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aInstitute of Physics, Academy of Sciences of Azerbaijan Baku 370143, Azerbaijan

bPhysics Department, Middle East Technical University 06531 Ankara, Turkey

Abstract

The thermopower and Nernst-Ettingshausen (NE) effect in degenerate semi-

conductors and semimetals placed in high electric and magnetic fields are

calculated by taking into account the heating of both electrons and phonons

as well as their thermal and mutual drags.

The magnetic and electric field dependences of the thermoelectric power

and the transverse NE voltage are found in analytical forms. It is shown that

in weak and high transverse magnetic fields, the electronic and phonon parts

of NE coefficients change their sign for some scattering mechanisms.
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I. INTRODUCTION

The theoretical and experimental interest in thermoelectric power in bulk and recent

low dimensional systems has been intensified [1]- [13]. A relatively long survey of literature

and some common misunderstandings in the field of thermoelectric power (α) and Nernst-

Ettingshausen (NE) effect under different transport conditions [3,7–9], [14]- [22] are given

in our recent paper [23].

Lei [11] showed in 1994 that the diffusion component of α may be negative at a

low lattice temperature range and high electric field while the phonon drag component

is still positive. Such a result was also obtained by Babaev and Gassymov [19] in 1977.

They theoretically investigated the NE effect and α in semiconductors at high electric

and nonquantizing magnetic fields by solving the coupled system of kinetic equations for

electrons and phonons. The electron and phonon heating, and the phonon drag were taken

into account. It was shown that when the temperature gradient of hot electrons is produced

only by the lattice temperature gradient, the electronic parts of the thermoelectric and NE

fields reverse their sign. In the case of phonon heating and Tp = Te ≫ T , both electronic

and phonon parts of the thermoelectric and thermomagnetic fields reverse their sign for all

cases considered. Here Te, Tp and T are the temperature of electrons, phonons and lattice,

respectively.

The NE effect and α in II-VI semiconductors have been investigated with increasing

interest [31]- [34]. The earlier investigations of the magnetic field (H) dependence of the

longitudinal NE effect in HgSe [35,36] and lead chalcogenides [37,38] in the region of higher

temperatures (T ≥ 77K) demonstrated that the thermoelectromotive force exhibits satu-

ration in the region of strong magnetic fields irrespective of the dominant scattering mech-

anism of charge carriers in the conduction band. However, the longitudinal NE effect in

iron-doped HgSe samples at low temperatures (20 ≤ T ≤ 60 K) has a maxima in the plot of

∆α(H) =| α(H)−α(0) |. ∆α(H) first increases quadratically with increasing H for Ωτ < 1

then passes through a maximum at H = Hm, and finally decreases as the field increases
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further (here Ω = eH/mc is the cyclotron frequency and τ is the electron relaxation time).

Another unusual fact is the sign reversal of the transverse NE coefficient Q⊥(H) with in-

creasing H in the range Ωτ > 1 [33,34]. The experiments in gallium-doped HgSe revealed

that at low temperatures the NE coefficients change sign with increasing gallium concentra-

tion or the applied magnetic field strength. These unusual features of the NE effect may be

attributed to the effect of mutual drag which can be observed in semiconductors with high

concentration of conduction electrons [39].

In the absence of external magnetic field, the α of hot electrons, taking into account

the heating of phonons and the thermal drag, is considered in Ref. 18. In that paper,

the deformation potential of interaction between electrons and phonons is considered. The

transverse NE effect and α of hot electrons in nondegenerate semiconductors are studied in

Ref. 40 without taking into account the effect of phonon drag and their heating; and in

Ref. 19 by taking into account the thermal drag only in transverse magnetic field. However,

these studies did not consider the mutual drag of charge carriers and phonons.

There are some investigations considering the electron-phonon drag and transport phe-

nomena in semiconductors [41]- [44]. In Ref. 41, the electron-optical phonon drag and the

size effect are mainly considered. The Refs. 43 and 44 also considered the size effect in finite

semiconductors under the conditions of mutual drag. The electric current and electron and

phonon parts of the thermal fluxes are obtained in general forms for the degenerate statistics

of electrons in Ref. 42. Gurevich and Mashkevich list the procedure for determining the

distribution function of electrons. However, the list is not complete. Because, they obtain

only the general expressions for electric current and electron and phonon parts of thermal

fluxes, but they did not find the external electric field dependence of the effective electron

and phonon temperatures. Therefore, they did not find the thermoelectric coefficients and

their external electric field dependence.

In the present paper, the NE effect and α in degenerate semiconductors and semimetals

placed in high external electric, and longitudinal and transverse magnetic fields are investi-

gated by taking into account the heating of electrons and phonons as well as the thermal and
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mutual drags of charge carriers and phonons. The spectrum of charge carriers is assumed

to be parabolic, e.g., ε = p2/2m. The consideration is made for both deformation (d−) and

piezoelectric (p−) interaction potentials of electrons with phonons.

The organization of the paper is as follows: The system of equations of the problem

and their solutions are given in Sec. II, the energy balance equations and their solutions

for different scattering mechanisms are investigated in detail in Sec. III, the thermopower

in longitudinal magnetic field is presented in Sec. IV. The Sec. V concentrates on the

thermopower and NE effect in transverse magnetic field. Finally, the conclusion is given in

Sec. VI.

II. THEORY

Consider a degenerate semiconductor or semimetal with fully ionized impurities placed

in high electric and nonquantizing magnetic fields. We assume that there are temperature

gradients of both electrons (∇Te), and long wavelength (LW) phonons interacting with

electrons (∇Tph). The gradients may be realized by the gradient of heating electric field

(∇E); for example, by placing one end of the specimen to the wave guide with heating

electromagnetic wave, or by producing lattice temperature gradient (∇T ).

If the frequency of interelectronic collisions νee is much bigger than that of electron-

phonon collisions for the energy transfer νε, i.e., νee ≫ νε, then the isotropic part of the

distribution function of electrons has the form of Fermi one with effective temperature of

electrons Te,

f0(ε) =

[

1 + exp

(

ζ(Te)− ε

Te

)]−1

, (1)

where ζ(Te) is the chemical potential and ε is the energy of charge carriers. Note that Te is

in energy units.

We assume that in the lattice there is a thermal reservoir of short wavelength (SW)

phonons for LW phonons interacting with electrons [45]. The maximum momentum of LW
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phonons interacting with electrons satisfies the condition: qmax ≈ 2p0 < T/s ≡ qT , where

T is the lattice (reservoir) temperature, qT is the momentum of thermal phonons, p0 is the

momentum of electrons in the Fermi level, and s is the velocity of sound in the crystal. As

it is shown in Ref. 45, under these conditions LW phonons are heated as well. Therefore,

we assume that the isotropic part of the distribution function of phonons has the form:

N0(q) =

[

exp

(

h̄ωq

Tph

)

− 1

]−1

≈
Tph

h̄ωq
. (2)

In accordance with Ref. 45, the distribution function of phonons has the form of Eq. (2)

only in two cases. In the first case the frequency of LW phonon-electron collisions βe is much

smaller than the frequency of LW phonon-SW phonon collisions βph. In this case Tph = T if

N(Te)

N(T )

βe

βph
≈

Te

T

βe

βph
≪ 1. (3)

In the second case βe ≫ βph, β
(ε)
b , where β

(ε)
b is the collision frequency of phonons with

crystal boundaries connected with energy transfer to outside. In this case, the temperature

of LW phonons becomes equal to the temperature of electrons (Tph = Te), and LW phonons

are in nonequilibrium state.

In high external fields electrons and phonons are essentially in a nonequilibrium and

anisotropic state. Therefore, the distribution function of electrons f(ε) and that of phonons

N(q) are, as usual, in the form

f(ε) = f0(ε) +
f1(ε).p

p
, N(q) = N0(q) +

N1(q).q

q
, (4)

where f1(ε) and N1(q) are the antisymmetric parts of the distribution functions of electrons

and phonons, respectively.

In the present paper, we assume that the so-called “diffusion approximation” for electrons

and phonons applies. Therefore, | f1(ε) |≪ f0(ε) and | N1(q) |≪ N0(q). The isotropic and

anisotropic parts of the distribution functions of electrons and phonons are obtained from

the coupled system of Boltzmann equations, which form the main equations of the problem:

p

3m
[∇f1(ε)]−

2e

3p

∂

∂ε
[εE.f1(ε)] = (5)
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m

2π2h̄3p

∂

∂ε

[

∫ 2p

0
dq h̄ωq Wq q

{

h̄ωqN0(q)

(

∂f0(ε)

∂ε

)

+ f0(ε)[1− f0(ε)]

}]

,

p

m
[∇f0(ε)]−

eEp

m

(

∂f0(ε)

∂ε

)

+ ν(ε)f1(ε)− Ω[h.f1(ε)] = (6)

−
4π

(2πh̄)3
1

p2

(

∂f0(ε)

∂ε

)

∫ 2p

0
dq Wq q2 h̄ωq N1(q),

s∇N0(q) + β(q)N1(q) =
4πmWqN0(q)

(2πh̄)3

∫

∞

ε(q/2)
dp f1(ε), (7)

s

3
∇N1(q) + β0(q)N0(q)−

[

(βph + β
(ε)
b )N(q, T ) + βeN(q, Te)

]

= 0. (8)

In Eqs. (5)-(8), e is the absolute value of the electronic charge, m is the effective mass

of electrons, h̄ωq and q are the energy and the quasimomentum of phonons, respectively,

N(q, T ) and N(q, Te) are the equilibrium Planck distribution functions with temperatures T

and Te. Wq is the quantity from which the scattering probability of electrons by acoustical

phonons is obtained. It is defined as

Wq = W0 qt. (9)

For d− interaction t = 1 and W0 ≈
2πG2

ρ s h̄
, where G is the deformation potential constant.

On the other hand, for p− interaction t = −1 and W0 =
(4π)3h̄e2

∑2

ρ s ǫ20
, where

∑

, ρ and ǫ0

are the piezoelectric module, density and the dielectric constant of the crystal, respectively.

The collision frequency of electrons with phonons νph(ε) is

νph(ε) =
mW0

2π2h̄3p3

∫ 2p

0
dq q3+t

[

N0(q) +
1

2

]

. (10)

The total collision frequency of phonons is defined as

β(q) = β0(q) + βb(q) = βe(q) + βph(q) + β
(ε)
b (q) + β

(p)
b (q), (11)

where the indices mean the collision frequency of phonons with electrons (e), phonons (ph),

and crystal boundaries (b) for the energy or momentum transfer to outside. The total

collision frequencies of phonons β(q) and electrons ν(ε) may be given in the form
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β(q) = β(T )
(

qs

T

)k

, ν(ε) = ν̃

(

ε

ζ0

)r

, ν̃ = ν0Θ
ℓ
e,ph, (12)

where ζ0 = εF is the Fermi energy, ν0 = ν(ζ0) and Θe,ph = Te,ph/T is the dimensionless

temperature of electrons and phonons. For the scattering of electrons by the impurity ions

r = −3/2, ℓ = 0; by the deformation potential of acoustical phonons (d-interaction) r = 1/2,

ℓ = 1; by the piezoelectric potential of acoustical phonons (p-interaction) r = −1/2, ℓ = 1;

and k = 0, 1, t for scattering of LW phonons by crystal boundaries, by SW phonons and

electrons, respectively.

By neglecting the first term in Eq. (8), we obtain Eq. (2). By using Eqs. (1) and (6),

for f1(ε) we have

f1(ε)−
Ω

ν(ε)
[h.f1(ε)]−

p

mν(ε)

(

eE′ +

[

ε− ζ

Te

]

∇Te

)

∂f0(ε)

∂ε
= (13)

m2

2π3h̄3

1

p3(ε)

(

∂f0(ε)

∂ε

)

∫ 2p

0
dq Wq h̄ωq

q2

β(q)

{

s∇N0(q)−
mWqN0(q)

2π2h̄3

∫

∞

ε(q/2)
dp f1(ε)

}

.

The first term on the right hand side of Eq. (13) is in accord with the thermal drag and

the second term with the mutual drag. Eq. (13) is the integral equation for f1(ε), but if we

assume as usual

f1(ε) = pV(ε)

[

−
∂f0(ε)

∂ε

]

, (14)

then for the case of degenerate electrons, this equation becomes an algebraic one. In Eq.

(14), V(ε) is the drift velocity of electrons. Replacing the integral
∫

∞

ε(q/2)
dε V (ε)

(

−
∂f0(ε)

∂ε

)

by V (ζ0), we obtain the following equation for V(ε):

V(ε) = −
ν(ε)

m[Ω2 + ν2(ε)]
(15)

{[

F+
Ω

ν(ε)
[h.F] + h.[h.F]

Ω2

ν2(ε)

]

−mν(ε)γ(ε)

[

V0 +
Ω

ν(ε)
[h.V0] +

Ω2

ν2(ε)
h.(h.V0)

]}

,

where

F = eE′ +

(

ε− ζ

Te

)

∇Te + Akt

(

ε

T

)(t−k)/2

∇Tph, (16)
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Akt =
23+3(t−k)/2

3 + t− k

βe(T )

β(T )

(

ms2

T

)(t−k)/2

, (17)

E′ = E+ ET +
1

e
∇ζ(Te), (18)

where E is the external field, ET is the thermoelectric field, and V0 = V (ζ0).

The expression characterizing the mutual drag of charge carriers and phonons is

γ(ε) =
3 + t

23+t

νph(ε)

ν(ε)

1

p3+t

∫ 2p

0
dq

βe(q)

β(q)
q2+t. (19)

The mutual drag is strong as γ → 1. This means that electrons and phonons are scattered

preferably by each other, i.e., ν(ε) ≈ νph(ε) and β(q) ≈ βe(q). In fact, there are other

scattering mechanisms of electrons and phonons. Because, in the present work we assume

the diffusion approximation γ(ε) must be smaller than 1.

To obtain V(ζ) ≡ V0(ζ) from Eq. (13) by the accuracy of the second approximation on

degeneracy, we get the following relation for the electrical current:

J = σ11E
′ + σ12[h.E

′] + σ13h.[h.E
′] + β

(e)
11 ∇Te + β

(e)
12 [h∇Te] + (20)

β
(e)
13 h.[h∇Te] + β

(ph)
11 ∇Tph + β

(ph)
12 [h∇Tph] + β

(ph)
13 h.[h∇Tph],

where

σ1i =
∫

∞

0
dε a(ε) [1 + b(ε)gi(ε)] , (21)

β
(e)
1i =

1

e

∫

∞

0
dε a(ε)

[

ε− ζ

Te
+ gi(ε)d0(ε)

]

,

β
(ph)
1i =

Akt

e

∫

∞

0
dε a(ε)







(

ε

T

)(t−k)/2

+

(

ζ0
T

)(t−k)/2

b(ε)gi(ε)







,

and

a(ε) =
23/2 m1/2 e2

3 π2 h̄3

(

Ω

ν(ε)

)i−1
ε3/2 ν(ε)

Ω2 + ν2(ε)

(

−
∂f0(ε)

∂ε

)

, (22)

d0(ε) =
π2

12

Te

ζ0
b(ε), b(ε) =

γ(ε)ν(ε)

Ω2 + ν̃2(ε)(1− γ0)2
,

g1(ε) = ν̃(1− γ0)−
Ω2

ν(ε)
, g2(ε) = ν(ε) + ν̃(1− γ0),

g3(ε) = ν(ε)

[

1 +
ν̃(1− γ0)

ν(ε)
+

Ω2 + ν2(ε)

ν(ε)ν̃(1− γ0)

]

, ν̃ = ν(ζ0,Θph), γ0 = γ(ζ0)Θ
1−ℓ
ph .
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III. THE ENERGY BALANCE EQUATIONS AND THEIR SOLUTIONS

To define the total thermopower and thermomagnetic effects as a function of E, H , and

γ0, we must start from the energy balance equation obtained in Ref. 45. We consider two

different cases:

(a) LW phonons are not heated and electrons transfer their energy gained from the ex-

ternal field to the reservoir of SW phonons, which has the equilibrium state at the lattice

temperature T . Then, the energy balance equation has the form:

(eE)2 ν0(1− γ0)

Ω2 + ν2
0(1− γ0)2

=
3 22+t

(3 + t)π2h̄3 m3 s T pt0 W0[Θe − 1], (23)

where γ0 = γ(ζ0).

(b) LW phonons are heated and they transfer their energy gained from electrons to the

reservoir of SW phonons,

(eE)2ν̃(1− γ0)

Ω2 + ν̃2(1− γ0)2
= 6 m s p0 βph(T )[Θe − 1], (24)

in this case γ0 = γ(ζ,Θph).

We consider now the dependences of Θe on E, H and T , which are obtained by solving

Eqs. (23) and (24). The solution of Eq. (23) for the arbitrary scattering mechanisms, degree

of electron heating and the ratio Ω/ν0 is

Θe = 1 +
(

E

Ei

)2 (1− γ0)

1 + (ν0/Ω)
2 (1− γ0)2

, (25)

where Ei = (3 22+t m3 s T pt0 W0 Ω2/(3 + t) π2 h̄3 e2 ν0)
1/2. We may consider Θe in two

limits: Ω ≫ ν0 and Ω ≪ ν0. In the first limit

Θe = 1 +
(

E

Ei

)2

(1− γ0) , (26)

in the second limit

Θe = 1 +

(

E

Ej

)2

(1− γ0)
−1 , (27)

where Ej = Eiν0/Ω.
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From Eq. (26), for different scattering mechanisms Ei take the forms:

for r = 1/2, r = −1/2: E2
1 = 3

(

H s

c

)2

,

for CI/DA: E2
2 =

9 π

2

(

ε0 G H

c e2

)2 T n1/3

F ρ
,

for CI/PA: E2
3 = 3

(

4 π Σ H

c e

)2 T

F ρ n1/3
.

Hereafter, CI/DA (CI/PA) means that energy of electrons is scattered by the deformation

acoustical, (piezo acoustical) phonons and momentum of electrons by the charged impurity

ions (CI). Similarly, from Eq. (27):

for DA: E2
4 = 3

(

m G2 T n1/3

ρ e sh̄3

)2

,

for PA: E2
5 =

1

3

(

32 π m2 e Σ2 T

ε20 h̄3 ρ s n1/3

)2

,

for CI/DA: E2
6 =

2

3

(

e m2 G

ε0 h̄
3

)2
F T n1/3

ρ
,

for CI/PA: E2
7 =

1

3

(

8 e2 m2 Σ2

ε20 h̄3

)2
F T

ρ n1/3
.

In the case of phonon heating (Tph = Te) if E ⊥ H and Ω ≫ ν, then for DA and PA

scattering mechamisms of electrons by phonons one finds Θe as

Θe =

[

1−
(

E

Ei

)2

(1− γ0)

]−1

, (28)

where the characteristic fields Ei are:

for DA: E2
8 =

3

2

(

H T

c s m G

)2

,
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for PA: E2
9 = 3

(

ε0 H T 2 n1/3

8 c s m e Σ

)2

ρ.

If the momentum of electrons are scattered from the impurity ions, regardless of the scat-

tering of energy from either DA or PA phonons, we find

Θe =
1 + (E/E10)

2

1 + γ0 (E/E10)
2 , E2

10 =
9π

4

(

ε0 H T 2

c s2 m e2

)2
T n1/3

F ρ
. (29)

As it is seen from Eq. (29), under the condition of mutual drag the electron temperature is

finite, i.e. because γ0(E/E10)
2 ≫ 1, and Θe ≤ 1/γ0 = const.

If E ⊥ H and Ω ≪ ν, for DA and PA scattering mechanisms Θe becomes

Θe =
1

2







1 +

[

1 + 4
(

E

Ei

)2

(1− γ0)
−1

]1/2






, (30)

where the characteristic fields Ei are:

for DA: E2
11 =

3

2

(

m G T 3 n1/3

e s3 h̄3 ρ

)2

,

for PA: E2
12 = 3

(

4 m Σ T 3

ε0 s3 h̄3 ρ

)2

.

For both CI/DA and CI/PA scattering mechanisms the critical field is the same; and Θe

is found to be as

Θe =
1

2γ0







(1 + γ0)−

[

(1− γ0)
2 − 4γ0

(

E

E13

)2
]1/2







, (31)

E2
13 =

1

π

(

e m T 2

ε0 h̄3 s2

)2
F T n1/3

ρ
.

Finally, in the absence of mutual drag (γ0 → 0), Eq. (31) gives

Θe =
(

E

E13

)2

. (32)
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IV. THERMOPOWER IN LONGITUDINAL MAGNETIC FIELD

We will first consider the case E ⊥ H ‖ ∇Te,ph ‖ ẑ. From Jz = 0 condition, we have

ETz +
1

e
∇zζ(Te) = αe∇zTe + αph∇zTph, αe,ph =

β
(e,ph)
11 + β

(e,ph)
13

σ11 + σ13

, (33)

where αe and αph are the electron and phonon parts of the differential thermopower, respec-

tively. By taking into account the fact that γ(ε) = γ0(ε/ζ0)
t−k/2−r, we find

αe = −
1

e

π2

6

[

3− 2r − γ0

(

5

2
− r

)]

T

ζ0
Θe, αph = −

1

e
Akt

(

ζ0
T

)(t−k)/2

. (34)

The thermopower is given by

V =
∫ Lz

0
dz (αe∇zTe + αph∇zTph) = Ve + Vph, (35)

where Lz is the size of the specimen in the z direction. As it follows from Eqs. (34) and (35)

in weak longitudinal magnetic field (Ω ≪ ν0[1− γ0]), in the absence of phonon heating the

electronic part of the total thermopower Ve is proportional to E4
0/(1− γ0)

2; and the phonon

part Vph, in general, does not depend on γ0.

At high magnetic field (Ω ≫ ν0[1− γ0]), Ve is proportional to (E0/H)4(1− γ0)
2, with E0

being the heating electric field intensity at the end of the specimen where electrons are highly

heated. Therefore, with increasing γ0, at weak magnetic field Ve grows as ∼ (1− γ0)
−2, and

at high magnetic field Ve decreases as ∼ (1− γ0)
2.

In the case of strong heating of LW phonons and for the scattering of momentum and

energy of electrons by acoustical phonons, at weak magnetic fields, from Eqs. (24), (34) and

(35), we have

Vph ∼ Θe ∼
E0

1− γ0
, Ve =

(

E0

1− γ0

)2

,

and at high magnetic fields

Vph ∼

[

1−
E2

0

E2
01

(1− γ0)

]−1

, Ve ∼

[

1−
E2

0

E2
01

(1− γ0)

]−2

,

E2
0(1− γ0) < E2

01 =
6s p0 βph H2

(m c2 ν0)2
.
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In the calculation for the dependences of Ve and the NE voltage (U) on E and H in

the transverse magnetic fields, it is necessary to assume that ∇Te,ph is constant along the

specimen, i.e., at one end of the specimen electrons are heated strongly by the electric field

(Θe ≫ 1), however, at the other end their temperature is T .

V. THERMOPOWER AND NERNST-ETTINGSHAUSEN EFFECT IN

TRANSVERSE MAGNETIC FIELD

In general, the thermomagnetic effects are measured experimentally under the condition

of ∇xTe,ph = 0. We will direct the external fields E and H along the y-axis and the temper-

ature gradients along the z-axis. Therefore, from Eq. (20) and the condition Jx = Jz = 0,

for the transverse NE voltage, we obtain

ETx = −H(Qe∇zTe +Qph∇zTph), Qe,ph =
1

H

σ11β
(e,ph)
12 − σ12β

(e,ph)
11

σ2
11 + σ2

12

. (36)

In this case the thermoelectric field ETz coincides with Eq. (33) by changing αe,ph as

αe,ph = −
σ11β

(e,ph)
11 + σ12β

(e,ph)
12

σ2
11 + σ2

12

. (37)

We would like to investigate Eqs. (35) and (36) by taking into account Eqs. (21) and

(22) in the weak and high magnetic field limits in the following subsections.

The weak magnetic field case

If ν̃2 ≫ Ω2, then for the electron part Qe, and phonon part Qph of the NE coefficients,

we obtain

Qe = −
1

e

π2

3

µ0

c

T

ζ0

{

r + γ0

(

5

4
− 2r

)}

Θe Θ
−ℓ
ph , (38)

Qph = −
1

e

π2

6

µ0

c
(t− k)

(

T

ζ0

)2+(k−t)/2 {

r + γ0

(

1− 2r +
t− k

4

)}

Akt Θ
2
e Θ−ℓ

ph ,

where µ0 = e/mν0 is the mobility of “cold” electrons. As it is seen from this equation,

under the conditions of strong mutual drag for the parabolic spectrum of electrons (βe ≫

12



βph, βpb, i.e., βe ≈ β), the phonon part of the NE coefficient Qph = 0, or more exactly

Qph ∼ (β − βe)/β = (βph + βpb)/β ≪ 1 (see also Refs. 20 and 21). Moreover, electrons and

phonons form a system coupled by the mutual drag with common temperature Te = Tph and

drift velocity ve = vph = s. For this reason, there is only one thermomagnetic coefficient for

the quasiparticle (electron dressed by phonon) coupled by the mutual drag. The quasiparticle

has the electronic charge e, and the mass of phonons M = Te/s
2 (see Refs. 27-30). However,

since we assume the diffusion approximation, γ0 < 1 or u < s, Qph is proportional to

(βph + βpb)/β 6= 0. Only when γ0 = 1 or u = s, we have Qph = 0.

The expression of αe,ph at weak magnetic field coincides with Eq. (34). Therefore, here

we give only the expressions denoting the change in αe and αph in the weak magnetic field:

∆αe = −
1

e

π2

3

{

7

4
− 2r +

(

1

4
− r

)

γ0(2− γ0)

(1− γ0)2

}

Ω2

ν2
0

T

ζ0
Θe Θ

−2ℓ
ph , (39)

∆αph = −
1

e
Akt

(

ζ0
T

)(t−k)/2
Ω2

ν2
0(1− γ0)2

Θ−2ℓ
ph .

In the case of scattering of electrons by deformation acoustical phonons (r = 1/2) as γ0 → 1,

the last term in square bracket in Eq. (39) is negative and much bigger than the other terms,

hence, ∆αe changes its sign. The NE voltage has the form:

U = −
∫ Lx

0
dx H(Qe∇zTe +Qph∇zTph) = Ue + Uph. (40)

In the cases of the absence and presence of phonon heating, the energy balance equation

in the transverse magnetic field has the form, respectively:

E2 = E2
02(1− γ0)(Θe − 1), E2

02 =
3 22+t m3 s ν0 pt0 T W0

(3 + t)π h̄3 e2
, (41)

(eE)2 = 6βph(T ) m s p0 ν̃(1− γ0)(Θe − 1). (42)

It follows from Eq. (38) that Qe has two components. Then, by using Eqs. (38), (40), and

(41) we obtain the first and the second components of the electron part of NE voltage as

U I
e ∼ (1− γ0)

−2E4
0 , U II

e ∼ γ0(1− γ0)
−2E4

0 . (43)

13



By analogy, we may obtain the phonon part as

Uph ∼ (1− γ0)
−2E4

0 . (44)

It is interesting that in the absence of phonon heating both Ue and Uph are proportional to

HE4
0 , i.e., they have the same dependence on the intensity of electric and magnetic fields

for all scattering mechanisms of electrons in the case of strong electron heating, Θe ≫ 1.

If the energy and momentum of electrons are transferred to phonons, in the case of strong

electron and phonon heating, we have

U I
e ∼ E0H(1− γ0)

−1/2, U II
e ∼ E0Hγ0(1− γ0)

1/2, (45)

and

U I
ph ∼ E2

0H(1− γ0), U II
ph ∼ E2

0Hγ0(1− γ0)
−1. (46)

Therefore, the mutual drag of electrons and phonons causes essential changes in the thermo-

magnetic behavior of semiconductors and semimetals. The strong phonon heating leads to

the important contribution to these effects, because in this case γ0 ∼ Θe for the scattering

of momentum of electrons by impurity ions and energy by LW phonons (the thermal drag

case).

The high magnetic field case:

In the limit Ω2 ≫ ν̃2, the thermomagnetic coefficients take the forms:

αe = −
1

e

π2

2

T

ζ0
Θe, (47)

Qe = −
1

e

π2

3

(

r +
5

4
γ0

)

c

H2µ0

T

ζ0
Θe Θ

ℓ
ph, (48)

Qph = −
1

e

π2

6
(t− k)

{

r + γ0

(

1 +
t− k

4

)}

c Akt

H2µ0

(

T

ζ0

)2+(k−t)/2

Θ2
e Θℓ

ph.

As it is seen from Eq. (48), for the case of weak mutual drag, both the electronic and phonon

parts of the transverse NE coefficients change their sign for the scattering of electrons by the

14



piezo acoustical phonons (r = −1/2). Moreover, the phonon part of NE coefficient changes

its sign if LW phonons are scattered by SW phonons (k = 1), and electrons are scattered by

piezo acoustical phonons (t = −1).

For the case under consideration, the expression for αph coincides with Eq. (34). As it

follows from Eqs. (38) and (48), at weak and high magnetic fields Qph = 0 for the scattering

of LW phonons by electrons (k = t), and by SW phonons (t = 1). From Eqs. (40)-(42) and

(48), in the absence of phonon heating, we obtain,

U I
e,ph ∼ H−1E4

0(1− γ0)
−2, U II

e,ph ∼ H−1E4
0γ0(1− γ0)

−2. (49)

In the case of strong phonon heating, for the scattering of energy and momentum of electrons

by phonons, we find

Ue ∼ H−1E3
0(1− γ0)

−3/2, Uph ∼ H−1E4
0(1− γ0)

−2. (50)

VI. CONCLUSION

In the present work, we have shown that at weak longitudinal magnetic fields in the

absence of phonon heating, the electron part of thermoelectric power Ve increases with

increasing E0 and the degree of mutual drag of electrons and phonons γ0. Nevertheless, the

phonon part Vph does not depend on γ0. At longitudinal high magnetic fields, Ve increases

with increasing E0, and decreases with increasing H and γ0. In the case of strong phonon

heating, if the momentum and energy of electrons are transferred to acoustical phonons at

weak magnetic fields, Ve and Vph grow as E0 and γ0 increase. It has been shown that at high

magnetic field for a given γ0 < 1, Ve and Vph grow as H increases.

In weak transverse magnetic field, Ve and Vph are exactly the same as in the case of

longitudinal magnetic field, and in the absence of phonon heating both the electron and

phonon parts of the transverse NE voltage Ue and Uph are proportional to HE4
0 . In the case

of strong electron and phonon heating both Ue and Uph grow as E, H and γ0 increase. At

15



high magnetic field in the absence of phonon heating, Ue and Uph grow with increasing E0

and γ0, and decrease linearly with increasing H . It has also been shown that in weak and

high transverse magnetic fields, both the electronic and phonon parts of the NE coefficients

change their sign for some scattering mechanisms.
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