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Born-Infeld-Hořava gravity
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We define various Born-Infeld gravity theories in 3+1 dimensions which reduce to Hořava’s
model at the quadratic level in small curvature expansion. In their exact forms, our actions
provide z → ∞ extensions of Hořava’s gravity, but when small curvature expansion is used,
they reproduce finite z models, including some half-integer ones.

I. INTRODUCTION

Born-Infeld (BI) [1] type actions appear in physics in various contexts; for example, the simplest
one is the relativistic point particle action I = −m

´

dt
√

1 − v2. One pragmatic way of looking at
this action is that it restricts v ≤ 1. Similarly, in electrodynamics to put an upper bound to the
electric field, and obtain a finite self-energy for the point charge, electrodynamics can be extended
to

I = −b2

ˆ

d4x

√

− det
(

gµν +
1
b

Fµν

)

, (1)

where b is a dimensionful parameter which sets the scale of the maximum attainable electric field.
It is easy to check that at the quadratic order, after dropping a constant term, (1) gives the pure
Maxwell theory. It also has the desired properties such as ghost freedom and causal propagation.
In string theory, Nambu-Goto action and D-brane actions are of the BI type. For a nice account of
BI theories see [2]. It is only natural to consider determinantal actions in gravity theories. In fact,
a decade before the BI paper, Eddington [3], using the symmetric connection (not the metric) as

the independent field, extended general relativity in the form I ∼
´

d4x

√

det
[

R(µν) (Γ)
]

which has

recently picked up interest [4]. Deser and Gibbons [5], using the metric as the independent field,
pondered upon viable BI-type gravity models in four dimensions. They considered the action

I =
ˆ

d4x
√

− det (agµν + bRµν + cXµν),

where Xµν is a “fudge” tensor which should be chosen in such a way that ghosts and tachyons do
not appear in the small curvature expansion about the Minkowski or (anti)-de Sitter spaces.

BI-type consistent gravity actions take their most elegant form in three dimensions. Recently
[6], it was shown that the action

IBI = −4m2

κ2

ˆ

d3x

[

√

− det
(

− 1
m2

G
)

−
(

Λ
2m2

+ 1
)√

−g

]

, (2)
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with Gµν ≡ Rµν − 1
2gµνR − m2gµν , at the quadratic level reduces to the new massive gravity

(NMG)[7]

INMG =
1
κ2

ˆ

d3x
√

−g

[

− (R − 2Λ) +
1

m2

(

R2
µν − 3

8
R2
)]

,

which is the only unitary [7–10], super-renormalizable [11], parity-invariant theory. Conforming
to the spirit of the BI actions, for constant curvature spaces, (2) restricts the curvature to be
Rµν ≥ −2m2gµν . At the cubic order, (2) yields the action

INMG extended =
1
κ2

ˆ

d3x
√

−g

[

− (R − 2Λ) +
1

m2

(

R2
µν − 3

8
R2
)

+
2

3m4

(

RµνR α
ν Rαµ − 9

8
RR2

µν +
17
64

R3
)

+ O
(

R4
)

]

, (3)

which exactly matches the action obtained by Sinha [12] who used the AdS/CFT conjecture and
the existence of a holographic c theorem to find cubic deformations to NMG. It is remarkable that
a BI-type gravitational action at the cubic order reproduces a three-dimensional theory in the bulk
which is fixed by conformal field theory on the two-dimensional boundary.

Inspired by the success of the BI actions, in this work we will present various extensions of
Hořava’s recent nonrelativistic gravity theory [13] to all orders in the curvature. The layout of the
paper is as follows: In Sec. II, we propose an extension of Hořava’s gravity by defining a BI-type
potential generating action in three dimensions using the detailed-balance principle. In Sec. III,
without reference to the detailed-balance principle, we give BI-type extensions of Hořava’s gravity
in 3 + 1 dimensions.

II. BORN-INFELD-HOŘAVA GRAVITY: BI-TYPE POTENTIAL GENERATING
ACTION

Since Hořava’s gravity has already been described in many places such as [14], just to fix the
notation, using (almost) the form of the action given in [15], we shall briefly recapitulate the essen-
tial ingredients. (See [16] for related works.) One starts with the usual ADM [17] decomposition
of the four-dimensional space,

ds2 = −N2dt2 + gij

(

dxi − N idt
)(

dxj − N jdt
)

,

where all the involved functions depend on t and xi. [Note that we do not commit ourselves to the
so-called projectable version of Hořava’s gravity for which N depends on t only.] One then assumes
different scaling dimensions for time and space: t → bzt, xi → bxi. It is expected that in the IR
limit z → 1 and full diffeomorphism invariance is recovered. Once sacred Lorentz invariance is let
go, there is no limit to the number of models one can define. Hořava introduced a guiding principle
called the “detailed balance” to inherit “reasonable” actions from three dimensions. In short, his
specific proposal leads to

IH =
ˆ

dtd3
x

√
gN (LK + LV ) ,

where LK and LV are kinetic and potential parts, respectively. Not to introduce more than two
time derivatives and get hit by the Ostragradski ghosts, the kinetic part is defined as

LK =
2
κ2

(

KijKij − λK2
)

,



3

where Kij = 1
2N (ġij − ∇iNj − ∇jNi) is the extrinsic curvature and λ is a dimensionless coupling

constant which hopefully flows to 1 in the IR limit, so that one recovers the kinetic part of the
standard Einstein-Hilbert action. The kinetic part of the action is pretty robust, but as for the
potential part, one has a great deal of freedom. Specifically, defining Cij = ǫikl∇k

(

R
j
l − 1

4Rδ
j
l

)

to be the Cotton tensor, the z = 3 Hořava theory has the potential:

LV =
κ2µ2ΛW (R − 3ΛW )

8 (1 − 3λ)
+

κ2µ2 (1 − 4λ)
32 (1 − 3λ)

R2 − κ2

2w4

(

Cij − µw2

2
Rij

)(

Cij − µw2

2
Rij

)

,

where à la the detailed-balance principle, LV comes from the three-dimensional Einstein-Hilbert
and the topologically massive gravity (TMG) actions. More concretely, this principle works in the
following way, LV = κ2

8 EijGijklE
kl, where Eij = 1√

g
δW3

δgij
. Here, Gijkl is the deformed De Witt

metric

Gijkl =
1
2

(gikgjl + gilgjk) +
λ

1 − 3λ
gikgjl

and W3 is a three-dimensional Euclidean action. [As a side remark, note that in a slightly different
context, using the method of steepest descent topologically massive gravity was used to obtain the
CijCij action to define another nonrelativistic theory which is the Cotton flow theory ∂tgij = Cij

[18]. The relevance of Cotton and related flows to Hořava’s gravity has been recently studied in
[19].]

In [20], z = 4 Hořava’s theory was defined using the NMG as the potential generating action
via the detailed-balance principle. As we noted in the Introduction, NMG itself has a consistent
BI-type extension. Therefore, our first proposal is to add to TMG the Euclidean BI action to get
the potential generating action:

W3 = −4µ2L

ˆ

d3x

[
√

det
(

1
µL

G
)

+
(

ΛW

2µL
− 1

)√
g

]

+
1

w2

ˆ

d3x
√

gǫijkΓm
il

(

∂jΓl
km +

2
3

Γl
jnΓn

km

)

, (4)

where Gij ≡ Rij − 1
2gijR + µLgij. This action can be used to obtain the potential at any desired

order. In the quadratic order, the result of [20] follows, at the cubic order one should find the
equations coming from (3) add the Cotton tensor to find Eij , and using the De Witt metric
described as above take the square of Eij to get the potential. If one wants to deal with the exact
(that is the z → ∞) theory, one can use

det A =
1
6

[

(TrA)3 − 3TrATr
(

A2
)

+ 2Tr
(

A3
)]

,

to get
√

det
(

1
m2

G
)

=
√

g

(

1 − 1
2m2

Rij
[

gij +
1

m2

(

Rij − 1
2

gijR

)

− 2
3m4

(

RikRk
j − 3

4
RRij +

1
8

gijR2
)])1/2

,

or if one wants to work at a finite z, for example, such as z = 8 one can do a small curvature
expansion up to O

(

A5
)

,

[det (1 + A)]1/2 = 1 +
1
2

TrA − 1
4

Tr
(

A2
)

+
1
8

(TrA)2 +
1
6

Tr
(

A3
)

− 1
8

TrATr
(

A2
)

+
1
48

(TrA)3

− 1
8

Tr
(

A4
)

+
1
32

[

Tr
(

A2
)]2

+
1
12

TrATr
(

A3
)

− 1
32

(TrA)2 Tr
(

A2
)

+
1

384
(TrA)4 .

Clearly, this procedure can be extended to any desired order.
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III. BORN-INFELD-HOŘAVA GRAVITY: BI-TYPE POTENTIAL

In the above section, we proposed that the potential generating three-dimensional action for
Hořava’s gravity can be taken to be the gravitational BI action together with the TMG action.
This procedure leads to a manageable deformation of Hořava’s gravity. In this section, we will
propose a more radical extension of Hořava’s gravity again in the form of a BI action which will
not require a reference to the detailed-balance principle. First, observe that for λ = 1 the potential
part of Hořava’s theory reduces to the Euclidean NMG in addition to Cotton parts:

LV = −κ2µ2ΛW

16

[

(R − 3ΛW ) +
2

ΛW

(

R2
ij − 3

8
R2
)]

− κ2

2w4
C2

ij +
κ2µ

2w2
CijRij . (5)

Note that the appearance of NMG in the IR limit of z = 3 Hořava’s gravity should not be confused
with the use of NMG as a potential generating action for the z = 4 theory discussed above.
Observation of (5) led us to consider the following BI action:

IBI =
2
κ2

ˆ

dtd3
x

√
gN

(

KijKij − λK2
)

+
1
b

ˆ

dtd3x N

{

√

det
[

gij + aR̃ij + dgijR + eCij

]

+
1
2

√
g

}

, (6)

where R̃ij ≡ Rij − 1
3gijR. With the coefficients

a = ±
√

6λ − 2
ΛW

, λ >
1
3

, b =
2a2

κ2µ2
, d = − 1

3ΛW
, e = − 2a

µw2
,

Hořava’s gravity is reproduced in the small curvature expansion at the quadratic level. What is
of course remarkable about (6) is that by just considering the metric, the Ricci tensor and scalar
and the Cotton tensor and not any other higher derivative tensors, one can reproduce and extend
Hořava’s gravity to any order. For example, at O

(

R3
)

Hořava’s action will be augmented with

bLO(R3) =
1
6

(

a3RijRjkRk
i + 3a2eRijRjkCk

i + 3ae2RijCjkCk
i + e3CijCjkCk

i

)

− 1
6

(

a − 3
4

d

)

R
(

a2R2
ij + 2aeRijCij + e2C2

ij

)

+

(

a3

27
− 1

24
a2d − 1

16
d3

)

R3, (7)

which defines a z = 4.5 theory in the UV. Beyond this order, the computation gets more cumber-
some (see the Appendix).

We stress that the BI action (6) is tailor made to reproduce Hořava’s gravity at the quadratic
order. Therefore, as long as one considers small curvature expansions at the desired order, Hořava’s
theory merely receives corrections. For example, the solutions found in [15, 21] will be modified.
On the other hand, considering (6) as the exact theory without any approximation, one can search
for solutions. It is easy to check that spherically symmetric static solutions are ruled out. To
see this, leaning on symmetric criticality, which says that symmetric critical points are critical
symmetric points when compact symmetry group is integrated out [22, 23], one inserts the ansatz

ds2 = −N2 (r) dt2 +
1

f (r)
dr2 + r2

(

dθ2 + sin2 θdϕ2
)

,

to the action (6): The kinetic part vanishes and variation with respect to N (r) shows that there
cannot be a static solution. This result is surprising, but (6) is supposed to define a quantum gravity
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action and there is no guarantee that in quantum gravity there will be spherically symmetric static

solutions. In fact, in Einstein’s gravity the classical Schwarzschild solution fails to be static even
in the semiclassical approach [24]: It has Hawking radiation.

Finally, by allowing quadratic terms inside the determinant, one can find some nonminimal
BI extensions of Hořava’s gravity. The most general choice using only the Cotton and the Ricci
tensors would be

det
[

gij + aR̃ij + dgijR + eCij + f
(

RRij + lgijR2
)

+ nR

(

RikRk
j + pRgijR2

kl

)

+nRC

(

RikCk
j + pRCgijRklC

kl
)

+ nC

(

CikCk
j + pCgijC2

kl

)]

.

The requirement that Hořava’s gravity be reproduced at the quadratic level is highly restrictive,
and the explicit computation shows that not all the terms are allowed. In fact, one is left to choose
either the RRij or the gijR2 term. Therefore, another extension of Hořava’s gravity is

IBI nonminimal =
2
κ2

ˆ

dtd3
x

√
gN

(

KijKij − λK2
)

+
1
b

ˆ

dtd3x N

√

det
[

gij + aR̃ij + dgijR + eCij + fRijR
]

, (8)

where

a = ± 2
ΛW

√

3λ − 1
3

, b =
2a2

κ2µ2
, d = − 2

9ΛW
, e = − 2a

µw2
, f =

1
54Λ2

W

.

Observe that, as opposed to (6), in (8) the cosmological constant term comes with the correct
factors from the determinant and one does not need to add a

√
g. In principle, this action allows

spherically symmetric static solutions. Again small curvature expansion will give deformations of
Hořava’s theory at any order.

IV. CONCLUSIONS

We proposed, without introducing new parameters, three BI-type extensions, (4), (6), (8), of
Hořava’s gravity. All these extensions can be used to generate finite z theories, or taken in their
exact form they define in a compact way z → ∞ theories in the UV regimes. Our first proposal
(4) uses the detailed-balance principle, and the potential is generated from a three-dimensional BI
action that generalizes the NMG and its cubic deformation obtained from AdS/CFT. The other
two proposals do not use the detailed-balance principle: the potential is given in terms of a BI-type
action. In the literature, both the original Hořava’s gravity and its extensions [25, 26] have been
questioned regarding their consistency and strong coupling problems [27–29]. The models we have
proposed here need to be studied along these lines. Classical solutions of the BI-type theories have
usually no or less severe singularities. It would be interesting to see if our actions have nonsingular
solutions.
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Appendix: O
(

R4
)

extension of BI-Hořava Gravity

In addition to (7), the following terms will be added to get the z = 6 theory at O
(

R4
)

:

bLO(R4) = −1
8

(

a4RijRjkRklRli + 4a3eRijRjkRklCli + 6a2e2RijRjkCklCli

+4ae3RijCjkCklCli + e4CijCjkCklCli

)

+
1
12

(2a − 3d) R
(

a3RijRjkRk
i + 3a2eRijRjkCk

i + 3ae2RijCjkCk
i + e3CijCjkCk

i

)

− 1
96

(

9d2 − 24ad + 10a2
)

R2
(

a2R2
ij + 2aeRijCij + e2C2

ij

)

+
1
32

[

a4
(

R2
ij

)2
+ 4a3eR2

ijRklCkl + 2a2e2R2
ijC

2
kl

+4a2e2
(

RijCij

)2
+ 4ae3RijCijC2

kl + e4
(

C2
ij

)2
]

+
1
32

(

5a4

9
− 16a3d

9
+ a2d2 +

3d4

4

)

R4.
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