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Abstract—Circular arrays of log-periodic (LP) antennas are designed
and their operational properties are investigated in a sophisticated
simulation environment that is based on the recent advances in
computational electromagnetics. Due to the complicated structures
of the trapezoidal-tooth array elements and the overall array
configuration, their analytical treatments are prohibitively difficult.
Therefore, the simulation results presented in this paper are essential
for their analysis and design. We present the design of a three-
element LP array showing broadband characteristics. The directive
gain is stabilized in the operation band using optimization by genetic
algorithms. We demonstrate that the optimization procedure can also
be used to provide beam-steering ability to LP arrays.

1. INTRODUCTION

Although they have been known for about five decades [1–5], log-
periodic (LP) antennas are still interesting [6, 7] due to their ability
to display quasi-frequency-independent characteristics over a wide
band of frequencies. The broadband capability of these antennas has
attracted the interest of many researchers. LP dipole arrays [4, 5] have
become particularly popular because of their simplified geometries.
Numerous reports have appeared in the literature, investigating
LP dipole arrays, their operational properties, and various design
procedures [8–23]. However, there are relatively few reports on the
analysis of other LP structures with more complicated geometries [24–
30]. Earlier, we applied the recent advances in computational
† The authors are also with Computational Electromagnetics Research Center (BiLCEM),
Bilkent University, TR-06800, Bilkent, Ankara, Turkey
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electromagnetics to model general LP structures and perform tests
on their configurations [31–33]. The results obtained in the simulation
environment have led to essential improvements in fundamental design
procedures that could not be achieved with textbook-type theoretical
approaches alone.

(a) (b)

Figure 1. Trapezoidal-tooth LP antenna detailed in [32]. (a) Top
view, (b) three-dimensional view. This antenna is employed to
construct the circular arrays.

In the present study, we use the simulation environment to
investigate broadband circular arrays of LP antennas. Figure 1 displays
the LP antenna employed as the element of circular arrays. This is a
trapezoidal-tooth LP antenna as detailed in [32]; it can operate almost
frequency independent from 300 MHz to 800 MHz. The antenna has
two arms; each is 1 m long and there is a 45◦ angle between them.
The two arms are physically separated, but they are connected by
an excitation source defined in the simulation environment [33]. The
length of the elements located on the arms varies from 4 cm to 27 cm.
There are 38 elements on each arm, and the expansion angle is 30◦,
i.e., the elements on an arm grow with an angle of 30◦. The geometric
growth factor (τ) of the antenna is 0.95 which means that

τ =
Ri+1

Ri
= 0.95, i = 1, . . . , 37, (1)

where Ri represents the length of the ith element. Therefore, R1 =
27 cm and R38 = 4 cm.

We employ the LP antenna shown in Figure 1 to construct circular
arrays with regularly-spaced elements, as depicted in Figure 2. To
preserve frequency independence, the antennas are arranged in a
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circular form. In theory, the concept of array factor suggests an
optimistic scenario, where frequency independence is conserved in the
case of a circular arrangement of the LP antennas. However, our
simulations show that mutual couplings between the LP antennas play
an important role in shaping the radiation characteristics and that they
cannot be ignored. Any analytical treatment that would handle these
couplings as well as the other electromagnetic effects would be difficult
and would require placing restrictions on the geometry [9]. Therefore,
using the simulation environment becomes essential for the analysis of
LP arrays.

Figure 2. Circular array of LP antennas constructed by employing
three identical trapezoidal-tooth antennas depicted in Figure 1. The
antennas are regularly spaced.

To add beam-steering ability to the LP arrays, we optimize
the radiation pattern and find the relative excitation coefficients to
maximize the directive gain. The directive gain in the direction (θ, φ)
is defined as

D(θ, φ) = 4π
f(θ, φ)
P

, (2)

where

P =
∫ 2π

0

∫ π

0
f(θ, φ) sin θdθdφ (3)
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and f(θ, φ) represents the radiation intensity. To maximize the
directive gain in a given direction, we rotate the main beam in that
direction. With optimization, the main beam of the radiation can
be steered in some sector centered at a specific angle. Since circular
arrays, such as one in Figure 2, are constructed with regularly-spaced
elements and are symmetric, the results of an optimization in a sector
can also be used in other sectors. Due to the large optimization space,
we employed genetic algorithms to perform the optimization. The
results of the arrays with three antennas will be presented in this paper
although we applied the same procedure also to more populous arrays.

The rest of the paper is organized as follows. In the next
section, we outline the theoretical and numerical methods used
for electromagnetic modeling. Multiple LP antennas in circular
arrangement are introduced in Section 3, and frequency independence
is discussed. Then, in Section 4, we explain how the genetic algorithms
are used for the optimization of circular arrays. Finally, the results
for beam steering are demonstrated in Section 5, and we present
conclusions in Section 6.

2. ELECTROMAGNETIC MODELING

In this paper, we model LP antennas and their arrays by using perfectly
conducting sheets. The electromagnetic radiation problem in the
frequency domain is formulated by employing the electric-field integral
equation (EFIE) [34]. This equation is derived from the boundary
condition for the tangential electric field, and it can be written in the
exp(−iwt) convention as

t̂ ·
∫

S′
dr′G(r, r′) · J(r′) =

i

kη
t̂ · Einc(r), (4)

where the scattered electric field is expressed in terms of the induced
current J on the surface of the antenna S′. In (4), t̂ is any tangential
vector at the observation point r, Einc is the incident electric field
created by the excitations of the antennas, k is the wavenumber, η is
the characteristic impedance of the free space, and

G(r, r′) =
[
I +

∇∇
k2

]
g(r, r′) (5)

is the dyadic Green’s function based on the scalar Green’s function

g(r, r′) =
eik|r−r′|

4π|r − r′| (6)
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for the three-dimensional Helmholtz equation.
For the numerical solution of the EFIE in (4) using the method

of moments (MOM) [35], the unknown surface current is expanded in
a series of basis functions bn as

J(r) =
N∑

n=1

anbn(r), (7)

where an is the unknown coefficient of the nth basis function and N
is the number of unknowns. The boundary condition in (4) is then
projected onto the testing functions tm to obtain the N × N matrix
equation

N∑
n=1

ZE
mnan = vE

m, m = 1, . . . , N, (8)

where

ZE
mn =

∫
Sm

drtm(r) ·
∫

Sn

dr′G(r, r′) · bn(r′) (9)

represents the matrix elements, and

vE
m =

i

kη

∫
Sm

drtm(r) · Einc(r) (10)

represents the elements of the excitation vector on the right-hand-side
of the system in (8). In (9) and (10), Sm and Sn denote the spatial
support of the mth testing and nth basis functions, respectively.

For a simultaneous discretization of the integral equation and
the geometry of the problem, the surface is meshed by using small
(about λ/100, where λ is the wavelength at the lowest frequency of
the operation band of the antenna) planar triangles, on which Rao-
Wilton-Glisson (RWG) [36] basis and testing functions are defined.
The evaluation of (9) with the RWG functions is widely available in the
literature [36]. However, to calculate the excitation vector in (10), we
need to find a proper representation for the feed of the antenna. In [32],
we achieved this by employing a physical connection, on which a delta-
gap source was defined. In the present work, we use a more realistic
scenario as detailed in [33], where the current sources are attached to
the antenna. This is accomplished by using a pair of half basis functions
associated with the feed locations. The resulting excitation vector in
(10) is calculated by evaluating the interactions of the two half basis
functions with the ordinary (full) basis functions bn for n = 1, 2, . . . , N .
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Although the number of unknowns is relatively low (1000–10,000)
and the radiation problems studied in this paper could be solved
with MOM, we use an iterative algorithm and employ the multilevel
fast multipole algorithm (MLFMA) [37, 38] to speed up the matrix-
vector products required during the iterations. Such an acceleration is
necessary since multiple solutions are required at several frequencies.
Indeed, we use high sampling rate in frequency sweeps so that we
can properly observe the rapid oscillations in radiation patterns and
directive gains of LP antennas and their array configurations. This
leads to about 100 to 1000 solutions per problem, requiring an
efficient algorithm, such as MLFMA, to reach solutions quickly without
sacrificing accuracy.

3. CIRCULAR ARRAYS OF LP ANTENNAS

Theoretically, a significant majority of the induced current on an LP
antenna is on a region of the teeth that is about quarter-wavelength
long [39, 40]. This is called the active region, and it moves along
the antenna as the frequency changes. For high frequencies, the
active region is on the small elements near the feed location; for
lower frequencies, it is located on larger elements. The operational
frequency range for an LP antenna is directly determined by where
the active region is located on the antenna. When the frequency is
adjusted so that the active region is completely located on the antenna,
the antenna operates properly. However, frequency independence
collapses whenever the active region begins to overflow and cannot
be accommodated on the antenna. Since the active region is located
on more than one element and its size is unknown a priori, it is difficult
to calculate the exact bounds for the range of frequency independence.
At this stage, simulations of the antenna to calculate the extent of the
active region at different frequencies become useful for correcting the
design [32].

Operation range depends on the size of the elements of the LP
antenna, and frequency independence in the range is affected by the
density of the elements. When the frequency changes, the variation
in the radiation characteristics of the antenna can be small if the
active region moves smoothly on the antenna. This can be achieved by
selecting τ close to unity, as in the LP antenna shown in Figure 1.
In general, there is a trade-off between geometric simplicity and
frequency independence. For example, when τ drops, the number
of elements required for a given bandwidth becomes small; it then
becomes easier to construct the antenna with fewer elements. However,
frequency independence deteriorates due to the larger gaps between the
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consecutive elements, and the resulting non-smooth movement of the
active region along the antenna.

When LP antennas are used to construct an array, it is better
to arrange them circularly, as shown in Figure 2. In this figure, the
three LP antennas in Figure 1 are regularly placed with a 120◦ angle
between each. Theoretically, the radiation intensity of a circular array
of identical elements can be calculated as [41]

fa(θ, φ) = fAF × fe(θ, φ), (11)

where fe and fa represent the radiation intensities of a single element
and the array, respectively. This theoretical scenario is illustrated in
Figure 3, where the elements are represented by the dots on the circle.
The array factor fAF in (11) can be calculated as

fAF =
P∑

p=1

Ip exp(−ika sin θ cos(φ− φp)), (12)

where P is the number of antennas, k is the wavenumber, a is the
radius of the circle, Ip is the complex excitation coefficient of the pth
element, and φp is the angle between the pth element and the x axis.
At this stage, we assume that the dots in Figure 3 represent the center
of the active regions located on the LP antennas. Since the active
region appears on the elements that are about a quarter-wavelength
long, the circle in Figure 3 has a radius that is inversely proportional
to k. Consequently, fAF becomes independent of frequency with the
elimination of the k factor in the exponential term of (12). Finally,
if fe is almost frequency-independent, we conclude that the radiation
intensity of the array fa should also be independent of frequency to
the same degree.

x

y

z

p

a

φ p

Figure 3. Configuration for a circular array, where the elements of
the array are represented by the dots on a circle.
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Despite the simple discussion above, the simulations show that
we cannot ignore the mutual couplings between LP antennas that are
located close together, as in Figure 2. To prove this, we compare
radiations from the single antenna in Figure 1 with the array in
Figure 2, where only the antenna on the x axis is active. Considering
(11) and (12) in this case, Ip is zero for the unexcited elements, and
the radiation of the array should be the same as the radiation of
the single antenna. On the other hand, in Figure 4, we plotted the
directive gain in the −x direction with respect to frequency, and it
is completely different for the array and the single antenna. Due to
mutual couplings, the unexcited antennas in the array significantly
modify the total radiation. The directive gain of the array oscillates
much more than the single element, demonstrating a drop in the quality
of frequency independence.

300 400 500 600 700 800
0

2

4

6

8

10

12

Frequency(MHz)

D
ire

ct
iv

e 
G

ai
n 

in
 -x

300 400 500 600 700 800
0

2

4

6

8

10

12

Frequency(MHz)

D
ire

ct
iv

e 
G

ai
n 

in
 -x

(a) (b)

Figure 4. Directive gain in the −x direction sampled with 1 MHz
resolution for (a) the trapezoidal-tooth LP antenna in Figure 1 and
(b) the circular array in Figure 2 with only the antenna on the x axis
active.

We have confirmed that the oscillations in Figure 4(b) are directly
related to the geometric growth factor (τ) of the LP array. Let fi and
fi+1 be two consecutive frequencies, at which the directive gain makes
a peak. Then,

fi

fi+1
≈ τ, (13)

which is equal to 0.95 in our case. Figyres 5(a) and (b) show the
directive gain when τ becomes 0.98 and 0.85, respectively. It is clearly
observed that the oscillation rate depends on τ . In fact, this relation
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Figure 5. Directive gain in the −x direction sampled with 1 MHz
resolution for the configuration in Figure 2 with only the antenna on
the x axis active for (a) τ = 0.98 and (b) τ = 0.85.

also exists in the case of the single antenna in Figure 4(a). However,
the active region on the single antenna moves so smoothly that the
radiation characteristics change little in the intervals [fi, fi+1] and the
oscillation is less visible. When we examine the array configurations,
we note that the mutual couplings between the antennas disturb the
localization of the active region, and we see a large effect on the
radiation characteristics.

4. GENETIC OPTIMIZATION OF DIRECTIVE GAIN

For the array in Figure 2, we wish to optimize the directive gain in a
certain direction by selecting the best complex excitation coefficients
for the antennas. In this section, we consider the optimization of
the directive gain in the −x direction, while the same process will be
employed in Section 5 to steer the main beam. At a fixed frequency,
we express the complex excitation coefficient of the pth antenna as

Ip = Ap exp(iϕp), p = 1, 2, 3, (14)

where Ap and ϕp represent the amplitude and phase of the excitation,
respectively. Without loss of generality, we take ϕ1 = 0 and
optimization is performed on five parameters. For each p, Ap can
take values from 0 to 1, and for p = 2 and 3, ϕp can take values from
0◦ to 360◦.

Applying a discretization approach to the variables, samples are
selected regularly in the intervals [0, 1] and [0, 360◦] for Ap and ϕp,
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respectively. If optimization is performed by a brute-force approach,
i.e., by simply scanning the optimization space and checking every
possible combination of the variables, processing time will be extremely
long. For example, we discretize each variable with 10 samples. The
amplitudes Ap are sampled as 0.0, 0.1, 0.2, . . . , 0.9, and the phases ϕp

are sampled as 0◦, 36◦, 72◦, . . . , 324◦. The number of trials required
to determine the optimum combination of the parameters is 105 =
100, 000 since there are five parameters, i.e., A1, A2, A3, ϕ2, and ϕ3.
If there is more than one frequency (500 in this paper), the number
of trials can be extremely large. Although not every trial requires a
solution with MLFMA, the brute-force approach is still not feasible;
and it is even more difficult to employ the brute-force approach for
more populous arrays.

We were able to perform the optimization more efficiently by using
genetic algorithms. Since they have been successfully employed for
many applications in electromagnetics [42–46], we will not go into the
details of genetic algorithms here. Instead, we will briefly explain how
we performed the optimization of the excitations:

(i) Genetic algorithms work on a pool of citizens. Each citizen is
actually a trial, i.e., a choice for the set of variables. For example,
a citizen in our problem may imply that {A1, A2, A3, ϕ2, ϕ3} =
{0.2, 0.4, 0.3, 36◦, 108◦}. The excitations represented by this
citizen would be

I1 = 0.2, I2 = 0.4 exp(i36◦), I3 = 0.3 exp(i108◦). (15)

In the beginning, the pool is formed by randomly created citizens.
It then evolves as new generations are created. The number of
citizens is fixed for an optimization; we use pools with 20–30
citizens.

(ii) Each citizen has a measure of success. In our case, this is
the directive gain of the array in the optimization direction.
Citizens with high success contribute to the construction of
the new generations. Citizens with low success are eliminated
automatically.

(iii) Each citizen has a chromosome to be used in the breeding process.
The chromosome is a key to represent the values of the variables
implied by the citizen. To evaluate the chromosomes, we employ
one-to-one mapping to convert the given values to binary words.

(iv) The next generation of the pool is formed by the breeding
process. For a breeding operation, two citizens with high success
are selected randomly. These are called parents. Then, the
binary numbers in the chromosomes of the parents are exchanged
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randomly. There are various crossover schemes to perform the
exchanges [42]. Heuristically, the two new citizens created by the
breeding process and called children have a high probability of
being more successful than their parents. The next generation
is complete when all the breeding operations have created the
required number of children.

(v) The citizens are randomly subject to mutation. We use a
mutation rate of about 5 percent for each binary number in the
chromosomes. The choice of the mutation rate is important since
lower rates lead to slower convergence, while larger rates may
prohibit the convergence all together.

(vi) As new generations are formed, the quality of the pool is expected
to increase. In the extreme case, all the citizens in the pool
become the same and they all possess the optimized values for
the variables. Then, the pool is converged. However, it is usually
enough to breed generations up to a fixed limit and take out the
best citizen in the final pool. In our optimizations, we breed 50
generations.
By employing genetic algorithms, we can reduce the number of

trials for a fixed frequency from 100,000 to about 1000–1500. This
leads to a significant reduction in processing time. With numerous
experiments, we have confirmed that genetic algorithms converge to
optimized values that are very close to those found by the brute-force
approach.

For each trial, either by brute force or genetic algorithms, a set of
excitations have to be applied on the antennas to compute the directive
gain. We do not perform this by solving the radiation problem for each
set of excitations. Instead, we employ the superposition technique
to compute the radiated fields in a more efficient way. Consider the
three-element array depicted in Figure 2. For a fixed frequency, we
perform a single solution with MLFMA. In this solution, only one
antenna is excited with a unity excitation. Then, the complex radiated
field is stored in memory to be used during the optimization. When
a set of excitations is to be tested, the radiated field and its two
rotated versions, i.e., rotated by 120◦ and 240◦, are multiplied with
the corresponding excitation coefficients and combined into a single
field. Following this superposition, directive gain is calculated from
the total field. Consequently, for a circular-symmetric array, only a
single solution with MLFMA is required at each frequency.

Figure 6 presents the result of the optimization by genetic
algorithms for the array in Figure 2. The directive gain in the −x
direction is plotted with respect to frequency for two cases; when only
the antenna on the x-axis is excited, and when all the antennas are
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Figure 6. Directive gain in the −x direction sampled with 1 MHz
resolution for the array in Figure 2 when (a) only the antenna on the
x axis is active, and (b) three antennas are active with the optimized
excitations.

active with the optimized excitations. For any frequency, optimization
is expected to provide increased directive gain. This is in fact the
case; however optimization is even more effective at those frequencies,
where the directive gain is low. Therefore, the optimization by genetic
algorithms reduces the variation in the directive gain with respect to
frequency, and the array becomes more frequency-independent.

5. BEAM-STEERING

Since the array in Figure 2 is rotationally symmetric, i.e., its elements
are regularly spaced, it already has some beam-steering ability.
Considering the optimization of the directive gain in the −x (φ = 180◦)
direction, the same directive gain can also be obtained at φ = 60◦ and
φ = 300◦ by simply exchanging the excitations among the antennas.
However, it is also desirable to steer the main beam in any direction
within a sector between two antennas. This goal can again be achieved
via optimization with genetic algorithms.

Figures 7 and 8 show the results of the optimization. Since it is
easier to rotate the antenna than to change the optimization direction,
we use the configurations shown at the bottom of Figure 8; the
optimization angle is fixed at φ = 180◦ for all configurations. The array
is rotated 10◦, 20◦, and 30◦ in the φ direction to test the beam-steering
ability in a sector of 2 × 30◦ = 60◦. We confirmed that a rotation in
the negative direction is not required; due to symmetry, the results
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Figure 7. Optimized directive gain in the −x direction sampled
with 1 MHz resolution when the array in Figure 2 is rotated in the
φ direction for (a) 0◦, (b) 10◦, (c) 20◦, and (d) 30◦.

of an optimization in the −φ0 direction can be approximated from
the optimization in the +φ0 direction. In Figure 7, we observe that
the optimized directive gain in the −x direction drops as the antenna
is rotated; this is because the main beam is not totally controllable,
and it is difficult to maintain the directive gain at high levels. This
is also evident in Figure 8, where the normalized far-zone radiation
pattern of the array is plotted on a decibel (dB) scale for some selected
frequencies and for different alignments of the array (shown at the
bottom). The maximum radiation cannot be kept in the −x direction
when the antenna is rotated 30◦. Nevertheless, the directive gain is
larger than 5 up to 20◦. This means that the array in Figure 2 can
provide a directive gain larger than 5 in three distinct sectors, each
of which has an extent of 40◦. We note that this is valid for a wide
frequency range from 300 MHz to 800 MHz.
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Figure 8. Normalized far-zone radiation pattern of the array in
Figure 2 for various frequencies and alignments. Directive gain is
optimized in the −x direction.
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6. CONCLUSION

In this paper, we analyze the circular arrays that are constructed by
regularly spaced LP antennas in a simulation environment. These
arrays show broadband characteristics and the main beam is steerable
by exciting the antennas appropriately. Optimization of excitations by
genetic algorithms improves the design and extends the steering ability.
It is also possible to achieve broadband beam steering over wider
sectors with other configurations that are not circularly symmetric;
these are reported elsewhere [33].
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31. Ergül, Ö. and L. Gürel, “Log-periodic antenna design using elec-
tromagnetic simulations,” Proc. IEEE Antennas and Propagation
Soc. Int. Symp., Vol. 1, 245–248, 2003.
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