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Abstract. The bid/no bid decision is an important and complex process, and is impacted by numerous variables that 
are related to the contractor, project, client, competitors, tender and market conditions. Despite the complexity of bid 
decision making process, in the construction industry the majority of bid/no bid decisions is made informally based 
on experience, judgment, and perception.  In this paper, a procedure based on support vector machines and backward 
elimination regression is presented for improving the existing bid decision making methods. The method takes advan-
tage of the strong generalization properties of support vector machines and attempts to further enhance generalization 
performance by eliminating insignificant input variables.  The method is implemented for bid/no bid decision making 
of offshore oil and gas platform fabrication projects to achieve a parsimonious support vector machine classifier.  The 
performance of the support vector machine classifier is compared with the performances of the worth evaluation model, 
linear regression, and neural network classifiers.  The results show that the support vector machine classifier outperforms 
existing methods significantly, and the proposed procedure provides a powerful tool for bid/no bid decision making.  The 
results also reveal that elimination of the insignificant input variables improves generalization performance of the sup-
port vector machines.
Keywords: construction management, support vector machine, bidding, decision making, decision support systems, 
classification, machine learning.

Introduction

In the construction industry, the majority of the contrac-
tors is awarded new projects through the bidding process. 
Since bidding for a project requires a commitment of time 
and resources, the decision to bid or not bid on a project 
is one of the most important bidding decisions so that 
limited company resources are allocated effectively. Bid-
ding on an inappropriate project can lead to wasted time 
and resources, whereas not bidding on an appropriate 
project may result in loss of business opportunities, such 
as profit, experience, and long-term relationship with a 
new client (Wanous et al. 2003). The decision to bid or 
not bid is made based on numerous factors that are re-
lated to the contractor, project, client, competitors, tender 
and market conditions (Ahmad, Minkarah 1988; Shash 
1993).  Despite the complexity of bid decision making 
process, the majority of the contractors makes the bid/no 
bid decision informally based on experience, judgment, 
and perception (Ahmad, Minkarah 1988). In recent years 
few research has focused on developing alternative meth-
ods to improve the bid/no bid decision making process.

Ahmad (1990) presented a structured methodol-
ogy for the bid/no bid decision problem for construction 

projects. The methodology consisted of a deterministic 
worth-evaluation model in which the individual worths 
on the factors are weighted and combined to obtain an 
overall score, based on subjective evaluation of the bid/
no bid factors (Ahmad 1990). The deterministic worth-
evaluation methodology was illustrated by using a hy-
pothetical bid decision making scenario. In another early 
attempt to achieve a structured methodology for bidding 
decisions, Dawood (1995) suggested a framework that 
integrates expert systems and information systems for 
bid/no bid and mark-up decisions.  Wanous et al. (2000) 
proposed a parametric approach, and a neural network 
model (Wanous et al. 2003) for the bid/no bid decision 
problem. The methods were validated using the train and 
test method and a sample of real-life bidding situations 
provided by contractors operating in Syria. Lin and Chen 
(2004) presented a fuzzy linguistic approach  to support 
the decision to bid or not bid.  The fuzzy linguistic ap-
proach was used to evaluate a bid opportunity of an in-
ternational airplane project in Taiwan.  

Egemen and Mohamed (2008) developed a knowl-
edge-based system based on comprehensive surveys to 
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assist the contractors in bid/no bid and mark-up size 
decisions. The system was validated by comparing the 
system’s decisions with the decisions of the experts.  
El-Mashaleh (2010) presented a data envelopment analy-
sis approach which was based on non-parametric linear 
programming. Ravanshadnia et al. (2010) developed a 
multistage fuzzy multi-attribute decision making meth-
od. The method considered the portfolio effect for bid/
no bid decisions making. Cheng et al. (2011) presented 
a multi-criteria prospect model for bidding decisions.  
El-Mashaleh (2013) proposed an empirical framework for 
making the bid/no-bid decisions.  
     The literature includes few research that present alter-
native methods for the bid/no bid decision making. How-
ever, there has been very little focus on development of 
methods employing support vector machines, despite the 
success of these methods for classification problems that 
are similar to the bid/no bid decision making problem. The 
main objective of this research is to improve the existing 
bid/no bid decision classification methods by presenting 
a procedure based on support vector machines. The paper 
also aims to improve generalization performance of sup-
port vector machines by integrating backward elimination 
regression technique in variable selection.

1. Bidding process in offshore oil and gas platform 
fabrication projects

The duration of bid preparation and the amount of re-
sources committed for bidding varies among different 
project types. Offshore oil and gas platform fabrication 
projects are among the projects that require a detailed 
evaluation and preparation period. The bidding process 
includes preparation of the tender plan, preparation of the 
fabrication plan, collection of quotations for the mate-
rials, quality, safety and environmental check, prepara-
tion of the price matrix schedule showing quantities and 
manhours per discipline,  risk assessment of the tender,  
and preparation of the final cost estimate. Bidding for the 
offshore petroleum platform fabrication projects is per-
formed by the cooperation of multi-disciplinary parties, 
including structural, mechanical, piping, electrical, and 
instrumentation departments. This complicated bid prepa-
ration period inevitably involves a considerable amount 
of expense for the fabrication company. The total cost of 
bid preparation of tender varies according to the contract 
type. For EPC (Engineering, Procurement, and Construc-
tion) and EPIC (Engineering, Procurement, Installation 
and Commissioning) types of contracts the bid prepara-
tion cost varies between €500.000–€1.000.000 if detailed 
pre-engineering work is available. Hence the bid/no bid 
decision making is very crucial for the offshore oil and 
gas platform fabrication projects.

2. Support vector machines  

The Support Vector Machine (SVM) is a non-probabilis-
tic supervised classification method derived from statisti-
cal learning theory. The SVM maps the input vectors into 

a high-dimensional feature space using a priori selected 
kernel function to separate the classes with a decision 
surface called the optimal hyperplane.  Special properties 
of the decision surface enable high generalization ability 
(Cortes, Vapnik 1995). 

The optimal separating hyperplane is a decision 
function that has the maximal margin between the vectors 
of classes.  The margin is determined by the small portion 
of the training data called “support vectors” which are 
used to construct the optimal hyperplane.  It was shown 
that if the optimal hyperplane can be constructed with 
a small number of support vectors relative to the train-
ing set size the generalization ability of SVM will be 
high  (Cortes, Vapnik 1995). For a two-class classifica-
tion problem with L training points, where each input xi 
is in one of two classes yi = –1 or +1, the training set is 
of the form:

  ( ) ( ) { }1 1    , x , . . . , x ,    1,1 . l l iy y y −  (1)

The optimal separating hyperplane can be deter-
mined by solving the following optimization problem 
(Cortes, Vapnik 1995):
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The vector w and the scalar b define separating hy-
perplane’s optimal orientation. The slack variables ξi are 
used to allow non-separable training data.  C is the pen-
alty parameter and determines the relative importance of 
maximizing the margin and minimizing the amount of 
slack.  For data that is not linearly separable, the kernel φ 
is used for mapping the input vector x to a higher dimen-
sional feature space as follows: 

  ( ) ( ) ( ) ,  . .i iK x x x xϕ ϕ=  (5)

K(x, xi) is a priori decided function satisfying Mer-
cer’s condition (Vapnik 2000). Learning machines with 
different types of nonlinear decision surfaces in input 
space can be constructed by using different kernels. 
Polynomial learning machines, radial basis functions 
machines, and sigmoid (two-layer neural networks) are 
among the most commonly studied learning machines 
with nonlinear decision surfaces. Radial basis function 
(Gaussian) is in the following form:

 
( )

2

2, exp
2

i
i

x x
K x x

σ

 − = −
 
 

 (6)

in which s > 0 is a kernel parameter. 
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Support vector machines have been successfully 
applied to many real world classification problems. Ex-
amples of support vector machines in construction man-
agement include: contractor prequalification decision 
(Lam et al. 2009), project success prediction (Cheng 
et al. 2010), contractor default prediction (Tserng et al. 
2011), cash flow prediction (Cheng, Roy 2011; Cheng 
et al. 2015a), project at completion estimation (Cheng, 
Roy 2010; Cheng et al. 2012; Cheng, Hoang 2014a), 
conceptual cost estimation (Cheng, Roy 2010), litigation 
outcome prediction (Mahfouz, Kandil 2012), enterprise 
resource planning software effort forecasting (Chou et al. 
2012), dispute prediction (Chou 2012; Chou, Lin 2012; 
Chou et al. 2013, 2014), construction cost index estima-
tion (Cheng et al. 2013), contractor default prediction 
(Cheng et al. 2014), bridge-maintenance risk score pre-
diction (Cheng, Hoang 2014b), change order productivity 
loss prediction (Cheng et al. 2015b). Despite the success 
of support vector machines in different construction man-
agement related classification problems, to the best of our 
knowledge, application of these methods have not been 
explored for bid/no bid decision making, which is the 
main focus of this study.

3. Bid/no bid decision classifiers

In this section first the existing bid/no bid methods that 
are used to evaluate performance of the proposed support 
vector machine are explained along with the novel sup-
port vector machine procedure. The proposed procedure 
is then implemented to construct a support vector ma-
chine classifier for bid/no bid decision making in offshore 
oil and gas platform fabrication projects. Actual bidding 
data of a company that is specialized in the engineering 
and fabrication of offshore oil and gas structures are used 
as the training data. The bidding data of the company in-
cluded information of eight variables impacting the bid/
no bid decisions, and outcome of bids for 40 oil and gas 
platform fabrication projects. Along the with support vec-
tor machine classifier, linear regression, and feed-forward 
neural network classifiers are developed to evaluate pre-
diction performance of the support vector machine clas-
sifier. The worth evaluation model of the offshore oil and 
gas company is also included in the comparisons.

3.1. Worth-evaluation classifier
The offshore oil and gas company that has provided the 
data for this research have developed a worth evaluation 
classifier for bid/no bid decision making. The worth eval-
uation classifier is very similar to the worth evaluation 
model proposed by Ahmad (1990) in which the individual 
worths of the variables are weighted and combined to 
obtain an overall score, based on subjective evaluation of 
the bid/no bid variables. The variables impacting the bid/
no bid decisions, and the weights of the variables were 
determined by a team consisting of senior level commer-
cial and project managers within the company, who have 
significant tender preparation experience. The team used 

eight variables for bid/no bid decision making. These var-
iables are presented in Table 1. As there are numerous 
factors that effect bid/no bid decisions, eight variables 
represent only a limited set of factors impacting bid/no 
bid decisions. However, these eight variables were the 
major factors considered by the commercial and project 
managers in bid/no bid decisions. A five point scale is 
used for subjective evaluation of the bid/no bid variables. 
The values of eight variables for the 40 projects, along 
with the actual bid/no bid decisions are included in Ta-
ble 2. The worth evaluation model determines the prob-
ability of winning the bid by considering the subjective 
evaluation of the variables and pre-determined variable 
weights. The bid/no bid classifications of the worth evalu-
ation model for 40 projects are compared with the actual 
bid outcomes to evaluate the performance of this classi-
fier. The worth evaluation model classified 19 bid/no bid 
decisions correctly and achieved a success rate of 47.5% 
(Sözgen 2009).

Table 1.  Variables impacting bid/no bid decision  

ID Description
x1 Scope Fit
x2 Political Position
x3 Safety Appreciation
x4 Track Record
x5 Personal Relation
x6 Yard Location
x7 Know-How
x8 Ultimate Price Level

3.2. Linear regression classifier
Linear regression analysis enables development of parsi-
monious classifiers including few parameters. In this re-
search linear regression analysis is not only used to evalu-
ate performance of support vector classifiers, but also to 
assist variable selection in neural networks and support 
vector machines. The first linear regression model (RM1) 
included all of the candidate variables that may impact the 
bid/no bid decisions, and was in the following form:

 
0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8

        
     

y x x x x
x x x x

β β β β β
β β β β

= + + + + +

+ + +
 
 (7)

in which y is the probability of winning the bid, x1, x2, 
…, x8 are the independent variables impacting bid/no bid 
decision making, and β0, β1, …, β8  are the regression co-
efficients.  Similar to the worth-evaluation classifier, if y 
< 0.5 the regression classifier suggests not to bid, whereas 
if y ≥ 0.5 the classifier suggests to bid. 

The candidate variables that did not have a signifi-
cant impact on the  probability of winning the bid are 
dropped from the model, one at a time, by backward 
elimination technique to achieve a parsimonious regres-
sion model. The variables that had a regression coefficient 
that is not significant at a 0.2 significance level (p-value) 
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are eliminated one at a time.  Hence, the independent 
variables x2, x3, x4, x6, x7, x8 are eliminated respectively 
as shown in Table 3, and the linear regression classifier 
included the variables x1 and x5.

Ten-fold cross-validation technique is used to evalu-
ate performance of the linear regression classifier.  The 
data set is divided into 10 subsets, each containing data 
of four projects. The bid/no bid decision for each subset 
is determined by the regression models that are developed 
based on the 36 project data which excluded the 4 pro-
ject data of the each subset being evaluated. The results 
of ten-fold cross-validation revealed that the final regres-
sion model classified 32 bid/no bid decisions correctly 
and achieved a success rate of 80.0%.

Table 3. Variable selection procedure for the linear regression 
model 

Model Independent variables Variable 
eliminated p-value

RM1 x1, x2, x3, x4, x5, x6, x7, x8 x6 0.924
RM2 x1, x2, x3, x4, x5, x7, x8 x8 0.411
RM3 x1, x2, x3, x4, x5, x7 x2 0.420
RM4 x1, x3, x4, x5, x7 x7 0.468
RM5 x1, x3, x4, x5 x4 0.408
RM6 x1, x3, x5 x3 0.433
RM7 x1, x5 0.208

3.3. Neural network classifier
Linear regression classifier considers only linear relations 
which does not always guarantee an adequate representa-
tion of the relations.  Hence, a neural network classifier 
is also developed for establishing an alternative mapping 
function to evaluate the performance of the proposed sup-
port vector machines. The neural network classifer con-
sisted of a one hidden layer feed forward neural network 
model with a sigmoid transfer function. Backpropagation 
algorithm is used to train the neural networks. 

Elimination of input variables that do not have a 
significant impact on the bid/no bid decisions are con-
sidered in neural network modeling, since elimination of 
the unimportant input variables may improve generaliza-
tion capabilities of neural networks (Shastri et al. 1998; 
Sonmez 2011). In the initial neural network model (NN1) 
all of the eight candidate variables are included in the 
input layer as shown in Figure 1. In neural network mod-
els the number hidden units is taken as the half of the 
sum of the number of input units and number of output 
units (Sonmez, Rowings 1998; Sonmez 2011). The per-
formance of the first neural network is determined by im-
plementing ten-fold cross-validation technique with the 
same 10 test subsets which were also used to determine 
the performance of the final regression model. The NN1 
correctly classified 30 projects (75.0%). The input vari-
ables of the neural network models are eliminated in the 
order that was used in the backward elimination regres-
sion method as shown in Table 4. When the variable x3 

Table 2. Bidding data

Project 
No x1 x2 x3 x4 x5 x6 x7 x8

Bid/No 
Bid

1 5 3 3 5 4 4 5 3 1

2 4 3 3 4 3 3 4 2 0

3 4 2 3 3 4 3 3 4 0

4 5 5 3 5 5 5 3 2 1

5 3 2 3 3 3 4 3 2 0

6 3 2 3 3 4 3 3 3 0

7 3 2 3 2 2 4 2 3 0

8 5 2 3 4 5 4 4 3 1

9 5 3 3 5 5 3 4 3 1

10 2 2 3 3 4 3 3 3 0

11 5 2 3 4 5 3 3 3 1

12 3 3 3 3 2 1 4 2 0

13 3 4 2 2 2 2 4 1 0

14 4 4 3 3 4 4 3 3 1

15 2 3 3 2 3 3 2 2 0

16 1 3 3 3 3 3 3 2 0

17 2 2 3 2 1 3 2 2 0

18 2 2 3 2 2 2 2 3 0

19 2 3 3 5 4 5 4 4 1

20 2 1 3 2 2 2 2 3 0

21 5 4 3 4 5 5 5 5 0

22 5 4 4 5 4 5 4 3 0

23 2 3 3 5 4 5 4 4 1

24 5 3 3 5 5 3 4 3 0

25 4 4 3 2 4 5 3 3 0

26 3 2 3 3 4 2 4 4 1

27 4 2 3 5 4 3 3 3 0

28 4 5 3 3 4 3 4 1 0

29 4 2 3 5 3 3 3 3 0

30 4 3 3 3 3 3 3 3 0

31 3 2 3 3 4 3 4 3 0

32 3 4 3 2 4 3 2 3 1

33 3 3 3 3 4 3 3 3 0

34 3 2 3 3 3 3 3 3 0

35 2 4 3 2 5 2 2 3 1

36 4 2 3 3 3 1 3 3 0

37 3 3 3 2 2 3 3 3 0

38 2 3 3 2 2 2 3 1 0

39 2 2 3 3 2 2 2 1 0

40 1 4 3 2 5 3 2 3 1
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is removed, the ten-fold cross-validation correct classifi-
cation performance has decreased to 77.5% (NM7) from 
80.0% (NN6).  Hence the variable x3 is included in the 
neural network classifier along with the variables x1 and 
x5 which were included in the linear regression classifier.  

Table 4. Variable selection procedure for the neural network 
model 

Model Independent variables Correct 
classification (%)

NN1 x1, x2, x3, x4, x5, x6, x7, x8 75.0
NN2 x1, x2, x3, x4, x5, x7, x8 75.0
NN3 x1, x2, x3, x4, x5, x7 77.5
NN4 x1, x3, x4, x5, x7 77.5
NN5 x1, x3, x4, x5 77.5
NN6 x1, x3, x5 80.0
NN7 x1, x5 77.5

3.4. Support vector machine classifier
The novel support vector machine procedure for bid/no 
bid decision making considers the development of a par-
simonious support vector machine (SVM) classifier by 
including only the significant variables impacting the bid/
no bid decisions. The procedure starts with constructing 
an initial support vector machine (SVM1) which includes 
all of the eight candidate variables as the input variables 
as shown in Figure 2. The support vector machines are 
developed in MATLAB 2014a by considering a radial 

basis function (Gaussian) kernel as shown in Figure 3. 
The radial basis kernel is considered as it includes fewer 
hyperparameters than the polynomial kernel (Hsu et al. 
2003), and the linear support vector machine is a spe-
cial case of radial basis function machines (Keerthi, Lin 
2003). The default MATLAB 2014a values for the pen-
alty parameter C and kernel parameter s are used to con-
struct the bid/no bid support vector machines.

To achieve a parsimonious support vector machine 
classifier the elimination of the input variables are con-
sidered according to the order defined by the backward 
elimination regression method (BER). The input variable 
which is being considered for elimination is not elimi-
nated when the ten-fold cross-validation performance of 
the preceding support vector machine is better than the 
performance of the succeeding support vector machine. 
The variable selection procedure is summarized in Ta-
ble 5. The first variable that was considered for elimina-
tion was x6 which was the first variable eliminated by 
the backward elimination regression method. This vari-
able is eliminated as the ten-fold cross-validation correct 
classification performance of the succeeding support vec-
tor machine (SVM2) has improved to 82.5% from 80.0% 
(SVM1). The second and third variables that were con-
sidered for elimination were x8 and x2 respectively. These 
variables were not removed since elimination of these 
input variables decreased the ten-fold cross-validation 
correct classification performance. However, variable x7 
is removed since the performance of the SVM5 has im-
proved to 85% by elimination of this variable. Similarly, 
the variable x4 is also eliminated as SVM6 has achieved 
a cross-validation correct classification performance of 

Fig. 1. Neural network classifier

Fig. 2. Support vector machine classifier

Fig. 3. Illustration of the kernel transformation for bid/no bid SVMs
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90.0%. The last variable that was considered for elimi-
nation was x3, which was the last variable eliminated by 
the backward elimination regression method. Elimination 
of x3 has decreased the performance to 80.0% (SVM7), 
hence this variable was not eliminated. The backward 
elimination variable selection procedure which was pre-
sented in this research, improved the correct classification 
performance of bid/no bid support vectors from 80.0% 
(SVM1) to 90.0% (SVM6). The proposed bid/no bid de-
cision making support vector machine procedure is sum-
marized in Figure 4.

Fig. 4. Flow chart of the proposed support vector machine method

Table 5. Variable selection procedure for the support vector 
machine 

Model Independent variables Correct 
classification (%)

SVM1 x1, x2, x3, x4, x5, x6, x7, x8 80.0
SVM2 x1, x2, x3, x4, x5, x7, x8 82.5
SVM3 x1, x2, x3, x4, x5, x7 80.0
SVM4 x1, x3, x4, x5, x7, x8 80.0
SVM5 x1, x2, x3, x4, x5, x8 85.0
SVM6 x1, x2, x3, x5, x8 90.0
SVM7 x1, x2, x5, x8 80.0
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3.5. Comparison of bid/no bid classifiers
In machine learning, confusion matrices are commonly 
used to evaluate performance of the classifiers (Sammut, 
Webb 2011). A confusion matrix is used not only to de-
termine the overall performance of a classifier, but also 
to reveal performances of the classifier for the different 
classes. The confusion matrices of the worth evaluation 
classifier (WEC), the linear regression classifier (RM7), 
neural network classifier (NN6), and the support vector 
machine classifier (SVM6) are summarized in Figure 5. 
The four outcomes of classification;  true positives (TP), 
false positives (FP), true negatives (TN), and false nega-
tives (FN) for positive (bid) and negative (no bid) classes 
are illustrated in Figure 6. Five classification performance 
metrics are calculated by using the confusion matrices. 
The accuracy measures overall classification performance 
and is equal to the correct classification percentage. The 
true positive rate (%), true negative rate (%), positive 
predictive value (%), and negative predictive value (%) 
metrics are calculated as follows:

 
( ) TPTrue positive rate %  1 00;

TP+FN
 =  
 

 (8)

 
( ) TNTrue negative rate %  1 00;

TN+FP
 =  
 

  (9)

 
( ) TPPositive predictive value %  1 00;

TP+FP
 =  
 

 (10)

 
( ) TNNegative predictive value %  1 00.

TN+FN
 =  
 

 (11)

The performance metrics of the classifiers are 
summarized in Table 6. The worth evaluation classifier 
(WEC) which achieved a 47.5% correct classification 
had the worst accuracy. The true negative rate (%), and 
positive predictive value (%) performances of the WEC 
were also very poor. The linear regression (RM7) and the 
neural network (NN6) classifiers had both achieved an 
accuracy of 80.0%, and had both poor classification per-
formances for the “to bid” class with a true positive rate 
of 50.0%. The support vector machine classifier (SVM6) 
not only achieved an accuracy of 90.0%, but also was 
successful for both of the classes. The support vector ma-
chine classifier had a true positive rate of 91.7% and had 
a true negative rate of 89.3%. 

Interval plots of classifiers 95% confidence interval 
for the mean accuracy are performed by Minitap 17 Sta-
tistical Software to reveal the consistency of the classi-
fiers among cross validation sets.  Figure 7 displays the  
95% confidence intervals for the mean accuracy of clas-
sifiers for the ten cross validation sets. The 95% confi-
dence interval for the mean accuracy of the worth evalu-
ation classifier lied between 37.3% and 57.6%. The 95% 
confidence interval for the mean accuracy of the regres-
sion and neural network classifies were same, and laid 
between 68.7% and 91.3%. The 95% confidence interval 
for the mean accuracy of the support vector classifier lied 
between 80.8% and 99.2%, indicating consistency and 
high accuracy for the SVM6 among cross validation sets.  
The results confirmed the effectiveness and robustness of 
the proposed support vector machine procedure for bid/
no bid decision making. The results of the  support vector 
machine procedure are presented to the commercial and 
project managers of the offshore oil and gas company that 
has provided the data. The managers considered adopting 

Table 6. Performance of bid/no bid classifiers

WEC RM7 NN6 SVM6
True positive rate (%) 100.0 50.0 50.0 91.7
True negative rate (%) 25.0 92.9 92.9 89.3
Positive predictive value (%) 36.4 75.0 75.0 78.6
Negative predictive value (%) 100.0 81.3 81.3 96.2
Accuracy (%) 47.5 80.0 80.0 90.0

Fig. 5. Confusion matrices for bid/no bid classifiers

Fig. 6. The outcomes of classification into positive and 
negative classes
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the proposed procedure as a decision support system dur-
ing no/bid decisions. The managers also recommended 
a dynamic procedure that enables adding new variables. 

3.6. Sensitivity analysis
Sensitivity analysis was performed to determine the im-
pact of the variables on the bid/no bid decision for SVM6. 
In sensitivity analysis, the values of one variable were 
increased from “one” to “five”, at an increment of one, 
while those of the remaining variables were kept constant 
at value “three”. The results of the sensitivity analysis are 
summarized in Table 7. The results indicate that the bid/
no bid decision is most sensitive to the variables Political 
Position (x2) and Ultimate Price Level (x8) followed by 
the variables Scope Fit (x1) and Personal Relation (x5).

Table 7. Sensitivity analysis results

Value x1 x2 x3 x5 x8
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 1
5 1 1 0 1 1

Conclusions

In this paper a procedure based on support vector ma-
chines and backward elimination regression method is 
presented for bid/no bid decision making. The procedure 
was successfully implemented for offshore oil and gas 
platform fabrication projects. The cross-validation perfor-
mance results revealed that the support vector machine 
procedure outperformed existing bid/no bid decision 
methods. The support vector classifier achieved a signifi-
cantly better performance than the worth evaluation clas-
sifier, linear regression classifier, and the neural network 
classifier in correct classification of bid/no bid decisions. 
The results indicate that the proposed procedure provides 
a powerful tool for bid/no bid decision making. 

In the novel support vector machine procedure pre-
sented, a parsimonious support vector machine classifier 

is constructed by eliminating the insignificant input vari-
ables that are not contributing to the classifier. Backward 
elimination regression method is used  along with cross 
validation to identify the insignificant input variables. The 
performance comparisons revealed that elimination of the 
insignificant input variables improved classification per-
formance of the support vector machines. Although the 
input variable selection procedure presented for support 
vector machines is applied to bid/no bid decision making 
problem in this research, it can be adapted to other clas-
sification problems to achieve parsimonious support vec-
tor machines with improved generalization capabilities.   
The proposed procedure was applied to a limited data set 
including only eight variables. Future research, including 
larger data sets and additional variables will help to im-
prove the understanding of bid/no bid decisions.  
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