume that

b divides |Z| = | − Z|. Note that Â−Z is nothing but the qb-cyclotomic coset mod

n of some element in A∩ (−Z). Hence assumption ii implies that A∩ (−Z) 6⊆ Â−Z
and therefore (by Theorem 2.2), we have B−Z = B ∩ Z = ∅. Therefore such a
coset Z cannot contribute to A ∩ B even if b divides |Z|. The result follows from
Proposition 3.3.

Corollary 3.5. Let b = [Fq(γ) : Fq] = r. Then φΓ

(
B(A)

)
is complementary dual if

the following conditions are satisfied by every q-cyclotomic coset Z mod n:

i. A ∩ Z = ∅ if and only if A ∩ (−Z) = ∅.
ii. If A ∩ Z 6= ∅, then there exists at least two elements from Z in A.

Proof. Since b = r, qb-cyclotomic coset mod n of any element in A ∩ Z consists of
a single element. Hence by ii, A ∩ Z satisfies condition ii in Theorem 3.4 and the
result follows.
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In the following table, by using our results we present examples of AC comple-
mentary dual codes over E = F2

2. In this table, M and d stand for the size and
minimum distance of the code, respectively. The computational algebra system
Magma [3] is used for computations.

r b A M d

4 4, 2 {1, 2, 7, 11} 48 4
4 4 {1, 4, 7, 11} 48 4
4 4, 2 {3, 6, 5, 10} 46 6
5 5 {1, 2, 15, 23} 410 10
6 6, 3 {1, 4, 31, 47} 412 24
6 6, 3, 2 {1, 2, 31, 47} 412 24
6 6, 3, 2 {1, 2, 31, 47, 21, 42} 414 22
7 7 {1, 2, 63, 126} 414 54
8 8, 4, 2 {4, 8, 127, 191} 416 112
8 8, 2 {1, 16, 127, 191} 416 112
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